aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--drivers/net/ethernet/sfc/Makefile3
-rw-r--r--drivers/net/ethernet/sfc/efx.c4
-rw-r--r--drivers/net/ethernet/sfc/falcon.c58
-rw-r--r--drivers/net/ethernet/sfc/farch.c1781
-rw-r--r--drivers/net/ethernet/sfc/net_driver.h50
-rw-r--r--drivers/net/ethernet/sfc/nic.c1811
-rw-r--r--drivers/net/ethernet/sfc/nic.h200
-rw-r--r--drivers/net/ethernet/sfc/siena.c34
-rw-r--r--drivers/net/ethernet/sfc/siena_sriov.c5
9 files changed, 2088 insertions, 1858 deletions
diff --git a/drivers/net/ethernet/sfc/Makefile b/drivers/net/ethernet/sfc/Makefile
index 5b31d8a4ae5e..ef7410f014d6 100644
--- a/drivers/net/ethernet/sfc/Makefile
+++ b/drivers/net/ethernet/sfc/Makefile
@@ -1,4 +1,5 @@
1sfc-y += efx.o nic.o falcon.o siena.o tx.o rx.o filter.o \ 1sfc-y += efx.o nic.o farch.o falcon.o siena.o tx.o rx.o \
2 filter.o \
2 selftest.o ethtool.o qt202x_phy.o mdio_10g.o \ 3 selftest.o ethtool.o qt202x_phy.o mdio_10g.o \
3 tenxpress.o txc43128_phy.o falcon_boards.o \ 4 tenxpress.o txc43128_phy.o falcon_boards.o \
4 mcdi.o mcdi_port.o mcdi_mon.o ptp.o 5 mcdi.o mcdi_port.o mcdi_mon.o ptp.o
diff --git a/drivers/net/ethernet/sfc/efx.c b/drivers/net/ethernet/sfc/efx.c
index 9c6555c12acf..872b9f5b38a3 100644
--- a/drivers/net/ethernet/sfc/efx.c
+++ b/drivers/net/ethernet/sfc/efx.c
@@ -1386,7 +1386,7 @@ static void efx_enable_interrupts(struct efx_nic *efx)
1386 efx->eeh_disabled_legacy_irq = false; 1386 efx->eeh_disabled_legacy_irq = false;
1387 } 1387 }
1388 1388
1389 efx_nic_enable_interrupts(efx); 1389 efx->type->irq_enable_master(efx);
1390 1390
1391 efx_for_each_channel(channel, efx) { 1391 efx_for_each_channel(channel, efx) {
1392 if (channel->type->keep_eventq) 1392 if (channel->type->keep_eventq)
@@ -1407,7 +1407,7 @@ static void efx_disable_interrupts(struct efx_nic *efx)
1407 efx_fini_eventq(channel); 1407 efx_fini_eventq(channel);
1408 } 1408 }
1409 1409
1410 efx_nic_disable_interrupts(efx); 1410 efx->type->irq_disable_non_ev(efx);
1411} 1411}
1412 1412
1413static void efx_remove_interrupts(struct efx_nic *efx) 1413static void efx_remove_interrupts(struct efx_nic *efx)
diff --git a/drivers/net/ethernet/sfc/falcon.c b/drivers/net/ethernet/sfc/falcon.c
index c8efcb0efded..fe83c26c4b8a 100644
--- a/drivers/net/ethernet/sfc/falcon.c
+++ b/drivers/net/ethernet/sfc/falcon.c
@@ -346,7 +346,7 @@ static inline void falcon_irq_ack_a1(struct efx_nic *efx)
346} 346}
347 347
348 348
349irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id) 349static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
350{ 350{
351 struct efx_nic *efx = dev_id; 351 struct efx_nic *efx = dev_id;
352 efx_oword_t *int_ker = efx->irq_status.addr; 352 efx_oword_t *int_ker = efx->irq_status.addr;
@@ -373,7 +373,7 @@ irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
373 /* Check to see if we have a serious error condition */ 373 /* Check to see if we have a serious error condition */
374 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT); 374 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
375 if (unlikely(syserr)) 375 if (unlikely(syserr))
376 return efx_nic_fatal_interrupt(efx); 376 return efx_farch_fatal_interrupt(efx);
377 377
378 /* Determine interrupting queues, clear interrupt status 378 /* Determine interrupting queues, clear interrupt status
379 * register and acknowledge the device interrupt. 379 * register and acknowledge the device interrupt.
@@ -1558,7 +1558,7 @@ static int falcon_test_nvram(struct efx_nic *efx)
1558 return falcon_read_nvram(efx, NULL); 1558 return falcon_read_nvram(efx, NULL);
1559} 1559}
1560 1560
1561static const struct efx_nic_register_test falcon_b0_register_tests[] = { 1561static const struct efx_farch_register_test falcon_b0_register_tests[] = {
1562 { FR_AZ_ADR_REGION, 1562 { FR_AZ_ADR_REGION,
1563 EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) }, 1563 EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1564 { FR_AZ_RX_CFG, 1564 { FR_AZ_RX_CFG,
@@ -1618,8 +1618,8 @@ falcon_b0_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
1618 efx_reset_down(efx, reset_method); 1618 efx_reset_down(efx, reset_method);
1619 1619
1620 tests->registers = 1620 tests->registers =
1621 efx_nic_test_registers(efx, falcon_b0_register_tests, 1621 efx_farch_test_registers(efx, falcon_b0_register_tests,
1622 ARRAY_SIZE(falcon_b0_register_tests)) 1622 ARRAY_SIZE(falcon_b0_register_tests))
1623 ? -1 : 1; 1623 ? -1 : 1;
1624 1624
1625 rc = falcon_reset_hw(efx, reset_method); 1625 rc = falcon_reset_hw(efx, reset_method);
@@ -1984,7 +1984,7 @@ static int falcon_probe_nic(struct efx_nic *efx)
1984 1984
1985 rc = -ENODEV; 1985 rc = -ENODEV;
1986 1986
1987 if (efx_nic_fpga_ver(efx) != 0) { 1987 if (efx_farch_fpga_ver(efx) != 0) {
1988 netif_err(efx, probe, efx->net_dev, 1988 netif_err(efx, probe, efx->net_dev,
1989 "Falcon FPGA not supported\n"); 1989 "Falcon FPGA not supported\n");
1990 goto fail1; 1990 goto fail1;
@@ -2218,7 +2218,7 @@ static int falcon_init_nic(struct efx_nic *efx)
2218 efx_writeo(efx, &temp, FR_BZ_DP_CTRL); 2218 efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
2219 } 2219 }
2220 2220
2221 efx_nic_init_common(efx); 2221 efx_farch_init_common(efx);
2222 2222
2223 return 0; 2223 return 0;
2224} 2224}
@@ -2367,6 +2367,28 @@ const struct efx_nic_type falcon_a1_nic_type = {
2367 .set_wol = falcon_set_wol, 2367 .set_wol = falcon_set_wol,
2368 .resume_wol = efx_port_dummy_op_void, 2368 .resume_wol = efx_port_dummy_op_void,
2369 .test_nvram = falcon_test_nvram, 2369 .test_nvram = falcon_test_nvram,
2370 .irq_enable_master = efx_farch_irq_enable_master,
2371 .irq_test_generate = efx_farch_irq_test_generate,
2372 .irq_disable_non_ev = efx_farch_irq_disable_master,
2373 .irq_handle_msi = efx_farch_msi_interrupt,
2374 .irq_handle_legacy = falcon_legacy_interrupt_a1,
2375 .tx_probe = efx_farch_tx_probe,
2376 .tx_init = efx_farch_tx_init,
2377 .tx_remove = efx_farch_tx_remove,
2378 .tx_write = efx_farch_tx_write,
2379 .rx_push_indir_table = efx_farch_rx_push_indir_table,
2380 .rx_probe = efx_farch_rx_probe,
2381 .rx_init = efx_farch_rx_init,
2382 .rx_remove = efx_farch_rx_remove,
2383 .rx_write = efx_farch_rx_write,
2384 .rx_defer_refill = efx_farch_rx_defer_refill,
2385 .ev_probe = efx_farch_ev_probe,
2386 .ev_init = efx_farch_ev_init,
2387 .ev_fini = efx_farch_ev_fini,
2388 .ev_remove = efx_farch_ev_remove,
2389 .ev_process = efx_farch_ev_process,
2390 .ev_read_ack = efx_farch_ev_read_ack,
2391 .ev_test_generate = efx_farch_ev_test_generate,
2370 2392
2371 .revision = EFX_REV_FALCON_A1, 2393 .revision = EFX_REV_FALCON_A1,
2372 .mem_map_size = 0x20000, 2394 .mem_map_size = 0x20000,
@@ -2414,6 +2436,28 @@ const struct efx_nic_type falcon_b0_nic_type = {
2414 .resume_wol = efx_port_dummy_op_void, 2436 .resume_wol = efx_port_dummy_op_void,
2415 .test_chip = falcon_b0_test_chip, 2437 .test_chip = falcon_b0_test_chip,
2416 .test_nvram = falcon_test_nvram, 2438 .test_nvram = falcon_test_nvram,
2439 .irq_enable_master = efx_farch_irq_enable_master,
2440 .irq_test_generate = efx_farch_irq_test_generate,
2441 .irq_disable_non_ev = efx_farch_irq_disable_master,
2442 .irq_handle_msi = efx_farch_msi_interrupt,
2443 .irq_handle_legacy = efx_farch_legacy_interrupt,
2444 .tx_probe = efx_farch_tx_probe,
2445 .tx_init = efx_farch_tx_init,
2446 .tx_remove = efx_farch_tx_remove,
2447 .tx_write = efx_farch_tx_write,
2448 .rx_push_indir_table = efx_farch_rx_push_indir_table,
2449 .rx_probe = efx_farch_rx_probe,
2450 .rx_init = efx_farch_rx_init,
2451 .rx_remove = efx_farch_rx_remove,
2452 .rx_write = efx_farch_rx_write,
2453 .rx_defer_refill = efx_farch_rx_defer_refill,
2454 .ev_probe = efx_farch_ev_probe,
2455 .ev_init = efx_farch_ev_init,
2456 .ev_fini = efx_farch_ev_fini,
2457 .ev_remove = efx_farch_ev_remove,
2458 .ev_process = efx_farch_ev_process,
2459 .ev_read_ack = efx_farch_ev_read_ack,
2460 .ev_test_generate = efx_farch_ev_test_generate,
2417 2461
2418 .revision = EFX_REV_FALCON_B0, 2462 .revision = EFX_REV_FALCON_B0,
2419 /* Map everything up to and including the RSS indirection 2463 /* Map everything up to and including the RSS indirection
diff --git a/drivers/net/ethernet/sfc/farch.c b/drivers/net/ethernet/sfc/farch.c
new file mode 100644
index 000000000000..c3d07c556569
--- /dev/null
+++ b/drivers/net/ethernet/sfc/farch.c
@@ -0,0 +1,1781 @@
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2011 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/bitops.h>
12#include <linux/delay.h>
13#include <linux/interrupt.h>
14#include <linux/pci.h>
15#include <linux/module.h>
16#include <linux/seq_file.h>
17#include "net_driver.h"
18#include "bitfield.h"
19#include "efx.h"
20#include "nic.h"
21#include "farch_regs.h"
22#include "io.h"
23#include "workarounds.h"
24
25/* Falcon-architecture (SFC4000 and SFC9000-family) support */
26
27/**************************************************************************
28 *
29 * Configurable values
30 *
31 **************************************************************************
32 */
33
34/* This is set to 16 for a good reason. In summary, if larger than
35 * 16, the descriptor cache holds more than a default socket
36 * buffer's worth of packets (for UDP we can only have at most one
37 * socket buffer's worth outstanding). This combined with the fact
38 * that we only get 1 TX event per descriptor cache means the NIC
39 * goes idle.
40 */
41#define TX_DC_ENTRIES 16
42#define TX_DC_ENTRIES_ORDER 1
43
44#define RX_DC_ENTRIES 64
45#define RX_DC_ENTRIES_ORDER 3
46
47/* If EFX_MAX_INT_ERRORS internal errors occur within
48 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
49 * disable it.
50 */
51#define EFX_INT_ERROR_EXPIRE 3600
52#define EFX_MAX_INT_ERRORS 5
53
54/* Depth of RX flush request fifo */
55#define EFX_RX_FLUSH_COUNT 4
56
57/* Driver generated events */
58#define _EFX_CHANNEL_MAGIC_TEST 0x000101
59#define _EFX_CHANNEL_MAGIC_FILL 0x000102
60#define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103
61#define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104
62
63#define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data))
64#define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8)
65
66#define EFX_CHANNEL_MAGIC_TEST(_channel) \
67 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
68#define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \
69 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \
70 efx_rx_queue_index(_rx_queue))
71#define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \
72 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \
73 efx_rx_queue_index(_rx_queue))
74#define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \
75 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \
76 (_tx_queue)->queue)
77
78static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
79
80/**************************************************************************
81 *
82 * Hardware access
83 *
84 **************************************************************************/
85
86static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
87 unsigned int index)
88{
89 efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
90 value, index);
91}
92
93static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
94 const efx_oword_t *mask)
95{
96 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
97 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
98}
99
100int efx_farch_test_registers(struct efx_nic *efx,
101 const struct efx_farch_register_test *regs,
102 size_t n_regs)
103{
104 unsigned address = 0, i, j;
105 efx_oword_t mask, imask, original, reg, buf;
106
107 for (i = 0; i < n_regs; ++i) {
108 address = regs[i].address;
109 mask = imask = regs[i].mask;
110 EFX_INVERT_OWORD(imask);
111
112 efx_reado(efx, &original, address);
113
114 /* bit sweep on and off */
115 for (j = 0; j < 128; j++) {
116 if (!EFX_EXTRACT_OWORD32(mask, j, j))
117 continue;
118
119 /* Test this testable bit can be set in isolation */
120 EFX_AND_OWORD(reg, original, mask);
121 EFX_SET_OWORD32(reg, j, j, 1);
122
123 efx_writeo(efx, &reg, address);
124 efx_reado(efx, &buf, address);
125
126 if (efx_masked_compare_oword(&reg, &buf, &mask))
127 goto fail;
128
129 /* Test this testable bit can be cleared in isolation */
130 EFX_OR_OWORD(reg, original, mask);
131 EFX_SET_OWORD32(reg, j, j, 0);
132
133 efx_writeo(efx, &reg, address);
134 efx_reado(efx, &buf, address);
135
136 if (efx_masked_compare_oword(&reg, &buf, &mask))
137 goto fail;
138 }
139
140 efx_writeo(efx, &original, address);
141 }
142
143 return 0;
144
145fail:
146 netif_err(efx, hw, efx->net_dev,
147 "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
148 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
149 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
150 return -EIO;
151}
152
153/**************************************************************************
154 *
155 * Special buffer handling
156 * Special buffers are used for event queues and the TX and RX
157 * descriptor rings.
158 *
159 *************************************************************************/
160
161/*
162 * Initialise a special buffer
163 *
164 * This will define a buffer (previously allocated via
165 * efx_alloc_special_buffer()) in the buffer table, allowing
166 * it to be used for event queues, descriptor rings etc.
167 */
168static void
169efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
170{
171 efx_qword_t buf_desc;
172 unsigned int index;
173 dma_addr_t dma_addr;
174 int i;
175
176 EFX_BUG_ON_PARANOID(!buffer->buf.addr);
177
178 /* Write buffer descriptors to NIC */
179 for (i = 0; i < buffer->entries; i++) {
180 index = buffer->index + i;
181 dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
182 netif_dbg(efx, probe, efx->net_dev,
183 "mapping special buffer %d at %llx\n",
184 index, (unsigned long long)dma_addr);
185 EFX_POPULATE_QWORD_3(buf_desc,
186 FRF_AZ_BUF_ADR_REGION, 0,
187 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
188 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
189 efx_write_buf_tbl(efx, &buf_desc, index);
190 }
191}
192
193/* Unmaps a buffer and clears the buffer table entries */
194static void
195efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
196{
197 efx_oword_t buf_tbl_upd;
198 unsigned int start = buffer->index;
199 unsigned int end = (buffer->index + buffer->entries - 1);
200
201 if (!buffer->entries)
202 return;
203
204 netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
205 buffer->index, buffer->index + buffer->entries - 1);
206
207 EFX_POPULATE_OWORD_4(buf_tbl_upd,
208 FRF_AZ_BUF_UPD_CMD, 0,
209 FRF_AZ_BUF_CLR_CMD, 1,
210 FRF_AZ_BUF_CLR_END_ID, end,
211 FRF_AZ_BUF_CLR_START_ID, start);
212 efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
213}
214
215/*
216 * Allocate a new special buffer
217 *
218 * This allocates memory for a new buffer, clears it and allocates a
219 * new buffer ID range. It does not write into the buffer table.
220 *
221 * This call will allocate 4KB buffers, since 8KB buffers can't be
222 * used for event queues and descriptor rings.
223 */
224static int efx_alloc_special_buffer(struct efx_nic *efx,
225 struct efx_special_buffer *buffer,
226 unsigned int len)
227{
228 len = ALIGN(len, EFX_BUF_SIZE);
229
230 if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
231 return -ENOMEM;
232 buffer->entries = len / EFX_BUF_SIZE;
233 BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
234
235 /* Select new buffer ID */
236 buffer->index = efx->next_buffer_table;
237 efx->next_buffer_table += buffer->entries;
238#ifdef CONFIG_SFC_SRIOV
239 BUG_ON(efx_sriov_enabled(efx) &&
240 efx->vf_buftbl_base < efx->next_buffer_table);
241#endif
242
243 netif_dbg(efx, probe, efx->net_dev,
244 "allocating special buffers %d-%d at %llx+%x "
245 "(virt %p phys %llx)\n", buffer->index,
246 buffer->index + buffer->entries - 1,
247 (u64)buffer->buf.dma_addr, len,
248 buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
249
250 return 0;
251}
252
253static void
254efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
255{
256 if (!buffer->buf.addr)
257 return;
258
259 netif_dbg(efx, hw, efx->net_dev,
260 "deallocating special buffers %d-%d at %llx+%x "
261 "(virt %p phys %llx)\n", buffer->index,
262 buffer->index + buffer->entries - 1,
263 (u64)buffer->buf.dma_addr, buffer->buf.len,
264 buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
265
266 efx_nic_free_buffer(efx, &buffer->buf);
267 buffer->entries = 0;
268}
269
270/**************************************************************************
271 *
272 * TX path
273 *
274 **************************************************************************/
275
276/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
277static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
278{
279 unsigned write_ptr;
280 efx_dword_t reg;
281
282 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
283 EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
284 efx_writed_page(tx_queue->efx, &reg,
285 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
286}
287
288/* Write pointer and first descriptor for TX descriptor ring */
289static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
290 const efx_qword_t *txd)
291{
292 unsigned write_ptr;
293 efx_oword_t reg;
294
295 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
296 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
297
298 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
299 EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
300 FRF_AZ_TX_DESC_WPTR, write_ptr);
301 reg.qword[0] = *txd;
302 efx_writeo_page(tx_queue->efx, &reg,
303 FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
304}
305
306
307/* For each entry inserted into the software descriptor ring, create a
308 * descriptor in the hardware TX descriptor ring (in host memory), and
309 * write a doorbell.
