diff options
-rw-r--r-- | Documentation/scheduler/00-INDEX | 2 | ||||
-rw-r--r-- | Documentation/scheduler/sched-coding.txt | 126 | ||||
-rw-r--r-- | arch/x86/kernel/cpu/intel.c | 8 | ||||
-rw-r--r-- | arch/x86/kernel/tsc.c | 9 | ||||
-rw-r--r-- | include/linux/init_task.h | 1 | ||||
-rw-r--r-- | include/linux/latencytop.h | 10 | ||||
-rw-r--r-- | include/linux/plist.h | 9 | ||||
-rw-r--r-- | include/linux/sched.h | 17 | ||||
-rw-r--r-- | init/Kconfig | 1 | ||||
-rw-r--r-- | kernel/latencytop.c | 83 | ||||
-rw-r--r-- | kernel/sched.c | 214 | ||||
-rw-r--r-- | kernel/sched_clock.c | 30 | ||||
-rw-r--r-- | kernel/sched_debug.c | 3 | ||||
-rw-r--r-- | kernel/sched_fair.c | 59 | ||||
-rw-r--r-- | kernel/sched_features.h | 3 | ||||
-rw-r--r-- | kernel/sched_rt.c | 537 | ||||
-rw-r--r-- | lib/Kconfig | 6 | ||||
-rw-r--r-- | lib/Makefile | 4 | ||||
-rw-r--r-- | lib/kernel_lock.c | 2 |
19 files changed, 743 insertions, 381 deletions
diff --git a/Documentation/scheduler/00-INDEX b/Documentation/scheduler/00-INDEX index aabcc3a089ba..3c00c9c3219e 100644 --- a/Documentation/scheduler/00-INDEX +++ b/Documentation/scheduler/00-INDEX | |||
@@ -2,8 +2,6 @@ | |||
2 | - this file. | 2 | - this file. |
3 | sched-arch.txt | 3 | sched-arch.txt |
4 | - CPU Scheduler implementation hints for architecture specific code. | 4 | - CPU Scheduler implementation hints for architecture specific code. |
5 | sched-coding.txt | ||
6 | - reference for various scheduler-related methods in the O(1) scheduler. | ||
7 | sched-design-CFS.txt | 5 | sched-design-CFS.txt |
8 | - goals, design and implementation of the Complete Fair Scheduler. | 6 | - goals, design and implementation of the Complete Fair Scheduler. |
9 | sched-domains.txt | 7 | sched-domains.txt |
diff --git a/Documentation/scheduler/sched-coding.txt b/Documentation/scheduler/sched-coding.txt deleted file mode 100644 index cbd8db752acf..000000000000 --- a/Documentation/scheduler/sched-coding.txt +++ /dev/null | |||
@@ -1,126 +0,0 @@ | |||
1 | Reference for various scheduler-related methods in the O(1) scheduler | ||
2 | Robert Love <rml@tech9.net>, MontaVista Software | ||
3 | |||
4 | |||
5 | Note most of these methods are local to kernel/sched.c - this is by design. | ||
6 | The scheduler is meant to be self-contained and abstracted away. This document | ||
7 | is primarily for understanding the scheduler, not interfacing to it. Some of | ||
8 | the discussed interfaces, however, are general process/scheduling methods. | ||
9 | They are typically defined in include/linux/sched.h. | ||
10 | |||
11 | |||
12 | Main Scheduling Methods | ||
13 | ----------------------- | ||
14 | |||
15 | void load_balance(runqueue_t *this_rq, int idle) | ||
16 | Attempts to pull tasks from one cpu to another to balance cpu usage, | ||
17 | if needed. This method is called explicitly if the runqueues are | ||
18 | imbalanced or periodically by the timer tick. Prior to calling, | ||
19 | the current runqueue must be locked and interrupts disabled. | ||
20 | |||
21 | void schedule() | ||
22 | The main scheduling function. Upon return, the highest priority | ||
23 | process will be active. | ||
24 | |||
25 | |||
26 | Locking | ||
27 | ------- | ||
28 | |||
29 | Each runqueue has its own lock, rq->lock. When multiple runqueues need | ||
30 | to be locked, lock acquires must be ordered by ascending &runqueue value. | ||
31 | |||
32 | A specific runqueue is locked via | ||
33 | |||
34 | task_rq_lock(task_t pid, unsigned long *flags) | ||
35 | |||
36 | which disables preemption, disables interrupts, and locks the runqueue pid is | ||
37 | running on. Likewise, | ||
38 | |||
39 | task_rq_unlock(task_t pid, unsigned long *flags) | ||
40 | |||
41 | unlocks the runqueue pid is running on, restores interrupts to their previous | ||
42 | state, and reenables preemption. | ||
43 | |||
44 | The routines | ||
45 | |||
46 | double_rq_lock(runqueue_t *rq1, runqueue_t *rq2) | ||
47 | |||
48 | and | ||
49 | |||
50 | double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2) | ||
51 | |||
52 | safely lock and unlock, respectively, the two specified runqueues. They do | ||
53 | not, however, disable and restore interrupts. Users are required to do so | ||
54 | manually before and after calls. | ||
55 | |||
56 | |||
57 | Values | ||
58 | ------ | ||
59 | |||
60 | MAX_PRIO | ||
61 | The maximum priority of the system, stored in the task as task->prio. | ||
62 | Lower priorities are higher. Normal (non-RT) priorities range from | ||
63 | MAX_RT_PRIO to (MAX_PRIO - 1). | ||
64 | MAX_RT_PRIO | ||
65 | The maximum real-time priority of the system. Valid RT priorities | ||
66 | range from 0 to (MAX_RT_PRIO - 1). | ||
67 | MAX_USER_RT_PRIO | ||
68 | The maximum real-time priority that is exported to user-space. Should | ||
69 | always be equal to or less than MAX_RT_PRIO. Setting it less allows | ||
70 | kernel threads to have higher priorities than any user-space task. | ||
71 | MIN_TIMESLICE | ||
72 | MAX_TIMESLICE | ||
73 | Respectively, the minimum and maximum timeslices (quanta) of a process. | ||
74 | |||
75 | Data | ||
76 | ---- | ||
77 | |||
78 | struct runqueue | ||
79 | The main per-CPU runqueue data structure. | ||
80 | struct task_struct | ||
81 | The main per-process data structure. | ||
82 | |||
83 | |||
84 | General Methods | ||
85 | --------------- | ||
86 | |||
87 | cpu_rq(cpu) | ||
88 | Returns the runqueue of the specified cpu. | ||
89 | this_rq() | ||
90 | Returns the runqueue of the current cpu. | ||
91 | task_rq(pid) | ||
92 | Returns the runqueue which holds the specified pid. | ||
93 | cpu_curr(cpu) | ||
94 | Returns the task currently running on the given cpu. | ||
95 | rt_task(pid) | ||
96 | Returns true if pid is real-time, false if not. | ||
97 | |||
98 | |||
99 | Process Control Methods | ||
100 | ----------------------- | ||
101 | |||
102 | void set_user_nice(task_t *p, long nice) | ||
103 | Sets the "nice" value of task p to the given value. | ||
104 | int setscheduler(pid_t pid, int policy, struct sched_param *param) | ||
105 | Sets the scheduling policy and parameters for the given pid. | ||
106 | int set_cpus_allowed(task_t *p, unsigned long new_mask) | ||
107 | Sets a given task's CPU affinity and migrates it to a proper cpu. | ||
108 | Callers must have a valid reference to the task and assure the | ||
109 | task not exit prematurely. No locks can be held during the call. | ||
110 | set_task_state(tsk, state_value) | ||
111 | Sets the given task's state to the given value. | ||
112 | set_current_state(state_value) | ||
113 | Sets the current task's state to the given value. | ||
114 | void set_tsk_need_resched(struct task_struct *tsk) | ||
115 | Sets need_resched in the given task. | ||
116 | void clear_tsk_need_resched(struct task_struct *tsk) | ||
117 | Clears need_resched in the given task. | ||
118 | void set_need_resched() | ||
119 | Sets need_resched in the current task. | ||
120 | void clear_need_resched() | ||
121 | Clears need_resched in the current task. | ||
122 | int need_resched() | ||
123 | Returns true if need_resched is set in the current task, false | ||
124 | otherwise. | ||
125 | yield() | ||
126 | Place the current process at the end of the runqueue and call schedule. | ||
diff --git a/arch/x86/kernel/cpu/intel.c b/arch/x86/kernel/cpu/intel.c index 24ff26a38ade..5fff00c70de0 100644 --- a/arch/x86/kernel/cpu/intel.c +++ b/arch/x86/kernel/cpu/intel.c | |||
@@ -4,6 +4,7 @@ | |||
4 | #include <linux/string.h> | 4 | #include <linux/string.h> |
5 | #include <linux/bitops.h> | 5 | #include <linux/bitops.h> |
6 | #include <linux/smp.h> | 6 | #include <linux/smp.h> |
7 | #include <linux/sched.h> | ||
7 | #include <linux/thread_info.h> | 8 | #include <linux/thread_info.h> |
8 | #include <linux/module.h> | 9 | #include <linux/module.h> |
9 | 10 | ||
@@ -56,11 +57,16 @@ static void __cpuinit early_init_intel(struct cpuinfo_x86 *c) | |||
56 | 57 | ||
57 | /* | 58 | /* |
58 | * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate | 59 | * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate |
59 | * with P/T states and does not stop in deep C-states | 60 | * with P/T states and does not stop in deep C-states. |
61 | * | ||
62 | * It is also reliable across cores and sockets. (but not across | ||
63 | * cabinets - we turn it off in that case explicitly.) | ||
60 | */ | 64 | */ |
61 | if (c->x86_power & (1 << 8)) { | 65 | if (c->x86_power & (1 << 8)) { |
62 | set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC); | 66 | set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC); |
63 | set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC); | 67 | set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC); |
68 | set_cpu_cap(c, X86_FEATURE_TSC_RELIABLE); | ||
69 | sched_clock_stable = 1; | ||
64 | } | 70 | } |
65 | 71 | ||
66 | } | 72 | } |
diff --git a/arch/x86/kernel/tsc.c b/arch/x86/kernel/tsc.c index d5cebb52d45b..dfa6f7b73ff5 100644 --- a/arch/x86/kernel/tsc.c +++ b/arch/x86/kernel/tsc.c | |||
@@ -17,20 +17,21 @@ | |||
17 | #include <asm/delay.h> | 17 | #include <asm/delay.h> |
18 | #include <asm/hypervisor.h> | 18 | #include <asm/hypervisor.h> |
19 | 19 | ||
20 | unsigned int cpu_khz; /* TSC clocks / usec, not used here */ | 20 | unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */ |
21 | EXPORT_SYMBOL(cpu_khz); | 21 | EXPORT_SYMBOL(cpu_khz); |
22 | unsigned int tsc_khz; | 22 | |
23 | unsigned int __read_mostly tsc_khz; | ||
23 | EXPORT_SYMBOL(tsc_khz); | 24 | EXPORT_SYMBOL(tsc_khz); |
24 | 25 | ||
25 | /* | 26 | /* |
26 | * TSC can be unstable due to cpufreq or due to unsynced TSCs | 27 | * TSC can be unstable due to cpufreq or due to unsynced TSCs |
27 | */ | 28 | */ |
28 | static int tsc_unstable; | 29 | static int __read_mostly tsc_unstable; |
29 | 30 | ||
30 | /* native_sched_clock() is called before tsc_init(), so | 31 | /* native_sched_clock() is called before tsc_init(), so |
31 | we must start with the TSC soft disabled to prevent | 32 | we must start with the TSC soft disabled to prevent |
