diff options
| -rw-r--r-- | Documentation/feature-removal-schedule.txt | 10 | ||||
| -rw-r--r-- | kernel/posix-cpu-timers.c | 218 | ||||
| -rw-r--r-- | kernel/time.c | 11 | ||||
| -rw-r--r-- | kernel/timer.c | 81 |
4 files changed, 131 insertions, 189 deletions
diff --git a/Documentation/feature-removal-schedule.txt b/Documentation/feature-removal-schedule.txt index ed511af0f79a..8f8e4241bd90 100644 --- a/Documentation/feature-removal-schedule.txt +++ b/Documentation/feature-removal-schedule.txt | |||
| @@ -564,6 +564,16 @@ Who: Avi Kivity <avi@redhat.com> | |||
| 564 | 564 | ||
| 565 | ---------------------------- | 565 | ---------------------------- |
| 566 | 566 | ||
| 567 | What: xtime, wall_to_monotonic | ||
| 568 | When: 2.6.36+ | ||
| 569 | Files: kernel/time/timekeeping.c include/linux/time.h | ||
| 570 | Why: Cleaning up timekeeping internal values. Please use | ||
| 571 | existing timekeeping accessor functions to access | ||
| 572 | the equivalent functionality. | ||
| 573 | Who: John Stultz <johnstul@us.ibm.com> | ||
| 574 | |||
| 575 | ---------------------------- | ||
| 576 | |||
| 567 | What: KVM kernel-allocated memory slots | 577 | What: KVM kernel-allocated memory slots |
| 568 | When: July 2010 | 578 | When: July 2010 |
| 569 | Why: Since 2.6.25, kvm supports user-allocated memory slots, which are | 579 | Why: Since 2.6.25, kvm supports user-allocated memory slots, which are |
diff --git a/kernel/posix-cpu-timers.c b/kernel/posix-cpu-timers.c index 1a22dfd42df9..564b3b0240dd 100644 --- a/kernel/posix-cpu-timers.c +++ b/kernel/posix-cpu-timers.c | |||
| @@ -11,19 +11,18 @@ | |||
| 11 | #include <trace/events/timer.h> | 11 | #include <trace/events/timer.h> |
| 12 | 12 | ||
| 13 | /* | 13 | /* |
| 14 | * Called after updating RLIMIT_CPU to set timer expiration if necessary. | 14 | * Called after updating RLIMIT_CPU to run cpu timer and update |
| 15 | * tsk->signal->cputime_expires expiration cache if necessary. Needs | ||
| 16 | * siglock protection since other code may update expiration cache as | ||
| 17 | * well. | ||
| 15 | */ | 18 | */ |
| 16 | void update_rlimit_cpu(unsigned long rlim_new) | 19 | void update_rlimit_cpu(unsigned long rlim_new) |
| 17 | { | 20 | { |
| 18 | cputime_t cputime = secs_to_cputime(rlim_new); | 21 | cputime_t cputime = secs_to_cputime(rlim_new); |
| 19 | struct signal_struct *const sig = current->signal; | ||
| 20 | 22 | ||
| 21 | if (cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) || | 23 | spin_lock_irq(¤t->sighand->siglock); |
| 22 | cputime_gt(sig->it[CPUCLOCK_PROF].expires, cputime)) { | 24 | set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL); |
| 23 | spin_lock_irq(¤t->sighand->siglock); | 25 | spin_unlock_irq(¤t->sighand->siglock); |
| 24 | set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL); | ||
| 25 | spin_unlock_irq(¤t->sighand->siglock); | ||
| 26 | } | ||
| 27 | } | 26 | } |
| 28 | 27 | ||
| 29 | static int check_clock(const clockid_t which_clock) | 28 | static int check_clock(const clockid_t which_clock) |
| @@ -548,111 +547,62 @@ static inline int expires_gt(cputime_t expires, cputime_t new_exp) | |||
| 548 | cputime_gt(expires, new_exp); | 547 | cputime_gt(expires, new_exp); |
