diff options
| -rw-r--r-- | drivers/memory/emif.c | 894 | ||||
| -rw-r--r-- | drivers/memory/emif.h | 130 |
2 files changed, 1020 insertions, 4 deletions
diff --git a/drivers/memory/emif.c b/drivers/memory/emif.c index 7486d7ef0826..bd116eb8c738 100644 --- a/drivers/memory/emif.c +++ b/drivers/memory/emif.c | |||
| @@ -21,6 +21,7 @@ | |||
| 21 | #include <linux/seq_file.h> | 21 | #include <linux/seq_file.h> |
| 22 | #include <linux/module.h> | 22 | #include <linux/module.h> |
| 23 | #include <linux/list.h> | 23 | #include <linux/list.h> |
| 24 | #include <linux/spinlock.h> | ||
| 24 | #include <memory/jedec_ddr.h> | 25 | #include <memory/jedec_ddr.h> |
| 25 | #include "emif.h" | 26 | #include "emif.h" |
| 26 | 27 | ||
| @@ -37,20 +38,595 @@ | |||
| 37 | * @node: node in the device list | 38 | * @node: node in the device list |
| 38 | * @base: base address of memory-mapped IO registers. | 39 | * @base: base address of memory-mapped IO registers. |
| 39 | * @dev: device pointer. | 40 | * @dev: device pointer. |
| 41 | * @addressing table with addressing information from the spec | ||
| 42 | * @regs_cache: An array of 'struct emif_regs' that stores | ||
| 43 | * calculated register values for different | ||
| 44 | * frequencies, to avoid re-calculating them on | ||
| 45 | * each DVFS transition. | ||
| 46 | * @curr_regs: The set of register values used in the last | ||
| 47 | * frequency change (i.e. corresponding to the | ||
| 48 | * frequency in effect at the moment) | ||
| 40 | * @plat_data: Pointer to saved platform data. | 49 | * @plat_data: Pointer to saved platform data. |
| 41 | */ | 50 | */ |
| 42 | struct emif_data { | 51 | struct emif_data { |
| 43 | u8 duplicate; | 52 | u8 duplicate; |
| 44 | u8 temperature_level; | 53 | u8 temperature_level; |
| 54 | u8 lpmode; | ||
| 45 | struct list_head node; | 55 | struct list_head node; |
| 56 | unsigned long irq_state; | ||
| 46 | void __iomem *base; | 57 | void __iomem *base; |
| 47 | struct device *dev; | 58 | struct device *dev; |
| 59 | const struct lpddr2_addressing *addressing; | ||
| 60 | struct emif_regs *regs_cache[EMIF_MAX_NUM_FREQUENCIES]; | ||
| 61 | struct emif_regs *curr_regs; | ||
| 48 | struct emif_platform_data *plat_data; | 62 | struct emif_platform_data *plat_data; |
| 49 | }; | 63 | }; |
| 50 | 64 | ||
| 51 | static struct emif_data *emif1; | 65 | static struct emif_data *emif1; |
| 66 | static spinlock_t emif_lock; | ||
| 67 | static unsigned long irq_state; | ||
| 68 | static u32 t_ck; /* DDR clock period in ps */ | ||
| 52 | static LIST_HEAD(device_list); | 69 | static LIST_HEAD(device_list); |
| 53 | 70 | ||
| 71 | /* | ||
| 72 | * Calculate the period of DDR clock from frequency value | ||
| 73 | */ | ||
| 74 | static void set_ddr_clk_period(u32 freq) | ||
| 75 | { | ||
| 76 | /* Divide 10^12 by frequency to get period in ps */ | ||
| 77 | t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq); | ||
| 78 | } | ||
| 79 | |||
| 80 | /* | ||
| 81 | * Get the CL from SDRAM_CONFIG register | ||
| 82 | */ | ||
| 83 | static u32 get_cl(struct emif_data *emif) | ||
| 84 | { | ||
| 85 | u32 cl; | ||
| 86 | void __iomem *base = emif->base; | ||
| 87 | |||
| 88 | cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT; | ||
| 89 | |||
| 90 | return cl; | ||
| 91 | } | ||
| 92 | |||
| 93 | static void set_lpmode(struct emif_data *emif, u8 lpmode) | ||
| 94 | { | ||
| 95 | u32 temp; | ||
| 96 | void __iomem *base = emif->base; | ||
| 97 | |||
| 98 | temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL); | ||
| 99 | temp &= ~LP_MODE_MASK; | ||
| 100 | temp |= (lpmode << LP_MODE_SHIFT); | ||
| 101 | writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL); | ||
| 102 | } | ||
| 103 | |||
| 104 | static void do_freq_update(void) | ||
| 105 | { | ||
| 106 | struct emif_data *emif; | ||
| 107 | |||
| 108 | /* | ||
| 109 | * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE | ||
| 110 | * | ||
| 111 | * i728 DESCRIPTION: | ||
| 112 | * The EMIF automatically puts the SDRAM into self-refresh mode | ||
| 113 | * after the EMIF has not performed accesses during | ||
| 114 | * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles | ||
| 115 | * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set | ||
| 116 | * to 0x2. If during a small window the following three events | ||
| 117 | * occur: | ||
| 118 | * - The SR_TIMING counter expires | ||
| 119 | * - And frequency change is requested | ||
| 120 | * - And OCP access is requested | ||
| 121 | * Then it causes instable clock on the DDR interface. | ||
| 122 | * | ||
| 123 | * WORKAROUND | ||
| 124 | * To avoid the occurrence of the three events, the workaround | ||
| 125 | * is to disable the self-refresh when requesting a frequency | ||
| 126 | * change. Before requesting a frequency change the software must | ||
| 127 | * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the | ||
| 128 | * frequency change has been done, the software can reprogram | ||
| 129 | * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2 | ||
| 130 | */ | ||
| 131 | list_for_each_entry(emif, &device_list, node) { | ||
| 132 | if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) | ||
| 133 | set_lpmode(emif, EMIF_LP_MODE_DISABLE); | ||
| 134 | } | ||
| 135 | |||
| 136 | /* | ||
| 137 | * TODO: Do FREQ_UPDATE here when an API | ||
| 138 | * is available for this as part of the new | ||
| 139 | * clock framework | ||
| 140 | */ | ||
| 141 | |||
| 142 | list_for_each_entry(emif, &device_list, node) { | ||
| 143 | if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) | ||
| 144 | set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH); | ||
| 145 | } | ||
| 146 | } | ||