32 | erroneous rdtsc usage on !cpu_has_tsc processors */ | 33 | erroneous rdtsc usage on !cpu_has_tsc processors */ |
33 | static int tsc_disabled = -1; | 34 | static int __read_mostly tsc_disabled = -1; |
34 | 35 | ||
35 | static int tsc_clocksource_reliable; | 36 | static int tsc_clocksource_reliable; |
36 | /* | 37 | /* |
diff --git a/include/linux/init_task.h b/include/linux/init_task.h index e752d973fa21..af1de95e711e 100644 --- a/include/linux/init_task.h +++ b/include/linux/init_task.h | |||
@@ -147,6 +147,7 @@ extern struct cred init_cred; | |||
147 | .nr_cpus_allowed = NR_CPUS, \ | 147 | .nr_cpus_allowed = NR_CPUS, \ |
148 | }, \ | 148 | }, \ |
149 | .tasks = LIST_HEAD_INIT(tsk.tasks), \ | 149 | .tasks = LIST_HEAD_INIT(tsk.tasks), \ |
150 | .pushable_tasks = PLIST_NODE_INIT(tsk.pushable_tasks, MAX_PRIO), \ | ||
150 | .ptraced = LIST_HEAD_INIT(tsk.ptraced), \ | 151 | .ptraced = LIST_HEAD_INIT(tsk.ptraced), \ |
151 | .ptrace_entry = LIST_HEAD_INIT(tsk.ptrace_entry), \ | 152 | .ptrace_entry = LIST_HEAD_INIT(tsk.ptrace_entry), \ |
152 | .real_parent = &tsk, \ | 153 | .real_parent = &tsk, \ |
diff --git a/include/linux/latencytop.h b/include/linux/latencytop.h index 901c2d6377a8..b0e99898527c 100644 --- a/include/linux/latencytop.h +++ b/include/linux/latencytop.h | |||
@@ -9,6 +9,7 @@ | |||
9 | #ifndef _INCLUDE_GUARD_LATENCYTOP_H_ | 9 | #ifndef _INCLUDE_GUARD_LATENCYTOP_H_ |
10 | #define _INCLUDE_GUARD_LATENCYTOP_H_ | 10 | #define _INCLUDE_GUARD_LATENCYTOP_H_ |
11 | 11 | ||
12 | #include <linux/compiler.h> | ||
12 | #ifdef CONFIG_LATENCYTOP | 13 | #ifdef CONFIG_LATENCYTOP |
13 | 14 | ||
14 | #define LT_SAVECOUNT 32 | 15 | #define LT_SAVECOUNT 32 |
@@ -24,7 +25,14 @@ struct latency_record { | |||
24 | 25 | ||
25 | struct task_struct; | 26 | struct task_struct; |
26 | 27 | ||
27 | void account_scheduler_latency(struct task_struct *task, int usecs, int inter); | 28 | extern int latencytop_enabled; |
29 | void __account_scheduler_latency(struct task_struct *task, int usecs, int inter); | ||
30 | static inline void | ||
31 | account_scheduler_latency(struct task_struct *task, int usecs, int inter) | ||
32 | { | ||
33 | if (unlikely(latencytop_enabled)) | ||
34 | __account_scheduler_latency(task, usecs, inter); | ||
35 | } | ||
28 | 36 | ||
29 | void clear_all_latency_tracing(struct task_struct *p); | 37 | void clear_all_latency_tracing(struct task_struct *p); |
30 | 38 | ||
diff --git a/include/linux/plist.h b/include/linux/plist.h index 85de2f055874..45926d77d6ac 100644 --- a/include/linux/plist.h +++ b/include/linux/plist.h | |||
@@ -96,6 +96,10 @@ struct plist_node { | |||
96 | # define PLIST_HEAD_LOCK_INIT(_lock) | 96 | # define PLIST_HEAD_LOCK_INIT(_lock) |
97 | #endif | 97 | #endif |
98 | 98 | ||
99 | #define _PLIST_HEAD_INIT(head) \ | ||
100 | .prio_list = LIST_HEAD_INIT((head).prio_list), \ | ||
101 | .node_list = LIST_HEAD_INIT((head).node_list) | ||
102 | |||
99 | /** | 103 | /** |
100 | * PLIST_HEAD_INIT - static struct plist_head initializer | 104 | * PLIST_HEAD_INIT - static struct plist_head initializer |
101 | * @head: struct plist_head variable name | 105 | * @head: struct plist_head variable name |
@@ -103,8 +107,7 @@ struct plist_node { | |||
103 | */ | 107 | */ |
104 | #define PLIST_HEAD_INIT(head, _lock) \ | 108 | #define PLIST_HEAD_INIT(head, _lock) \ |
105 | { \ | 109 | { \ |
106 | .prio_list = LIST_HEAD_INIT((head).prio_list), \ | 110 | _PLIST_HEAD_INIT(head), \ |
107 | .node_list = LIST_HEAD_INIT((head).node_list), \ | ||
108 | PLIST_HEAD_LOCK_INIT(&(_lock)) \ | 111 | PLIST_HEAD_LOCK_INIT(&(_lock)) \ |
109 | } | 112 | } |
110 | 113 | ||
@@ -116,7 +119,7 @@ struct plist_node { | |||
116 | #define PLIST_NODE_INIT(node, __prio) \ | 119 | #define PLIST_NODE_INIT(node, __prio) \ |
117 | { \ | 120 | { \ |
118 | .prio = (__prio), \ | 121 | .prio = (__prio), \ |
119 | .plist = PLIST_HEAD_INIT((node).plist, NULL), \ | 122 | .plist = { _PLIST_HEAD_INIT((node).plist) }, \ |
120 | } | 123 | } |
121 | 124 | ||
122 | /** | 125 | /** |
diff --git a/include/linux/sched.h b/include/linux/sched.h index 011db2f4c94c..d94ebc86887f 100644 --- a/include/linux/sched.h +++ b/include/linux/sched.h | |||
@@ -998,6 +998,7 @@ struct sched_class { | |||
998 | struct rq *busiest, struct sched_domain *sd, | 998 | struct rq *busiest, struct sched_domain *sd, |
999 | enum cpu_idle_type idle); | 999 | enum cpu_idle_type idle); |
1000 | void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); | 1000 | void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); |
1001 | int (*needs_post_schedule) (struct rq *this_rq); | ||
1001 | void (*post_schedule) (struct rq *this_rq); | 1002 | void (*post_schedule) (struct rq *this_rq); |
1002 | void (*task_wake_up) (struct rq *this_rq, struct task_struct *task); | 1003 | void (*task_wake_up) (struct rq *this_rq, struct task_struct *task); |
1003 | 1004 | ||
@@ -1052,6 +1053,10 @@ struct sched_entity { | |||
1052 | u64 last_wakeup; | 1053 | u64 last_wakeup; |
1053 | u64 avg_overlap; | 1054 | u64 avg_overlap; |
1054 | 1055 | ||
1056 | u64 start_runtime; | ||
1057 | u64 avg_wakeup; | ||
1058 | u64 nr_migrations; | ||
1059 | |||
1055 | #ifdef CONFIG_SCHEDSTATS | 1060 | #ifdef CONFIG_SCHEDSTATS |
1056 | u64 wait_start; | 1061 | u64 wait_start; |
1057 | u64 wait_max; | 1062 | u64 wait_max; |
@@ -1067,7 +1072,6 @@ struct sched_entity { | |||
1067 | u64 exec_max; | 1072 | u64 exec_max; |
1068 | u64 slice_max; | 1073 | u64 slice_max; |
1069 | 1074 | ||
1070 | u64 nr_migrations; | ||
1071 | u64 nr_migrations_cold; | 1075 | u64 nr_migrations_cold; |
1072 | u64 nr_failed_migrations_affine; | 1076 | u64 nr_failed_migrations_affine; |
1073 | u64 nr_failed_migrations_running; | 1077 | u64 nr_failed_migrations_running; |
@@ -1164,6 +1168,7 @@ struct task_struct { | |||
1164 | #endif | 1168 | #endif |
1165 | 1169 | ||
1166 | struct list_head tasks; | 1170 | struct list_head tasks; |
1171 | struct plist_node pushable_tasks; | ||
1167 | 1172 | ||
1168 | struct mm_struct *mm, *active_mm; | 1173 | struct mm_struct *mm, *active_mm; |
1169 | 1174 | ||
@@ -1673,6 +1678,16 @@ static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) | |||
1673 | return set_cpus_allowed_ptr(p, &new_mask); | 1678 | return set_cpus_allowed_ptr(p, &new_mask); |
1674 | } | 1679 | } |
1675 | 1680 | ||
1681 | /* | ||
1682 | * Architectures can set this to 1 if they have specified | ||
1683 | * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, | ||
1684 | * but then during bootup it turns out that sched_clock() | ||
1685 | * is reliable after all: | ||
1686 | */ | ||
1687 | #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK | ||
1688 | extern int sched_clock_stable; | ||
1689 | #endif | ||
1690 | |||
1676 | extern unsigned long long sched_clock(void); | 1691 | extern unsigned long long sched_clock(void); |
1677 | 1692 | ||
1678 | extern void sched_clock_init(void); | 1693 | extern void sched_clock_init(void); |
diff --git a/init/Kconfig b/init/Kconfig index 6a5c5fed66c9..68699137b147 100644 --- a/init/Kconfig +++ b/init/Kconfig | |||
@@ -966,7 +966,6 @@ config SLABINFO | |||
966 | 966 | ||
967 | config RT_MUTEXES | 967 | config RT_MUTEXES |
968 | boolean | 968 | boolean |
969 | select PLIST | ||
970 | 969 | ||
971 | config BASE_SMALL | 970 | config BASE_SMALL |
972 | int | 971 | int |
diff --git a/kernel/latencytop.c b/kernel/latencytop.c index 449db466bdbc..ca07c5c0c914 100644 --- a/kernel/latencytop.c +++ b/kernel/latencytop.c | |||
@@ -9,6 +9,44 @@ | |||
9 | * as published by the Free Software Foundation; version 2 | 9 | * as published by the Free Software Foundation; version 2 |
10 | * of the License. | 10 | * of the License. |
11 | */ | 11 | */ |
12 | |||
13 | /* | ||
14 | * CONFIG_LATENCYTOP enables a kernel latency tracking infrastructure that is | ||
15 | * used by the "latencytop" userspace tool. The latency that is tracked is not | ||
16 | * the 'traditional' interrupt latency (which is primarily caused by something | ||
17 | * else consuming CPU), but instead, it is the latency an application encounters | ||
18 | * because the kernel sleeps on its behalf for various reasons. | ||
19 | * | ||
20 | * This code tracks 2 levels of statistics: | ||
21 | * 1) System level latency | ||
22 | * 2) Per process latency | ||
23 | * | ||
24 | * The latency is stored in fixed sized data structures in an accumulated form; | ||
25 | * if the "same" latency cause is hit twice, this will be tracked as one entry | ||
26 | * in the data structure. Both the count, total accumulated latency and maximum | ||
27 | * latency are tracked in this data structure. When the fixed size structure is | ||
28 | * full, no new causes are tracked until the buffer is flushed by writing to | ||
29 | * the /proc file; the userspace tool does this on a regular basis. | ||
30 | * | ||
31 | * A latency cause is identified by a stringified backtrace at the point that | ||
32 | * the scheduler gets invoked. The userland tool will use this string to | ||
33 | * identify the cause of the latency in human readable form. | ||
34 | * | ||
35 | * The information is exported via /proc/latency_stats and /proc/<pid>/latency. | ||
36 | * These files look like this: | ||
37 | * | ||
38 | * Latency Top version : v0.1 | ||
39 | * 70 59433 4897 i915_irq_wait drm_ioctl vfs_ioctl do_vfs_ioctl sys_ioctl | ||
40 | * | | | | | ||
41 | * | | | +----> the stringified backtrace | ||
42 | * | | +---------> The maximum latency for this entry in microseconds | ||
43 | * | +--------------> The accumulated latency for this entry (microseconds) | ||
44 | * +-------------------> The number of times this entry is hit | ||
45 | * | ||
46 | * (note: the average latency is the accumulated latency divided by the number | ||
47 | * of times) | ||
48 | */ | ||
49 | |||
12 | #include <linux/latencytop.h> | 50 | #include <linux/latencytop.h> |
13 | #include <linux/kallsyms.h> | 51 | #include <linux/kallsyms.h> |