310 */
311void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
312{
313
314 struct efx_tx_buffer *buffer;
315 efx_qword_t *txd;
316 unsigned write_ptr;
317 unsigned old_write_count = tx_queue->write_count;
318
319 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
320
321 do {
322 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
323 buffer = &tx_queue->buffer[write_ptr];
324 txd = efx_tx_desc(tx_queue, write_ptr);
325 ++tx_queue->write_count;
326
327 /* Create TX descriptor ring entry */
328 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
329 EFX_POPULATE_QWORD_4(*txd,
330 FSF_AZ_TX_KER_CONT,
331 buffer->flags & EFX_TX_BUF_CONT,
332 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
333 FSF_AZ_TX_KER_BUF_REGION, 0,
334 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
335 } while (tx_queue->write_count != tx_queue->insert_count);
336
337 wmb(); /* Ensure descriptors are written before they are fetched */
338
339 if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
340 txd = efx_tx_desc(tx_queue,
341 old_write_count & tx_queue->ptr_mask);
342 efx_farch_push_tx_desc(tx_queue, txd);
343 ++tx_queue->pushes;
344 } else {
345 efx_farch_notify_tx_desc(tx_queue);
346 }
347}
348
349/* Allocate hardware resources for a TX queue */
350int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
351{
352 struct efx_nic *efx = tx_queue->efx;
353 unsigned entries;
354
355 entries = tx_queue->ptr_mask + 1;
356 return efx_alloc_special_buffer(efx, &tx_queue->txd,
357 entries * sizeof(efx_qword_t));
358}
359
360void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
361{
362 struct efx_nic *efx = tx_queue->efx;
363 efx_oword_t reg;
364
365 /* Pin TX descriptor ring */
366 efx_init_special_buffer(efx, &tx_queue->txd);
367
368 /* Push TX descriptor ring to card */
369 EFX_POPULATE_OWORD_10(reg,
370 FRF_AZ_TX_DESCQ_EN, 1,
371 FRF_AZ_TX_ISCSI_DDIG_EN, 0,
372 FRF_AZ_TX_ISCSI_HDIG_EN, 0,
373 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
374 FRF_AZ_TX_DESCQ_EVQ_ID,
375 tx_queue->channel->channel,
376 FRF_AZ_TX_DESCQ_OWNER_ID, 0,
377 FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
378 FRF_AZ_TX_DESCQ_SIZE,
379 __ffs(tx_queue->txd.entries),
380 FRF_AZ_TX_DESCQ_TYPE, 0,
381 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
382
383 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
384 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
385 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
386 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
387 !csum);
388 }
389
390 efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
391 tx_queue->queue);
392
393 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
394 /* Only 128 bits in this register */
395 BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
396
397 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
398 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
399 __clear_bit_le(tx_queue->queue, &reg);
400 else
401 __set_bit_le(tx_queue->queue, &reg);
402 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
403 }
404
405 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
406 EFX_POPULATE_OWORD_1(reg,
407 FRF_BZ_TX_PACE,
408 (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
409 FFE_BZ_TX_PACE_OFF :
410 FFE_BZ_TX_PACE_RESERVED);
411 efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
412 tx_queue->queue);
413 }
414}
415
416static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
417{
418 struct efx_nic *efx = tx_queue->efx;
419 efx_oword_t tx_flush_descq;
420
421 WARN_ON(atomic_read(&tx_queue->flush_outstanding));
422 atomic_set(&tx_queue->flush_outstanding, 1);
423
424 EFX_POPULATE_OWORD_2(tx_flush_descq,
425 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
426 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
427 efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
428}
429
430void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
431{
432 struct efx_nic *efx = tx_queue->efx;
433 efx_oword_t tx_desc_ptr;
434
435 /* Remove TX descriptor ring from card */
436 EFX_ZERO_OWORD(tx_desc_ptr);
437 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
438 tx_queue->queue);
439
440 /* Unpin TX descriptor ring */
441 efx_fini_special_buffer(efx, &tx_queue->txd);
442}
443
444/* Free buffers backing TX queue */
445void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
446{
447 efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
448}
449
450/**************************************************************************
451 *
452 * RX path
453 *
454 **************************************************************************/
455
456/* This creates an entry in the RX descriptor queue */
457static inline void
458efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
459{
460 struct efx_rx_buffer *rx_buf;
461 efx_qword_t *rxd;
462
463 rxd = efx_rx_desc(rx_queue, index);
464 rx_buf = efx_rx_buffer(rx_queue, index);
465 EFX_POPULATE_QWORD_3(*rxd,
466 FSF_AZ_RX_KER_BUF_SIZE,
467 rx_buf->len -
468 rx_queue->efx->type->rx_buffer_padding,
469 FSF_AZ_RX_KER_BUF_REGION, 0,
470 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
471}
472
473/* This writes to the RX_DESC_WPTR register for the specified receive
474 * descriptor ring.
475 */
476void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
477{
478 struct efx_nic *efx = rx_queue->efx;
479 efx_dword_t reg;
480 unsigned write_ptr;
481
482 while (rx_queue->notified_count != rx_queue->added_count) {
483 efx_farch_build_rx_desc(
484 rx_queue,
485 rx_queue->notified_count & rx_queue->ptr_mask);
486 ++rx_queue->notified_count;
487 }
488
489 wmb();
490 write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
491 EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
492 efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
493 efx_rx_queue_index(rx_queue));
494}
495
496int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
497{
498 struct efx_nic *efx = rx_queue->efx;
499 unsigned entries;
500
501 entries = rx_queue->ptr_mask + 1;
502 return efx_alloc_special_buffer(efx, &rx_queue->rxd,
503 entries * sizeof(efx_qword_t));
504}
505
506void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
507{
508 efx_oword_t rx_desc_ptr;
509 struct efx_nic *efx = rx_queue->efx;
510 bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
511 bool iscsi_digest_en = is_b0;
512 bool jumbo_en;
513
514 /* For kernel-mode queues in Falcon A1, the JUMBO flag enables
515 * DMA to continue after a PCIe page boundary (and scattering
516 * is not possible). In Falcon B0 and Siena, it enables
517 * scatter.
518 */
519 jumbo_en = !is_b0 || efx->rx_scatter;
520
521 netif_dbg(efx, hw, efx->net_dev,
522 "RX queue %d ring in special buffers %d-%d\n",
523 efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
524 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
525
526 rx_queue->scatter_n = 0;
527
528 /* Pin RX descriptor ring */
529 efx_init_special_buffer(efx, &rx_queue->rxd);
530
531 /* Push RX descriptor ring to card */
532 EFX_POPULATE_OWORD_10(rx_desc_ptr,
533 FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
534 FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
535 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
536 FRF_AZ_RX_DESCQ_EVQ_ID,
537 efx_rx_queue_channel(rx_queue)->channel,
538 FRF_AZ_RX_DESCQ_OWNER_ID, 0,
539 FRF_AZ_RX_DESCQ_LABEL,
540 efx_rx_queue_index(rx_queue),
541 FRF_AZ_RX_DESCQ_SIZE,
542 __ffs(rx_queue->rxd.entries),
543 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
544 FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
545 FRF_AZ_RX_DESCQ_EN, 1);
546 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
547 efx_rx_queue_index(rx_queue));
548}
549
550static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
551{
552 struct efx_nic *efx = rx_queue->efx;
553 efx_oword_t rx_flush_descq;
554
555 EFX_POPULATE_OWORD_2(rx_flush_descq,
556 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
557 FRF_AZ_RX_FLUSH_DESCQ,
558 efx_rx_queue_index(rx_queue));
559 efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
560}
561
562void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
563{
564 efx_oword_t rx_desc_ptr;
565 struct efx_nic *efx = rx_queue->efx;
566
567 /* Remove RX descriptor ring from card */
568 EFX_ZERO_OWORD(rx_desc_ptr);
569 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
570 efx_rx_queue_index(rx_queue));
571
572 /* Unpin RX descriptor ring */
573 efx_fini_special_buffer(efx, &rx_queue->rxd);
574}
575
576/* Free buffers backing RX queue */
577void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
578{
579 efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
580}
581
582/**************************************************************************
583 *
584 * Flush handling
585 *
586 **************************************************************************/
587
588/* efx_farch_flush_queues() must be woken up when all flushes are completed,
589 * or more RX flushes can be kicked off.
590 */
591static bool efx_farch_flush_wake(struct efx_nic *efx)
592{
593 /* Ensure that all updates are visible to efx_farch_flush_queues() */
594 smp_mb();
595
596 return (atomic_read(&efx->drain_pending) == 0 ||
597 (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
598 && atomic_read(&efx->rxq_flush_pending) > 0));
599}
600
601static bool efx_check_tx_flush_complete(struct efx_nic *efx)
602{
603 bool i = true;
604 efx_oword_t txd_ptr_tbl;
605 struct efx_channel *channel;
606 struct efx_tx_queue *tx_queue;
607
608 efx_for_each_channel(channel, efx) {
609 efx_for_each_channel_tx_queue(tx_queue, channel) {
610 efx_reado_table(efx, &txd_ptr_tbl,
611 FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
612 if (EFX_OWORD_FIELD(txd_ptr_tbl,
613 FRF_AZ_TX_DESCQ_FLUSH) ||
614 EFX_OWORD_FIELD(txd_ptr_tbl,
615 FRF_AZ_TX_DESCQ_EN)) {
616 netif_dbg(efx, hw, efx->net_dev,
617 "flush did not complete on TXQ %d\n",
618 tx_queue->queue);
619 i = false;
620 } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
621 1, 0)) {
622 /* The flush is complete, but we didn't
623 * receive a flush completion event
624 */
625 netif_dbg(efx, hw, efx->net_dev,
626 "flush complete on TXQ %d, so drain "
627 "the queue\n", tx_queue->queue);
628 /* Don't need to increment drain_pending as it
629 * has already been incremented for the queues
630 * which did not drain
631 */
632 efx_farch_magic_event(channel,
633 EFX_CHANNEL_MAGIC_TX_DRAIN(
634 tx_queue));
635 }
636 }
637 }
638
639 return i;
640}
641
642/* Flush all the transmit queues, and continue flushing receive queues until
643 * they're all flushed. Wait for the DRAIN events to be recieved so that there
644 * are no more RX and TX events left on any channel. */
645static int efx_farch_do_flush(struct efx_nic *efx)
646{
647 unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
648 struct efx_channel *channel;
649 struct efx_rx_queue *rx_queue;
650 struct efx_tx_queue *tx_queue;
651 int rc = 0;
652
653 efx_for_each_channel(channel, efx) {
654 efx_for_each_channel_tx_queue(tx_queue, channel) {
655 atomic_inc(&efx->drain_pending);
656 efx_farch_flush_tx_queue(tx_queue);
657 }
658 efx_for_each_channel_rx_queue(rx_queue, channel) {
659 atomic_inc(&efx->drain_pending);
660 rx_queue->flush_pending = true;
661 atomic_inc(&efx->rxq_flush_pending);
662 }
663 }
664
665 while (timeout && atomic_read(&efx->drain_pending) > 0) {
666 /* If SRIOV is enabled, then offload receive queue flushing to
667 * the firmware (though we will still have to poll for
668 * completion). If that fails, fall back to the old scheme.
669 */
670 if (efx_sriov_enabled(efx)) {
671 rc = efx_mcdi_flush_rxqs(efx);
672 if (!rc)
673 goto wait;
674 }
675
676 /* The hardware supports four concurrent rx flushes, each of
677 * which may need to be retried if there is an outstanding
678 * descriptor fetch
679 */
680 efx_for_each_channel(channel, efx) {
681 efx_for_each_channel_rx_queue(rx_queue, channel) {
682 if (atomic_read(&efx->rxq_flush_outstanding) >=
683 EFX_RX_FLUSH_COUNT)
684 break;
685
686 if (rx_queue->flush_pending) {
687 rx_queue->flush_pending = false;
688 atomic_dec(&efx->rxq_flush_pending);
689 atomic_inc(&efx->rxq_flush_outstanding);
690 efx_farch_flush_rx_queue(rx_queue);
691 }
692 }
693 }
694
695 wait:
696 timeout = wait_event_timeout(efx->flush_wq,
697 efx_farch_flush_wake(efx),
698 timeout);
699 }
700
701 if (atomic_read(&efx->drain_pending) &&
702 !efx_check_tx_flush_complete(efx)) {
703 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
704 "(rx %d+%d)\n", atomic_read(&efx->drain_pending),
705 atomic_read(&efx->rxq_flush_outstanding),
706 atomic_read(&efx->rxq_flush_pending));
707 rc = -ETIMEDOUT;
708
709 atomic_set(&efx->drain_pending, 0);
710 atomic_set(&efx->rxq_flush_pending, 0);
711 atomic_set(&efx->rxq_flush_outstanding, 0);
712 }
713
714 return rc;
715}
716
717int efx_farch_fini_dmaq(struct efx_nic *efx)
718{
719 struct efx_channel *channel;
720 struct efx_tx_queue *tx_queue;
721 struct efx_rx_queue *rx_queue;
722 int rc = 0;
723
724 /* Do not attempt to write to the NIC during EEH recovery */
725 if (efx->state != STATE_RECOVERY) {
726 /* Only perform flush if DMA is enabled */
727 if (efx->pci_dev->is_busmaster) {
728 efx->type->prepare_flush(efx);
729 rc = efx_farch_do_flush(efx);
730 efx->type->finish_flush(efx);
731 }
732
733 efx_for_each_channel(channel, efx) {
734 efx_for_each_channel_rx_queue(rx_queue, channel)
735 efx_farch_rx_fini(rx_queue);
736 efx_for_each_channel_tx_queue(tx_queue, channel)
737 efx_farch_tx_fini(tx_queue);
738 }
739 }
740
741 return rc;
742}
743
744/**************************************************************************
745 *
746 * Event queue processing
747 * Event queues are processed by per-channel tasklets.
748 *
749 **************************************************************************/
750
751/* Update a channel's event queue's read pointer (RPTR) register
752 *
753 * This writes the EVQ_RPTR_REG register for the specified channel's
754 * event queue.
755 */
756void efx_farch_ev_read_ack(struct efx_channel *channel)
757{
758 efx_dword_t reg;
759 struct efx_nic *efx = channel->efx;
760
761 EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
762 channel->eventq_read_ptr & channel->eventq_mask);
763
764 /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
765 * of 4 bytes, but it is really 16 bytes just like later revisions.
766 */
767 efx_writed(efx, &reg,
768 efx->type->evq_rptr_tbl_base +
769 FR_BZ_EVQ_RPTR_STEP * channel->channel);
770}
771
772/* Use HW to insert a SW defined event */
773void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
774 efx_qword_t *event)
775{
776 efx_oword_t drv_ev_reg;
777
778 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
779 FRF_AZ_DRV_EV_DATA_WIDTH != 64);
780 drv_ev_reg.u32[0] = event->u32[0];
781 drv_ev_reg.u32[1] = event->u32[1];
782 drv_ev_reg.u32[2] = 0;
783 drv_ev_reg.u32[3] = 0;
784 EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
785 efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
786}
787
788static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
789{
790 efx_qword_t event;
791
792 EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
793 FSE_AZ_EV_CODE_DRV_GEN_EV,
794 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
795 efx_farch_generate_event(channel->efx, channel->channel, &event);
796}
797
798/* Handle a transmit completion event
799 *
800 * The NIC batches TX completion events; the message we receive is of
801 * the form "complete all TX events up to this index".
802 */
803static int
804efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
805{
806 unsigned int tx_ev_desc_ptr;
807 unsigned int tx_ev_q_label;
808 struct efx_tx_queue *tx_queue;
809 struct efx_nic *efx = channel->efx;
810 int tx_packets = 0;
811
812 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
813 return 0;
814
815 if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
816 /* Transmit completion */
817 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
818 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
819 tx_queue = efx_channel_get_tx_queue(
820 channel, tx_ev_q_label % EFX_TXQ_TYPES);
821 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
822 tx_queue->ptr_mask);
823 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
824 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
825 /* Rewrite the FIFO write pointer */
826 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
827 tx_queue = efx_channel_get_tx_queue(
828 channel, tx_ev_q_label % EFX_TXQ_TYPES);
829
830 netif_tx_lock(efx->net_dev);
831 efx_farch_notify_tx_desc(tx_queue);
832 netif_tx_unlock(efx->net_dev);
833 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
834 EFX_WORKAROUND_10727(efx)) {
835 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
836 } else {
837 netif_err(efx, tx_err, efx->net_dev,
838 "channel %d unexpected TX event "
839 EFX_QWORD_FMT"\n", channel->channel,
840 EFX_QWORD_VAL(*event));
841 }
842
843 return tx_packets;
844}
845
846/* Detect errors included in the rx_evt_pkt_ok bit. */
847static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
848 const efx_qword_t *event)
849{
850 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
851 struct efx_nic *efx = rx_queue->efx;
852 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
853 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
854 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
855 bool rx_ev_other_err, rx_ev_pause_frm;
856 bool rx_ev_hdr_type, rx_ev_mcast_pkt;
857 unsigned rx_ev_pkt_type;
858
859 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
860 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
861 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
862 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
863 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
864 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
865 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
866 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
867 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
868 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
869 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
870 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
871 rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
872 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
873 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
874
875 /* Every error apart from tobe_disc and pause_frm */
876 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
877 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
878 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
879
880 /* Count errors that are not in MAC stats. Ignore expected
881 * checksum errors during self-test. */
882 if (rx_ev_frm_trunc)
883 ++channel->n_rx_frm_trunc;
884 else if (rx_ev_tobe_disc)
885 ++channel->n_rx_tobe_disc;
886 else if (!efx->loopback_selftest) {
887 if (rx_ev_ip_hdr_chksum_err)
888 ++channel->n_rx_ip_hdr_chksum_err;
889 else if (rx_ev_tcp_udp_chksum_err)
890 ++channel->n_rx_tcp_udp_chksum_err;
891 }
892
893 /* TOBE_DISC is expected on unicast mismatches; don't print out an
894 * error message. FRM_TRUNC indicates RXDP dropped the packet due
895 * to a FIFO overflow.
