aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--drivers/memory/emif.c894
-rw-r--r--drivers/memory/emif.h130
2 files changed, 1020 insertions, 4 deletions
diff --git a/drivers/memory/emif.c b/drivers/memory/emif.c
index 7486d7ef0826..bd116eb8c738 100644
--- a/drivers/memory/emif.c
+++ b/drivers/memory/emif.c
@@ -21,6 +21,7 @@
21#include <linux/seq_file.h> 21#include <linux/seq_file.h>
22#include <linux/module.h> 22#include <linux/module.h>
23#include <linux/list.h> 23#include <linux/list.h>
24#include <linux/spinlock.h>
24#include <memory/jedec_ddr.h> 25#include <memory/jedec_ddr.h>
25#include "emif.h" 26#include "emif.h"
26 27
@@ -37,20 +38,595 @@
37 * @node: node in the device list 38 * @node: node in the device list
38 * @base: base address of memory-mapped IO registers. 39 * @base: base address of memory-mapped IO registers.
39 * @dev: device pointer. 40 * @dev: device pointer.
41 * @addressing table with addressing information from the spec
42 * @regs_cache: An array of 'struct emif_regs' that stores
43 * calculated register values for different
44 * frequencies, to avoid re-calculating them on
45 * each DVFS transition.
46 * @curr_regs: The set of register values used in the last
47 * frequency change (i.e. corresponding to the
48 * frequency in effect at the moment)
40 * @plat_data: Pointer to saved platform data. 49 * @plat_data: Pointer to saved platform data.
41 */ 50 */
42struct emif_data { 51struct emif_data {
43 u8 duplicate; 52 u8 duplicate;
44 u8 temperature_level; 53 u8 temperature_level;
54 u8 lpmode;
45 struct list_head node; 55 struct list_head node;
56 unsigned long irq_state;
46 void __iomem *base; 57 void __iomem *base;
47 struct device *dev; 58 struct device *dev;
59 const struct lpddr2_addressing *addressing;
60 struct emif_regs *regs_cache[EMIF_MAX_NUM_FREQUENCIES];
61 struct emif_regs *curr_regs;
48 struct emif_platform_data *plat_data; 62 struct emif_platform_data *plat_data;
49}; 63};
50 64
51static struct emif_data *emif1; 65static struct emif_data *emif1;
66static spinlock_t emif_lock;
67static unsigned long irq_state;
68static u32 t_ck; /* DDR clock period in ps */
52static LIST_HEAD(device_list); 69static LIST_HEAD(device_list);
53 70
71/*
72 * Calculate the period of DDR clock from frequency value
73 */
74static void set_ddr_clk_period(u32 freq)
75{
76 /* Divide 10^12 by frequency to get period in ps */
77 t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq);
78}
79
80/*
81 * Get the CL from SDRAM_CONFIG register
82 */
83static u32 get_cl(struct emif_data *emif)
84{
85 u32 cl;
86 void __iomem *base = emif->base;
87
88 cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT;
89
90 return cl;
91}
92
93static void set_lpmode(struct emif_data *emif, u8 lpmode)
94{
95 u32 temp;
96 void __iomem *base = emif->base;
97
98 temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
99 temp &= ~LP_MODE_MASK;
100 temp |= (lpmode << LP_MODE_SHIFT);
101 writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
102}
103
104static void do_freq_update(void)
105{
106 struct emif_data *emif;
107
108 /*
109 * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
110 *
111 * i728 DESCRIPTION:
112 * The EMIF automatically puts the SDRAM into self-refresh mode
113 * after the EMIF has not performed accesses during
114 * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
115 * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
116 * to 0x2. If during a small window the following three events
117 * occur:
118 * - The SR_TIMING counter expires
119 * - And frequency change is requested
120 * - And OCP access is requested
121 * Then it causes instable clock on the DDR interface.