| 147 | |||
| 148 | /* Find addressing table entry based on the device's type and density */ | ||
| 149 | static const struct lpddr2_addressing *get_addressing_table( | ||
| 150 | const struct ddr_device_info *device_info) | ||
| 151 | { | ||
| 152 | u32 index, type, density; | ||
| 153 | |||
| 154 | type = device_info->type; | ||
| 155 | density = device_info->density; | ||
| 156 | |||
| 157 | switch (type) { | ||
| 158 | case DDR_TYPE_LPDDR2_S4: | ||
| 159 | index = density - 1; | ||
| 160 | break; | ||
| 161 | case DDR_TYPE_LPDDR2_S2: | ||
| 162 | switch (density) { | ||
| 163 | case DDR_DENSITY_1Gb: | ||
| 164 | case DDR_DENSITY_2Gb: | ||
| 165 | index = density + 3; | ||
| 166 | break; | ||
| 167 | default: | ||
| 168 | index = density - 1; | ||
| 169 | } | ||
| 170 | break; | ||
| 171 | default: | ||
| 172 | return NULL; | ||
| 173 | } | ||
| 174 | |||
| 175 | return &lpddr2_jedec_addressing_table[index]; | ||
| 176 | } | ||
| 177 | |||
| 178 | /* | ||
| 179 | * Find the the right timing table from the array of timing | ||
| 180 | * tables of the device using DDR clock frequency | ||
| 181 | */ | ||
| 182 | static const struct lpddr2_timings *get_timings_table(struct emif_data *emif, | ||
| 183 | u32 freq) | ||
| 184 | { | ||
| 185 | u32 i, min, max, freq_nearest; | ||
| 186 | const struct lpddr2_timings *timings = NULL; | ||
| 187 | const struct lpddr2_timings *timings_arr = emif->plat_data->timings; | ||
| 188 | struct device *dev = emif->dev; | ||
| 189 | |||
| 190 | /* Start with a very high frequency - 1GHz */ | ||
| 191 | freq_nearest = 1000000000; | ||
| 192 | |||
| 193 | /* | ||
| 194 | * Find the timings table such that: | ||
| 195 | * 1. the frequency range covers the required frequency(safe) AND | ||
| 196 | * 2. the max_freq is closest to the required frequency(optimal) | ||
| 197 | */ | ||
| 198 | for (i = 0; i < emif->plat_data->timings_arr_size; i++) { | ||
| 199 | max = timings_arr[i].max_freq; | ||
| 200 | min = timings_arr[i].min_freq; | ||
| 201 | if ((freq >= min) && (freq <= max) && (max < freq_nearest)) { | ||
| 202 | freq_nearest = max; | ||
| 203 | timings = &timings_arr[i]; | ||
| 204 | } | ||
| 205 | } | ||
| 206 | |||
| 207 | if (!timings) | ||
| 208 | dev_err(dev, "%s: couldn't find timings for - %dHz\n", | ||
| 209 | __func__, freq); | ||
| 210 | |||
| 211 | dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n", | ||
| 212 | __func__, freq, freq_nearest); | ||
| 213 | |||
| 214 | return timings; | ||
| 215 | } | ||
| 216 | |||
| 217 | static u32 get_sdram_ref_ctrl_shdw(u32 freq, | ||
| 218 | const struct lpddr2_addressing *addressing) | ||
| 219 | { | ||
| 220 | u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi; | ||
| 221 | |||
| 222 | /* Scale down frequency and t_refi to avoid overflow */ | ||
| 223 | freq_khz = freq / 1000; | ||
| 224 | t_refi = addressing->tREFI_ns / 100; | ||
| 225 | |||
| 226 | /* | ||
| 227 | * refresh rate to be set is 'tREFI(in us) * freq in MHz | ||
| 228 | * division by 10000 to account for change in units | ||
| 229 | */ | ||
| 230 | val = t_refi * freq_khz / 10000; | ||
| 231 | ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT; | ||
| 232 | |||
| 233 | return ref_ctrl_shdw; | ||
| 234 | } | ||
| 235 | |||
| 236 | static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings, | ||
| 237 | const struct lpddr2_min_tck *min_tck, | ||
| 238 | const struct lpddr2_addressing *addressing) | ||
| 239 | { | ||
| 240 | u32 tim1 = 0, val = 0; | ||
| 241 | |||
| 242 | val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1; | ||
| 243 | tim1 |= val << T_WTR_SHIFT; | ||
| 244 | |||
| 245 | if (addressing->num_banks == B8) | ||
| 246 | val = DIV_ROUND_UP(timings->tFAW, t_ck*4); | ||
| 247 | else | ||
| 248 | val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck)); | ||
| 249 | tim1 |= (val - 1) << T_RRD_SHIFT; | ||
| 250 | |||
| 251 | val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1; | ||
| 252 | tim1 |= val << T_RC_SHIFT; | ||
| 253 | |||
| 254 | val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck)); | ||
| 255 | tim1 |= (val - 1) << T_RAS_SHIFT; | ||
| 256 | |||
| 257 | val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1; | ||
| 258 | tim1 |= val << T_WR_SHIFT; | ||
| 259 | |||
| 260 | val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1; | ||
| 261 | tim1 |= val << T_RCD_SHIFT; | ||
| 262 | |||
| 263 | val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1; | ||
| 264 | tim1 |= val << T_RP_SHIFT; | ||
| 265 | |||
| 266 | return tim1; | ||
| 267 | } | ||
| 268 | |||
| 269 | static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings, | ||
| 270 | const struct lpddr2_min_tck *min_tck, | ||
| 271 | const struct lpddr2_addressing *addressing) | ||
| 272 | { | ||
| 273 | u32 tim1 = 0, val = 0; | ||
| 274 | |||
| 275 | val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1; | ||
| 276 | tim1 = val << T_WTR_SHIFT; | ||
| 277 | |||
| 278 | /* | ||
| 279 | * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps | ||
| 280 | * to tFAW for de-rating | ||
| 281 | */ | ||
| 282 | if (addressing->num_banks == B8) { | ||
| 283 | val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1; | ||
| 284 | } else { | ||
| 285 | val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck); | ||
| 286 | val = max(min_tck->tRRD, val) - 1; | ||
| 287 | } | ||
| 288 | tim1 |= val << T_RRD_SHIFT; | ||
| 289 | |||
| 290 | val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck); | ||
| 291 | tim1 |= (val - 1) << T_RC_SHIFT; | ||
| 292 | |||
| 293 | val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck); | ||
| 294 | val = max(min_tck->tRASmin, val) - 1; | ||
| 295 | tim1 |= val << T_RAS_SHIFT; | ||
