diff options
-rw-r--r-- | Documentation/networking/operstates.txt | 161 |
1 files changed, 161 insertions, 0 deletions
diff --git a/Documentation/networking/operstates.txt b/Documentation/networking/operstates.txt new file mode 100644 index 000000000000..4a21d9bb836b --- /dev/null +++ b/Documentation/networking/operstates.txt | |||
@@ -0,0 +1,161 @@ | |||
1 | |||
2 | 1. Introduction | ||
3 | |||
4 | Linux distinguishes between administrative and operational state of an | ||
5 | interface. Admininstrative state is the result of "ip link set dev | ||
6 | <dev> up or down" and reflects whether the administrator wants to use | ||
7 | the device for traffic. | ||
8 | |||
9 | However, an interface is not usable just because the admin enabled it | ||
10 | - ethernet requires to be plugged into the switch and, depending on | ||
11 | a site's networking policy and configuration, an 802.1X authentication | ||
12 | to be performed before user data can be transferred. Operational state | ||
13 | shows the ability of an interface to transmit this user data. | ||
14 | |||
15 | Thanks to 802.1X, userspace must be granted the possibility to | ||
16 | influence operational state. To accommodate this, operational state is | ||
17 | split into two parts: Two flags that can be set by the driver only, and | ||
18 | a RFC2863 compatible state that is derived from these flags, a policy, | ||
19 | and changeable from userspace under certain rules. | ||
20 | |||
21 | |||
22 | 2. Querying from userspace | ||
23 | |||
24 | Both admin and operational state can be queried via the netlink | ||
25 | operation RTM_GETLINK. It is also possible to subscribe to RTMGRP_LINK | ||
26 | to be notified of updates. This is important for setting from userspace. | ||
27 | |||
28 | These values contain interface state: | ||
29 | |||
30 | ifinfomsg::if_flags & IFF_UP: | ||
31 | Interface is admin up | ||
32 | ifinfomsg::if_flags & IFF_RUNNING: | ||
33 | Interface is in RFC2863 operational state UP or UNKNOWN. This is for | ||
34 | backward compatibility, routing daemons, dhcp clients can use this | ||
35 | flag to determine whether they should use the interface. | ||
36 | ifinfomsg::if_flags & IFF_LOWER_UP: | ||
37 | Driver has signaled netif_carrier_on() | ||
38 | ifinfomsg::if_flags & IFF_DORMANT: | ||
39 | Driver has signaled netif_dormant_on() | ||
40 | |||
41 | These interface flags can also be queried without netlink using the | ||
42 | SIOCGIFFLAGS ioctl. | ||
43 | |||
44 | TLV IFLA_OPERSTATE | ||
45 | |||
46 | contains RFC2863 state of the interface in numeric representation: | ||
47 | |||
48 | IF_OPER_UNKNOWN (0): | ||
49 | Interface is in unknown state, neither driver nor userspace has set | ||
50 | operational state. Interface must be considered for user data as | ||
51 | setting operational state has not been implemented in every driver. | ||
52 | IF_OPER_NOTPRESENT (1): | ||
53 | Unused in current kernel (notpresent interfaces normally disappear), | ||
54 | just a numerical placeholder. | ||
55 | IF_OPER_DOWN (2): | ||
56 | Interface is unable to transfer data on L1, f.e. ethernet is not | ||
57 | plugged or interface is ADMIN down. | ||
58 | IF_OPER_LOWERLAYERDOWN (3): | ||
59 | Interfaces stacked on an interface that is IF_OPER_DOWN show this | ||
60 | state (f.e. VLAN). | ||
61 | IF_OPER_TESTING (4): | ||
62 | Unused in current kernel. | ||
63 | IF_OPER_DORMANT (5): | ||
64 | Interface is L1 up, but waiting for an external event, f.e. for a | ||
65 | protocol to establish. (802.1X) | ||
66 | IF_OPER_UP (6): | ||
67 | Interface is operational up and can be used. | ||
68 | |||
69 | This TLV can also be queried via sysfs. | ||
70 | |||
71 | TLV IFLA_LINKMODE | ||
72 | |||
73 | contains link policy. This is needed for userspace interaction | ||
74 | described below. | ||
75 | |||
76 | This TLV can also be queried via sysfs. | ||
77 | |||
78 | |||
79 | 3. Kernel driver API | ||
80 | |||
81 | Kernel drivers have access to two flags that map to IFF_LOWER_UP and | ||