122 *
123 * WORKAROUND
124 * To avoid the occurrence of the three events, the workaround
125 * is to disable the self-refresh when requesting a frequency
126 * change. Before requesting a frequency change the software must
127 * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
128 * frequency change has been done, the software can reprogram
129 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
130 */
131 list_for_each_entry(emif, &device_list, node) {
132 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
133 set_lpmode(emif, EMIF_LP_MODE_DISABLE);
134 }
135
136 /*
137 * TODO: Do FREQ_UPDATE here when an API
138 * is available for this as part of the new
139 * clock framework
140 */
141
142 list_for_each_entry(emif, &device_list, node) {
143 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
144 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
145 }
146}
147
148/* Find addressing table entry based on the device's type and density */
149static const struct lpddr2_addressing *get_addressing_table(
150 const struct ddr_device_info *device_info)
151{
152 u32 index, type, density;
153
154 type = device_info->type;
155 density = device_info->density;
156
157 switch (type) {
158 case DDR_TYPE_LPDDR2_S4:
159 index = density - 1;
160 break;
161 case DDR_TYPE_LPDDR2_S2:
162 switch (density) {
163 case DDR_DENSITY_1Gb:
164 case DDR_DENSITY_2Gb:
165 index = density + 3;
166 break;
167 default:
168 index = density - 1;
169 }
170 break;
171 default:
172 return NULL;
173 }
174
175 return &lpddr2_jedec_addressing_table[index];
176}
177
178/*
179 * Find the the right timing table from the array of timing
180 * tables of the device using DDR clock frequency
181 */
182static const struct lpddr2_timings *get_timings_table(struct emif_data *emif,
183 u32 freq)
184{
185 u32 i, min, max, freq_nearest;
186 const struct lpddr2_timings *timings = NULL;
187 const struct lpddr2_timings *timings_arr = emif->plat_data->timings;
188 struct device *dev = emif->dev;
189
190 /* Start with a very high frequency - 1GHz */
191 freq_nearest = 1000000000;
192
193 /*
194 * Find the timings table such that:
195 * 1. the frequency range covers the required frequency(safe) AND
196 * 2. the max_freq is closest to the required frequency(optimal)
197 */
198 for (i = 0; i < emif->plat_data->timings_arr_size; i++) {
199 max = timings_arr[i].max_freq;
200 min = timings_arr[i].min_freq;
201 if ((freq >= min) && (freq <= max) && (max < freq_nearest)) {
202 freq_nearest = max;
203 timings = &timings_arr[i];
204 }
205 }
206
207 if (!timings)
208 dev_err(dev, "%s: couldn't find timings for - %dHz\n",
209 __func__, freq);
210
211 dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n",
212 __func__, freq, freq_nearest);
213
214 return timings;
215}
216
217static u32 get_sdram_ref_ctrl_shdw(u32 freq,
218 const struct lpddr2_addressing *addressing)
219{
220 u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi;
221
222 /* Scale down frequency and t_refi to avoid overflow */
223 freq_khz = freq / 1000;
224 t_refi = addressing->tREFI_ns / 100;
225
226 /*
227 * refresh rate to be set is 'tREFI(in us) * freq in MHz
228 * division by 10000 to account for change in units
229 */
230 val = t_refi * freq_khz / 10000;
231 ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT;
232
233 return ref_ctrl_shdw;
234}
235
236static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings,
237 const struct lpddr2_min_tck *min_tck,
238 const struct lpddr2_addressing *addressing)
239{
240 u32 tim1 = 0, val = 0;
241
242 val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
243 tim1 |= val << T_WTR_SHIFT;
244
245 if (addressing->num_banks == B8)
246 val = DIV_ROUND_UP(timings->tFAW, t_ck*4);
247 else
248 val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck));
249 tim1 |= (val - 1) << T_RRD_SHIFT;
250
251 val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1;
252 tim1 |= val << T_RC_SHIFT;
253
254 val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck));
255 tim1 |= (val - 1) << T_RAS_SHIFT;
256
257 val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
258 tim1 |= val << T_WR_SHIFT;
259
260 val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1;
261 tim1 |= val << T_RCD_SHIFT;
262
263 val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1;
264 tim1 |= val << T_RP_SHIFT;
265
266 return tim1;
267}
268
269static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings,
270 const struct lpddr2_min_tck *min_tck,
271 const struct lpddr2_addressing *addressing)
272{
273 u32 tim1 = 0, val = 0;
274
275 val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
276 tim1 = val << T_WTR_SHIFT;
277
278 /*
279 * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
280 * to tFAW for de-rating
281 */
282 if (addressing->num_banks == B8) {
283 val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1;
284 } else {
285 val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck);
286 val = max(min_tck->tRRD, val) - 1;
287 }
288 tim1 |= val << T_RRD_SHIFT;
289
290 val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck);
291 tim1 |= (val - 1) << T_RC_SHIFT;
292
293 val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck);
294 val = max(min_tck->tRASmin, val) - 1;
295 tim1 |= val << T_RAS_SHIFT;
296
297 val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
298 tim1 |= val << T_WR_SHIFT;
299
300 val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck));
301 tim1 |= (val - 1) << T_RCD_SHIFT;
302
303 val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck));
304 tim1 |= (val - 1) << T_RP_SHIFT;
305
306 return tim1;
307}
308
309static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings,
310 const struct lpddr2_min_tck *min_tck,
311 const struct lpddr2_addressing *addressing,
312 u32 type)
313{
314 u32 tim2 = 0, val = 0;
315
316 val = min_tck->tCKE - 1;
317 tim2 |= val << T_CKE_SHIFT;
318
319 val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1;
320 tim2 |= val << T_RTP_SHIFT;
321
322 /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
323 val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1;
324 tim2 |= val << T_XSNR_SHIFT;
325
326 /* XSRD same as XSNR for LPDDR2 */
327 tim2 |= val << T_XSRD_SHIFT;
328
329 val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1;
330 tim2 |= val << T_XP_SHIFT;
331
332 return tim2;
333}
334
335static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings,
336 const struct lpddr2_min_tck *min_tck,
337 const struct lpddr2_addressing *addressing,
338 u32 type, u32 ip_rev, u32 derated)
339{
340 u32 tim3 = 0, val = 0, t_dqsck;
341
342 val = timings->tRAS_max_ns / addressing->tREFI_ns - 1;
343 val = val > 0xF ? 0xF : val;
344 tim3 |= val << T_RAS_MAX_SHIFT;
345
346 val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1;
347 tim3 |= val << T_RFC_SHIFT;
348
349 t_dqsck = (derated == EMIF_DERATED_TIMINGS) ?