896 */
897#ifdef DEBUG
898 if (rx_ev_other_err && net_ratelimit()) {
899 netif_dbg(efx, rx_err, efx->net_dev,
900 " RX queue %d unexpected RX event "
901 EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
902 efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
903 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
904 rx_ev_ip_hdr_chksum_err ?
905 " [IP_HDR_CHKSUM_ERR]" : "",
906 rx_ev_tcp_udp_chksum_err ?
907 " [TCP_UDP_CHKSUM_ERR]" : "",
908 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
909 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
910 rx_ev_drib_nib ? " [DRIB_NIB]" : "",
911 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
912 rx_ev_pause_frm ? " [PAUSE]" : "");
913 }
914#endif
915
916 /* The frame must be discarded if any of these are true. */
917 return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
918 rx_ev_tobe_disc | rx_ev_pause_frm) ?
919 EFX_RX_PKT_DISCARD : 0;
920}
921
922/* Handle receive events that are not in-order. Return true if this
923 * can be handled as a partial packet discard, false if it's more
924 * serious.
925 */
926static bool
927efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
928{
929 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
930 struct efx_nic *efx = rx_queue->efx;
931 unsigned expected, dropped;
932
933 if (rx_queue->scatter_n &&
934 index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
935 rx_queue->ptr_mask)) {
936 ++channel->n_rx_nodesc_trunc;
937 return true;
938 }
939
940 expected = rx_queue->removed_count & rx_queue->ptr_mask;
941 dropped = (index - expected) & rx_queue->ptr_mask;
942 netif_info(efx, rx_err, efx->net_dev,
943 "dropped %d events (index=%d expected=%d)\n",
944 dropped, index, expected);
945
946 efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
947 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
948 return false;
949}
950
951/* Handle a packet received event
952 *
953 * The NIC gives a "discard" flag if it's a unicast packet with the
954 * wrong destination address
955 * Also "is multicast" and "matches multicast filter" flags can be used to
956 * discard non-matching multicast packets.
957 */
958static void
959efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
960{
961 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
962 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
963 unsigned expected_ptr;
964 bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
965 u16 flags;
966 struct efx_rx_queue *rx_queue;
967 struct efx_nic *efx = channel->efx;
968
969 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
970 return;
971
972 rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
973 rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
974 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
975 channel->channel);
976
977 rx_queue = efx_channel_get_rx_queue(channel);
978
979 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
980 expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
981 rx_queue->ptr_mask);
982
983 /* Check for partial drops and other errors */
984 if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
985 unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
986 if (rx_ev_desc_ptr != expected_ptr &&
987 !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
988 return;
989
990 /* Discard all pending fragments */
991 if (rx_queue->scatter_n) {
992 efx_rx_packet(
993 rx_queue,
994 rx_queue->removed_count & rx_queue->ptr_mask,
995 rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
996 rx_queue->removed_count += rx_queue->scatter_n;
997 rx_queue->scatter_n = 0;
998 }
999
1000 /* Return if there is no new fragment */
1001 if (rx_ev_desc_ptr != expected_ptr)
1002 return;
1003
1004 /* Discard new fragment if not SOP */
1005 if (!rx_ev_sop) {
1006 efx_rx_packet(
1007 rx_queue,
1008 rx_queue->removed_count & rx_queue->ptr_mask,
1009 1, 0, EFX_RX_PKT_DISCARD);
1010 ++rx_queue->removed_count;
1011 return;
1012 }
1013 }
1014
1015 ++rx_queue->scatter_n;
1016 if (rx_ev_cont)
1017 return;
1018
1019 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1020 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1021 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1022
1023 if (likely(rx_ev_pkt_ok)) {
1024 /* If packet is marked as OK then we can rely on the
1025 * hardware checksum and classification.
1026 */
1027 flags = 0;
1028 switch (rx_ev_hdr_type) {
1029 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1030 flags |= EFX_RX_PKT_TCP;
1031 /* fall through */
1032 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1033 flags |= EFX_RX_PKT_CSUMMED;
1034 /* fall through */
1035 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1036 case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1037 break;
1038 }
1039 } else {
1040 flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1041 }
1042
1043 /* Detect multicast packets that didn't match the filter */
1044 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1045 if (rx_ev_mcast_pkt) {
1046 unsigned int rx_ev_mcast_hash_match =
1047 EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1048
1049 if (unlikely(!rx_ev_mcast_hash_match)) {
1050 ++channel->n_rx_mcast_mismatch;
1051 flags |= EFX_RX_PKT_DISCARD;
1052 }
1053 }
1054
1055 channel->irq_mod_score += 2;
1056
1057 /* Handle received packet */
1058 efx_rx_packet(rx_queue,
1059 rx_queue->removed_count & rx_queue->ptr_mask,
1060 rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1061 rx_queue->removed_count += rx_queue->scatter_n;
1062 rx_queue->scatter_n = 0;
1063}
1064
1065/* If this flush done event corresponds to a &struct efx_tx_queue, then
1066 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1067 * of all transmit completions.
1068 */
1069static void
1070efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1071{
1072 struct efx_tx_queue *tx_queue;
1073 int qid;
1074
1075 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1076 if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1077 tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1078 qid % EFX_TXQ_TYPES);
1079 if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1080 efx_farch_magic_event(tx_queue->channel,
1081 EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1082 }
1083 }
1084}
1085
1086/* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1087 * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1088 * the RX queue back to the mask of RX queues in need of flushing.
1089 */
1090static void
1091efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1092{
1093 struct efx_channel *channel;
1094 struct efx_rx_queue *rx_queue;
1095 int qid;
1096 bool failed;
1097
1098 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1099 failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1100 if (qid >= efx->n_channels)
1101 return;
1102 channel = efx_get_channel(efx, qid);
1103 if (!efx_channel_has_rx_queue(channel))
1104 return;
1105 rx_queue = efx_channel_get_rx_queue(channel);
1106
1107 if (failed) {
1108 netif_info(efx, hw, efx->net_dev,
1109 "RXQ %d flush retry\n", qid);
1110 rx_queue->flush_pending = true;
1111 atomic_inc(&efx->rxq_flush_pending);
1112 } else {
1113 efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1114 EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1115 }
1116 atomic_dec(&efx->rxq_flush_outstanding);
1117 if (efx_farch_flush_wake(efx))
1118 wake_up(&efx->flush_wq);
1119}
1120
1121static void
1122efx_farch_handle_drain_event(struct efx_channel *channel)
1123{
1124 struct efx_nic *efx = channel->efx;
1125
1126 WARN_ON(atomic_read(&efx->drain_pending) == 0);
1127 atomic_dec(&efx->drain_pending);
1128 if (efx_farch_flush_wake(efx))
1129 wake_up(&efx->flush_wq);
1130}
1131
1132static void efx_farch_handle_generated_event(struct efx_channel *channel,
1133 efx_qword_t *event)
1134{
1135 struct efx_nic *efx = channel->efx;
1136 struct efx_rx_queue *rx_queue =
1137 efx_channel_has_rx_queue(channel) ?
1138 efx_channel_get_rx_queue(channel) : NULL;
1139 unsigned magic, code;
1140
1141 magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1142 code = _EFX_CHANNEL_MAGIC_CODE(magic);
1143
1144 if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1145 channel->event_test_cpu = raw_smp_processor_id();
1146 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1147 /* The queue must be empty, so we won't receive any rx
1148 * events, so efx_process_channel() won't refill the
1149 * queue. Refill it here */
1150 efx_fast_push_rx_descriptors(rx_queue);
1151 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1152 efx_farch_handle_drain_event(channel);
1153 } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1154 efx_farch_handle_drain_event(channel);
1155 } else {
1156 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1157 "generated event "EFX_QWORD_FMT"\n",
1158 channel->channel, EFX_QWORD_VAL(*event));
1159 }
1160}
1161
1162static void
1163efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1164{
1165 struct efx_nic *efx = channel->efx;
1166 unsigned int ev_sub_code;
1167 unsigned int ev_sub_data;
1168
1169 ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1170 ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1171
1172 switch (ev_sub_code) {
1173 case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1174 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1175 channel->channel, ev_sub_data);
1176 efx_farch_handle_tx_flush_done(efx, event);
1177 efx_sriov_tx_flush_done(efx, event);
1178 break;
1179 case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1180 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1181 channel->channel, ev_sub_data);
1182 efx_farch_handle_rx_flush_done(efx, event);
1183 efx_sriov_rx_flush_done(efx, event);
1184 break;
1185 case FSE_AZ_EVQ_INIT_DONE_EV:
1186 netif_dbg(efx, hw, efx->net_dev,
1187 "channel %d EVQ %d initialised\n",
1188 channel->channel, ev_sub_data);
1189 break;
1190 case FSE_AZ_SRM_UPD_DONE_EV:
1191 netif_vdbg(efx, hw, efx->net_dev,
1192 "channel %d SRAM update done\n", channel->channel);
1193 break;
1194 case FSE_AZ_WAKE_UP_EV:
1195 netif_vdbg(efx, hw, efx->net_dev,
1196 "channel %d RXQ %d wakeup event\n",
1197 channel->channel, ev_sub_data);
1198 break;
1199 case FSE_AZ_TIMER_EV:
1200 netif_vdbg(efx, hw, efx->net_dev,
1201 "channel %d RX queue %d timer expired\n",
1202 channel->channel, ev_sub_data);
1203 break;
1204 case FSE_AA_RX_RECOVER_EV:
1205 netif_err(efx, rx_err, efx->net_dev,
1206 "channel %d seen DRIVER RX_RESET event. "
1207 "Resetting.\n", channel->channel);
1208 atomic_inc(&efx->rx_reset);
1209 efx_schedule_reset(efx,
1210 EFX_WORKAROUND_6555(efx) ?
1211 RESET_TYPE_RX_RECOVERY :
1212 RESET_TYPE_DISABLE);
1213 break;
1214 case FSE_BZ_RX_DSC_ERROR_EV:
1215 if (ev_sub_data < EFX_VI_BASE) {
1216 netif_err(efx, rx_err, efx->net_dev,
1217 "RX DMA Q %d reports descriptor fetch error."
1218 " RX Q %d is disabled.\n", ev_sub_data,
1219 ev_sub_data);
1220 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
1221 } else
1222 efx_sriov_desc_fetch_err(efx, ev_sub_data);
1223 break;
1224 case FSE_BZ_TX_DSC_ERROR_EV:
1225 if (ev_sub_data < EFX_VI_BASE) {
1226 netif_err(efx, tx_err, efx->net_dev,
1227 "TX DMA Q %d reports descriptor fetch error."
1228 " TX Q %d is disabled.\n", ev_sub_data,
1229 ev_sub_data);
1230 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
1231 } else
1232 efx_sriov_desc_fetch_err(efx, ev_sub_data);
1233 break;
1234 default:
1235 netif_vdbg(efx, hw, efx->net_dev,
1236 "channel %d unknown driver event code %d "
1237 "data %04x\n", channel->channel, ev_sub_code,
1238 ev_sub_data);
1239 break;
1240 }
1241}
1242
1243int efx_farch_ev_process(struct efx_channel *channel, int budget)
1244{
1245 struct efx_nic *efx = channel->efx;
1246 unsigned int read_ptr;
1247 efx_qword_t event, *p_event;
1248 int ev_code;
1249 int tx_packets = 0;
1250 int spent = 0;
1251
1252 read_ptr = channel->eventq_read_ptr;
1253
1254 for (;;) {
1255 p_event = efx_event(channel, read_ptr);
1256 event = *p_event;
1257
1258 if (!efx_event_present(&event))
1259 /* End of events */
1260 break;
1261
1262 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1263 "channel %d event is "EFX_QWORD_FMT"\n",
1264 channel->channel, EFX_QWORD_VAL(event));
1265
1266 /* Clear this event by marking it all ones */
1267 EFX_SET_QWORD(*p_event);
1268
1269 ++read_ptr;
1270
1271 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1272
1273 switch (ev_code) {
1274 case FSE_AZ_EV_CODE_RX_EV:
1275 efx_farch_handle_rx_event(channel, &event);
1276 if (++spent == budget)
1277 goto out;
1278 break;
1279 case FSE_AZ_EV_CODE_TX_EV:
1280 tx_packets += efx_farch_handle_tx_event(channel,
1281 &event);
1282 if (tx_packets > efx->txq_entries) {
1283 spent = budget;
1284 goto out;
1285 }
1286 break;
1287 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1288 efx_farch_handle_generated_event(channel, &event);
1289 break;
1290 case FSE_AZ_EV_CODE_DRIVER_EV:
1291 efx_farch_handle_driver_event(channel, &event);
1292 break;
1293 case FSE_CZ_EV_CODE_USER_EV:
1294 efx_sriov_event(channel, &event);
1295 break;
1296 case FSE_CZ_EV_CODE_MCDI_EV:
1297 efx_mcdi_process_event(channel, &event);
1298 break;
1299 case FSE_AZ_EV_CODE_GLOBAL_EV:
1300 if (efx->type->handle_global_event &&
1301 efx->type->handle_global_event(channel, &event))
1302 break;
1303 /* else fall through */
1304 default:
1305 netif_err(channel->efx, hw, channel->efx->net_dev,
1306 "channel %d unknown event type %d (data "
1307 EFX_QWORD_FMT ")\n", channel->channel,
1308 ev_code, EFX_QWORD_VAL(event));
1309 }
1310 }
1311
1312out:
1313 channel->eventq_read_ptr = read_ptr;
1314 return spent;
1315}
1316
1317/* Allocate buffer table entries for event queue */
1318int efx_farch_ev_probe(struct efx_channel *channel)
1319{
1320 struct efx_nic *efx = channel->efx;
1321 unsigned entries;
1322
1323 entries = channel->eventq_mask + 1;
1324 return efx_alloc_special_buffer(efx, &channel->eventq,
1325 entries * sizeof(efx_qword_t));
1326}
1327
1328void efx_farch_ev_init(struct efx_channel *channel)
1329{
1330 efx_oword_t reg;
1331 struct efx_nic *efx = channel->efx;
1332
1333 netif_dbg(efx, hw, efx->net_dev,
1334 "channel %d event queue in special buffers %d-%d\n",
1335 channel->channel, channel->eventq.index,
1336 channel->eventq.index + channel->eventq.entries - 1);
1337
1338 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1339 EFX_POPULATE_OWORD_3(reg,
1340 FRF_CZ_TIMER_Q_EN, 1,
1341 FRF_CZ_HOST_NOTIFY_MODE, 0,
1342 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1343 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1344 }
1345
1346 /* Pin event queue buffer */
1347 efx_init_special_buffer(efx, &channel->eventq);
1348
1349 /* Fill event queue with all ones (i.e. empty events) */
1350 memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1351
1352 /* Push event queue to card */
1353 EFX_POPULATE_OWORD_3(reg,
1354 FRF_AZ_EVQ_EN, 1,
1355 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1356 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1357 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1358 channel->channel);
1359
1360 efx->type->push_irq_moderation(channel);
1361}
1362
1363void efx_farch_ev_fini(struct efx_channel *channel)
1364{
1365 efx_oword_t reg;
1366 struct efx_nic *efx = channel->efx;
1367
1368 /* Remove event queue from card */
1369 EFX_ZERO_OWORD(reg);
1370 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1371 channel->channel);
1372 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1373 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1374
1375 /* Unpin event queue */
1376 efx_fini_special_buffer(efx, &channel->eventq);
1377}
1378
1379/* Free buffers backing event queue */
1380void efx_farch_ev_remove(struct efx_channel *channel)
1381{
1382 efx_free_special_buffer(channel->efx, &channel->eventq);
1383}
1384
1385
1386void efx_farch_ev_test_generate(struct efx_channel *channel)
1387{
1388 efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1389}
1390
1391void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1392{
1393 efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1394 EFX_CHANNEL_MAGIC_FILL(rx_queue));
1395}
1396
1397/**************************************************************************
1398 *
1399 * Hardware interrupts
1400 * The hardware interrupt handler does very little work; all the event
1401 * queue processing is carried out by per-channel tasklets.
1402 *
1403 **************************************************************************/
1404
1405/* Enable/disable/generate interrupts */
1406static inline void efx_farch_interrupts(struct efx_nic *efx,
1407 bool enabled, bool force)
1408{
1409 efx_oword_t int_en_reg_ker;
1410
1411 EFX_POPULATE_OWORD_3(int_en_reg_ker,
1412 FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1413 FRF_AZ_KER_INT_KER, force,
1414 FRF_AZ_DRV_INT_EN_KER, enabled);
1415 efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1416}
1417
1418void efx_farch_irq_enable_master(struct efx_nic *efx)
1419{
1420 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1421 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1422
1423 efx_farch_interrupts(efx, true, false);
1424}
1425
1426void efx_farch_irq_disable_master(struct efx_nic *efx)
1427{
1428 /* Disable interrupts */
1429 efx_farch_interrupts(efx, false, false);
1430}
1431
1432/* Generate a test interrupt
1433 * Interrupt must already have been enabled, otherwise nasty things
1434 * may happen.
1435 */
1436void efx_farch_irq_test_generate(struct efx_nic *efx)
1437{
1438 efx_farch_interrupts(efx, true, true);
1439}
1440
1441/* Process a fatal interrupt
1442 * Disable bus mastering ASAP and schedule a reset
1443 */
1444irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1445{
1446 struct falcon_nic_data *nic_data = efx->nic_data;
1447 efx_oword_t *int_ker = efx->irq_status.addr;
1448 efx_oword_t fatal_intr;
1449 int error, mem_perr;
1450
1451 efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1452 error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1453
1454 netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1455 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1456 EFX_OWORD_VAL(fatal_intr),
1457 error ? "disabling bus mastering" : "no recognised error");
1458
1459 /* If this is a memory parity error dump which blocks are offending */
1460 mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1461 EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1462 if (mem_perr) {
1463 efx_oword_t reg;
1464 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1465 netif_err(efx, hw, efx->net_dev,
1466 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1467 EFX_OWORD_VAL(reg));
1468 }
1469
1470 /* Disable both devices */
1471 pci_clear_master(efx->pci_dev);
1472 if (efx_nic_is_dual_func(efx))
1473 pci_clear_master(nic_data->pci_dev2);
1474 efx_farch_irq_disable_master(efx);
1475
1476 /* Count errors and reset or disable the NIC accordingly */
1477 if (efx->int_error_count == 0 ||
1478 time_after(jiffies, efx->int_error_expire)) {
1479 efx->int_error_count = 0;
1480 efx->int_error_expire =
1481 jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1482 }
1483 if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1484 netif_err(efx, hw, efx->net_dev,
1485 "SYSTEM ERROR - reset scheduled\n");
1486 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1487 } else {
1488 netif_err(efx, hw, efx->net_dev,
1489 "SYSTEM ERROR - max number of errors seen."