| 296 | |||
| 297 | val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1; | ||
| 298 | tim1 |= val << T_WR_SHIFT; | ||
| 299 | |||
| 300 | val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck)); | ||
| 301 | tim1 |= (val - 1) << T_RCD_SHIFT; | ||
| 302 | |||
| 303 | val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck)); | ||
| 304 | tim1 |= (val - 1) << T_RP_SHIFT; | ||
| 305 | |||
| 306 | return tim1; | ||
| 307 | } | ||
| 308 | |||
| 309 | static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings, | ||
| 310 | const struct lpddr2_min_tck *min_tck, | ||
| 311 | const struct lpddr2_addressing *addressing, | ||
| 312 | u32 type) | ||
| 313 | { | ||
| 314 | u32 tim2 = 0, val = 0; | ||
| 315 | |||
| 316 | val = min_tck->tCKE - 1; | ||
| 317 | tim2 |= val << T_CKE_SHIFT; | ||
| 318 | |||
| 319 | val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1; | ||
| 320 | tim2 |= val << T_RTP_SHIFT; | ||
| 321 | |||
| 322 | /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */ | ||
| 323 | val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1; | ||
| 324 | tim2 |= val << T_XSNR_SHIFT; | ||
| 325 | |||
| 326 | /* XSRD same as XSNR for LPDDR2 */ | ||
| 327 | tim2 |= val << T_XSRD_SHIFT; | ||
| 328 | |||
| 329 | val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1; | ||
| 330 | tim2 |= val << T_XP_SHIFT; | ||
| 331 | |||
| 332 | return tim2; | ||
| 333 | } | ||
| 334 | |||
| 335 | static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings, | ||
| 336 | const struct lpddr2_min_tck *min_tck, | ||
| 337 | const struct lpddr2_addressing *addressing, | ||
| 338 | u32 type, u32 ip_rev, u32 derated) | ||
| 339 | { | ||
| 340 | u32 tim3 = 0, val = 0, t_dqsck; | ||
| 341 | |||
| 342 | val = timings->tRAS_max_ns / addressing->tREFI_ns - 1; | ||
| 343 | val = val > 0xF ? 0xF : val; | ||
| 344 | tim3 |= val << T_RAS_MAX_SHIFT; | ||
| 345 | |||
| 346 | val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1; | ||
| 347 | tim3 |= val << T_RFC_SHIFT; | ||
| 348 | |||
| 349 | t_dqsck = (derated == EMIF_DERATED_TIMINGS) ? | ||
| 350 | timings->tDQSCK_max_derated : timings->tDQSCK_max; | ||
| 351 | if (ip_rev == EMIF_4D5) | ||
| 352 | val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1; | ||
| 353 | else | ||
| 354 | val = DIV_ROUND_UP(t_dqsck, t_ck) - 1; | ||
| 355 | |||
| 356 | tim3 |= val << T_TDQSCKMAX_SHIFT; | ||
| 357 | |||
| 358 | val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1; | ||
| 359 | tim3 |= val << ZQ_ZQCS_SHIFT; | ||
| 360 | |||
| 361 | val = DIV_ROUND_UP(timings->tCKESR, t_ck); | ||
| 362 | val = max(min_tck->tCKESR, val) - 1; | ||
| 363 | tim3 |= val << T_CKESR_SHIFT; | ||
| 364 | |||
| 365 | if (ip_rev == EMIF_4D5) { | ||
| 366 | tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT; | ||
| 367 | |||
| 368 | val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1; | ||
| 369 | tim3 |= val << T_PDLL_UL_SHIFT; | ||
| 370 | } | ||
| 371 | |||
| 372 | return tim3; | ||
| 373 | } | ||
| 374 | |||
| 375 | static u32 get_read_idle_ctrl_shdw(u8 volt_ramp) | ||
| 376 | { | ||
| 377 | u32 idle = 0, val = 0; | ||
| 378 | |||
| 379 | /* | ||
| 380 | * Maximum value in normal conditions and increased frequency | ||
| 381 | * when voltage is ramping | ||
| 382 | */ | ||
| 383 | if (volt_ramp) | ||
| 384 | val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1; | ||
| 385 | else | ||
| 386 | val = 0x1FF; | ||
| 387 | |||
| 388 | /* | ||
| 389 | * READ_IDLE_CTRL register in EMIF4D has same offset and fields | ||
| 390 | * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts | ||
| 391 | */ | ||
| 392 | idle |= val << DLL_CALIB_INTERVAL_SHIFT; | ||
| 393 | idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT; | ||
| 394 | |||
| 395 | return idle; | ||
| 396 | } | ||
| 397 | |||
| 398 | static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp) | ||
| 399 | { | ||
| 400 | u32 calib = 0, val = 0; | ||
| 401 | |||
| 402 | if (volt_ramp == DDR_VOLTAGE_RAMPING) | ||
| 403 | val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1; | ||
| 404 | else | ||
| 405 | val = 0; /* Disabled when voltage is stable */ | ||
| 406 | |||
| 407 | calib |= val << DLL_CALIB_INTERVAL_SHIFT; | ||
| 408 | calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT; | ||
| 409 | |||
| 410 | return calib; | ||
| 411 | } | ||
| 412 | |||
| 413 | static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings, | ||
| 414 | u32 freq, u8 RL) | ||
| 415 | { | ||
| 416 | u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0; | ||
| 417 | |||
| 418 | val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1; | ||
| 419 | phy |= val << READ_LATENCY_SHIFT_4D; | ||
| 420 | |||
| 421 | if (freq <= 100000000) | ||
| 422 | val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY; | ||
| 423 | else if (freq <= 200000000) | ||
| 424 | val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY; | ||
| 425 | else | ||
| 426 | val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY; | ||
| 427 | |||
| 428 | phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D; | ||
| 429 | |||
| 430 | return phy; | ||
| 431 | } | ||
| 432 | |||
| 433 | static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl) | ||
| 434 | { | ||
| 435 | u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay; | ||
| 436 | |||
| 437 | /* | ||
| 438 | * DLL operates at 266 MHz. If DDR frequency is near 266 MHz, | ||
| 439 | * half-delay is not needed else set half-delay | ||
| 440 | */ | ||
| 441 | if (freq >= 265000000 && freq < 267000000) | ||
| 442 | half_delay = 0; | ||
| 443 | else | ||
| 444 | half_delay = 1; | ||
| 445 | |||
| 446 | phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5; | ||