350 timings->tDQSCK_max_derated : timings->tDQSCK_max;
351 if (ip_rev == EMIF_4D5)
352 val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1;
353 else
354 val = DIV_ROUND_UP(t_dqsck, t_ck) - 1;
355
356 tim3 |= val << T_TDQSCKMAX_SHIFT;
357
358 val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1;
359 tim3 |= val << ZQ_ZQCS_SHIFT;
360
361 val = DIV_ROUND_UP(timings->tCKESR, t_ck);
362 val = max(min_tck->tCKESR, val) - 1;
363 tim3 |= val << T_CKESR_SHIFT;
364
365 if (ip_rev == EMIF_4D5) {
366 tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT;
367
368 val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1;
369 tim3 |= val << T_PDLL_UL_SHIFT;
370 }
371
372 return tim3;
373}
374
375static u32 get_read_idle_ctrl_shdw(u8 volt_ramp)
376{
377 u32 idle = 0, val = 0;
378
379 /*
380 * Maximum value in normal conditions and increased frequency
381 * when voltage is ramping
382 */
383 if (volt_ramp)
384 val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1;
385 else
386 val = 0x1FF;
387
388 /*
389 * READ_IDLE_CTRL register in EMIF4D has same offset and fields
390 * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
391 */
392 idle |= val << DLL_CALIB_INTERVAL_SHIFT;
393 idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT;
394
395 return idle;
396}
397
398static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp)
399{
400 u32 calib = 0, val = 0;
401
402 if (volt_ramp == DDR_VOLTAGE_RAMPING)
403 val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1;
404 else
405 val = 0; /* Disabled when voltage is stable */
406
407 calib |= val << DLL_CALIB_INTERVAL_SHIFT;
408 calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT;
409
410 return calib;
411}
412
413static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings,
414 u32 freq, u8 RL)
415{
416 u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0;
417
418 val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1;
419 phy |= val << READ_LATENCY_SHIFT_4D;
420
421 if (freq <= 100000000)
422 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY;
423 else if (freq <= 200000000)
424 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY;
425 else
426 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY;
427
428 phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D;
429
430 return phy;
431}
432
433static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl)
434{
435 u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay;
436
437 /*
438 * DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
439 * half-delay is not needed else set half-delay
440 */
441 if (freq >= 265000000 && freq < 267000000)
442 half_delay = 0;
443 else
444 half_delay = 1;
445
446 phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5;
447 phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS,
448 t_ck) - 1) << READ_LATENCY_SHIFT_4D5);
449
450 return phy;
451}
452
453static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void)
454{
455 u32 fifo_we_slave_ratio;
456
457 fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
458 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
459
460 return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 |
461 fifo_we_slave_ratio << 22;
462}
463
464static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void)
465{
466 u32 fifo_we_slave_ratio;
467
468 fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
469 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
470
471 return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 |
472 fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23;
473}
474
475static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void)
476{
477 u32 fifo_we_slave_ratio;
478
479 fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
480 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