1490 "NIC will be disabled\n");
1491 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1492 }
1493
1494 return IRQ_HANDLED;
1495}
1496
1497/* Handle a legacy interrupt
1498 * Acknowledges the interrupt and schedule event queue processing.
1499 */
1500irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1501{
1502 struct efx_nic *efx = dev_id;
1503 bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1504 efx_oword_t *int_ker = efx->irq_status.addr;
1505 irqreturn_t result = IRQ_NONE;
1506 struct efx_channel *channel;
1507 efx_dword_t reg;
1508 u32 queues;
1509 int syserr;
1510
1511 /* Read the ISR which also ACKs the interrupts */
1512 efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1513 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1514
1515 /* Legacy interrupts are disabled too late by the EEH kernel
1516 * code. Disable them earlier.
1517 * If an EEH error occurred, the read will have returned all ones.
1518 */
1519 if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1520 !efx->eeh_disabled_legacy_irq) {
1521 disable_irq_nosync(efx->legacy_irq);
1522 efx->eeh_disabled_legacy_irq = true;
1523 }
1524
1525 /* Handle non-event-queue sources */
1526 if (queues & (1U << efx->irq_level) && soft_enabled) {
1527 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1528 if (unlikely(syserr))
1529 return efx_farch_fatal_interrupt(efx);
1530 efx->last_irq_cpu = raw_smp_processor_id();
1531 }
1532
1533 if (queues != 0) {
1534 if (EFX_WORKAROUND_15783(efx))
1535 efx->irq_zero_count = 0;
1536
1537 /* Schedule processing of any interrupting queues */
1538 if (likely(soft_enabled)) {
1539 efx_for_each_channel(channel, efx) {
1540 if (queues & 1)
1541 efx_schedule_channel_irq(channel);
1542 queues >>= 1;
1543 }
1544 }
1545 result = IRQ_HANDLED;
1546
1547 } else if (EFX_WORKAROUND_15783(efx)) {
1548 efx_qword_t *event;
1549
1550 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1551 * because this might be a shared interrupt. */
1552 if (efx->irq_zero_count++ == 0)
1553 result = IRQ_HANDLED;
1554
1555 /* Ensure we schedule or rearm all event queues */
1556 if (likely(soft_enabled)) {
1557 efx_for_each_channel(channel, efx) {
1558 event = efx_event(channel,
1559 channel->eventq_read_ptr);
1560 if (efx_event_present(event))
1561 efx_schedule_channel_irq(channel);
1562 else
1563 efx_farch_ev_read_ack(channel);
1564 }
1565 }
1566 }
1567
1568 if (result == IRQ_HANDLED)
1569 netif_vdbg(efx, intr, efx->net_dev,
1570 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1571 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1572
1573 return result;
1574}
1575
1576/* Handle an MSI interrupt
1577 *
1578 * Handle an MSI hardware interrupt. This routine schedules event
1579 * queue processing. No interrupt acknowledgement cycle is necessary.
1580 * Also, we never need to check that the interrupt is for us, since
1581 * MSI interrupts cannot be shared.
1582 */
1583irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1584{
1585 struct efx_msi_context *context = dev_id;
1586 struct efx_nic *efx = context->efx;
1587 efx_oword_t *int_ker = efx->irq_status.addr;
1588 int syserr;
1589
1590 netif_vdbg(efx, intr, efx->net_dev,
1591 "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1592 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1593
1594 if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
1595 return IRQ_HANDLED;
1596
1597 /* Handle non-event-queue sources */
1598 if (context->index == efx->irq_level) {
1599 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1600 if (unlikely(syserr))
1601 return efx_farch_fatal_interrupt(efx);
1602 efx->last_irq_cpu = raw_smp_processor_id();
1603 }
1604
1605 /* Schedule processing of the channel */
1606 efx_schedule_channel_irq(efx->channel[context->index]);
1607
1608 return IRQ_HANDLED;
1609}
1610
1611
1612/* Setup RSS indirection table.
1613 * This maps from the hash value of the packet to RXQ
1614 */
1615void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1616{
1617 size_t i = 0;
1618 efx_dword_t dword;
1619
1620 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1621 return;
1622
1623 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1624 FR_BZ_RX_INDIRECTION_TBL_ROWS);
1625
1626 for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1627 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1628 efx->rx_indir_table[i]);
1629 efx_writed(efx, &dword,
1630 FR_BZ_RX_INDIRECTION_TBL +
1631 FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1632 }
1633}
1634
1635/* Looks at available SRAM resources and works out how many queues we
1636 * can support, and where things like descriptor caches should live.
1637 *
1638 * SRAM is split up as follows:
1639 * 0 buftbl entries for channels
1640 * efx->vf_buftbl_base buftbl entries for SR-IOV
1641 * efx->rx_dc_base RX descriptor caches
1642 * efx->tx_dc_base TX descriptor caches
1643 */
1644void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1645{
1646 unsigned vi_count, buftbl_min;
1647
1648 /* Account for the buffer table entries backing the datapath channels
1649 * and the descriptor caches for those channels.
1650 */
1651 buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1652 efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1653 efx->n_channels * EFX_MAX_EVQ_SIZE)
1654 * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1655 vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1656
1657#ifdef CONFIG_SFC_SRIOV
1658 if (efx_sriov_wanted(efx)) {
1659 unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
1660
1661 efx->vf_buftbl_base = buftbl_min;
1662
1663 vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1664 vi_count = max(vi_count, EFX_VI_BASE);
1665 buftbl_free = (sram_lim_qw - buftbl_min -
1666 vi_count * vi_dc_entries);
1667
1668 entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
1669 efx_vf_size(efx));
1670 vf_limit = min(buftbl_free / entries_per_vf,
1671 (1024U - EFX_VI_BASE) >> efx->vi_scale);
1672
1673 if (efx->vf_count > vf_limit) {
1674 netif_err(efx, probe, efx->net_dev,
1675 "Reducing VF count from from %d to %d\n",
1676 efx->vf_count, vf_limit);
1677 efx->vf_count = vf_limit;
1678 }
1679 vi_count += efx->vf_count * efx_vf_size(efx);
1680 }
1681#endif
1682
1683 efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1684 efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1685}
1686
1687u32 efx_farch_fpga_ver(struct efx_nic *efx)
1688{
1689 efx_oword_t altera_build;
1690 efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1691 return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1692}
1693
1694void efx_farch_init_common(struct efx_nic *efx)
1695{
1696 efx_oword_t temp;
1697
1698 /* Set positions of descriptor caches in SRAM. */
1699 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1700 efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1701 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1702 efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1703
1704 /* Set TX descriptor cache size. */
1705 BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1706 EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1707 efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1708
1709 /* Set RX descriptor cache size. Set low watermark to size-8, as
1710 * this allows most efficient prefetching.
1711 */
1712 BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1713 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1714 efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1715 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1716 efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1717
1718 /* Program INT_KER address */
1719 EFX_POPULATE_OWORD_2(temp,
1720 FRF_AZ_NORM_INT_VEC_DIS_KER,
1721 EFX_INT_MODE_USE_MSI(efx),
1722 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1723 efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1724
1725 if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1726 /* Use an interrupt level unused by event queues */
1727 efx->irq_level = 0x1f;
1728 else
1729 /* Use a valid MSI-X vector */
1730 efx->irq_level = 0;
1731
1732 /* Enable all the genuinely fatal interrupts. (They are still
1733 * masked by the overall interrupt mask, controlled by
1734 * falcon_interrupts()).
1735 *
1736 * Note: All other fatal interrupts are enabled
1737 */
1738 EFX_POPULATE_OWORD_3(temp,
1739 FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1740 FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1741 FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1742 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1743 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1744 EFX_INVERT_OWORD(temp);
1745 efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1746
1747 efx_farch_rx_push_indir_table(efx);
1748
1749 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1750 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1751 */
1752 efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1753 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1754 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1755 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1756 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1757 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1758 /* Enable SW_EV to inherit in char driver - assume harmless here */
1759 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1760 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1761 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1762 /* Disable hardware watchdog which can misfire */
1763 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1764 /* Squash TX of packets of 16 bytes or less */
1765 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1766 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1767 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1768
1769 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1770 EFX_POPULATE_OWORD_4(temp,
1771 /* Default values */
1772 FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1773 FRF_BZ_TX_PACE_SB_AF, 0xb,
1774 FRF_BZ_TX_PACE_FB_BASE, 0,
1775 /* Allow large pace values in the
1776 * fast bin. */
1777 FRF_BZ_TX_PACE_BIN_TH,
1778 FFE_BZ_TX_PACE_RESERVED);
1779 efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1780 }
1781}
diff --git a/drivers/net/ethernet/sfc/net_driver.h b/drivers/net/ethernet/sfc/net_driver.h
index b382895901b1..7283cc1a90fe 100644
--- a/drivers/net/ethernet/sfc/net_driver.h
+++ b/drivers/net/ethernet/sfc/net_driver.h
@@ -971,7 +971,7 @@ static inline unsigned int efx_port_num(struct efx_nic *efx)
971 * @get_wol: Get WoL configuration from driver state 971 * @get_wol: Get WoL configuration from driver state
972 * @set_wol: Push WoL configuration to the NIC 972 * @set_wol: Push WoL configuration to the NIC
973 * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume) 973 * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
974 * @test_chip: Test registers. Should use efx_nic_test_registers(), and is 974 * @test_chip: Test registers. May use efx_farch_test_registers(), and is
975 * expected to reset the NIC. 975 * expected to reset the NIC.
976 * @test_nvram: Test validity of NVRAM contents 976 * @test_nvram: Test validity of NVRAM contents
977 * @mcdi_request: Send an MCDI request with the given header and SDU. 977 * @mcdi_request: Send an MCDI request with the given header and SDU.
@@ -985,6 +985,32 @@ static inline unsigned int efx_port_num(struct efx_nic *efx)
985 * @mcdi_poll_reboot: Test whether the MCDI has rebooted. If so, 985 * @mcdi_poll_reboot: Test whether the MCDI has rebooted. If so,
986 * return an appropriate error code for aborting any current 986 * return an appropriate error code for aborting any current
987 * request; otherwise return 0. 987 * request; otherwise return 0.
988 * @irq_enable_master: Enable IRQs on the NIC. Each event queue must
989 * be separately enabled after this.
990 * @irq_test_generate: Generate a test IRQ
991 * @irq_disable_non_ev: Disable non-event IRQs on the NIC. Each event
992 * queue must be separately disabled before this.
993 * @irq_handle_msi: Handle MSI for a channel. The @dev_id argument is
994 * a pointer to the &struct efx_msi_context for the channel.
995 * @irq_handle_legacy: Handle legacy interrupt. The @dev_id argument
996 * is a pointer to the &struct efx_nic.
997 * @tx_probe: Allocate resources for TX queue
998 * @tx_init: Initialise TX queue on the NIC
999 * @tx_remove: Free resources for TX queue
1000 * @tx_write: Write TX descriptors and doorbell
1001 * @rx_push_indir_table: Write RSS indirection table to the NIC
1002 * @rx_probe: Allocate resources for RX queue
1003 * @rx_init: Initialise RX queue on the NIC
1004 * @rx_remove: Free resources for RX queue
1005 * @rx_write: Write RX descriptors and doorbell
1006 * @rx_defer_refill: Generate a refill reminder event
1007 * @ev_probe: Allocate resources for event queue
1008 * @ev_init: Initialise event queue on the NIC
1009 * @ev_fini: Deinitialise event queue on the NIC
1010 * @ev_remove: Free resources for event queue
1011 * @ev_process: Process events for a queue, up to the given NAPI quota
1012 * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
1013 * @ev_test_generate: Generate a test event
988 * @revision: Hardware architecture revision 1014 * @revision: Hardware architecture revision
989 * @mem_map_size: Memory BAR mapped size 1015 * @mem_map_size: Memory BAR mapped size
990 * @txd_ptr_tbl_base: TX descriptor ring base address 1016 * @txd_ptr_tbl_base: TX descriptor ring base address
@@ -1041,6 +1067,28 @@ struct efx_nic_type {
1041 void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu, 1067 void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
1042 size_t pdu_offset, size_t pdu_len); 1068 size_t pdu_offset, size_t pdu_len);
1043 int (*mcdi_poll_reboot)(struct efx_nic *efx); 1069 int (*mcdi_poll_reboot)(struct efx_nic *efx);
1070 void (*irq_enable_master)(struct efx_nic *efx);
1071 void (*irq_test_generate)(struct efx_nic *efx);
1072 void (*irq_disable_non_ev)(struct efx_nic *efx);
1073 irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1074 irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1075 int (*tx_probe)(struct efx_tx_queue *tx_queue);
1076 void (*tx_init)(struct efx_tx_queue *tx_queue);
1077 void (*tx_remove)(struct efx_tx_queue *tx_queue);
1078 void (*tx_write)(struct efx_tx_queue *tx_queue);
1079 void (*rx_push_indir_table)(struct efx_nic *efx);
1080 int (*rx_probe)(struct efx_rx_queue *rx_queue);
1081 void (*rx_init)(struct efx_rx_queue *rx_queue);
1082 void (*rx_remove)(struct efx_rx_queue *rx_queue);
1083 void (*rx_write)(struct efx_rx_queue *rx_queue);
1084 void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
1085 int (*ev_probe)(struct efx_channel *channel);
1086 void (*ev_init)(struct efx_channel *channel);
1087 void (*ev_fini)(struct efx_channel *channel);
1088 void (*ev_remove)(struct efx_channel *channel);
1089 int (*ev_process)(struct efx_channel *channel, int quota);
1090 void (*ev_read_ack)(struct efx_channel *channel);
1091 void (*ev_test_generate)(struct efx_channel *channel);
1044 1092
1045 int revision; 1093 int revision;
1046 unsigned int mem_map_size; 1094 unsigned int mem_map_size;
diff --git a/drivers/net/ethernet/sfc/nic.c b/drivers/net/ethernet/sfc/nic.c
index 7c52691e9d26..66c71ede3a98 100644
--- a/drivers/net/ethernet/sfc/nic.c
+++ b/drivers/net/ethernet/sfc/nic.c
@@ -25,273 +25,6 @@
25 25
26/************************************************************************** 26/**************************************************************************
27 * 27 *
28 * Configurable values
29 *
30 **************************************************************************
31 */
32
33/* This is set to 16 for a good reason. In summary, if larger than
34 * 16, the descriptor cache holds more than a default socket
35 * buffer's worth of packets (for UDP we can only have at most one
36 * socket buffer's worth outstanding). This combined with the fact
37 * that we only get 1 TX event per descriptor cache means the NIC
38 * goes idle.
39 */
40#define TX_DC_ENTRIES 16
41#define TX_DC_ENTRIES_ORDER 1
42
43#define RX_DC_ENTRIES 64
44#define RX_DC_ENTRIES_ORDER 3
45
46/* If EFX_MAX_INT_ERRORS internal errors occur within
47 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
48 * disable it.
49 */
50#define EFX_INT_ERROR_EXPIRE 3600
51#define EFX_MAX_INT_ERRORS 5
52
53/* Depth of RX flush request fifo */
54#define EFX_RX_FLUSH_COUNT 4
55
56/* Driver generated events */
57#define _EFX_CHANNEL_MAGIC_TEST 0x000101
58#define _EFX_CHANNEL_MAGIC_FILL 0x000102
59#define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103
60#define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104
61
62#define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data))
63#define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8)
64
65#define EFX_CHANNEL_MAGIC_TEST(_channel) \
66 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
67#define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \
68 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \
69 efx_rx_queue_index(_rx_queue))
70#define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \
71 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \
72 efx_rx_queue_index(_rx_queue))
73#define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \
74 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \
75 (_tx_queue)->queue)
76
77static void efx_magic_event(struct efx_channel *channel, u32 magic);
78
79/**************************************************************************
80 *
81 * Solarstorm hardware access
82 *
83 **************************************************************************/
84
85static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
86 unsigned int index)
87{
88 efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
89 value, index);
90}
91
92/* Read the current event from the event queue */
93static inline efx_qword_t *efx_event(struct efx_channel *channel,
94 unsigned int index)
95{
96 return ((efx_qword_t *) (channel->eventq.buf.addr)) +
97 (index & channel->eventq_mask);
98}
99
100/* See if an event is present
101 *
102 * We check both the high and low dword of the event for all ones. We
103 * wrote all ones when we cleared the event, and no valid event can
104 * have all ones in either its high or low dwords. This approach is
105 * robust against reordering.
106 *
107 * Note that using a single 64-bit comparison is incorrect; even
108 * though the CPU read will be atomic, the DMA write may not be.
109 */
110static inline int efx_event_present(efx_qword_t *event)
111{
112 return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
113 EFX_DWORD_IS_ALL_ONES(event->dword[1]));
114}
115
116static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
117 const efx_oword_t *mask)
118{
119 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
120 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
121}
122
123int efx_nic_test_registers(struct efx_nic *efx,
124 const struct efx_nic_register_test *regs,
125 size_t n_regs)
126{
127 unsigned address = 0, i, j;
128 efx_oword_t mask, imask, original, reg, buf;
129
130 for (i = 0; i < n_regs; ++i) {
131 address = regs[i].address;
132 mask = imask = regs[i].mask;
133 EFX_INVERT_OWORD(imask);
134
135 efx_reado(efx, &original, address);
136
137 /* bit sweep on and off */
138 for (j = 0; j < 128; j++) {
139 if (!EFX_EXTRACT_OWORD32(mask, j, j))
140 continue;
141
142 /* Test this testable bit can be set in isolation */
143 EFX_AND_OWORD(reg, original, mask);
144 EFX_SET_OWORD32(reg, j, j, 1);
145
146 efx_writeo(efx, &reg, address);
147 efx_reado(efx, &buf, address);
148
149 if (efx_masked_compare_oword(&reg, &buf, &mask))
150 goto fail;
151
152 /* Test this testable bit can be cleared in isolation */
153 EFX_OR_OWORD(reg, original, mask);
154 EFX_SET_OWORD32(reg, j, j, 0);
155
156 efx_writeo(efx, &reg, address);
157 efx_reado(efx, &buf, address);
158
159 if (efx_masked_compare_oword(&reg, &buf, &mask))
160 goto fail;
161 }
162
163 efx_writeo(efx, &original, address);
164 }
165
166 return 0;
167
168fail:
169 netif_err(efx, hw, efx->net_dev,
170 "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
171 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
172 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
173 return -EIO;
174}
175
176/**************************************************************************
177 *
178 * Special buffer handling
179 * Special buffers are used for event queues and the TX and RX
180 * descriptor rings.