| 447 | phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS, | ||
| 448 | t_ck) - 1) << READ_LATENCY_SHIFT_4D5); | ||
| 449 | |||
| 450 | return phy; | ||
| 451 | } | ||
| 452 | |||
| 453 | static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void) | ||
| 454 | { | ||
| 455 | u32 fifo_we_slave_ratio; | ||
| 456 | |||
| 457 | fifo_we_slave_ratio = DIV_ROUND_CLOSEST( | ||
| 458 | EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); | ||
| 459 | |||
| 460 | return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 | | ||
| 461 | fifo_we_slave_ratio << 22; | ||
| 462 | } | ||
| 463 | |||
| 464 | static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void) | ||
| 465 | { | ||
| 466 | u32 fifo_we_slave_ratio; | ||
| 467 | |||
| 468 | fifo_we_slave_ratio = DIV_ROUND_CLOSEST( | ||
| 469 | EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); | ||
| 470 | |||
| 471 | return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 | | ||
| 472 | fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23; | ||
| 473 | } | ||
| 474 | |||
| 475 | static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void) | ||
| 476 | { | ||
| 477 | u32 fifo_we_slave_ratio; | ||
| 478 | |||
| 479 | fifo_we_slave_ratio = DIV_ROUND_CLOSEST( | ||
| 480 | EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); | ||
| 481 | |||
| 482 | return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 | | ||
| 483 | fifo_we_slave_ratio << 13; | ||
| 484 | } | ||
| 485 | |||
| 486 | static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev) | ||
| 487 | { | ||
| 488 | u32 pwr_mgmt_ctrl = 0, timeout; | ||
| 489 | u32 lpmode = EMIF_LP_MODE_SELF_REFRESH; | ||
| 490 | u32 timeout_perf = EMIF_LP_MODE_TIMEOUT_PERFORMANCE; | ||
| 491 | u32 timeout_pwr = EMIF_LP_MODE_TIMEOUT_POWER; | ||
| 492 | u32 freq_threshold = EMIF_LP_MODE_FREQ_THRESHOLD; | ||
| 493 | |||
| 494 | struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs; | ||
| 495 | |||
| 496 | if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) { | ||
| 497 | lpmode = cust_cfgs->lpmode; | ||
| 498 | timeout_perf = cust_cfgs->lpmode_timeout_performance; | ||
| 499 | timeout_pwr = cust_cfgs->lpmode_timeout_power; | ||
| 500 | freq_threshold = cust_cfgs->lpmode_freq_threshold; | ||
| 501 | } | ||
| 502 | |||
| 503 | /* Timeout based on DDR frequency */ | ||
| 504 | timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr; | ||
| 505 | |||
| 506 | /* The value to be set in register is "log2(timeout) - 3" */ | ||
| 507 | if (timeout < 16) { | ||
| 508 | timeout = 0; | ||
| 509 | } else { | ||
| 510 | timeout = __fls(timeout) - 3; | ||
| 511 | if (timeout & (timeout - 1)) | ||
| 512 | timeout++; | ||
| 513 | } | ||
| 514 | |||
| 515 | switch (lpmode) { | ||
| 516 | case EMIF_LP_MODE_CLOCK_STOP: | ||
| 517 | pwr_mgmt_ctrl = (timeout << CS_TIM_SHIFT) | | ||
| 518 | SR_TIM_MASK | PD_TIM_MASK; | ||
| 519 | break; | ||
| 520 | case EMIF_LP_MODE_SELF_REFRESH: | ||
| 521 | /* Workaround for errata i735 */ | ||
| 522 | if (timeout < 6) | ||
| 523 | timeout = 6; | ||
| 524 | |||
| 525 | pwr_mgmt_ctrl = (timeout << SR_TIM_SHIFT) | | ||
| 526 | CS_TIM_MASK | PD_TIM_MASK; | ||
| 527 | break; | ||
| 528 | case EMIF_LP_MODE_PWR_DN: | ||
| 529 | pwr_mgmt_ctrl = (timeout << PD_TIM_SHIFT) | | ||
| 530 | CS_TIM_MASK | SR_TIM_MASK; | ||
| 531 | break; | ||
| 532 | case EMIF_LP_MODE_DISABLE: | ||
| 533 | default: | ||
| 534 | pwr_mgmt_ctrl = CS_TIM_MASK | | ||
| 535 | PD_TIM_MASK | SR_TIM_MASK; | ||
| 536 | } | ||
| 537 | |||
| 538 | /* No CS_TIM in EMIF_4D5 */ | ||
| 539 | if (ip_rev == EMIF_4D5) | ||
| 540 | pwr_mgmt_ctrl &= ~CS_TIM_MASK; | ||
| 541 | |||
| 542 | pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT; | ||
| 543 | |||
| 544 | return pwr_mgmt_ctrl; | ||
| 545 | } | ||
| 546 | |||
| 547 | /* | ||
| 548 | * Program EMIF shadow registers that are not dependent on temperature | ||
| 549 | * or voltage | ||
| 550 | */ | ||
| 551 | static void setup_registers(struct emif_data *emif, struct emif_regs *regs) | ||
| 552 | { | ||
| 553 | void __iomem *base = emif->base; | ||
| 554 | |||
| 555 | writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW); | ||
| 556 | writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW); | ||
| 557 | |||
| 558 | /* Settings specific for EMIF4D5 */ | ||
| 559 | if (emif->plat_data->ip_rev != EMIF_4D5) | ||
| 560 | return; | ||
| 561 | writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW); | ||
| 562 | writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW); | ||
| 563 | writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW); | ||
| 564 | } | ||
| 565 | |||
| 566 | /* | ||
| 567 | * When voltage ramps dll calibration and forced read idle should | ||
| 568 | * happen more often | ||
| 569 | */ | ||
| 570 | static void setup_volt_sensitive_regs(struct emif_data *emif, | ||
| 571 | struct emif_regs *regs, u32 volt_state) | ||
| 572 | { | ||
| 573 | u32 calib_ctrl; | ||
| 574 | void __iomem *base = emif->base; | ||
| 575 | |||
| 576 | /* | ||
| 577 | * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as | ||
| 578 | * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_* | ||
| 579 | * is an alias of the respective read_idle_ctrl_shdw_* (members of | ||
| 580 | * a union). So, the below code takes care of both cases | ||
| 581 | */ | ||
| 582 | if (volt_state == DDR_VOLTAGE_RAMPING) | ||
| 583 | calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp; | ||
| 584 | else | ||
| 585 | calib_ctrl = regs->dll_calib_ctrl_shdw_normal; | ||
| 586 | |||
| 587 | writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW); | ||
| 588 | } | ||
| 589 | |||
| 590 | /* | ||