| 549 | } | 548 | } |
| 550 | 549 | ||
| 551 | static inline int expires_le(cputime_t expires, cputime_t new_exp) | ||
| 552 | { | ||
| 553 | return !cputime_eq(expires, cputime_zero) && | ||
| 554 | cputime_le(expires, new_exp); | ||
| 555 | } | ||
| 556 | /* | 550 | /* |
| 557 | * Insert the timer on the appropriate list before any timers that | 551 | * Insert the timer on the appropriate list before any timers that |
| 558 | * expire later. This must be called with the tasklist_lock held | 552 | * expire later. This must be called with the tasklist_lock held |
| 559 | * for reading, and interrupts disabled. | 553 | * for reading, interrupts disabled and p->sighand->siglock taken. |
| 560 | */ | 554 | */ |
| 561 | static void arm_timer(struct k_itimer *timer, union cpu_time_count now) | 555 | static void arm_timer(struct k_itimer *timer) |
| 562 | { | 556 | { |
| 563 | struct task_struct *p = timer->it.cpu.task; | 557 | struct task_struct *p = timer->it.cpu.task; |
| 564 | struct list_head *head, *listpos; | 558 | struct list_head *head, *listpos; |
| 559 | struct task_cputime *cputime_expires; | ||
| 565 | struct cpu_timer_list *const nt = &timer->it.cpu; | 560 | struct cpu_timer_list *const nt = &timer->it.cpu; |
| 566 | struct cpu_timer_list *next; | 561 | struct cpu_timer_list *next; |
| 567 | unsigned long i; | ||
| 568 | 562 | ||
| 569 | head = (CPUCLOCK_PERTHREAD(timer->it_clock) ? | 563 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { |
| 570 | p->cpu_timers : p->signal->cpu_timers); | 564 | head = p->cpu_timers; |
| 565 | cputime_expires = &p->cputime_expires; | ||
| 566 | } else { | ||
| 567 | head = p->signal->cpu_timers; | ||
| 568 | cputime_expires = &p->signal->cputime_expires; | ||
| 569 | } | ||
| 571 | head += CPUCLOCK_WHICH(timer->it_clock); | 570 | head += CPUCLOCK_WHICH(timer->it_clock); |
| 572 | 571 | ||
| 573 | BUG_ON(!irqs_disabled()); | ||
| 574 | spin_lock(&p->sighand->siglock); | ||
| 575 | |||
| 576 | listpos = head; | 572 | listpos = head; |
| 577 | if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) { | 573 | list_for_each_entry(next, head, entry) { |
| 578 | list_for_each_entry(next, head, entry) { | 574 | if (cpu_time_before(timer->it_clock, nt->expires, next->expires)) |
| 579 | if (next->expires.sched > nt->expires.sched) | 575 | break; |
| 580 | break; | 576 | listpos = &next->entry; |
| 581 | listpos = &next->entry; | ||
| 582 | } | ||
| 583 | } else { | ||
| 584 | list_for_each_entry(next, head, entry) { | ||
| 585 | if (cputime_gt(next->expires.cpu, nt->expires.cpu)) | ||
| 586 | break; | ||
| 587 | listpos = &next->entry; | ||
| 588 | } | ||
| 589 | } | 577 | } |
| 590 | list_add(&nt->entry, listpos); | 578 | list_add(&nt->entry, listpos); |
| 591 | 579 | ||
| 592 | if (listpos == head) { | 580 | if (listpos == head) { |
| 581 | union cpu_time_count *exp = &nt->expires; | ||
| 582 | |||
| 593 | /* | 583 | /* |
| 594 | * We are the new earliest-expiring timer. | 584 | * We are the new earliest-expiring POSIX 1.b timer, hence |
| 595 | * If we are a thread timer, there can always | 585 | * need to update expiration cache. Take into account that |
