aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--drivers/macintosh/Kconfig7
-rw-r--r--drivers/macintosh/Makefile1
-rw-r--r--drivers/macintosh/macserial.c3036
-rw-r--r--drivers/macintosh/macserial.h461
4 files changed, 0 insertions, 3505 deletions
diff --git a/drivers/macintosh/Kconfig b/drivers/macintosh/Kconfig
index 8a7117a08cf0..b0ace5bc950c 100644
--- a/drivers/macintosh/Kconfig
+++ b/drivers/macintosh/Kconfig
@@ -126,13 +126,6 @@ config PMAC_BACKLIGHT
126 events; also, the PowerBook button device will be enabled so you can 126 events; also, the PowerBook button device will be enabled so you can
127 change the screen brightness. 127 change the screen brightness.
128 128
129config MAC_SERIAL
130 tristate "Support for PowerMac serial ports (OBSOLETE DRIVER)"
131 depends on PPC_PMAC && BROKEN
132 help
133 This driver is obsolete. Use CONFIG_SERIAL_PMACZILOG in
134 "Character devices --> Serial drivers --> PowerMac z85c30" option.
135
136config ADB_MACIO 129config ADB_MACIO
137 bool "Include MacIO (CHRP) ADB driver" 130 bool "Include MacIO (CHRP) ADB driver"
138 depends on ADB && PPC_CHRP && !PPC_PMAC64 131 depends on ADB && PPC_CHRP && !PPC_PMAC64
diff --git a/drivers/macintosh/Makefile b/drivers/macintosh/Makefile
index c3a4705a8295..b3f88a4fcef7 100644
--- a/drivers/macintosh/Makefile
+++ b/drivers/macintosh/Makefile
@@ -7,7 +7,6 @@
7obj-$(CONFIG_PPC_PMAC) += macio_asic.o 7obj-$(CONFIG_PPC_PMAC) += macio_asic.o
8 8
9obj-$(CONFIG_PMAC_PBOOK) += mediabay.o 9obj-$(CONFIG_PMAC_PBOOK) += mediabay.o
10obj-$(CONFIG_MAC_SERIAL) += macserial.o
11obj-$(CONFIG_MAC_EMUMOUSEBTN) += mac_hid.o 10obj-$(CONFIG_MAC_EMUMOUSEBTN) += mac_hid.o
12obj-$(CONFIG_INPUT_ADBHID) += adbhid.o 11obj-$(CONFIG_INPUT_ADBHID) += adbhid.o
13obj-$(CONFIG_ANSLCD) += ans-lcd.o 12obj-$(CONFIG_ANSLCD) += ans-lcd.o
diff --git a/drivers/macintosh/macserial.c b/drivers/macintosh/macserial.c
deleted file mode 100644
index 0be3ac6cc169..000000000000
--- a/drivers/macintosh/macserial.c
+++ /dev/null
@@ -1,3036 +0,0 @@
1/*
2 * macserial.c: Serial port driver for Power Macintoshes.
3 *
4 * Derived from drivers/sbus/char/sunserial.c by Paul Mackerras.
5 *
6 * Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au)
7 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
8 *
9 * Receive DMA code by Takashi Oe <toe@unlserve.unl.edu>.
10 *
11 * $Id: macserial.c,v 1.24.2.4 1999/10/19 04:36:42 paulus Exp $
12 */
13
14#include <linux/config.h>
15#include <linux/errno.h>
16#include <linux/module.h>
17#include <linux/signal.h>
18#include <linux/sched.h>
19#include <linux/timer.h>
20#include <linux/interrupt.h>
21#include <linux/workqueue.h>
22#include <linux/tty.h>
23#include <linux/tty_flip.h>
24#include <linux/major.h>
25#include <linux/string.h>
26#include <linux/fcntl.h>
27#include <linux/mm.h>
28#include <linux/kernel.h>
29#include <linux/delay.h>
30#include <linux/init.h>
31#ifdef CONFIG_SERIAL_CONSOLE
32#include <linux/console.h>
33#endif
34#include <linux/slab.h>
35#include <linux/bitops.h>
36
37#include <asm/sections.h>
38#include <asm/io.h>
39#include <asm/pgtable.h>
40#include <asm/irq.h>
41#include <asm/prom.h>
42#include <asm/system.h>
43#include <asm/segment.h>
44#include <asm/machdep.h>
45#include <asm/pmac_feature.h>
46#include <linux/adb.h>
47#include <linux/pmu.h>
48#ifdef CONFIG_KGDB
49#include <asm/kgdb.h>
50#endif
51#include <asm/dbdma.h>
52
53#include "macserial.h"
54
55#ifdef CONFIG_PMAC_PBOOK
56static int serial_notify_sleep(struct pmu_sleep_notifier *self, int when);
57static struct pmu_sleep_notifier serial_sleep_notifier = {
58 serial_notify_sleep,
59 SLEEP_LEVEL_MISC,
60};
61#endif
62
63#define SUPPORT_SERIAL_DMA
64#define MACSERIAL_VERSION "2.0"
65
66/*
67 * It would be nice to dynamically allocate everything that
68 * depends on NUM_SERIAL, so we could support any number of
69 * Z8530s, but for now...
70 */
71#define NUM_SERIAL 2 /* Max number of ZS chips supported */
72#define NUM_CHANNELS (NUM_SERIAL * 2) /* 2 channels per chip */
73
74/* On PowerMacs, the hardware takes care of the SCC recovery time,
75 but we need the eieio to make sure that the accesses occur
76 in the order we want. */
77#define RECOVERY_DELAY eieio()
78
79static struct tty_driver *serial_driver;
80
81struct mac_zschannel zs_channels[NUM_CHANNELS];
82
83struct mac_serial zs_soft[NUM_CHANNELS];
84int zs_channels_found;
85struct mac_serial *zs_chain; /* list of all channels */
86
87struct tty_struct zs_ttys[NUM_CHANNELS];
88
89static int is_powerbook;
90
91#ifdef CONFIG_SERIAL_CONSOLE
92static struct console sercons;
93#endif
94
95#ifdef CONFIG_KGDB
96struct mac_zschannel *zs_kgdbchan;
97static unsigned char scc_inittab[] = {
98 9, 0x80, /* reset A side (CHRA) */
99 13, 0, /* set baud rate divisor */
100 12, 1,
101 14, 1, /* baud rate gen enable, src=rtxc (BRENABL) */
102 11, 0x50, /* clocks = br gen (RCBR | TCBR) */
103 5, 0x6a, /* tx 8 bits, assert RTS (Tx8 | TxENAB | RTS) */
104 4, 0x44, /* x16 clock, 1 stop (SB1 | X16CLK)*/
105 3, 0xc1, /* rx enable, 8 bits (RxENABLE | Rx8)*/
106};
107#endif
108#define ZS_CLOCK 3686400 /* Z8530 RTxC input clock rate */
109
110/* serial subtype definitions */
111#define SERIAL_TYPE_NORMAL 1
112
113/* number of characters left in xmit buffer before we ask for more */
114#define WAKEUP_CHARS 256
115
116/*
117 * Debugging.
118 */
119#undef SERIAL_DEBUG_INTR
120#undef SERIAL_DEBUG_OPEN
121#undef SERIAL_DEBUG_FLOW
122#undef SERIAL_DEBUG_POWER
123#undef SERIAL_DEBUG_THROTTLE
124#undef SERIAL_DEBUG_STOP
125#undef SERIAL_DEBUG_BAUDS
126
127#define RS_STROBE_TIME 10
128#define RS_ISR_PASS_LIMIT 256
129
130#define _INLINE_ inline
131
132#ifdef SERIAL_DEBUG_OPEN
133#define OPNDBG(fmt, arg...) printk(KERN_DEBUG fmt , ## arg)
134#else
135#define OPNDBG(fmt, arg...) do { } while (0)
136#endif
137#ifdef SERIAL_DEBUG_POWER
138#define PWRDBG(fmt, arg...) printk(KERN_DEBUG fmt , ## arg)
139#else
140#define PWRDBG(fmt, arg...) do { } while (0)
141#endif
142#ifdef SERIAL_DEBUG_BAUDS
143#define BAUDBG(fmt, arg...) printk(fmt , ## arg)
144#else
145#define BAUDBG(fmt, arg...) do { } while (0)
146#endif
147
148static void probe_sccs(void);
149static void change_speed(struct mac_serial *info, struct termios *old);
150static void rs_wait_until_sent(struct tty_struct *tty, int timeout);
151static int set_scc_power(struct mac_serial * info, int state);
152static int setup_scc(struct mac_serial * info);
153static void dbdma_reset(volatile struct dbdma_regs *dma);
154static void dbdma_flush(volatile struct dbdma_regs *dma);
155static irqreturn_t rs_txdma_irq(int irq, void *dev_id, struct pt_regs *regs);
156static irqreturn_t rs_rxdma_irq(int irq, void *dev_id, struct pt_regs *regs);
157static void dma_init(struct mac_serial * info);
158static void rxdma_start(struct mac_serial * info, int curr);
159static void rxdma_to_tty(struct mac_serial * info);
160
161/*
162 * tmp_buf is used as a temporary buffer by serial_write. We need to
163 * lock it in case the copy_from_user blocks while swapping in a page,
164 * and some other program tries to do a serial write at the same time.
165 * Since the lock will only come under contention when the system is
166 * swapping and available memory is low, it makes sense to share one
167 * buffer across all the serial ports, since it significantly saves
168 * memory if large numbers of serial ports are open.
169 */
170static unsigned char *tmp_buf;
171static DECLARE_MUTEX(tmp_buf_sem);
172
173
174static inline int __pmac
175serial_paranoia_check(struct mac_serial *info,
176 char *name, const char *routine)
177{
178#ifdef SERIAL_PARANOIA_CHECK
179 static const char badmagic[] = KERN_WARNING
180 "Warning: bad magic number for serial struct %s in %s\n";
181 static const char badinfo[] = KERN_WARNING
182 "Warning: null mac_serial for %s in %s\n";
183
184 if (!info) {
185 printk(badinfo, name, routine);
186 return 1;
187 }
188 if (info->magic != SERIAL_MAGIC) {
189 printk(badmagic, name, routine);
190 return 1;
191 }
192#endif
193 return 0;
194}
195
196/*
197 * Reading and writing Z8530 registers.
198 */
199static inline unsigned char __pmac read_zsreg(struct mac_zschannel *channel,
200 unsigned char reg)
201{
202 unsigned char retval;
203 unsigned long flags;
204
205 /*
206 * We have to make this atomic.
207 */
208 spin_lock_irqsave(&channel->lock, flags);
209 if (reg != 0) {
210 *channel->control = reg;
211 RECOVERY_DELAY;
212 }
213 retval = *channel->control;
214 RECOVERY_DELAY;
215 spin_unlock_irqrestore(&channel->lock, flags);
216 return retval;
217}
218
219static inline void __pmac write_zsreg(struct mac_zschannel *channel,
220 unsigned char reg, unsigned char value)
221{
222 unsigned long flags;
223
224 spin_lock_irqsave(&channel->lock, flags);
225 if (reg != 0) {
226 *channel->control = reg;
227 RECOVERY_DELAY;
228 }
229 *channel->control = value;
230 RECOVERY_DELAY;
231 spin_unlock_irqrestore(&channel->lock, flags);
232 return;
233}
234
235static inline unsigned char __pmac read_zsdata(struct mac_zschannel *channel)
236{
237 unsigned char retval;
238
239 retval = *channel->data;
240 RECOVERY_DELAY;
241 return retval;
242}
243
244static inline void write_zsdata(struct mac_zschannel *channel,
245 unsigned char value)
246{
247 *channel->data = value;
248 RECOVERY_DELAY;
249 return;
250}
251
252static inline void load_zsregs(struct mac_zschannel *channel,
253 unsigned char *regs)
254{
255 ZS_CLEARERR(channel);
256 ZS_CLEARFIFO(channel);
257 /* Load 'em up */
258 write_zsreg(channel, R4, regs[R4]);
259 write_zsreg(channel, R10, regs[R10]);
260 write_zsreg(channel, R3, regs[R3] & ~RxENABLE);
261 write_zsreg(channel, R5, regs[R5] & ~TxENAB);
262 write_zsreg(channel, R1, regs[R1]);
263 write_zsreg(channel, R9, regs[R9]);
264 write_zsreg(channel, R11, regs[R11]);
265 write_zsreg(channel, R12, regs[R12]);
266 write_zsreg(channel, R13, regs[R13]);
267 write_zsreg(channel, R14, regs[R14]);
268 write_zsreg(channel, R15, regs[R15]);
269 write_zsreg(channel, R3, regs[R3]);
270 write_zsreg(channel, R5, regs[R5]);
271 return;
272}
273
274/* Sets or clears DTR/RTS on the requested line */
275static inline void zs_rtsdtr(struct mac_serial *ss, int set)
276{
277 if (set)
278 ss->curregs[5] |= (RTS | DTR);
279 else
280 ss->curregs[5] &= ~(RTS | DTR);
281 write_zsreg(ss->zs_channel, 5, ss->curregs[5]);
282 return;
283}
284
285/* Utility routines for the Zilog */
286static inline int get_zsbaud(struct mac_serial *ss)
287{
288 struct mac_zschannel *channel = ss->zs_channel;
289 int brg;
290
291 if ((ss->curregs[R11] & TCBR) == 0) {
292 /* higher rates don't use the baud rate generator */
293 return (ss->curregs[R4] & X32CLK)? ZS_CLOCK/32: ZS_CLOCK/16;
294 }
295 /* The baud rate is split up between two 8-bit registers in
296 * what is termed 'BRG time constant' format in my docs for
297 * the chip, it is a function of the clk rate the chip is
298 * receiving which happens to be constant.
299 */
300 brg = (read_zsreg(channel, 13) << 8);
301 brg |= read_zsreg(channel, 12);
302 return BRG_TO_BPS(brg, (ZS_CLOCK/(ss->clk_divisor)));
303}
304
305/* On receive, this clears errors and the receiver interrupts */
306static inline void rs_recv_clear(struct mac_zschannel *zsc)
307{
308 write_zsreg(zsc, 0, ERR_RES);
309 write_zsreg(zsc, 0, RES_H_IUS); /* XXX this is unnecessary */
310}
311
312/*
313 * Reset a Descriptor-Based DMA channel.
314 */
315static void dbdma_reset(volatile struct dbdma_regs *dma)
316{
317 int i;
318
319 out_le32(&dma->control, (WAKE|FLUSH|PAUSE|RUN) << 16);
320
321 /*
322 * Yes this looks peculiar, but apparently it needs to be this
323 * way on some machines. (We need to make sure the DBDMA
324 * engine has actually got the write above and responded
325 * to it. - paulus)
326 */
327 for (i = 200; i > 0; --i)
328 if (ld_le32(&dma->status) & RUN)
329 udelay(1);
330}
331
332/*
333 * Tells a DBDMA channel to stop and write any buffered data
334 * it might have to memory.
335 */
336static _INLINE_ void dbdma_flush(volatile struct dbdma_regs *dma)
337{
338 int i = 0;
339
340 out_le32(&dma->control, (FLUSH << 16) | FLUSH);
341 while (((in_le32(&dma->status) & FLUSH) != 0) && (i++ < 100))
342 udelay(1);
343}
344
345/*
346 * ----------------------------------------------------------------------
347 *
348 * Here starts the interrupt handling routines. All of the following
349 * subroutines are declared as inline and are folded into
350 * rs_interrupt(). They were separated out for readability's sake.
351 *
352 * - Ted Ts'o (tytso@mit.edu), 7-Mar-93
353 * -----------------------------------------------------------------------
354 */
355
356/*
357 * This routine is used by the interrupt handler to schedule
358 * processing in the software interrupt portion of the driver.
