aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--fs/proc/task_mmu.c417
1 files changed, 210 insertions, 207 deletions
diff --git a/fs/proc/task_mmu.c b/fs/proc/task_mmu.c
index fcdbd233f252..308fc5451e43 100644
--- a/fs/proc/task_mmu.c
+++ b/fs/proc/task_mmu.c
@@ -114,36 +114,122 @@ static void pad_len_spaces(struct seq_file *m, int len)
114 seq_printf(m, "%*c", len, ' '); 114 seq_printf(m, "%*c", len, ' ');
115} 115}
116 116
117/* 117static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
118 * Proportional Set Size(PSS): my share of RSS. 118{
119 * 119 if (vma && vma != priv->tail_vma) {
120 * PSS of a process is the count of pages it has in memory, where each 120 struct mm_struct *mm = vma->vm_mm;
121 * page is divided by the number of processes sharing it. So if a 121 up_read(&mm->mmap_sem);
122 * process has 1000 pages all to itself, and 1000 shared with one other 122 mmput(mm);
123 * process, its PSS will be 1500. 123 }
124 * 124}
125 * To keep (accumulated) division errors low, we adopt a 64bit
126 * fixed-point pss counter to minimize division errors. So (pss >>
127 * PSS_SHIFT) would be the real byte count.
128 *
129 * A shift of 12 before division means (assuming 4K page size):
130 * - 1M 3-user-pages add up to 8KB errors;
131 * - supports mapcount up to 2^24, or 16M;
132 * - supports PSS up to 2^52 bytes, or 4PB.
133 */
134#define PSS_SHIFT 12
135 125
136struct mem_size_stats 126static void *m_start(struct seq_file *m, loff_t *pos)
137{ 127{
138 struct vm_area_struct *vma; 128 struct proc_maps_private *priv = m->private;
139 unsigned long resident; 129 unsigned long last_addr = m->version;
140 unsigned long shared_clean; 130 struct mm_struct *mm;
141 unsigned long shared_dirty; 131 struct vm_area_struct *vma, *tail_vma = NULL;
142 unsigned long private_clean; 132 loff_t l = *pos;
143 unsigned long private_dirty; 133
144 unsigned long referenced; 134 /* Clear the per syscall fields in priv */
145 u64 pss; 135 priv->task = NULL;
146}; 136 priv->tail_vma = NULL;
137
138 /*
139 * We remember last_addr rather than next_addr to hit with
140 * mmap_cache most of the time. We have zero last_addr at
141 * the beginning and also after lseek. We will have -1 last_addr
142 * after the end of the vmas.
143 */
144
145 if (last_addr == -1UL)
146 return NULL;
147
148 priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
149 if (!priv->task)
150 return NULL;
151
152 mm = mm_for_maps(priv->task);
153 if (!mm)
154 return NULL;
155
156 tail_vma = get_gate_vma(priv->task);
157 priv->tail_vma = tail_vma;
158
159 /* Start with last addr hint */
160 vma = find_vma(mm, last_addr);
161 if (last_addr && vma) {
162 vma = vma->vm_next;
163 goto out;
164 }
165
166 /*
167 * Check the vma index is within the range and do
168 * sequential scan until m_index.
169 */
170 vma = NULL;
171 if ((unsigned long)l < mm->map_count) {
172 vma = mm->mmap;
173 while (l-- && vma)
174 vma = vma->vm_next;
175 goto out;
176 }
177
178 if (l != mm->map_count)
179 tail_vma = NULL; /* After gate vma */
180
181out:
182 if (vma)
183 return vma;
184
185 /* End of vmas has been reached */
186 m->version = (tail_vma != NULL)? 0: -1UL;
187 up_read(&mm->mmap_sem);
188 mmput(mm);
189 return tail_vma;
190}
191
192static void *m_next(struct seq_file *m, void *v, loff_t *pos)
193{
194 struct proc_maps_private *priv = m->private;
195 struct vm_area_struct *vma = v;
196 struct vm_area_struct *tail_vma = priv->tail_vma;
197
198 (*pos)++;
199 if (vma && (vma != tail_vma) && vma->vm_next)
200 return vma->vm_next;
201 vma_stop(priv, vma);
202 return (vma != tail_vma)? tail_vma: NULL;
203}
204
205static void m_stop(struct seq_file *m, void *v)
206{
207 struct proc_maps_private *priv = m->private;
208 struct vm_area_struct *vma = v;
209
210 vma_stop(priv, vma);
211 if (priv->task)
212 put_task_struct(priv->task);
213}
214
215static int do_maps_open(struct inode *inode, struct file *file,
216 struct seq_operations *ops)
217{
218 struct proc_maps_private *priv;
219 int ret = -ENOMEM;
220 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
221 if (priv) {
222 priv->pid = proc_pid(inode);
223 ret = seq_open(file, ops);
224 if (!ret) {
225 struct seq_file *m = file->private_data;
226 m->private = priv;
227 } else {
228 kfree(priv);
229 }
230 }
231 return ret;
232}
147 233
148static int show_map(struct seq_file *m, void *v) 234static int show_map(struct seq_file *m, void *v)
149{ 235{
@@ -210,6 +296,56 @@ static int show_map(struct seq_file *m, void *v)
210 return 0; 296 return 0;
211} 297}
212 298
299static struct seq_operations proc_pid_maps_op = {
300 .start = m_start,
301 .next = m_next,
302 .stop = m_stop,
303 .show = show_map
304};
305
306static int maps_open(struct inode *inode, struct file *file)
307{
308 return do_maps_open(inode, file, &proc_pid_maps_op);
309}
310
311const struct file_operations proc_maps_operations = {
312 .open = maps_open,
313 .read = seq_read,
314 .llseek = seq_lseek,
315 .release = seq_release_private,
316};
317
318/*
319 * Proportional Set Size(PSS): my share of RSS.