14 | #include <linux/seq_file.h> | 52 | #include <linux/seq_file.h> |
@@ -72,7 +110,7 @@ account_global_scheduler_latency(struct task_struct *tsk, struct latency_record | |||
72 | firstnonnull = i; | 110 | firstnonnull = i; |
73 | continue; | 111 | continue; |
74 | } | 112 | } |
75 | for (q = 0 ; q < LT_BACKTRACEDEPTH ; q++) { | 113 | for (q = 0; q < LT_BACKTRACEDEPTH; q++) { |
76 | unsigned long record = lat->backtrace[q]; | 114 | unsigned long record = lat->backtrace[q]; |
77 | 115 | ||
78 | if (latency_record[i].backtrace[q] != record) { | 116 | if (latency_record[i].backtrace[q] != record) { |
@@ -101,31 +139,52 @@ account_global_scheduler_latency(struct task_struct *tsk, struct latency_record | |||
101 | memcpy(&latency_record[i], lat, sizeof(struct latency_record)); | 139 | memcpy(&latency_record[i], lat, sizeof(struct latency_record)); |
102 | } | 140 | } |
103 | 141 | ||
104 | static inline void store_stacktrace(struct task_struct *tsk, struct latency_record *lat) | 142 | /* |
143 | * Iterator to store a backtrace into a latency record entry | ||
144 | */ | ||
145 | static inline void store_stacktrace(struct task_struct *tsk, | ||
146 | struct latency_record *lat) | ||
105 | { | 147 | { |
106 | struct stack_trace trace; | 148 | struct stack_trace trace; |
107 | 149 | ||
108 | memset(&trace, 0, sizeof(trace)); | 150 | memset(&trace, 0, sizeof(trace)); |
109 | trace.max_entries = LT_BACKTRACEDEPTH; | 151 | trace.max_entries = LT_BACKTRACEDEPTH; |
110 | trace.entries = &lat->backtrace[0]; | 152 | trace.entries = &lat->backtrace[0]; |
111 | trace.skip = 0; | ||
112 | save_stack_trace_tsk(tsk, &trace); | 153 | save_stack_trace_tsk(tsk, &trace); |
113 | } | 154 | } |
114 | 155 | ||
156 | /** | ||
157 | * __account_scheduler_latency - record an occured latency | ||
158 | * @tsk - the task struct of the task hitting the latency | ||
159 | * @usecs - the duration of the latency in microseconds | ||
160 | * @inter - 1 if the sleep was interruptible, 0 if uninterruptible | ||
161 | * | ||
162 | * This function is the main entry point for recording latency entries | ||
163 | * as called by the scheduler. | ||
164 | * | ||
165 | * This function has a few special cases to deal with normal 'non-latency' | ||
166 | * sleeps: specifically, interruptible sleep longer than 5 msec is skipped | ||
167 | * since this usually is caused by waiting for events via select() and co. | ||
168 | * | ||
169 | * Negative latencies (caused by time going backwards) are also explicitly | ||
170 | * skipped. | ||
171 | */ | ||
115 | void __sched | 172 | void __sched |
116 | account_scheduler_latency(struct task_struct *tsk, int usecs, int inter) | 173 | __account_scheduler_latency(struct task_struct *tsk, int usecs, int inter) |
117 | { | 174 | { |
118 | unsigned long flags; | 175 | unsigned long flags; |
119 | int i, q; | 176 | int i, q; |
120 | struct latency_record lat; | 177 | struct latency_record lat; |
121 | 178 | ||
122 | if (!latencytop_enabled) | ||
123 | return; | ||
124 | |||
125 | /* Long interruptible waits are generally user requested... */ | 179 | /* Long interruptible waits are generally user requested... */ |
126 | if (inter && usecs > 5000) | 180 | if (inter && usecs > 5000) |
127 | return; | 181 | return; |
128 | 182 | ||
183 | /* Negative sleeps are time going backwards */ | ||
184 | /* Zero-time sleeps are non-interesting */ | ||
185 | if (usecs <= 0) | ||
186 | return; | ||
187 | |||
129 | memset(&lat, 0, sizeof(lat)); | 188 | memset(&lat, 0, sizeof(lat)); |
130 | lat.count = 1; | 189 | lat.count = 1; |
131 | lat.time = usecs; | 190 | lat.time = usecs; |
@@ -143,12 +202,12 @@ account_scheduler_latency(struct task_struct *tsk, int usecs, int inter) | |||
143 | if (tsk->latency_record_count >= LT_SAVECOUNT) | 202 | if (tsk->latency_record_count >= LT_SAVECOUNT) |
144 | goto out_unlock; | 203 | goto out_unlock; |
145 | 204 | ||
146 | for (i = 0; i < LT_SAVECOUNT ; i++) { | 205 | for (i = 0; i < LT_SAVECOUNT; i++) { |
147 | struct latency_record *mylat; | 206 | struct latency_record *mylat; |
148 | int same = 1; | 207 | int same = 1; |
149 | 208 | ||
150 | mylat = &tsk->latency_record[i]; | 209 | mylat = &tsk->latency_record[i]; |
151 | for (q = 0 ; q < LT_BACKTRACEDEPTH ; q++) { | 210 | for (q = 0; q < LT_BACKTRACEDEPTH; q++) { |
152 | unsigned long record = lat.backtrace[q]; | 211 | unsigned long record = lat.backtrace[q]; |
153 | 212 | ||
154 | if (mylat->backtrace[q] != record) { | 213 | if (mylat->backtrace[q] != record) { |
@@ -186,7 +245,7 @@ static int lstats_show(struct seq_file *m, void *v) | |||
186 | for (i = 0; i < MAXLR; i++) { | 245 | for (i = 0; i < MAXLR; i++) { |
187 | if (latency_record[i].backtrace[0]) { | 246 | if (latency_record[i].backtrace[0]) { |
188 | int q; | 247 | int q; |
189 | seq_printf(m, "%i %li %li ", | 248 | seq_printf(m, "%i %lu %lu ", |
190 | latency_record[i].count, | 249 | latency_record[i].count, |
191 | latency_record[i].time, | 250 | latency_record[i].time, |
192 | latency_record[i].max); | 251 | latency_record[i].max); |
@@ -223,7 +282,7 @@ static int lstats_open(struct inode *inode, struct file *filp) | |||
223 | return single_open(filp, lstats_show, NULL); | 282 | return single_open(filp, lstats_show, NULL); |
224 | } | 283 | } |
225 | 284 | ||
226 | static struct file_operations lstats_fops = { | 285 | static const struct file_operations lstats_fops = { |
227 | .open = lstats_open, | 286 | .open = lstats_open, |
228 | .read = seq_read, | 287 | .read = seq_read, |
229 | .write = lstats_write, | 288 | .write = lstats_write, |
@@ -236,4 +295,4 @@ static int __init init_lstats_procfs(void) | |||
236 | proc_create("latency_stats", 0644, NULL, &lstats_fops); | 295 | proc_create("latency_stats", 0644, NULL, &lstats_fops); |
237 | return 0; | 296 | return 0; |
238 | } | 297 | } |
239 | __initcall(init_lstats_procfs); | 298 | device_initcall(init_lstats_procfs); |
diff --git a/kernel/sched.c b/kernel/sched.c index 8e2558c2ba67..d2dfe4c1a225 100644 --- a/kernel/sched.c +++ b/kernel/sched.c | |||
@@ -331,6 +331,13 @@ static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp; | |||
331 | */ | 331 | */ |
332 | static DEFINE_SPINLOCK(task_group_lock); | 332 | static DEFINE_SPINLOCK(task_group_lock); |
333 | 333 | ||
334 | #ifdef CONFIG_SMP | ||
335 | static int root_task_group_empty(void) | ||
336 | { | ||
337 | return list_empty(&root_task_group.children); | ||
338 | } | ||
339 | #endif | ||
340 | |||
334 | #ifdef CONFIG_FAIR_GROUP_SCHED | 341 | #ifdef CONFIG_FAIR_GROUP_SCHED |
335 | #ifdef CONFIG_USER_SCHED | 342 | #ifdef CONFIG_USER_SCHED |
336 | # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD) | 343 | # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD) |
@@ -391,6 +398,13 @@ static inline void set_task_rq(struct task_struct *p, unsigned int cpu) | |||
391 | 398 | ||
392 | #else | 399 | #else |
393 | 400 | ||
401 | #ifdef CONFIG_SMP | ||
402 | static int root_task_group_empty(void) | ||
403 | { | ||
404 | return 1; | ||
405 | } | ||
406 | #endif | ||
407 | |||
394 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } | 408 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } |
395 | static inline struct task_group *task_group(struct task_struct *p) | 409 | static inline struct task_group *task_group(struct task_struct *p) |
396 | { | 410 | { |
@@ -467,11 +481,17 @@ struct rt_rq { | |||
467 | struct rt_prio_array active; | 481 | struct rt_prio_array active; |
468 | unsigned long rt_nr_running; | 482 | unsigned long rt_nr_running; |
469 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 483 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
470 | int highest_prio; /* highest queued rt task prio */ | 484 | struct { |
485 | int curr; /* highest queued rt task prio */ | ||
486 | #ifdef CONFIG_SMP | ||
487 | int next; /* next highest */ | ||
488 | #endif | ||
489 | } highest_prio; | ||
471 | #endif | 490 | #endif |
472 | #ifdef CONFIG_SMP | 491 | #ifdef CONFIG_SMP |
473 | unsigned long rt_nr_migratory; | 492 | unsigned long rt_nr_migratory; |
474 | int overloaded; | 493 | int overloaded; |
494 | struct plist_head pushable_tasks; | ||
475 | #endif | 495 | #endif |
476 | int rt_throttled; | 496 | int rt_throttled; |
477 | u64 rt_time; | 497 | u64 rt_time; |
@@ -549,7 +569,6 @@ struct rq { | |||
549 | unsigned long nr_running; | 569 | unsigned long nr_running; |
550 | #define CPU_LOAD_IDX_MAX 5 | 570 | #define CPU_LOAD_IDX_MAX 5 |
551 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; | 571 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; |
552 | unsigned char idle_at_tick; | ||
553 | #ifdef CONFIG_NO_HZ | 572 | #ifdef CONFIG_NO_HZ |
554 | unsigned long last_tick_seen; | 573 | unsigned long last_tick_seen; |
555 | unsigned char in_nohz_recently; | 574 | unsigned char in_nohz_recently; |
@@ -590,6 +609,7 @@ struct rq { | |||
590 | struct root_domain *rd; | 609 | struct root_domain *rd; |
591 | struct sched_domain *sd; | 610 | struct sched_domain *sd; |
592 | 611 | ||
612 | unsigned char idle_at_tick; | ||
593 | /* For active balancing */ | 613 | /* For active balancing */ |
594 | int active_balance; | 614 | int active_balance; |
595 | int push_cpu; | 615 | int push_cpu; |
@@ -1183,10 +1203,10 @@ static void resched_task(struct task_struct *p) | |||
1183 | 1203 | ||
1184 | assert_spin_locked(&task_rq(p)->lock); | 1204 | assert_spin_locked(&task_rq(p)->lock); |
1185 | 1205 | ||
1186 | if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED))) | 1206 | if (test_tsk_need_resched(p)) |
1187 | return; | 1207 | return; |
1188 | 1208 | ||
1189 | set_tsk_thread_flag(p, TIF_NEED_RESCHED); | 1209 | set_tsk_need_resched(p); |
1190 | 1210 | ||
1191 | cpu = task_cpu(p); | 1211 | cpu = task_cpu(p); |
1192 | if (cpu == smp_processor_id()) | 1212 | if (cpu == smp_processor_id()) |
@@ -1242,7 +1262,7 @@ void wake_up_idle_cpu(int cpu) | |||
1242 | * lockless. The worst case is that the other CPU runs the | 1262 | * lockless. The worst case is that the other CPU runs the |
