diff options
-rw-r--r-- | include/linux/pid.h | 96 | ||||
-rw-r--r-- | include/linux/sched.h | 4 | ||||
-rw-r--r-- | kernel/fork.c | 16 | ||||
-rw-r--r-- | kernel/pid.c | 212 |
4 files changed, 238 insertions, 90 deletions
diff --git a/include/linux/pid.h b/include/linux/pid.h index 5b9082cc600f..29960b03bef7 100644 --- a/include/linux/pid.h +++ b/include/linux/pid.h | |||
@@ -1,6 +1,8 @@ | |||
1 | #ifndef _LINUX_PID_H | 1 | #ifndef _LINUX_PID_H |
2 | #define _LINUX_PID_H | 2 | #define _LINUX_PID_H |
3 | 3 | ||
4 | #include <linux/rcupdate.h> | ||
5 | |||
4 | enum pid_type | 6 | enum pid_type |
5 | { | 7 | { |
6 | PIDTYPE_PID, | 8 | PIDTYPE_PID, |
@@ -9,45 +11,109 @@ enum pid_type | |||
9 | PIDTYPE_MAX | 11 | PIDTYPE_MAX |
10 | }; | 12 | }; |
11 | 13 | ||
14 | /* | ||
15 | * What is struct pid? | ||
16 | * | ||
17 | * A struct pid is the kernel's internal notion of a process identifier. | ||
18 | * It refers to individual tasks, process groups, and sessions. While | ||
19 | * there are processes attached to it the struct pid lives in a hash | ||
20 | * table, so it and then the processes that it refers to can be found | ||
21 | * quickly from the numeric pid value. The attached processes may be | ||
22 | * quickly accessed by following pointers from struct pid. | ||
23 | * | ||
24 | * Storing pid_t values in the kernel and refering to them later has a | ||
25 | * problem. The process originally with that pid may have exited and the | ||
26 | * pid allocator wrapped, and another process could have come along | ||
27 | * and been assigned that pid. | ||
28 | * | ||
29 | * Referring to user space processes by holding a reference to struct | ||
30 | * task_struct has a problem. When the user space process exits | ||
31 | * the now useless task_struct is still kept. A task_struct plus a | ||
32 | * stack consumes around 10K of low kernel memory. More precisely | ||
33 | * this is THREAD_SIZE + sizeof(struct task_struct). By comparison | ||
34 | * a struct pid is about 64 bytes. | ||
35 | * | ||
36 | * Holding a reference to struct pid solves both of these problems. | ||
37 | * It is small so holding a reference does not consume a lot of | ||
38 | * resources, and since a new struct pid is allocated when the numeric | ||
39 | * pid value is reused we don't mistakenly refer to new processes. | ||
40 | */ | ||
41 | |||
12 | struct pid | 42 | struct pid |
13 | { | 43 | { |
44 | atomic_t count; | ||
14 | /* Try to keep pid_chain in the same cacheline as nr for find_pid */ | 45 | /* Try to keep pid_chain in the same cacheline as nr for find_pid */ |
15 | int nr; | 46 | int nr; |
16 | struct hlist_node pid_chain; | 47 | struct hlist_node pid_chain; |
17 | /* list of pids with the same nr, only one of them is in the hash */ | 48 | /* lists of tasks that use this pid */ |
18 | struct list_head pid_list; | 49 | struct hlist_head tasks[PIDTYPE_MAX]; |
50 | struct rcu_head rcu; | ||
19 | }; | 51 | }; |
20 | 52 | ||
21 | #define pid_task(elem, type) \ | 53 | struct pid_link |
22 | list_entry(elem, struct task_struct, pids[type].pid_list) | 54 | { |
55 | struct hlist_node node; | ||
56 | struct pid *pid; | ||
57 | }; | ||
58 | |||
