diff options
-rw-r--r-- | drivers/memory/emif.c | 894 | ||||
-rw-r--r-- | drivers/memory/emif.h | 130 |
2 files changed, 1020 insertions, 4 deletions
diff --git a/drivers/memory/emif.c b/drivers/memory/emif.c index 7486d7ef0826..bd116eb8c738 100644 --- a/drivers/memory/emif.c +++ b/drivers/memory/emif.c | |||
@@ -21,6 +21,7 @@ | |||
21 | #include <linux/seq_file.h> | 21 | #include <linux/seq_file.h> |
22 | #include <linux/module.h> | 22 | #include <linux/module.h> |
23 | #include <linux/list.h> | 23 | #include <linux/list.h> |
24 | #include <linux/spinlock.h> | ||
24 | #include <memory/jedec_ddr.h> | 25 | #include <memory/jedec_ddr.h> |
25 | #include "emif.h" | 26 | #include "emif.h" |
26 | 27 | ||
@@ -37,20 +38,595 @@ | |||
37 | * @node: node in the device list | 38 | * @node: node in the device list |
38 | * @base: base address of memory-mapped IO registers. | 39 | * @base: base address of memory-mapped IO registers. |
39 | * @dev: device pointer. | 40 | * @dev: device pointer. |
41 | * @addressing table with addressing information from the spec | ||
42 | * @regs_cache: An array of 'struct emif_regs' that stores | ||
43 | * calculated register values for different | ||
44 | * frequencies, to avoid re-calculating them on | ||
45 | * each DVFS transition. | ||
46 | * @curr_regs: The set of register values used in the last | ||
47 | * frequency change (i.e. corresponding to the | ||
48 | * frequency in effect at the moment) | ||
40 | * @plat_data: Pointer to saved platform data. | 49 | * @plat_data: Pointer to saved platform data. |
41 | */ | 50 | */ |
42 | struct emif_data { | 51 | struct emif_data { |
43 | u8 duplicate; | 52 | u8 duplicate; |
44 | u8 temperature_level; | 53 | u8 temperature_level; |
54 | u8 lpmode; | ||
45 | struct list_head node; | 55 | struct list_head node; |
56 | unsigned long irq_state; | ||
46 | void __iomem *base; | 57 | void __iomem *base; |
47 | struct device *dev; | 58 | struct device *dev; |
59 | const struct lpddr2_addressing *addressing; | ||
60 | struct emif_regs *regs_cache[EMIF_MAX_NUM_FREQUENCIES]; | ||
61 | struct emif_regs *curr_regs; | ||
48 | struct emif_platform_data *plat_data; | 62 | struct emif_platform_data *plat_data; |
49 | }; | 63 | }; |
50 | 64 | ||
51 | static struct emif_data *emif1; | 65 | static struct emif_data *emif1; |
66 | static spinlock_t emif_lock; | ||
67 | static unsigned long irq_state; | ||
68 | static u32 t_ck; /* DDR clock period in ps */ | ||
52 | static LIST_HEAD(device_list); | 69 | static LIST_HEAD(device_list); |
53 | 70 | ||
71 | /* | ||
72 | * Calculate the period of DDR clock from frequency value | ||
73 | */ | ||
74 | static void set_ddr_clk_period(u32 freq) | ||
75 | { | ||
76 | /* Divide 10^12 by frequency to get period in ps */ | ||
77 | t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq); | ||
78 | } | ||
79 | |||
80 | /* | ||
81 | * Get the CL from SDRAM_CONFIG register | ||
82 | */ | ||
83 | static u32 get_cl(struct emif_data *emif) | ||
84 | { | ||
85 | u32 cl; | ||
86 | void __iomem *base = emif->base; | ||
87 | |||
88 | cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT; | ||
89 | |||
90 | return cl; | ||
91 | } | ||
92 | |||
93 | static void set_lpmode(struct emif_data *emif, u8 lpmode) | ||
94 | { | ||
95 | u32 temp; | ||
96 | void __iomem *base = emif->base; | ||
97 | |||
98 | temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL); | ||
99 | temp &= ~LP_MODE_MASK; | ||
100 | temp |= (lpmode << LP_MODE_SHIFT); | ||
101 | writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL); | ||
102 | } | ||
103 | |||
104 | static void do_freq_update(void) | ||
105 | { | ||
106 | struct emif_data *emif; | ||
107 | |||
108 | /* | ||
109 | * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE | ||
110 | * | ||
111 | * i728 DESCRIPTION: | ||
112 | * The EMIF automatically puts the SDRAM into self-refresh mode | ||
113 | * after the EMIF has not performed accesses during | ||
114 | * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles | ||
115 | * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set | ||
116 | * to 0x2. If during a small window the following three events | ||
117 | * occur: | ||
118 | * - The SR_TIMING counter expires | ||
119 | * - And frequency change is requested | ||
120 | * - And OCP access is requested | ||
121 | * Then it causes instable clock on the DDR interface. | ||
122 | * | ||
123 | * WORKAROUND | ||
124 | * To avoid the occurrence of the three events, the workaround | ||
125 | * is to disable the self-refresh when requesting a frequency | ||
126 | * change. Before requesting a frequency change the software must | ||
127 | * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the | ||
128 | * frequency change has been done, the software can reprogram | ||
129 | * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2 | ||
130 | */ | ||
131 | list_for_each_entry(emif, &device_list, node) { | ||
132 | if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) | ||
133 | set_lpmode(emif, EMIF_LP_MODE_DISABLE); | ||
134 | } | ||
135 | |||
136 | /* | ||
137 | * TODO: Do FREQ_UPDATE here when an API | ||
138 | * is available for this as part of the new | ||
139 | * clock framework | ||
140 | */ | ||
141 | |||
142 | list_for_each_entry(emif, &device_list, node) { | ||
143 | if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) | ||
144 | set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH); | ||