1243 | * idle task through an additional NOOP schedule() | 1263 | * idle task through an additional NOOP schedule() |
1244 | */ | 1264 | */ |
1245 | set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED); | 1265 | set_tsk_need_resched(rq->idle); |
1246 | 1266 | ||
1247 | /* NEED_RESCHED must be visible before we test polling */ | 1267 | /* NEED_RESCHED must be visible before we test polling */ |
1248 | smp_mb(); | 1268 | smp_mb(); |
@@ -1610,21 +1630,42 @@ static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd) | |||
1610 | 1630 | ||
1611 | #endif | 1631 | #endif |
1612 | 1632 | ||
1633 | #ifdef CONFIG_PREEMPT | ||
1634 | |||
1613 | /* | 1635 | /* |
1614 | * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | 1636 | * fair double_lock_balance: Safely acquires both rq->locks in a fair |
1637 | * way at the expense of forcing extra atomic operations in all | ||
1638 | * invocations. This assures that the double_lock is acquired using the | ||
1639 | * same underlying policy as the spinlock_t on this architecture, which | ||
1640 | * reduces latency compared to the unfair variant below. However, it | ||
1641 | * also adds more overhead and therefore may reduce throughput. | ||
1615 | */ | 1642 | */ |
1616 | static int double_lock_balance(struct rq *this_rq, struct rq *busiest) | 1643 | static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) |
1644 | __releases(this_rq->lock) | ||
1645 | __acquires(busiest->lock) | ||
1646 | __acquires(this_rq->lock) | ||
1647 | { | ||
1648 | spin_unlock(&this_rq->lock); | ||
1649 | double_rq_lock(this_rq, busiest); | ||
1650 | |||
1651 | return 1; | ||
1652 | } | ||
1653 | |||
1654 | #else | ||
1655 | /* | ||
1656 | * Unfair double_lock_balance: Optimizes throughput at the expense of | ||
1657 | * latency by eliminating extra atomic operations when the locks are | ||
1658 | * already in proper order on entry. This favors lower cpu-ids and will | ||
1659 | * grant the double lock to lower cpus over higher ids under contention, | ||
1660 | * regardless of entry order into the function. | ||
1661 | */ | ||
1662 | static int _double_lock_balance(struct rq *this_rq, struct rq *busiest) | ||
1617 | __releases(this_rq->lock) | 1663 | __releases(this_rq->lock) |
1618 | __acquires(busiest->lock) | 1664 | __acquires(busiest->lock) |
1619 | __acquires(this_rq->lock) | 1665 | __acquires(this_rq->lock) |
1620 | { | 1666 | { |
1621 | int ret = 0; | 1667 | int ret = 0; |
1622 | 1668 | ||
1623 | if (unlikely(!irqs_disabled())) { | ||
1624 | /* printk() doesn't work good under rq->lock */ | ||
1625 | spin_unlock(&this_rq->lock); | ||
1626 | BUG_ON(1); | ||
1627 | } | ||
1628 | if (unlikely(!spin_trylock(&busiest->lock))) { | 1669 | if (unlikely(!spin_trylock(&busiest->lock))) { |
1629 | if (busiest < this_rq) { | 1670 | if (busiest < this_rq) { |
1630 | spin_unlock(&this_rq->lock); | 1671 | spin_unlock(&this_rq->lock); |
@@ -1637,6 +1678,22 @@ static int double_lock_balance(struct rq *this_rq, struct rq *busiest) | |||
1637 | return ret; | 1678 | return ret; |
1638 | } | 1679 | } |
1639 | 1680 | ||
1681 | #endif /* CONFIG_PREEMPT */ | ||
1682 | |||
1683 | /* | ||
1684 | * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | ||
1685 | */ | ||
1686 | static int double_lock_balance(struct rq *this_rq, struct rq *busiest) | ||
1687 | { | ||
1688 | if (unlikely(!irqs_disabled())) { | ||
1689 | /* printk() doesn't work good under rq->lock */ | ||
1690 | spin_unlock(&this_rq->lock); | ||
1691 | BUG_ON(1); | ||
1692 | } | ||
1693 | |||
1694 | return _double_lock_balance(this_rq, busiest); | ||
1695 | } | ||
1696 | |||
1640 | static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) | 1697 | static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) |
1641 | __releases(busiest->lock) | 1698 | __releases(busiest->lock) |
1642 | { | 1699 | { |
@@ -1705,6 +1762,9 @@ static void update_avg(u64 *avg, u64 sample) | |||
1705 | 1762 | ||
1706 | static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) | 1763 | static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) |
1707 | { | 1764 | { |
1765 | if (wakeup) | ||
1766 | p->se.start_runtime = p->se.sum_exec_runtime; | ||
1767 | |||
1708 | sched_info_queued(p); | 1768 | sched_info_queued(p); |
1709 | p->sched_class->enqueue_task(rq, p, wakeup); | 1769 | p->sched_class->enqueue_task(rq, p, wakeup); |
1710 | p->se.on_rq = 1; | 1770 | p->se.on_rq = 1; |
@@ -1712,10 +1772,15 @@ static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) | |||
1712 | 1772 | ||
1713 | static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) | 1773 | static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) |
1714 | { | 1774 | { |
1715 | if (sleep && p->se.last_wakeup) { | 1775 | if (sleep) { |
1716 | update_avg(&p->se.avg_overlap, | 1776 | if (p->se.last_wakeup) { |
1717 | p->se.sum_exec_runtime - p->se.last_wakeup); | 1777 | update_avg(&p->se.avg_overlap, |
1718 | p->se.last_wakeup = 0; | 1778 | p->se.sum_exec_runtime - p->se.last_wakeup); |
1779 | p->se.last_wakeup = 0; | ||
1780 | } else { | ||
1781 | update_avg(&p->se.avg_wakeup, | ||
1782 | sysctl_sched_wakeup_granularity); | ||
1783 | } | ||
1719 | } | 1784 | } |
1720 | 1785 | ||
1721 | sched_info_dequeued(p); | 1786 | sched_info_dequeued(p); |
@@ -2017,7 +2082,7 @@ unsigned long wait_task_inactive(struct task_struct *p, long match_state) | |||
2017 | * it must be off the runqueue _entirely_, and not | 2082 | * it must be off the runqueue _entirely_, and not |
2018 | * preempted! | 2083 | * preempted! |
2019 | * | 2084 | * |
2020 | * So if it wa still runnable (but just not actively | 2085 | * So if it was still runnable (but just not actively |
2021 | * running right now), it's preempted, and we should | 2086 | * running right now), it's preempted, and we should |
2022 | * yield - it could be a while. | 2087 | * yield - it could be a while. |
2023 | */ | 2088 | */ |
@@ -2267,7 +2332,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) | |||
2267 | sync = 0; | 2332 | sync = 0; |
2268 | 2333 | ||
2269 | #ifdef CONFIG_SMP | 2334 | #ifdef CONFIG_SMP |
2270 | if (sched_feat(LB_WAKEUP_UPDATE)) { | 2335 | if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) { |
2271 | struct sched_domain *sd; | 2336 | struct sched_domain *sd; |
2272 | 2337 | ||
2273 | this_cpu = raw_smp_processor_id(); | 2338 | this_cpu = raw_smp_processor_id(); |
@@ -2345,6 +2410,22 @@ out_activate: | |||
2345 | activate_task(rq, p, 1); | 2410 | activate_task(rq, p, 1); |
2346 | success = 1; | 2411 | success = 1; |
2347 | 2412 | ||
2413 | /* | ||
2414 | * Only attribute actual wakeups done by this task. | ||
2415 | */ | ||
2416 | if (!in_interrupt()) { | ||
2417 | struct sched_entity *se = ¤t->se; | ||
2418 | u64 sample = se->sum_exec_runtime; | ||
2419 | |||
2420 | if (se->last_wakeup) | ||
2421 | sample -= se->last_wakeup; | ||
2422 | else | ||
2423 | sample -= se->start_runtime; | ||
2424 | update_avg(&se->avg_wakeup, sample); | ||
2425 | |||
2426 | se->last_wakeup = se->sum_exec_runtime; | ||
2427 | } | ||
2428 | |||
2348 | out_running: | 2429 | out_running: |
2349 | trace_sched_wakeup(rq, p, success); | 2430 | trace_sched_wakeup(rq, p, success); |
2350 | check_preempt_curr(rq, p, sync); | 2431 | check_preempt_curr(rq, p, sync); |
@@ -2355,8 +2436,6 @@ out_running: | |||
2355 | p->sched_class->task_wake_up(rq, p); | 2436 | p->sched_class->task_wake_up(rq, p); |
2356 | #endif | 2437 | #endif |
2357 | out: | 2438 | out: |
2358 | current->se.last_wakeup = current->se.sum_exec_runtime; | ||
2359 | |||
2360 | task_rq_unlock(rq, &flags); | 2439 | task_rq_unlock(rq, &flags); |
2361 | 2440 | ||
2362 | return success; | 2441 | return success; |
@@ -2386,6 +2465,8 @@ static void __sched_fork(struct task_struct *p) | |||
2386 | p->se.prev_sum_exec_runtime = 0; | 2465 | p->se.prev_sum_exec_runtime = 0; |
2387 | p->se.last_wakeup = 0; | 2466 | p->se.last_wakeup = 0; |
2388 | p->se.avg_overlap = 0; | 2467 | p->se.avg_overlap = 0; |
2468 | p->se.start_runtime = 0; | ||
2469 | p->se.avg_wakeup = sysctl_sched_wakeup_granularity; | ||
2389 | 2470 | ||
2390 | #ifdef CONFIG_SCHEDSTATS | 2471 | #ifdef CONFIG_SCHEDSTATS |
2391 | p->se.wait_start = 0; | 2472 | p->se.wait_start = 0; |
@@ -2448,6 +2529,8 @@ void sched_fork(struct task_struct *p, int clone_flags) | |||
2448 | /* Want to start with kernel preemption disabled. */ | 2529 | /* Want to start with kernel preemption disabled. */ |
2449 | task_thread_info(p)->preempt_count = 1; | 2530 | task_thread_info(p)->preempt_count = 1; |
2450 | #endif | 2531 | #endif |
2532 | plist_node_init(&p->pushable_tasks, MAX_PRIO); | ||
2533 | |||
2451 | put_cpu(); | 2534 | put_cpu(); |
2452 | } | 2535 | } |
2453 | 2536 | ||
@@ -2491,7 +2574,7 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) | |||
2491 | #ifdef CONFIG_PREEMPT_NOTIFIERS | 2574 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
2492 | 2575 | ||
2493 | /** | 2576 | /** |
2494 | * preempt_notifier_register - tell me when current is being being preempted & rescheduled | 2577 | * preempt_notifier_register - tell me when current is being preempted & rescheduled |
2495 | * @notifier: notifier struct to register | 2578 | * @notifier: notifier struct to register |
2496 | */ | 2579 | */ |
2497 | void preempt_notifier_register(struct preempt_notifier *notifier) | 2580 | void preempt_notifier_register(struct preempt_notifier *notifier) |
@@ -2588,6 +2671,12 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) | |||
2588 | { | 2671 | { |
2589 | struct mm_struct *mm = rq->prev_mm; | 2672 | struct mm_struct *mm = rq->prev_mm; |
2590 | long prev_state; | 2673 | long prev_state; |
2674 | #ifdef CONFIG_SMP | ||
2675 | int post_schedule = 0; | ||
2676 | |||
2677 | if (current->sched_class->needs_post_schedule) | ||
2678 | post_schedule = current->sched_class->needs_post_schedule(rq); | ||
2679 | #endif | ||
2591 | 2680 | ||
2592 | rq->prev_mm = NULL; | 2681 | rq->prev_mm = NULL; |
2593 | 2682 | ||