181 *
182 *************************************************************************/
183
184/*
185 * Initialise a special buffer
186 *
187 * This will define a buffer (previously allocated via
188 * efx_alloc_special_buffer()) in the buffer table, allowing
189 * it to be used for event queues, descriptor rings etc.
190 */
191static void
192efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
193{
194 efx_qword_t buf_desc;
195 unsigned int index;
196 dma_addr_t dma_addr;
197 int i;
198
199 EFX_BUG_ON_PARANOID(!buffer->buf.addr);
200
201 /* Write buffer descriptors to NIC */
202 for (i = 0; i < buffer->entries; i++) {
203 index = buffer->index + i;
204 dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
205 netif_dbg(efx, probe, efx->net_dev,
206 "mapping special buffer %d at %llx\n",
207 index, (unsigned long long)dma_addr);
208 EFX_POPULATE_QWORD_3(buf_desc,
209 FRF_AZ_BUF_ADR_REGION, 0,
210 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
211 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
212 efx_write_buf_tbl(efx, &buf_desc, index);
213 }
214}
215
216/* Unmaps a buffer and clears the buffer table entries */
217static void
218efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
219{
220 efx_oword_t buf_tbl_upd;
221 unsigned int start = buffer->index;
222 unsigned int end = (buffer->index + buffer->entries - 1);
223
224 if (!buffer->entries)
225 return;
226
227 netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
228 buffer->index, buffer->index + buffer->entries - 1);
229
230 EFX_POPULATE_OWORD_4(buf_tbl_upd,
231 FRF_AZ_BUF_UPD_CMD, 0,
232 FRF_AZ_BUF_CLR_CMD, 1,
233 FRF_AZ_BUF_CLR_END_ID, end,
234 FRF_AZ_BUF_CLR_START_ID, start);
235 efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
236}
237
238/*
239 * Allocate a new special buffer
240 *
241 * This allocates memory for a new buffer, clears it and allocates a
242 * new buffer ID range. It does not write into the buffer table.
243 *
244 * This call will allocate 4KB buffers, since 8KB buffers can't be
245 * used for event queues and descriptor rings.
246 */
247static int efx_alloc_special_buffer(struct efx_nic *efx,
248 struct efx_special_buffer *buffer,
249 unsigned int len)
250{
251 len = ALIGN(len, EFX_BUF_SIZE);
252
253 if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
254 return -ENOMEM;
255 buffer->entries = len / EFX_BUF_SIZE;
256 BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
257
258 /* Select new buffer ID */
259 buffer->index = efx->next_buffer_table;
260 efx->next_buffer_table += buffer->entries;
261#ifdef CONFIG_SFC_SRIOV
262 BUG_ON(efx_sriov_enabled(efx) &&
263 efx->vf_buftbl_base < efx->next_buffer_table);
264#endif
265
266 netif_dbg(efx, probe, efx->net_dev,
267 "allocating special buffers %d-%d at %llx+%x "
268 "(virt %p phys %llx)\n", buffer->index,
269 buffer->index + buffer->entries - 1,
270 (u64)buffer->buf.dma_addr, len,
271 buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
272
273 return 0;
274}
275
276static void
277efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
278{
279 if (!buffer->buf.addr)
280 return;
281
282 netif_dbg(efx, hw, efx->net_dev,
283 "deallocating special buffers %d-%d at %llx+%x "
284 "(virt %p phys %llx)\n", buffer->index,
285 buffer->index + buffer->entries - 1,
286 (u64)buffer->buf.dma_addr, buffer->buf.len,
287 buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
288
289 efx_nic_free_buffer(efx, &buffer->buf);
290 buffer->entries = 0;
291}
292
293/**************************************************************************
294 *
295 * Generic buffer handling 28 * Generic buffer handling
296 * These buffers are used for interrupt status, MAC stats, etc. 29 * These buffers are used for interrupt status, MAC stats, etc.
297 * 30 *
@@ -318,1079 +51,6 @@ void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
318 } 51 }
319} 52}
320 53
321/**************************************************************************
322 *
323 * TX path
324 *
325 **************************************************************************/
326
327/* Returns a pointer to the specified transmit descriptor in the TX
328 * descriptor queue belonging to the specified channel.
329 */
330static inline efx_qword_t *
331efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
332{
333 return ((efx_qword_t *) (tx_queue->txd.buf.addr)) + index;
334}
335
336/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
337static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
338{
339 unsigned write_ptr;
340 efx_dword_t reg;
341
342 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
343 EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
344 efx_writed_page(tx_queue->efx, &reg,
345 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
346}
347
348/* Write pointer and first descriptor for TX descriptor ring */
349static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
350 const efx_qword_t *txd)
351{
352 unsigned write_ptr;
353 efx_oword_t reg;
354
355 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
356 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
357
358 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
359 EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
360 FRF_AZ_TX_DESC_WPTR, write_ptr);
361 reg.qword[0] = *txd;
362 efx_writeo_page(tx_queue->efx, &reg,
363 FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
364}
365
366static inline bool
367efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
368{
369 unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
370
371 if (empty_read_count == 0)
372 return false;
373
374 tx_queue->empty_read_count = 0;
375 return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0
376 && tx_queue->write_count - write_count == 1;
377}
378
379/* For each entry inserted into the software descriptor ring, create a
380 * descriptor in the hardware TX descriptor ring (in host memory), and
381 * write a doorbell.
382 */
383void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
384{
385
386 struct efx_tx_buffer *buffer;
387 efx_qword_t *txd;
388 unsigned write_ptr;
389 unsigned old_write_count = tx_queue->write_count;
390
391 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
392
393 do {
394 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
395 buffer = &tx_queue->buffer[write_ptr];
396 txd = efx_tx_desc(tx_queue, write_ptr);
397 ++tx_queue->write_count;
398
399 /* Create TX descriptor ring entry */
400 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
401 EFX_POPULATE_QWORD_4(*txd,
402 FSF_AZ_TX_KER_CONT,
403 buffer->flags & EFX_TX_BUF_CONT,
404 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
405 FSF_AZ_TX_KER_BUF_REGION, 0,
406 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
407 } while (tx_queue->write_count != tx_queue->insert_count);
408
409 wmb(); /* Ensure descriptors are written before they are fetched */
410
411 if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
412 txd = efx_tx_desc(tx_queue,
413 old_write_count & tx_queue->ptr_mask);
414 efx_push_tx_desc(tx_queue, txd);
415 ++tx_queue->pushes;
416 } else {
417 efx_notify_tx_desc(tx_queue);
418 }
419}
420
421/* Allocate hardware resources for a TX queue */
422int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
423{
424 struct efx_nic *efx = tx_queue->efx;
425 unsigned entries;
426
427 entries = tx_queue->ptr_mask + 1;
428 return efx_alloc_special_buffer(efx, &tx_queue->txd,
429 entries * sizeof(efx_qword_t));
430}
431
432void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
433{
434 struct efx_nic *efx = tx_queue->efx;
435 efx_oword_t reg;
436
437 /* Pin TX descriptor ring */
438 efx_init_special_buffer(efx, &tx_queue->txd);
439
440 /* Push TX descriptor ring to card */
441 EFX_POPULATE_OWORD_10(reg,
442 FRF_AZ_TX_DESCQ_EN, 1,
443 FRF_AZ_TX_ISCSI_DDIG_EN, 0,
444 FRF_AZ_TX_ISCSI_HDIG_EN, 0,
445 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
446 FRF_AZ_TX_DESCQ_EVQ_ID,
447 tx_queue->channel->channel,
448 FRF_AZ_TX_DESCQ_OWNER_ID, 0,
449 FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
450 FRF_AZ_TX_DESCQ_SIZE,
451 __ffs(tx_queue->txd.entries),
452 FRF_AZ_TX_DESCQ_TYPE, 0,
453 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
454
455 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
456 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
457 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
458 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
459 !csum);
460 }
461
462 efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
463 tx_queue->queue);
464
465 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
466 /* Only 128 bits in this register */
467 BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
468
469 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
470 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
471 __clear_bit_le(tx_queue->queue, &reg);
472 else
473 __set_bit_le(tx_queue->queue, &reg);
474 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
475 }
476
477 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
478 EFX_POPULATE_OWORD_1(reg,
479 FRF_BZ_TX_PACE,
480 (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
481 FFE_BZ_TX_PACE_OFF :
482 FFE_BZ_TX_PACE_RESERVED);
483 efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
484 tx_queue->queue);
485 }
486}
487
488static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
489{
490 struct efx_nic *efx = tx_queue->efx;
491 efx_oword_t tx_flush_descq;
492
493 WARN_ON(atomic_read(&tx_queue->flush_outstanding));
494 atomic_set(&tx_queue->flush_outstanding, 1);
495
496 EFX_POPULATE_OWORD_2(tx_flush_descq,
497 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
498 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
499 efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
500}
501
502void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
503{
504 struct efx_nic *efx = tx_queue->efx;
505 efx_oword_t tx_desc_ptr;
506
507 /* Remove TX descriptor ring from card */
508 EFX_ZERO_OWORD(tx_desc_ptr);
509 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
510 tx_queue->queue);
511
512 /* Unpin TX descriptor ring */
513 efx_fini_special_buffer(efx, &tx_queue->txd);
514}
515
516/* Free buffers backing TX queue */
517void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
518{
519 efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
520}
521
522/**************************************************************************
523 *
524 * RX path
525 *
526 **************************************************************************/
527
528/* Returns a pointer to the specified descriptor in the RX descriptor queue */
529static inline efx_qword_t *
530efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
531{
532 return ((efx_qword_t *) (rx_queue->rxd.buf.addr)) + index;
533}
534
535/* This creates an entry in the RX descriptor queue */
536static inline void
537efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
538{
539 struct efx_rx_buffer *rx_buf;
540 efx_qword_t *rxd;
541
542 rxd = efx_rx_desc(rx_queue, index);
543 rx_buf = efx_rx_buffer(rx_queue, index);
544 EFX_POPULATE_QWORD_3(*rxd,
545 FSF_AZ_RX_KER_BUF_SIZE,
546 rx_buf->len -
547 rx_queue->efx->type->rx_buffer_padding,
548 FSF_AZ_RX_KER_BUF_REGION, 0,
549 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
550}
551
552/* This writes to the RX_DESC_WPTR register for the specified receive
553 * descriptor ring.
554 */
555void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
556{
557 struct efx_nic *efx = rx_queue->efx;
558 efx_dword_t reg;
559 unsigned write_ptr;
560
561 while (rx_queue->notified_count != rx_queue->added_count) {
562 efx_build_rx_desc(
563 rx_queue,
564 rx_queue->notified_count & rx_queue->ptr_mask);
565 ++rx_queue->notified_count;
566 }
567
568 wmb();
569 write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
570 EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
571 efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
572 efx_rx_queue_index(rx_queue));
573}
574
575int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
576{
577 struct efx_nic *efx = rx_queue->efx;
578 unsigned entries;
579
580 entries = rx_queue->ptr_mask + 1;
581 return efx_alloc_special_buffer(efx, &rx_queue->rxd,
582 entries * sizeof(efx_qword_t));
583}
584
585void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
586{
587 efx_oword_t rx_desc_ptr;
588 struct efx_nic *efx = rx_queue->efx;
589 bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
590 bool iscsi_digest_en = is_b0;
591 bool jumbo_en;
592
593 /* For kernel-mode queues in Falcon A1, the JUMBO flag enables
594 * DMA to continue after a PCIe page boundary (and scattering
595 * is not possible). In Falcon B0 and Siena, it enables
596 * scatter.
597 */
598 jumbo_en = !is_b0 || efx->rx_scatter;
599
600 netif_dbg(efx, hw, efx->net_dev,
601 "RX queue %d ring in special buffers %d-%d\n",
602 efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
603 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
604
605 rx_queue->scatter_n = 0;
606
607 /* Pin RX descriptor ring */
608 efx_init_special_buffer(efx, &rx_queue->rxd);
609
610 /* Push RX descriptor ring to card */
611 EFX_POPULATE_OWORD_10(rx_desc_ptr,
612 FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
613 FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
614 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
615 FRF_AZ_RX_DESCQ_EVQ_ID,
616 efx_rx_queue_channel(rx_queue)->channel,
617 FRF_AZ_RX_DESCQ_OWNER_ID, 0,
618 FRF_AZ_RX_DESCQ_LABEL,
619 efx_rx_queue_index(rx_queue),
620 FRF_AZ_RX_DESCQ_SIZE,
621 __ffs(rx_queue->rxd.entries),
622 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
623 FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
624 FRF_AZ_RX_DESCQ_EN, 1);
625 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
626 efx_rx_queue_index(rx_queue));
627}
628
629static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
630{
631 struct efx_nic *efx = rx_queue->efx;
632 efx_oword_t rx_flush_descq;
633
634 EFX_POPULATE_OWORD_2(rx_flush_descq,
635 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
636 FRF_AZ_RX_FLUSH_DESCQ,
637 efx_rx_queue_index(rx_queue));
638 efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
639}
640
641void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
642{
643 efx_oword_t rx_desc_ptr;
644 struct efx_nic *efx = rx_queue->efx;
645
646 /* Remove RX descriptor ring from card */
647 EFX_ZERO_OWORD(rx_desc_ptr);
648 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
649 efx_rx_queue_index(rx_queue));
650
651 /* Unpin RX descriptor ring */
652 efx_fini_special_buffer(efx, &rx_queue->rxd);
653}
654
655/* Free buffers backing RX queue */
656void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
657{
658 efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
659}
660
661/**************************************************************************
662 *
663 * Flush handling
664 *
665 **************************************************************************/
666
667/* efx_nic_flush_queues() must be woken up when all flushes are completed,
668 * or more RX flushes can be kicked off.
669 */
670static bool efx_flush_wake(struct efx_nic *efx)
671{
672 /* Ensure that all updates are visible to efx_nic_flush_queues() */
673 smp_mb();
674
675 return (atomic_read(&efx->drain_pending) == 0 ||
676 (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
677 && atomic_read(&efx->rxq_flush_pending) > 0));
678}
679
680static bool efx_check_tx_flush_complete(struct efx_nic *efx)
681{
682 bool i = true;
683 efx_oword_t txd_ptr_tbl;
684 struct efx_channel *channel;
685 struct efx_tx_queue *tx_queue;
686
687 efx_for_each_channel(channel, efx) {
688 efx_for_each_channel_tx_queue(tx_queue, channel) {
689 efx_reado_table(efx, &txd_ptr_tbl,
690 FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
691 if (EFX_OWORD_FIELD(txd_ptr_tbl,
692 FRF_AZ_TX_DESCQ_FLUSH) ||
693 EFX_OWORD_FIELD(txd_ptr_tbl,
694 FRF_AZ_TX_DESCQ_EN)) {
695 netif_dbg(efx, hw, efx->net_dev,
696 "flush did not complete on TXQ %d\n",
697 tx_queue->queue);
698 i = false;
699 } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
700 1, 0)) {
701 /* The flush is complete, but we didn't
702 * receive a flush completion event
703 */
704 netif_dbg(efx, hw, efx->net_dev,
705 "flush complete on TXQ %d, so drain "
706 "the queue\n", tx_queue->queue);
707 /* Don't need to increment drain_pending as it
708 * has already been incremented for the queues
709 * which did not drain
710 */
711 efx_magic_event(channel,
712 EFX_CHANNEL_MAGIC_TX_DRAIN(
713 tx_queue));
714 }
715 }
716 }
717
718 return i;
719}
720
721/* Flush all the transmit queues, and continue flushing receive queues until
722 * they're all flushed. Wait for the DRAIN events to be recieved so that there
723 * are no more RX and TX events left on any channel. */
724static int efx_farch_do_flush(struct efx_nic *efx)
725{
726 unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
727 struct efx_channel *channel;
728 struct efx_rx_queue *rx_queue;
729 struct efx_tx_queue *tx_queue;
730 int rc = 0;
731
732 efx_for_each_channel(channel, efx) {
733 efx_for_each_channel_tx_queue(tx_queue, channel) {
734 atomic_inc(&efx->drain_pending);
735 efx_flush_tx_queue(tx_queue);
736 }
737 efx_for_each_channel_rx_queue(rx_queue, channel) {
738 atomic_inc(&efx->drain_pending);
739 rx_queue->flush_pending = true;
740 atomic_inc(&efx->rxq_flush_pending);
741 }
742 }
743
744 while (timeout && atomic_read(&efx->drain_pending) > 0) {
745 /* If SRIOV is enabled, then offload receive queue flushing to
746 * the firmware (though we will still have to poll for
747 * completion). If that fails, fall back to the old scheme.