481
482 return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 |
483 fifo_we_slave_ratio << 13;
484}
485
486static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
487{
488 u32 pwr_mgmt_ctrl = 0, timeout;
489 u32 lpmode = EMIF_LP_MODE_SELF_REFRESH;
490 u32 timeout_perf = EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
491 u32 timeout_pwr = EMIF_LP_MODE_TIMEOUT_POWER;
492 u32 freq_threshold = EMIF_LP_MODE_FREQ_THRESHOLD;
493
494 struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
495
496 if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
497 lpmode = cust_cfgs->lpmode;
498 timeout_perf = cust_cfgs->lpmode_timeout_performance;
499 timeout_pwr = cust_cfgs->lpmode_timeout_power;
500 freq_threshold = cust_cfgs->lpmode_freq_threshold;
501 }
502
503 /* Timeout based on DDR frequency */
504 timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
505
506 /* The value to be set in register is "log2(timeout) - 3" */
507 if (timeout < 16) {
508 timeout = 0;
509 } else {
510 timeout = __fls(timeout) - 3;
511 if (timeout & (timeout - 1))
512 timeout++;
513 }
514
515 switch (lpmode) {
516 case EMIF_LP_MODE_CLOCK_STOP:
517 pwr_mgmt_ctrl = (timeout << CS_TIM_SHIFT) |
518 SR_TIM_MASK | PD_TIM_MASK;
519 break;
520 case EMIF_LP_MODE_SELF_REFRESH:
521 /* Workaround for errata i735 */
522 if (timeout < 6)
523 timeout = 6;
524
525 pwr_mgmt_ctrl = (timeout << SR_TIM_SHIFT) |
526 CS_TIM_MASK | PD_TIM_MASK;
527 break;
528 case EMIF_LP_MODE_PWR_DN:
529 pwr_mgmt_ctrl = (timeout << PD_TIM_SHIFT) |
530 CS_TIM_MASK | SR_TIM_MASK;
531 break;
532 case EMIF_LP_MODE_DISABLE:
533 default:
534 pwr_mgmt_ctrl = CS_TIM_MASK |
535 PD_TIM_MASK | SR_TIM_MASK;
536 }
537
538 /* No CS_TIM in EMIF_4D5 */
539 if (ip_rev == EMIF_4D5)
540 pwr_mgmt_ctrl &= ~CS_TIM_MASK;
541
542 pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
543
544 return pwr_mgmt_ctrl;
545}
546
547/*
548 * Program EMIF shadow registers that are not dependent on temperature
549 * or voltage
550 */
551static void setup_registers(struct emif_data *emif, struct emif_regs *regs)
552{
553 void __iomem *base = emif->base;
554
555 writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW);
556 writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW);
557
558 /* Settings specific for EMIF4D5 */
559 if (emif->plat_data->ip_rev != EMIF_4D5)
560 return;
561 writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW);
562 writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW);
563 writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW);
564}
565
566/*
567 * When voltage ramps dll calibration and forced read idle should
568 * happen more often
569 */
570static void setup_volt_sensitive_regs(struct emif_data *emif,
571 struct emif_regs *regs, u32 volt_state)
572{
573 u32 calib_ctrl;
574 void __iomem *base = emif->base;
575
576 /*
577 * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
578 * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
579 * is an alias of the respective read_idle_ctrl_shdw_* (members of
580 * a union). So, the below code takes care of both cases
581 */
582 if (volt_state == DDR_VOLTAGE_RAMPING)
583 calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp;
584 else
585 calib_ctrl = regs->dll_calib_ctrl_shdw_normal;
586
587 writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW);
588}
589
590/*
591 * setup_temperature_sensitive_regs() - set the timings for temperature
592 * sensitive registers. This happens once at initialisation time based
593 * on the temperature at boot time and subsequently based on the temperature
594 * alert interrupt. Temperature alert can happen when the temperature
595 * increases or drops. So this function can have the effect of either
596 * derating the timings or going back to nominal values.