59 | static inline struct pid *get_pid(struct pid *pid) | ||
60 | { | ||
61 | if (pid) | ||
62 | atomic_inc(&pid->count); | ||
63 | return pid; | ||
64 | } | ||
65 | |||
66 | extern void FASTCALL(put_pid(struct pid *pid)); | ||
67 | extern struct task_struct *FASTCALL(pid_task(struct pid *pid, enum pid_type)); | ||
68 | extern struct task_struct *FASTCALL(get_pid_task(struct pid *pid, | ||
69 | enum pid_type)); | ||
23 | 70 | ||
24 | /* | 71 | /* |
25 | * attach_pid() and detach_pid() must be called with the tasklist_lock | 72 | * attach_pid() and detach_pid() must be called with the tasklist_lock |
26 | * write-held. | 73 | * write-held. |
27 | */ | 74 | */ |
28 | extern int FASTCALL(attach_pid(struct task_struct *task, enum pid_type type, int nr)); | 75 | extern int FASTCALL(attach_pid(struct task_struct *task, |
76 | enum pid_type type, int nr)); | ||
29 | 77 | ||
30 | extern void FASTCALL(detach_pid(struct task_struct *task, enum pid_type)); | 78 | extern void FASTCALL(detach_pid(struct task_struct *task, enum pid_type)); |
31 | 79 | ||
32 | /* | 80 | /* |
33 | * look up a PID in the hash table. Must be called with the tasklist_lock | 81 | * look up a PID in the hash table. Must be called with the tasklist_lock |
34 | * held. | 82 | * or rcu_read_lock() held. |
83 | */ | ||
84 | extern struct pid *FASTCALL(find_pid(int nr)); | ||
85 | |||
86 | /* | ||
87 | * Lookup a PID in the hash table, and return with it's count elevated. | ||
35 | */ | 88 | */ |
36 | extern struct pid *FASTCALL(find_pid(enum pid_type, int)); | 89 | extern struct pid *find_get_pid(int nr); |
37 | 90 | ||
38 | extern int alloc_pidmap(void); | 91 | extern struct pid *alloc_pid(void); |
39 | extern void FASTCALL(free_pidmap(int)); | 92 | extern void FASTCALL(free_pid(struct pid *pid)); |
40 | 93 | ||
94 | #define pid_next(task, type) \ | ||
95 | ((task)->pids[(type)].node.next) | ||
96 | |||
97 | #define pid_next_task(task, type) \ | ||
98 | hlist_entry(pid_next(task, type), struct task_struct, \ | ||
99 | pids[(type)].node) | ||
100 | |||
101 | |||
102 | /* We could use hlist_for_each_entry_rcu here but it takes more arguments | ||
103 | * than the do_each_task_pid/while_each_task_pid. So we roll our own | ||
104 | * to preserve the existing interface. | ||
105 | */ | ||
41 | #define do_each_task_pid(who, type, task) \ | 106 | #define do_each_task_pid(who, type, task) \ |
42 | if ((task = find_task_by_pid_type(type, who))) { \ | 107 | if ((task = find_task_by_pid_type(type, who))) { \ |
43 | prefetch((task)->pids[type].pid_list.next); \ | 108 | prefetch(pid_next(task, type)); \ |
44 | do { | 109 | do { |
45 | 110 | ||
46 | #define while_each_task_pid(who, type, task) \ | 111 | #define while_each_task_pid(who, type, task) \ |
47 | } while (task = pid_task((task)->pids[type].pid_list.next,\ | 112 | } while (pid_next(task, type) && ({ \ |
48 | type), \ | 113 | task = pid_next_task(task, type); \ |
49 | prefetch((task)->pids[type].pid_list.next), \ | 114 | rcu_dereference(task); \ |
50 | hlist_unhashed(&(task)->pids[type].pid_chain)); \ | 115 | prefetch(pid_next(task, type)); \ |
51 | } \ | 116 | 1; }) ); \ |
117 | } | ||
52 | 118 | ||