748 */
749 if (efx_sriov_enabled(efx)) {
750 rc = efx_mcdi_flush_rxqs(efx);
751 if (!rc)
752 goto wait;
753 }
754
755 /* The hardware supports four concurrent rx flushes, each of
756 * which may need to be retried if there is an outstanding
757 * descriptor fetch
758 */
759 efx_for_each_channel(channel, efx) {
760 efx_for_each_channel_rx_queue(rx_queue, channel) {
761 if (atomic_read(&efx->rxq_flush_outstanding) >=
762 EFX_RX_FLUSH_COUNT)
763 break;
764
765 if (rx_queue->flush_pending) {
766 rx_queue->flush_pending = false;
767 atomic_dec(&efx->rxq_flush_pending);
768 atomic_inc(&efx->rxq_flush_outstanding);
769 efx_flush_rx_queue(rx_queue);
770 }
771 }
772 }
773
774 wait:
775 timeout = wait_event_timeout(efx->flush_wq, efx_flush_wake(efx),
776 timeout);
777 }
778
779 if (atomic_read(&efx->drain_pending) &&
780 !efx_check_tx_flush_complete(efx)) {
781 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
782 "(rx %d+%d)\n", atomic_read(&efx->drain_pending),
783 atomic_read(&efx->rxq_flush_outstanding),
784 atomic_read(&efx->rxq_flush_pending));
785 rc = -ETIMEDOUT;
786
787 atomic_set(&efx->drain_pending, 0);
788 atomic_set(&efx->rxq_flush_pending, 0);
789 atomic_set(&efx->rxq_flush_outstanding, 0);
790 }
791
792 return rc;
793}
794
795int efx_farch_fini_dmaq(struct efx_nic *efx)
796{
797 struct efx_channel *channel;
798 struct efx_tx_queue *tx_queue;
799 struct efx_rx_queue *rx_queue;
800 int rc = 0;
801
802 /* Do not attempt to write to the NIC during EEH recovery */
803 if (efx->state != STATE_RECOVERY) {
804 /* Only perform flush if DMA is enabled */
805 if (efx->pci_dev->is_busmaster) {
806 efx->type->prepare_flush(efx);
807 rc = efx_farch_do_flush(efx);
808 efx->type->finish_flush(efx);
809 }
810
811 efx_for_each_channel(channel, efx) {
812 efx_for_each_channel_rx_queue(rx_queue, channel)
813 efx_nic_fini_rx(rx_queue);
814 efx_for_each_channel_tx_queue(tx_queue, channel)
815 efx_nic_fini_tx(tx_queue);
816 }
817 }
818
819 return rc;
820}
821
822/**************************************************************************
823 *
824 * Event queue processing
825 * Event queues are processed by per-channel tasklets.
826 *
827 **************************************************************************/
828
829/* Update a channel's event queue's read pointer (RPTR) register
830 *
831 * This writes the EVQ_RPTR_REG register for the specified channel's
832 * event queue.
833 */
834void efx_nic_eventq_read_ack(struct efx_channel *channel)
835{
836 efx_dword_t reg;
837 struct efx_nic *efx = channel->efx;
838
839 EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
840 channel->eventq_read_ptr & channel->eventq_mask);
841
842 /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
843 * of 4 bytes, but it is really 16 bytes just like later revisions.
844 */
845 efx_writed(efx, &reg,
846 efx->type->evq_rptr_tbl_base +
847 FR_BZ_EVQ_RPTR_STEP * channel->channel);
848}
849
850/* Use HW to insert a SW defined event */
851void efx_generate_event(struct efx_nic *efx, unsigned int evq,
852 efx_qword_t *event)
853{
854 efx_oword_t drv_ev_reg;
855
856 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
857 FRF_AZ_DRV_EV_DATA_WIDTH != 64);
858 drv_ev_reg.u32[0] = event->u32[0];
859 drv_ev_reg.u32[1] = event->u32[1];
860 drv_ev_reg.u32[2] = 0;
861 drv_ev_reg.u32[3] = 0;
862 EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
863 efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
864}
865
866static void efx_magic_event(struct efx_channel *channel, u32 magic)
867{
868 efx_qword_t event;
869
870 EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
871 FSE_AZ_EV_CODE_DRV_GEN_EV,
872 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
873 efx_generate_event(channel->efx, channel->channel, &event);
874}
875
876/* Handle a transmit completion event
877 *
878 * The NIC batches TX completion events; the message we receive is of
879 * the form "complete all TX events up to this index".
880 */
881static int
882efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
883{
884 unsigned int tx_ev_desc_ptr;
885 unsigned int tx_ev_q_label;
886 struct efx_tx_queue *tx_queue;
887 struct efx_nic *efx = channel->efx;
888 int tx_packets = 0;
889
890 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
891 return 0;
892
893 if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
894 /* Transmit completion */
895 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
896 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
897 tx_queue = efx_channel_get_tx_queue(
898 channel, tx_ev_q_label % EFX_TXQ_TYPES);
899 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
900 tx_queue->ptr_mask);
901 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
902 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
903 /* Rewrite the FIFO write pointer */
904 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
905 tx_queue = efx_channel_get_tx_queue(
906 channel, tx_ev_q_label % EFX_TXQ_TYPES);
907
908 netif_tx_lock(efx->net_dev);
909 efx_notify_tx_desc(tx_queue);
910 netif_tx_unlock(efx->net_dev);
911 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
912 EFX_WORKAROUND_10727(efx)) {
913 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
914 } else {
915 netif_err(efx, tx_err, efx->net_dev,
916 "channel %d unexpected TX event "
917 EFX_QWORD_FMT"\n", channel->channel,
918 EFX_QWORD_VAL(*event));
919 }
920
921 return tx_packets;
922}
923
924/* Detect errors included in the rx_evt_pkt_ok bit. */
925static u16 efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
926 const efx_qword_t *event)
927{
928 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
929 struct efx_nic *efx = rx_queue->efx;
930 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
931 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
932 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
933 bool rx_ev_other_err, rx_ev_pause_frm;
934 bool rx_ev_hdr_type, rx_ev_mcast_pkt;
935 unsigned rx_ev_pkt_type;
936
937 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
938 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
939 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
940 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
941 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
942 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
943 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
944 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
945 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
946 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
947 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
948 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
949 rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
950 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
951 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
952
953 /* Every error apart from tobe_disc and pause_frm */
954 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
955 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
956 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
957
958 /* Count errors that are not in MAC stats. Ignore expected
959 * checksum errors during self-test. */
960 if (rx_ev_frm_trunc)
961 ++channel->n_rx_frm_trunc;
962 else if (rx_ev_tobe_disc)
963 ++channel->n_rx_tobe_disc;
964 else if (!efx->loopback_selftest) {
965 if (rx_ev_ip_hdr_chksum_err)
966 ++channel->n_rx_ip_hdr_chksum_err;
967 else if (rx_ev_tcp_udp_chksum_err)
968 ++channel->n_rx_tcp_udp_chksum_err;
969 }
970
971 /* TOBE_DISC is expected on unicast mismatches; don't print out an
972 * error message. FRM_TRUNC indicates RXDP dropped the packet due
973 * to a FIFO overflow.
974 */
975#ifdef DEBUG
976 if (rx_ev_other_err && net_ratelimit()) {
977 netif_dbg(efx, rx_err, efx->net_dev,
978 " RX queue %d unexpected RX event "
979 EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
980 efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
981 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
982 rx_ev_ip_hdr_chksum_err ?
983 " [IP_HDR_CHKSUM_ERR]" : "",
984 rx_ev_tcp_udp_chksum_err ?
985 " [TCP_UDP_CHKSUM_ERR]" : "",
986 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
987 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
988 rx_ev_drib_nib ? " [DRIB_NIB]" : "",
989 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
990 rx_ev_pause_frm ? " [PAUSE]" : "");
991 }
992#endif
993
994 /* The frame must be discarded if any of these are true. */
995 return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
996 rx_ev_tobe_disc | rx_ev_pause_frm) ?
997 EFX_RX_PKT_DISCARD : 0;
998}
999
1000/* Handle receive events that are not in-order. Return true if this
1001 * can be handled as a partial packet discard, false if it's more
1002 * serious.
1003 */
1004static bool
1005efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
1006{
1007 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
1008 struct efx_nic *efx = rx_queue->efx;
1009 unsigned expected, dropped;
1010
1011 if (rx_queue->scatter_n &&
1012 index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
1013 rx_queue->ptr_mask)) {
1014 ++channel->n_rx_nodesc_trunc;
1015 return true;
1016 }
1017
1018 expected = rx_queue->removed_count & rx_queue->ptr_mask;
1019 dropped = (index - expected) & rx_queue->ptr_mask;
1020 netif_info(efx, rx_err, efx->net_dev,
1021 "dropped %d events (index=%d expected=%d)\n",
1022 dropped, index, expected);
1023
1024 efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
1025 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
1026 return false;
1027}
1028
1029/* Handle a packet received event
1030 *
1031 * The NIC gives a "discard" flag if it's a unicast packet with the
1032 * wrong destination address
1033 * Also "is multicast" and "matches multicast filter" flags can be used to
1034 * discard non-matching multicast packets.
1035 */
1036static void
1037efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
1038{
1039 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
1040 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
1041 unsigned expected_ptr;
1042 bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
1043 u16 flags;
1044 struct efx_rx_queue *rx_queue;
1045 struct efx_nic *efx = channel->efx;
1046
1047 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1048 return;
1049
1050 rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
1051 rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
1052 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
1053 channel->channel);
1054
1055 rx_queue = efx_channel_get_rx_queue(channel);
1056
1057 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
1058 expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
1059 rx_queue->ptr_mask);
1060
1061 /* Check for partial drops and other errors */
1062 if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
1063 unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
1064 if (rx_ev_desc_ptr != expected_ptr &&
1065 !efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1066 return;
1067
1068 /* Discard all pending fragments */
1069 if (rx_queue->scatter_n) {
1070 efx_rx_packet(
1071 rx_queue,
1072 rx_queue->removed_count & rx_queue->ptr_mask,
1073 rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1074 rx_queue->removed_count += rx_queue->scatter_n;
1075 rx_queue->scatter_n = 0;
1076 }
1077
1078 /* Return if there is no new fragment */
1079 if (rx_ev_desc_ptr != expected_ptr)
1080 return;
1081
1082 /* Discard new fragment if not SOP */
1083 if (!rx_ev_sop) {
1084 efx_rx_packet(
1085 rx_queue,
1086 rx_queue->removed_count & rx_queue->ptr_mask,
1087 1, 0, EFX_RX_PKT_DISCARD);
1088 ++rx_queue->removed_count;
1089 return;
1090 }
1091 }
1092
1093 ++rx_queue->scatter_n;
1094 if (rx_ev_cont)
1095 return;
1096
1097 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1098 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1099 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1100
1101 if (likely(rx_ev_pkt_ok)) {
1102 /* If packet is marked as OK then we can rely on the
1103 * hardware checksum and classification.
1104 */
1105 flags = 0;
1106 switch (rx_ev_hdr_type) {
1107 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1108 flags |= EFX_RX_PKT_TCP;
1109 /* fall through */
1110 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1111 flags |= EFX_RX_PKT_CSUMMED;
1112 /* fall through */
1113 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1114 case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1115 break;
1116 }
1117 } else {
1118 flags = efx_handle_rx_not_ok(rx_queue, event);
1119 }
1120
1121 /* Detect multicast packets that didn't match the filter */
1122 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1123 if (rx_ev_mcast_pkt) {
1124 unsigned int rx_ev_mcast_hash_match =
1125 EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1126
1127 if (unlikely(!rx_ev_mcast_hash_match)) {
1128 ++channel->n_rx_mcast_mismatch;
1129 flags |= EFX_RX_PKT_DISCARD;
1130 }
1131 }
1132
1133 channel->irq_mod_score += 2;
1134
1135 /* Handle received packet */
1136 efx_rx_packet(rx_queue,
1137 rx_queue->removed_count & rx_queue->ptr_mask,
1138 rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1139 rx_queue->removed_count += rx_queue->scatter_n;
1140 rx_queue->scatter_n = 0;
1141}
1142
1143/* If this flush done event corresponds to a &struct efx_tx_queue, then
1144 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1145 * of all transmit completions.
1146 */
1147static void
1148efx_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1149{
1150 struct efx_tx_queue *tx_queue;
1151 int qid;
1152
1153 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1154 if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1155 tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1156 qid % EFX_TXQ_TYPES);
1157 if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1158 efx_magic_event(tx_queue->channel,
1159 EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1160 }
1161 }
1162}
1163
1164/* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1165 * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1166 * the RX queue back to the mask of RX queues in need of flushing.
1167 */
1168static void
1169efx_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1170{
1171 struct efx_channel *channel;
1172 struct efx_rx_queue *rx_queue;
1173 int qid;
1174 bool failed;
1175
1176 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1177 failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1178 if (qid >= efx->n_channels)
1179 return;
1180 channel = efx_get_channel(efx, qid);
1181 if (!efx_channel_has_rx_queue(channel))
1182 return;
1183 rx_queue = efx_channel_get_rx_queue(channel);
1184
1185 if (failed) {
1186 netif_info(efx, hw, efx->net_dev,
1187 "RXQ %d flush retry\n", qid);
1188 rx_queue->flush_pending = true;
1189 atomic_inc(&efx->rxq_flush_pending);
1190 } else {
1191 efx_magic_event(efx_rx_queue_channel(rx_queue),
1192 EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1193 }
1194 atomic_dec(&efx->rxq_flush_outstanding);
1195 if (efx_flush_wake(efx))
1196 wake_up(&efx->flush_wq);
1197}
1198
1199static void
1200efx_handle_drain_event(struct efx_channel *channel)
1201{
1202 struct efx_nic *efx = channel->efx;
1203
1204 WARN_ON(atomic_read(&efx->drain_pending) == 0);
1205 atomic_dec(&efx->drain_pending);
1206 if (efx_flush_wake(efx))
1207 wake_up(&efx->flush_wq);
1208}
1209
1210static void
1211efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
1212{
1213 struct efx_nic *efx = channel->efx;
1214 struct efx_rx_queue *rx_queue =
1215 efx_channel_has_rx_queue(channel) ?
1216 efx_channel_get_rx_queue(channel) : NULL;
1217 unsigned magic, code;
1218
1219 magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1220 code = _EFX_CHANNEL_MAGIC_CODE(magic);
1221
1222 if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1223 channel->event_test_cpu = raw_smp_processor_id();
1224 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1225 /* The queue must be empty, so we won't receive any rx
1226 * events, so efx_process_channel() won't refill the
1227 * queue. Refill it here */
1228 efx_fast_push_rx_descriptors(rx_queue);
1229 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1230 efx_handle_drain_event(channel);
1231 } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1232 efx_handle_drain_event(channel);
1233 } else {
1234 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1235 "generated event "EFX_QWORD_FMT"\n",
1236 channel->channel, EFX_QWORD_VAL(*event));
1237 }
1238}
1239
1240static void
1241efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1242{
1243 struct efx_nic *efx = channel->efx;
1244 unsigned int ev_sub_code;
1245 unsigned int ev_sub_data;
1246
1247 ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1248 ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1249
1250 switch (ev_sub_code) {
1251 case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1252 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1253 channel->channel, ev_sub_data);
1254 efx_handle_tx_flush_done(efx, event);
1255 efx_sriov_tx_flush_done(efx, event);
1256 break;
1257 case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1258 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1259 channel->channel, ev_sub_data);
1260 efx_handle_rx_flush_done(efx, event);
1261 efx_sriov_rx_flush_done(efx, event);
1262 break;
1263 case FSE_AZ_EVQ_INIT_DONE_EV:
1264 netif_dbg(efx, hw, efx->net_dev,
1265 "channel %d EVQ %d initialised\n",
1266 channel->channel, ev_sub_data);
1267 break;
1268 case FSE_AZ_SRM_UPD_DONE_EV:
1269 netif_vdbg(efx, hw, efx->net_dev,
1270 "channel %d SRAM update done\n", channel->channel);
1271 break;
1272 case FSE_AZ_WAKE_UP_EV:
1273 netif_vdbg(efx, hw, efx->net_dev,
1274 "channel %d RXQ %d wakeup event\n",
1275 channel->channel, ev_sub_data);
1276 break;
1277 case FSE_AZ_TIMER_EV:
1278 netif_vdbg(efx, hw, efx->net_dev,
1279 "channel %d RX queue %d timer expired\n",
1280 channel->channel, ev_sub_data);
1281 break;
1282 case FSE_AA_RX_RECOVER_EV:
1283 netif_err(efx, rx_err, efx->net_dev,
1284 "channel %d seen DRIVER RX_RESET event. "
1285 "Resetting.\n", channel->channel);
1286 atomic_inc(&efx->rx_reset);
1287 efx_schedule_reset(efx,
1288 EFX_WORKAROUND_6555(efx) ?
1289 RESET_TYPE_RX_RECOVERY :
1290 RESET_TYPE_DISABLE);
1291 break;
1292 case FSE_BZ_RX_DSC_ERROR_EV:
1293 if (ev_sub_data < EFX_VI_BASE) {
1294 netif_err(efx, rx_err, efx->net_dev,
1295 "RX DMA Q %d reports descriptor fetch error."
1296 " RX Q %d is disabled.\n", ev_sub_data,
1297 ev_sub_data);
1298 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
1299 } else
1300 efx_sriov_desc_fetch_err(efx, ev_sub_data);
1301 break;
1302 case FSE_BZ_TX_DSC_ERROR_EV:
1303 if (ev_sub_data < EFX_VI_BASE) {
1304 netif_err(efx, tx_err, efx->net_dev,
1305 "TX DMA Q %d reports descriptor fetch error."
1306 " TX Q %d is disabled.\n", ev_sub_data,
1307 ev_sub_data);
1308 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
1309 } else
1310 efx_sriov_desc_fetch_err(efx, ev_sub_data);
1311 break;
1312 default:
1313 netif_vdbg(efx, hw, efx->net_dev,
1314 "channel %d unknown driver event code %d "
1315 "data %04x\n", channel->channel, ev_sub_code,
1316 ev_sub_data);
1317 break;
1318 }
1319}
1320
1321int efx_nic_process_eventq(struct efx_channel *channel, int budget)
1322{
1323 struct efx_nic *efx = channel->efx;
1324 unsigned int read_ptr;
1325 efx_qword_t event, *p_event;
1326 int ev_code;
1327 int tx_packets = 0;
1328 int spent = 0;
1329
1330 read_ptr = channel->eventq_read_ptr;
1331
1332 for (;;) {
1333 p_event = efx_event(channel, read_ptr);
1334 event = *p_event;
1335
1336 if (!efx_event_present(&event))
1337 /* End of events */
1338 break;
1339
1340 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1341 "channel %d event is "EFX_QWORD_FMT"\n",
1342 channel->channel, EFX_QWORD_VAL(event));
1343
1344 /* Clear this event by marking it all ones */
1345 EFX_SET_QWORD(*p_event);
1346
1347 ++read_ptr;
1348
1349 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1350
1351 switch (ev_code) {
1352 case FSE_AZ_EV_CODE_RX_EV:
1353 efx_handle_rx_event(channel, &event);
1354 if (++spent == budget)
1355 goto out;
1356 break;
1357 case FSE_AZ_EV_CODE_TX_EV:
1358 tx_packets += efx_handle_tx_event(channel, &event);
1359 if (tx_packets > efx->txq_entries) {
1360 spent = budget;
1361 goto out;
1362 }
1363 break;
1364 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1365 efx_handle_generated_event(channel, &event);
1366 break;
1367 case FSE_AZ_EV_CODE_DRIVER_EV:
1368 efx_handle_driver_event(channel, &event);
1369 break;
1370 case FSE_CZ_EV_CODE_USER_EV:
1371 efx_sriov_event(channel, &event);
1372 break;
1373 case FSE_CZ_EV_CODE_MCDI_EV:
1374 efx_mcdi_process_event(channel, &event);
1375 break;
1376 case FSE_AZ_EV_CODE_GLOBAL_EV:
1377 if (efx->type->handle_global_event &&
1378 efx->type->handle_global_event(channel, &event))
1379 break;
1380 /* else fall through */
1381 default:
1382 netif_err(channel->efx, hw, channel->efx->net_dev,
1383 "channel %d unknown event type %d (data "
1384 EFX_QWORD_FMT ")\n", channel->channel,
1385 ev_code, EFX_QWORD_VAL(event));
1386 }
1387 }
1388
1389out:
1390 channel->eventq_read_ptr = read_ptr;
1391 return spent;
1392}
1393
1394/* Check whether an event is present in the eventq at the current 54/* Check whether an event is present in the eventq at the current
1395 * read pointer. Only useful for self-test. 55 * read pointer. Only useful for self-test.