359 */
360static _INLINE_ void rs_sched_event(struct mac_serial *info,
361 int event)
362{
363 info->event |= 1 << event;
364 schedule_work(&info->tqueue);
365}
366
367/* Work out the flag value for a z8530 status value. */
368static _INLINE_ int stat_to_flag(int stat)
369{
370 int flag;
371
372 if (stat & Rx_OVR) {
373 flag = TTY_OVERRUN;
374 } else if (stat & FRM_ERR) {
375 flag = TTY_FRAME;
376 } else if (stat & PAR_ERR) {
377 flag = TTY_PARITY;
378 } else
379 flag = 0;
380 return flag;
381}
382
383static _INLINE_ void receive_chars(struct mac_serial *info,
384 struct pt_regs *regs)
385{
386 struct tty_struct *tty = info->tty;
387 unsigned char ch, stat, flag;
388
389 while ((read_zsreg(info->zs_channel, 0) & Rx_CH_AV) != 0) {
390
391 stat = read_zsreg(info->zs_channel, R1);
392 ch = read_zsdata(info->zs_channel);
393
394#ifdef CONFIG_KGDB
395 if (info->kgdb_channel) {
396 if (ch == 0x03 || ch == '$')
397 breakpoint();
398 if (stat & (Rx_OVR|FRM_ERR|PAR_ERR))
399 write_zsreg(info->zs_channel, 0, ERR_RES);
400 return;
401 }
402#endif
403 if (!tty)
404 continue;
405 if (tty->flip.count >= TTY_FLIPBUF_SIZE)
406 tty_flip_buffer_push(tty);
407
408 if (tty->flip.count >= TTY_FLIPBUF_SIZE) {
409 static int flip_buf_ovf;
410 if (++flip_buf_ovf <= 1)
411 printk(KERN_WARNING "FB. overflow: %d\n",
412 flip_buf_ovf);
413 break;
414 }
415 tty->flip.count++;
416 {
417 static int flip_max_cnt;
418 if (flip_max_cnt < tty->flip.count)
419 flip_max_cnt = tty->flip.count;
420 }
421 flag = stat_to_flag(stat);
422 if (flag)
423 /* reset the error indication */
424 write_zsreg(info->zs_channel, 0, ERR_RES);
425 *tty->flip.flag_buf_ptr++ = flag;
426 *tty->flip.char_buf_ptr++ = ch;
427 }
428 if (tty)
429 tty_flip_buffer_push(tty);
430}
431
432static void transmit_chars(struct mac_serial *info)
433{
434 if ((read_zsreg(info->zs_channel, 0) & Tx_BUF_EMP) == 0)
435 return;
436 info->tx_active = 0;
437
438 if (info->x_char && !info->power_wait) {
439 /* Send next char */
440 write_zsdata(info->zs_channel, info->x_char);
441 info->x_char = 0;
442 info->tx_active = 1;
443 return;
444 }
445
446 if ((info->xmit_cnt <= 0) || info->tty->stopped || info->tx_stopped
447 || info->power_wait) {
448 write_zsreg(info->zs_channel, 0, RES_Tx_P);
449 return;
450 }
451
452 /* Send char */
453 write_zsdata(info->zs_channel, info->xmit_buf[info->xmit_tail++]);
454 info->xmit_tail = info->xmit_tail & (SERIAL_XMIT_SIZE-1);
455 info->xmit_cnt--;
456 info->tx_active = 1;
457
458 if (info->xmit_cnt < WAKEUP_CHARS)
459 rs_sched_event(info, RS_EVENT_WRITE_WAKEUP);
460}
461
462static void powerup_done(unsigned long data)
463{
464 struct mac_serial *info = (struct mac_serial *) data;
465 unsigned long flags;
466
467 spin_lock_irqsave(&info->lock, flags);
468 info->power_wait = 0;
469 transmit_chars(info);
470 spin_unlock_irqrestore(&info->lock, flags);
471}
472
473static _INLINE_ void status_handle(struct mac_serial *info)
474{
475 unsigned char status;
476
477 /* Get status from Read Register 0 */
478 status = read_zsreg(info->zs_channel, 0);
479
480 /* Check for DCD transitions */
481 if (((status ^ info->read_reg_zero) & DCD) != 0
482 && info->tty && !C_CLOCAL(info->tty)) {
483 if (status & DCD) {
484 wake_up_interruptible(&info->open_wait);
485 } else {
486 if (info->tty)
487 tty_hangup(info->tty);
488 }
489 }
490
491 /* Check for CTS transitions */
492 if (info->tty && C_CRTSCTS(info->tty)) {
493 /*
494 * For some reason, on the Power Macintosh,
495 * it seems that the CTS bit is 1 when CTS is
496 * *negated* and 0 when it is asserted.
497 * The DCD bit doesn't seem to be inverted
498 * like this.
499 */
500 if ((status & CTS) == 0) {
501 if (info->tx_stopped) {
502#ifdef SERIAL_DEBUG_FLOW
503 printk(KERN_DEBUG "CTS up\n");
504#endif
505 info->tx_stopped = 0;
506 if (!info->tx_active)
507 transmit_chars(info);
508 }
509 } else {
510#ifdef SERIAL_DEBUG_FLOW
511 printk(KERN_DEBUG "CTS down\n");
512#endif
513 info->tx_stopped = 1;
514 }
515 }
516
517 /* Clear status condition... */
518 write_zsreg(info->zs_channel, 0, RES_EXT_INT);
519 info->read_reg_zero = status;
520}
521
522static _INLINE_ void receive_special_dma(struct mac_serial *info)
523{
524 unsigned char stat, flag;
525 volatile struct dbdma_regs *rd = &info->rx->dma;
526 int where = RX_BUF_SIZE;
527
528 spin_lock(&info->rx_dma_lock);
529 if ((ld_le32(&rd->status) & ACTIVE) != 0)
530 dbdma_flush(rd);
531 if (in_le32(&rd->cmdptr)
532 == virt_to_bus(info->rx_cmds[info->rx_cbuf] + 1))
533 where -= in_le16(&info->rx->res_count);
534 where--;
535
536 stat = read_zsreg(info->zs_channel, R1);
537
538 flag = stat_to_flag(stat);
539 if (flag) {
540 info->rx_flag_buf[info->rx_cbuf][where] = flag;
541 /* reset the error indication */
542 write_zsreg(info->zs_channel, 0, ERR_RES);
543 }
544
545 spin_unlock(&info->rx_dma_lock);
546}
547
548/*
549 * This is the serial driver's generic interrupt routine
550 */
551static irqreturn_t rs_interrupt(int irq, void *dev_id, struct pt_regs * regs)
552{
553 struct mac_serial *info = (struct mac_serial *) dev_id;
554 unsigned char zs_intreg;
555 int shift;
556 unsigned long flags;
557 int handled = 0;
558
559 if (!(info->flags & ZILOG_INITIALIZED)) {
560 printk(KERN_WARNING "rs_interrupt: irq %d, port not "
561 "initialized\n", irq);
562 disable_irq(irq);
563 return IRQ_NONE;
564 }
565
566 /* NOTE: The read register 3, which holds the irq status,
567 * does so for both channels on each chip. Although
568 * the status value itself must be read from the A
569 * channel and is only valid when read from channel A.
570 * Yes... broken hardware...
571 */
572#define CHAN_IRQMASK (CHBRxIP | CHBTxIP | CHBEXT)
573
574 if (info->zs_chan_a == info->zs_channel)
575 shift = 3; /* Channel A */
576 else
577 shift = 0; /* Channel B */
578
579 spin_lock_irqsave(&info->lock, flags);
580 for (;;) {
581 zs_intreg = read_zsreg(info->zs_chan_a, 3) >> shift;
582#ifdef SERIAL_DEBUG_INTR
583 printk(KERN_DEBUG "rs_interrupt: irq %d, zs_intreg 0x%x\n",
584 irq, (int)zs_intreg);
585#endif
586
587 if ((zs_intreg & CHAN_IRQMASK) == 0)
588 break;
589 handled = 1;
590
591 if (zs_intreg & CHBRxIP) {
592 /* If we are doing DMA, we only ask for interrupts
593 on characters with errors or special conditions. */
594 if (info->dma_initted)
595 receive_special_dma(info);
596 else
597 receive_chars(info, regs);
598 }
599 if (zs_intreg & CHBTxIP)
600 transmit_chars(info);
601 if (zs_intreg & CHBEXT)
602 status_handle(info);
603 }
604 spin_unlock_irqrestore(&info->lock, flags);
605 return IRQ_RETVAL(handled);
606}
607
608/* Transmit DMA interrupt - not used at present */
609static irqreturn_t rs_txdma_irq(int irq, void *dev_id, struct pt_regs *regs)
610{
611 return IRQ_HANDLED;
612}
613
614/*
615 * Receive DMA interrupt.
616 */
617static irqreturn_t rs_rxdma_irq(int irq, void *dev_id, struct pt_regs *regs)
618{
619 struct mac_serial *info = (struct mac_serial *) dev_id;
620 volatile struct dbdma_cmd *cd;
621
622 if (!info->dma_initted)
623 return IRQ_NONE;
624 spin_lock(&info->rx_dma_lock);
625 /* First, confirm that this interrupt is, indeed, coming */
626 /* from Rx DMA */
627 cd = info->rx_cmds[info->rx_cbuf] + 2;
628 if ((in_le16(&cd->xfer_status) & (RUN | ACTIVE)) != (RUN | ACTIVE)) {
629 spin_unlock(&info->rx_dma_lock);
630 return IRQ_NONE;
631 }
632 if (info->rx_fbuf != RX_NO_FBUF) {
633 info->rx_cbuf = info->rx_fbuf;
634 if (++info->rx_fbuf == info->rx_nbuf)
635 info->rx_fbuf = 0;
636 if (info->rx_fbuf == info->rx_ubuf)
637 info->rx_fbuf = RX_NO_FBUF;
638 }
639 spin_unlock(&info->rx_dma_lock);
640 return IRQ_HANDLED;
641}
642
643/*
644 * -------------------------------------------------------------------
645 * Here ends the serial interrupt routines.
646 * -------------------------------------------------------------------
647 */
648
649/*
650 * ------------------------------------------------------------
651 * rs_stop() and rs_start()
652 *
653 * This routines are called before setting or resetting tty->stopped.
654 * ------------------------------------------------------------
655 */
656static void rs_stop(struct tty_struct *tty)
657{
658 struct mac_serial *info = (struct mac_serial *)tty->driver_data;
659
660#ifdef SERIAL_DEBUG_STOP
661 printk(KERN_DEBUG "rs_stop %ld....\n",
662 tty->ldisc.chars_in_buffer(tty));
663#endif
664
665 if (serial_paranoia_check(info, tty->name, "rs_stop"))
666 return;
667
668#if 0
669 spin_lock_irqsave(&info->lock, flags);
670 if (info->curregs[5] & TxENAB) {
671 info->curregs[5] &= ~TxENAB;
672 info->pendregs[5] &= ~TxENAB;
673 write_zsreg(info->zs_channel, 5, info->curregs[5]);
674 }
675 spin_unlock_irqrestore(&info->lock, flags);
676#endif
677}
678
679static void rs_start(struct tty_struct *tty)
680{
681 struct mac_serial *info = (struct mac_serial *)tty->driver_data;
682 unsigned long flags;
683
684#ifdef SERIAL_DEBUG_STOP
685 printk(KERN_DEBUG "rs_start %ld....\n",
686 tty->ldisc.chars_in_buffer(tty));
687#endif
688
689 if (serial_paranoia_check(info, tty->name, "rs_start"))
690 return;
691
692 spin_lock_irqsave(&info->lock, flags);
693#if 0
694 if (info->xmit_cnt && info->xmit_buf && !(info->curregs[5] & TxENAB)) {
695 info->curregs[5] |= TxENAB;
696 info->pendregs[5] = info->curregs[5];
697 write_zsreg(info->zs_channel, 5, info->curregs[5]);
698 }
699#else
700 if (info->xmit_cnt && info->xmit_buf && !info->tx_active) {
701 transmit_chars(info);
702 }
703#endif
704 spin_unlock_irqrestore(&info->lock, flags);
705}
706
707static void do_softint(void *private_)
708{
709 struct mac_serial *info = (struct mac_serial *) private_;
710 struct tty_struct *tty;
711
712 tty = info->tty;
713 if (!tty)
714 return;
715
716 if (test_and_clear_bit(RS_EVENT_WRITE_WAKEUP, &info->event))
717 tty_wakeup(tty);
718}
719
720static int startup(struct mac_serial * info)
721{
722 int delay;
723
724 OPNDBG("startup() (ttyS%d, irq %d)\n", info->line, info->irq);
725
726 if (info->flags & ZILOG_INITIALIZED) {
727 OPNDBG(" -> already inited\n");
728 return 0;
729 }
730
731 if (!info->xmit_buf) {
732 info->xmit_buf = (unsigned char *) get_zeroed_page(GFP_KERNEL);
733 if (!info->xmit_buf)
734 return -ENOMEM;
735 }
736
737 OPNDBG("starting up ttyS%d (irq %d)...\n", info->line, info->irq);
738
739 delay = set_scc_power(info, 1);
740
741 setup_scc(info);
742
743 if (delay) {
744 unsigned long flags;
745
746 /* delay is in ms */
747 spin_lock_irqsave(&info->lock, flags);
748 info->power_wait = 1;
749 mod_timer(&info->powerup_timer,
750 jiffies + (delay * HZ + 999) / 1000);
751 spin_unlock_irqrestore(&info->lock, flags);
752 }
753
754 OPNDBG("enabling IRQ on ttyS%d (irq %d)...\n", info->line, info->irq);
755
756 info->flags |= ZILOG_INITIALIZED;
757 enable_irq(info->irq);
758 if (info->dma_initted) {
759 enable_irq(info->rx_dma_irq);
760 }
761
762 return 0;
763}
764
765static _INLINE_ void rxdma_start(struct mac_serial * info, int curr)
766{
767 volatile struct dbdma_regs *rd = &info->rx->dma;
768 volatile struct dbdma_cmd *cd = info->rx_cmds[curr];
769
770//printk(KERN_DEBUG "SCC: rxdma_start\n");
771
772 st_le32(&rd->cmdptr, virt_to_bus(cd));
773 out_le32(&rd->control, (RUN << 16) | RUN);
774}
775
776static void rxdma_to_tty(struct mac_serial *info)
777{
778 struct tty_struct *tty = info->tty;
779 volatile struct dbdma_regs *rd = &info->rx->dma;
780 unsigned long flags;
781 int residue, available, space, do_queue;
782
783 if (!tty)
784 return;
785
786 do_queue = 0;
787 spin_lock_irqsave(&info->rx_dma_lock, flags);
788more:
789 space = TTY_FLIPBUF_SIZE - tty->flip.count;
790 if (!space) {
791 do_queue++;
792 goto out;
793 }
794 residue = 0;
795 if (info->rx_ubuf == info->rx_cbuf) {
796 if ((ld_le32(&rd->status) & ACTIVE) != 0) {
797 dbdma_flush(rd);
798 if (in_le32(&rd->cmdptr)
799 == virt_to_bus(info->rx_cmds[info->rx_cbuf]+1))
800 residue = in_le16(&info->rx->res_count);
801 }
802 }
803 available = RX_BUF_SIZE - residue - info->rx_done_bytes;
804 if (available > space)
805 available = space;
806 if (available) {
807 memcpy(tty->flip.char_buf_ptr,
808 info->rx_char_buf[info->rx_ubuf] + info->rx_done_bytes,
809 available);
810 memcpy(tty->flip.flag_buf_ptr,
811 info->rx_flag_buf[info->rx_ubuf] + info->rx_done_bytes,
812 available);
813 tty->flip.char_buf_ptr += available;
814 tty->flip.count += available;
815 tty->flip.flag_buf_ptr += available;
816 memset(info->rx_flag_buf[info->rx_ubuf] + info->rx_done_bytes,
817 0, available);
818 info->rx_done_bytes += available;
819 do_queue++;
820 }
821 if (info->rx_done_bytes == RX_BUF_SIZE) {
822 volatile struct dbdma_cmd *cd = info->rx_cmds[info->rx_ubuf];
823
824 if (info->rx_ubuf == info->rx_cbuf)
825 goto out;
826 /* mark rx_char_buf[rx_ubuf] free */
827 st_le16(&cd->command, DBDMA_NOP);
828 cd++;
829 st_le32(&cd->cmd_dep, 0);
830 st_le32((unsigned int *)&cd->res_count, 0);
831 cd++;
832 st_le16(&cd->xfer_status, 0);
833
834 if (info->rx_fbuf == RX_NO_FBUF) {
835 info->rx_fbuf = info->rx_ubuf;
836 if (!(ld_le32(&rd->status) & ACTIVE)) {
837 dbdma_reset(&info->rx->dma);
838 rxdma_start(info, info->rx_ubuf);
839 info->rx_cbuf = info->rx_ubuf;
840 }
841 }
842 info->rx_done_bytes = 0;
843 if (++info->rx_ubuf == info->rx_nbuf)
844 info->rx_ubuf = 0;
845 if (info->rx_fbuf == info->rx_ubuf)
846 info->rx_fbuf = RX_NO_FBUF;
847 goto more;
848 }
849out:
850 spin_unlock_irqrestore(&info->rx_dma_lock, flags);
851 if (do_queue)
852 tty_flip_buffer_push(tty);
853}
854
855static void poll_rxdma(unsigned long private_)
856{
857 struct mac_serial *info = (struct mac_serial *) private_;
858 unsigned long flags;
859
860 rxdma_to_tty(info);
861 spin_lock_irqsave(&info->rx_dma_lock, flags);
862 mod_timer(&info->poll_dma_timer, RX_DMA_TIMER);
863 spin_unlock_irqrestore(&info->rx_dma_lock, flags);
864}
865
866static void dma_init(struct mac_serial * info)
867{
868 int i, size;
869 volatile struct dbdma_cmd *cd;
870 unsigned char *p;
871
872 info->rx_nbuf = 8;
873
874 /* various mem set up */
875 size = sizeof(struct dbdma_cmd) * (3 * info->rx_nbuf + 2)
876 + (RX_BUF_SIZE * 2 + sizeof(*info->rx_cmds)
877 + sizeof(*info->rx_char_buf) + sizeof(*info->rx_flag_buf))
878 * info->rx_nbuf;
879 info->dma_priv = kmalloc(size, GFP_KERNEL | GFP_DMA);
880 if (info->dma_priv == NULL)
881 return;
882 memset(info->dma_priv, 0, size);
883
884 info->rx_cmds = (volatile struct dbdma_cmd **)info->dma_priv;
885 info->rx_char_buf = (unsigned char **) (info->rx_cmds + info->rx_nbuf);
886 info->rx_flag_buf = info->rx_char_buf + info->rx_nbuf;
887 p = (unsigned char *) (info->rx_flag_buf + info->rx_nbuf);
888 for (i = 0; i < info->rx_nbuf; i++, p += RX_BUF_SIZE)
889 info->rx_char_buf[i] = p;
890 for (i = 0; i < info->rx_nbuf; i++, p += RX_BUF_SIZE)
891 info->rx_flag_buf[i] = p;
892
893 /* a bit of DMA programming */
894 cd = info->rx_cmds[0] = (volatile struct dbdma_cmd *) DBDMA_ALIGN(p);
895 st_le16(&cd->command, DBDMA_NOP);
896 cd++;
897 st_le16(&cd->req_count, RX_BUF_SIZE);
898 st_le16(&cd->command, INPUT_MORE);
899 st_le32(&cd->phy_addr, virt_to_bus(info->rx_char_buf[0]));
900 cd++;
901 st_le16(&cd->req_count, 4);
902 st_le16(&cd->command, STORE_WORD | INTR_ALWAYS);
903 st_le32(&cd->phy_addr, virt_to_bus(cd-2));
904 st_le32(&cd->cmd_dep, DBDMA_STOP);
905 for (i = 1; i < info->rx_nbuf; i++) {
906 info->rx_cmds[i] = ++cd;
907 st_le16(&cd->command, DBDMA_NOP);
908 cd++;
909 st_le16(&cd->req_count, RX_BUF_SIZE);
910 st_le16(&cd->command, INPUT_MORE);
911 st_le32(&cd->phy_addr, virt_to_bus(info->rx_char_buf[i]));
912 cd++;
913 st_le16(&cd->req_count, 4);
914 st_le16(&cd->command, STORE_WORD | INTR_ALWAYS);
915 st_le32(&cd->phy_addr, virt_to_bus(cd-2));
916 st_le32(&cd->cmd_dep, DBDMA_STOP);
917 }
918 cd++;
919 st_le16(&cd->command, DBDMA_NOP | BR_ALWAYS);
920 st_le32(&cd->cmd_dep, virt_to_bus(info->rx_cmds[0]));
921
922 /* setup DMA to our liking */
923 dbdma_reset(&info->rx->dma);
924 st_le32(&info->rx->dma.intr_sel, 0x10001);
925 st_le32(&info->rx->dma.br_sel, 0x10001);
926 out_le32(&info->rx->dma.wait_sel, 0x10001);
927
928 /* set various flags */
929 info->rx_ubuf = 0;
930 info->rx_cbuf = 0;
931 info->rx_fbuf = info->rx_ubuf + 1;
932 if (info->rx_fbuf == info->rx_nbuf)
933 info->rx_fbuf = RX_NO_FBUF;
934 info->rx_done_bytes = 0;
935
936 /* setup polling */
937 init_timer(&info->poll_dma_timer);
938 info->poll_dma_timer.function = (void *)&poll_rxdma;
939 info->poll_dma_timer.data = (unsigned long)info;
940
941 info->dma_initted = 1;
942}
943
944/*
945 * FixZeroBug....Works around a bug in the SCC receving channel.