82 | IFF_DORMANT. These flags can be set from everywhere, even from | ||
83 | interrupts. It is guaranteed that only the driver has write access, | ||
84 | however, if different layers of the driver manipulate the same flag, | ||
85 | the driver has to provide the synchronisation needed. | ||
86 | |||
87 | __LINK_STATE_NOCARRIER, maps to !IFF_LOWER_UP: | ||
88 | |||
89 | The driver uses netif_carrier_on() to clear and netif_carrier_off() to | ||
90 | set this flag. On netif_carrier_off(), the scheduler stops sending | ||
91 | packets. The name 'carrier' and the inversion are historical, think of | ||
92 | it as lower layer. | ||
93 | |||
94 | netif_carrier_ok() can be used to query that bit. | ||
95 | |||
96 | __LINK_STATE_DORMANT, maps to IFF_DORMANT: | ||
97 | |||
98 | Set by the driver to express that the device cannot yet be used | ||
99 | because some driver controlled protocol establishment has to | ||
100 | complete. Corresponding functions are netif_dormant_on() to set the | ||
101 | flag, netif_dormant_off() to clear it and netif_dormant() to query. | ||
102 | |||
103 | On device allocation, networking core sets the flags equivalent to | ||
104 | netif_carrier_ok() and !netif_dormant(). | ||
105 | |||
106 | |||
107 | Whenever the driver CHANGES one of these flags, a workqueue event is | ||
108 | scheduled to translate the flag combination to IFLA_OPERSTATE as | ||
109 | follows: | ||
110 | |||
111 | !netif_carrier_ok(): | ||
112 | IF_OPER_LOWERLAYERDOWN if the interface is stacked, IF_OPER_DOWN | ||
113 | otherwise. Kernel can recognise stacked interfaces because their | ||
114 | ifindex != iflink. | ||
115 | |||
116 | netif_carrier_ok() && netif_dormant(): | ||
117 | IF_OPER_DORMANT | ||
118 | |||
119 | netif_carrier_ok() && !netif_dormant(): | ||
120 | IF_OPER_UP if userspace interaction is disabled. Otherwise | ||
121 | IF_OPER_DORMANT with the possibility for userspace to initiate the | ||
122 | IF_OPER_UP transition afterwards. | ||
123 | |||
124 | |||
125 | 4. Setting from userspace | ||
126 | |||
127 | Applications have to use the netlink interface to influence the | ||
128 | RFC2863 operational state of an interface. Setting IFLA_LINKMODE to 1 | ||
129 | via RTM_SETLINK instructs the kernel that an interface should go to | ||
130 | IF_OPER_DORMANT instead of IF_OPER_UP when the combination | ||
131 | netif_carrier_ok() && !netif_dormant() is set by the | ||
132 | driver. Afterwards, the userspace application can set IFLA_OPERSTATE | ||
133 | to IF_OPER_DORMANT or IF_OPER_UP as long as the driver does not set | ||
134 | netif_carrier_off() or netif_dormant_on(). Changes made by userspace | ||
135 | are multicasted on the netlink group RTMGRP_LINK. | ||
136 | |||
137 | So basically a 802.1X supplicant interacts with the kernel like this: | ||
138 | |||
139 | -subscribe to RTMGRP_LINK | ||
140 | -set IFLA_LINKMODE to 1 via RTM_SETLINK | ||
141 | -query RTM_GETLINK once to get initial state | ||
142 | -if initial flags are not (IFF_LOWER_UP && !IFF_DORMANT), wait until | ||
143 | netlink multicast signals this state | ||
144 | -do 802.1X, eventually abort if flags go down again | ||
145 | -send RTM_SETLINK to set operstate to IF_OPER_UP if authentication | ||
146 | succeeds, IF_OPER_DORMANT otherwise | ||
147 | -see how operstate and IFF_RUNNING is echoed via netlink multicast | ||
148 | -set interface back to IF_OPER_DORMANT if 802.1X reauthentication | ||
149 | fails | ||
150 | -restart if kernel changes IFF_LOWER_UP or IFF_DORMANT flag | ||
151 | |||
152 | if supplicant goes down, bring back IFLA_LINKMODE to 0 and | ||
153 | IFLA_OPERSTATE to a sane value. | ||
154 | |||
155 | A routing daemon or dhcp client just needs to care for IFF_RUNNING or | ||
156 | waiting for operstate to go IF_OPER_UP/IF_OPER_UNKNOWN before | ||
157 | considering the interface / querying a DHCP address. | ||
158 | |||
159 | |||
160 | For technical questions and/or comments please e-mail to Stefan Rompf | ||
161 | (stefan at loplof.de). | ||