53 | #endif /* _LINUX_PID_H */ | 119 | #endif /* _LINUX_PID_H */ |
diff --git a/include/linux/sched.h b/include/linux/sched.h index 7e0ff5dba986..541f4828f5e7 100644 --- a/include/linux/sched.h +++ b/include/linux/sched.h | |||
@@ -760,7 +760,7 @@ struct task_struct { | |||
760 | struct task_struct *group_leader; /* threadgroup leader */ | 760 | struct task_struct *group_leader; /* threadgroup leader */ |
761 | 761 | ||
762 | /* PID/PID hash table linkage. */ | 762 | /* PID/PID hash table linkage. */ |
763 | struct pid pids[PIDTYPE_MAX]; | 763 | struct pid_link pids[PIDTYPE_MAX]; |
764 | struct list_head thread_group; | 764 | struct list_head thread_group; |
765 | 765 | ||
766 | struct completion *vfork_done; /* for vfork() */ | 766 | struct completion *vfork_done; /* for vfork() */ |
@@ -899,7 +899,7 @@ static inline pid_t process_group(struct task_struct *tsk) | |||
899 | */ | 899 | */ |
900 | static inline int pid_alive(struct task_struct *p) | 900 | static inline int pid_alive(struct task_struct *p) |
901 | { | 901 | { |
902 | return p->pids[PIDTYPE_PID].nr != 0; | 902 | return p->pids[PIDTYPE_PID].pid != NULL; |
903 | } | 903 | } |
904 | 904 | ||
905 | extern void free_task(struct task_struct *tsk); | 905 | extern void free_task(struct task_struct *tsk); |
diff --git a/kernel/fork.c b/kernel/fork.c index b1341205be27..03975d0467f9 100644 --- a/kernel/fork.c +++ b/kernel/fork.c | |||
@@ -1315,17 +1315,19 @@ long do_fork(unsigned long clone_flags, | |||
1315 | { | 1315 | { |
1316 | struct task_struct *p; | 1316 | struct task_struct *p; |
1317 | int trace = 0; | 1317 | int trace = 0; |
1318 | long pid = alloc_pidmap(); | 1318 | struct pid *pid = alloc_pid(); |
1319 | long nr; | ||
1319 | 1320 | ||
1320 | if (pid < 0) | 1321 | if (!pid) |
1321 | return -EAGAIN; | 1322 | return -EAGAIN; |
1323 | nr = pid->nr; | ||
1322 | if (unlikely(current->ptrace)) { | 1324 | if (unlikely(current->ptrace)) { |
1323 | trace = fork_traceflag (clone_flags); | 1325 | trace = fork_traceflag (clone_flags); |
1324 | if (trace) | 1326 | if (trace) |
1325 | clone_flags |= CLONE_PTRACE; | 1327 | clone_flags |= CLONE_PTRACE; |
1326 | } | 1328 | } |
1327 | 1329 | ||
1328 | p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid); | 1330 | p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, nr); |
1329 | /* | 1331 | /* |
1330 | * Do this prior waking up the new thread - the thread pointer | 1332 | * Do this prior waking up the new thread - the thread pointer |
1331 | * might get invalid after that point, if the thread exits quickly. | 1333 | * might get invalid after that point, if the thread exits quickly. |
@@ -1352,7 +1354,7 @@ long do_fork(unsigned long clone_flags, | |||
1352 | p->state = TASK_STOPPED; | 1354 | p->state = TASK_STOPPED; |
1353 | 1355 | ||
1354 | if (unlikely (trace)) { | 1356 | if (unlikely (trace)) { |
1355 | current->ptrace_message = pid; | 1357 | current->ptrace_message = nr; |
1356 | ptrace_notify ((trace << 8) | SIGTRAP); | 1358 | ptrace_notify ((trace << 8) | SIGTRAP); |
1357 | } | 1359 | } |
1358 | 1360 | ||
@@ -1362,10 +1364,10 @@ long do_fork(unsigned long clone_flags, | |||