| 596 | * be a process timer telling us to stop earlier. | 586 | * for process timers we share expiration cache with itimers |
| 587 | * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME. | ||
| 597 | */ | 588 | */ |
| 598 | 589 | ||
| 599 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | 590 | switch (CPUCLOCK_WHICH(timer->it_clock)) { |
| 600 | union cpu_time_count *exp = &nt->expires; | 591 | case CPUCLOCK_PROF: |
| 601 | 592 | if (expires_gt(cputime_expires->prof_exp, exp->cpu)) | |
| 602 | switch (CPUCLOCK_WHICH(timer->it_clock)) { | 593 | cputime_expires->prof_exp = exp->cpu; |
| 603 | default: | 594 | break; |
| 604 | BUG(); | 595 | case CPUCLOCK_VIRT: |
| 605 | case CPUCLOCK_PROF: | 596 | if (expires_gt(cputime_expires->virt_exp, exp->cpu)) |
| 606 | if (expires_gt(p->cputime_expires.prof_exp, | 597 | cputime_expires->virt_exp = exp->cpu; |
| 607 | exp->cpu)) | 598 | break; |
| 608 | p->cputime_expires.prof_exp = exp->cpu; | 599 | case CPUCLOCK_SCHED: |
| 609 | break; | 600 | if (cputime_expires->sched_exp == 0 || |
| 610 | case CPUCLOCK_VIRT: | 601 | cputime_expires->sched_exp > exp->sched) |
| 611 | if (expires_gt(p->cputime_expires.virt_exp, | 602 | cputime_expires->sched_exp = exp->sched; |
| 612 | exp->cpu)) | 603 | break; |
| 613 | p->cputime_expires.virt_exp = exp->cpu; | ||
| 614 | break; | ||
| 615 | case CPUCLOCK_SCHED: | ||
| 616 | if (p->cputime_expires.sched_exp == 0 || | ||
| 617 | p->cputime_expires.sched_exp > exp->sched) | ||
| 618 | p->cputime_expires.sched_exp = | ||
| 619 | exp->sched; | ||
| 620 | break; | ||
| 621 | } | ||
| 622 | } else { | ||
| 623 | struct signal_struct *const sig = p->signal; | ||
| 624 | union cpu_time_count *exp = &timer->it.cpu.expires; | ||
| 625 | |||
| 626 | /* | ||
| 627 | * For a process timer, set the cached expiration time. | ||
| 628 | */ | ||
| 629 | switch (CPUCLOCK_WHICH(timer->it_clock)) { | ||
| 630 | default: | ||
| 631 | BUG(); | ||
| 632 | case CPUCLOCK_VIRT: | ||
| 633 | if (expires_le(sig->it[CPUCLOCK_VIRT].expires, | ||
| 634 | exp->cpu)) | ||
| 635 | break; | ||
| 636 | sig->cputime_expires.virt_exp = exp->cpu; | ||
| 637 | break; | ||
| 638 | case CPUCLOCK_PROF: | ||
| 639 | if (expires_le(sig->it[CPUCLOCK_PROF].expires, | ||
| 640 | exp->cpu)) | ||
| 641 | break; | ||
| 642 | i = sig->rlim[RLIMIT_CPU].rlim_cur; | ||
| 643 | if (i != RLIM_INFINITY && | ||
| 644 | i <= cputime_to_secs(exp->cpu)) | ||
| 645 | break; | ||
| 646 | sig->cputime_expires.prof_exp = exp->cpu; | ||
| 647 | break; | ||
| 648 | case CPUCLOCK_SCHED: | ||
| 649 | sig->cputime_expires.sched_exp = exp->sched; | ||
| 650 | break; | ||
| 651 | } | ||
| 652 | } | 604 | } |
| 653 | } | 605 | } |
| 654 | |||
| 655 | spin_unlock(&p->sighand->siglock); | ||
| 656 | } | 606 | } |
| 657 | 607 | ||
| 658 | /* | 608 | /* |
| @@ -660,7 +610,12 @@ static void arm_timer(struct k_itimer *timer, union cpu_time_count now) | |||
| 660 | */ | 610 | */ |
| 661 | static void cpu_timer_fire(struct k_itimer *timer) | 611 | static void cpu_timer_fire(struct k_itimer *timer) |
| 662 | { | 612 | { |
| 663 | if (unlikely(timer->sigq == NULL)) { | 613 | if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { |
| 614 | /* | ||