| 591 | * setup_temperature_sensitive_regs() - set the timings for temperature | ||
| 592 | * sensitive registers. This happens once at initialisation time based | ||
| 593 | * on the temperature at boot time and subsequently based on the temperature | ||
| 594 | * alert interrupt. Temperature alert can happen when the temperature | ||
| 595 | * increases or drops. So this function can have the effect of either | ||
| 596 | * derating the timings or going back to nominal values. | ||
| 597 | */ | ||
| 598 | static void setup_temperature_sensitive_regs(struct emif_data *emif, | ||
| 599 | struct emif_regs *regs) | ||
| 600 | { | ||
| 601 | u32 tim1, tim3, ref_ctrl, type; | ||
| 602 | void __iomem *base = emif->base; | ||
| 603 | u32 temperature; | ||
| 604 | |||
| 605 | type = emif->plat_data->device_info->type; | ||
| 606 | |||
| 607 | tim1 = regs->sdram_tim1_shdw; | ||
| 608 | tim3 = regs->sdram_tim3_shdw; | ||
| 609 | ref_ctrl = regs->ref_ctrl_shdw; | ||
| 610 | |||
| 611 | /* No de-rating for non-lpddr2 devices */ | ||
| 612 | if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4) | ||
| 613 | goto out; | ||
| 614 | |||
| 615 | temperature = emif->temperature_level; | ||
| 616 | if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) { | ||
| 617 | ref_ctrl = regs->ref_ctrl_shdw_derated; | ||
| 618 | } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) { | ||
| 619 | tim1 = regs->sdram_tim1_shdw_derated; | ||
| 620 | tim3 = regs->sdram_tim3_shdw_derated; | ||
| 621 | ref_ctrl = regs->ref_ctrl_shdw_derated; | ||
| 622 | } | ||
| 623 | |||
| 624 | out: | ||
| 625 | writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW); | ||
| 626 | writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW); | ||
| 627 | writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW); | ||
| 628 | } | ||
| 629 | |||
| 54 | static void get_default_timings(struct emif_data *emif) | 630 | static void get_default_timings(struct emif_data *emif) |
| 55 | { | 631 | { |
| 56 | struct emif_platform_data *pd = emif->plat_data; | 632 | struct emif_platform_data *pd = emif->plat_data; |
| @@ -234,10 +810,8 @@ static int __init_or_module emif_probe(struct platform_device *pdev) | |||
| 234 | goto error; | 810 | goto error; |
| 235 | } | 811 | } |
| 236 | 812 | ||
| 237 | if (!emif1) | ||
| 238 | emif1 = emif; | ||
| 239 | |||
| 240 | list_add(&emif->node, &device_list); | 813 | list_add(&emif->node, &device_list); |
| 814 | emif->addressing = get_addressing_table(emif->plat_data->device_info); | ||
| 241 | 815 | ||
| 242 | /* Save pointers to each other in emif and device structures */ | 816 | /* Save pointers to each other in emif and device structures */ |
| 243 | emif->dev = &pdev->dev; | 817 | emif->dev = &pdev->dev; |
| @@ -257,6 +831,18 @@ static int __init_or_module emif_probe(struct platform_device *pdev) | |||
| 257 | goto error; | 831 | goto error; |
| 258 | } | 832 | } |
| 259 | 833 | ||
| 834 | /* One-time actions taken on probing the first device */ | ||
| 835 | if (!emif1) { | ||
| 836 | emif1 = emif; | ||
| 837 | spin_lock_init(&emif_lock); | ||
| 838 | |||
| 839 | /* | ||
| 840 | * TODO: register notifiers for frequency and voltage | ||
| 841 | * change here once the respective frameworks are | ||
| 842 | * available | ||
| 843 | */ | ||
| 844 | } | ||
| 845 | |||
| 260 | dev_info(&pdev->dev, "%s: device configured with addr = %p\n", | 846 | dev_info(&pdev->dev, "%s: device configured with addr = %p\n", |
| 261 | __func__, emif->base); | 847 | __func__, emif->base); |
| 262 | 848 | ||
| @@ -265,6 +851,308 @@ error: | |||
| 265 | return -ENODEV; | 851 | return -ENODEV; |
| 266 | } | 852 | } |
| 267 | 853 | ||
| 854 | static int get_emif_reg_values(struct emif_data *emif, u32 freq, | ||
| 855 | struct emif_regs *regs) | ||
| 856 | { | ||
| 857 | u32 cs1_used, ip_rev, phy_type; | ||
| 858 | u32 cl, type; | ||
| 859 | const struct lpddr2_timings *timings; | ||
| 860 | const struct lpddr2_min_tck *min_tck; | ||
| 861 | const struct ddr_device_info *device_info; | ||
| 862 | const struct lpddr2_addressing *addressing; | ||
| 863 | struct emif_data *emif_for_calc; | ||
| 864 | struct device *dev; | ||
| 865 | const struct emif_custom_configs *custom_configs; | ||
| 866 | |||
| 867 | dev = emif->dev; | ||
| 868 | /* | ||
| 869 | * If the devices on this EMIF instance is duplicate of EMIF1, | ||
| 870 | * use EMIF1 details for the calculation | ||
| 871 | */ | ||
| 872 | emif_for_calc = emif->duplicate ? emif1 : emif; | ||
| 873 | timings = get_timings_table(emif_for_calc, freq); | ||
| 874 | addressing = emif_for_calc->addressing; | ||
| 875 | if (!timings || !addressing) { | ||
| 876 | dev_err(dev, "%s: not enough data available for %dHz", | ||
| 877 | __func__, freq); | ||
| 878 | return -1; | ||
| 879 | } | ||
| 880 | |||
| 881 | device_info = emif_for_calc->plat_data->device_info; | ||
| 882 | type = device_info->type; | ||
| 883 | cs1_used = device_info->cs1_used; | ||
| 884 | ip_rev = emif_for_calc->plat_data->ip_rev; | ||
| 885 | phy_type = emif_for_calc->plat_data->phy_type; | ||
| 886 | |||
| 887 | min_tck = emif_for_calc->plat_data->min_tck; | ||
| 888 | custom_configs = emif_for_calc->plat_data->custom_configs; | ||
| 889 | |||
| 890 | set_ddr_clk_period(freq); | ||
| 891 | |||
| 892 | regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing); | ||
| 893 | regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck, | ||
| 894 | addressing); | ||
| 895 | regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck, | ||
| 896 | addressing, type); | ||
| 897 | regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck, | ||
| 898 | addressing, type, ip_rev, EMIF_NORMAL_TIMINGS); | ||
| 899 | |||