145 | } | ||
146 | } | ||
147 | |||
148 | /* Find addressing table entry based on the device's type and density */ | ||
149 | static const struct lpddr2_addressing *get_addressing_table( | ||
150 | const struct ddr_device_info *device_info) | ||
151 | { | ||
152 | u32 index, type, density; | ||
153 | |||
154 | type = device_info->type; | ||
155 | density = device_info->density; | ||
156 | |||
157 | switch (type) { | ||
158 | case DDR_TYPE_LPDDR2_S4: | ||
159 | index = density - 1; | ||
160 | break; | ||
161 | case DDR_TYPE_LPDDR2_S2: | ||
162 | switch (density) { | ||
163 | case DDR_DENSITY_1Gb: | ||
164 | case DDR_DENSITY_2Gb: | ||
165 | index = density + 3; | ||
166 | break; | ||
167 | default: | ||
168 | index = density - 1; | ||
169 | } | ||
170 | break; | ||
171 | default: | ||
172 | return NULL; | ||
173 | } | ||
174 | |||
175 | return &lpddr2_jedec_addressing_table[index]; | ||
176 | } | ||
177 | |||
178 | /* | ||
179 | * Find the the right timing table from the array of timing | ||
180 | * tables of the device using DDR clock frequency | ||
181 | */ | ||
182 | static const struct lpddr2_timings *get_timings_table(struct emif_data *emif, | ||
183 | u32 freq) | ||
184 | { | ||
185 | u32 i, min, max, freq_nearest; | ||
186 | const struct lpddr2_timings *timings = NULL; | ||
187 | const struct lpddr2_timings *timings_arr = emif->plat_data->timings; | ||
188 | struct device *dev = emif->dev; | ||
189 | |||
190 | /* Start with a very high frequency - 1GHz */ | ||
191 | freq_nearest = 1000000000; | ||
192 | |||
193 | /* | ||
194 | * Find the timings table such that: | ||
195 | * 1. the frequency range covers the required frequency(safe) AND | ||
196 | * 2. the max_freq is closest to the required frequency(optimal) | ||
197 | */ | ||
198 | for (i = 0; i < emif->plat_data->timings_arr_size; i++) { | ||
199 | max = timings_arr[i].max_freq; | ||
200 | min = timings_arr[i].min_freq; | ||
201 | if ((freq >= min) && (freq <= max) && (max < freq_nearest)) { | ||
202 | freq_nearest = max; | ||
203 | timings = &timings_arr[i]; | ||
204 | } | ||
205 | } | ||
206 | |||
207 | if (!timings) | ||
208 | dev_err(dev, "%s: couldn't find timings for - %dHz\n", | ||
209 | __func__, freq); | ||
210 | |||
211 | dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n", | ||
212 | __func__, freq, freq_nearest); | ||
213 | |||
214 | return timings; | ||
215 | } | ||
216 | |||
217 | static u32 get_sdram_ref_ctrl_shdw(u32 freq, | ||
218 | const struct lpddr2_addressing *addressing) | ||
219 | { | ||
220 | u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi; | ||
221 | |||
222 | /* Scale down frequency and t_refi to avoid overflow */ | ||
223 | freq_khz = freq / 1000; | ||
224 | t_refi = addressing->tREFI_ns / 100; | ||
225 | |||
226 | /* | ||
227 | * refresh rate to be set is 'tREFI(in us) * freq in MHz | ||
228 | * division by 10000 to account for change in units | ||
229 | */ | ||
230 | val = t_refi * freq_khz / 10000; | ||
231 | ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT; | ||
232 | |||
233 | return ref_ctrl_shdw; | ||
234 | } | ||
235 | |||
236 | static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings, | ||
237 | const struct lpddr2_min_tck *min_tck, | ||
238 | const struct lpddr2_addressing *addressing) | ||
239 | { | ||
240 | u32 tim1 = 0, val = 0; | ||
241 | |||
242 | val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1; | ||
243 | tim1 |= val << T_WTR_SHIFT; | ||
244 | |||
245 | if (addressing->num_banks == B8) | ||
246 | val = DIV_ROUND_UP(timings->tFAW, t_ck*4); | ||
247 | else | ||
248 | val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck)); | ||
249 | tim1 |= (val - 1) << T_RRD_SHIFT; | ||
250 | |||
251 | val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1; | ||
252 | tim1 |= val << T_RC_SHIFT; | ||
253 | |||
254 | val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck)); | ||
255 | tim1 |= (val - 1) << T_RAS_SHIFT; | ||
256 | |||
257 | val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1; | ||
258 | tim1 |= val << T_WR_SHIFT; | ||
259 | |||
260 | val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1; | ||
261 | tim1 |= val << T_RCD_SHIFT; | ||
262 | |||
263 | val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1; | ||
264 | tim1 |= val << T_RP_SHIFT; | ||
265 | |||
266 | return tim1; | ||
267 | } | ||
268 | |||
269 | static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings, | ||
270 | const struct lpddr2_min_tck *min_tck, | ||
271 | const struct lpddr2_addressing *addressing) | ||
272 | { | ||
273 | u32 tim1 = 0, val = 0; | ||
274 | |||
275 | val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1; | ||
276 | tim1 = val << T_WTR_SHIFT; | ||
277 | |||
278 | /* | ||
279 | * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps | ||
280 | * to tFAW for de-rating | ||
281 | */ | ||
282 | if (addressing->num_banks == B8) { | ||
283 | val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1; | ||
284 | } else { | ||
285 | val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck); | ||
286 | val = max(min_tck->tRRD, val) - 1; | ||
287 | } | ||
288 | tim1 |= val << T_RRD_SHIFT; | ||
289 | |||
290 | val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck); | ||
291 | tim1 |= (val - 1) << T_RC_SHIFT; | ||
292 | |||
293 | val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck); | ||
294 | val = max(min_tck->tRASmin, val) - 1; | ||
295 | tim1 |= val << T_RAS_SHIFT; | ||