| 615 | * User don't want any signal. | ||
| 616 | */ | ||
| 617 | timer->it.cpu.expires.sched = 0; | ||
| 618 | } else if (unlikely(timer->sigq == NULL)) { | ||
| 664 | /* | 619 | /* |
| 665 | * This a special case for clock_nanosleep, | 620 | * This a special case for clock_nanosleep, |
| 666 | * not a normal timer from sys_timer_create. | 621 | * not a normal timer from sys_timer_create. |
| @@ -721,7 +676,7 @@ int posix_cpu_timer_set(struct k_itimer *timer, int flags, | |||
| 721 | struct itimerspec *new, struct itimerspec *old) | 676 | struct itimerspec *new, struct itimerspec *old) |
| 722 | { | 677 | { |
| 723 | struct task_struct *p = timer->it.cpu.task; | 678 | struct task_struct *p = timer->it.cpu.task; |
| 724 | union cpu_time_count old_expires, new_expires, val; | 679 | union cpu_time_count old_expires, new_expires, old_incr, val; |
| 725 | int ret; | 680 | int ret; |
| 726 | 681 | ||
| 727 | if (unlikely(p == NULL)) { | 682 | if (unlikely(p == NULL)) { |
| @@ -752,6 +707,7 @@ int posix_cpu_timer_set(struct k_itimer *timer, int flags, | |||
| 752 | BUG_ON(!irqs_disabled()); | 707 | BUG_ON(!irqs_disabled()); |
| 753 | 708 | ||
| 754 | ret = 0; | 709 | ret = 0; |
| 710 | old_incr = timer->it.cpu.incr; | ||
| 755 | spin_lock(&p->sighand->siglock); | 711 | spin_lock(&p->sighand->siglock); |
| 756 | old_expires = timer->it.cpu.expires; | 712 | old_expires = timer->it.cpu.expires; |
| 757 | if (unlikely(timer->it.cpu.firing)) { | 713 | if (unlikely(timer->it.cpu.firing)) { |
| @@ -759,7 +715,6 @@ int posix_cpu_timer_set(struct k_itimer *timer, int flags, | |||
| 759 | ret = TIMER_RETRY; | 715 | ret = TIMER_RETRY; |
| 760 | } else | 716 | } else |
| 761 | list_del_init(&timer->it.cpu.entry); | 717 | list_del_init(&timer->it.cpu.entry); |
| 762 | spin_unlock(&p->sighand->siglock); | ||
| 763 | 718 | ||
| 764 | /* | 719 | /* |
| 765 | * We need to sample the current value to convert the new | 720 | * We need to sample the current value to convert the new |
| @@ -813,6 +768,7 @@ int posix_cpu_timer_set(struct k_itimer *timer, int flags, | |||
| 813 | * disable this firing since we are already reporting | 768 | * disable this firing since we are already reporting |
| 814 | * it as an overrun (thanks to bump_cpu_timer above). | 769 | * it as an overrun (thanks to bump_cpu_timer above). |
| 815 | */ | 770 | */ |
| 771 | spin_unlock(&p->sighand->siglock); | ||
| 816 | read_unlock(&tasklist_lock); | 772 | read_unlock(&tasklist_lock); |
| 817 | goto out; | 773 | goto out; |
| 818 | } | 774 | } |
| @@ -828,11 +784,11 @@ int posix_cpu_timer_set(struct k_itimer *timer, int flags, | |||
| 828 | */ | 784 | */ |
| 829 | timer->it.cpu.expires = new_expires; | 785 | timer->it.cpu.expires = new_expires; |
| 830 | if (new_expires.sched != 0 && | 786 | if (new_expires.sched != 0 && |
| 831 | (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE && | ||
| 832 | cpu_time_before(timer->it_clock, val, new_expires)) { | 787 | cpu_time_before(timer->it_clock, val, new_expires)) { |
| 833 | arm_timer(timer, val); | 788 | arm_timer(timer); |
| 834 | } | 789 | } |
| 835 | 790 | ||
| 791 | spin_unlock(&p->sighand->siglock); | ||
| 836 | read_unlock(&tasklist_lock); | 792 | read_unlock(&tasklist_lock); |
