diff options
-rw-r--r-- | kernel/time/sched_clock.c | 107 |
1 files changed, 56 insertions, 51 deletions
diff --git a/kernel/time/sched_clock.c b/kernel/time/sched_clock.c index eeea1e950b72..a26036d37a38 100644 --- a/kernel/time/sched_clock.c +++ b/kernel/time/sched_clock.c | |||
@@ -1,5 +1,6 @@ | |||
1 | /* | 1 | /* |
2 | * sched_clock.c: support for extending counters to full 64-bit ns counter | 2 | * sched_clock.c: Generic sched_clock() support, to extend low level |
3 | * hardware time counters to full 64-bit ns values. | ||
3 | * | 4 | * |
4 | * This program is free software; you can redistribute it and/or modify | 5 | * This program is free software; you can redistribute it and/or modify |
5 | * it under the terms of the GNU General Public License version 2 as | 6 | * it under the terms of the GNU General Public License version 2 as |
@@ -19,15 +20,15 @@ | |||
19 | #include <linux/bitops.h> | 20 | #include <linux/bitops.h> |
20 | 21 | ||
21 | /** | 22 | /** |
22 | * struct clock_read_data - data required to read from sched_clock | 23 | * struct clock_read_data - data required to read from sched_clock() |
23 | * | 24 | * |
24 | * @epoch_ns: sched_clock value at last update | 25 | * @epoch_ns: sched_clock() value at last update |
25 | * @epoch_cyc: Clock cycle value at last update | 26 | * @epoch_cyc: Clock cycle value at last update. |
26 | * @sched_clock_mask: Bitmask for two's complement subtraction of non 64bit | 27 | * @sched_clock_mask: Bitmask for two's complement subtraction of non 64bit |
27 | * clocks | 28 | * clocks. |
28 | * @read_sched_clock: Current clock source (or dummy source when suspended) | 29 | * @read_sched_clock: Current clock source (or dummy source when suspended). |
29 | * @mult: Multipler for scaled math conversion | 30 | * @mult: Multipler for scaled math conversion. |
30 | * @shift: Shift value for scaled math conversion | 31 | * @shift: Shift value for scaled math conversion. |
31 | * | 32 | * |
32 | * Care must be taken when updating this structure; it is read by | 33 | * Care must be taken when updating this structure; it is read by |
33 | * some very hot code paths. It occupies <=40 bytes and, when combined | 34 | * some very hot code paths. It occupies <=40 bytes and, when combined |
@@ -44,25 +45,26 @@ struct clock_read_data { | |||
44 | }; | 45 | }; |
45 | 46 | ||
46 | /** | 47 | /** |
47 | * struct clock_data - all data needed for sched_clock (including | 48 | * struct clock_data - all data needed for sched_clock() (including |
48 | * registration of a new clock source) | 49 | * registration of a new clock source) |
49 | * | 50 | * |
50 | * @seq: Sequence counter for protecting updates. The lowest | 51 | * @seq: Sequence counter for protecting updates. The lowest |
51 | * bit is the index for @read_data. | 52 | * bit is the index for @read_data. |
52 | * @read_data: Data required to read from sched_clock. | 53 | * @read_data: Data required to read from sched_clock. |
53 | * @wrap_kt: Duration for which clock can run before wrapping | 54 | * @wrap_kt: Duration for which clock can run before wrapping. |
54 | * @rate: Tick rate of the registered clock | 55 | * @rate: Tick rate of the registered clock. |
55 | * @actual_read_sched_clock: Registered clock read function | 56 | * @actual_read_sched_clock: Registered hardware level clock read function. |
56 | * | 57 | * |
57 | * The ordering of this structure has been chosen to optimize cache | 58 | * The ordering of this structure has been chosen to optimize cache |
58 | * performance. In particular seq and read_data[0] (combined) should fit | 59 | * performance. In particular 'seq' and 'read_data[0]' (combined) should fit |
59 | * into a single 64 byte cache line. | 60 | * into a single 64-byte cache line. |
60 | */ | 61 | */ |
61 | struct clock_data { | 62 | struct clock_data { |
62 | seqcount_t seq; | 63 | seqcount_t seq; |
63 | struct clock_read_data read_data[2]; | 64 | struct clock_read_data read_data[2]; |
64 | ktime_t wrap_kt; | 65 | ktime_t wrap_kt; |
65 | unsigned long rate; | 66 | unsigned long rate; |
67 | |||
66 | u64 (*actual_read_sched_clock)(void); | 68 | u64 (*actual_read_sched_clock)(void); |
67 | }; | 69 | }; |
68 | 70 | ||
@@ -112,10 +114,10 @@ unsigned long long notrace sched_clock(void) | |||
112 | /* | 114 | /* |