597 */
598static void setup_temperature_sensitive_regs(struct emif_data *emif,
599 struct emif_regs *regs)
600{
601 u32 tim1, tim3, ref_ctrl, type;
602 void __iomem *base = emif->base;
603 u32 temperature;
604
605 type = emif->plat_data->device_info->type;
606
607 tim1 = regs->sdram_tim1_shdw;
608 tim3 = regs->sdram_tim3_shdw;
609 ref_ctrl = regs->ref_ctrl_shdw;
610
611 /* No de-rating for non-lpddr2 devices */
612 if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
613 goto out;
614
615 temperature = emif->temperature_level;
616 if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
617 ref_ctrl = regs->ref_ctrl_shdw_derated;
618 } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
619 tim1 = regs->sdram_tim1_shdw_derated;
620 tim3 = regs->sdram_tim3_shdw_derated;
621 ref_ctrl = regs->ref_ctrl_shdw_derated;
622 }
623
624out:
625 writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
626 writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
627 writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
628}
629
54static void get_default_timings(struct emif_data *emif) 630static void get_default_timings(struct emif_data *emif)
55{ 631{
56 struct emif_platform_data *pd = emif->plat_data; 632 struct emif_platform_data *pd = emif->plat_data;
@@ -234,10 +810,8 @@ static int __init_or_module emif_probe(struct platform_device *pdev)
234 goto error; 810 goto error;
235 } 811 }
236 812
237 if (!emif1)
238 emif1 = emif;
239
240 list_add(&emif->node, &device_list); 813 list_add(&emif->node, &device_list);
814 emif->addressing = get_addressing_table(emif->plat_data->device_info);
241 815
242 /* Save pointers to each other in emif and device structures */ 816 /* Save pointers to each other in emif and device structures */
243 emif->dev = &pdev->dev; 817 emif->dev = &pdev->dev;
@@ -257,6 +831,18 @@ static int __init_or_module emif_probe(struct platform_device *pdev)
257 goto error; 831 goto error;
258 } 832 }
259 833
834 /* One-time actions taken on probing the first device */
835 if (!emif1) {
836 emif1 = emif;
837 spin_lock_init(&emif_lock);
838
839 /*
840 * TODO: register notifiers for frequency and voltage
841 * change here once the respective frameworks are
842 * available
843 */
844 }
845
260 dev_info(&pdev->dev, "%s: device configured with addr = %p\n", 846 dev_info(&pdev->dev, "%s: device configured with addr = %p\n",
261 __func__, emif->base); 847 __func__, emif->base);
262 848
@@ -265,6 +851,308 @@ error:
265 return -ENODEV; 851 return -ENODEV;
266} 852}
267 853
854static int get_emif_reg_values(struct emif_data *emif, u32 freq,
855 struct emif_regs *regs)
856{
857 u32 cs1_used, ip_rev, phy_type;
858 u32 cl, type;
859 const struct lpddr2_timings *timings;
860 const struct lpddr2_min_tck *min_tck;
861 const struct ddr_device_info *device_info;
862 const struct lpddr2_addressing *addressing;
863 struct emif_data *emif_for_calc;
864 struct device *dev;
865 const struct emif_custom_configs *custom_configs;
866
867 dev = emif->dev;
868 /*
869 * If the devices on this EMIF instance is duplicate of EMIF1,
870 * use EMIF1 details for the calculation
871 */
872 emif_for_calc = emif->duplicate ? emif1 : emif;
873 timings = get_timings_table(emif_for_calc, freq);
874 addressing = emif_for_calc->addressing;
875 if (!timings || !addressing) {
876 dev_err(dev, "%s: not enough data available for %dHz",
877 __func__, freq);
878 return -1;
879 }
880
881 device_info = emif_for_calc->plat_data->device_info;
882 type = device_info->type;
883 cs1_used = device_info->cs1_used;
884 ip_rev = emif_for_calc->plat_data->ip_rev;
885 phy_type = emif_for_calc->plat_data->phy_type;
886
887 min_tck = emif_for_calc->plat_data->min_tck;
888 custom_configs = emif_for_calc->plat_data->custom_configs;
889
890 set_ddr_clk_period(freq);
891
892 regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing);
893 regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck,
894 addressing);
895 regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck,
896 addressing, type);
897 regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck,
898 addressing, type, ip_rev, EMIF_NORMAL_TIMINGS);
899
900 cl = get_cl(emif);
901
902 if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) {
903 regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d(
904 timings, freq, cl);
905 } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) {
906 regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl);
907 regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5();
908 regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5();
909 regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5();
910 } else {
911 return -1;
912 }
913
914 /* Only timeout values in pwr_mgmt_ctrl_shdw register */
915 regs->pwr_mgmt_ctrl_shdw =
916 get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) &
917 (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK);
918
919 if (ip_rev & EMIF_4D) {
920 regs->read_idle_ctrl_shdw_normal =
921 get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE);
922
923 regs->read_idle_ctrl_shdw_volt_ramp =
924 get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING);
925 } else if (ip_rev & EMIF_4D5) {
926 regs->dll_calib_ctrl_shdw_normal =
927 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE);
928
929 regs->dll_calib_ctrl_shdw_volt_ramp =
930 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING);
931 }
932
933 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
934 regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4,
935 addressing);
936
937 regs->sdram_tim1_shdw_derated =
938 get_sdram_tim_1_shdw_derated(timings, min_tck,
939 addressing);
940
941 regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings,
942 min_tck, addressing, type, ip_rev,
943 EMIF_DERATED_TIMINGS);
944 }
945
946 regs->freq = freq;
947
948 return 0;
949}
950
951/*
952 * get_regs() - gets the cached emif_regs structure for a given EMIF instance
953 * given frequency(freq):
954 *
955 * As an optimisation, every EMIF instance other than EMIF1 shares the
956 * register cache with EMIF1 if the devices connected on this instance
957 * are same as that on EMIF1(indicated by the duplicate flag)
958 *
959 * If we do not have an entry corresponding to the frequency given, we
960 * allocate a new entry and calculate the values
961 *
962 * Upon finding the right reg dump, save it in curr_regs. It can be
963 * directly used for thermal de-rating and voltage ramping changes.