296 | |||
297 | val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1; | ||
298 | tim1 |= val << T_WR_SHIFT; | ||
299 | |||
300 | val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck)); | ||
301 | tim1 |= (val - 1) << T_RCD_SHIFT; | ||
302 | |||
303 | val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck)); | ||
304 | tim1 |= (val - 1) << T_RP_SHIFT; | ||
305 | |||
306 | return tim1; | ||
307 | } | ||
308 | |||
309 | static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings, | ||
310 | const struct lpddr2_min_tck *min_tck, | ||
311 | const struct lpddr2_addressing *addressing, | ||
312 | u32 type) | ||
313 | { | ||
314 | u32 tim2 = 0, val = 0; | ||
315 | |||
316 | val = min_tck->tCKE - 1; | ||
317 | tim2 |= val << T_CKE_SHIFT; | ||
318 | |||
319 | val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1; | ||
320 | tim2 |= val << T_RTP_SHIFT; | ||
321 | |||
322 | /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */ | ||
323 | val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1; | ||
324 | tim2 |= val << T_XSNR_SHIFT; | ||
325 | |||
326 | /* XSRD same as XSNR for LPDDR2 */ | ||
327 | tim2 |= val << T_XSRD_SHIFT; | ||
328 | |||
329 | val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1; | ||
330 | tim2 |= val << T_XP_SHIFT; | ||
331 | |||
332 | return tim2; | ||
333 | } | ||
334 | |||
335 | static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings, | ||
336 | const struct lpddr2_min_tck *min_tck, | ||
337 | const struct lpddr2_addressing *addressing, | ||
338 | u32 type, u32 ip_rev, u32 derated) | ||
339 | { | ||
340 | u32 tim3 = 0, val = 0, t_dqsck; | ||
341 | |||
342 | val = timings->tRAS_max_ns / addressing->tREFI_ns - 1; | ||
343 | val = val > 0xF ? 0xF : val; | ||
344 | tim3 |= val << T_RAS_MAX_SHIFT; | ||
345 | |||
346 | val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1; | ||
347 | tim3 |= val << T_RFC_SHIFT; | ||
348 | |||
349 | t_dqsck = (derated == EMIF_DERATED_TIMINGS) ? | ||
350 | timings->tDQSCK_max_derated : timings->tDQSCK_max; | ||
351 | if (ip_rev == EMIF_4D5) | ||
352 | val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1; | ||
353 | else | ||
354 | val = DIV_ROUND_UP(t_dqsck, t_ck) - 1; | ||
355 | |||
356 | tim3 |= val << T_TDQSCKMAX_SHIFT; | ||
357 | |||
358 | val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1; | ||
359 | tim3 |= val << ZQ_ZQCS_SHIFT; | ||
360 | |||
361 | val = DIV_ROUND_UP(timings->tCKESR, t_ck); | ||
362 | val = max(min_tck->tCKESR, val) - 1; | ||
363 | tim3 |= val << T_CKESR_SHIFT; | ||
364 | |||
365 | if (ip_rev == EMIF_4D5) { | ||
366 | tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT; | ||
367 | |||
368 | val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1; | ||
369 | tim3 |= val << T_PDLL_UL_SHIFT; | ||
370 | } | ||
371 | |||
372 | return tim3; | ||
373 | } | ||
374 | |||
375 | static u32 get_read_idle_ctrl_shdw(u8 volt_ramp) | ||
376 | { | ||
377 | u32 idle = 0, val = 0; | ||
378 | |||
379 | /* | ||
380 | * Maximum value in normal conditions and increased frequency | ||
381 | * when voltage is ramping | ||
382 | */ | ||
383 | if (volt_ramp) | ||
384 | val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1; | ||
385 | else | ||
386 | val = 0x1FF; | ||
387 | |||
388 | /* | ||
389 | * READ_IDLE_CTRL register in EMIF4D has same offset and fields | ||
390 | * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts | ||
391 | */ | ||
392 | idle |= val << DLL_CALIB_INTERVAL_SHIFT; | ||
393 | idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT; | ||
394 | |||
395 | return idle; | ||
396 | } | ||
397 | |||
398 | static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp) | ||
399 | { | ||
400 | u32 calib = 0, val = 0; | ||
401 | |||
402 | if (volt_ramp == DDR_VOLTAGE_RAMPING) | ||
403 | val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1; | ||
404 | else | ||
405 | val = 0; /* Disabled when voltage is stable */ | ||
406 | |||
407 | calib |= val << DLL_CALIB_INTERVAL_SHIFT; | ||
408 | calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT; | ||
409 | |||
410 | return calib; | ||
411 | } | ||
412 | |||
413 | static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings, | ||
414 | u32 freq, u8 RL) | ||
415 | { | ||
416 | u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0; | ||
417 | |||
418 | val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1; | ||
419 | phy |= val << READ_LATENCY_SHIFT_4D; | ||
420 | |||
421 | if (freq <= 100000000) | ||
422 | val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY; | ||
423 | else if (freq <= 200000000) | ||
424 | val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY; | ||
425 | else | ||
426 | val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY; | ||
427 | |||
428 | phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D; | ||
429 | |||
430 | return phy; | ||
431 | } | ||
432 | |||
433 | static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl) | ||
434 | { | ||
435 | u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay; | ||
436 | |||
437 | /* | ||
438 | * DLL operates at 266 MHz. If DDR frequency is near 266 MHz, | ||
439 | * half-delay is not needed else set half-delay | ||
440 | */ | ||
441 | if (freq >= 265000000 && freq < 267000000) | ||
442 | half_delay = 0; | ||
443 | else | ||
444 | half_delay = 1; | ||
445 | |||
446 | phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5; | ||