| 837 | 793 | ||
| 838 | /* | 794 | /* |
| @@ -853,7 +809,6 @@ int posix_cpu_timer_set(struct k_itimer *timer, int flags, | |||
| 853 | timer->it_overrun = -1; | 809 | timer->it_overrun = -1; |
| 854 | 810 | ||
| 855 | if (new_expires.sched != 0 && | 811 | if (new_expires.sched != 0 && |
| 856 | (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE && | ||
| 857 | !cpu_time_before(timer->it_clock, val, new_expires)) { | 812 | !cpu_time_before(timer->it_clock, val, new_expires)) { |
| 858 | /* | 813 | /* |
| 859 | * The designated time already passed, so we notify | 814 | * The designated time already passed, so we notify |
| @@ -867,7 +822,7 @@ int posix_cpu_timer_set(struct k_itimer *timer, int flags, | |||
| 867 | out: | 822 | out: |
| 868 | if (old) { | 823 | if (old) { |
| 869 | sample_to_timespec(timer->it_clock, | 824 | sample_to_timespec(timer->it_clock, |
| 870 | timer->it.cpu.incr, &old->it_interval); | 825 | old_incr, &old->it_interval); |
| 871 | } | 826 | } |
| 872 | return ret; | 827 | return ret; |
| 873 | } | 828 | } |
| @@ -927,25 +882,6 @@ void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp) | |||
| 927 | read_unlock(&tasklist_lock); | 882 | read_unlock(&tasklist_lock); |
| 928 | } | 883 | } |
| 929 | 884 | ||
| 930 | if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { | ||
| 931 | if (timer->it.cpu.incr.sched == 0 && | ||
| 932 | cpu_time_before(timer->it_clock, | ||
| 933 | timer->it.cpu.expires, now)) { | ||
| 934 | /* | ||
| 935 | * Do-nothing timer expired and has no reload, | ||
| 936 | * so it's as if it was never set. | ||
| 937 | */ | ||
| 938 | timer->it.cpu.expires.sched = 0; | ||
| 939 | itp->it_value.tv_sec = itp->it_value.tv_nsec = 0; | ||
| 940 | return; | ||
| 941 | } | ||
| 942 | /* | ||
| 943 | * Account for any expirations and reloads that should | ||
| 944 | * have happened. | ||
| 945 | */ | ||
| 946 | bump_cpu_timer(timer, now); | ||
| 947 | } | ||
| 948 | |||
| 949 | if (unlikely(clear_dead)) { | 885 | if (unlikely(clear_dead)) { |
| 950 | /* | 886 | /* |
| 951 | * We've noticed that the thread is dead, but | 887 | * We've noticed that the thread is dead, but |
| @@ -1266,6 +1202,7 @@ void posix_cpu_timer_schedule(struct k_itimer *timer) | |||
| 1266 | goto out; | 1202 | goto out; |
| 1267 | } | 1203 | } |
| 1268 | read_lock(&tasklist_lock); /* arm_timer needs it. */ | 1204 | read_lock(&tasklist_lock); /* arm_timer needs it. */ |
| 1205 | spin_lock(&p->sighand->siglock); | ||
| 1269 | } else { | 1206 | } else { |
| 1270 | read_lock(&tasklist_lock); | 1207 | read_lock(&tasklist_lock); |
| 1271 | if (unlikely(p->signal == NULL)) { | 1208 | if (unlikely(p->signal == NULL)) { |
| @@ -1286,6 +1223,7 @@ void posix_cpu_timer_schedule(struct k_itimer *timer) | |||
| 1286 | clear_dead_task(timer, now); | 1223 | clear_dead_task(timer, now); |
| 1287 | goto out_unlock; | 1224 | goto out_unlock; |
| 1288 | } | 1225 | } |
| 1226 | spin_lock(&p->sighand->siglock); | ||
| 1289 | cpu_timer_sample_group(timer->it_clock, p, &now); | 1227 | cpu_timer_sample_group(timer->it_clock, p, &now); |
| 1290 | bump_cpu_timer(timer, now); | 1228 | bump_cpu_timer(timer, now); |