946 * Taken from Darwin code, 15 Sept. 2000 -DanM
947 *
948 * The following sequence prevents a problem that is seen with O'Hare ASICs
949 * (most versions -- also with some Heathrow and Hydra ASICs) where a zero
950 * at the input to the receiver becomes 'stuck' and locks up the receiver.
951 * This problem can occur as a result of a zero bit at the receiver input
952 * coincident with any of the following events:
953 *
954 * The SCC is initialized (hardware or software).
955 * A framing error is detected.
956 * The clocking option changes from synchronous or X1 asynchronous
957 * clocking to X16, X32, or X64 asynchronous clocking.
958 * The decoding mode is changed among NRZ, NRZI, FM0, or FM1.
959 *
960 * This workaround attempts to recover from the lockup condition by placing
961 * the SCC in synchronous loopback mode with a fast clock before programming
962 * any of the asynchronous modes.
963 */
964static void fix_zero_bug_scc(struct mac_serial * info)
965{
966 write_zsreg(info->zs_channel, 9,
967 (info->zs_channel == info->zs_chan_a? CHRA: CHRB));
968 udelay(10);
969 write_zsreg(info->zs_channel, 9,
970 ((info->zs_channel == info->zs_chan_a? CHRA: CHRB) | NV));
971
972 write_zsreg(info->zs_channel, 4, (X1CLK | EXTSYNC));
973
974 /* I think this is wrong....but, I just copying code....
975 */
976 write_zsreg(info->zs_channel, 3, (8 & ~RxENABLE));
977
978 write_zsreg(info->zs_channel, 5, (8 & ~TxENAB));
979 write_zsreg(info->zs_channel, 9, NV); /* Didn't we already do this? */
980 write_zsreg(info->zs_channel, 11, (RCBR | TCBR));
981 write_zsreg(info->zs_channel, 12, 0);
982 write_zsreg(info->zs_channel, 13, 0);
983 write_zsreg(info->zs_channel, 14, (LOOPBAK | SSBR));
984 write_zsreg(info->zs_channel, 14, (LOOPBAK | SSBR | BRENABL));
985 write_zsreg(info->zs_channel, 3, (8 | RxENABLE));
986 write_zsreg(info->zs_channel, 0, RES_EXT_INT);
987 write_zsreg(info->zs_channel, 0, RES_EXT_INT); /* to kill some time */
988
989 /* The channel should be OK now, but it is probably receiving
990 * loopback garbage.
991 * Switch to asynchronous mode, disable the receiver,
992 * and discard everything in the receive buffer.
993 */
994 write_zsreg(info->zs_channel, 9, NV);
995 write_zsreg(info->zs_channel, 4, PAR_ENA);
996 write_zsreg(info->zs_channel, 3, (8 & ~RxENABLE));
997
998 while (read_zsreg(info->zs_channel, 0) & Rx_CH_AV) {
999 (void)read_zsreg(info->zs_channel, 8);
1000 write_zsreg(info->zs_channel, 0, RES_EXT_INT);
1001 write_zsreg(info->zs_channel, 0, ERR_RES);
1002 }
1003}
1004
1005static int setup_scc(struct mac_serial * info)
1006{
1007 unsigned long flags;
1008
1009 OPNDBG("setting up ttyS%d SCC...\n", info->line);
1010
1011 spin_lock_irqsave(&info->lock, flags);
1012
1013 /* Nice buggy HW ... */
1014 fix_zero_bug_scc(info);
1015
1016 /*
1017 * Reset the chip.
1018 */
1019 write_zsreg(info->zs_channel, 9,
1020 (info->zs_channel == info->zs_chan_a? CHRA: CHRB));
1021 udelay(10);
1022 write_zsreg(info->zs_channel, 9, 0);
1023
1024 /*
1025 * Clear the receive FIFO.
1026 */
1027 ZS_CLEARFIFO(info->zs_channel);
1028 info->xmit_fifo_size = 1;
1029
1030 /*
1031 * Reset DMAs
1032 */
1033 if (info->has_dma)
1034 dma_init(info);
1035
1036 /*
1037 * Clear the interrupt registers.
1038 */
1039 write_zsreg(info->zs_channel, 0, ERR_RES);
1040 write_zsreg(info->zs_channel, 0, RES_H_IUS);
1041
1042 /*
1043 * Turn on RTS and DTR.
1044 */
1045 if (!info->is_irda)
1046 zs_rtsdtr(info, 1);
1047
1048 /*
1049 * Finally, enable sequencing and interrupts
1050 */
1051 if (!info->dma_initted) {
1052 /* interrupt on ext/status changes, all received chars,
1053 transmit ready */
1054 info->curregs[1] = (info->curregs[1] & ~0x18)
1055 | (EXT_INT_ENAB | INT_ALL_Rx | TxINT_ENAB);
1056 } else {
1057 /* interrupt on ext/status changes, W/Req pin is
1058 receive DMA request */
1059 info->curregs[1] = (info->curregs[1] & ~(0x18 | TxINT_ENAB))
1060 | (EXT_INT_ENAB | WT_RDY_RT | WT_FN_RDYFN);
1061 write_zsreg(info->zs_channel, 1, info->curregs[1]);
1062 /* enable W/Req pin */
1063 info->curregs[1] |= WT_RDY_ENAB;
1064 write_zsreg(info->zs_channel, 1, info->curregs[1]);
1065 /* enable interrupts on transmit ready and receive errors */
1066 info->curregs[1] |= INT_ERR_Rx | TxINT_ENAB;
1067 }
1068 info->pendregs[1] = info->curregs[1];
1069 info->curregs[3] |= (RxENABLE | Rx8);
1070 info->pendregs[3] = info->curregs[3];
1071 info->curregs[5] |= (TxENAB | Tx8);
1072 info->pendregs[5] = info->curregs[5];
1073 info->curregs[9] |= (NV | MIE);
1074 info->pendregs[9] = info->curregs[9];
1075 write_zsreg(info->zs_channel, 3, info->curregs[3]);
1076 write_zsreg(info->zs_channel, 5, info->curregs[5]);
1077 write_zsreg(info->zs_channel, 9, info->curregs[9]);
1078
1079 if (info->tty)
1080 clear_bit(TTY_IO_ERROR, &info->tty->flags);
1081 info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
1082
1083 spin_unlock_irqrestore(&info->lock, flags);
1084
1085 /*
1086 * Set the speed of the serial port
1087 */
1088 change_speed(info, 0);
1089
1090 /* Save the current value of RR0 */
1091 info->read_reg_zero = read_zsreg(info->zs_channel, 0);
1092
1093 if (info->dma_initted) {
1094 spin_lock_irqsave(&info->rx_dma_lock, flags);
1095 rxdma_start(info, 0);
1096 info->poll_dma_timer.expires = RX_DMA_TIMER;
1097 add_timer(&info->poll_dma_timer);
1098 spin_unlock_irqrestore(&info->rx_dma_lock, flags);
1099 }
1100
1101 return 0;
1102}
1103
1104/*
1105 * This routine will shutdown a serial port; interrupts are disabled, and
1106 * DTR is dropped if the hangup on close termio flag is on.
1107 */
1108static void shutdown(struct mac_serial * info)
1109{
1110 OPNDBG("Shutting down serial port %d (irq %d)....\n", info->line,
1111 info->irq);
1112
1113 if (!(info->flags & ZILOG_INITIALIZED)) {
1114 OPNDBG("(already shutdown)\n");
1115 return;
1116 }
1117
1118 if (info->has_dma) {
1119 del_timer(&info->poll_dma_timer);
1120 dbdma_reset(info->tx_dma);
1121 dbdma_reset(&info->rx->dma);
1122 disable_irq(info->tx_dma_irq);
1123 disable_irq(info->rx_dma_irq);
1124 }
1125 disable_irq(info->irq);
1126
1127 info->pendregs[1] = info->curregs[1] = 0;
1128 write_zsreg(info->zs_channel, 1, 0); /* no interrupts */
1129
1130 info->curregs[3] &= ~RxENABLE;
1131 info->pendregs[3] = info->curregs[3];
1132 write_zsreg(info->zs_channel, 3, info->curregs[3]);
1133
1134 info->curregs[5] &= ~TxENAB;
1135 if (!info->tty || C_HUPCL(info->tty))
1136 info->curregs[5] &= ~DTR;
1137 info->pendregs[5] = info->curregs[5];
1138 write_zsreg(info->zs_channel, 5, info->curregs[5]);
1139
1140 if (info->tty)
1141 set_bit(TTY_IO_ERROR, &info->tty->flags);
1142
1143 set_scc_power(info, 0);
1144
1145 if (info->xmit_buf) {
1146 free_page((unsigned long) info->xmit_buf);
1147 info->xmit_buf = 0;
1148 }
1149
1150 if (info->has_dma && info->dma_priv) {
1151 kfree(info->dma_priv);
1152 info->dma_priv = NULL;
1153 info->dma_initted = 0;
1154 }
1155
1156 memset(info->curregs, 0, sizeof(info->curregs));
1157 memset(info->pendregs, 0, sizeof(info->pendregs));
1158
1159 info->flags &= ~ZILOG_INITIALIZED;
1160}
1161
1162/*
1163 * Turn power on or off to the SCC and associated stuff
1164 * (port drivers, modem, IR port, etc.)
1165 * Returns the number of milliseconds we should wait before
1166 * trying to use the port.
1167 */
1168static int set_scc_power(struct mac_serial * info, int state)
1169{
1170 int delay = 0;
1171
1172 if (state) {
1173 PWRDBG("ttyS%d: powering up hardware\n", info->line);
1174 pmac_call_feature(
1175 PMAC_FTR_SCC_ENABLE,
1176 info->dev_node, info->port_type, 1);
1177 if (info->is_internal_modem) {
1178 pmac_call_feature(
1179 PMAC_FTR_MODEM_ENABLE,
1180 info->dev_node, 0, 1);
1181 delay = 2500; /* wait for 2.5s before using */
1182 } else if (info->is_irda)
1183 mdelay(50); /* Do better here once the problems
1184 * with blocking have been ironed out
1185 */
1186 } else {
1187 /* TODO: Make that depend on a timer, don't power down
1188 * immediately
1189 */
1190 PWRDBG("ttyS%d: shutting down hardware\n", info->line);
1191 if (info->is_internal_modem) {
1192 PWRDBG("ttyS%d: shutting down modem\n", info->line);
1193 pmac_call_feature(
1194 PMAC_FTR_MODEM_ENABLE,
1195 info->dev_node, 0, 0);
1196 }
1197 pmac_call_feature(
1198 PMAC_FTR_SCC_ENABLE,
1199 info->dev_node, info->port_type, 0);
1200 }
1201 return delay;
1202}
1203
1204static void irda_rts_pulses(struct mac_serial *info, int w)
1205{
1206 udelay(w);
1207 write_zsreg(info->zs_channel, 5, Tx8 | TxENAB);
1208 udelay(2);
1209 write_zsreg(info->zs_channel, 5, Tx8 | TxENAB | RTS);
1210 udelay(8);
1211 write_zsreg(info->zs_channel, 5, Tx8 | TxENAB);
1212 udelay(4);
1213 write_zsreg(info->zs_channel, 5, Tx8 | TxENAB | RTS);
1214}
1215
1216/*
1217 * Set the irda codec on the imac to the specified baud rate.
1218 */
1219static void irda_setup(struct mac_serial *info)
1220{
1221 int code, speed, t;
1222
1223 speed = info->tty->termios->c_cflag & CBAUD;
1224 if (speed < B2400 || speed > B115200)
1225 return;
1226 code = 0x4d + B115200 - speed;
1227
1228 /* disable serial interrupts and receive DMA */
1229 write_zsreg(info->zs_channel, 1, info->curregs[1] & ~0x9f);
1230
1231 /* wait for transmitter to drain */
1232 t = 10000;
1233 while ((read_zsreg(info->zs_channel, 0) & Tx_BUF_EMP) == 0
1234 || (read_zsreg(info->zs_channel, 1) & ALL_SNT) == 0) {
1235 if (--t <= 0) {
1236 printk(KERN_ERR "transmitter didn't drain\n");
1237 return;
1238 }
1239 udelay(10);
1240 }
1241 udelay(100);
1242
1243 /* set to 8 bits, no parity, 19200 baud, RTS on, DTR off */
1244 write_zsreg(info->zs_channel, 4, X16CLK | SB1);
1245 write_zsreg(info->zs_channel, 11, TCBR | RCBR);
1246 t = BPS_TO_BRG(19200, ZS_CLOCK/16);
1247 write_zsreg(info->zs_channel, 12, t);
1248 write_zsreg(info->zs_channel, 13, t >> 8);
1249 write_zsreg(info->zs_channel, 14, BRENABL);
1250 write_zsreg(info->zs_channel, 3, Rx8 | RxENABLE);
1251 write_zsreg(info->zs_channel, 5, Tx8 | TxENAB | RTS);
1252
1253 /* set TxD low for ~104us and pulse RTS */
1254 udelay(1000);
1255 write_zsdata(info->zs_channel, 0xfe);
1256 irda_rts_pulses(info, 150);
1257 irda_rts_pulses(info, 180);
1258 irda_rts_pulses(info, 50);
1259 udelay(100);
1260
1261 /* assert DTR, wait 30ms, talk to the chip */
1262 write_zsreg(info->zs_channel, 5, Tx8 | TxENAB | RTS | DTR);
1263 mdelay(30);
1264 while (read_zsreg(info->zs_channel, 0) & Rx_CH_AV)
1265 read_zsdata(info->zs_channel);
1266
1267 write_zsdata(info->zs_channel, 1);
1268 t = 1000;
1269 while ((read_zsreg(info->zs_channel, 0) & Rx_CH_AV) == 0) {
1270 if (--t <= 0) {
1271 printk(KERN_ERR "irda_setup timed out on 1st byte\n");
1272 goto out;
1273 }
1274 udelay(10);
1275 }
1276 t = read_zsdata(info->zs_channel);
1277 if (t != 4)
1278 printk(KERN_ERR "irda_setup 1st byte = %x\n", t);
1279
1280 write_zsdata(info->zs_channel, code);
1281 t = 1000;
1282 while ((read_zsreg(info->zs_channel, 0) & Rx_CH_AV) == 0) {
1283 if (--t <= 0) {
1284 printk(KERN_ERR "irda_setup timed out on 2nd byte\n");
1285 goto out;
1286 }
1287 udelay(10);
1288 }
1289 t = read_zsdata(info->zs_channel);
1290 if (t != code)
1291 printk(KERN_ERR "irda_setup 2nd byte = %x (%x)\n", t, code);
1292
1293 /* Drop DTR again and do some more RTS pulses */
1294 out:
1295 udelay(100);
1296 write_zsreg(info->zs_channel, 5, Tx8 | TxENAB | RTS);
1297 irda_rts_pulses(info, 80);
1298
1299 /* We should be right to go now. We assume that load_zsregs
1300 will get called soon to load up the correct baud rate etc. */
1301 info->curregs[5] = (info->curregs[5] | RTS) & ~DTR;
1302 info->pendregs[5] = info->curregs[5];
1303}
1304
1305/*
1306 * This routine is called to set the UART divisor registers to match
1307 * the specified baud rate for a serial port.