1396 */ 56 */
@@ -1399,326 +59,18 @@ bool efx_nic_event_present(struct efx_channel *channel)
1399 return efx_event_present(efx_event(channel, channel->eventq_read_ptr)); 59 return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
1400} 60}
1401 61
1402/* Allocate buffer table entries for event queue */
1403int efx_nic_probe_eventq(struct efx_channel *channel)
1404{
1405 struct efx_nic *efx = channel->efx;
1406 unsigned entries;
1407
1408 entries = channel->eventq_mask + 1;
1409 return efx_alloc_special_buffer(efx, &channel->eventq,
1410 entries * sizeof(efx_qword_t));
1411}
1412
1413void efx_nic_init_eventq(struct efx_channel *channel)
1414{
1415 efx_oword_t reg;
1416 struct efx_nic *efx = channel->efx;
1417
1418 netif_dbg(efx, hw, efx->net_dev,
1419 "channel %d event queue in special buffers %d-%d\n",
1420 channel->channel, channel->eventq.index,
1421 channel->eventq.index + channel->eventq.entries - 1);
1422
1423 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1424 EFX_POPULATE_OWORD_3(reg,
1425 FRF_CZ_TIMER_Q_EN, 1,
1426 FRF_CZ_HOST_NOTIFY_MODE, 0,
1427 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1428 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1429 }
1430
1431 /* Pin event queue buffer */
1432 efx_init_special_buffer(efx, &channel->eventq);
1433
1434 /* Fill event queue with all ones (i.e. empty events) */
1435 memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1436
1437 /* Push event queue to card */
1438 EFX_POPULATE_OWORD_3(reg,
1439 FRF_AZ_EVQ_EN, 1,
1440 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1441 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1442 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1443 channel->channel);
1444
1445 efx->type->push_irq_moderation(channel);
1446}
1447
1448void efx_nic_fini_eventq(struct efx_channel *channel)
1449{
1450 efx_oword_t reg;
1451 struct efx_nic *efx = channel->efx;
1452
1453 /* Remove event queue from card */
1454 EFX_ZERO_OWORD(reg);
1455 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1456 channel->channel);
1457 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1458 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1459
1460 /* Unpin event queue */
1461 efx_fini_special_buffer(efx, &channel->eventq);
1462}
1463
1464/* Free buffers backing event queue */
1465void efx_nic_remove_eventq(struct efx_channel *channel)
1466{
1467 efx_free_special_buffer(channel->efx, &channel->eventq);
1468}
1469
1470
1471void efx_nic_event_test_start(struct efx_channel *channel) 62void efx_nic_event_test_start(struct efx_channel *channel)
1472{ 63{
1473 channel->event_test_cpu = -1; 64 channel->event_test_cpu = -1;
1474 smp_wmb(); 65 smp_wmb();
1475 efx_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel)); 66 channel->efx->type->ev_test_generate(channel);
1476}
1477
1478void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
1479{
1480 efx_magic_event(efx_rx_queue_channel(rx_queue),
1481 EFX_CHANNEL_MAGIC_FILL(rx_queue));
1482}
1483
1484/**************************************************************************
1485 *
1486 * Hardware interrupts
1487 * The hardware interrupt handler does very little work; all the event
1488 * queue processing is carried out by per-channel tasklets.
1489 *
1490 **************************************************************************/
1491
1492/* Enable/disable/generate interrupts */
1493static inline void efx_nic_interrupts(struct efx_nic *efx,
1494 bool enabled, bool force)
1495{
1496 efx_oword_t int_en_reg_ker;
1497
1498 EFX_POPULATE_OWORD_3(int_en_reg_ker,
1499 FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1500 FRF_AZ_KER_INT_KER, force,
1501 FRF_AZ_DRV_INT_EN_KER, enabled);
1502 efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1503} 67}
1504 68
1505void efx_nic_enable_interrupts(struct efx_nic *efx)
1506{
1507 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1508 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1509
1510 efx_nic_interrupts(efx, true, false);
1511}
1512
1513void efx_nic_disable_interrupts(struct efx_nic *efx)
1514{
1515 /* Disable interrupts */
1516 efx_nic_interrupts(efx, false, false);
1517}
1518
1519/* Generate a test interrupt
1520 * Interrupt must already have been enabled, otherwise nasty things
1521 * may happen.
1522 */
1523void efx_nic_irq_test_start(struct efx_nic *efx) 69void efx_nic_irq_test_start(struct efx_nic *efx)
1524{ 70{
1525 efx->last_irq_cpu = -1; 71 efx->last_irq_cpu = -1;
1526 smp_wmb(); 72 smp_wmb();
1527 efx_nic_interrupts(efx, true, true); 73 efx->type->irq_test_generate(efx);
1528}
1529
1530/* Process a fatal interrupt
1531 * Disable bus mastering ASAP and schedule a reset
1532 */
1533irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
1534{
1535 struct falcon_nic_data *nic_data = efx->nic_data;
1536 efx_oword_t *int_ker = efx->irq_status.addr;
1537 efx_oword_t fatal_intr;
1538 int error, mem_perr;
1539
1540 efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1541 error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1542
1543 netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1544 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1545 EFX_OWORD_VAL(fatal_intr),
1546 error ? "disabling bus mastering" : "no recognised error");
1547
1548 /* If this is a memory parity error dump which blocks are offending */
1549 mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1550 EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1551 if (mem_perr) {
1552 efx_oword_t reg;
1553 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1554 netif_err(efx, hw, efx->net_dev,
1555 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1556 EFX_OWORD_VAL(reg));
1557 }
1558
1559 /* Disable both devices */
1560 pci_clear_master(efx->pci_dev);
1561 if (efx_nic_is_dual_func(efx))
1562 pci_clear_master(nic_data->pci_dev2);
1563 efx_nic_disable_interrupts(efx);
1564
1565 /* Count errors and reset or disable the NIC accordingly */
1566 if (efx->int_error_count == 0 ||
1567 time_after(jiffies, efx->int_error_expire)) {
1568 efx->int_error_count = 0;
1569 efx->int_error_expire =
1570 jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1571 }
1572 if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1573 netif_err(efx, hw, efx->net_dev,
1574 "SYSTEM ERROR - reset scheduled\n");
1575 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1576 } else {
1577 netif_err(efx, hw, efx->net_dev,
1578 "SYSTEM ERROR - max number of errors seen."
1579 "NIC will be disabled\n");
1580 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1581 }
1582
1583 return IRQ_HANDLED;
1584}
1585
1586/* Handle a legacy interrupt
1587 * Acknowledges the interrupt and schedule event queue processing.
1588 */
1589static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
1590{
1591 struct efx_nic *efx = dev_id;
1592 bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1593 efx_oword_t *int_ker = efx->irq_status.addr;
1594 irqreturn_t result = IRQ_NONE;
1595 struct efx_channel *channel;
1596 efx_dword_t reg;
1597 u32 queues;
1598 int syserr;
1599
1600 /* Read the ISR which also ACKs the interrupts */
1601 efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1602 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1603
1604 /* Legacy interrupts are disabled too late by the EEH kernel
1605 * code. Disable them earlier.
1606 * If an EEH error occurred, the read will have returned all ones.
1607 */
1608 if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1609 !efx->eeh_disabled_legacy_irq) {
1610 disable_irq_nosync(efx->legacy_irq);
1611 efx->eeh_disabled_legacy_irq = true;
1612 }
1613
1614 /* Handle non-event-queue sources */
1615 if (queues & (1U << efx->irq_level) && soft_enabled) {
1616 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1617 if (unlikely(syserr))
1618 return efx_nic_fatal_interrupt(efx);
1619 efx->last_irq_cpu = raw_smp_processor_id();
1620 }
1621
1622 if (queues != 0) {
1623 if (EFX_WORKAROUND_15783(efx))
1624 efx->irq_zero_count = 0;
1625
1626 /* Schedule processing of any interrupting queues */
1627 if (likely(soft_enabled)) {
1628 efx_for_each_channel(channel, efx) {
1629 if (queues & 1)
1630 efx_schedule_channel_irq(channel);
1631 queues >>= 1;
1632 }
1633 }
1634 result = IRQ_HANDLED;
1635
1636 } else if (EFX_WORKAROUND_15783(efx)) {
1637 efx_qword_t *event;
1638
1639 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1640 * because this might be a shared interrupt. */
1641 if (efx->irq_zero_count++ == 0)
1642 result = IRQ_HANDLED;
1643
1644 /* Ensure we schedule or rearm all event queues */
1645 if (likely(soft_enabled)) {
1646 efx_for_each_channel(channel, efx) {
1647 event = efx_event(channel,
1648 channel->eventq_read_ptr);
1649 if (efx_event_present(event))
1650 efx_schedule_channel_irq(channel);
1651 else
1652 efx_nic_eventq_read_ack(channel);
1653 }
1654 }
1655 }
1656
1657 if (result == IRQ_HANDLED)
1658 netif_vdbg(efx, intr, efx->net_dev,
1659 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1660 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1661
1662 return result;
1663}
1664
1665/* Handle an MSI interrupt
1666 *
1667 * Handle an MSI hardware interrupt. This routine schedules event
1668 * queue processing. No interrupt acknowledgement cycle is necessary.
1669 * Also, we never need to check that the interrupt is for us, since
1670 * MSI interrupts cannot be shared.
1671 */
1672static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
1673{
1674 struct efx_msi_context *context = dev_id;
1675 struct efx_nic *efx = context->efx;
1676 efx_oword_t *int_ker = efx->irq_status.addr;
1677 int syserr;
1678
1679 netif_vdbg(efx, intr, efx->net_dev,
1680 "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1681 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1682
1683 if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
1684 return IRQ_HANDLED;
1685
1686 /* Handle non-event-queue sources */
1687 if (context->index == efx->irq_level) {
1688 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1689 if (unlikely(syserr))
1690 return efx_nic_fatal_interrupt(efx);
1691 efx->last_irq_cpu = raw_smp_processor_id();
1692 }
1693
1694 /* Schedule processing of the channel */
1695 efx_schedule_channel_irq(efx->channel[context->index]);
1696
1697 return IRQ_HANDLED;
1698}
1699
1700
1701/* Setup RSS indirection table.
1702 * This maps from the hash value of the packet to RXQ
1703 */
1704void efx_nic_push_rx_indir_table(struct efx_nic *efx)
1705{
1706 size_t i = 0;
1707 efx_dword_t dword;
1708
1709 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1710 return;
1711
1712 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1713 FR_BZ_RX_INDIRECTION_TBL_ROWS);
1714
1715 for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1716 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1717 efx->rx_indir_table[i]);
1718 efx_writed(efx, &dword,
1719 FR_BZ_RX_INDIRECTION_TBL +
1720 FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1721 }
1722} 74}
1723 75
1724/* Hook interrupt handler(s) 76/* Hook interrupt handler(s)
@@ -1731,13 +83,8 @@ int efx_nic_init_interrupt(struct efx_nic *efx)
1731 int rc; 83 int rc;
1732 84
1733 if (!EFX_INT_MODE_USE_MSI(efx)) { 85 if (!EFX_INT_MODE_USE_MSI(efx)) {
1734 irq_handler_t handler; 86 rc = request_irq(efx->legacy_irq,
1735 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) 87 efx->type->irq_handle_legacy, IRQF_SHARED,
1736 handler = efx_legacy_interrupt;
1737 else
1738 handler = falcon_legacy_interrupt_a1;
1739
1740 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1741 efx->name, efx); 88 efx->name, efx);
1742 if (rc) { 89 if (rc) {
1743 netif_err(efx, drv, efx->net_dev, 90 netif_err(efx, drv, efx->net_dev,
@@ -1762,7 +109,7 @@ int efx_nic_init_interrupt(struct efx_nic *efx)
1762 /* Hook MSI or MSI-X interrupt */ 109 /* Hook MSI or MSI-X interrupt */
1763 n_irqs = 0; 110 n_irqs = 0;
1764 efx_for_each_channel(channel, efx) { 111 efx_for_each_channel(channel, efx) {
1765 rc = request_irq(channel->irq, efx_msi_interrupt, 112 rc = request_irq(channel->irq, efx->type->irq_handle_msi,
1766 IRQF_PROBE_SHARED, /* Not shared */ 113 IRQF_PROBE_SHARED, /* Not shared */
1767 efx->msi_context[channel->channel].name, 114 efx->msi_context[channel->channel].name,
1768 &efx->msi_context[channel->channel]); 115 &efx->msi_context[channel->channel]);
@@ -1818,154 +165,6 @@ void efx_nic_fini_interrupt(struct efx_nic *efx)
1818 free_irq(efx->legacy_irq, efx); 165 free_irq(efx->legacy_irq, efx);
1819} 166}
1820 167
1821/* Looks at available SRAM resources and works out how many queues we
1822 * can support, and where things like descriptor caches should live.
1823 *
1824 * SRAM is split up as follows:
1825 * 0 buftbl entries for channels
1826 * efx->vf_buftbl_base buftbl entries for SR-IOV
1827 * efx->rx_dc_base RX descriptor caches
1828 * efx->tx_dc_base TX descriptor caches
1829 */
1830void efx_nic_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1831{
1832 unsigned vi_count, buftbl_min;
1833
1834 /* Account for the buffer table entries backing the datapath channels
1835 * and the descriptor caches for those channels.
1836 */
1837 buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1838 efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1839 efx->n_channels * EFX_MAX_EVQ_SIZE)
1840 * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1841 vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1842
1843#ifdef CONFIG_SFC_SRIOV
1844 if (efx_sriov_wanted(efx)) {
1845 unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
1846
1847 efx->vf_buftbl_base = buftbl_min;
1848
1849 vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1850 vi_count = max(vi_count, EFX_VI_BASE);
1851 buftbl_free = (sram_lim_qw - buftbl_min -
1852 vi_count * vi_dc_entries);
1853
1854 entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
1855 efx_vf_size(efx));
1856 vf_limit = min(buftbl_free / entries_per_vf,
1857 (1024U - EFX_VI_BASE) >> efx->vi_scale);
1858
1859 if (efx->vf_count > vf_limit) {
1860 netif_err(efx, probe, efx->net_dev,
1861 "Reducing VF count from from %d to %d\n",
1862 efx->vf_count, vf_limit);
1863 efx->vf_count = vf_limit;
1864 }
1865 vi_count += efx->vf_count * efx_vf_size(efx);
1866 }
1867#endif
1868
1869 efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1870 efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1871}
1872
1873u32 efx_nic_fpga_ver(struct efx_nic *efx)
1874{
1875 efx_oword_t altera_build;
1876 efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1877 return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1878}
1879
1880void efx_nic_init_common(struct efx_nic *efx)
1881{
1882 efx_oword_t temp;
1883
1884 /* Set positions of descriptor caches in SRAM. */
1885 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1886 efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1887 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1888 efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1889
1890 /* Set TX descriptor cache size. */
1891 BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1892 EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1893 efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1894
1895 /* Set RX descriptor cache size. Set low watermark to size-8, as
1896 * this allows most efficient prefetching.
1897 */
1898 BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1899 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1900 efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1901 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1902 efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1903
1904 /* Program INT_KER address */
1905 EFX_POPULATE_OWORD_2(temp,
1906 FRF_AZ_NORM_INT_VEC_DIS_KER,
1907 EFX_INT_MODE_USE_MSI(efx),
1908 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1909 efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1910
1911 if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1912 /* Use an interrupt level unused by event queues */
1913 efx->irq_level = 0x1f;
1914 else
1915 /* Use a valid MSI-X vector */
1916 efx->irq_level = 0;
1917
1918 /* Enable all the genuinely fatal interrupts. (They are still
1919 * masked by the overall interrupt mask, controlled by
1920 * falcon_interrupts()).
1921 *
1922 * Note: All other fatal interrupts are enabled
1923 */
1924 EFX_POPULATE_OWORD_3(temp,
1925 FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1926 FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1927 FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1928 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1929 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1930 EFX_INVERT_OWORD(temp);
1931 efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1932
1933 efx_nic_push_rx_indir_table(efx);
1934
1935 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1936 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1937 */
1938 efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1939 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1940 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1941 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1942 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1943 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1944 /* Enable SW_EV to inherit in char driver - assume harmless here */
1945 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1946 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1947 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1948 /* Disable hardware watchdog which can misfire */
1949 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1950 /* Squash TX of packets of 16 bytes or less */
1951 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1952 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1953 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1954
1955 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1956 EFX_POPULATE_OWORD_4(temp,
1957 /* Default values */
1958 FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1959 FRF_BZ_TX_PACE_SB_AF, 0xb,
1960 FRF_BZ_TX_PACE_FB_BASE, 0,
1961 /* Allow large pace values in the
1962 * fast bin. */
1963 FRF_BZ_TX_PACE_BIN_TH,
1964 FFE_BZ_TX_PACE_RESERVED);
1965 efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1966 }
1967}
1968
1969/* Register dump */ 168/* Register dump */
1970 169
1971#define REGISTER_REVISION_A 1 170#define REGISTER_REVISION_A 1
diff --git a/drivers/net/ethernet/sfc/nic.h b/drivers/net/ethernet/sfc/nic.h
index 21f662cc39a4..25e25b635798 100644
--- a/drivers/net/ethernet/sfc/nic.h
+++ b/drivers/net/ethernet/sfc/nic.h
@@ -34,7 +34,7 @@ static inline int efx_nic_rev(struct efx_nic *efx)
34 return efx->type->revision; 34 return efx->type->revision;
35} 35}
36 36
37extern u32 efx_nic_fpga_ver(struct efx_nic *efx); 37extern u32 efx_farch_fpga_ver(struct efx_nic *efx);
38 38
39/* NIC has two interlinked PCI functions for the same port. */ 39/* NIC has two interlinked PCI functions for the same port. */
40static inline bool efx_nic_is_dual_func(struct efx_nic *efx) 40static inline bool efx_nic_is_dual_func(struct efx_nic *efx)
@@ -42,6 +42,65 @@ static inline bool efx_nic_is_dual_func(struct efx_nic *efx)
42 return efx_nic_rev(efx) < EFX_REV_FALCON_B0; 42 return efx_nic_rev(efx) < EFX_REV_FALCON_B0;
43} 43}
44 44
45/* Read the current event from the event queue */
46static inline efx_qword_t *efx_event(struct efx_channel *channel,
47 unsigned int index)
48{
49 return ((efx_qword_t *) (channel->eventq.buf.addr)) +
50 (index & channel->eventq_mask);
51}
52
53/* See if an event is present
54 *
55 * We check both the high and low dword of the event for all ones. We
56 * wrote all ones when we cleared the event, and no valid event can
57 * have all ones in either its high or low dwords. This approach is
58 * robust against reordering.