| 1291 | /* Leave the tasklist_lock locked for the call below. */ | 1229 | /* Leave the tasklist_lock locked for the call below. */ |
| @@ -1294,7 +1232,9 @@ void posix_cpu_timer_schedule(struct k_itimer *timer) | |||
| 1294 | /* | 1232 | /* |
| 1295 | * Now re-arm for the new expiry time. | 1233 | * Now re-arm for the new expiry time. |
| 1296 | */ | 1234 | */ |
| 1297 | arm_timer(timer, now); | 1235 | BUG_ON(!irqs_disabled()); |
| 1236 | arm_timer(timer); | ||
| 1237 | spin_unlock(&p->sighand->siglock); | ||
| 1298 | 1238 | ||
| 1299 | out_unlock: | 1239 | out_unlock: |
| 1300 | read_unlock(&tasklist_lock); | 1240 | read_unlock(&tasklist_lock); |
| @@ -1386,7 +1326,7 @@ static inline int fastpath_timer_check(struct task_struct *tsk) | |||
| 1386 | return 1; | 1326 | return 1; |
| 1387 | } | 1327 | } |
| 1388 | 1328 | ||
| 1389 | return sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY; | 1329 | return 0; |
| 1390 | } | 1330 | } |
| 1391 | 1331 | ||
| 1392 | /* | 1332 | /* |
| @@ -1452,21 +1392,23 @@ void run_posix_cpu_timers(struct task_struct *tsk) | |||
| 1452 | } | 1392 | } |
| 1453 | 1393 | ||
| 1454 | /* | 1394 | /* |
| 1455 | * Set one of the process-wide special case CPU timers. | 1395 | * Set one of the process-wide special case CPU timers or RLIMIT_CPU. |
| 1456 | * The tsk->sighand->siglock must be held by the caller. | 1396 | * The tsk->sighand->siglock must be held by the caller. |
| 1457 | * The *newval argument is relative and we update it to be absolute, *oldval | ||
| 1458 | * is absolute and we update it to be relative. | ||
| 1459 | */ | 1397 | */ |
| 1460 | void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, | 1398 | void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, |
| 1461 | cputime_t *newval, cputime_t *oldval) | 1399 | cputime_t *newval, cputime_t *oldval) |
| 1462 | { | 1400 | { |
| 1463 | union cpu_time_count now; | 1401 | union cpu_time_count now; |
| 1464 | struct list_head *head; | ||
| 1465 | 1402 | ||
| 1466 | BUG_ON(clock_idx == CPUCLOCK_SCHED); | 1403 | BUG_ON(clock_idx == CPUCLOCK_SCHED); |
| 1467 | cpu_timer_sample_group(clock_idx, tsk, &now); | 1404 | cpu_timer_sample_group(clock_idx, tsk, &now); |
| 1468 | 1405 | ||
| 1469 | if (oldval) { | 1406 | if (oldval) { |
| 1407 | /* | ||
| 1408 | * We are setting itimer. The *oldval is absolute and we update | ||
| 1409 | * it to be relative, *newval argument is relative and we update | ||
| 1410 | * it to be absolute. | ||
| 1411 | */ | ||
| 1470 | if (!cputime_eq(*oldval, cputime_zero)) { | 1412 | if (!cputime_eq(*oldval, cputime_zero)) { |
| 1471 | if (cputime_le(*oldval, now.cpu)) { | 1413 | if (cputime_le(*oldval, now.cpu)) { |
| 1472 | /* Just about to fire. */ | 1414 | /* Just about to fire. */ |
| @@ -1479,33 +1421,21 @@ void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, | |||
| 1479 | if (cputime_eq(*newval, cputime_zero)) | 1421 | if (cputime_eq(*newval, cputime_zero)) |
| 1480 | return; | 1422 | return; |
| 1481 | *newval = cputime_add(*newval, now.cpu); | 1423 | *newval = cputime_add(*newval, now.cpu); |
| 1482 | |||
| 1483 | /* | ||
| 1484 | * If the RLIMIT_CPU timer will expire before the | ||