1308 */
1309static void change_speed(struct mac_serial *info, struct termios *old_termios)
1310{
1311 unsigned cflag;
1312 int bits;
1313 int brg, baud;
1314 unsigned long flags;
1315
1316 if (!info->tty || !info->tty->termios)
1317 return;
1318
1319 cflag = info->tty->termios->c_cflag;
1320 baud = tty_get_baud_rate(info->tty);
1321 if (baud == 0) {
1322 if (old_termios) {
1323 info->tty->termios->c_cflag &= ~CBAUD;
1324 info->tty->termios->c_cflag |= (old_termios->c_cflag & CBAUD);
1325 cflag = info->tty->termios->c_cflag;
1326 baud = tty_get_baud_rate(info->tty);
1327 }
1328 else
1329 baud = info->zs_baud;
1330 }
1331 if (baud > 230400)
1332 baud = 230400;
1333 else if (baud == 0)
1334 baud = 38400;
1335
1336 spin_lock_irqsave(&info->lock, flags);
1337 info->zs_baud = baud;
1338 info->clk_divisor = 16;
1339
1340 BAUDBG(KERN_DEBUG "set speed to %d bds, ", baud);
1341
1342 switch (baud) {
1343 case ZS_CLOCK/16: /* 230400 */
1344 info->curregs[4] = X16CLK;
1345 info->curregs[11] = 0;
1346 break;
1347 case ZS_CLOCK/32: /* 115200 */
1348 info->curregs[4] = X32CLK;
1349 info->curregs[11] = 0;
1350 break;
1351 default:
1352 info->curregs[4] = X16CLK;
1353 info->curregs[11] = TCBR | RCBR;
1354 brg = BPS_TO_BRG(baud, ZS_CLOCK/info->clk_divisor);
1355 info->curregs[12] = (brg & 255);
1356 info->curregs[13] = ((brg >> 8) & 255);
1357 info->curregs[14] = BRENABL;
1358 }
1359
1360 /* byte size and parity */
1361 info->curregs[3] &= ~RxNBITS_MASK;
1362 info->curregs[5] &= ~TxNBITS_MASK;
1363 switch (cflag & CSIZE) {
1364 case CS5:
1365 info->curregs[3] |= Rx5;
1366 info->curregs[5] |= Tx5;
1367 BAUDBG("5 bits, ");
1368 bits = 7;
1369 break;
1370 case CS6:
1371 info->curregs[3] |= Rx6;
1372 info->curregs[5] |= Tx6;
1373 BAUDBG("6 bits, ");
1374 bits = 8;
1375 break;
1376 case CS7:
1377 info->curregs[3] |= Rx7;
1378 info->curregs[5] |= Tx7;
1379 BAUDBG("7 bits, ");
1380 bits = 9;
1381 break;
1382 case CS8:
1383 default: /* defaults to 8 bits */
1384 info->curregs[3] |= Rx8;
1385 info->curregs[5] |= Tx8;
1386 BAUDBG("8 bits, ");
1387 bits = 10;
1388 break;
1389 }
1390 info->pendregs[3] = info->curregs[3];
1391 info->pendregs[5] = info->curregs[5];
1392
1393 info->curregs[4] &= ~(SB_MASK | PAR_ENA | PAR_EVEN);
1394 if (cflag & CSTOPB) {
1395 info->curregs[4] |= SB2;
1396 bits++;
1397 BAUDBG("2 stop, ");
1398 } else {
1399 info->curregs[4] |= SB1;
1400 BAUDBG("1 stop, ");
1401 }
1402 if (cflag & PARENB) {
1403 bits++;
1404 info->curregs[4] |= PAR_ENA;
1405 BAUDBG("parity, ");
1406 }
1407 if (!(cflag & PARODD)) {
1408 info->curregs[4] |= PAR_EVEN;
1409 }
1410 info->pendregs[4] = info->curregs[4];
1411
1412 if (!(cflag & CLOCAL)) {
1413 if (!(info->curregs[15] & DCDIE))
1414 info->read_reg_zero = read_zsreg(info->zs_channel, 0);
1415 info->curregs[15] |= DCDIE;
1416 } else
1417 info->curregs[15] &= ~DCDIE;
1418 if (cflag & CRTSCTS) {
1419 info->curregs[15] |= CTSIE;
1420 if ((read_zsreg(info->zs_channel, 0) & CTS) != 0)
1421 info->tx_stopped = 1;
1422 } else {
1423 info->curregs[15] &= ~CTSIE;
1424 info->tx_stopped = 0;
1425 }
1426 info->pendregs[15] = info->curregs[15];
1427
1428 /* Calc timeout value. This is pretty broken with high baud rates with HZ=100.
1429 This code would love a larger HZ and a >1 fifo size, but this is not
1430 a priority. The resulting value must be >HZ/2
1431 */
1432 info->timeout = ((info->xmit_fifo_size*HZ*bits) / baud);
1433 info->timeout += HZ/50+1; /* Add .02 seconds of slop */
1434
1435 BAUDBG("timeout=%d/%ds, base:%d\n", (int)info->timeout, (int)HZ,
1436 (int)info->baud_base);
1437
1438 /* set the irda codec to the right rate */
1439 if (info->is_irda)
1440 irda_setup(info);
1441
1442 /* Load up the new values */
1443 load_zsregs(info->zs_channel, info->curregs);
1444
1445 spin_unlock_irqrestore(&info->lock, flags);
1446}
1447
1448static void rs_flush_chars(struct tty_struct *tty)
1449{
1450 struct mac_serial *info = (struct mac_serial *)tty->driver_data;
1451 unsigned long flags;
1452
1453 if (serial_paranoia_check(info, tty->name, "rs_flush_chars"))
1454 return;
1455
1456 spin_lock_irqsave(&info->lock, flags);
1457 if (!(info->xmit_cnt <= 0 || tty->stopped || info->tx_stopped ||
1458 !info->xmit_buf))
1459 /* Enable transmitter */
1460 transmit_chars(info);
1461 spin_unlock_irqrestore(&info->lock, flags);
1462}
1463
1464static int rs_write(struct tty_struct * tty,
1465 const unsigned char *buf, int count)
1466{
1467 int c, ret = 0;
1468 struct mac_serial *info = (struct mac_serial *)tty->driver_data;
1469 unsigned long flags;
1470
1471 if (serial_paranoia_check(info, tty->name, "rs_write"))
1472 return 0;
1473
1474 if (!tty || !info->xmit_buf || !tmp_buf)
1475 return 0;
1476
1477 while (1) {
1478 spin_lock_irqsave(&info->lock, flags);
1479 c = min_t(int, count, min(SERIAL_XMIT_SIZE - info->xmit_cnt - 1,
1480 SERIAL_XMIT_SIZE - info->xmit_head));
1481 if (c <= 0) {
1482 spin_unlock_irqrestore(&info->lock, flags);
1483 break;
1484 }
1485 memcpy(info->xmit_buf + info->xmit_head, buf, c);
1486 info->xmit_head = ((info->xmit_head + c) &
1487 (SERIAL_XMIT_SIZE-1));
1488 info->xmit_cnt += c;
1489 spin_unlock_irqrestore(&info->lock, flags);
1490 buf += c;
1491 count -= c;
1492 ret += c;
1493 }
1494 spin_lock_irqsave(&info->lock, flags);
1495 if (info->xmit_cnt && !tty->stopped && !info->tx_stopped
1496 && !info->tx_active)
1497 transmit_chars(info);
1498 spin_unlock_irqrestore(&info->lock, flags);
1499 return ret;
1500}
1501
1502static int rs_write_room(struct tty_struct *tty)
1503{
1504 struct mac_serial *info = (struct mac_serial *)tty->driver_data;
1505 int ret;
1506
1507 if (serial_paranoia_check(info, tty->name, "rs_write_room"))
1508 return 0;
1509 ret = SERIAL_XMIT_SIZE - info->xmit_cnt - 1;
1510 if (ret < 0)
1511 ret = 0;
1512 return ret;
1513}
1514
1515static int rs_chars_in_buffer(struct tty_struct *tty)
1516{
1517 struct mac_serial *info = (struct mac_serial *)tty->driver_data;
1518
1519 if (serial_paranoia_check(info, tty->name, "rs_chars_in_buffer"))
1520 return 0;
1521 return info->xmit_cnt;
1522}
1523
1524static void rs_flush_buffer(struct tty_struct *tty)
1525{
1526 struct mac_serial *info = (struct mac_serial *)tty->driver_data;
1527 unsigned long flags;
1528
1529 if (serial_paranoia_check(info, tty->name, "rs_flush_buffer"))
1530 return;
1531 spin_lock_irqsave(&info->lock, flags);
1532 info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
1533 spin_unlock_irqrestore(&info->lock, flags);
1534 tty_wakeup(tty);
1535}
1536
1537/*
1538 * ------------------------------------------------------------
1539 * rs_throttle()
1540 *
1541 * This routine is called by the upper-layer tty layer to signal that
1542 * incoming characters should be throttled.
1543 * ------------------------------------------------------------
1544 */
1545static void rs_throttle(struct tty_struct * tty)
1546{
1547 struct mac_serial *info = (struct mac_serial *)tty->driver_data;
1548 unsigned long flags;
1549#ifdef SERIAL_DEBUG_THROTTLE
1550 printk(KERN_DEBUG "throttle %ld....\n",tty->ldisc.chars_in_buffer(tty));
1551#endif
1552
1553 if (serial_paranoia_check(info, tty->name, "rs_throttle"))
1554 return;
1555
1556 if (I_IXOFF(tty)) {
1557 spin_lock_irqsave(&info->lock, flags);
1558 info->x_char = STOP_CHAR(tty);
1559 if (!info->tx_active)
1560 transmit_chars(info);
1561 spin_unlock_irqrestore(&info->lock, flags);
1562 }
1563
1564 if (C_CRTSCTS(tty)) {
1565 /*
1566 * Here we want to turn off the RTS line. On Macintoshes,
1567 * the external serial ports using a DIN-8 or DIN-9
1568 * connector only have the DTR line (which is usually
1569 * wired to both RTS and DTR on an external modem in
1570 * the cable). RTS doesn't go out to the serial port
1571 * socket, it acts as an output enable for the transmit
1572 * data line. So in this case we don't drop RTS.
1573 *
1574 * Macs with internal modems generally do have both RTS
1575 * and DTR wired to the modem, so in that case we do
1576 * drop RTS.
1577 */
1578 if (info->is_internal_modem) {
1579 spin_lock_irqsave(&info->lock, flags);
1580 info->curregs[5] &= ~RTS;
1581 info->pendregs[5] &= ~RTS;
1582 write_zsreg(info->zs_channel, 5, info->curregs[5]);
1583 spin_unlock_irqrestore(&info->lock, flags);
1584 }
1585 }
1586
1587#ifdef CDTRCTS
1588 if (tty->termios->c_cflag & CDTRCTS) {
1589 spin_lock_irqsave(&info->lock, flags);
1590 info->curregs[5] &= ~DTR;
1591 info->pendregs[5] &= ~DTR;
1592 write_zsreg(info->zs_channel, 5, info->curregs[5]);
1593 spin_unlock_irqrestore(&info->lock, flags);
1594 }
1595#endif /* CDTRCTS */
1596}
1597
1598static void rs_unthrottle(struct tty_struct * tty)
1599{
1600 struct mac_serial *info = (struct mac_serial *)tty->driver_data;
1601 unsigned long flags;
1602#ifdef SERIAL_DEBUG_THROTTLE
1603 printk(KERN_DEBUG "unthrottle %s: %d....\n",
1604 tty->ldisc.chars_in_buffer(tty));
1605#endif
1606
1607 if (serial_paranoia_check(info, tty->name, "rs_unthrottle"))
1608 return;
1609
1610 if (I_IXOFF(tty)) {
1611 spin_lock_irqsave(&info->lock, flags);
1612 if (info->x_char)
1613 info->x_char = 0;
1614 else {
1615 info->x_char = START_CHAR(tty);
1616 if (!info->tx_active)
1617 transmit_chars(info);
1618 }
1619 spin_unlock_irqrestore(&info->lock, flags);
1620 }
1621
1622 if (C_CRTSCTS(tty) && info->is_internal_modem) {
1623 /* Assert RTS line */
1624 spin_lock_irqsave(&info->lock, flags);
1625 info->curregs[5] |= RTS;
1626 info->pendregs[5] |= RTS;
1627 write_zsreg(info->zs_channel, 5, info->curregs[5]);
1628 spin_unlock_irqrestore(&info->lock, flags);
1629 }
1630
1631#ifdef CDTRCTS
1632 if (tty->termios->c_cflag & CDTRCTS) {
1633 /* Assert DTR line */
1634 spin_lock_irqsave(&info->lock, flags);
1635 info->curregs[5] |= DTR;
1636 info->pendregs[5] |= DTR;
1637 write_zsreg(info->zs_channel, 5, info->curregs[5]);
1638 spin_unlock_irqrestore(&info->lock, flags);
1639 }
1640#endif
1641}
1642
1643/*
1644 * ------------------------------------------------------------
1645 * rs_ioctl() and friends
1646 * ------------------------------------------------------------
1647 */
1648
1649static int get_serial_info(struct mac_serial * info,
1650 struct serial_struct __user * retinfo)
1651{
1652 struct serial_struct tmp;
1653
1654 if (!retinfo)
1655 return -EFAULT;
1656 memset(&tmp, 0, sizeof(tmp));
1657 tmp.type = info->type;
1658 tmp.line = info->line;
1659 tmp.port = info->port;
1660 tmp.irq = info->irq;
1661 tmp.flags = info->flags;
1662 tmp.baud_base = info->baud_base;
1663 tmp.close_delay = info->close_delay;
1664 tmp.closing_wait = info->closing_wait;
1665 tmp.custom_divisor = info->custom_divisor;
1666 if (copy_to_user(retinfo,&tmp,sizeof(*retinfo)))
1667 return -EFAULT;
1668 return 0;
1669}
1670
1671static int set_serial_info(struct mac_serial * info,
1672 struct serial_struct __user * new_info)
1673{
1674 struct serial_struct new_serial;
1675 struct mac_serial old_info;
1676 int retval = 0;
1677
1678 if (copy_from_user(&new_serial,new_info,sizeof(new_serial)))
1679 return -EFAULT;
1680 old_info = *info;
1681
1682 if (!capable(CAP_SYS_ADMIN)) {
1683 if ((new_serial.baud_base != info->baud_base) ||
1684 (new_serial.type != info->type) ||
1685 (new_serial.close_delay != info->close_delay) ||
1686 ((new_serial.flags & ~ZILOG_USR_MASK) !=
1687 (info->flags & ~ZILOG_USR_MASK)))
1688 return -EPERM;
1689 info->flags = ((info->flags & ~ZILOG_USR_MASK) |
1690 (new_serial.flags & ZILOG_USR_MASK));
1691 info->custom_divisor = new_serial.custom_divisor;
1692 goto check_and_exit;
1693 }
1694
1695 if (info->count > 1)
1696 return -EBUSY;
1697
1698 /*
1699 * OK, past this point, all the error checking has been done.
1700 * At this point, we start making changes.....
1701 */
1702
1703 info->baud_base = new_serial.baud_base;
1704 info->flags = ((info->flags & ~ZILOG_FLAGS) |
1705 (new_serial.flags & ZILOG_FLAGS));
1706 info->type = new_serial.type;
1707 info->close_delay = new_serial.close_delay;
1708 info->closing_wait = new_serial.closing_wait;
1709
1710check_and_exit:
1711 if (info->flags & ZILOG_INITIALIZED)
1712 retval = setup_scc(info);
1713 return retval;
1714}
1715
1716/*
1717 * get_lsr_info - get line status register info
1718 *
1719 * Purpose: Let user call ioctl() to get info when the UART physically
1720 * is emptied. On bus types like RS485, the transmitter must
1721 * release the bus after transmitting. This must be done when
1722 * the transmit shift register is empty, not be done when the
1723 * transmit holding register is empty. This functionality
1724 * allows an RS485 driver to be written in user space.