| 900 | cl = get_cl(emif); | ||
| 901 | |||
| 902 | if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) { | ||
| 903 | regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d( | ||
| 904 | timings, freq, cl); | ||
| 905 | } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) { | ||
| 906 | regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl); | ||
| 907 | regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5(); | ||
| 908 | regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5(); | ||
| 909 | regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5(); | ||
| 910 | } else { | ||
| 911 | return -1; | ||
| 912 | } | ||
| 913 | |||
| 914 | /* Only timeout values in pwr_mgmt_ctrl_shdw register */ | ||
| 915 | regs->pwr_mgmt_ctrl_shdw = | ||
| 916 | get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) & | ||
| 917 | (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK); | ||
| 918 | |||
| 919 | if (ip_rev & EMIF_4D) { | ||
| 920 | regs->read_idle_ctrl_shdw_normal = | ||
| 921 | get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE); | ||
| 922 | |||
| 923 | regs->read_idle_ctrl_shdw_volt_ramp = | ||
| 924 | get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING); | ||
| 925 | } else if (ip_rev & EMIF_4D5) { | ||
| 926 | regs->dll_calib_ctrl_shdw_normal = | ||
| 927 | get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE); | ||
| 928 | |||
| 929 | regs->dll_calib_ctrl_shdw_volt_ramp = | ||
| 930 | get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING); | ||
| 931 | } | ||
| 932 | |||
| 933 | if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) { | ||
| 934 | regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4, | ||
| 935 | addressing); | ||
| 936 | |||
| 937 | regs->sdram_tim1_shdw_derated = | ||
| 938 | get_sdram_tim_1_shdw_derated(timings, min_tck, | ||
| 939 | addressing); | ||
| 940 | |||
| 941 | regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings, | ||
| 942 | min_tck, addressing, type, ip_rev, | ||
| 943 | EMIF_DERATED_TIMINGS); | ||
| 944 | } | ||
| 945 | |||
| 946 | regs->freq = freq; | ||
| 947 | |||
| 948 | return 0; | ||
| 949 | } | ||
| 950 | |||
| 951 | /* | ||
| 952 | * get_regs() - gets the cached emif_regs structure for a given EMIF instance | ||
| 953 | * given frequency(freq): | ||
| 954 | * | ||
| 955 | * As an optimisation, every EMIF instance other than EMIF1 shares the | ||
| 956 | * register cache with EMIF1 if the devices connected on this instance | ||
| 957 | * are same as that on EMIF1(indicated by the duplicate flag) | ||
| 958 | * | ||
| 959 | * If we do not have an entry corresponding to the frequency given, we | ||
| 960 | * allocate a new entry and calculate the values | ||
| 961 | * | ||
| 962 | * Upon finding the right reg dump, save it in curr_regs. It can be | ||
| 963 | * directly used for thermal de-rating and voltage ramping changes. | ||
| 964 | */ | ||
| 965 | static struct emif_regs *get_regs(struct emif_data *emif, u32 freq) | ||
| 966 | { | ||
| 967 | int i; | ||
| 968 | struct emif_regs **regs_cache; | ||
| 969 | struct emif_regs *regs = NULL; | ||
| 970 | struct device *dev; | ||
| 971 | |||
| 972 | dev = emif->dev; | ||
| 973 | if (emif->curr_regs && emif->curr_regs->freq == freq) { | ||
| 974 | dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq); | ||
| 975 | return emif->curr_regs; | ||
| 976 | } | ||
| 977 | |||
| 978 | if (emif->duplicate) | ||
| 979 | regs_cache = emif1->regs_cache; | ||
| 980 | else | ||
| 981 | regs_cache = emif->regs_cache; | ||
| 982 | |||
| 983 | for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) { | ||
| 984 | if (regs_cache[i]->freq == freq) { | ||
| 985 | regs = regs_cache[i]; | ||
| 986 | dev_dbg(dev, | ||
| 987 | "%s: reg dump found in reg cache for %u Hz\n", | ||
| 988 | __func__, freq); | ||
| 989 | break; | ||
| 990 | } | ||
| 991 | } | ||
| 992 | |||
| 993 | /* | ||
| 994 | * If we don't have an entry for this frequency in the cache create one | ||
| 995 | * and calculate the values | ||
| 996 | */ | ||
| 997 | if (!regs) { | ||
| 998 | regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC); | ||
| 999 | if (!regs) | ||
| 1000 | return NULL; | ||
| 1001 | |||
| 1002 | if (get_emif_reg_values(emif, freq, regs)) { | ||
| 1003 | devm_kfree(emif->dev, regs); | ||
| 1004 | return NULL; | ||
| 1005 | } | ||
| 1006 | |||
| 1007 | /* | ||
| 1008 | * Now look for an un-used entry in the cache and save the | ||
| 1009 | * newly created struct. If there are no free entries | ||
| 1010 | * over-write the last entry | ||
| 1011 | */ | ||
| 1012 | for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) | ||
| 1013 | ; | ||
| 1014 | |||
| 1015 | if (i >= EMIF_MAX_NUM_FREQUENCIES) { | ||
| 1016 | dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n", | ||
| 1017 | __func__); | ||
| 1018 | i = EMIF_MAX_NUM_FREQUENCIES - 1; | ||
| 1019 | devm_kfree(emif->dev, regs_cache[i]); | ||
| 1020 | } | ||
| 1021 | regs_cache[i] = regs; | ||
| 1022 | } | ||
| 1023 | |||
| 1024 | return regs; | ||
| 1025 | } | ||
| 1026 | |||
| 1027 | static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state) | ||
| 1028 | { | ||
| 1029 | dev_dbg(emif->dev, "%s: voltage notification : %d", __func__, | ||
| 1030 | volt_state); | ||
| 1031 | |||
| 1032 | if (!emif->curr_regs) { | ||
| 1033 | dev_err(emif->dev, | ||
| 1034 | "%s: volt-notify before registers are ready: %d\n", | ||
| 1035 | __func__, volt_state); | ||
| 1036 | return; | ||
| 1037 | } | ||
| 1038 | |||
| 1039 | setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state); | ||
| 1040 | } | ||
| 1041 | |||
| 1042 | /* | ||
| 1043 | * TODO: voltage notify handling should be hooked up to | ||