| 1485 | * ITIMER_PROF timer, we have nothing else to do. | ||
| 1486 | */ | ||
| 1487 | if (tsk->signal->rlim[RLIMIT_CPU].rlim_cur | ||
| 1488 | < cputime_to_secs(*newval)) | ||
| 1489 | return; | ||
| 1490 | } | 1424 | } |
| 1491 | 1425 | ||
| 1492 | /* | 1426 | /* |
| 1493 | * Check whether there are any process timers already set to fire | 1427 | * Update expiration cache if we are the earliest timer, or eventually |
| 1494 | * before this one. If so, we don't have anything more to do. | 1428 | * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire. |
| 1495 | */ | 1429 | */ |
| 1496 | head = &tsk->signal->cpu_timers[clock_idx]; | 1430 | switch (clock_idx) { |
| 1497 | if (list_empty(head) || | 1431 | case CPUCLOCK_PROF: |
| 1498 | cputime_ge(list_first_entry(head, | 1432 | if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval)) |
| 1499 | struct cpu_timer_list, entry)->expires.cpu, | ||
| 1500 | *newval)) { | ||
| 1501 | switch (clock_idx) { | ||
| 1502 | case CPUCLOCK_PROF: | ||
| 1503 | tsk->signal->cputime_expires.prof_exp = *newval; | 1433 | tsk->signal->cputime_expires.prof_exp = *newval; |
| 1504 | break; | 1434 | break; |
| 1505 | case CPUCLOCK_VIRT: | 1435 | case CPUCLOCK_VIRT: |
| 1436 | if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval)) | ||
| 1506 | tsk->signal->cputime_expires.virt_exp = *newval; | 1437 | tsk->signal->cputime_expires.virt_exp = *newval; |
| 1507 | break; | 1438 | break; |
| 1508 | } | ||
| 1509 | } | 1439 | } |
| 1510 | } | 1440 | } |
| 1511 | 1441 | ||
diff --git a/kernel/time.c b/kernel/time.c index 804798005d19..2358a3646a63 100644 --- a/kernel/time.c +++ b/kernel/time.c | |||
| @@ -133,12 +133,11 @@ SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv, | |||
| 133 | */ | 133 | */ |
| 134 | static inline void warp_clock(void) | 134 | static inline void warp_clock(void) |
| 135 | { | 135 | { |
| 136 | write_seqlock_irq(&xtime_lock); | 136 | struct timespec delta, adjust; |
| 137 | wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60; | 137 | delta.tv_sec = sys_tz.tz_minuteswest * 60; |
| 138 | xtime.tv_sec += sys_tz.tz_minuteswest * 60; | 138 | delta.tv_nsec = 0; |
| 139 | update_xtime_cache(0); | 139 | adjust = timespec_add_safe(current_kernel_time(), delta); |
| 140 | write_sequnlock_irq(&xtime_lock); | 140 | do_settimeofday(&adjust); |
| 141 | clock_was_set(); | ||
| 142 | } | 141 | } |
| 143 | 142 | ||
| 144 | /* | 143 | /* |
diff --git a/kernel/timer.c b/kernel/timer.c index c61a7949387f..7e12e7bc7ce6 100644 --- a/kernel/timer.c +++ b/kernel/timer.c | |||
| @@ -953,6 +953,47 @@ static int cascade(struct tvec_base *base, struct tvec *tv, int index) | |||
| 953 | return index; | 953 | return index; |
| 954 | } | 954 | } |
| 955 | 955 | ||
| 956 | static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long), | ||
| 957 | unsigned long data) | ||
| 958 | { | ||
| 959 | int preempt_count = preempt_count(); | ||
| 960 | |||
| 961 | #ifdef CONFIG_LOCKDEP | ||
| 962 | /* | ||
| 963 | * It is permissible to free the timer from inside the | ||
| 964 | * function that is called from it, this we need to take into | ||
| 965 | * account for lockdep too. To avoid bogus "held lock freed" | ||