1725 */
1726static int get_lsr_info(struct mac_serial * info, unsigned int *value)
1727{
1728 unsigned char status;
1729 unsigned long flags;
1730
1731 spin_lock_irqsave(&info->lock, flags);
1732 status = read_zsreg(info->zs_channel, 0);
1733 spin_unlock_irqrestore(&info->lock, flags);
1734 status = (status & Tx_BUF_EMP)? TIOCSER_TEMT: 0;
1735 return put_user(status,value);
1736}
1737
1738static int rs_tiocmget(struct tty_struct *tty, struct file *file)
1739{
1740 struct mac_serial * info = (struct mac_serial *)tty->driver_data;
1741 unsigned char control, status;
1742 unsigned long flags;
1743
1744#ifdef CONFIG_KGDB
1745 if (info->kgdb_channel)
1746 return -ENODEV;
1747#endif
1748 if (serial_paranoia_check(info, tty->name, __FUNCTION__))
1749 return -ENODEV;
1750
1751 if (tty->flags & (1 << TTY_IO_ERROR))
1752 return -EIO;
1753
1754 spin_lock_irqsave(&info->lock, flags);
1755 control = info->curregs[5];
1756 status = read_zsreg(info->zs_channel, 0);
1757 spin_unlock_irqrestore(&info->lock, flags);
1758 return ((control & RTS) ? TIOCM_RTS: 0)
1759 | ((control & DTR) ? TIOCM_DTR: 0)
1760 | ((status & DCD) ? TIOCM_CAR: 0)
1761 | ((status & CTS) ? 0: TIOCM_CTS);
1762}
1763
1764static int rs_tiocmset(struct tty_struct *tty, struct file *file,
1765 unsigned int set, unsigned int clear)
1766{
1767 struct mac_serial * info = (struct mac_serial *)tty->driver_data;
1768 unsigned int arg, bits;
1769 unsigned long flags;
1770
1771#ifdef CONFIG_KGDB
1772 if (info->kgdb_channel)
1773 return -ENODEV;
1774#endif
1775 if (serial_paranoia_check(info, tty->name, __FUNCTION__))
1776 return -ENODEV;
1777
1778 if (tty->flags & (1 << TTY_IO_ERROR))
1779 return -EIO;
1780
1781 spin_lock_irqsave(&info->lock, flags);
1782 if (set & TIOCM_RTS)
1783 info->curregs[5] |= RTS;
1784 if (set & TIOCM_DTR)
1785 info->curregs[5] |= DTR;
1786 if (clear & TIOCM_RTS)
1787 info->curregs[5] &= ~RTS;
1788 if (clear & TIOCM_DTR)
1789 info->curregs[5] &= ~DTR;
1790
1791 info->pendregs[5] = info->curregs[5];
1792 write_zsreg(info->zs_channel, 5, info->curregs[5]);
1793 spin_unlock_irqrestore(&info->lock, flags);
1794 return 0;
1795}
1796
1797/*
1798 * rs_break - turn transmit break condition on/off
1799 */
1800static void rs_break(struct tty_struct *tty, int break_state)
1801{
1802 struct mac_serial *info = (struct mac_serial *) tty->driver_data;
1803 unsigned long flags;
1804
1805 if (serial_paranoia_check(info, tty->name, "rs_break"))
1806 return;
1807
1808 spin_lock_irqsave(&info->lock, flags);
1809 if (break_state == -1)
1810 info->curregs[5] |= SND_BRK;
1811 else
1812 info->curregs[5] &= ~SND_BRK;
1813 write_zsreg(info->zs_channel, 5, info->curregs[5]);
1814 spin_unlock_irqrestore(&info->lock, flags);
1815}
1816
1817static int rs_ioctl(struct tty_struct *tty, struct file * file,
1818 unsigned int cmd, unsigned long arg)
1819{
1820 struct mac_serial * info = (struct mac_serial *)tty->driver_data;
1821
1822#ifdef CONFIG_KGDB
1823 if (info->kgdb_channel)
1824 return -ENODEV;
1825#endif
1826 if (serial_paranoia_check(info, tty->name, "rs_ioctl"))
1827 return -ENODEV;
1828
1829 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1830 (cmd != TIOCSERCONFIG) && (cmd != TIOCSERGSTRUCT)) {
1831 if (tty->flags & (1 << TTY_IO_ERROR))
1832 return -EIO;
1833 }
1834
1835 switch (cmd) {
1836 case TIOCGSERIAL:
1837 return get_serial_info(info,
1838 (struct serial_struct __user *) arg);
1839 case TIOCSSERIAL:
1840 return set_serial_info(info,
1841 (struct serial_struct __user *) arg);
1842 case TIOCSERGETLSR: /* Get line status register */
1843 return get_lsr_info(info, (unsigned int *) arg);
1844
1845 case TIOCSERGSTRUCT:
1846 if (copy_to_user((struct mac_serial __user *) arg,
1847 info, sizeof(struct mac_serial)))
1848 return -EFAULT;
1849 return 0;
1850
1851 default:
1852 return -ENOIOCTLCMD;
1853 }
1854 return 0;
1855}
1856
1857static void rs_set_termios(struct tty_struct *tty, struct termios *old_termios)
1858{
1859 struct mac_serial *info = (struct mac_serial *)tty->driver_data;
1860 int was_stopped;
1861
1862 if (tty->termios->c_cflag == old_termios->c_cflag)
1863 return;
1864 was_stopped = info->tx_stopped;
1865
1866 change_speed(info, old_termios);
1867
1868 if (was_stopped && !info->tx_stopped) {
1869 tty->hw_stopped = 0;
1870 rs_start(tty);
1871 }
1872}
1873
1874/*
1875 * ------------------------------------------------------------
1876 * rs_close()
1877 *
1878 * This routine is called when the serial port gets closed.
1879 * Wait for the last remaining data to be sent.
1880 * ------------------------------------------------------------
1881 */
1882static void rs_close(struct tty_struct *tty, struct file * filp)
1883{
1884 struct mac_serial * info = (struct mac_serial *)tty->driver_data;
1885 unsigned long flags;
1886
1887 if (!info || serial_paranoia_check(info, tty->name, "rs_close"))
1888 return;
1889
1890 spin_lock_irqsave(&info->lock, flags);
1891
1892 if (tty_hung_up_p(filp)) {
1893 spin_unlock_irqrestore(&info->lock, flags);
1894 return;
1895 }
1896
1897 OPNDBG("rs_close ttyS%d, count = %d\n", info->line, info->count);
1898 if ((tty->count == 1) && (info->count != 1)) {
1899 /*
1900 * Uh, oh. tty->count is 1, which means that the tty
1901 * structure will be freed. Info->count should always
1902 * be one in these conditions. If it's greater than
1903 * one, we've got real problems, since it means the
1904 * serial port won't be shutdown.
1905 */
1906 printk(KERN_ERR "rs_close: bad serial port count; tty->count "
1907 "is 1, info->count is %d\n", info->count);
1908 info->count = 1;
1909 }
1910 if (--info->count < 0) {
1911 printk(KERN_ERR "rs_close: bad serial port count for "
1912 "ttyS%d: %d\n", info->line, info->count);
1913 info->count = 0;
1914 }
1915 if (info->count) {
1916 spin_unlock_irqrestore(&info->lock, flags);
1917 return;
1918 }
1919 info->flags |= ZILOG_CLOSING;
1920 /*
1921 * Now we wait for the transmit buffer to clear; and we notify
1922 * the line discipline to only process XON/XOFF characters.
1923 */
1924 OPNDBG("waiting end of Tx... (timeout:%d)\n", info->closing_wait);
1925 tty->closing = 1;
1926 if (info->closing_wait != ZILOG_CLOSING_WAIT_NONE) {
1927 spin_unlock_irqrestore(&info->lock, flags);
1928 tty_wait_until_sent(tty, info->closing_wait);
1929 spin_lock_irqsave(&info->lock, flags);
1930 }
1931
1932 /*
1933 * At this point we stop accepting input. To do this, we
1934 * disable the receiver and receive interrupts.
1935 */
1936 info->curregs[3] &= ~RxENABLE;
1937 info->pendregs[3] = info->curregs[3];
1938 write_zsreg(info->zs_channel, 3, info->curregs[3]);
1939 info->curregs[1] &= ~(0x18); /* disable any rx ints */
1940 info->pendregs[1] = info->curregs[1];
1941 write_zsreg(info->zs_channel, 1, info->curregs[1]);
1942 ZS_CLEARFIFO(info->zs_channel);
1943 if (info->flags & ZILOG_INITIALIZED) {
1944 /*
1945 * Before we drop DTR, make sure the SCC transmitter
1946 * has completely drained.
1947 */
1948 OPNDBG("waiting end of Rx...\n");
1949 spin_unlock_irqrestore(&info->lock, flags);
1950 rs_wait_until_sent(tty, info->timeout);
1951 spin_lock_irqsave(&info->lock, flags);
1952 }
1953
1954 shutdown(info);
1955 /* restore flags now since shutdown() will have disabled this port's
1956 specific irqs */
1957 spin_unlock_irqrestore(&info->lock, flags);
1958
1959 if (tty->driver->flush_buffer)
1960 tty->driver->flush_buffer(tty);
1961 tty_ldisc_flush(tty);
1962 tty->closing = 0;
1963 info->event = 0;
1964 info->tty = 0;
1965
1966 if (info->blocked_open) {
1967 if (info->close_delay) {
1968 msleep_interruptible(jiffies_to_msecs(info->close_delay));
1969 }
1970 wake_up_interruptible(&info->open_wait);
1971 }
1972 info->flags &= ~(ZILOG_NORMAL_ACTIVE|ZILOG_CLOSING);
1973 wake_up_interruptible(&info->close_wait);
1974}
1975
1976/*
1977 * rs_wait_until_sent() --- wait until the transmitter is empty
1978 */
1979static void rs_wait_until_sent(struct tty_struct *tty, int timeout)
1980{
1981 struct mac_serial *info = (struct mac_serial *) tty->driver_data;
1982 unsigned long orig_jiffies, char_time;
1983
1984 if (serial_paranoia_check(info, tty->name, "rs_wait_until_sent"))
1985 return;
1986
1987/* printk("rs_wait_until_sent, timeout:%d, tty_stopped:%d, tx_stopped:%d\n",
1988 timeout, tty->stopped, info->tx_stopped);
1989*/
1990 orig_jiffies = jiffies;
1991 /*
1992 * Set the check interval to be 1/5 of the estimated time to
1993 * send a single character, and make it at least 1. The check
1994 * interval should also be less than the timeout.
1995 */
1996 if (info->timeout <= HZ/50) {
1997 printk(KERN_INFO "macserial: invalid info->timeout=%d\n",
1998 info->timeout);
1999 info->timeout = HZ/50+1;
2000 }
2001
2002 char_time = (info->timeout - HZ/50) / info->xmit_fifo_size;
2003 char_time = char_time / 5;
2004 if (char_time > HZ) {
2005 printk(KERN_WARNING "macserial: char_time %ld >HZ !!!\n",
2006 char_time);
2007 char_time = 1;
2008 } else if (char_time == 0)
2009 char_time = 1;
2010 if (timeout)
2011 char_time = min_t(unsigned long, char_time, timeout);
2012 while ((read_zsreg(info->zs_channel, 1) & ALL_SNT) == 0) {
2013 msleep_interruptible(jiffies_to_msecs(char_time));
2014 if (signal_pending(current))
2015 break;
2016 if (timeout && time_after(jiffies, orig_jiffies + timeout))
2017 break;
2018 }
2019 current->state = TASK_RUNNING;
2020}
2021
2022/*
2023 * rs_hangup() --- called by tty_hangup() when a hangup is signaled.
2024 */
2025static void rs_hangup(struct tty_struct *tty)
2026{
2027 struct mac_serial * info = (struct mac_serial *)tty->driver_data;
2028
2029 if (serial_paranoia_check(info, tty->name, "rs_hangup"))
2030 return;
2031
2032 rs_flush_buffer(tty);
2033 shutdown(info);
2034 info->event = 0;
2035 info->count = 0;
2036 info->flags &= ~ZILOG_NORMAL_ACTIVE;
2037 info->tty = 0;
2038 wake_up_interruptible(&info->open_wait);
2039}
2040
2041/*
2042 * ------------------------------------------------------------
2043 * rs_open() and friends
2044 * ------------------------------------------------------------
2045 */
2046static int block_til_ready(struct tty_struct *tty, struct file * filp,
2047 struct mac_serial *info)
2048{
2049 DECLARE_WAITQUEUE(wait,current);
2050 int retval;
2051 int do_clocal = 0;
2052
2053 /*
2054 * If the device is in the middle of being closed, then block
2055 * until it's done, and then try again.
2056 */
2057 if (info->flags & ZILOG_CLOSING) {
2058 interruptible_sleep_on(&info->close_wait);
2059 return -EAGAIN;
2060 }
2061
2062 /*
2063 * If non-blocking mode is set, or the port is not enabled,
2064 * then make the check up front and then exit.
2065 */
2066 if ((filp->f_flags & O_NONBLOCK) ||
2067 (tty->flags & (1 << TTY_IO_ERROR))) {
2068 info->flags |= ZILOG_NORMAL_ACTIVE;
2069 return 0;
2070 }
2071
2072 if (tty->termios->c_cflag & CLOCAL)
2073 do_clocal = 1;
2074
2075 /*
2076 * Block waiting for the carrier detect and the line to become
2077 * free (i.e., not in use by the callout). While we are in
2078 * this loop, info->count is dropped by one, so that
2079 * rs_close() knows when to free things. We restore it upon
2080 * exit, either normal or abnormal.
2081 */
2082 retval = 0;
2083 add_wait_queue(&info->open_wait, &wait);
2084 OPNDBG("block_til_ready before block: ttyS%d, count = %d\n",
2085 info->line, info->count);
2086 spin_lock_irq(&info->lock);
2087 if (!tty_hung_up_p(filp))
2088 info->count--;
2089 spin_unlock_irq(&info->lock);
2090 info->blocked_open++;
2091 while (1) {
2092 spin_lock_irq(&info->lock);
2093 if ((tty->termios->c_cflag & CBAUD) &&
2094 !info->is_irda)
2095 zs_rtsdtr(info, 1);
2096 spin_unlock_irq(&info->lock);
2097 set_current_state(TASK_INTERRUPTIBLE);
2098 if (tty_hung_up_p(filp) ||
2099 !(info->flags & ZILOG_INITIALIZED)) {
2100 retval = -EAGAIN;
2101 break;
2102 }
2103 if (!(info->flags & ZILOG_CLOSING) &&
2104 (do_clocal || (read_zsreg(info->zs_channel, 0) & DCD)))
2105 break;
2106 if (signal_pending(current)) {
2107 retval = -ERESTARTSYS;
2108 break;
2109 }
2110 OPNDBG("block_til_ready blocking: ttyS%d, count = %d\n",
2111 info->line, info->count);
2112 schedule();
2113 }
2114 current->state = TASK_RUNNING;
2115 remove_wait_queue(&info->open_wait, &wait);
2116 if (!tty_hung_up_p(filp))
2117 info->count++;
2118 info->blocked_open--;
2119 OPNDBG("block_til_ready after blocking: ttyS%d, count = %d\n",
2120 info->line, info->count);
2121 if (retval)
2122 return retval;
2123 info->flags |= ZILOG_NORMAL_ACTIVE;
2124 return 0;
2125}
2126
2127/*
2128 * This routine is called whenever a serial port is opened. It
2129 * enables interrupts for a serial port, linking in its ZILOG structure into
2130 * the IRQ chain. It also performs the serial-specific
2131 * initialization for the tty structure.
2132 */
2133static int rs_open(struct tty_struct *tty, struct file * filp)
2134{
2135 struct mac_serial *info;
2136 int retval, line;
2137 unsigned long page;
2138
2139 line = tty->index;
2140 if ((line < 0) || (line >= zs_channels_found)) {
2141 return -ENODEV;
2142 }
2143 info = zs_soft + line;
2144
2145#ifdef CONFIG_KGDB
2146 if (info->kgdb_channel) {
2147 return -ENODEV;
2148 }
2149#endif
2150 if (serial_paranoia_check(info, tty->name, "rs_open"))
2151 return -ENODEV;
2152 OPNDBG("rs_open %s, count = %d, tty=%p\n", tty->name,
2153 info->count, tty);
2154
2155 info->count++;
2156 tty->driver_data = info;
2157 info->tty = tty;
2158
2159 if (!tmp_buf) {
2160 page = get_zeroed_page(GFP_KERNEL);
2161 if (!page)
2162 return -ENOMEM;
2163 if (tmp_buf)
2164 free_page(page);
2165 else
2166 tmp_buf = (unsigned char *) page;
2167 }
2168
2169 /*
2170 * If the port is the middle of closing, bail out now
2171 */
2172 if (tty_hung_up_p(filp) ||
2173 (info->flags & ZILOG_CLOSING)) {
2174 if (info->flags & ZILOG_CLOSING)
2175 interruptible_sleep_on(&info->close_wait);
2176 return -EAGAIN;
2177 }
2178
2179 /*
2180 * Start up serial port
2181 */
2182
2183 retval = startup(info);
2184 if (retval)
2185 return retval;
2186
2187 retval = block_til_ready(tty, filp, info);
2188 if (retval) {
2189 OPNDBG("rs_open returning after block_til_ready with %d\n",
2190 retval);
2191 return retval;
2192 }
2193
2194#ifdef CONFIG_SERIAL_CONSOLE
2195 if (sercons.cflag && sercons.index == line) {
2196 tty->termios->c_cflag = sercons.cflag;
2197 sercons.cflag = 0;
2198 change_speed(info, 0);
2199 }
2200#endif
2201
2202 OPNDBG("rs_open %s successful...\n", tty->name);
2203 return 0;
2204}
2205
2206/* Finally, routines used to initialize the serial driver. */
2207
2208static void show_serial_version(void)
2209{
2210 printk(KERN_INFO "PowerMac Z8530 serial driver version " MACSERIAL_VERSION "\n");
2211}
2212
2213/*
2214 * Initialize one channel, both the mac_serial and mac_zschannel
2215 * structs. We use the dev_node field of the mac_serial struct.