964 */
965static struct emif_regs *get_regs(struct emif_data *emif, u32 freq)
966{
967 int i;
968 struct emif_regs **regs_cache;
969 struct emif_regs *regs = NULL;
970 struct device *dev;
971
972 dev = emif->dev;
973 if (emif->curr_regs && emif->curr_regs->freq == freq) {
974 dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq);
975 return emif->curr_regs;
976 }
977
978 if (emif->duplicate)
979 regs_cache = emif1->regs_cache;
980 else
981 regs_cache = emif->regs_cache;
982
983 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
984 if (regs_cache[i]->freq == freq) {
985 regs = regs_cache[i];
986 dev_dbg(dev,
987 "%s: reg dump found in reg cache for %u Hz\n",
988 __func__, freq);
989 break;
990 }
991 }
992
993 /*
994 * If we don't have an entry for this frequency in the cache create one
995 * and calculate the values
996 */
997 if (!regs) {
998 regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC);
999 if (!regs)
1000 return NULL;
1001
1002 if (get_emif_reg_values(emif, freq, regs)) {
1003 devm_kfree(emif->dev, regs);
1004 return NULL;
1005 }
1006
1007 /*
1008 * Now look for an un-used entry in the cache and save the
1009 * newly created struct. If there are no free entries
1010 * over-write the last entry
1011 */
1012 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++)
1013 ;
1014
1015 if (i >= EMIF_MAX_NUM_FREQUENCIES) {
1016 dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n",
1017 __func__);
1018 i = EMIF_MAX_NUM_FREQUENCIES - 1;
1019 devm_kfree(emif->dev, regs_cache[i]);
1020 }
1021 regs_cache[i] = regs;
1022 }
1023
1024 return regs;
1025}
1026
1027static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state)
1028{
1029 dev_dbg(emif->dev, "%s: voltage notification : %d", __func__,
1030 volt_state);
1031
1032 if (!emif->curr_regs) {
1033 dev_err(emif->dev,
1034 "%s: volt-notify before registers are ready: %d\n",
1035 __func__, volt_state);
1036 return;
1037 }
1038
1039 setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state);
1040}
1041
1042/*
1043 * TODO: voltage notify handling should be hooked up to
1044 * regulator framework as soon as the necessary support
1045 * is available in mainline kernel. This function is un-used
1046 * right now.
1047 */
1048static void __attribute__((unused)) volt_notify_handling(u32 volt_state)
1049{
1050 struct emif_data *emif;
1051
1052 spin_lock_irqsave(&emif_lock, irq_state);
1053
1054 list_for_each_entry(emif, &device_list, node)
1055 do_volt_notify_handling(emif, volt_state);
1056 do_freq_update();
1057
1058 spin_unlock_irqrestore(&emif_lock, irq_state);
1059}
1060
1061static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq)
1062{
1063 struct emif_regs *regs;
1064
1065 regs = get_regs(emif, new_freq);
1066 if (!regs)
1067 return;
1068
1069 emif->curr_regs = regs;
1070
1071 /*
1072 * Update the shadow registers:
1073 * Temperature and voltage-ramp sensitive settings are also configured
1074 * in terms of DDR cycles. So, we need to update them too when there
1075 * is a freq change
1076 */
1077 dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz",
1078 __func__, new_freq);
1079 setup_registers(emif, regs);
1080 setup_temperature_sensitive_regs(emif, regs);
1081 setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE);
1082
1083 /*
1084 * Part of workaround for errata i728. See do_freq_update()
1085 * for more details
1086 */
1087 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1088 set_lpmode(emif, EMIF_LP_MODE_DISABLE);
1089}
1090
1091/*
1092 * TODO: frequency notify handling should be hooked up to
1093 * clock framework as soon as the necessary support is
1094 * available in mainline kernel. This function is un-used
1095 * right now.