1362 | ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP); | 1364 | ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP); |
1363 | } | 1365 | } |
1364 | } else { | 1366 | } else { |
1365 | free_pidmap(pid); | 1367 | free_pid(pid); |
1366 | pid = PTR_ERR(p); | 1368 | nr = PTR_ERR(p); |
1367 | } | 1369 | } |
1368 | return pid; | 1370 | return nr; |
1369 | } | 1371 | } |
1370 | 1372 | ||
1371 | #ifndef ARCH_MIN_MMSTRUCT_ALIGN | 1373 | #ifndef ARCH_MIN_MMSTRUCT_ALIGN |
diff --git a/kernel/pid.c b/kernel/pid.c index a9f2dfd006d2..eeb836b65ca4 100644 --- a/kernel/pid.c +++ b/kernel/pid.c | |||
@@ -28,8 +28,9 @@ | |||
28 | #include <linux/hash.h> | 28 | #include <linux/hash.h> |
29 | 29 | ||
30 | #define pid_hashfn(nr) hash_long((unsigned long)nr, pidhash_shift) | 30 | #define pid_hashfn(nr) hash_long((unsigned long)nr, pidhash_shift) |
31 | static struct hlist_head *pid_hash[PIDTYPE_MAX]; | 31 | static struct hlist_head *pid_hash; |
32 | static int pidhash_shift; | 32 | static int pidhash_shift; |
33 | static kmem_cache_t *pid_cachep; | ||
33 | 34 | ||
34 | int pid_max = PID_MAX_DEFAULT; | 35 | int pid_max = PID_MAX_DEFAULT; |
35 | int last_pid; | 36 | int last_pid; |
@@ -60,9 +61,22 @@ typedef struct pidmap { | |||
60 | static pidmap_t pidmap_array[PIDMAP_ENTRIES] = | 61 | static pidmap_t pidmap_array[PIDMAP_ENTRIES] = |
61 | { [ 0 ... PIDMAP_ENTRIES-1 ] = { ATOMIC_INIT(BITS_PER_PAGE), NULL } }; | 62 | { [ 0 ... PIDMAP_ENTRIES-1 ] = { ATOMIC_INIT(BITS_PER_PAGE), NULL } }; |
62 | 63 | ||
64 | /* | ||
65 | * Note: disable interrupts while the pidmap_lock is held as an | ||
66 | * interrupt might come in and do read_lock(&tasklist_lock). | ||
67 | * | ||
68 | * If we don't disable interrupts there is a nasty deadlock between | ||
69 | * detach_pid()->free_pid() and another cpu that does | ||
70 | * spin_lock(&pidmap_lock) followed by an interrupt routine that does | ||
71 | * read_lock(&tasklist_lock); | ||
72 | * | ||
73 | * After we clean up the tasklist_lock and know there are no | ||
74 | * irq handlers that take it we can leave the interrupts enabled. | ||
75 | * For now it is easier to be safe than to prove it can't happen. | ||
76 | */ | ||
63 | static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); | 77 | static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); |
64 | 78 | ||
65 | fastcall void free_pidmap(int pid) | 79 | static fastcall void free_pidmap(int pid) |
66 | { | 80 | { |
67 | pidmap_t *map = pidmap_array + pid / BITS_PER_PAGE; | 81 | pidmap_t *map = pidmap_array + pid / BITS_PER_PAGE; |
68 | int offset = pid & BITS_PER_PAGE_MASK; | 82 | int offset = pid & BITS_PER_PAGE_MASK; |
@@ -71,7 +85,7 @@ fastcall void free_pidmap(int pid) | |||
71 | atomic_inc(&map->nr_free); | 85 | atomic_inc(&map->nr_free); |
72 | } | 86 | } |
73 | 87 | ||
74 | int alloc_pidmap(void) | 88 | static int alloc_pidmap(void) |
75 | { | 89 | { |
76 | int i, offset, max_scan, pid, last = last_pid; | 90 | int i, offset, max_scan, pid, last = last_pid; |
77 | pidmap_t *map; | 91 | pidmap_t *map; |
@@ -89,12 +103,12 @@ int alloc_pidmap(void) | |||
89 | * Free the page if someone raced with us | 103 | * Free the page if someone raced with us |
90 | * installing it: | 104 | * installing it: |