447 | phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS, | ||
448 | t_ck) - 1) << READ_LATENCY_SHIFT_4D5); | ||
449 | |||
450 | return phy; | ||
451 | } | ||
452 | |||
453 | static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void) | ||
454 | { | ||
455 | u32 fifo_we_slave_ratio; | ||
456 | |||
457 | fifo_we_slave_ratio = DIV_ROUND_CLOSEST( | ||
458 | EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); | ||
459 | |||
460 | return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 | | ||
461 | fifo_we_slave_ratio << 22; | ||
462 | } | ||
463 | |||
464 | static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void) | ||
465 | { | ||
466 | u32 fifo_we_slave_ratio; | ||
467 | |||
468 | fifo_we_slave_ratio = DIV_ROUND_CLOSEST( | ||
469 | EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); | ||
470 | |||
471 | return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 | | ||
472 | fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23; | ||
473 | } | ||
474 | |||
475 | static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void) | ||
476 | { | ||
477 | u32 fifo_we_slave_ratio; | ||
478 | |||
479 | fifo_we_slave_ratio = DIV_ROUND_CLOSEST( | ||
480 | EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); | ||
481 | |||
482 | return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 | | ||
483 | fifo_we_slave_ratio << 13; | ||
484 | } | ||
485 | |||
486 | static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev) | ||
487 | { | ||
488 | u32 pwr_mgmt_ctrl = 0, timeout; | ||
489 | u32 lpmode = EMIF_LP_MODE_SELF_REFRESH; | ||
490 | u32 timeout_perf = EMIF_LP_MODE_TIMEOUT_PERFORMANCE; | ||
491 | u32 timeout_pwr = EMIF_LP_MODE_TIMEOUT_POWER; | ||
492 | u32 freq_threshold = EMIF_LP_MODE_FREQ_THRESHOLD; | ||
493 | |||
494 | struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs; | ||
495 | |||
496 | if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) { | ||
497 | lpmode = cust_cfgs->lpmode; | ||
498 | timeout_perf = cust_cfgs->lpmode_timeout_performance; | ||
499 | timeout_pwr = cust_cfgs->lpmode_timeout_power; | ||
500 | freq_threshold = cust_cfgs->lpmode_freq_threshold; | ||
501 | } | ||
502 | |||
503 | /* Timeout based on DDR frequency */ | ||
504 | timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr; | ||
505 | |||
506 | /* The value to be set in register is "log2(timeout) - 3" */ | ||
507 | if (timeout < 16) { | ||
508 | timeout = 0; | ||
509 | } else { | ||
510 | timeout = __fls(timeout) - 3; | ||
511 | if (timeout & (timeout - 1)) | ||
512 | timeout++; | ||
513 | } | ||
514 | |||
515 | switch (lpmode) { | ||
516 | case EMIF_LP_MODE_CLOCK_STOP: | ||
517 | pwr_mgmt_ctrl = (timeout << CS_TIM_SHIFT) | | ||
518 | SR_TIM_MASK | PD_TIM_MASK; | ||
519 | break; | ||
520 | case EMIF_LP_MODE_SELF_REFRESH: | ||
521 | /* Workaround for errata i735 */ | ||
522 | if (timeout < 6) | ||
523 | timeout = 6; | ||
524 | |||
525 | pwr_mgmt_ctrl = (timeout << SR_TIM_SHIFT) | | ||
526 | CS_TIM_MASK | PD_TIM_MASK; | ||
527 | break; | ||
528 | case EMIF_LP_MODE_PWR_DN: | ||
529 | pwr_mgmt_ctrl = (timeout << PD_TIM_SHIFT) | | ||
530 | CS_TIM_MASK | SR_TIM_MASK; | ||
531 | break; | ||
532 | case EMIF_LP_MODE_DISABLE: | ||
533 | default: | ||
534 | pwr_mgmt_ctrl = CS_TIM_MASK | | ||
535 | PD_TIM_MASK | SR_TIM_MASK; | ||
536 | } | ||
537 | |||
538 | /* No CS_TIM in EMIF_4D5 */ | ||
539 | if (ip_rev == EMIF_4D5) | ||
540 | pwr_mgmt_ctrl &= ~CS_TIM_MASK; | ||
541 | |||
542 | pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT; | ||
543 | |||
544 | return pwr_mgmt_ctrl; | ||
545 | } | ||
546 | |||
547 | /* | ||
548 | * Program EMIF shadow registers that are not dependent on temperature | ||
549 | * or voltage | ||
550 | */ | ||
551 | static void setup_registers(struct emif_data *emif, struct emif_regs *regs) | ||
552 | { | ||
553 | void __iomem *base = emif->base; | ||
554 | |||
555 | writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW); | ||
556 | writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW); | ||
557 | |||
558 | /* Settings specific for EMIF4D5 */ | ||
559 | if (emif->plat_data->ip_rev != EMIF_4D5) | ||
560 | return; | ||
561 | writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW); | ||
562 | writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW); | ||
563 | writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW); | ||
564 | } | ||
565 | |||
566 | /* | ||
567 | * When voltage ramps dll calibration and forced read idle should | ||
568 | * happen more often | ||
569 | */ | ||
570 | static void setup_volt_sensitive_regs(struct emif_data *emif, | ||
571 | struct emif_regs *regs, u32 volt_state) | ||
572 | { | ||
573 | u32 calib_ctrl; | ||
574 | void __iomem *base = emif->base; | ||
575 | |||
576 | /* | ||
577 | * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as | ||
578 | * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_* | ||
579 | * is an alias of the respective read_idle_ctrl_shdw_* (members of | ||
580 | * a union). So, the below code takes care of both cases | ||
581 | */ | ||
582 | if (volt_state == DDR_VOLTAGE_RAMPING) | ||
583 | calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp; | ||
584 | else | ||
585 | calib_ctrl = regs->dll_calib_ctrl_shdw_normal; | ||
586 | |||
587 | writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW); | ||
588 | } | ||
589 | |||
590 | /* | ||
591 | * setup_temperature_sensitive_regs() - set the timings for temperature | ||