2216 */
2217static int
2218chan_init(struct mac_serial *zss, struct mac_zschannel *zs_chan,
2219 struct mac_zschannel *zs_chan_a)
2220{
2221 struct device_node *ch = zss->dev_node;
2222 char *conn;
2223 int len;
2224 struct slot_names_prop {
2225 int count;
2226 char name[1];
2227 } *slots;
2228
2229 zss->irq = ch->intrs[0].line;
2230 zss->has_dma = 0;
2231#if !defined(CONFIG_KGDB) && defined(SUPPORT_SERIAL_DMA)
2232 if (ch->n_addrs >= 3 && ch->n_intrs == 3)
2233 zss->has_dma = 1;
2234#endif
2235 zss->dma_initted = 0;
2236
2237 zs_chan->control = (volatile unsigned char *)
2238 ioremap(ch->addrs[0].address, 0x1000);
2239 zs_chan->data = zs_chan->control + 0x10;
2240 spin_lock_init(&zs_chan->lock);
2241 zs_chan->parent = zss;
2242 zss->zs_channel = zs_chan;
2243 zss->zs_chan_a = zs_chan_a;
2244
2245 /* setup misc varariables */
2246 zss->kgdb_channel = 0;
2247
2248 /* For now, we assume you either have a slot-names property
2249 * with "Modem" in it, or your channel is compatible with
2250 * "cobalt". Might need additional fixups
2251 */
2252 zss->is_internal_modem = device_is_compatible(ch, "cobalt");
2253 conn = get_property(ch, "AAPL,connector", &len);
2254 zss->is_irda = conn && (strcmp(conn, "infrared") == 0);
2255 zss->port_type = PMAC_SCC_ASYNC;
2256 /* 1999 Powerbook G3 has slot-names property instead */
2257 slots = (struct slot_names_prop *)get_property(ch, "slot-names", &len);
2258 if (slots && slots->count > 0) {
2259 if (strcmp(slots->name, "IrDA") == 0)
2260 zss->is_irda = 1;
2261 else if (strcmp(slots->name, "Modem") == 0)
2262 zss->is_internal_modem = 1;
2263 }
2264 if (zss->is_irda)
2265 zss->port_type = PMAC_SCC_IRDA;
2266 if (zss->is_internal_modem) {
2267 struct device_node* i2c_modem = find_devices("i2c-modem");
2268 if (i2c_modem) {
2269 char* mid = get_property(i2c_modem, "modem-id", NULL);
2270 if (mid) switch(*mid) {
2271 case 0x04 :
2272 case 0x05 :
2273 case 0x07 :
2274 case 0x08 :
2275 case 0x0b :
2276 case 0x0c :
2277 zss->port_type = PMAC_SCC_I2S1;
2278 }
2279 printk(KERN_INFO "macserial: i2c-modem detected, id: %d\n",
2280 mid ? (*mid) : 0);
2281 } else {
2282 printk(KERN_INFO "macserial: serial modem detected\n");
2283 }
2284 }
2285
2286 while (zss->has_dma) {
2287 zss->dma_priv = NULL;
2288 /* it seems that the last two addresses are the
2289 DMA controllers */
2290 zss->tx_dma = (volatile struct dbdma_regs *)
2291 ioremap(ch->addrs[ch->n_addrs - 2].address, 0x100);
2292 zss->rx = (volatile struct mac_dma *)
2293 ioremap(ch->addrs[ch->n_addrs - 1].address, 0x100);
2294 zss->tx_dma_irq = ch->intrs[1].line;
2295 zss->rx_dma_irq = ch->intrs[2].line;
2296 spin_lock_init(&zss->rx_dma_lock);
2297 break;
2298 }
2299
2300 init_timer(&zss->powerup_timer);
2301 zss->powerup_timer.function = powerup_done;
2302 zss->powerup_timer.data = (unsigned long) zss;
2303 return 0;
2304}
2305
2306/*
2307 * /proc fs routines. TODO: Add status lines & error stats
2308 */
2309static inline int
2310line_info(char *buf, struct mac_serial *info)
2311{
2312 int ret=0;
2313 unsigned char* connector;
2314 int lenp;
2315
2316 ret += sprintf(buf, "%d: port:0x%X irq:%d", info->line, info->port, info->irq);
2317
2318 connector = get_property(info->dev_node, "AAPL,connector", &lenp);
2319 if (connector)
2320 ret+=sprintf(buf+ret," con:%s ", connector);
2321 if (info->is_internal_modem) {
2322 if (!connector)
2323 ret+=sprintf(buf+ret," con:");
2324 ret+=sprintf(buf+ret,"%s", " (internal modem)");
2325 }
2326 if (info->is_irda) {
2327 if (!connector)
2328 ret+=sprintf(buf+ret," con:");
2329 ret+=sprintf(buf+ret,"%s", " (IrDA)");
2330 }
2331 ret+=sprintf(buf+ret,"\n");
2332
2333 return ret;
2334}
2335
2336int macserial_read_proc(char *page, char **start, off_t off, int count,
2337 int *eof, void *data)
2338{
2339 int l, len = 0;
2340 off_t begin = 0;
2341 struct mac_serial *info;
2342
2343 len += sprintf(page, "serinfo:1.0 driver:" MACSERIAL_VERSION "\n");
2344 for (info = zs_chain; info && len < 4000; info = info->zs_next) {
2345 l = line_info(page + len, info);
2346 len += l;
2347 if (len+begin > off+count)
2348 goto done;
2349 if (len+begin < off) {
2350 begin += len;
2351 len = 0;
2352 }
2353 }
2354 *eof = 1;
2355done:
2356 if (off >= len+begin)
2357 return 0;
2358 *start = page + (off-begin);
2359 return ((count < begin+len-off) ? count : begin+len-off);
2360}
2361
2362/* Ask the PROM how many Z8530s we have and initialize their zs_channels */
2363static void
2364probe_sccs(void)
2365{
2366 struct device_node *dev, *ch;
2367 struct mac_serial **pp;
2368 int n, chip, nchan;
2369 struct mac_zschannel *zs_chan;
2370 int chan_a_index;
2371
2372 n = 0;
2373 pp = &zs_chain;
2374 zs_chan = zs_channels;
2375 for (dev = find_devices("escc"); dev != 0; dev = dev->next) {
2376 nchan = 0;
2377 chip = n;
2378 if (n >= NUM_CHANNELS) {
2379 printk(KERN_WARNING "Sorry, can't use %s: no more "
2380 "channels\n", dev->full_name);
2381 continue;
2382 }
2383 chan_a_index = 0;
2384 for (ch = dev->child; ch != 0; ch = ch->sibling) {
2385 if (nchan >= 2) {
2386 printk(KERN_WARNING "SCC: Only 2 channels per "
2387 "chip are supported\n");
2388 break;
2389 }
2390 if (ch->n_addrs < 1 || (ch ->n_intrs < 1)) {
2391 printk("Can't use %s: %d addrs %d intrs\n",
2392 ch->full_name, ch->n_addrs, ch->n_intrs);
2393 continue;
2394 }
2395
2396 /* The channel with the higher address
2397 will be the A side. */
2398 if (nchan > 0 &&
2399 ch->addrs[0].address
2400 > zs_soft[n-1].dev_node->addrs[0].address)
2401 chan_a_index = 1;
2402
2403 /* minimal initialization for now */
2404 zs_soft[n].dev_node = ch;
2405 *pp = &zs_soft[n];
2406 pp = &zs_soft[n].zs_next;
2407 ++nchan;
2408 ++n;
2409 }
2410 if (nchan == 0)
2411 continue;
2412
2413 /* set up A side */
2414 if (chan_init(&zs_soft[chip + chan_a_index], zs_chan, zs_chan))
2415 continue;
2416 ++zs_chan;
2417
2418 /* set up B side, if it exists */
2419 if (nchan > 1)
2420 if (chan_init(&zs_soft[chip + 1 - chan_a_index],
2421 zs_chan, zs_chan - 1))
2422 continue;
2423 ++zs_chan;
2424 }
2425 *pp = 0;
2426
2427 zs_channels_found = n;
2428#ifdef CONFIG_PMAC_PBOOK
2429 if (n)
2430 pmu_register_sleep_notifier(&serial_sleep_notifier);
2431#endif /* CONFIG_PMAC_PBOOK */
2432}
2433
2434static struct tty_operations serial_ops = {
2435 .open = rs_open,
2436 .close = rs_close,
2437 .write = rs_write,
2438 .flush_chars = rs_flush_chars,
2439 .write_room = rs_write_room,
2440 .chars_in_buffer = rs_chars_in_buffer,
2441 .flush_buffer = rs_flush_buffer,
2442 .ioctl = rs_ioctl,
2443 .throttle = rs_throttle,
2444 .unthrottle = rs_unthrottle,
2445 .set_termios = rs_set_termios,
2446 .stop = rs_stop,
2447 .start = rs_start,
2448 .hangup = rs_hangup,
2449 .break_ctl = rs_break,
2450 .wait_until_sent = rs_wait_until_sent,
2451 .read_proc = macserial_read_proc,
2452 .tiocmget = rs_tiocmget,
2453 .tiocmset = rs_tiocmset,
2454};
2455
2456static int macserial_init(void)
2457{
2458 int channel, i;
2459 struct mac_serial *info;
2460
2461 /* Find out how many Z8530 SCCs we have */
2462 if (zs_chain == 0)
2463 probe_sccs();
2464
2465 serial_driver = alloc_tty_driver(zs_channels_found);
2466 if (!serial_driver)
2467 return -ENOMEM;
2468
2469 /* XXX assume it's a powerbook if we have a via-pmu
2470 *
2471 * This is OK for core99 machines as well.
2472 */
2473 is_powerbook = find_devices("via-pmu") != 0;
2474
2475 /* Register the interrupt handler for each one
2476 * We also request the OF resources here as probe_sccs()
2477 * might be called too early for that
2478 */
2479 for (i = 0; i < zs_channels_found; ++i) {
2480 struct device_node* ch = zs_soft[i].dev_node;
2481 if (!request_OF_resource(ch, 0, NULL)) {
2482 printk(KERN_ERR "macserial: can't request IO resource !\n");
2483 put_tty_driver(serial_driver);
2484 return -ENODEV;
2485 }
2486 if (zs_soft[i].has_dma) {
2487 if (!request_OF_resource(ch, ch->n_addrs - 2, " (tx dma)")) {
2488 printk(KERN_ERR "macserial: can't request TX DMA resource !\n");
2489 zs_soft[i].has_dma = 0;
2490 goto no_dma;
2491 }
2492 if (!request_OF_resource(ch, ch->n_addrs - 1, " (rx dma)")) {
2493 release_OF_resource(ch, ch->n_addrs - 2);
2494 printk(KERN_ERR "macserial: can't request RX DMA resource !\n");
2495 zs_soft[i].has_dma = 0;
2496 goto no_dma;
2497 }
2498 if (request_irq(zs_soft[i].tx_dma_irq, rs_txdma_irq, 0,
2499 "SCC-txdma", &zs_soft[i]))
2500 printk(KERN_ERR "macserial: can't get irq %d\n",
2501 zs_soft[i].tx_dma_irq);
2502 disable_irq(zs_soft[i].tx_dma_irq);
2503 if (request_irq(zs_soft[i].rx_dma_irq, rs_rxdma_irq, 0,
2504 "SCC-rxdma", &zs_soft[i]))
2505 printk(KERN_ERR "macserial: can't get irq %d\n",
2506 zs_soft[i].rx_dma_irq);
2507 disable_irq(zs_soft[i].rx_dma_irq);
2508 }
2509no_dma:
2510 if (request_irq(zs_soft[i].irq, rs_interrupt, 0,
2511 "SCC", &zs_soft[i]))
2512 printk(KERN_ERR "macserial: can't get irq %d\n",
2513 zs_soft[i].irq);
2514 disable_irq(zs_soft[i].irq);
2515 }
2516
2517 show_serial_version();
2518
2519 /* Initialize the tty_driver structure */
2520 /* Not all of this is exactly right for us. */
2521
2522 serial_driver->owner = THIS_MODULE;
2523 serial_driver->driver_name = "macserial";
2524 serial_driver->devfs_name = "tts/";
2525 serial_driver->name = "ttyS";
2526 serial_driver->major = TTY_MAJOR;
2527 serial_driver->minor_start = 64;
2528 serial_driver->type = TTY_DRIVER_TYPE_SERIAL;
2529 serial_driver->subtype = SERIAL_TYPE_NORMAL;
2530 serial_driver->init_termios = tty_std_termios;
2531 serial_driver->init_termios.c_cflag =
2532 B38400 | CS8 | CREAD | HUPCL | CLOCAL;
2533 serial_driver->flags = TTY_DRIVER_REAL_RAW;
2534 tty_set_operations(serial_driver, &serial_ops);
2535
2536 if (tty_register_driver(serial_driver))
2537 printk(KERN_ERR "Error: couldn't register serial driver\n");
2538
2539 for (channel = 0; channel < zs_channels_found; ++channel) {
2540#ifdef CONFIG_KGDB
2541 if (zs_soft[channel].kgdb_channel) {
2542 kgdb_interruptible(1);
2543 continue;
2544 }
2545#endif
2546 zs_soft[channel].clk_divisor = 16;
2547/* -- we are not sure the SCC is powered ON at this point
2548 zs_soft[channel].zs_baud = get_zsbaud(&zs_soft[channel]);
2549*/
2550 zs_soft[channel].zs_baud = 38400;
2551
2552 /* If console serial line, then enable interrupts. */
2553 if (zs_soft[channel].is_cons) {
2554 printk(KERN_INFO "macserial: console line, enabling "
2555 "interrupt %d\n", zs_soft[channel].irq);
2556 panic("macserial: console not supported yet !");
2557 write_zsreg(zs_soft[channel].zs_channel, R1,
2558 (EXT_INT_ENAB | INT_ALL_Rx | TxINT_ENAB));
2559 write_zsreg(zs_soft[channel].zs_channel, R9,
2560 (NV | MIE));
2561 }
2562 }
2563
2564 for (info = zs_chain, i = 0; info; info = info->zs_next, i++)
2565 {
2566 unsigned char* connector;
2567 int lenp;
2568
2569#ifdef CONFIG_KGDB
2570 if (info->kgdb_channel) {
2571 continue;
2572 }
2573#endif
2574 info->magic = SERIAL_MAGIC;
2575 info->port = (int) info->zs_channel->control;
2576 info->line = i;
2577 info->tty = 0;
2578 info->custom_divisor = 16;
2579 info->timeout = 0;
2580 info->close_delay = 50;
2581 info->closing_wait = 3000;
2582 info->x_char = 0;
2583 info->event = 0;
2584 info->count = 0;
2585 info->blocked_open = 0;
2586 INIT_WORK(&info->tqueue, do_softint, info);
2587 spin_lock_init(&info->lock);
2588 init_waitqueue_head(&info->open_wait);
2589 init_waitqueue_head(&info->close_wait);
2590 info->timeout = HZ;
2591 printk(KERN_INFO "tty%02d at 0x%08x (irq = %d)", info->line,
2592 info->port, info->irq);
2593 printk(" is a Z8530 ESCC");
2594 connector = get_property(info->dev_node, "AAPL,connector", &lenp);
2595 if (connector)
2596 printk(", port = %s", connector);
2597 if (info->is_internal_modem)
2598 printk(" (internal modem)");
2599 if (info->is_irda)
2600 printk(" (IrDA)");
2601 printk("\n");
2602 }
2603 tmp_buf = 0;
2604
2605 return 0;
2606}
2607
2608void macserial_cleanup(void)
2609{
2610 int i;
2611 unsigned long flags;
2612 struct mac_serial *info;
2613
2614 for (info = zs_chain, i = 0; info; info = info->zs_next, i++)
2615 set_scc_power(info, 0);
2616 spin_lock_irqsave(&info->lock, flags);
2617 for (i = 0; i < zs_channels_found; ++i) {
2618 free_irq(zs_soft[i].irq, &zs_soft[i]);
2619 if (zs_soft[i].has_dma) {
2620 free_irq(zs_soft[i].tx_dma_irq, &zs_soft[i]);
2621 free_irq(zs_soft[i].rx_dma_irq, &zs_soft[i]);
2622 }
2623 release_OF_resource(zs_soft[i].dev_node, 0);
2624 if (zs_soft[i].has_dma) {
2625 struct device_node* ch = zs_soft[i].dev_node;
2626 release_OF_resource(ch, ch->n_addrs - 2);
2627 release_OF_resource(ch, ch->n_addrs - 1);
2628 }
2629 }
2630 spin_unlock_irqrestore(&info->lock, flags);
2631 tty_unregister_driver(serial_driver);
2632 put_tty_driver(serial_driver);
2633
2634 if (tmp_buf) {
2635 free_page((unsigned long) tmp_buf);
2636 tmp_buf = 0;
2637 }
2638
2639#ifdef CONFIG_PMAC_PBOOK
2640 if (zs_channels_found)
2641 pmu_unregister_sleep_notifier(&serial_sleep_notifier);
2642#endif /* CONFIG_PMAC_PBOOK */
2643}
2644
2645module_init(macserial_init);
2646module_exit(macserial_cleanup);
2647MODULE_LICENSE("GPL");
2648
2649#if 0
2650/*
2651 * register_serial and unregister_serial allows for serial ports to be
2652 * configured at run-time, to support PCMCIA modems.