@@ -2606,7 +2695,7 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) | |||
2606 | finish_arch_switch(prev); | 2695 | finish_arch_switch(prev); |
2607 | finish_lock_switch(rq, prev); | 2696 | finish_lock_switch(rq, prev); |
2608 | #ifdef CONFIG_SMP | 2697 | #ifdef CONFIG_SMP |
2609 | if (current->sched_class->post_schedule) | 2698 | if (post_schedule) |
2610 | current->sched_class->post_schedule(rq); | 2699 | current->sched_class->post_schedule(rq); |
2611 | #endif | 2700 | #endif |
2612 | 2701 | ||
@@ -2913,6 +3002,7 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | |||
2913 | struct sched_domain *sd, enum cpu_idle_type idle, | 3002 | struct sched_domain *sd, enum cpu_idle_type idle, |
2914 | int *all_pinned) | 3003 | int *all_pinned) |
2915 | { | 3004 | { |
3005 | int tsk_cache_hot = 0; | ||
2916 | /* | 3006 | /* |
2917 | * We do not migrate tasks that are: | 3007 | * We do not migrate tasks that are: |
2918 | * 1) running (obviously), or | 3008 | * 1) running (obviously), or |
@@ -2936,10 +3026,11 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | |||
2936 | * 2) too many balance attempts have failed. | 3026 | * 2) too many balance attempts have failed. |
2937 | */ | 3027 | */ |
2938 | 3028 | ||
2939 | if (!task_hot(p, rq->clock, sd) || | 3029 | tsk_cache_hot = task_hot(p, rq->clock, sd); |
2940 | sd->nr_balance_failed > sd->cache_nice_tries) { | 3030 | if (!tsk_cache_hot || |
3031 | sd->nr_balance_failed > sd->cache_nice_tries) { | ||
2941 | #ifdef CONFIG_SCHEDSTATS | 3032 | #ifdef CONFIG_SCHEDSTATS |
2942 | if (task_hot(p, rq->clock, sd)) { | 3033 | if (tsk_cache_hot) { |
2943 | schedstat_inc(sd, lb_hot_gained[idle]); | 3034 | schedstat_inc(sd, lb_hot_gained[idle]); |
2944 | schedstat_inc(p, se.nr_forced_migrations); | 3035 | schedstat_inc(p, se.nr_forced_migrations); |
2945 | } | 3036 | } |
@@ -2947,7 +3038,7 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | |||
2947 | return 1; | 3038 | return 1; |
2948 | } | 3039 | } |
2949 | 3040 | ||
2950 | if (task_hot(p, rq->clock, sd)) { | 3041 | if (tsk_cache_hot) { |
2951 | schedstat_inc(p, se.nr_failed_migrations_hot); | 3042 | schedstat_inc(p, se.nr_failed_migrations_hot); |
2952 | return 0; | 3043 | return 0; |
2953 | } | 3044 | } |
@@ -2987,6 +3078,16 @@ next: | |||
2987 | pulled++; | 3078 | pulled++; |
2988 | rem_load_move -= p->se.load.weight; | 3079 | rem_load_move -= p->se.load.weight; |
2989 | 3080 | ||
3081 | #ifdef CONFIG_PREEMPT | ||
3082 | /* | ||
3083 | * NEWIDLE balancing is a source of latency, so preemptible kernels | ||
3084 | * will stop after the first task is pulled to minimize the critical | ||
3085 | * section. | ||
3086 | */ | ||
3087 | if (idle == CPU_NEWLY_IDLE) | ||
3088 | goto out; | ||
3089 | #endif | ||
3090 | |||
2990 | /* | 3091 | /* |
2991 | * We only want to steal up to the prescribed amount of weighted load. | 3092 | * We only want to steal up to the prescribed amount of weighted load. |
2992 | */ | 3093 | */ |
@@ -3033,9 +3134,15 @@ static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | |||
3033 | sd, idle, all_pinned, &this_best_prio); | 3134 | sd, idle, all_pinned, &this_best_prio); |
3034 | class = class->next; | 3135 | class = class->next; |
3035 | 3136 | ||
3137 | #ifdef CONFIG_PREEMPT | ||
3138 | /* | ||
3139 | * NEWIDLE balancing is a source of latency, so preemptible | ||
3140 | * kernels will stop after the first task is pulled to minimize | ||
3141 | * the critical section. | ||
3142 | */ | ||
3036 | if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) | 3143 | if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) |
3037 | break; | 3144 | break; |
3038 | 3145 | #endif | |
3039 | } while (class && max_load_move > total_load_moved); | 3146 | } while (class && max_load_move > total_load_moved); |
3040 | 3147 | ||
3041 | return total_load_moved > 0; | 3148 | return total_load_moved > 0; |
@@ -4057,6 +4164,11 @@ static void run_rebalance_domains(struct softirq_action *h) | |||
4057 | #endif | 4164 | #endif |
4058 | } | 4165 | } |
4059 | 4166 | ||
4167 | static inline int on_null_domain(int cpu) | ||
4168 | { | ||
4169 | return !rcu_dereference(cpu_rq(cpu)->sd); | ||
4170 | } | ||
4171 | |||
4060 | /* | 4172 | /* |
4061 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. | 4173 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. |
4062 | * | 4174 | * |
@@ -4114,7 +4226,9 @@ static inline void trigger_load_balance(struct rq *rq, int cpu) | |||
4114 | cpumask_test_cpu(cpu, nohz.cpu_mask)) | 4226 | cpumask_test_cpu(cpu, nohz.cpu_mask)) |
4115 | return; | 4227 | return; |
4116 | #endif | 4228 | #endif |
4117 | if (time_after_eq(jiffies, rq->next_balance)) | 4229 | /* Don't need to rebalance while attached to NULL domain */ |
4230 | if (time_after_eq(jiffies, rq->next_balance) && | ||
4231 | likely(!on_null_domain(cpu))) | ||
4118 | raise_softirq(SCHED_SOFTIRQ); | 4232 | raise_softirq(SCHED_SOFTIRQ); |
4119 | } | 4233 | } |
4120 | 4234 | ||
@@ -4508,11 +4622,33 @@ static inline void schedule_debug(struct task_struct *prev) | |||
4508 | #endif | 4622 | #endif |
4509 | } | 4623 | } |
4510 | 4624 | ||
4625 | static void put_prev_task(struct rq *rq, struct task_struct *prev) | ||
4626 | { | ||
4627 | if (prev->state == TASK_RUNNING) { | ||
4628 | u64 runtime = prev->se.sum_exec_runtime; | ||
4629 | |||
4630 | runtime -= prev->se.prev_sum_exec_runtime; | ||
4631 | runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost); | ||
4632 | |||
4633 | /* | ||
4634 | * In order to avoid avg_overlap growing stale when we are | ||
4635 | * indeed overlapping and hence not getting put to sleep, grow | ||
4636 | * the avg_overlap on preemption. | ||
4637 | * | ||
4638 | * We use the average preemption runtime because that | ||
4639 | * correlates to the amount of cache footprint a task can | ||
4640 | * build up. | ||
4641 | */ | ||
4642 | update_avg(&prev->se.avg_overlap, runtime); | ||
4643 | } | ||
4644 | prev->sched_class->put_prev_task(rq, prev); | ||
4645 | } | ||
4646 | |||
4511 | /* | 4647 | /* |
4512 | * Pick up the highest-prio task: | 4648 | * Pick up the highest-prio task: |
4513 | */ | 4649 | */ |
4514 | static inline struct task_struct * | 4650 | static inline struct task_struct * |
4515 | pick_next_task(struct rq *rq, struct task_struct *prev) | 4651 | pick_next_task(struct rq *rq) |
4516 | { | 4652 | { |
4517 | const struct sched_class *class; | 4653 | const struct sched_class *class; |
4518 | struct task_struct *p; | 4654 | struct task_struct *p; |
@@ -4586,8 +4722,8 @@ need_resched_nonpreemptible: | |||
4586 | if (unlikely(!rq->nr_running)) | 4722 | if (unlikely(!rq->nr_running)) |
4587 | idle_balance(cpu, rq); | 4723 | idle_balance(cpu, rq); |
4588 | 4724 | ||
4589 | prev->sched_class->put_prev_task(rq, prev); | 4725 | put_prev_task(rq, prev); |
4590 | next = pick_next_task(rq, prev); | 4726 | next = pick_next_task(rq); |
4591 | 4727 | ||
4592 | if (likely(prev != next)) { | 4728 | if (likely(prev != next)) { |
4593 | sched_info_switch(prev, next); | 4729 | sched_info_switch(prev, next); |
@@ -4642,7 +4778,7 @@ asmlinkage void __sched preempt_schedule(void) | |||
4642 | * between schedule and now. | 4778 | * between schedule and now. |
4643 | */ | 4779 | */ |
4644 | barrier(); | 4780 | barrier(); |
4645 | } while (unlikely(test_thread_flag(TIF_NEED_RESCHED))); | 4781 | } while (need_resched()); |
4646 | } | 4782 | } |
4647 | EXPORT_SYMBOL(preempt_schedule); | 4783 | EXPORT_SYMBOL(preempt_schedule); |
4648 | 4784 | ||
@@ -4671,7 +4807,7 @@ asmlinkage void __sched preempt_schedule_irq(void) | |||
4671 | * between schedule and now. | 4807 | * between schedule and now. |
4672 | */ | 4808 | */ |
4673 | barrier(); | 4809 | barrier(); |
4674 | } while (unlikely(test_thread_flag(TIF_NEED_RESCHED))); | 4810 | } while (need_resched()); |
4675 | } | 4811 | } |
4676 | 4812 | ||
4677 | #endif /* CONFIG_PREEMPT */ | 4813 | #endif /* CONFIG_PREEMPT */ |
@@ -5145,7 +5281,7 @@ SYSCALL_DEFINE1(nice, int, increment) | |||
5145 | if (increment > 40) | 5281 | if (increment > 40) |
5146 | increment = 40; | 5282 | increment = 40; |
5147 | 5283 | ||
5148 | nice = PRIO_TO_NICE(current->static_prio) + increment; | 5284 | nice = TASK_NICE(current) + increment; |
5149 | if (nice < -20) | 5285 | if (nice < -20) |
5150 | nice = -20; | 5286 | nice = -20; |
5151 | if (nice > 19) | 5287 | if (nice > 19) |
@@ -6423,7 +6559,7 @@ static void migrate_dead_tasks(unsigned int dead_cpu) | |||
6423 | if (!rq->nr_running) | 6559 | if (!rq->nr_running) |
6424 | break; | 6560 | break; |
6425 | update_rq_clock(rq); | 6561 | update_rq_clock(rq); |
6426 | next = pick_next_task(rq, rq->curr); | 6562 | next = pick_next_task(rq); |
6427 | if (!next) | 6563 | if (!next) |
6428 | break; | 6564 | break; |
6429 | next->sched_class->put_prev_task(rq, next); | 6565 | next->sched_class->put_prev_task(rq, next); |
@@ -8218,11 +8354,15 @@ static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) | |||
8218 | __set_bit(MAX_RT_PRIO, array->bitmap); | 8354 | __set_bit(MAX_RT_PRIO, array->bitmap); |
8219 | 8355 | ||
8220 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 8356 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
8221 | rt_rq->highest_prio = MAX_RT_PRIO; | 8357 | rt_rq->highest_prio.curr = MAX_RT_PRIO; |
8358 | #ifdef CONFIG_SMP | ||
8359 | rt_rq->highest_prio.next = MAX_RT_PRIO; | ||
8360 | #endif | ||
8222 | #endif | 8361 | #endif |
8223 | #ifdef CONFIG_SMP | 8362 | #ifdef CONFIG_SMP |
8224 | rt_rq->rt_nr_migratory = 0; | 8363 | rt_rq->rt_nr_migratory = 0; |
8225 | rt_rq->overloaded = 0; | 8364 | rt_rq->overloaded = 0; |
8365 | plist_head_init(&rq->rt.pushable_tasks, &rq->lock); | ||
8226 | #endif | 8366 | #endif |
8227 | 8367 | ||
8228 | rt_rq->rt_time = 0; | 8368 | rt_rq->rt_time = 0; |
@@ -9598,7 +9738,7 @@ static void cpuacct_charge(struct task_struct *tsk, u64 cputime) | |||
9598 | struct cpuacct *ca; | 9738 | struct cpuacct *ca; |
9599 | int cpu; | 9739 | int cpu; |
9600 | 9740 | ||