| 1044 | * regulator framework as soon as the necessary support | ||
| 1045 | * is available in mainline kernel. This function is un-used | ||
| 1046 | * right now. | ||
| 1047 | */ | ||
| 1048 | static void __attribute__((unused)) volt_notify_handling(u32 volt_state) | ||
| 1049 | { | ||
| 1050 | struct emif_data *emif; | ||
| 1051 | |||
| 1052 | spin_lock_irqsave(&emif_lock, irq_state); | ||
| 1053 | |||
| 1054 | list_for_each_entry(emif, &device_list, node) | ||
| 1055 | do_volt_notify_handling(emif, volt_state); | ||
| 1056 | do_freq_update(); | ||
| 1057 | |||
| 1058 | spin_unlock_irqrestore(&emif_lock, irq_state); | ||
| 1059 | } | ||
| 1060 | |||
| 1061 | static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq) | ||
| 1062 | { | ||
| 1063 | struct emif_regs *regs; | ||
| 1064 | |||
| 1065 | regs = get_regs(emif, new_freq); | ||
| 1066 | if (!regs) | ||
| 1067 | return; | ||
| 1068 | |||
| 1069 | emif->curr_regs = regs; | ||
| 1070 | |||
| 1071 | /* | ||
| 1072 | * Update the shadow registers: | ||
| 1073 | * Temperature and voltage-ramp sensitive settings are also configured | ||
| 1074 | * in terms of DDR cycles. So, we need to update them too when there | ||
| 1075 | * is a freq change | ||
| 1076 | */ | ||
| 1077 | dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz", | ||
| 1078 | __func__, new_freq); | ||
| 1079 | setup_registers(emif, regs); | ||
| 1080 | setup_temperature_sensitive_regs(emif, regs); | ||
| 1081 | setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE); | ||
| 1082 | |||
| 1083 | /* | ||
| 1084 | * Part of workaround for errata i728. See do_freq_update() | ||
| 1085 | * for more details | ||
| 1086 | */ | ||
| 1087 | if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) | ||
| 1088 | set_lpmode(emif, EMIF_LP_MODE_DISABLE); | ||
| 1089 | } | ||
| 1090 | |||
| 1091 | /* | ||
| 1092 | * TODO: frequency notify handling should be hooked up to | ||
| 1093 | * clock framework as soon as the necessary support is | ||
| 1094 | * available in mainline kernel. This function is un-used | ||
| 1095 | * right now. | ||
| 1096 | */ | ||
| 1097 | static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq) | ||
| 1098 | { | ||
| 1099 | struct emif_data *emif; | ||
| 1100 | |||
| 1101 | /* | ||
| 1102 | * NOTE: we are taking the spin-lock here and releases it | ||
| 1103 | * only in post-notifier. This doesn't look good and | ||
| 1104 | * Sparse complains about it, but this seems to be | ||
| 1105 | * un-avoidable. We need to lock a sequence of events | ||
| 1106 | * that is split between EMIF and clock framework. | ||
| 1107 | * | ||
| 1108 | * 1. EMIF driver updates EMIF timings in shadow registers in the | ||
| 1109 | * frequency pre-notify callback from clock framework | ||
| 1110 | * 2. clock framework sets up the registers for the new frequency | ||
| 1111 | * 3. clock framework initiates a hw-sequence that updates | ||
| 1112 | * the frequency EMIF timings synchronously. | ||
| 1113 | * | ||
| 1114 | * All these 3 steps should be performed as an atomic operation | ||
| 1115 | * vis-a-vis similar sequence in the EMIF interrupt handler | ||
| 1116 | * for temperature events. Otherwise, there could be race | ||
| 1117 | * conditions that could result in incorrect EMIF timings for | ||
| 1118 | * a given frequency | ||
| 1119 | */ | ||
| 1120 | spin_lock_irqsave(&emif_lock, irq_state); | ||
| 1121 | |||
| 1122 | list_for_each_entry(emif, &device_list, node) | ||
| 1123 | do_freq_pre_notify_handling(emif, new_freq); | ||
| 1124 | } | ||
| 1125 | |||
| 1126 | static void do_freq_post_notify_handling(struct emif_data *emif) | ||
| 1127 | { | ||
| 1128 | /* | ||
| 1129 | * Part of workaround for errata i728. See do_freq_update() | ||
| 1130 | * for more details | ||
| 1131 | */ | ||
| 1132 | if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) | ||
| 1133 | set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH); | ||
| 1134 | } | ||
| 1135 | |||
| 1136 | /* | ||
| 1137 | * TODO: frequency notify handling should be hooked up to | ||
| 1138 | * clock framework as soon as the necessary support is | ||
| 1139 | * available in mainline kernel. This function is un-used | ||
| 1140 | * right now. | ||
| 1141 | */ | ||
| 1142 | static void __attribute__((unused)) freq_post_notify_handling(void) | ||
| 1143 | { | ||
| 1144 | struct emif_data *emif; | ||
| 1145 | |||
| 1146 | list_for_each_entry(emif, &device_list, node) | ||
| 1147 | do_freq_post_notify_handling(emif); | ||
| 1148 | |||
| 1149 | /* | ||
| 1150 | * Lock is done in pre-notify handler. See freq_pre_notify_handling() | ||
| 1151 | * for more details | ||
| 1152 | */ | ||
| 1153 | spin_unlock_irqrestore(&emif_lock, irq_state); | ||
| 1154 | } | ||
| 1155 | |||
| 268 | static struct platform_driver emif_driver = { | 1156 | static struct platform_driver emif_driver = { |
| 269 | .driver = { | 1157 | .driver = { |
| 270 | .name = "emif", | 1158 | .name = "emif", |
diff --git a/drivers/memory/emif.h b/drivers/memory/emif.h index 692b2a864e7b..bfe08bae961a 100644 --- a/drivers/memory/emif.h +++ b/drivers/memory/emif.h | |||
| @@ -19,6 +19,103 @@ | |||
| 19 | */ | 19 | */ |
| 20 | #define EMIF_MAX_NUM_FREQUENCIES 6 | 20 | #define EMIF_MAX_NUM_FREQUENCIES 6 |
| 21 | 21 | ||
| 22 | /* State of the core voltage */ | ||
| 23 | #define DDR_VOLTAGE_STABLE 0 | ||
| 24 | #define DDR_VOLTAGE_RAMPING 1 | ||
| 25 | |||
| 26 | /* Defines for timing De-rating */ | ||
| 27 | #define EMIF_NORMAL_TIMINGS 0 | ||
| 28 | #define EMIF_DERATED_TIMINGS 1 | ||
| 29 | |||
| 30 | /* Length of the forced read idle period in terms of cycles */ | ||
| 31 | #define EMIF_READ_IDLE_LEN_VAL 5 | ||
| 32 | |||
| 33 | /* | ||