1096 */
1097static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq)
1098{
1099 struct emif_data *emif;
1100
1101 /*
1102 * NOTE: we are taking the spin-lock here and releases it
1103 * only in post-notifier. This doesn't look good and
1104 * Sparse complains about it, but this seems to be
1105 * un-avoidable. We need to lock a sequence of events
1106 * that is split between EMIF and clock framework.
1107 *
1108 * 1. EMIF driver updates EMIF timings in shadow registers in the
1109 * frequency pre-notify callback from clock framework
1110 * 2. clock framework sets up the registers for the new frequency
1111 * 3. clock framework initiates a hw-sequence that updates
1112 * the frequency EMIF timings synchronously.
1113 *
1114 * All these 3 steps should be performed as an atomic operation
1115 * vis-a-vis similar sequence in the EMIF interrupt handler
1116 * for temperature events. Otherwise, there could be race
1117 * conditions that could result in incorrect EMIF timings for
1118 * a given frequency
1119 */
1120 spin_lock_irqsave(&emif_lock, irq_state);
1121
1122 list_for_each_entry(emif, &device_list, node)
1123 do_freq_pre_notify_handling(emif, new_freq);
1124}
1125
1126static void do_freq_post_notify_handling(struct emif_data *emif)
1127{
1128 /*
1129 * Part of workaround for errata i728. See do_freq_update()
1130 * for more details
1131 */
1132 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1133 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
1134}
1135
1136/*
1137 * TODO: frequency notify handling should be hooked up to
1138 * clock framework as soon as the necessary support is
1139 * available in mainline kernel. This function is un-used
1140 * right now.
1141 */
1142static void __attribute__((unused)) freq_post_notify_handling(void)
1143{
1144 struct emif_data *emif;
1145
1146 list_for_each_entry(emif, &device_list, node)
1147 do_freq_post_notify_handling(emif);
1148
1149 /*
1150 * Lock is done in pre-notify handler. See freq_pre_notify_handling()
1151 * for more details
1152 */
1153 spin_unlock_irqrestore(&emif_lock, irq_state);
1154}
1155
268static struct platform_driver emif_driver = { 1156static struct platform_driver emif_driver = {
269 .driver = { 1157 .driver = {
270 .name = "emif", 1158 .name = "emif",
diff --git a/drivers/memory/emif.h b/drivers/memory/emif.h
index 692b2a864e7b..bfe08bae961a 100644
--- a/drivers/memory/emif.h
+++ b/drivers/memory/emif.h
@@ -19,6 +19,103 @@
19 */ 19 */
20#define EMIF_MAX_NUM_FREQUENCIES 6 20#define EMIF_MAX_NUM_FREQUENCIES 6
21 21
22/* State of the core voltage */
23#define DDR_VOLTAGE_STABLE 0
24#define DDR_VOLTAGE_RAMPING 1
25
26/* Defines for timing De-rating */
27#define EMIF_NORMAL_TIMINGS 0
28#define EMIF_DERATED_TIMINGS 1
29
30/* Length of the forced read idle period in terms of cycles */
31#define EMIF_READ_IDLE_LEN_VAL 5
32
33/*
34 * forced read idle interval to be used when voltage
35 * is changed as part of DVFS/DPS - 1ms
36 */
37#define READ_IDLE_INTERVAL_DVFS (1*1000000)
38
39/*
40 * Forced read idle interval to be used when voltage is stable
41 * 50us - or maximum value will do
42 */
43#define READ_IDLE_INTERVAL_NORMAL (50*1000000)
44
45/* DLL calibration interval when voltage is NOT stable - 1us */
46#define DLL_CALIB_INTERVAL_DVFS (1*1000000)
47
48#define DLL_CALIB_ACK_WAIT_VAL 5
49
50/* Interval between ZQCS commands - hw team recommended value */
51#define EMIF_ZQCS_INTERVAL_US (50*1000)
52/* Enable ZQ Calibration on exiting Self-refresh */
53#define ZQ_SFEXITEN_ENABLE 1
54/*
55 * ZQ Calibration simultaneously on both chip-selects:
56 * Needs one calibration resistor per CS
57 */
58#define ZQ_DUALCALEN_DISABLE 0
59#define ZQ_DUALCALEN_ENABLE 1
60
61#define T_ZQCS_DEFAULT_NS 90
62#define T_ZQCL_DEFAULT_NS 360
63#define T_ZQINIT_DEFAULT_NS 1000
64
65/* DPD_EN */
66#define DPD_DISABLE 0
67#define DPD_ENABLE 1
68
69/*
70 * Default values for the low-power entry to be used if not provided by user.