9601 | if (!cpuacct_subsys.active) | 9741 | if (unlikely(!cpuacct_subsys.active)) |
9602 | return; | 9742 | return; |
9603 | 9743 | ||
9604 | cpu = task_cpu(tsk); | 9744 | cpu = task_cpu(tsk); |
diff --git a/kernel/sched_clock.c b/kernel/sched_clock.c index a0b0852414cc..390f33234bd0 100644 --- a/kernel/sched_clock.c +++ b/kernel/sched_clock.c | |||
@@ -24,11 +24,11 @@ | |||
24 | * The clock: sched_clock_cpu() is monotonic per cpu, and should be somewhat | 24 | * The clock: sched_clock_cpu() is monotonic per cpu, and should be somewhat |
25 | * consistent between cpus (never more than 2 jiffies difference). | 25 | * consistent between cpus (never more than 2 jiffies difference). |
26 | */ | 26 | */ |
27 | #include <linux/sched.h> | ||
28 | #include <linux/percpu.h> | ||
29 | #include <linux/spinlock.h> | 27 | #include <linux/spinlock.h> |
30 | #include <linux/ktime.h> | ||
31 | #include <linux/module.h> | 28 | #include <linux/module.h> |
29 | #include <linux/percpu.h> | ||
30 | #include <linux/ktime.h> | ||
31 | #include <linux/sched.h> | ||
32 | 32 | ||
33 | /* | 33 | /* |
34 | * Scheduler clock - returns current time in nanosec units. | 34 | * Scheduler clock - returns current time in nanosec units. |
@@ -43,6 +43,7 @@ unsigned long long __attribute__((weak)) sched_clock(void) | |||
43 | static __read_mostly int sched_clock_running; | 43 | static __read_mostly int sched_clock_running; |
44 | 44 | ||
45 | #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK | 45 | #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK |
46 | __read_mostly int sched_clock_stable; | ||
46 | 47 | ||
47 | struct sched_clock_data { | 48 | struct sched_clock_data { |
48 | /* | 49 | /* |
@@ -87,7 +88,7 @@ void sched_clock_init(void) | |||
87 | } | 88 | } |
88 | 89 | ||
89 | /* | 90 | /* |
90 | * min,max except they take wrapping into account | 91 | * min, max except they take wrapping into account |
91 | */ | 92 | */ |
92 | 93 | ||
93 | static inline u64 wrap_min(u64 x, u64 y) | 94 | static inline u64 wrap_min(u64 x, u64 y) |
@@ -111,15 +112,13 @@ static u64 __update_sched_clock(struct sched_clock_data *scd, u64 now) | |||
111 | s64 delta = now - scd->tick_raw; | 112 | s64 delta = now - scd->tick_raw; |
112 | u64 clock, min_clock, max_clock; | 113 | u64 clock, min_clock, max_clock; |
113 | 114 | ||
114 | WARN_ON_ONCE(!irqs_disabled()); | ||
115 | |||
116 | if (unlikely(delta < 0)) | 115 | if (unlikely(delta < 0)) |
117 | delta = 0; | 116 | delta = 0; |
118 | 117 | ||
119 | /* | 118 | /* |
120 | * scd->clock = clamp(scd->tick_gtod + delta, | 119 | * scd->clock = clamp(scd->tick_gtod + delta, |
121 | * max(scd->tick_gtod, scd->clock), | 120 | * max(scd->tick_gtod, scd->clock), |
122 | * scd->tick_gtod + TICK_NSEC); | 121 | * scd->tick_gtod + TICK_NSEC); |
123 | */ | 122 | */ |
124 | 123 | ||
125 | clock = scd->tick_gtod + delta; | 124 | clock = scd->tick_gtod + delta; |
@@ -148,12 +147,13 @@ static void lock_double_clock(struct sched_clock_data *data1, | |||
148 | 147 | ||
149 | u64 sched_clock_cpu(int cpu) | 148 | u64 sched_clock_cpu(int cpu) |
150 | { | 149 | { |
151 | struct sched_clock_data *scd = cpu_sdc(cpu); | ||
152 | u64 now, clock, this_clock, remote_clock; | 150 | u64 now, clock, this_clock, remote_clock; |
151 | struct sched_clock_data *scd; | ||
153 | 152 | ||
154 | if (unlikely(!sched_clock_running)) | 153 | if (sched_clock_stable) |
155 | return 0ull; | 154 | return sched_clock(); |
156 | 155 | ||
156 | scd = cpu_sdc(cpu); | ||
157 | WARN_ON_ONCE(!irqs_disabled()); | 157 | WARN_ON_ONCE(!irqs_disabled()); |
158 | now = sched_clock(); | 158 | now = sched_clock(); |
159 | 159 | ||
@@ -195,14 +195,18 @@ u64 sched_clock_cpu(int cpu) | |||
195 | 195 | ||
196 | void sched_clock_tick(void) | 196 | void sched_clock_tick(void) |
197 | { | 197 | { |
198 | struct sched_clock_data *scd = this_scd(); | 198 | struct sched_clock_data *scd; |
199 | u64 now, now_gtod; | 199 | u64 now, now_gtod; |
200 | 200 | ||
201 | if (sched_clock_stable) | ||
202 | return; | ||
203 | |||
201 | if (unlikely(!sched_clock_running)) | 204 | if (unlikely(!sched_clock_running)) |
202 | return; | 205 | return; |
203 | 206 | ||
204 | WARN_ON_ONCE(!irqs_disabled()); | 207 | WARN_ON_ONCE(!irqs_disabled()); |
205 | 208 | ||
209 | scd = this_scd(); | ||
206 | now_gtod = ktime_to_ns(ktime_get()); | 210 | now_gtod = ktime_to_ns(ktime_get()); |
207 | now = sched_clock(); | 211 | now = sched_clock(); |
208 | 212 | ||
@@ -250,7 +254,7 @@ u64 sched_clock_cpu(int cpu) | |||
250 | return sched_clock(); | 254 | return sched_clock(); |
251 | } | 255 | } |
252 | 256 | ||
253 | #endif | 257 | #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */ |
254 | 258 | ||
255 | unsigned long long cpu_clock(int cpu) | 259 | unsigned long long cpu_clock(int cpu) |
256 | { | 260 | { |
diff --git a/kernel/sched_debug.c b/kernel/sched_debug.c index 16eeba4e4169..4daebffa0565 100644 --- a/kernel/sched_debug.c +++ b/kernel/sched_debug.c | |||
@@ -272,7 +272,6 @@ static void print_cpu(struct seq_file *m, int cpu) | |||
272 | P(nr_switches); | 272 | P(nr_switches); |
273 | P(nr_load_updates); | 273 | P(nr_load_updates); |
274 | P(nr_uninterruptible); | 274 | P(nr_uninterruptible); |
275 | SEQ_printf(m, " .%-30s: %lu\n", "jiffies", jiffies); | ||
276 | PN(next_balance); | 275 | PN(next_balance); |
277 | P(curr->pid); | 276 | P(curr->pid); |
278 | PN(clock); | 277 | PN(clock); |
@@ -325,6 +324,7 @@ static int sched_debug_show(struct seq_file *m, void *v) | |||
325 | SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) | 324 | SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) |
326 | #define PN(x) \ | 325 | #define PN(x) \ |
327 | SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) | 326 | SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) |
327 | P(jiffies); | ||
328 | PN(sysctl_sched_latency); | 328 | PN(sysctl_sched_latency); |
329 | PN(sysctl_sched_min_granularity); | 329 | PN(sysctl_sched_min_granularity); |
330 | PN(sysctl_sched_wakeup_granularity); | 330 | PN(sysctl_sched_wakeup_granularity); |
@@ -397,6 +397,7 @@ void proc_sched_show_task(struct task_struct *p, struct seq_file *m) | |||
397 | PN(se.vruntime); | 397 | PN(se.vruntime); |
398 | PN(se.sum_exec_runtime); | 398 | PN(se.sum_exec_runtime); |
399 | PN(se.avg_overlap); | 399 | PN(se.avg_overlap); |
400 | PN(se.avg_wakeup); | ||
400 | 401 | ||
401 | nr_switches = p->nvcsw + p->nivcsw; | 402 | nr_switches = p->nvcsw + p->nivcsw; |
402 | 403 | ||
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c index 0566f2a03c42..3816f217f119 100644 --- a/kernel/sched_fair.c +++ b/kernel/sched_fair.c | |||
@@ -1314,16 +1314,63 @@ out: | |||
1314 | } | 1314 | } |
1315 | #endif /* CONFIG_SMP */ | 1315 | #endif /* CONFIG_SMP */ |
1316 | 1316 | ||
1317 | static unsigned long wakeup_gran(struct sched_entity *se) | 1317 | /* |
1318 | * Adaptive granularity | ||
1319 | * | ||
1320 | * se->avg_wakeup gives the average time a task runs until it does a wakeup, | ||
1321 | * with the limit of wakeup_gran -- when it never does a wakeup. | ||
1322 | * | ||
1323 | * So the smaller avg_wakeup is the faster we want this task to preempt, | ||
1324 | * but we don't want to treat the preemptee unfairly and therefore allow it | ||
1325 | * to run for at least the amount of time we'd like to run. | ||
1326 | * | ||
1327 | * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one | ||
1328 | * | ||
1329 | * NOTE: we use *nr_running to scale with load, this nicely matches the | ||
1330 | * degrading latency on load. | ||
1331 | */ | ||
1332 | static unsigned long | ||
1333 | adaptive_gran(struct sched_entity *curr, struct sched_entity *se) | ||
1334 | { | ||
1335 | u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; | ||
1336 | u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running; | ||
1337 | u64 gran = 0; | ||
1338 | |||
1339 | if (this_run < expected_wakeup) | ||
1340 | gran = expected_wakeup - this_run; | ||
1341 | |||
1342 | return min_t(s64, gran, sysctl_sched_wakeup_granularity); | ||
1343 | } | ||
1344 | |||
1345 | static unsigned long | ||
1346 | wakeup_gran(struct sched_entity *curr, struct sched_entity *se) | ||
1318 | { | 1347 | { |
1319 | unsigned long gran = sysctl_sched_wakeup_granularity; | 1348 | unsigned long gran = sysctl_sched_wakeup_granularity; |
1320 | 1349 | ||
1350 | if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN)) | ||
1351 | gran = adaptive_gran(curr, se); | ||
1352 | |||
1321 | /* | 1353 | /* |
1322 | * More easily preempt - nice tasks, while not making it harder for | 1354 | * Since its curr running now, convert the gran from real-time |
1323 | * + nice tasks. | 1355 | * to virtual-time in his units. |
1324 | */ | 1356 | */ |
1325 | if (!sched_feat(ASYM_GRAN) || se->load.weight > NICE_0_LOAD) | 1357 | if (sched_feat(ASYM_GRAN)) { |
1326 | gran = calc_delta_fair(sysctl_sched_wakeup_granularity, se); | 1358 | /* |
1359 | * By using 'se' instead of 'curr' we penalize light tasks, so | ||
1360 | * they get preempted easier. That is, if 'se' < 'curr' then | ||
1361 | * the resulting gran will be larger, therefore penalizing the | ||
1362 | * lighter, if otoh 'se' > 'curr' then the resulting gran will | ||
1363 | * be smaller, again penalizing the lighter task. | ||
1364 | * | ||
1365 | * This is especially important for buddies when the leftmost | ||
1366 | * task is higher priority than the buddy. | ||
1367 | */ | ||
1368 | if (unlikely(se->load.weight != NICE_0_LOAD)) | ||
1369 | gran = calc_delta_fair(gran, se); | ||
1370 | } else { | ||
1371 | if (unlikely(curr->load.weight != NICE_0_LOAD)) | ||
1372 | gran = calc_delta_fair(gran, curr); | ||
1373 | } | ||
1327 | 1374 | ||
1328 | return gran; | 1375 | return gran; |
1329 | } | 1376 | } |
@@ -1350,7 +1397,7 @@ wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) | |||
1350 | if (vdiff <= 0) | 1397 | if (vdiff <= 0) |
1351 | return -1; | 1398 | return -1; |
1352 | 1399 | ||
1353 | gran = wakeup_gran(curr); | 1400 | gran = wakeup_gran(curr, se); |