| 34 | * forced read idle interval to be used when voltage | ||
| 35 | * is changed as part of DVFS/DPS - 1ms | ||
| 36 | */ | ||
| 37 | #define READ_IDLE_INTERVAL_DVFS (1*1000000) | ||
| 38 | |||
| 39 | /* | ||
| 40 | * Forced read idle interval to be used when voltage is stable | ||
| 41 | * 50us - or maximum value will do | ||
| 42 | */ | ||
| 43 | #define READ_IDLE_INTERVAL_NORMAL (50*1000000) | ||
| 44 | |||
| 45 | /* DLL calibration interval when voltage is NOT stable - 1us */ | ||
| 46 | #define DLL_CALIB_INTERVAL_DVFS (1*1000000) | ||
| 47 | |||
| 48 | #define DLL_CALIB_ACK_WAIT_VAL 5 | ||
| 49 | |||
| 50 | /* Interval between ZQCS commands - hw team recommended value */ | ||
| 51 | #define EMIF_ZQCS_INTERVAL_US (50*1000) | ||
| 52 | /* Enable ZQ Calibration on exiting Self-refresh */ | ||
| 53 | #define ZQ_SFEXITEN_ENABLE 1 | ||
| 54 | /* | ||
| 55 | * ZQ Calibration simultaneously on both chip-selects: | ||
| 56 | * Needs one calibration resistor per CS | ||
| 57 | */ | ||
| 58 | #define ZQ_DUALCALEN_DISABLE 0 | ||
| 59 | #define ZQ_DUALCALEN_ENABLE 1 | ||
| 60 | |||
| 61 | #define T_ZQCS_DEFAULT_NS 90 | ||
| 62 | #define T_ZQCL_DEFAULT_NS 360 | ||
| 63 | #define T_ZQINIT_DEFAULT_NS 1000 | ||
| 64 | |||
| 65 | /* DPD_EN */ | ||
| 66 | #define DPD_DISABLE 0 | ||
| 67 | #define DPD_ENABLE 1 | ||
| 68 | |||
| 69 | /* | ||
| 70 | * Default values for the low-power entry to be used if not provided by user. | ||
| 71 | * OMAP4/5 has a hw bug(i735) due to which this value can not be less than 512 | ||
| 72 | * Timeout values are in DDR clock 'cycles' and frequency threshold in Hz | ||
| 73 | */ | ||
| 74 | #define EMIF_LP_MODE_TIMEOUT_PERFORMANCE 2048 | ||
| 75 | #define EMIF_LP_MODE_TIMEOUT_POWER 512 | ||
| 76 | #define EMIF_LP_MODE_FREQ_THRESHOLD 400000000 | ||
| 77 | |||
| 78 | /* DDR_PHY_CTRL_1 values for EMIF4D - ATTILA PHY combination */ | ||
| 79 | #define EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY 0x049FF000 | ||
| 80 | #define EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY 0x41 | ||
| 81 | #define EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY 0x80 | ||
| 82 | #define EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY 0xFF | ||
| 83 | |||
| 84 | /* DDR_PHY_CTRL_1 values for EMIF4D5 INTELLIPHY combination */ | ||
| 85 | #define EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY 0x0E084200 | ||
| 86 | #define EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS 10000 | ||
| 87 | |||
| 88 | /* TEMP_ALERT_CONFIG - corresponding to temp gradient 5 C/s */ | ||
| 89 | #define TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS 360 | ||
| 90 | |||
| 91 | #define EMIF_T_CSTA 3 | ||
| 92 | #define EMIF_T_PDLL_UL 128 | ||
| 93 | |||
| 94 | /* External PHY control registers magic values */ | ||
| 95 | #define EMIF_EXT_PHY_CTRL_1_VAL 0x04020080 | ||
| 96 | #define EMIF_EXT_PHY_CTRL_5_VAL 0x04010040 | ||
| 97 | #define EMIF_EXT_PHY_CTRL_6_VAL 0x01004010 | ||
| 98 | #define EMIF_EXT_PHY_CTRL_7_VAL 0x00001004 | ||
| 99 | #define EMIF_EXT_PHY_CTRL_8_VAL 0x04010040 | ||
| 100 | #define EMIF_EXT_PHY_CTRL_9_VAL 0x01004010 | ||
| 101 | #define EMIF_EXT_PHY_CTRL_10_VAL 0x00001004 | ||
| 102 | #define EMIF_EXT_PHY_CTRL_11_VAL 0x00000000 | ||
| 103 | #define EMIF_EXT_PHY_CTRL_12_VAL 0x00000000 | ||
| 104 | #define EMIF_EXT_PHY_CTRL_13_VAL 0x00000000 | ||
| 105 | #define EMIF_EXT_PHY_CTRL_14_VAL 0x80080080 | ||
| 106 | #define EMIF_EXT_PHY_CTRL_15_VAL 0x00800800 | ||
| 107 | #define EMIF_EXT_PHY_CTRL_16_VAL 0x08102040 | ||
| 108 | #define EMIF_EXT_PHY_CTRL_17_VAL 0x00000001 | ||
| 109 | #define EMIF_EXT_PHY_CTRL_18_VAL 0x540A8150 | ||
| 110 | #define EMIF_EXT_PHY_CTRL_19_VAL 0xA81502A0 | ||
| 111 | #define EMIF_EXT_PHY_CTRL_20_VAL 0x002A0540 | ||
| 112 | #define EMIF_EXT_PHY_CTRL_21_VAL 0x00000000 | ||
| 113 | #define EMIF_EXT_PHY_CTRL_22_VAL 0x00000000 | ||
| 114 | #define EMIF_EXT_PHY_CTRL_23_VAL 0x00000000 | ||
| 115 | #define EMIF_EXT_PHY_CTRL_24_VAL 0x00000077 | ||
| 116 | |||
| 117 | #define EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS 1200 | ||
| 118 | |||
| 22 | /* Registers offset */ | 119 | /* Registers offset */ |
| 23 | #define EMIF_MODULE_ID_AND_REVISION 0x0000 | 120 | #define EMIF_MODULE_ID_AND_REVISION 0x0000 |
| 24 | #define EMIF_STATUS 0x0004 | 121 | #define EMIF_STATUS 0x0004 |
| @@ -458,4 +555,35 @@ | |||
| 458 | #define READ_LATENCY_SHDW_SHIFT 0 | 555 | #define READ_LATENCY_SHDW_SHIFT 0 |
| 459 | #define READ_LATENCY_SHDW_MASK (0x1f << 0) | 556 | #define READ_LATENCY_SHDW_MASK (0x1f << 0) |
| 460 | 557 | ||
| 461 | #endif | 558 | #ifndef __ASSEMBLY__ |
| 559 | /* | ||
| 560 | * Structure containing shadow of important registers in EMIF | ||
| 561 | * The calculation function fills in this structure to be later used for | ||
| 562 | * initialisation and DVFS | ||
| 563 | */ | ||
| 564 | struct emif_regs { | ||
| 565 | u32 freq; | ||
| 566 | u32 ref_ctrl_shdw; | ||
| 567 | u32 ref_ctrl_shdw_derated; | ||
| 568 | u32 sdram_tim1_shdw; | ||
| 569 | u32 sdram_tim1_shdw_derated; | ||
| 570 | u32 sdram_tim2_shdw; | ||
| 571 | u32 sdram_tim3_shdw; | ||
| 572 | u32 sdram_tim3_shdw_derated; | ||
| 573 | u32 pwr_mgmt_ctrl_shdw; | ||
| 574 | union { | ||
| 575 | u32 read_idle_ctrl_shdw_normal; | ||
| 576 | u32 dll_calib_ctrl_shdw_normal; | ||
| 577 | }; | ||
| 578 | union { | ||
| 579 | u32 read_idle_ctrl_shdw_volt_ramp; | ||
| 580 | u32 dll_calib_ctrl_shdw_volt_ramp; | ||
| 581 | }; | ||
| 582 | |||
| 583 | u32 phy_ctrl_1_shdw; | ||
| 584 | u32 ext_phy_ctrl_2_shdw; | ||
| 585 | u32 ext_phy_ctrl_3_shdw; | ||
| 586 | u32 ext_phy_ctrl_4_shdw; | ||
| 587 | }; | ||
| 588 | #endif /* __ASSEMBLY__ */ | ||
| 589 | #endif /* __EMIF_H */ | ||