113 | * Updating the data required to read the clock. | 115 | * Updating the data required to read the clock. |
114 | * | 116 | * |
115 | * sched_clock will never observe mis-matched data even if called from | 117 | * sched_clock() will never observe mis-matched data even if called from |
116 | * an NMI. We do this by maintaining an odd/even copy of the data and | 118 | * an NMI. We do this by maintaining an odd/even copy of the data and |
117 | * steering sched_clock to one or the other using a sequence counter. | 119 | * steering sched_clock() to one or the other using a sequence counter. |
118 | * In order to preserve the data cache profile of sched_clock as much | 120 | * In order to preserve the data cache profile of sched_clock() as much |
119 | * as possible the system reverts back to the even copy when the update | 121 | * as possible the system reverts back to the even copy when the update |
120 | * completes; the odd copy is used *only* during an update. | 122 | * completes; the odd copy is used *only* during an update. |
121 | */ | 123 | */ |
@@ -135,7 +137,7 @@ static void update_clock_read_data(struct clock_read_data *rd) | |||
135 | } | 137 | } |
136 | 138 | ||
137 | /* | 139 | /* |
138 | * Atomically update the sched_clock epoch. | 140 | * Atomically update the sched_clock() epoch. |
139 | */ | 141 | */ |
140 | static void update_sched_clock(void) | 142 | static void update_sched_clock(void) |
141 | { | 143 | { |
@@ -146,9 +148,7 @@ static void update_sched_clock(void) | |||
146 | rd = cd.read_data[0]; | 148 | rd = cd.read_data[0]; |
147 | 149 | ||
148 | cyc = cd.actual_read_sched_clock(); | 150 | cyc = cd.actual_read_sched_clock(); |
149 | ns = rd.epoch_ns + | 151 | ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift); |
150 | cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, | ||
151 | rd.mult, rd.shift); | ||
152 | 152 | ||
153 | rd.epoch_ns = ns; | 153 | rd.epoch_ns = ns; |
154 | rd.epoch_cyc = cyc; | 154 | rd.epoch_cyc = cyc; |
@@ -160,11 +160,12 @@ static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt) | |||
160 | { | 160 | { |
161 | update_sched_clock(); | 161 | update_sched_clock(); |
162 | hrtimer_forward_now(hrt, cd.wrap_kt); | 162 | hrtimer_forward_now(hrt, cd.wrap_kt); |
163 | |||
163 | return HRTIMER_RESTART; | 164 | return HRTIMER_RESTART; |
164 | } | 165 | } |
165 | 166 | ||
166 | void __init sched_clock_register(u64 (*read)(void), int bits, | 167 | void __init |
167 | unsigned long rate) | 168 | sched_clock_register(u64 (*read)(void), int bits, unsigned long rate) |
168 | { | 169 | { |
169 | u64 res, wrap, new_mask, new_epoch, cyc, ns; | 170 | u64 res, wrap, new_mask, new_epoch, cyc, ns; |
170 | u32 new_mult, new_shift; | 171 | u32 new_mult, new_shift; |
@@ -177,51 +178,53 @@ void __init sched_clock_register(u64 (*read)(void), int bits, | |||
177 | 178 | ||
178 | WARN_ON(!irqs_disabled()); | 179 | WARN_ON(!irqs_disabled()); |
179 | 180 | ||
180 | /* calculate the mult/shift to convert counter ticks to ns. */ | 181 | /* Calculate the mult/shift to convert counter ticks to ns. */ |
181 | clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600); | 182 | clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600); |
182 | 183 | ||
183 | new_mask = CLOCKSOURCE_MASK(bits); | 184 | new_mask = CLOCKSOURCE_MASK(bits); |
184 | cd.rate = rate; | 185 | cd.rate = rate; |
185 | 186 | ||
186 | /* calculate how many nanosecs until we risk wrapping */ | 187 | /* Calculate how many nanosecs until we risk wrapping */ |
187 | wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask, NULL); | 188 | wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask, NULL); |
188 | cd.wrap_kt = ns_to_ktime(wrap); | 189 | cd.wrap_kt = ns_to_ktime(wrap); |
189 | 190 | ||
190 | rd = cd.read_data[0]; | 191 | rd = cd.read_data[0]; |
191 | 192 | ||
192 | /* update epoch for new counter and update epoch_ns from old counter*/ | 193 | /* Update epoch for new counter and update 'epoch_ns' from old counter*/ |
193 | new_epoch = read(); | 194 | new_epoch = read(); |
194 | cyc = cd.actual_read_sched_clock(); | 195 | cyc = cd.actual_read_sched_clock(); |
195 | ns = rd.epoch_ns + | 196 | ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift); |
196 | cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, | ||
197 | rd.mult, rd.shift); | ||
198 | cd.actual_read_sched_clock = read; | 197 | cd.actual_read_sched_clock = read; |