91 | */ | 105 | */ |
92 | spin_lock(&pidmap_lock); | 106 | spin_lock_irq(&pidmap_lock); |
93 | if (map->page) | 107 | if (map->page) |
94 | free_page(page); | 108 | free_page(page); |
95 | else | 109 | else |
96 | map->page = (void *)page; | 110 | map->page = (void *)page; |
97 | spin_unlock(&pidmap_lock); | 111 | spin_unlock_irq(&pidmap_lock); |
98 | if (unlikely(!map->page)) | 112 | if (unlikely(!map->page)) |
99 | break; | 113 | break; |
100 | } | 114 | } |
@@ -131,13 +145,73 @@ int alloc_pidmap(void) | |||
131 | return -1; | 145 | return -1; |
132 | } | 146 | } |
133 | 147 | ||
134 | struct pid * fastcall find_pid(enum pid_type type, int nr) | 148 | fastcall void put_pid(struct pid *pid) |
149 | { | ||
150 | if (!pid) | ||
151 | return; | ||
152 | if ((atomic_read(&pid->count) == 1) || | ||
153 | atomic_dec_and_test(&pid->count)) | ||
154 | kmem_cache_free(pid_cachep, pid); | ||
155 | } | ||
156 | |||
157 | static void delayed_put_pid(struct rcu_head *rhp) | ||
158 | { | ||
159 | struct pid *pid = container_of(rhp, struct pid, rcu); | ||
160 | put_pid(pid); | ||
161 | } | ||
162 | |||
163 | fastcall void free_pid(struct pid *pid) | ||
164 | { | ||
165 | /* We can be called with write_lock_irq(&tasklist_lock) held */ | ||
166 | unsigned long flags; | ||
167 | |||
168 | spin_lock_irqsave(&pidmap_lock, flags); | ||
169 | hlist_del_rcu(&pid->pid_chain); | ||
170 | spin_unlock_irqrestore(&pidmap_lock, flags); | ||
171 | |||
172 | free_pidmap(pid->nr); | ||
173 | call_rcu(&pid->rcu, delayed_put_pid); | ||
174 | } | ||
175 | |||
176 | struct pid *alloc_pid(void) | ||
177 | { | ||
178 | struct pid *pid; | ||
179 | enum pid_type type; | ||
180 | int nr = -1; | ||
181 | |||
182 | pid = kmem_cache_alloc(pid_cachep, GFP_KERNEL); | ||
183 | if (!pid) | ||
184 | goto out; | ||
185 | |||
186 | nr = alloc_pidmap(); | ||
187 | if (nr < 0) | ||
188 | goto out_free; | ||
189 | |||
190 | atomic_set(&pid->count, 1); | ||
191 | pid->nr = nr; | ||
192 | for (type = 0; type < PIDTYPE_MAX; ++type) | ||
193 | INIT_HLIST_HEAD(&pid->tasks[type]); | ||
194 | |||
195 | spin_lock_irq(&pidmap_lock); | ||
196 | hlist_add_head_rcu(&pid->pid_chain, &pid_hash[pid_hashfn(pid->nr)]); | ||
197 | spin_unlock_irq(&pidmap_lock); | ||
198 | |||
199 | out: | ||
200 | return pid; | ||
201 | |||
202 | out_free: | ||
203 | kmem_cache_free(pid_cachep, pid); | ||
204 | pid = NULL; | ||
205 | goto out; | ||
206 | } | ||
207 | |||
208 | struct pid * fastcall find_pid(int nr) | ||
135 | { | 209 | { |
136 | struct hlist_node *elem; | 210 | struct hlist_node *elem; |
137 | struct pid *pid; | 211 | struct pid *pid; |
138 | 212 | ||
139 | hlist_for_each_entry_rcu(pid, elem, | 213 | hlist_for_each_entry_rcu(pid, elem, |
140 | &pid_hash[type][pid_hashfn(nr)], pid_chain) { | 214 | &pid_hash[pid_hashfn(nr)], pid_chain) { |
141 | if (pid->nr == nr) | 215 | if (pid->nr == nr) |
142 | return pid; | 216 | return pid; |
143 | } | 217 | } |
@@ -146,77 +220,82 @@ struct pid * fastcall find_pid(enum pid_type type, int nr) | |||
146 | 220 | ||
147 | int fastcall attach_pid(task_t *task, enum pid_type type, int nr) | 221 | int fastcall attach_pid(task_t *task, enum pid_type type, int nr) |