| 966 | * warnings as well as problems when looking into | ||
| 967 | * timer->lockdep_map, make a copy and use that here. | ||
| 968 | */ | ||
| 969 | struct lockdep_map lockdep_map = timer->lockdep_map; | ||
| 970 | #endif | ||
| 971 | /* | ||
| 972 | * Couple the lock chain with the lock chain at | ||
| 973 | * del_timer_sync() by acquiring the lock_map around the fn() | ||
| 974 | * call here and in del_timer_sync(). | ||
| 975 | */ | ||
| 976 | lock_map_acquire(&lockdep_map); | ||
| 977 | |||
| 978 | trace_timer_expire_entry(timer); | ||
| 979 | fn(data); | ||
| 980 | trace_timer_expire_exit(timer); | ||
| 981 | |||
| 982 | lock_map_release(&lockdep_map); | ||
| 983 | |||
| 984 | if (preempt_count != preempt_count()) { | ||
| 985 | WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n", | ||
| 986 | fn, preempt_count, preempt_count()); | ||
| 987 | /* | ||
| 988 | * Restore the preempt count. That gives us a decent | ||
| 989 | * chance to survive and extract information. If the | ||
| 990 | * callback kept a lock held, bad luck, but not worse | ||
| 991 | * than the BUG() we had. | ||
| 992 | */ | ||
| 993 | preempt_count() = preempt_count; | ||
| 994 | } | ||
| 995 | } | ||
| 996 | |||
| 956 | #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK) | 997 | #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK) |
| 957 | 998 | ||
| 958 | /** | 999 | /** |
| @@ -996,45 +1037,7 @@ static inline void __run_timers(struct tvec_base *base) | |||
| 996 | detach_timer(timer, 1); | 1037 | detach_timer(timer, 1); |
| 997 | 1038 | ||
| 998 | spin_unlock_irq(&base->lock); | 1039 | spin_unlock_irq(&base->lock); |
| 999 | { | 1040 | call_timer_fn(timer, fn, data); |
| 1000 | int preempt_count = preempt_count(); | ||
| 1001 | |||
| 1002 | #ifdef CONFIG_LOCKDEP | ||
| 1003 | /* | ||
| 1004 | * It is permissible to free the timer from | ||
| 1005 | * inside the function that is called from | ||
| 1006 | * it, this we need to take into account for | ||
| 1007 | * lockdep too. To avoid bogus "held lock | ||
| 1008 | * freed" warnings as well as problems when | ||
| 1009 | * looking into timer->lockdep_map, make a | ||
| 1010 | * copy and use that here. | ||
| 1011 | */ | ||
| 1012 | struct lockdep_map lockdep_map = | ||
| 1013 | timer->lockdep_map; | ||
| 1014 | #endif | ||
| 1015 | /* | ||
| 1016 | * Couple the lock chain with the lock chain at | ||
| 1017 | * del_timer_sync() by acquiring the lock_map | ||
| 1018 | * around the fn() call here and in | ||
| 1019 | * del_timer_sync(). | ||
| 1020 | */ | ||
| 1021 | lock_map_acquire(&lockdep_map); | ||
| 1022 | |||
| 1023 | trace_timer_expire_entry(timer); | ||
| 1024 | fn(data); | ||
| 1025 | trace_timer_expire_exit(timer); | ||
| 1026 | |||
| 1027 | lock_map_release(&lockdep_map); | ||
| 1028 | |||
| 1029 | if (preempt_count != preempt_count()) { | ||
| 1030 | printk(KERN_ERR "huh, entered %p " | ||
| 1031 | "with preempt_count %08x, exited" | ||
| 1032 | " with %08x?\n", | ||
| 1033 | fn, preempt_count, | ||
| 1034 | preempt_count()); | ||
| 1035 | BUG(); | ||
| 1036 | } | ||
| 1037 | } | ||
| 1038 | spin_lock_irq(&base->lock); | 1041 | spin_lock_irq(&base->lock); |
| 1039 | } | 1042 | } |
| 1040 | } | 1043 | } |