1354 | if (vdiff > gran) | 1401 | if (vdiff > gran) |
1355 | return 1; | 1402 | return 1; |
1356 | 1403 | ||
diff --git a/kernel/sched_features.h b/kernel/sched_features.h index da5d93b5d2c6..76f61756e677 100644 --- a/kernel/sched_features.h +++ b/kernel/sched_features.h | |||
@@ -1,5 +1,6 @@ | |||
1 | SCHED_FEAT(NEW_FAIR_SLEEPERS, 1) | 1 | SCHED_FEAT(NEW_FAIR_SLEEPERS, 1) |
2 | SCHED_FEAT(NORMALIZED_SLEEPER, 1) | 2 | SCHED_FEAT(NORMALIZED_SLEEPER, 0) |
3 | SCHED_FEAT(ADAPTIVE_GRAN, 1) | ||
3 | SCHED_FEAT(WAKEUP_PREEMPT, 1) | 4 | SCHED_FEAT(WAKEUP_PREEMPT, 1) |
4 | SCHED_FEAT(START_DEBIT, 1) | 5 | SCHED_FEAT(START_DEBIT, 1) |
5 | SCHED_FEAT(AFFINE_WAKEUPS, 1) | 6 | SCHED_FEAT(AFFINE_WAKEUPS, 1) |
diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c index bac1061cea2f..c79dc7844012 100644 --- a/kernel/sched_rt.c +++ b/kernel/sched_rt.c | |||
@@ -3,6 +3,40 @@ | |||
3 | * policies) | 3 | * policies) |
4 | */ | 4 | */ |
5 | 5 | ||
6 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) | ||
7 | { | ||
8 | return container_of(rt_se, struct task_struct, rt); | ||
9 | } | ||
10 | |||
11 | #ifdef CONFIG_RT_GROUP_SCHED | ||
12 | |||
13 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | ||
14 | { | ||
15 | return rt_rq->rq; | ||
16 | } | ||
17 | |||
18 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | ||
19 | { | ||
20 | return rt_se->rt_rq; | ||
21 | } | ||
22 | |||
23 | #else /* CONFIG_RT_GROUP_SCHED */ | ||
24 | |||
25 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | ||
26 | { | ||
27 | return container_of(rt_rq, struct rq, rt); | ||
28 | } | ||
29 | |||
30 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | ||
31 | { | ||
32 | struct task_struct *p = rt_task_of(rt_se); | ||
33 | struct rq *rq = task_rq(p); | ||
34 | |||
35 | return &rq->rt; | ||
36 | } | ||
37 | |||
38 | #endif /* CONFIG_RT_GROUP_SCHED */ | ||
39 | |||
6 | #ifdef CONFIG_SMP | 40 | #ifdef CONFIG_SMP |
7 | 41 | ||
8 | static inline int rt_overloaded(struct rq *rq) | 42 | static inline int rt_overloaded(struct rq *rq) |
@@ -37,25 +71,69 @@ static inline void rt_clear_overload(struct rq *rq) | |||
37 | cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); | 71 | cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); |
38 | } | 72 | } |
39 | 73 | ||
40 | static void update_rt_migration(struct rq *rq) | 74 | static void update_rt_migration(struct rt_rq *rt_rq) |
41 | { | 75 | { |
42 | if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) { | 76 | if (rt_rq->rt_nr_migratory && (rt_rq->rt_nr_running > 1)) { |
43 | if (!rq->rt.overloaded) { | 77 | if (!rt_rq->overloaded) { |
44 | rt_set_overload(rq); | 78 | rt_set_overload(rq_of_rt_rq(rt_rq)); |
45 | rq->rt.overloaded = 1; | 79 | rt_rq->overloaded = 1; |
46 | } | 80 | } |
47 | } else if (rq->rt.overloaded) { | 81 | } else if (rt_rq->overloaded) { |
48 | rt_clear_overload(rq); | 82 | rt_clear_overload(rq_of_rt_rq(rt_rq)); |
49 | rq->rt.overloaded = 0; | 83 | rt_rq->overloaded = 0; |
50 | } | 84 | } |
51 | } | 85 | } |
52 | #endif /* CONFIG_SMP */ | ||
53 | 86 | ||
54 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) | 87 | static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) |
88 | { | ||
89 | if (rt_se->nr_cpus_allowed > 1) | ||
90 | rt_rq->rt_nr_migratory++; | ||
91 | |||
92 | update_rt_migration(rt_rq); | ||
93 | } | ||
94 | |||
95 | static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
96 | { | ||
97 | if (rt_se->nr_cpus_allowed > 1) | ||
98 | rt_rq->rt_nr_migratory--; | ||
99 | |||
100 | update_rt_migration(rt_rq); | ||
101 | } | ||
102 | |||
103 | static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) | ||
104 | { | ||
105 | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); | ||
106 | plist_node_init(&p->pushable_tasks, p->prio); | ||
107 | plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); | ||
108 | } | ||
109 | |||
110 | static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) | ||
111 | { | ||
112 | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); | ||
113 | } | ||
114 | |||
115 | #else | ||
116 | |||
117 | static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) | ||
55 | { | 118 | { |
56 | return container_of(rt_se, struct task_struct, rt); | ||
57 | } | 119 | } |
58 | 120 | ||
121 | static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) | ||
122 | { | ||
123 | } | ||
124 | |||
125 | static inline | ||
126 | void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
127 | { | ||
128 | } | ||
129 | |||
130 | static inline | ||
131 | void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
132 | { | ||
133 | } | ||
134 | |||
135 | #endif /* CONFIG_SMP */ | ||
136 | |||
59 | static inline int on_rt_rq(struct sched_rt_entity *rt_se) | 137 | static inline int on_rt_rq(struct sched_rt_entity *rt_se) |
60 | { | 138 | { |
61 | return !list_empty(&rt_se->run_list); | 139 | return !list_empty(&rt_se->run_list); |
@@ -79,16 +157,6 @@ static inline u64 sched_rt_period(struct rt_rq *rt_rq) | |||
79 | #define for_each_leaf_rt_rq(rt_rq, rq) \ | 157 | #define for_each_leaf_rt_rq(rt_rq, rq) \ |
80 | list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list) | 158 | list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list) |
81 | 159 | ||
82 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | ||
83 | { | ||
84 | return rt_rq->rq; | ||
85 | } | ||
86 | |||
87 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | ||
88 | { | ||
89 | return rt_se->rt_rq; | ||
90 | } | ||
91 | |||
92 | #define for_each_sched_rt_entity(rt_se) \ | 160 | #define for_each_sched_rt_entity(rt_se) \ |
93 | for (; rt_se; rt_se = rt_se->parent) | 161 | for (; rt_se; rt_se = rt_se->parent) |
94 | 162 | ||
@@ -108,7 +176,7 @@ static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) | |||
108 | if (rt_rq->rt_nr_running) { | 176 | if (rt_rq->rt_nr_running) { |
109 | if (rt_se && !on_rt_rq(rt_se)) | 177 | if (rt_se && !on_rt_rq(rt_se)) |
110 | enqueue_rt_entity(rt_se); | 178 | enqueue_rt_entity(rt_se); |
111 | if (rt_rq->highest_prio < curr->prio) | 179 | if (rt_rq->highest_prio.curr < curr->prio) |
112 | resched_task(curr); | 180 | resched_task(curr); |
113 | } | 181 | } |
114 | } | 182 | } |
@@ -176,19 +244,6 @@ static inline u64 sched_rt_period(struct rt_rq *rt_rq) | |||
176 | #define for_each_leaf_rt_rq(rt_rq, rq) \ | 244 | #define for_each_leaf_rt_rq(rt_rq, rq) \ |
177 | for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL) | 245 | for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL) |
178 | 246 | ||
179 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | ||
180 | { | ||
181 | return container_of(rt_rq, struct rq, rt); | ||
182 | } | ||
183 | |||
184 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | ||
185 | { | ||
186 | struct task_struct *p = rt_task_of(rt_se); | ||
187 | struct rq *rq = task_rq(p); | ||
188 | |||
189 | return &rq->rt; | ||
190 | } | ||
191 | |||
192 | #define for_each_sched_rt_entity(rt_se) \ | 247 | #define for_each_sched_rt_entity(rt_se) \ |
193 | for (; rt_se; rt_se = NULL) | 248 | for (; rt_se; rt_se = NULL) |
194 | 249 | ||
@@ -473,7 +528,7 @@ static inline int rt_se_prio(struct sched_rt_entity *rt_se) | |||
473 | struct rt_rq *rt_rq = group_rt_rq(rt_se); | 528 | struct rt_rq *rt_rq = group_rt_rq(rt_se); |
474 | 529 | ||
475 | if (rt_rq) | 530 | if (rt_rq) |
476 | return rt_rq->highest_prio; | 531 | return rt_rq->highest_prio.curr; |
477 | #endif | 532 | #endif |
478 | 533 | ||
479 | return rt_task_of(rt_se)->prio; | 534 | return rt_task_of(rt_se)->prio; |
@@ -547,91 +602,174 @@ static void update_curr_rt(struct rq *rq) | |||
547 | } | 602 | } |
548 | } | 603 | } |
549 | 604 | ||
550 | static inline | 605 | #if defined CONFIG_SMP |
551 | void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 606 | |
607 | static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu); | ||
608 | |||
609 | static inline int next_prio(struct rq *rq) | ||
552 | { | 610 | { |
553 | WARN_ON(!rt_prio(rt_se_prio(rt_se))); | 611 | struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu); |
554 | rt_rq->rt_nr_running++; | 612 | |
555 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 613 | if (next && rt_prio(next->prio)) |
556 | if (rt_se_prio(rt_se) < rt_rq->highest_prio) { | 614 | return next->prio; |
557 | #ifdef CONFIG_SMP | 615 | else |
558 | struct rq *rq = rq_of_rt_rq(rt_rq); | 616 | return MAX_RT_PRIO; |
559 | #endif | 617 | } |
618 | |||
619 | static void | ||
620 | inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) | ||
621 | { | ||
622 | struct rq *rq = rq_of_rt_rq(rt_rq); | ||
623 | |||
624 | if (prio < prev_prio) { | ||
625 | |||
626 | /* | ||
627 | * If the new task is higher in priority than anything on the | ||
628 | * run-queue, we know that the previous high becomes our | ||
629 | * next-highest. | ||
630 | */ | ||
631 | rt_rq->highest_prio.next = prev_prio; | ||
560 | 632 | ||
561 | rt_rq->highest_prio = rt_se_prio(rt_se); | ||
562 | #ifdef CONFIG_SMP | ||
563 | if (rq->online) | 633 | if (rq->online) |
564 | cpupri_set(&rq->rd->cpupri, rq->cpu, | 634 | cpupri_set(&rq->rd->cpupri, rq->cpu, prio); |
565 | rt_se_prio(rt_se)); | ||
566 | #endif | ||
567 | } | ||
568 | #endif | ||
569 | #ifdef CONFIG_SMP | ||
570 | if (rt_se->nr_cpus_allowed > 1) { | ||
571 | struct rq *rq = rq_of_rt_rq(rt_rq); | ||
572 | 635 | ||
573 | rq->rt.rt_nr_migratory++; | 636 | } else if (prio == rt_rq->highest_prio.curr) |
574 | } | 637 | /* |
638 | * If the next task is equal in priority to the highest on | ||
639 | * the run-queue, then we implicitly know that the next highest | ||
640 | * task cannot be any lower than current | ||
641 | */ | ||
642 | rt_rq->highest_prio.next = prio; | ||
643 | else if (prio < rt_rq->highest_prio.next) | ||
644 | /* | ||
645 | * Otherwise, we need to recompute next-highest | ||
646 | */ | ||
647 | rt_rq->highest_prio.next = next_prio(rq); | ||
648 | } | ||
575 | 649 | ||
576 | update_rt_migration(rq_of_rt_rq(rt_rq)); | 650 | static void |