592 | * sensitive registers. This happens once at initialisation time based | ||
593 | * on the temperature at boot time and subsequently based on the temperature | ||
594 | * alert interrupt. Temperature alert can happen when the temperature | ||
595 | * increases or drops. So this function can have the effect of either | ||
596 | * derating the timings or going back to nominal values. | ||
597 | */ | ||
598 | static void setup_temperature_sensitive_regs(struct emif_data *emif, | ||
599 | struct emif_regs *regs) | ||
600 | { | ||
601 | u32 tim1, tim3, ref_ctrl, type; | ||
602 | void __iomem *base = emif->base; | ||
603 | u32 temperature; | ||
604 | |||
605 | type = emif->plat_data->device_info->type; | ||
606 | |||
607 | tim1 = regs->sdram_tim1_shdw; | ||
608 | tim3 = regs->sdram_tim3_shdw; | ||
609 | ref_ctrl = regs->ref_ctrl_shdw; | ||
610 | |||
611 | /* No de-rating for non-lpddr2 devices */ | ||
612 | if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4) | ||
613 | goto out; | ||
614 | |||
615 | temperature = emif->temperature_level; | ||
616 | if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) { | ||
617 | ref_ctrl = regs->ref_ctrl_shdw_derated; | ||
618 | } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) { | ||
619 | tim1 = regs->sdram_tim1_shdw_derated; | ||
620 | tim3 = regs->sdram_tim3_shdw_derated; | ||
621 | ref_ctrl = regs->ref_ctrl_shdw_derated; | ||
622 | } | ||
623 | |||
624 | out: | ||
625 | writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW); | ||
626 | writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW); | ||
627 | writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW); | ||
628 | } | ||
629 | |||
54 | static void get_default_timings(struct emif_data *emif) | 630 | static void get_default_timings(struct emif_data *emif) |
55 | { | 631 | { |
56 | struct emif_platform_data *pd = emif->plat_data; | 632 | struct emif_platform_data *pd = emif->plat_data; |
@@ -234,10 +810,8 @@ static int __init_or_module emif_probe(struct platform_device *pdev) | |||
234 | goto error; | 810 | goto error; |
235 | } | 811 | } |
236 | 812 | ||
237 | if (!emif1) | ||
238 | emif1 = emif; | ||
239 | |||
240 | list_add(&emif->node, &device_list); | 813 | list_add(&emif->node, &device_list); |
814 | emif->addressing = get_addressing_table(emif->plat_data->device_info); | ||
241 | 815 | ||
242 | /* Save pointers to each other in emif and device structures */ | 816 | /* Save pointers to each other in emif and device structures */ |
243 | emif->dev = &pdev->dev; | 817 | emif->dev = &pdev->dev; |
@@ -257,6 +831,18 @@ static int __init_or_module emif_probe(struct platform_device *pdev) | |||
257 | goto error; | 831 | goto error; |
258 | } | 832 | } |
259 | 833 | ||
834 | /* One-time actions taken on probing the first device */ | ||
835 | if (!emif1) { | ||
836 | emif1 = emif; | ||
837 | spin_lock_init(&emif_lock); | ||
838 | |||
839 | /* | ||
840 | * TODO: register notifiers for frequency and voltage | ||
841 | * change here once the respective frameworks are | ||
842 | * available | ||
843 | */ | ||
844 | } | ||
845 | |||
260 | dev_info(&pdev->dev, "%s: device configured with addr = %p\n", | 846 | dev_info(&pdev->dev, "%s: device configured with addr = %p\n", |
261 | __func__, emif->base); | 847 | __func__, emif->base); |
262 | 848 | ||
@@ -265,6 +851,308 @@ error: | |||
265 | return -ENODEV; | 851 | return -ENODEV; |
266 | } | 852 | } |
267 | 853 | ||
854 | static int get_emif_reg_values(struct emif_data *emif, u32 freq, | ||
855 | struct emif_regs *regs) | ||
856 | { | ||
857 | u32 cs1_used, ip_rev, phy_type; | ||
858 | u32 cl, type; | ||
859 | const struct lpddr2_timings *timings; | ||
860 | const struct lpddr2_min_tck *min_tck; | ||
861 | const struct ddr_device_info *device_info; | ||
862 | const struct lpddr2_addressing *addressing; | ||
863 | struct emif_data *emif_for_calc; | ||
864 | struct device *dev; | ||
865 | const struct emif_custom_configs *custom_configs; | ||
866 | |||
867 | dev = emif->dev; | ||
868 | /* | ||
869 | * If the devices on this EMIF instance is duplicate of EMIF1, | ||
870 | * use EMIF1 details for the calculation | ||
871 | */ | ||
872 | emif_for_calc = emif->duplicate ? emif1 : emif; | ||
873 | timings = get_timings_table(emif_for_calc, freq); | ||
874 | addressing = emif_for_calc->addressing; | ||
875 | if (!timings || !addressing) { | ||
876 | dev_err(dev, "%s: not enough data available for %dHz", | ||
877 | __func__, freq); | ||
878 | return -1; | ||
879 | } | ||
880 | |||
881 | device_info = emif_for_calc->plat_data->device_info; | ||
882 | type = device_info->type; | ||
883 | cs1_used = device_info->cs1_used; | ||
884 | ip_rev = emif_for_calc->plat_data->ip_rev; | ||
885 | phy_type = emif_for_calc->plat_data->phy_type; | ||
886 | |||
887 | min_tck = emif_for_calc->plat_data->min_tck; | ||
888 | custom_configs = emif_for_calc->plat_data->custom_configs; | ||
889 | |||
890 | set_ddr_clk_period(freq); | ||
891 | |||
892 | regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing); | ||
893 | regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck, | ||
894 | addressing); | ||
895 | regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck, | ||
896 | addressing, type); | ||
897 | regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck, | ||
898 | addressing, type, ip_rev, EMIF_NORMAL_TIMINGS); | ||
899 | |||
900 | cl = get_cl(emif); | ||