148 | { | 222 | { |
149 | struct pid *pid, *task_pid; | 223 | struct pid_link *link; |
150 | 224 | struct pid *pid; | |
151 | task_pid = &task->pids[type]; | 225 | |
152 | pid = find_pid(type, nr); | 226 | WARN_ON(!task->pid); /* to be removed soon */ |
153 | task_pid->nr = nr; | 227 | WARN_ON(!nr); /* to be removed soon */ |
154 | if (pid == NULL) { | 228 | |
155 | INIT_LIST_HEAD(&task_pid->pid_list); | 229 | link = &task->pids[type]; |
156 | hlist_add_head_rcu(&task_pid->pid_chain, | 230 | link->pid = pid = find_pid(nr); |
157 | &pid_hash[type][pid_hashfn(nr)]); | 231 | hlist_add_head_rcu(&link->node, &pid->tasks[type]); |
158 | } else { | ||
159 | INIT_HLIST_NODE(&task_pid->pid_chain); | ||
160 | list_add_tail_rcu(&task_pid->pid_list, &pid->pid_list); | ||
161 | } | ||
162 | 232 | ||
163 | return 0; | 233 | return 0; |
164 | } | 234 | } |
165 | 235 | ||
166 | static fastcall int __detach_pid(task_t *task, enum pid_type type) | 236 | void fastcall detach_pid(task_t *task, enum pid_type type) |
167 | { | 237 | { |
168 | struct pid *pid, *pid_next; | 238 | struct pid_link *link; |
169 | int nr = 0; | 239 | struct pid *pid; |
240 | int tmp; | ||
170 | 241 | ||
171 | pid = &task->pids[type]; | 242 | link = &task->pids[type]; |
172 | if (!hlist_unhashed(&pid->pid_chain)) { | 243 | pid = link->pid; |
173 | 244 | ||
174 | if (list_empty(&pid->pid_list)) { | 245 | hlist_del_rcu(&link->node); |
175 | nr = pid->nr; | 246 | link->pid = NULL; |
176 | hlist_del_rcu(&pid->pid_chain); | ||
177 | } else { | ||
178 | pid_next = list_entry(pid->pid_list.next, | ||
179 | struct pid, pid_list); | ||
180 | /* insert next pid from pid_list to hash */ | ||
181 | hlist_replace_rcu(&pid->pid_chain, | ||
182 | &pid_next->pid_chain); | ||
183 | } | ||
184 | } | ||
185 | 247 | ||
186 | list_del_rcu(&pid->pid_list); | 248 | for (tmp = PIDTYPE_MAX; --tmp >= 0; ) |
187 | pid->nr = 0; | 249 | if (!hlist_empty(&pid->tasks[tmp])) |
250 | return; | ||
188 | 251 | ||
189 | return nr; | 252 | free_pid(pid); |
190 | } | 253 | } |
191 | 254 | ||
192 | void fastcall detach_pid(task_t *task, enum pid_type type) | 255 | struct task_struct * fastcall pid_task(struct pid *pid, enum pid_type type) |
193 | { | 256 | { |
194 | int tmp, nr; | 257 | struct task_struct *result = NULL; |
258 | if (pid) { | ||
259 | struct hlist_node *first; | ||
260 | first = rcu_dereference(pid->tasks[type].first); | ||
261 | if (first) | ||
262 | result = hlist_entry(first, struct task_struct, pids[(type)].node); | ||
263 | } | ||
264 | return result; | ||
265 | } | ||
195 | 266 | ||
196 | nr = __detach_pid(task, type); | 267 | /* |
197 | if (!nr) | 268 | * Must be called under rcu_read_lock() or with tasklist_lock read-held. |
198 | return; | 269 | */ |
270 | task_t *find_task_by_pid_type(int type, int nr) | ||
271 | { | ||
272 | return pid_task(find_pid(nr), type); | ||
273 | } | ||
199 | 274 | ||
200 | for (tmp = PIDTYPE_MAX; --tmp >= 0; ) | 275 | EXPORT_SYMBOL(find_task_by_pid_type); |
201 | if (tmp != type && find_pid(tmp, nr)) | ||
202 | return; | ||
203 | 276 | ||
204 | free_pidmap(nr); | 277 | struct task_struct *fastcall get_pid_task(struct pid *pid, enum pid_type type) |