71 * OMAP4/5 has a hw bug(i735) due to which this value can not be less than 512
72 * Timeout values are in DDR clock 'cycles' and frequency threshold in Hz
73 */
74#define EMIF_LP_MODE_TIMEOUT_PERFORMANCE 2048
75#define EMIF_LP_MODE_TIMEOUT_POWER 512
76#define EMIF_LP_MODE_FREQ_THRESHOLD 400000000
77
78/* DDR_PHY_CTRL_1 values for EMIF4D - ATTILA PHY combination */
79#define EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY 0x049FF000
80#define EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY 0x41
81#define EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY 0x80
82#define EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY 0xFF
83
84/* DDR_PHY_CTRL_1 values for EMIF4D5 INTELLIPHY combination */
85#define EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY 0x0E084200
86#define EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS 10000
87
88/* TEMP_ALERT_CONFIG - corresponding to temp gradient 5 C/s */
89#define TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS 360
90
91#define EMIF_T_CSTA 3
92#define EMIF_T_PDLL_UL 128
93
94/* External PHY control registers magic values */
95#define EMIF_EXT_PHY_CTRL_1_VAL 0x04020080
96#define EMIF_EXT_PHY_CTRL_5_VAL 0x04010040
97#define EMIF_EXT_PHY_CTRL_6_VAL 0x01004010
98#define EMIF_EXT_PHY_CTRL_7_VAL 0x00001004
99#define EMIF_EXT_PHY_CTRL_8_VAL 0x04010040
100#define EMIF_EXT_PHY_CTRL_9_VAL 0x01004010
101#define EMIF_EXT_PHY_CTRL_10_VAL 0x00001004
102#define EMIF_EXT_PHY_CTRL_11_VAL 0x00000000
103#define EMIF_EXT_PHY_CTRL_12_VAL 0x00000000
104#define EMIF_EXT_PHY_CTRL_13_VAL 0x00000000
105#define EMIF_EXT_PHY_CTRL_14_VAL 0x80080080
106#define EMIF_EXT_PHY_CTRL_15_VAL 0x00800800
107#define EMIF_EXT_PHY_CTRL_16_VAL 0x08102040
108#define EMIF_EXT_PHY_CTRL_17_VAL 0x00000001
109#define EMIF_EXT_PHY_CTRL_18_VAL 0x540A8150
110#define EMIF_EXT_PHY_CTRL_19_VAL 0xA81502A0
111#define EMIF_EXT_PHY_CTRL_20_VAL 0x002A0540
112#define EMIF_EXT_PHY_CTRL_21_VAL 0x00000000
113#define EMIF_EXT_PHY_CTRL_22_VAL 0x00000000
114#define EMIF_EXT_PHY_CTRL_23_VAL 0x00000000
115#define EMIF_EXT_PHY_CTRL_24_VAL 0x00000077
116
117#define EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS 1200
118
22/* Registers offset */ 119/* Registers offset */
23#define EMIF_MODULE_ID_AND_REVISION 0x0000 120#define EMIF_MODULE_ID_AND_REVISION 0x0000
24#define EMIF_STATUS 0x0004 121#define EMIF_STATUS 0x0004
@@ -458,4 +555,35 @@
458#define READ_LATENCY_SHDW_SHIFT 0 555#define READ_LATENCY_SHDW_SHIFT 0
459#define READ_LATENCY_SHDW_MASK (0x1f << 0) 556#define READ_LATENCY_SHDW_MASK (0x1f << 0)
460 557
461#endif 558#ifndef __ASSEMBLY__
559/*
560 * Structure containing shadow of important registers in EMIF
561 * The calculation function fills in this structure to be later used for
562 * initialisation and DVFS
563 */
564struct emif_regs {
565 u32 freq;
566 u32 ref_ctrl_shdw;
567 u32 ref_ctrl_shdw_derated;
568 u32 sdram_tim1_shdw;
569 u32 sdram_tim1_shdw_derated;
570 u32 sdram_tim2_shdw;
571 u32 sdram_tim3_shdw;
572 u32 sdram_tim3_shdw_derated;
573 u32 pwr_mgmt_ctrl_shdw;
574 union {
575 u32 read_idle_ctrl_shdw_normal;
576 u32 dll_calib_ctrl_shdw_normal;
577 };
578 union {
579 u32 read_idle_ctrl_shdw_volt_ramp;
580 u32 dll_calib_ctrl_shdw_volt_ramp;
581 };
582
583 u32 phy_ctrl_1_shdw;
584 u32 ext_phy_ctrl_2_shdw;
585 u32 ext_phy_ctrl_3_shdw;
586 u32 ext_phy_ctrl_4_shdw;
587};
588#endif /* __ASSEMBLY__ */
589#endif /* __EMIF_H */