901 | |||
902 | if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) { | ||
903 | regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d( | ||
904 | timings, freq, cl); | ||
905 | } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) { | ||
906 | regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl); | ||
907 | regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5(); | ||
908 | regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5(); | ||
909 | regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5(); | ||
910 | } else { | ||
911 | return -1; | ||
912 | } | ||
913 | |||
914 | /* Only timeout values in pwr_mgmt_ctrl_shdw register */ | ||
915 | regs->pwr_mgmt_ctrl_shdw = | ||
916 | get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) & | ||
917 | (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK); | ||
918 | |||
919 | if (ip_rev & EMIF_4D) { | ||
920 | regs->read_idle_ctrl_shdw_normal = | ||
921 | get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE); | ||
922 | |||
923 | regs->read_idle_ctrl_shdw_volt_ramp = | ||
924 | get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING); | ||
925 | } else if (ip_rev & EMIF_4D5) { | ||
926 | regs->dll_calib_ctrl_shdw_normal = | ||
927 | get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE); | ||
928 | |||
929 | regs->dll_calib_ctrl_shdw_volt_ramp = | ||
930 | get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING); | ||
931 | } | ||
932 | |||
933 | if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) { | ||
934 | regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4, | ||
935 | addressing); | ||
936 | |||
937 | regs->sdram_tim1_shdw_derated = | ||
938 | get_sdram_tim_1_shdw_derated(timings, min_tck, | ||
939 | addressing); | ||
940 | |||
941 | regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings, | ||
942 | min_tck, addressing, type, ip_rev, | ||
943 | EMIF_DERATED_TIMINGS); | ||
944 | } | ||
945 | |||
946 | regs->freq = freq; | ||
947 | |||
948 | return 0; | ||
949 | } | ||
950 | |||
951 | /* | ||
952 | * get_regs() - gets the cached emif_regs structure for a given EMIF instance | ||
953 | * given frequency(freq): | ||
954 | * | ||
955 | * As an optimisation, every EMIF instance other than EMIF1 shares the | ||
956 | * register cache with EMIF1 if the devices connected on this instance | ||
957 | * are same as that on EMIF1(indicated by the duplicate flag) | ||
958 | * | ||
959 | * If we do not have an entry corresponding to the frequency given, we | ||
960 | * allocate a new entry and calculate the values | ||
961 | * | ||
962 | * Upon finding the right reg dump, save it in curr_regs. It can be | ||
963 | * directly used for thermal de-rating and voltage ramping changes. | ||
964 | */ | ||
965 | static struct emif_regs *get_regs(struct emif_data *emif, u32 freq) | ||
966 | { | ||
967 | int i; | ||
968 | struct emif_regs **regs_cache; | ||
969 | struct emif_regs *regs = NULL; | ||
970 | struct device *dev; | ||
971 | |||
972 | dev = emif->dev; | ||
973 | if (emif->curr_regs && emif->curr_regs->freq == freq) { | ||
974 | dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq); | ||
975 | return emif->curr_regs; | ||
976 | } | ||
977 | |||
978 | if (emif->duplicate) | ||
979 | regs_cache = emif1->regs_cache; | ||
980 | else | ||
981 | regs_cache = emif->regs_cache; | ||
982 | |||
983 | for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) { | ||
984 | if (regs_cache[i]->freq == freq) { | ||
985 | regs = regs_cache[i]; | ||
986 | dev_dbg(dev, | ||
987 | "%s: reg dump found in reg cache for %u Hz\n", | ||
988 | __func__, freq); | ||
989 | break; | ||
990 | } | ||
991 | } | ||
992 | |||
993 | /* | ||
994 | * If we don't have an entry for this frequency in the cache create one | ||
995 | * and calculate the values | ||
996 | */ | ||
997 | if (!regs) { | ||
998 | regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC); | ||
999 | if (!regs) | ||
1000 | return NULL; | ||
1001 | |||
1002 | if (get_emif_reg_values(emif, freq, regs)) { | ||
1003 | devm_kfree(emif->dev, regs); | ||
1004 | return NULL; | ||
1005 | } | ||
1006 | |||
1007 | /* | ||
1008 | * Now look for an un-used entry in the cache and save the | ||
1009 | * newly created struct. If there are no free entries | ||
1010 | * over-write the last entry | ||
1011 | */ | ||
1012 | for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) | ||
1013 | ; | ||
1014 | |||
1015 | if (i >= EMIF_MAX_NUM_FREQUENCIES) { | ||
1016 | dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n", | ||
1017 | __func__); | ||
1018 | i = EMIF_MAX_NUM_FREQUENCIES - 1; | ||
1019 | devm_kfree(emif->dev, regs_cache[i]); | ||
1020 | } | ||
1021 | regs_cache[i] = regs; | ||
1022 | } | ||
1023 | |||
1024 | return regs; | ||
1025 | } | ||
1026 | |||
1027 | static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state) | ||
1028 | { | ||
1029 | dev_dbg(emif->dev, "%s: voltage notification : %d", __func__, | ||
1030 | volt_state); | ||
1031 | |||
1032 | if (!emif->curr_regs) { | ||
1033 | dev_err(emif->dev, | ||
1034 | "%s: volt-notify before registers are ready: %d\n", | ||
1035 | __func__, volt_state); | ||
1036 | return; | ||
1037 | } | ||
1038 | |||
1039 | setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state); | ||
1040 | } | ||
1041 | |||
1042 | /* | ||
1043 | * TODO: voltage notify handling should be hooked up to | ||
1044 | * regulator framework as soon as the necessary support | ||