320 *
321 * PSS of a process is the count of pages it has in memory, where each
322 * page is divided by the number of processes sharing it. So if a
323 * process has 1000 pages all to itself, and 1000 shared with one other
324 * process, its PSS will be 1500.
325 *
326 * To keep (accumulated) division errors low, we adopt a 64bit
327 * fixed-point pss counter to minimize division errors. So (pss >>
328 * PSS_SHIFT) would be the real byte count.
329 *
330 * A shift of 12 before division means (assuming 4K page size):
331 * - 1M 3-user-pages add up to 8KB errors;
332 * - supports mapcount up to 2^24, or 16M;
333 * - supports PSS up to 2^52 bytes, or 4PB.
334 */
335#define PSS_SHIFT 12
336
337struct mem_size_stats
338{
339 struct vm_area_struct *vma;
340 unsigned long resident;
341 unsigned long shared_clean;
342 unsigned long shared_dirty;
343 unsigned long private_clean;
344 unsigned long private_dirty;
345 unsigned long referenced;
346 u64 pss;
347};
348
213static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 349static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
214 void *private) 350 void *private)
215{ 351{
@@ -255,33 +391,6 @@ static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
255 return 0; 391 return 0;
256} 392}
257 393
258static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
259 unsigned long end, void *private)
260{
261 struct vm_area_struct *vma = private;
262 pte_t *pte, ptent;
263 spinlock_t *ptl;
264 struct page *page;
265
266 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
267 for (; addr != end; pte++, addr += PAGE_SIZE) {
268 ptent = *pte;
269 if (!pte_present(ptent))
270 continue;
271
272 page = vm_normal_page(vma, addr, ptent);
273 if (!page)
274 continue;
275
276 /* Clear accessed and referenced bits. */
277 ptep_test_and_clear_young(vma, addr, pte);
278 ClearPageReferenced(page);
279 }
280 pte_unmap_unlock(pte - 1, ptl);
281 cond_resched();
282 return 0;
283}
284
285static struct mm_walk smaps_walk = { .pmd_entry = smaps_pte_range }; 394static struct mm_walk smaps_walk = { .pmd_entry = smaps_pte_range };
286 395
287static int show_smap(struct seq_file *m, void *v) 396static int show_smap(struct seq_file *m, void *v)
@@ -321,6 +430,52 @@ static int show_smap(struct seq_file *m, void *v)
321 return ret; 430 return ret;
322} 431}
323 432
433static struct seq_operations proc_pid_smaps_op = {
434 .start = m_start,
435 .next = m_next,
436 .stop = m_stop,
437 .show = show_smap
438};
439
440static int smaps_open(struct inode *inode, struct file *file)
441{
442 return do_maps_open(inode, file, &proc_pid_smaps_op);
443}
444
445const struct file_operations proc_smaps_operations = {
446 .open = smaps_open,
447 .read = seq_read,
448 .llseek = seq_lseek,
449 .release = seq_release_private,
450};
451
452static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
453 unsigned long end, void *private)
454{
455 struct vm_area_struct *vma = private;
456 pte_t *pte, ptent;
457 spinlock_t *ptl;
458 struct page *page;
459
460 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
461 for (; addr != end; pte++, addr += PAGE_SIZE) {
462 ptent = *pte;
463 if (!pte_present(ptent))
464 continue;
465
466 page = vm_normal_page(vma, addr, ptent);
467 if (!page)
468 continue;
469
470 /* Clear accessed and referenced bits. */
471 ptep_test_and_clear_young(vma, addr, pte);
472 ClearPageReferenced(page);
473 }
474 pte_unmap_unlock(pte - 1, ptl);
475 cond_resched();
476 return 0;
477}
478
324static struct mm_walk clear_refs_walk = { .pmd_entry = clear_refs_pte_range }; 479static struct mm_walk clear_refs_walk = { .pmd_entry = clear_refs_pte_range };
325 480
326static ssize_t clear_refs_write(struct file *file, const char __user *buf, 481static ssize_t clear_refs_write(struct file *file, const char __user *buf,
@@ -364,147 +519,6 @@ const struct file_operations proc_clear_refs_operations = {
364 .write = clear_refs_write, 519 .write = clear_refs_write,
365}; 520};
366 521
367static void *m_start(struct seq_file *m, loff_t *pos)
368{
369 struct proc_maps_private *priv = m->private;
370 unsigned long last_addr = m->version;
371 struct mm_struct *mm;
372 struct vm_area_struct *vma, *tail_vma = NULL;
373 loff_t l = *pos;
374
375 /* Clear the per syscall fields in priv */
376 priv->task = NULL;
377 priv->tail_vma = NULL;
378
379 /*
380 * We remember last_addr rather than next_addr to hit with
381 * mmap_cache most of the time. We have zero last_addr at
382 * the beginning and also after lseek. We will have -1 last_addr
383 * after the end of the vmas.