2653 */
2654/* PowerMac: Unused at this time, just here to make things link. */
2655int register_serial(struct serial_struct *req)
2656{
2657 return -1;
2658}
2659
2660void unregister_serial(int line)
2661{
2662 return;
2663}
2664#endif
2665
2666/*
2667 * ------------------------------------------------------------
2668 * Serial console driver
2669 * ------------------------------------------------------------
2670 */
2671#ifdef CONFIG_SERIAL_CONSOLE
2672
2673/*
2674 * Print a string to the serial port trying not to disturb
2675 * any possible real use of the port...
2676 */
2677static void serial_console_write(struct console *co, const char *s,
2678 unsigned count)
2679{
2680 struct mac_serial *info = zs_soft + co->index;
2681 int i;
2682
2683 /* Turn of interrupts and enable the transmitter. */
2684 write_zsreg(info->zs_channel, R1, info->curregs[1] & ~TxINT_ENAB);
2685 write_zsreg(info->zs_channel, R5, info->curregs[5] | TxENAB | RTS | DTR);
2686
2687 for (i=0; i<count; i++) {
2688 /* Wait for the transmit buffer to empty. */
2689 while ((read_zsreg(info->zs_channel, 0) & Tx_BUF_EMP) == 0) {
2690 eieio();
2691 }
2692
2693 write_zsdata(info->zs_channel, s[i]);
2694 if (s[i] == 10) {
2695 while ((read_zsreg(info->zs_channel, 0) & Tx_BUF_EMP)
2696 == 0)
2697 eieio();
2698
2699 write_zsdata(info->zs_channel, 13);
2700 }
2701 }
2702
2703 /* Restore the values in the registers. */
2704 write_zsreg(info->zs_channel, R1, info->curregs[1]);
2705 /* Don't disable the transmitter. */
2706}
2707
2708static struct tty_driver *serial_driver;
2709
2710static struct tty_driver *serial_console_device(struct console *c, int *index)
2711{
2712 *index = c->index;
2713 return serial_driver;
2714}
2715
2716/*
2717 * Setup initial baud/bits/parity. We do two things here:
2718 * - construct a cflag setting for the first rs_open()
2719 * - initialize the serial port
2720 * Return non-zero if we didn't find a serial port.
2721 */
2722static int __init serial_console_setup(struct console *co, char *options)
2723{
2724 struct mac_serial *info;
2725 int baud = 38400;
2726 int bits = 8;
2727 int parity = 'n';
2728 int cflag = CREAD | HUPCL | CLOCAL;
2729 int brg;
2730 char *s;
2731 long flags;
2732
2733 /* Find out how many Z8530 SCCs we have */
2734 if (zs_chain == 0)
2735 probe_sccs();
2736
2737 if (zs_chain == 0)
2738 return -1;
2739
2740 /* Do we have the device asked for? */
2741 if (co->index >= zs_channels_found)
2742 return -1;
2743 info = zs_soft + co->index;
2744
2745 set_scc_power(info, 1);
2746
2747 /* Reset the channel */
2748 write_zsreg(info->zs_channel, R9, CHRA);
2749
2750 if (options) {
2751 baud = simple_strtoul(options, NULL, 10);
2752 s = options;
2753 while(*s >= '0' && *s <= '9')
2754 s++;
2755 if (*s)
2756 parity = *s++;
2757 if (*s)
2758 bits = *s - '0';
2759 }
2760
2761 /*
2762 * Now construct a cflag setting.
2763 */
2764 switch(baud) {
2765 case 1200:
2766 cflag |= B1200;
2767 break;
2768 case 2400:
2769 cflag |= B2400;
2770 break;
2771 case 4800:
2772 cflag |= B4800;
2773 break;
2774 case 9600:
2775 cflag |= B9600;
2776 break;
2777 case 19200:
2778 cflag |= B19200;
2779 break;
2780 case 57600:
2781 cflag |= B57600;
2782 break;
2783 case 115200:
2784 cflag |= B115200;
2785 break;
2786 case 38400:
2787 default:
2788 cflag |= B38400;
2789 break;
2790 }
2791 switch(bits) {
2792 case 7:
2793 cflag |= CS7;
2794 break;
2795 default:
2796 case 8:
2797 cflag |= CS8;
2798 break;
2799 }
2800 switch(parity) {
2801 case 'o': case 'O':
2802 cflag |= PARENB | PARODD;
2803 break;
2804 case 'e': case 'E':
2805 cflag |= PARENB;
2806 break;
2807 }
2808 co->cflag = cflag;
2809
2810 spin_lock_irqsave(&info->lock, flags);
2811 memset(info->curregs, 0, sizeof(info->curregs));
2812
2813 info->zs_baud = baud;
2814 info->clk_divisor = 16;
2815 switch (info->zs_baud) {
2816 case ZS_CLOCK/16: /* 230400 */
2817 info->curregs[4] = X16CLK;
2818 info->curregs[11] = 0;
2819 break;
2820 case ZS_CLOCK/32: /* 115200 */
2821 info->curregs[4] = X32CLK;
2822 info->curregs[11] = 0;
2823 break;
2824 default:
2825 info->curregs[4] = X16CLK;
2826 info->curregs[11] = TCBR | RCBR;
2827 brg = BPS_TO_BRG(info->zs_baud, ZS_CLOCK/info->clk_divisor);
2828 info->curregs[12] = (brg & 255);
2829 info->curregs[13] = ((brg >> 8) & 255);
2830 info->curregs[14] = BRENABL;
2831 }
2832
2833 /* byte size and parity */
2834 info->curregs[3] &= ~RxNBITS_MASK;
2835 info->curregs[5] &= ~TxNBITS_MASK;
2836 switch (cflag & CSIZE) {
2837 case CS5:
2838 info->curregs[3] |= Rx5;
2839 info->curregs[5] |= Tx5;
2840 break;
2841 case CS6:
2842 info->curregs[3] |= Rx6;
2843 info->curregs[5] |= Tx6;
2844 break;
2845 case CS7:
2846 info->curregs[3] |= Rx7;
2847 info->curregs[5] |= Tx7;
2848 break;
2849 case CS8:
2850 default: /* defaults to 8 bits */
2851 info->curregs[3] |= Rx8;
2852 info->curregs[5] |= Tx8;
2853 break;
2854 }
2855 info->curregs[5] |= TxENAB | RTS | DTR;
2856 info->pendregs[3] = info->curregs[3];
2857 info->pendregs[5] = info->curregs[5];
2858
2859 info->curregs[4] &= ~(SB_MASK | PAR_ENA | PAR_EVEN);
2860 if (cflag & CSTOPB) {
2861 info->curregs[4] |= SB2;
2862 } else {
2863 info->curregs[4] |= SB1;
2864 }
2865 if (cflag & PARENB) {
2866 info->curregs[4] |= PAR_ENA;
2867 if (!(cflag & PARODD)) {
2868 info->curregs[4] |= PAR_EVEN;
2869 }
2870 }
2871 info->pendregs[4] = info->curregs[4];
2872
2873 if (!(cflag & CLOCAL)) {
2874 if (!(info->curregs[15] & DCDIE))
2875 info->read_reg_zero = read_zsreg(info->zs_channel, 0);
2876 info->curregs[15] |= DCDIE;
2877 } else
2878 info->curregs[15] &= ~DCDIE;
2879 if (cflag & CRTSCTS) {
2880 info->curregs[15] |= CTSIE;
2881 if ((read_zsreg(info->zs_channel, 0) & CTS) != 0)
2882 info->tx_stopped = 1;
2883 } else {
2884 info->curregs[15] &= ~CTSIE;
2885 info->tx_stopped = 0;
2886 }
2887 info->pendregs[15] = info->curregs[15];
2888
2889 /* Load up the new values */
2890 load_zsregs(info->zs_channel, info->curregs);
2891
2892 spin_unlock_irqrestore(&info->lock, flags);
2893
2894 return 0;
2895}
2896
2897static struct console sercons = {
2898 .name = "ttyS",
2899 .write = serial_console_write,
2900 .device = serial_console_device,
2901 .setup = serial_console_setup,
2902 .flags = CON_PRINTBUFFER,
2903 .index = -1,
2904};
2905
2906/*
2907 * Register console.
2908 */
2909static void __init mac_scc_console_init(void)
2910{
2911 register_console(&sercons);
2912}
2913console_initcall(mac_scc_console_init);
2914
2915#endif /* ifdef CONFIG_SERIAL_CONSOLE */
2916
2917#ifdef CONFIG_KGDB
2918/* These are for receiving and sending characters under the kgdb
2919 * source level kernel debugger.
2920 */
2921void putDebugChar(char kgdb_char)
2922{
2923 struct mac_zschannel *chan = zs_kgdbchan;
2924 while ((read_zsreg(chan, 0) & Tx_BUF_EMP) == 0)
2925 udelay(5);
2926 write_zsdata(chan, kgdb_char);
2927}
2928
2929char getDebugChar(void)
2930{
2931 struct mac_zschannel *chan = zs_kgdbchan;
2932 while((read_zsreg(chan, 0) & Rx_CH_AV) == 0)
2933 eieio(); /*barrier();*/
2934 return read_zsdata(chan);
2935}
2936
2937void kgdb_interruptible(int yes)
2938{
2939 struct mac_zschannel *chan = zs_kgdbchan;
2940 int one, nine;
2941 nine = read_zsreg(chan, 9);
2942 if (yes == 1) {
2943 one = EXT_INT_ENAB|INT_ALL_Rx;
2944 nine |= MIE;
2945 printk("turning serial ints on\n");
2946 } else {
2947 one = RxINT_DISAB;
2948 nine &= ~MIE;
2949 printk("turning serial ints off\n");
2950 }
2951 write_zsreg(chan, 1, one);
2952 write_zsreg(chan, 9, nine);
2953}
2954
2955/* This sets up the serial port we're using, and turns on
2956 * interrupts for that channel, so kgdb is usable once we're done.
2957 */
2958static inline void kgdb_chaninit(struct mac_zschannel *ms, int intson, int bps)
2959{
2960 int brg;
2961 int i, x;
2962 volatile char *sccc = ms->control;
2963 brg = BPS_TO_BRG(bps, ZS_CLOCK/16);
2964 printk("setting bps on kgdb line to %d [brg=%x]\n", bps, brg);
2965 for (i = 20000; i != 0; --i) {
2966 x = *sccc; eieio();
2967 }
2968 for (i = 0; i < sizeof(scc_inittab); ++i) {
2969 write_zsreg(ms, scc_inittab[i], scc_inittab[i+1]);
2970 i++;
2971 }
2972}
2973
2974/* This is called at boot time to prime the kgdb serial debugging
2975 * serial line. The 'tty_num' argument is 0 for /dev/ttya and 1
2976 * for /dev/ttyb which is determined in setup_arch() from the
2977 * boot command line flags.
2978 * XXX at the moment probably only channel A will work
2979 */
2980void __init zs_kgdb_hook(int tty_num)
2981{
2982 /* Find out how many Z8530 SCCs we have */
2983 if (zs_chain == 0)
2984 probe_sccs();
2985
2986 set_scc_power(&zs_soft[tty_num], 1);
2987
2988 zs_kgdbchan = zs_soft[tty_num].zs_channel;
2989 zs_soft[tty_num].change_needed = 0;
2990 zs_soft[tty_num].clk_divisor = 16;
2991 zs_soft[tty_num].zs_baud = 38400;
2992 zs_soft[tty_num].kgdb_channel = 1; /* This runs kgdb */
2993
2994 /* Turn on transmitter/receiver at 8-bits/char */
2995 kgdb_chaninit(zs_soft[tty_num].zs_channel, 1, 38400);
2996 printk("KGDB: on channel %d initialized\n", tty_num);
2997 set_debug_traps(); /* init stub */
2998}
2999#endif /* ifdef CONFIG_KGDB */
3000
3001#ifdef CONFIG_PMAC_PBOOK
3002/*
3003 * notify clients before sleep and reset bus afterwards
3004 */
3005int
3006serial_notify_sleep(struct pmu_sleep_notifier *self, int when)
3007{
3008 int i;
3009
3010 switch (when) {
3011 case PBOOK_SLEEP_REQUEST:
3012 case PBOOK_SLEEP_REJECT:
3013 break;
3014
3015 case PBOOK_SLEEP_NOW:
3016 for (i=0; i<zs_channels_found; i++) {
3017 struct mac_serial *info = &zs_soft[i];
3018 if (info->flags & ZILOG_INITIALIZED) {
3019 shutdown(info);
3020 info->flags |= ZILOG_SLEEPING;
3021 }
3022 }
3023 break;
3024 case PBOOK_WAKE:
3025 for (i=0; i<zs_channels_found; i++) {
3026 struct mac_serial *info = &zs_soft[i];
3027 if (info->flags & ZILOG_SLEEPING) {
3028 info->flags &= ~ZILOG_SLEEPING;
3029 startup(info);
3030 }
3031 }
3032 break;
3033 }
3034 return PBOOK_SLEEP_OK;
3035}
3036#endif /* CONFIG_PMAC_PBOOK */
diff --git a/drivers/macintosh/macserial.h b/drivers/macintosh/macserial.h
deleted file mode 100644
index bade11a7a5c3..000000000000
--- a/drivers/macintosh/macserial.h
+++ /dev/null
@@ -1,461 +0,0 @@
1/*
2 * macserial.h: Definitions for the Macintosh Z8530 serial driver.
3 *
4 * Adapted from drivers/sbus/char/sunserial.h by Paul Mackerras.
5 *
6 * Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au)
7 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
8 */
9#ifndef _MACSERIAL_H
10#define _MACSERIAL_H
11
12#include <linux/spinlock.h>
13
14#define NUM_ZSREGS 16
15
16struct serial_struct {
17 int type;
18 int line;
19 int port;
20 int irq;
21 int flags;
22 int xmit_fifo_size;
23 int custom_divisor;
24 int baud_base;
25 unsigned short close_delay;
26 char reserved_char[2];
27 int hub6;
28 unsigned short closing_wait; /* time to wait before closing */
29 unsigned short closing_wait2; /* no longer used... */
30 int reserved[4];
31};
32
33/*
34 * For the close wait times, 0 means wait forever for serial port to
35 * flush its output. 65535 means don't wait at all.
36 */
37#define ZILOG_CLOSING_WAIT_INF 0
38#define ZILOG_CLOSING_WAIT_NONE 65535
39
40/*
41 * Definitions for ZILOG_struct (and serial_struct) flags field
42 */
43#define ZILOG_HUP_NOTIFY 0x0001 /* Notify getty on hangups and closes
44 * on the callout port */
45#define ZILOG_FOURPORT 0x0002 /* Set OU1, OUT2 per AST Fourport settings */
46#define ZILOG_SAK 0x0004 /* Secure Attention Key (Orange book) */
47#define ZILOG_SPLIT_TERMIOS 0x0008 /* Separate termios for dialin/callout */
48
49#define ZILOG_SPD_MASK 0x0030
50#define ZILOG_SPD_HI 0x0010 /* Use 56000 instead of 38400 bps */
51
52#define ZILOG_SPD_VHI 0x0020 /* Use 115200 instead of 38400 bps */
53#define ZILOG_SPD_CUST 0x0030 /* Use user-specified divisor */
54
55#define ZILOG_SKIP_TEST 0x0040 /* Skip UART test during autoconfiguration */
56#define ZILOG_AUTO_IRQ 0x0080 /* Do automatic IRQ during autoconfiguration */
57#define ZILOG_SESSION_LOCKOUT 0x0100 /* Lock out cua opens based on session */
58#define ZILOG_PGRP_LOCKOUT 0x0200 /* Lock out cua opens based on pgrp */
59#define ZILOG_CALLOUT_NOHUP 0x0400 /* Don't do hangups for cua device */
60
61#define ZILOG_FLAGS 0x0FFF /* Possible legal ZILOG flags */
62#define ZILOG_USR_MASK 0x0430 /* Legal flags that non-privileged
63 * users can set or reset */
64
65/* Internal flags used only by kernel/chr_drv/serial.c */
66#define ZILOG_INITIALIZED 0x80000000 /* Serial port was initialized */
67#define ZILOG_CALLOUT_ACTIVE 0x40000000 /* Call out device is active */
68#define ZILOG_NORMAL_ACTIVE 0x20000000 /* Normal device is active */
69#define ZILOG_BOOT_AUTOCONF 0x10000000 /* Autoconfigure port on bootup */
70#define ZILOG_CLOSING 0x08000000 /* Serial port is closing */
71#define ZILOG_CTS_FLOW 0x04000000 /* Do CTS flow control */
72#define ZILOG_CHECK_CD 0x02000000 /* i.e., CLOCAL */
73#define ZILOG_SLEEPING 0x01000000 /* have shut it down for sleep */
74
75/* Software state per channel */
76
77#ifdef __KERNEL__
78/*
79 * This is our internal structure for each serial port's state.