1045 | * is available in mainline kernel. This function is un-used | ||
1046 | * right now. | ||
1047 | */ | ||
1048 | static void __attribute__((unused)) volt_notify_handling(u32 volt_state) | ||
1049 | { | ||
1050 | struct emif_data *emif; | ||
1051 | |||
1052 | spin_lock_irqsave(&emif_lock, irq_state); | ||
1053 | |||
1054 | list_for_each_entry(emif, &device_list, node) | ||
1055 | do_volt_notify_handling(emif, volt_state); | ||
1056 | do_freq_update(); | ||
1057 | |||
1058 | spin_unlock_irqrestore(&emif_lock, irq_state); | ||
1059 | } | ||
1060 | |||
1061 | static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq) | ||
1062 | { | ||
1063 | struct emif_regs *regs; | ||
1064 | |||
1065 | regs = get_regs(emif, new_freq); | ||
1066 | if (!regs) | ||
1067 | return; | ||
1068 | |||
1069 | emif->curr_regs = regs; | ||
1070 | |||
1071 | /* | ||
1072 | * Update the shadow registers: | ||
1073 | * Temperature and voltage-ramp sensitive settings are also configured | ||
1074 | * in terms of DDR cycles. So, we need to update them too when there | ||
1075 | * is a freq change | ||
1076 | */ | ||
1077 | dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz", | ||
1078 | __func__, new_freq); | ||
1079 | setup_registers(emif, regs); | ||
1080 | setup_temperature_sensitive_regs(emif, regs); | ||
1081 | setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE); | ||
1082 | |||
1083 | /* | ||
1084 | * Part of workaround for errata i728. See do_freq_update() | ||
1085 | * for more details | ||
1086 | */ | ||
1087 | if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) | ||
1088 | set_lpmode(emif, EMIF_LP_MODE_DISABLE); | ||
1089 | } | ||
1090 | |||
1091 | /* | ||
1092 | * TODO: frequency notify handling should be hooked up to | ||
1093 | * clock framework as soon as the necessary support is | ||
1094 | * available in mainline kernel. This function is un-used | ||
1095 | * right now. | ||
1096 | */ | ||
1097 | static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq) | ||
1098 | { | ||
1099 | struct emif_data *emif; | ||
1100 | |||
1101 | /* | ||
1102 | * NOTE: we are taking the spin-lock here and releases it | ||
1103 | * only in post-notifier. This doesn't look good and | ||
1104 | * Sparse complains about it, but this seems to be | ||
1105 | * un-avoidable. We need to lock a sequence of events | ||
1106 | * that is split between EMIF and clock framework. | ||
1107 | * | ||
1108 | * 1. EMIF driver updates EMIF timings in shadow registers in the | ||
1109 | * frequency pre-notify callback from clock framework | ||
1110 | * 2. clock framework sets up the registers for the new frequency | ||
1111 | * 3. clock framework initiates a hw-sequence that updates | ||
1112 | * the frequency EMIF timings synchronously. | ||
1113 | * | ||
1114 | * All these 3 steps should be performed as an atomic operation | ||
1115 | * vis-a-vis similar sequence in the EMIF interrupt handler | ||
1116 | * for temperature events. Otherwise, there could be race | ||
1117 | * conditions that could result in incorrect EMIF timings for | ||
1118 | * a given frequency | ||
1119 | */ | ||
1120 | spin_lock_irqsave(&emif_lock, irq_state); | ||
1121 | |||
1122 | list_for_each_entry(emif, &device_list, node) | ||
1123 | do_freq_pre_notify_handling(emif, new_freq); | ||
1124 | } | ||
1125 | |||
1126 | static void do_freq_post_notify_handling(struct emif_data *emif) | ||
1127 | { | ||
1128 | /* | ||
1129 | * Part of workaround for errata i728. See do_freq_update() | ||
1130 | * for more details | ||
1131 | */ | ||
1132 | if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) | ||
1133 | set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH); | ||
1134 | } | ||
1135 | |||
1136 | /* | ||
1137 | * TODO: frequency notify handling should be hooked up to | ||
1138 | * clock framework as soon as the necessary support is | ||
1139 | * available in mainline kernel. This function is un-used | ||
1140 | * right now. | ||
1141 | */ | ||
1142 | static void __attribute__((unused)) freq_post_notify_handling(void) | ||
1143 | { | ||
1144 | struct emif_data *emif; | ||
1145 | |||
1146 | list_for_each_entry(emif, &device_list, node) | ||
1147 | do_freq_post_notify_handling(emif); | ||
1148 | |||
1149 | /* | ||
1150 | * Lock is done in pre-notify handler. See freq_pre_notify_handling() | ||
1151 | * for more details | ||
1152 | */ | ||
1153 | spin_unlock_irqrestore(&emif_lock, irq_state); | ||
1154 | } | ||
1155 | |||
268 | static struct platform_driver emif_driver = { | 1156 | static struct platform_driver emif_driver = { |
269 | .driver = { | 1157 | .driver = { |
270 | .name = "emif", | 1158 | .name = "emif", |
diff --git a/drivers/memory/emif.h b/drivers/memory/emif.h index 692b2a864e7b..bfe08bae961a 100644 --- a/drivers/memory/emif.h +++ b/drivers/memory/emif.h | |||
@@ -19,6 +19,103 @@ | |||
19 | */ | 19 | */ |
20 | #define EMIF_MAX_NUM_FREQUENCIES 6 | 20 | #define EMIF_MAX_NUM_FREQUENCIES 6 |
21 | 21 | ||
22 | /* State of the core voltage */ | ||
23 | #define DDR_VOLTAGE_STABLE 0 | ||
24 | #define DDR_VOLTAGE_RAMPING 1 | ||
25 | |||
26 | /* Defines for timing De-rating */ | ||
27 | #define EMIF_NORMAL_TIMINGS 0 | ||
28 | #define EMIF_DERATED_TIMINGS 1 | ||
29 | |||
30 | /* Length of the forced read idle period in terms of cycles */ | ||
31 | #define EMIF_READ_IDLE_LEN_VAL 5 | ||
32 | |||
33 | /* | ||
34 | * forced read idle interval to be used when voltage | ||