384 */
385
386 if (last_addr == -1UL)
387 return NULL;
388
389 priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
390 if (!priv->task)
391 return NULL;
392
393 mm = mm_for_maps(priv->task);
394 if (!mm)
395 return NULL;
396
397 priv->tail_vma = tail_vma = get_gate_vma(priv->task);
398
399 /* Start with last addr hint */
400 if (last_addr && (vma = find_vma(mm, last_addr))) {
401 vma = vma->vm_next;
402 goto out;
403 }
404
405 /*
406 * Check the vma index is within the range and do
407 * sequential scan until m_index.
408 */
409 vma = NULL;
410 if ((unsigned long)l < mm->map_count) {
411 vma = mm->mmap;
412 while (l-- && vma)
413 vma = vma->vm_next;
414 goto out;
415 }
416
417 if (l != mm->map_count)
418 tail_vma = NULL; /* After gate vma */
419
420out:
421 if (vma)
422 return vma;
423
424 /* End of vmas has been reached */
425 m->version = (tail_vma != NULL)? 0: -1UL;
426 up_read(&mm->mmap_sem);
427 mmput(mm);
428 return tail_vma;
429}
430
431static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
432{
433 if (vma && vma != priv->tail_vma) {
434 struct mm_struct *mm = vma->vm_mm;
435 up_read(&mm->mmap_sem);
436 mmput(mm);
437 }
438}
439
440static void *m_next(struct seq_file *m, void *v, loff_t *pos)
441{
442 struct proc_maps_private *priv = m->private;
443 struct vm_area_struct *vma = v;
444 struct vm_area_struct *tail_vma = priv->tail_vma;
445
446 (*pos)++;
447 if (vma && (vma != tail_vma) && vma->vm_next)
448 return vma->vm_next;
449 vma_stop(priv, vma);
450 return (vma != tail_vma)? tail_vma: NULL;
451}
452
453static void m_stop(struct seq_file *m, void *v)
454{
455 struct proc_maps_private *priv = m->private;
456 struct vm_area_struct *vma = v;
457
458 vma_stop(priv, vma);
459 if (priv->task)
460 put_task_struct(priv->task);
461}
462
463static struct seq_operations proc_pid_maps_op = {
464 .start = m_start,
465 .next = m_next,
466 .stop = m_stop,
467 .show = show_map
468};
469
470static struct seq_operations proc_pid_smaps_op = {
471 .start = m_start,
472 .next = m_next,
473 .stop = m_stop,
474 .show = show_smap
475};
476
477static int do_maps_open(struct inode *inode, struct file *file,
478 struct seq_operations *ops)
479{
480 struct proc_maps_private *priv;
481 int ret = -ENOMEM;
482 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
483 if (priv) {
484 priv->pid = proc_pid(inode);
485 ret = seq_open(file, ops);
486 if (!ret) {
487 struct seq_file *m = file->private_data;
488 m->private = priv;
489 } else {
490 kfree(priv);
491 }
492 }
493 return ret;
494}
495
496static int maps_open(struct inode *inode, struct file *file)
497{
498 return do_maps_open(inode, file, &proc_pid_maps_op);
499}
500
501const struct file_operations proc_maps_operations = {
502 .open = maps_open,
503 .read = seq_read,
504 .llseek = seq_lseek,
505 .release = seq_release_private,
506};
507
508#ifdef CONFIG_NUMA 522#ifdef CONFIG_NUMA
509extern int show_numa_map(struct seq_file *m, void *v); 523extern int show_numa_map(struct seq_file *m, void *v);
510 524
@@ -539,14 +553,3 @@ const struct file_operations proc_numa_maps_operations = {
539}; 553};
540#endif 554#endif
541 555
542static int smaps_open(struct inode *inode, struct file *file)
543{
544 return do_maps_open(inode, file, &proc_pid_smaps_op);
545}
546
547const struct file_operations proc_smaps_operations = {
548 .open = smaps_open,
549 .read = seq_read,
550 .llseek = seq_lseek,
551 .release = seq_release_private,
552};