278 | { | ||
279 | struct task_struct *result; | ||
280 | rcu_read_lock(); | ||
281 | result = pid_task(pid, type); | ||
282 | if (result) | ||
283 | get_task_struct(result); | ||
284 | rcu_read_unlock(); | ||
285 | return result; | ||
205 | } | 286 | } |
206 | 287 | ||
207 | task_t *find_task_by_pid_type(int type, int nr) | 288 | struct pid *find_get_pid(pid_t nr) |
208 | { | 289 | { |
209 | struct pid *pid; | 290 | struct pid *pid; |
210 | 291 | ||
211 | pid = find_pid(type, nr); | 292 | rcu_read_lock(); |
212 | if (!pid) | 293 | pid = get_pid(find_pid(nr)); |
213 | return NULL; | 294 | rcu_read_unlock(); |
214 | 295 | ||
215 | return pid_task(&pid->pid_list, type); | 296 | return pid; |
216 | } | 297 | } |
217 | 298 | ||
218 | EXPORT_SYMBOL(find_task_by_pid_type); | ||
219 | |||
220 | /* | 299 | /* |
221 | * The pid hash table is scaled according to the amount of memory in the | 300 | * The pid hash table is scaled according to the amount of memory in the |
222 | * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or | 301 | * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or |
@@ -224,7 +303,7 @@ EXPORT_SYMBOL(find_task_by_pid_type); | |||
224 | */ | 303 | */ |
225 | void __init pidhash_init(void) | 304 | void __init pidhash_init(void) |
226 | { | 305 | { |
227 | int i, j, pidhash_size; | 306 | int i, pidhash_size; |
228 | unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT); | 307 | unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT); |
229 | 308 | ||
230 | pidhash_shift = max(4, fls(megabytes * 4)); | 309 | pidhash_shift = max(4, fls(megabytes * 4)); |
@@ -233,16 +312,13 @@ void __init pidhash_init(void) | |||
233 | 312 | ||
234 | printk("PID hash table entries: %d (order: %d, %Zd bytes)\n", | 313 | printk("PID hash table entries: %d (order: %d, %Zd bytes)\n", |
235 | pidhash_size, pidhash_shift, | 314 | pidhash_size, pidhash_shift, |
236 | PIDTYPE_MAX * pidhash_size * sizeof(struct hlist_head)); | 315 | pidhash_size * sizeof(struct hlist_head)); |
237 | 316 | ||
238 | for (i = 0; i < PIDTYPE_MAX; i++) { | 317 | pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash))); |
239 | pid_hash[i] = alloc_bootmem(pidhash_size * | 318 | if (!pid_hash) |
240 | sizeof(*(pid_hash[i]))); | 319 | panic("Could not alloc pidhash!\n"); |
241 | if (!pid_hash[i]) | 320 | for (i = 0; i < pidhash_size; i++) |
242 | panic("Could not alloc pidhash!\n"); | 321 | INIT_HLIST_HEAD(&pid_hash[i]); |
243 | for (j = 0; j < pidhash_size; j++) | ||
244 | INIT_HLIST_HEAD(&pid_hash[i][j]); | ||
245 | } | ||
246 | } | 322 | } |
247 | 323 | ||
248 | void __init pidmap_init(void) | 324 | void __init pidmap_init(void) |
@@ -251,4 +327,8 @@ void __init pidmap_init(void) | |||
251 | /* Reserve PID 0. We never call free_pidmap(0) */ | 327 | /* Reserve PID 0. We never call free_pidmap(0) */ |
252 | set_bit(0, pidmap_array->page); | 328 | set_bit(0, pidmap_array->page); |
253 | atomic_dec(&pidmap_array->nr_free); | 329 | atomic_dec(&pidmap_array->nr_free); |
330 | |||
331 | pid_cachep = kmem_cache_create("pid", sizeof(struct pid), | ||
332 | __alignof__(struct pid), | ||
333 | SLAB_PANIC, NULL, NULL); | ||
254 | } | 334 | } |