35 | * is changed as part of DVFS/DPS - 1ms | ||
36 | */ | ||
37 | #define READ_IDLE_INTERVAL_DVFS (1*1000000) | ||
38 | |||
39 | /* | ||
40 | * Forced read idle interval to be used when voltage is stable | ||
41 | * 50us - or maximum value will do | ||
42 | */ | ||
43 | #define READ_IDLE_INTERVAL_NORMAL (50*1000000) | ||
44 | |||
45 | /* DLL calibration interval when voltage is NOT stable - 1us */ | ||
46 | #define DLL_CALIB_INTERVAL_DVFS (1*1000000) | ||
47 | |||
48 | #define DLL_CALIB_ACK_WAIT_VAL 5 | ||
49 | |||
50 | /* Interval between ZQCS commands - hw team recommended value */ | ||
51 | #define EMIF_ZQCS_INTERVAL_US (50*1000) | ||
52 | /* Enable ZQ Calibration on exiting Self-refresh */ | ||
53 | #define ZQ_SFEXITEN_ENABLE 1 | ||
54 | /* | ||
55 | * ZQ Calibration simultaneously on both chip-selects: | ||
56 | * Needs one calibration resistor per CS | ||
57 | */ | ||
58 | #define ZQ_DUALCALEN_DISABLE 0 | ||
59 | #define ZQ_DUALCALEN_ENABLE 1 | ||
60 | |||
61 | #define T_ZQCS_DEFAULT_NS 90 | ||
62 | #define T_ZQCL_DEFAULT_NS 360 | ||
63 | #define T_ZQINIT_DEFAULT_NS 1000 | ||
64 | |||
65 | /* DPD_EN */ | ||
66 | #define DPD_DISABLE 0 | ||
67 | #define DPD_ENABLE 1 | ||
68 | |||
69 | /* | ||
70 | * Default values for the low-power entry to be used if not provided by user. | ||
71 | * OMAP4/5 has a hw bug(i735) due to which this value can not be less than 512 | ||
72 | * Timeout values are in DDR clock 'cycles' and frequency threshold in Hz | ||
73 | */ | ||
74 | #define EMIF_LP_MODE_TIMEOUT_PERFORMANCE 2048 | ||
75 | #define EMIF_LP_MODE_TIMEOUT_POWER 512 | ||
76 | #define EMIF_LP_MODE_FREQ_THRESHOLD 400000000 | ||
77 | |||
78 | /* DDR_PHY_CTRL_1 values for EMIF4D - ATTILA PHY combination */ | ||
79 | #define EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY 0x049FF000 | ||
80 | #define EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY 0x41 | ||
81 | #define EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY 0x80 | ||
82 | #define EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY 0xFF | ||
83 | |||
84 | /* DDR_PHY_CTRL_1 values for EMIF4D5 INTELLIPHY combination */ | ||
85 | #define EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY 0x0E084200 | ||
86 | #define EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS 10000 | ||
87 | |||
88 | /* TEMP_ALERT_CONFIG - corresponding to temp gradient 5 C/s */ | ||
89 | #define TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS 360 | ||
90 | |||
91 | #define EMIF_T_CSTA 3 | ||
92 | #define EMIF_T_PDLL_UL 128 | ||
93 | |||
94 | /* External PHY control registers magic values */ | ||
95 | #define EMIF_EXT_PHY_CTRL_1_VAL 0x04020080 | ||
96 | #define EMIF_EXT_PHY_CTRL_5_VAL 0x04010040 | ||
97 | #define EMIF_EXT_PHY_CTRL_6_VAL 0x01004010 | ||
98 | #define EMIF_EXT_PHY_CTRL_7_VAL 0x00001004 | ||
99 | #define EMIF_EXT_PHY_CTRL_8_VAL 0x04010040 | ||
100 | #define EMIF_EXT_PHY_CTRL_9_VAL 0x01004010 | ||
101 | #define EMIF_EXT_PHY_CTRL_10_VAL 0x00001004 | ||
102 | #define EMIF_EXT_PHY_CTRL_11_VAL 0x00000000 | ||
103 | #define EMIF_EXT_PHY_CTRL_12_VAL 0x00000000 | ||
104 | #define EMIF_EXT_PHY_CTRL_13_VAL 0x00000000 | ||
105 | #define EMIF_EXT_PHY_CTRL_14_VAL 0x80080080 | ||
106 | #define EMIF_EXT_PHY_CTRL_15_VAL 0x00800800 | ||
107 | #define EMIF_EXT_PHY_CTRL_16_VAL 0x08102040 | ||
108 | #define EMIF_EXT_PHY_CTRL_17_VAL 0x00000001 | ||
109 | #define EMIF_EXT_PHY_CTRL_18_VAL 0x540A8150 | ||
110 | #define EMIF_EXT_PHY_CTRL_19_VAL 0xA81502A0 | ||
111 | #define EMIF_EXT_PHY_CTRL_20_VAL 0x002A0540 | ||
112 | #define EMIF_EXT_PHY_CTRL_21_VAL 0x00000000 | ||
113 | #define EMIF_EXT_PHY_CTRL_22_VAL 0x00000000 | ||
114 | #define EMIF_EXT_PHY_CTRL_23_VAL 0x00000000 | ||
115 | #define EMIF_EXT_PHY_CTRL_24_VAL 0x00000077 | ||
116 | |||
117 | #define EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS 1200 | ||
118 | |||
22 | /* Registers offset */ | 119 | /* Registers offset */ |
23 | #define EMIF_MODULE_ID_AND_REVISION 0x0000 | 120 | #define EMIF_MODULE_ID_AND_REVISION 0x0000 |
24 | #define EMIF_STATUS 0x0004 | 121 | #define EMIF_STATUS 0x0004 |
@@ -458,4 +555,35 @@ | |||
458 | #define READ_LATENCY_SHDW_SHIFT 0 | 555 | #define READ_LATENCY_SHDW_SHIFT 0 |
459 | #define READ_LATENCY_SHDW_MASK (0x1f << 0) | 556 | #define READ_LATENCY_SHDW_MASK (0x1f << 0) |
460 | 557 | ||
461 | #endif | 558 | #ifndef __ASSEMBLY__ |
559 | /* | ||
560 | * Structure containing shadow of important registers in EMIF | ||
561 | * The calculation function fills in this structure to be later used for | ||
562 | * initialisation and DVFS | ||
563 | */ | ||
564 | struct emif_regs { | ||
565 | u32 freq; | ||
566 | u32 ref_ctrl_shdw; | ||
567 | u32 ref_ctrl_shdw_derated; | ||
568 | u32 sdram_tim1_shdw; | ||
569 | u32 sdram_tim1_shdw_derated; | ||
570 | u32 sdram_tim2_shdw; | ||
571 | u32 sdram_tim3_shdw; | ||
572 | u32 sdram_tim3_shdw_derated; | ||
573 | u32 pwr_mgmt_ctrl_shdw; | ||
574 | union { | ||
575 | u32 read_idle_ctrl_shdw_normal; | ||
576 | u32 dll_calib_ctrl_shdw_normal; | ||
577 | }; | ||
578 | union { | ||
579 | u32 read_idle_ctrl_shdw_volt_ramp; | ||
580 | u32 dll_calib_ctrl_shdw_volt_ramp; | ||
581 | }; | ||
582 | |||
583 | u32 phy_ctrl_1_shdw; | ||
584 | u32 ext_phy_ctrl_2_shdw; | ||
585 | u32 ext_phy_ctrl_3_shdw; | ||
586 | u32 ext_phy_ctrl_4_shdw; | ||
587 | }; | ||
588 | #endif /* __ASSEMBLY__ */ | ||
589 | #endif /* __EMIF_H */ | ||