80 *
81 * Many fields are paralleled by the structure used by the serial_struct
82 * structure.
83 *
84 * For definitions of the flags field, see tty.h
85 */
86
87struct mac_serial;
88
89struct mac_zschannel {
90 volatile unsigned char* control;
91 volatile unsigned char* data;
92 spinlock_t lock;
93 /* Used for debugging */
94 struct mac_serial* parent;
95};
96
97struct mac_dma {
98 volatile struct dbdma_regs dma;
99 volatile unsigned short res_count;
100 volatile unsigned short command;
101 volatile unsigned int buf_addr;
102};
103
104struct mac_serial {
105 struct mac_serial *zs_next; /* For IRQ servicing chain */
106 struct mac_zschannel *zs_channel; /* Channel registers */
107 struct mac_zschannel *zs_chan_a; /* A side registers */
108 unsigned char read_reg_zero;
109 struct device_node* dev_node;
110 spinlock_t lock;
111
112 char soft_carrier; /* Use soft carrier on this channel */
113 char break_abort; /* Is serial console in, so process brk/abrt */
114 char kgdb_channel; /* Kgdb is running on this channel */
115 char is_cons; /* Is this our console. */
116 char is_internal_modem; /* is connected to an internal modem */
117 char is_irda; /* is connected to an IrDA codec */
118 int port_type; /* Port type for pmac_feature */
119 unsigned char tx_active; /* character is being xmitted */
120 unsigned char tx_stopped; /* output is suspended */
121 unsigned char power_wait; /* waiting for power-up delay to expire */
122
123 /* We need to know the current clock divisor
124 * to read the bps rate the chip has currently
125 * loaded.
126 */
127 unsigned char clk_divisor; /* May be 1, 16, 32, or 64 */
128 int zs_baud;
129
130 /* Current write register values */
131 unsigned char curregs[NUM_ZSREGS];
132
133 /* Values we need to set next opportunity */
134 unsigned char pendregs[NUM_ZSREGS];
135
136 char change_needed;
137
138 int magic;
139 int baud_base;
140 int port;
141 int irq;
142 int flags; /* defined in tty.h */
143 int type; /* UART type */
144 struct tty_struct *tty;
145 int read_status_mask;
146 int ignore_status_mask;
147 int timeout;
148 int xmit_fifo_size;
149 int custom_divisor;
150 int x_char; /* xon/xoff character */
151 int close_delay;
152 unsigned short closing_wait;
153 unsigned short closing_wait2;
154 unsigned long event;
155 unsigned long last_active;
156 int line;
157 int count; /* # of fd on device */
158 int blocked_open; /* # of blocked opens */
159 unsigned char *xmit_buf;
160 int xmit_head;
161 int xmit_tail;
162 int xmit_cnt;
163 struct work_struct tqueue;
164 wait_queue_head_t open_wait;
165 wait_queue_head_t close_wait;
166
167 volatile struct dbdma_regs *tx_dma;
168 int tx_dma_irq;
169 volatile struct dbdma_cmd *tx_cmds;
170 volatile struct mac_dma *rx;
171 int rx_dma_irq;
172 volatile struct dbdma_cmd **rx_cmds;
173 unsigned char **rx_char_buf;
174 unsigned char **rx_flag_buf;
175#define RX_BUF_SIZE 256
176 int rx_nbuf;
177 int rx_done_bytes;
178 int rx_ubuf;
179 int rx_fbuf;
180#define RX_NO_FBUF (-1)
181 int rx_cbuf;
182 spinlock_t rx_dma_lock;
183 int has_dma;
184 int dma_initted;
185 void *dma_priv;
186 struct timer_list poll_dma_timer;
187#define RX_DMA_TIMER (jiffies + 10*HZ/1000)
188
189 struct timer_list powerup_timer;
190};
191
192
193#define SERIAL_MAGIC 0x5301
194
195/*
196 * The size of the serial xmit buffer is 1 page, or 4096 bytes
197 */
198#define SERIAL_XMIT_SIZE 4096
199
200/*
201 * Events are used to schedule things to happen at timer-interrupt
202 * time, instead of at rs interrupt time.
203 */
204#define RS_EVENT_WRITE_WAKEUP 0
205
206#endif /* __KERNEL__ */
207
208/* Conversion routines to/from brg time constants from/to bits
209 * per second.
210 */
211#define BRG_TO_BPS(brg, freq) ((freq) / 2 / ((brg) + 2))
212#define BPS_TO_BRG(bps, freq) ((((freq) + (bps)) / (2 * (bps))) - 2)
213
214/* The Zilog register set */
215
216#define FLAG 0x7e
217
218/* Write Register 0 */
219#define R0 0 /* Register selects */
220#define R1 1
221#define R2 2
222#define R3 3
223#define R4 4
224#define R5 5
225#define R6 6
226#define R7 7
227#define R8 8
228#define R9 9
229#define R10 10
230#define R11 11
231#define R12 12
232#define R13 13
233#define R14 14
234#define R15 15
235
236#define NULLCODE 0 /* Null Code */
237#define POINT_HIGH 0x8 /* Select upper half of registers */
238#define RES_EXT_INT 0x10 /* Reset Ext. Status Interrupts */
239#define SEND_ABORT 0x18 /* HDLC Abort */
240#define RES_RxINT_FC 0x20 /* Reset RxINT on First Character */
241#define RES_Tx_P 0x28 /* Reset TxINT Pending */
242#define ERR_RES 0x30 /* Error Reset */
243#define RES_H_IUS 0x38 /* Reset highest IUS */
244
245#define RES_Rx_CRC 0x40 /* Reset Rx CRC Checker */
246#define RES_Tx_CRC 0x80 /* Reset Tx CRC Checker */
247#define RES_EOM_L 0xC0 /* Reset EOM latch */
248
249/* Write Register 1 */
250
251#define EXT_INT_ENAB 0x1 /* Ext Int Enable */
252#define TxINT_ENAB 0x2 /* Tx Int Enable */
253#define PAR_SPEC 0x4 /* Parity is special condition */
254
255#define RxINT_DISAB 0 /* Rx Int Disable */
256#define RxINT_FCERR 0x8 /* Rx Int on First Character Only or Error */
257#define INT_ALL_Rx 0x10 /* Int on all Rx Characters or error */
258#define INT_ERR_Rx 0x18 /* Int on error only */
259
260#define WT_RDY_RT 0x20 /* W/Req reflects recv if 1, xmit if 0 */
261#define WT_FN_RDYFN 0x40 /* W/Req pin is DMA request if 1, wait if 0 */
262#define WT_RDY_ENAB 0x80 /* Enable W/Req pin */
263
264/* Write Register #2 (Interrupt Vector) */
265
266/* Write Register 3 */
267
268#define RxENABLE 0x1 /* Rx Enable */
269#define SYNC_L_INH 0x2 /* Sync Character Load Inhibit */
270#define ADD_SM 0x4 /* Address Search Mode (SDLC) */
271#define RxCRC_ENAB 0x8 /* Rx CRC Enable */
272#define ENT_HM 0x10 /* Enter Hunt Mode */
273#define AUTO_ENAB 0x20 /* Auto Enables */
274#define Rx5 0x0 /* Rx 5 Bits/Character */
275#define Rx7 0x40 /* Rx 7 Bits/Character */
276#define Rx6 0x80 /* Rx 6 Bits/Character */
277#define Rx8 0xc0 /* Rx 8 Bits/Character */
278#define RxNBITS_MASK 0xc0
279
280/* Write Register 4 */
281
282#define PAR_ENA 0x1 /* Parity Enable */
283#define PAR_EVEN 0x2 /* Parity Even/Odd* */
284
285#define SYNC_ENAB 0 /* Sync Modes Enable */
286#define SB1 0x4 /* 1 stop bit/char */
287#define SB15 0x8 /* 1.5 stop bits/char */
288#define SB2 0xc /* 2 stop bits/char */
289#define SB_MASK 0xc
290
291#define MONSYNC 0 /* 8 Bit Sync character */
292#define BISYNC 0x10 /* 16 bit sync character */
293#define SDLC 0x20 /* SDLC Mode (01111110 Sync Flag) */
294#define EXTSYNC 0x30 /* External Sync Mode */
295
296#define X1CLK 0x0 /* x1 clock mode */
297#define X16CLK 0x40 /* x16 clock mode */
298#define X32CLK 0x80 /* x32 clock mode */
299#define X64CLK 0xC0 /* x64 clock mode */
300#define XCLK_MASK 0xC0
301
302/* Write Register 5 */
303
304#define TxCRC_ENAB 0x1 /* Tx CRC Enable */
305#define RTS 0x2 /* RTS */
306#define SDLC_CRC 0x4 /* SDLC/CRC-16 */
307#define TxENAB 0x8 /* Tx Enable */
308#define SND_BRK 0x10 /* Send Break */
309#define Tx5 0x0 /* Tx 5 bits (or less)/character */
310#define Tx7 0x20 /* Tx 7 bits/character */
311#define Tx6 0x40 /* Tx 6 bits/character */
312#define Tx8 0x60 /* Tx 8 bits/character */
313#define TxNBITS_MASK 0x60
314#define DTR 0x80 /* DTR */
315
316/* Write Register 6 (Sync bits 0-7/SDLC Address Field) */
317
318/* Write Register 7 (Sync bits 8-15/SDLC 01111110) */
319
320/* Write Register 7' (Some enhanced feature control) */
321#define ENEXREAD 0x40 /* Enable read of some write registers */
322
323/* Write Register 8 (transmit buffer) */
324
325/* Write Register 9 (Master interrupt control) */
326#define VIS 1 /* Vector Includes Status */
327#define NV 2 /* No Vector */
328#define DLC 4 /* Disable Lower Chain */
329#define MIE 8 /* Master Interrupt Enable */
330#define STATHI 0x10 /* Status high */
331#define NORESET 0 /* No reset on write to R9 */
332#define CHRB 0x40 /* Reset channel B */
333#define CHRA 0x80 /* Reset channel A */
334#define FHWRES 0xc0 /* Force hardware reset */
335
336/* Write Register 10 (misc control bits) */
337#define BIT6 1 /* 6 bit/8bit sync */
338#define LOOPMODE 2 /* SDLC Loop mode */
339#define ABUNDER 4 /* Abort/flag on SDLC xmit underrun */
340#define MARKIDLE 8 /* Mark/flag on idle */
341#define GAOP 0x10 /* Go active on poll */
342#define NRZ 0 /* NRZ mode */
343#define NRZI 0x20 /* NRZI mode */
344#define FM1 0x40 /* FM1 (transition = 1) */
345#define FM0 0x60 /* FM0 (transition = 0) */
346#define CRCPS 0x80 /* CRC Preset I/O */
347
348/* Write Register 11 (Clock Mode control) */
349#define TRxCXT 0 /* TRxC = Xtal output */
350#define TRxCTC 1 /* TRxC = Transmit clock */
351#define TRxCBR 2 /* TRxC = BR Generator Output */
352#define TRxCDP 3 /* TRxC = DPLL output */
353#define TRxCOI 4 /* TRxC O/I */
354#define TCRTxCP 0 /* Transmit clock = RTxC pin */
355#define TCTRxCP 8 /* Transmit clock = TRxC pin */
356#define TCBR 0x10 /* Transmit clock = BR Generator output */
357#define TCDPLL 0x18 /* Transmit clock = DPLL output */
358#define RCRTxCP 0 /* Receive clock = RTxC pin */
359#define RCTRxCP 0x20 /* Receive clock = TRxC pin */
360#define RCBR 0x40 /* Receive clock = BR Generator output */
361#define RCDPLL 0x60 /* Receive clock = DPLL output */
362#define RTxCX 0x80 /* RTxC Xtal/No Xtal */
363
364/* Write Register 12 (lower byte of baud rate generator time constant) */
365
366/* Write Register 13 (upper byte of baud rate generator time constant) */
367
368/* Write Register 14 (Misc control bits) */
369#define BRENABL 1 /* Baud rate generator enable */
370#define BRSRC 2 /* Baud rate generator source */
371#define DTRREQ 4 /* DTR/Request function */
372#define AUTOECHO 8 /* Auto Echo */
373#define LOOPBAK 0x10 /* Local loopback */
374#define SEARCH 0x20 /* Enter search mode */
375#define RMC 0x40 /* Reset missing clock */
376#define DISDPLL 0x60 /* Disable DPLL */
377#define SSBR 0x80 /* Set DPLL source = BR generator */
378#define SSRTxC 0xa0 /* Set DPLL source = RTxC */
379#define SFMM 0xc0 /* Set FM mode */
380#define SNRZI 0xe0 /* Set NRZI mode */
381
382/* Write Register 15 (external/status interrupt control) */
383#define EN85C30 1 /* Enable some 85c30-enhanced registers */
384#define ZCIE 2 /* Zero count IE */
385#define ENSTFIFO 4 /* Enable status FIFO (SDLC) */
386#define DCDIE 8 /* DCD IE */
387#define SYNCIE 0x10 /* Sync/hunt IE */
388#define CTSIE 0x20 /* CTS IE */
389#define TxUIE 0x40 /* Tx Underrun/EOM IE */
390#define BRKIE 0x80 /* Break/Abort IE */
391
392
393/* Read Register 0 */
394#define Rx_CH_AV 0x1 /* Rx Character Available */
395#define ZCOUNT 0x2 /* Zero count */
396#define Tx_BUF_EMP 0x4 /* Tx Buffer empty */
397#define DCD 0x8 /* DCD */
398#define SYNC_HUNT 0x10 /* Sync/hunt */
399#define CTS 0x20 /* CTS */
400#define TxEOM 0x40 /* Tx underrun */
401#define BRK_ABRT 0x80 /* Break/Abort */
402
403/* Read Register 1 */
404#define ALL_SNT 0x1 /* All sent */
405/* Residue Data for 8 Rx bits/char programmed */
406#define RES3 0x8 /* 0/3 */
407#define RES4 0x4 /* 0/4 */
408#define RES5 0xc /* 0/5 */
409#define RES6 0x2 /* 0/6 */
410#define RES7 0xa /* 0/7 */
411#define RES8 0x6 /* 0/8 */
412#define RES18 0xe /* 1/8 */
413#define RES28 0x0 /* 2/8 */
414/* Special Rx Condition Interrupts */
415#define PAR_ERR 0x10 /* Parity error */
416#define Rx_OVR 0x20 /* Rx Overrun Error */
417#define FRM_ERR 0x40 /* CRC/Framing Error */
418#define END_FR 0x80 /* End of Frame (SDLC) */
419
420/* Read Register 2 (channel b only) - Interrupt vector */
421#define CHB_Tx_EMPTY 0x00
422#define CHB_EXT_STAT 0x02
423#define CHB_Rx_AVAIL 0x04
424#define CHB_SPECIAL 0x06
425#define CHA_Tx_EMPTY 0x08
426#define CHA_EXT_STAT 0x0a
427#define CHA_Rx_AVAIL 0x0c
428#define CHA_SPECIAL 0x0e
429#define STATUS_MASK 0x06
430
431/* Read Register 3 (interrupt pending register) ch a only */
432#define CHBEXT 0x1 /* Channel B Ext/Stat IP */
433#define CHBTxIP 0x2 /* Channel B Tx IP */
434#define CHBRxIP 0x4 /* Channel B Rx IP */
435#define CHAEXT 0x8 /* Channel A Ext/Stat IP */
436#define CHATxIP 0x10 /* Channel A Tx IP */
437#define CHARxIP 0x20 /* Channel A Rx IP */
438
439/* Read Register 8 (receive data register) */
440
441/* Read Register 10 (misc status bits) */
442#define ONLOOP 2 /* On loop */
443#define LOOPSEND 0x10 /* Loop sending */
444#define CLK2MIS 0x40 /* Two clocks missing */
445#define CLK1MIS 0x80 /* One clock missing */
446
447/* Read Register 12 (lower byte of baud rate generator constant) */
448
449/* Read Register 13 (upper byte of baud rate generator constant) */
450
451/* Read Register 15 (value of WR 15) */
452
453/* Misc macros */
454#define ZS_CLEARERR(channel) (write_zsreg(channel, 0, ERR_RES))
455#define ZS_CLEARFIFO(channel) do { volatile unsigned char garbage; \
456 garbage = read_zsdata(channel); \
457 garbage = read_zsdata(channel); \
458 garbage = read_zsdata(channel); \
459 } while(0)
460
461#endif /* !(_MACSERIAL_H) */