59 *
60 * Note that using a single 64-bit comparison is incorrect; even
61 * though the CPU read will be atomic, the DMA write may not be.
62 */
63static inline int efx_event_present(efx_qword_t *event)
64{
65 return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
66 EFX_DWORD_IS_ALL_ONES(event->dword[1]));
67}
68
69/* Returns a pointer to the specified transmit descriptor in the TX
70 * descriptor queue belonging to the specified channel.
71 */
72static inline efx_qword_t *
73efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
74{
75 return ((efx_qword_t *) (tx_queue->txd.buf.addr)) + index;
76}
77
78/* Decide whether to push a TX descriptor to the NIC vs merely writing
79 * the doorbell. This can reduce latency when we are adding a single
80 * descriptor to an empty queue, but is otherwise pointless. Further,
81 * Falcon and Siena have hardware bugs (SF bug 33851) that may be
82 * triggered if we don't check this.
83 */
84static inline bool efx_nic_may_push_tx_desc(struct efx_tx_queue *tx_queue,
85 unsigned int write_count)
86{
87 unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
88
89 if (empty_read_count == 0)
90 return false;
91
92 tx_queue->empty_read_count = 0;
93 return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0
94 && tx_queue->write_count - write_count == 1;
95}
96
97/* Returns a pointer to the specified descriptor in the RX descriptor queue */
98static inline efx_qword_t *
99efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
100{
101 return ((efx_qword_t *) (rx_queue->rxd.buf.addr)) + index;
102}
103
45enum { 104enum {
46 PHY_TYPE_NONE = 0, 105 PHY_TYPE_NONE = 0,
47 PHY_TYPE_TXC43128 = 1, 106 PHY_TYPE_TXC43128 = 1,
@@ -258,25 +317,93 @@ extern const struct efx_nic_type siena_a0_nic_type;
258extern int falcon_probe_board(struct efx_nic *efx, u16 revision_info); 317extern int falcon_probe_board(struct efx_nic *efx, u16 revision_info);
259 318
260/* TX data path */ 319/* TX data path */
261extern int efx_nic_probe_tx(struct efx_tx_queue *tx_queue); 320static inline int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
262extern void efx_nic_init_tx(struct efx_tx_queue *tx_queue); 321{
263extern void efx_nic_remove_tx(struct efx_tx_queue *tx_queue); 322 return tx_queue->efx->type->tx_probe(tx_queue);
264extern void efx_nic_push_buffers(struct efx_tx_queue *tx_queue); 323}
324static inline void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
325{
326 tx_queue->efx->type->tx_init(tx_queue);
327}
328static inline void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
329{
330 tx_queue->efx->type->tx_remove(tx_queue);
331}
332static inline void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
333{
334 tx_queue->efx->type->tx_write(tx_queue);
335}
265 336
266/* RX data path */ 337/* RX data path */
267extern int efx_nic_probe_rx(struct efx_rx_queue *rx_queue); 338static inline int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
268extern void efx_nic_init_rx(struct efx_rx_queue *rx_queue); 339{
269extern void efx_nic_remove_rx(struct efx_rx_queue *rx_queue); 340 return rx_queue->efx->type->rx_probe(rx_queue);
270extern void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue); 341}
271extern void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue); 342static inline void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
343{
344 rx_queue->efx->type->rx_init(rx_queue);
345}
346static inline void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
347{
348 rx_queue->efx->type->rx_remove(rx_queue);
349}
350static inline void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
351{
352 rx_queue->efx->type->rx_write(rx_queue);
353}
354static inline void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
355{
356 rx_queue->efx->type->rx_defer_refill(rx_queue);
357}
272 358
273/* Event data path */ 359/* Event data path */
274extern int efx_nic_probe_eventq(struct efx_channel *channel); 360static inline int efx_nic_probe_eventq(struct efx_channel *channel)
275extern void efx_nic_init_eventq(struct efx_channel *channel); 361{
276extern void efx_nic_fini_eventq(struct efx_channel *channel); 362 return channel->efx->type->ev_probe(channel);
277extern void efx_nic_remove_eventq(struct efx_channel *channel); 363}
278extern int efx_nic_process_eventq(struct efx_channel *channel, int rx_quota); 364static inline void efx_nic_init_eventq(struct efx_channel *channel)
279extern void efx_nic_eventq_read_ack(struct efx_channel *channel); 365{
366 channel->efx->type->ev_init(channel);
367}
368static inline void efx_nic_fini_eventq(struct efx_channel *channel)
369{
370 channel->efx->type->ev_fini(channel);
371}
372static inline void efx_nic_remove_eventq(struct efx_channel *channel)
373{
374 channel->efx->type->ev_remove(channel);
375}
376static inline int
377efx_nic_process_eventq(struct efx_channel *channel, int quota)
378{
379 return channel->efx->type->ev_process(channel, quota);
380}
381static inline void efx_nic_eventq_read_ack(struct efx_channel *channel)
382{
383 channel->efx->type->ev_read_ack(channel);
384}
385extern void efx_nic_event_test_start(struct efx_channel *channel);
386
387/* Falcon/Siena queue operations */
388extern int efx_farch_tx_probe(struct efx_tx_queue *tx_queue);
389extern void efx_farch_tx_init(struct efx_tx_queue *tx_queue);
390extern void efx_farch_tx_fini(struct efx_tx_queue *tx_queue);
391extern void efx_farch_tx_remove(struct efx_tx_queue *tx_queue);
392extern void efx_farch_tx_write(struct efx_tx_queue *tx_queue);
393extern int efx_farch_rx_probe(struct efx_rx_queue *rx_queue);
394extern void efx_farch_rx_init(struct efx_rx_queue *rx_queue);
395extern void efx_farch_rx_fini(struct efx_rx_queue *rx_queue);
396extern void efx_farch_rx_remove(struct efx_rx_queue *rx_queue);
397extern void efx_farch_rx_write(struct efx_rx_queue *rx_queue);
398extern void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue);
399extern int efx_farch_ev_probe(struct efx_channel *channel);
400extern void efx_farch_ev_init(struct efx_channel *channel);
401extern void efx_farch_ev_fini(struct efx_channel *channel);
402extern void efx_farch_ev_remove(struct efx_channel *channel);
403extern int efx_farch_ev_process(struct efx_channel *channel, int quota);
404extern void efx_farch_ev_read_ack(struct efx_channel *channel);
405extern void efx_farch_ev_test_generate(struct efx_channel *channel);
406
280extern bool efx_nic_event_present(struct efx_channel *channel); 407extern bool efx_nic_event_present(struct efx_channel *channel);
281 408
282/* Some statistics are computed as A - B where A and B each increase 409/* Some statistics are computed as A - B where A and B each increase
@@ -297,15 +424,18 @@ static inline void efx_update_diff_stat(u64 *stat, u64 diff)
297 *stat = diff; 424 *stat = diff;
298} 425}
299 426
300/* Interrupts and test events */ 427/* Interrupts */
301extern int efx_nic_init_interrupt(struct efx_nic *efx); 428extern int efx_nic_init_interrupt(struct efx_nic *efx);
302extern void efx_nic_enable_interrupts(struct efx_nic *efx);
303extern void efx_nic_event_test_start(struct efx_channel *channel);
304extern void efx_nic_irq_test_start(struct efx_nic *efx); 429extern void efx_nic_irq_test_start(struct efx_nic *efx);
305extern void efx_nic_disable_interrupts(struct efx_nic *efx);
306extern void efx_nic_fini_interrupt(struct efx_nic *efx); 430extern void efx_nic_fini_interrupt(struct efx_nic *efx);
307extern irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx); 431
308extern irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id); 432/* Falcon/Siena interrupts */
433extern void efx_farch_irq_enable_master(struct efx_nic *efx);
434extern void efx_farch_irq_test_generate(struct efx_nic *efx);
435extern void efx_farch_irq_disable_master(struct efx_nic *efx);
436extern irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id);
437extern irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id);
438extern irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx);
309 439
310static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel) 440static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel)
311{ 441{
@@ -317,36 +447,40 @@ static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx)
317} 447}
318 448
319/* Global Resources */ 449/* Global Resources */
320extern int efx_farch_fini_dmaq(struct efx_nic *efx); 450extern int efx_nic_flush_queues(struct efx_nic *efx);
321extern void siena_prepare_flush(struct efx_nic *efx); 451extern void siena_prepare_flush(struct efx_nic *efx);
452extern int efx_farch_fini_dmaq(struct efx_nic *efx);
322extern void siena_finish_flush(struct efx_nic *efx); 453extern void siena_finish_flush(struct efx_nic *efx);
323extern void falcon_start_nic_stats(struct efx_nic *efx); 454extern void falcon_start_nic_stats(struct efx_nic *efx);
324extern void falcon_stop_nic_stats(struct efx_nic *efx); 455extern void falcon_stop_nic_stats(struct efx_nic *efx);
325extern int falcon_reset_xaui(struct efx_nic *efx); 456extern int falcon_reset_xaui(struct efx_nic *efx);
326extern void 457extern void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw);
327efx_nic_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw); 458extern void efx_farch_init_common(struct efx_nic *efx);
328extern void efx_nic_init_common(struct efx_nic *efx); 459static inline void efx_nic_push_rx_indir_table(struct efx_nic *efx)
329extern void efx_nic_push_rx_indir_table(struct efx_nic *efx); 460{
461 efx->type->rx_push_indir_table(efx);
462}
463extern void efx_farch_rx_push_indir_table(struct efx_nic *efx);
330 464
331int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer, 465int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
332 unsigned int len, gfp_t gfp_flags); 466 unsigned int len, gfp_t gfp_flags);
333void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer); 467void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer);
334 468
335/* Tests */ 469/* Tests */
336struct efx_nic_register_test { 470struct efx_farch_register_test {
337 unsigned address; 471 unsigned address;
338 efx_oword_t mask; 472 efx_oword_t mask;
339}; 473};
340extern int efx_nic_test_registers(struct efx_nic *efx, 474extern int efx_farch_test_registers(struct efx_nic *efx,
341 const struct efx_nic_register_test *regs, 475 const struct efx_farch_register_test *regs,
342 size_t n_regs); 476 size_t n_regs);
343 477
344extern size_t efx_nic_get_regs_len(struct efx_nic *efx); 478extern size_t efx_nic_get_regs_len(struct efx_nic *efx);
345extern void efx_nic_get_regs(struct efx_nic *efx, void *buf); 479extern void efx_nic_get_regs(struct efx_nic *efx, void *buf);
346 480
347#define EFX_MAX_FLUSH_TIME 5000 481#define EFX_MAX_FLUSH_TIME 5000
348 482
349extern void efx_generate_event(struct efx_nic *efx, unsigned int evq, 483extern void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
350 efx_qword_t *event); 484 efx_qword_t *event);
351 485
352#endif /* EFX_NIC_H */ 486#endif /* EFX_NIC_H */
diff --git a/drivers/net/ethernet/sfc/siena.c b/drivers/net/ethernet/sfc/siena.c
index b4c1d4310afe..6a833d531b86 100644
--- a/drivers/net/ethernet/sfc/siena.c
+++ b/drivers/net/ethernet/sfc/siena.c
@@ -63,7 +63,7 @@ void siena_finish_flush(struct efx_nic *efx)
63 efx_mcdi_set_mac(efx); 63 efx_mcdi_set_mac(efx);
64} 64}
65 65
66static const struct efx_nic_register_test siena_register_tests[] = { 66static const struct efx_farch_register_test siena_register_tests[] = {
67 { FR_AZ_ADR_REGION, 67 { FR_AZ_ADR_REGION,
68 EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) }, 68 EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
69 { FR_CZ_USR_EV_CFG, 69 { FR_CZ_USR_EV_CFG,
@@ -107,8 +107,8 @@ static int siena_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
107 goto out; 107 goto out;
108 108
109 tests->registers = 109 tests->registers =
110 efx_nic_test_registers(efx, siena_register_tests, 110 efx_farch_test_registers(efx, siena_register_tests,
111 ARRAY_SIZE(siena_register_tests)) 111 ARRAY_SIZE(siena_register_tests))
112 ? -1 : 1; 112 ? -1 : 1;
113 113
114 rc = efx_mcdi_reset(efx, reset_method); 114 rc = efx_mcdi_reset(efx, reset_method);
@@ -184,7 +184,7 @@ static void siena_dimension_resources(struct efx_nic *efx)
184 * the buffer table and descriptor caches. In theory we can 184 * the buffer table and descriptor caches. In theory we can
185 * map both blocks to one port, but we don't. 185 * map both blocks to one port, but we don't.
186 */ 186 */
187 efx_nic_dimension_resources(efx, FR_CZ_BUF_FULL_TBL_ROWS / 2); 187 efx_farch_dimension_resources(efx, FR_CZ_BUF_FULL_TBL_ROWS / 2);
188} 188}
189 189
190static int siena_probe_nic(struct efx_nic *efx) 190static int siena_probe_nic(struct efx_nic *efx)
@@ -200,7 +200,7 @@ static int siena_probe_nic(struct efx_nic *efx)
200 return -ENOMEM; 200 return -ENOMEM;
201 efx->nic_data = nic_data; 201 efx->nic_data = nic_data;
202 202
203 if (efx_nic_fpga_ver(efx) != 0) { 203 if (efx_farch_fpga_ver(efx) != 0) {
204 netif_err(efx, probe, efx->net_dev, 204 netif_err(efx, probe, efx->net_dev,
205 "Siena FPGA not supported\n"); 205 "Siena FPGA not supported\n");
206 rc = -ENODEV; 206 rc = -ENODEV;
@@ -351,7 +351,7 @@ static int siena_init_nic(struct efx_nic *efx)
351 EFX_POPULATE_OWORD_1(temp, FRF_CZ_USREV_DIS, 1); 351 EFX_POPULATE_OWORD_1(temp, FRF_CZ_USREV_DIS, 1);
352 efx_writeo(efx, &temp, FR_CZ_USR_EV_CFG); 352 efx_writeo(efx, &temp, FR_CZ_USR_EV_CFG);
353 353
354 efx_nic_init_common(efx); 354 efx_farch_init_common(efx);
355 return 0; 355 return 0;
356} 356}
357 357
@@ -705,6 +705,28 @@ const struct efx_nic_type siena_a0_nic_type = {
705 .mcdi_poll_response = siena_mcdi_poll_response, 705 .mcdi_poll_response = siena_mcdi_poll_response,
706 .mcdi_read_response = siena_mcdi_read_response, 706 .mcdi_read_response = siena_mcdi_read_response,
707 .mcdi_poll_reboot = siena_mcdi_poll_reboot, 707 .mcdi_poll_reboot = siena_mcdi_poll_reboot,
708 .irq_enable_master = efx_farch_irq_enable_master,
709 .irq_test_generate = efx_farch_irq_test_generate,
710 .irq_disable_non_ev = efx_farch_irq_disable_master,
711 .irq_handle_msi = efx_farch_msi_interrupt,
712 .irq_handle_legacy = efx_farch_legacy_interrupt,
713 .tx_probe = efx_farch_tx_probe,
714 .tx_init = efx_farch_tx_init,
715 .tx_remove = efx_farch_tx_remove,
716 .tx_write = efx_farch_tx_write,
717 .rx_push_indir_table = efx_farch_rx_push_indir_table,
718 .rx_probe = efx_farch_rx_probe,
719 .rx_init = efx_farch_rx_init,
720 .rx_remove = efx_farch_rx_remove,
721 .rx_write = efx_farch_rx_write,
722 .rx_defer_refill = efx_farch_rx_defer_refill,
723 .ev_probe = efx_farch_ev_probe,
724 .ev_init = efx_farch_ev_init,
725 .ev_fini = efx_farch_ev_fini,
726 .ev_remove = efx_farch_ev_remove,
727 .ev_process = efx_farch_ev_process,
728 .ev_read_ack = efx_farch_ev_read_ack,
729 .ev_test_generate = efx_farch_ev_test_generate,
708 730
709 .revision = EFX_REV_SIENA_A0, 731 .revision = EFX_REV_SIENA_A0,
710 .mem_map_size = (FR_CZ_MC_TREG_SMEM + 732 .mem_map_size = (FR_CZ_MC_TREG_SMEM +
diff --git a/drivers/net/ethernet/sfc/siena_sriov.c b/drivers/net/ethernet/sfc/siena_sriov.c
index 4d214bce8969..4b8eef962faa 100644
--- a/drivers/net/ethernet/sfc/siena_sriov.c
+++ b/drivers/net/ethernet/sfc/siena_sriov.c
@@ -464,8 +464,9 @@ static void __efx_sriov_push_vf_status(struct efx_vf *vf)
464 VFDI_EV_SEQ, (vf->msg_seqno & 0xff), 464 VFDI_EV_SEQ, (vf->msg_seqno & 0xff),
465 VFDI_EV_TYPE, VFDI_EV_TYPE_STATUS); 465 VFDI_EV_TYPE, VFDI_EV_TYPE_STATUS);
466 ++vf->msg_seqno; 466 ++vf->msg_seqno;
467 efx_generate_event(efx, EFX_VI_BASE + vf->index * efx_vf_size(efx), 467 efx_farch_generate_event(efx,
468 &event); 468 EFX_VI_BASE + vf->index * efx_vf_size(efx),
469 &event);
469} 470}
470 471
471static void efx_sriov_bufs(struct efx_nic *efx, unsigned offset, 472static void efx_sriov_bufs(struct efx_nic *efx, unsigned offset,