199 | 198 | ||
200 | rd.read_sched_clock = read; | 199 | rd.read_sched_clock = read; |
201 | rd.sched_clock_mask = new_mask; | 200 | rd.sched_clock_mask = new_mask; |
202 | rd.mult = new_mult; | 201 | rd.mult = new_mult; |
203 | rd.shift = new_shift; | 202 | rd.shift = new_shift; |
204 | rd.epoch_cyc = new_epoch; | 203 | rd.epoch_cyc = new_epoch; |
205 | rd.epoch_ns = ns; | 204 | rd.epoch_ns = ns; |
205 | |||
206 | update_clock_read_data(&rd); | 206 | update_clock_read_data(&rd); |
207 | 207 | ||
208 | r = rate; | 208 | r = rate; |
209 | if (r >= 4000000) { | 209 | if (r >= 4000000) { |
210 | r /= 1000000; | 210 | r /= 1000000; |
211 | r_unit = 'M'; | 211 | r_unit = 'M'; |
212 | } else if (r >= 1000) { | 212 | } else { |
213 | r /= 1000; | 213 | if (r >= 1000) { |
214 | r_unit = 'k'; | 214 | r /= 1000; |
215 | } else | 215 | r_unit = 'k'; |
216 | r_unit = ' '; | 216 | } else { |
217 | 217 | r_unit = ' '; | |
218 | /* calculate the ns resolution of this counter */ | 218 | } |
219 | } | ||
220 | |||
221 | /* Calculate the ns resolution of this counter */ | ||
219 | res = cyc_to_ns(1ULL, new_mult, new_shift); | 222 | res = cyc_to_ns(1ULL, new_mult, new_shift); |
220 | 223 | ||
221 | pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n", | 224 | pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n", |
222 | bits, r, r_unit, res, wrap); | 225 | bits, r, r_unit, res, wrap); |
223 | 226 | ||
224 | /* Enable IRQ time accounting if we have a fast enough sched_clock */ | 227 | /* Enable IRQ time accounting if we have a fast enough sched_clock() */ |
225 | if (irqtime > 0 || (irqtime == -1 && rate >= 1000000)) | 228 | if (irqtime > 0 || (irqtime == -1 && rate >= 1000000)) |
226 | enable_sched_clock_irqtime(); | 229 | enable_sched_clock_irqtime(); |
227 | 230 | ||
@@ -231,7 +234,7 @@ void __init sched_clock_register(u64 (*read)(void), int bits, | |||
231 | void __init sched_clock_postinit(void) | 234 | void __init sched_clock_postinit(void) |
232 | { | 235 | { |
233 | /* | 236 | /* |
234 | * If no sched_clock function has been provided at that point, | 237 | * If no sched_clock() function has been provided at that point, |
235 | * make it the final one one. | 238 | * make it the final one one. |
236 | */ | 239 | */ |
237 | if (cd.actual_read_sched_clock == jiffy_sched_clock_read) | 240 | if (cd.actual_read_sched_clock == jiffy_sched_clock_read) |
@@ -257,7 +260,7 @@ void __init sched_clock_postinit(void) | |||
257 | * This function must only be called from the critical | 260 | * This function must only be called from the critical |
258 | * section in sched_clock(). It relies on the read_seqcount_retry() | 261 | * section in sched_clock(). It relies on the read_seqcount_retry() |
259 | * at the end of the critical section to be sure we observe the | 262 | * at the end of the critical section to be sure we observe the |
260 | * correct copy of epoch_cyc. | 263 | * correct copy of 'epoch_cyc'. |
261 | */ | 264 | */ |
262 | static u64 notrace suspended_sched_clock_read(void) | 265 | static u64 notrace suspended_sched_clock_read(void) |
263 | { | 266 | { |
@@ -273,6 +276,7 @@ static int sched_clock_suspend(void) | |||
273 | update_sched_clock(); | 276 | update_sched_clock(); |
274 | hrtimer_cancel(&sched_clock_timer); | 277 | hrtimer_cancel(&sched_clock_timer); |
275 | rd->read_sched_clock = suspended_sched_clock_read; | 278 | rd->read_sched_clock = suspended_sched_clock_read; |
279 | |||
276 | return 0; | 280 | return 0; |
277 | } | 281 | } |
278 | 282 | ||
@@ -286,13 +290,14 @@ static void sched_clock_resume(void) | |||
286 | } | 290 | } |
287 | 291 | ||
288 | static struct syscore_ops sched_clock_ops = { | 292 | static struct syscore_ops sched_clock_ops = { |
289 | .suspend = sched_clock_suspend, | 293 | .suspend = sched_clock_suspend, |
290 | .resume = sched_clock_resume, | 294 | .resume = sched_clock_resume, |
291 | }; | 295 | }; |
292 | 296 | ||
293 | static int __init sched_clock_syscore_init(void) | 297 | static int __init sched_clock_syscore_init(void) |
294 | { | 298 | { |
295 | register_syscore_ops(&sched_clock_ops); | 299 | register_syscore_ops(&sched_clock_ops); |
300 | |||
296 | return 0; | 301 | return 0; |
297 | } | 302 | } |
298 | device_initcall(sched_clock_syscore_init); | 303 | device_initcall(sched_clock_syscore_init); |