577 | #endif | 651 | dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) |
578 | #ifdef CONFIG_RT_GROUP_SCHED | 652 | { |
579 | if (rt_se_boosted(rt_se)) | 653 | struct rq *rq = rq_of_rt_rq(rt_rq); |
580 | rt_rq->rt_nr_boosted++; | ||
581 | 654 | ||
582 | if (rt_rq->tg) | 655 | if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next)) |
583 | start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); | 656 | rt_rq->highest_prio.next = next_prio(rq); |
584 | #else | 657 | |
585 | start_rt_bandwidth(&def_rt_bandwidth); | 658 | if (rq->online && rt_rq->highest_prio.curr != prev_prio) |
586 | #endif | 659 | cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); |
587 | } | 660 | } |
588 | 661 | ||
662 | #else /* CONFIG_SMP */ | ||
663 | |||
589 | static inline | 664 | static inline |
590 | void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 665 | void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} |
591 | { | 666 | static inline |
592 | #ifdef CONFIG_SMP | 667 | void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} |
593 | int highest_prio = rt_rq->highest_prio; | 668 | |
594 | #endif | 669 | #endif /* CONFIG_SMP */ |
595 | 670 | ||
596 | WARN_ON(!rt_prio(rt_se_prio(rt_se))); | ||
597 | WARN_ON(!rt_rq->rt_nr_running); | ||
598 | rt_rq->rt_nr_running--; | ||
599 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 671 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
672 | static void | ||
673 | inc_rt_prio(struct rt_rq *rt_rq, int prio) | ||
674 | { | ||
675 | int prev_prio = rt_rq->highest_prio.curr; | ||
676 | |||
677 | if (prio < prev_prio) | ||
678 | rt_rq->highest_prio.curr = prio; | ||
679 | |||
680 | inc_rt_prio_smp(rt_rq, prio, prev_prio); | ||
681 | } | ||
682 | |||
683 | static void | ||
684 | dec_rt_prio(struct rt_rq *rt_rq, int prio) | ||
685 | { | ||
686 | int prev_prio = rt_rq->highest_prio.curr; | ||
687 | |||
600 | if (rt_rq->rt_nr_running) { | 688 | if (rt_rq->rt_nr_running) { |
601 | struct rt_prio_array *array; | ||
602 | 689 | ||
603 | WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio); | 690 | WARN_ON(prio < prev_prio); |
604 | if (rt_se_prio(rt_se) == rt_rq->highest_prio) { | 691 | |
605 | /* recalculate */ | 692 | /* |
606 | array = &rt_rq->active; | 693 | * This may have been our highest task, and therefore |
607 | rt_rq->highest_prio = | 694 | * we may have some recomputation to do |
695 | */ | ||
696 | if (prio == prev_prio) { | ||
697 | struct rt_prio_array *array = &rt_rq->active; | ||
698 | |||
699 | rt_rq->highest_prio.curr = | ||
608 | sched_find_first_bit(array->bitmap); | 700 | sched_find_first_bit(array->bitmap); |
609 | } /* otherwise leave rq->highest prio alone */ | 701 | } |
702 | |||
610 | } else | 703 | } else |
611 | rt_rq->highest_prio = MAX_RT_PRIO; | 704 | rt_rq->highest_prio.curr = MAX_RT_PRIO; |
612 | #endif | ||
613 | #ifdef CONFIG_SMP | ||
614 | if (rt_se->nr_cpus_allowed > 1) { | ||
615 | struct rq *rq = rq_of_rt_rq(rt_rq); | ||
616 | rq->rt.rt_nr_migratory--; | ||
617 | } | ||
618 | 705 | ||
619 | if (rt_rq->highest_prio != highest_prio) { | 706 | dec_rt_prio_smp(rt_rq, prio, prev_prio); |
620 | struct rq *rq = rq_of_rt_rq(rt_rq); | 707 | } |
621 | 708 | ||
622 | if (rq->online) | 709 | #else |
623 | cpupri_set(&rq->rd->cpupri, rq->cpu, | 710 | |
624 | rt_rq->highest_prio); | 711 | static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} |
625 | } | 712 | static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} |
713 | |||
714 | #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ | ||
626 | 715 | ||
627 | update_rt_migration(rq_of_rt_rq(rt_rq)); | ||
628 | #endif /* CONFIG_SMP */ | ||
629 | #ifdef CONFIG_RT_GROUP_SCHED | 716 | #ifdef CONFIG_RT_GROUP_SCHED |
717 | |||
718 | static void | ||
719 | inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
720 | { | ||
721 | if (rt_se_boosted(rt_se)) | ||
722 | rt_rq->rt_nr_boosted++; | ||
723 | |||
724 | if (rt_rq->tg) | ||
725 | start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); | ||
726 | } | ||
727 | |||
728 | static void | ||
729 | dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
730 | { | ||
630 | if (rt_se_boosted(rt_se)) | 731 | if (rt_se_boosted(rt_se)) |
631 | rt_rq->rt_nr_boosted--; | 732 | rt_rq->rt_nr_boosted--; |
632 | 733 | ||
633 | WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); | 734 | WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); |
634 | #endif | 735 | } |
736 | |||
737 | #else /* CONFIG_RT_GROUP_SCHED */ | ||
738 | |||
739 | static void | ||
740 | inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
741 | { | ||
742 | start_rt_bandwidth(&def_rt_bandwidth); | ||
743 | } | ||
744 | |||
745 | static inline | ||
746 | void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} | ||
747 | |||
748 | #endif /* CONFIG_RT_GROUP_SCHED */ | ||
749 | |||
750 | static inline | ||
751 | void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
752 | { | ||
753 | int prio = rt_se_prio(rt_se); | ||
754 | |||
755 | WARN_ON(!rt_prio(prio)); | ||
756 | rt_rq->rt_nr_running++; | ||
757 | |||
758 | inc_rt_prio(rt_rq, prio); | ||
759 | inc_rt_migration(rt_se, rt_rq); | ||
760 | inc_rt_group(rt_se, rt_rq); | ||
761 | } | ||
762 | |||
763 | static inline | ||
764 | void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
765 | { | ||
766 | WARN_ON(!rt_prio(rt_se_prio(rt_se))); | ||
767 | WARN_ON(!rt_rq->rt_nr_running); | ||
768 | rt_rq->rt_nr_running--; | ||
769 | |||
770 | dec_rt_prio(rt_rq, rt_se_prio(rt_se)); | ||
771 | dec_rt_migration(rt_se, rt_rq); | ||
772 | dec_rt_group(rt_se, rt_rq); | ||
635 | } | 773 | } |
636 | 774 | ||
637 | static void __enqueue_rt_entity(struct sched_rt_entity *rt_se) | 775 | static void __enqueue_rt_entity(struct sched_rt_entity *rt_se) |
@@ -718,6 +856,9 @@ static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup) | |||
718 | 856 | ||
719 | enqueue_rt_entity(rt_se); | 857 | enqueue_rt_entity(rt_se); |
720 | 858 | ||
859 | if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1) | ||
860 | enqueue_pushable_task(rq, p); | ||
861 | |||
721 | inc_cpu_load(rq, p->se.load.weight); | 862 | inc_cpu_load(rq, p->se.load.weight); |
722 | } | 863 | } |
723 | 864 | ||
@@ -728,6 +869,8 @@ static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) | |||
728 | update_curr_rt(rq); | 869 | update_curr_rt(rq); |
729 | dequeue_rt_entity(rt_se); | 870 | dequeue_rt_entity(rt_se); |
730 | 871 | ||
872 | dequeue_pushable_task(rq, p); | ||
873 | |||
731 | dec_cpu_load(rq, p->se.load.weight); | 874 | dec_cpu_load(rq, p->se.load.weight); |
732 | } | 875 | } |
733 | 876 | ||
@@ -878,7 +1021,7 @@ static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, | |||
878 | return next; | 1021 | return next; |
879 | } | 1022 | } |
880 | 1023 | ||
881 | static struct task_struct *pick_next_task_rt(struct rq *rq) | 1024 | static struct task_struct *_pick_next_task_rt(struct rq *rq) |
882 | { | 1025 | { |
883 | struct sched_rt_entity *rt_se; | 1026 | struct sched_rt_entity *rt_se; |
884 | struct task_struct *p; | 1027 | struct task_struct *p; |
@@ -900,6 +1043,18 @@ static struct task_struct *pick_next_task_rt(struct rq *rq) | |||
900 | 1043 | ||
901 | p = rt_task_of(rt_se); | 1044 | p = rt_task_of(rt_se); |
902 | p->se.exec_start = rq->clock; | 1045 | p->se.exec_start = rq->clock; |
1046 | |||
1047 | return p; | ||
1048 | } | ||
1049 | |||
1050 | static struct task_struct *pick_next_task_rt(struct rq *rq) | ||
1051 | { | ||
1052 | struct task_struct *p = _pick_next_task_rt(rq); | ||
1053 | |||
1054 | /* The running task is never eligible for pushing */ | ||
1055 | if (p) | ||
1056 | dequeue_pushable_task(rq, p); | ||
1057 | |||
903 | return p; | 1058 | return p; |
904 | } | 1059 | } |
905 | 1060 | ||
@@ -907,6 +1062,13 @@ static void put_prev_task_rt(struct rq *rq, struct task_struct *p) | |||
907 | { | 1062 | { |
908 | update_curr_rt(rq); | 1063 | update_curr_rt(rq); |
909 | p->se.exec_start = 0; | 1064 | p->se.exec_start = 0; |
1065 | |||
1066 | /* | ||
1067 | * The previous task needs to be made eligible for pushing | ||
1068 | * if it is still active | ||
1069 | */ | ||
1070 | if (p->se.on_rq && p->rt.nr_cpus_allowed > 1) | ||
1071 | enqueue_pushable_task(rq, p); | ||
910 | } | 1072 | } |
911 | 1073 | ||
912 | #ifdef CONFIG_SMP | 1074 | #ifdef CONFIG_SMP |
@@ -1072,7 +1234,7 @@ static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) | |||
1072 | } | 1234 | } |
1073 | 1235 | ||
1074 | /* If this rq is still suitable use it. */ | 1236 | /* If this rq is still suitable use it. */ |
1075 | if (lowest_rq->rt.highest_prio > task->prio) | 1237 | if (lowest_rq->rt.highest_prio.curr > task->prio) |
1076 | break; | 1238 | break; |
1077 | 1239 | ||
1078 | /* try again */ | 1240 | /* try again */ |
@@ -1083,6 +1245,31 @@ static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) | |||
1083 | return lowest_rq; | 1245 | return lowest_rq; |
1084 | } | 1246 | } |
1085 | 1247 | ||
1248 | static inline int has_pushable_tasks(struct rq *rq) | ||
1249 | { | ||
1250 | return !plist_head_empty(&rq->rt.pushable_tasks); | ||
1251 | } | ||
1252 | |||
1253 | static struct task_struct *pick_next_pushable_task(struct rq *rq) | ||
1254 | { | ||
1255 | struct task_struct *p; | ||
1256 | |||
1257 | if (!has_pushable_tasks(rq)) | ||
1258 | return NULL; | ||
1259 | |||
1260 | p = plist_first_entry(&rq->rt.pushable_tasks, | ||
1261 | struct task_struct, pushable_tasks); | ||
1262 | |||
1263 | BUG_ON(rq->cpu != task_cpu(p)); | ||
1264 | BUG_ON(task_current(rq, p)); | ||
1265 | BUG_ON(p->rt.nr_cpus_allowed <= 1); | ||
1266 | |||
1267 | BUG_ON(!p->se.on_rq); | ||
1268 | BUG_ON(!rt_task(p)); | ||
1269 | |||
1270 | return p; | ||
1271 | } | ||
1272 | |||
1086 | /* | 1273 | /* |
1087 | * If the current CPU has more than one RT task, see if the non | 1274 | * If the current CPU has more than one RT task, see if the non |
1088 | * running task can migrate over to a CPU that is running a task | 1275 | * running task can migrate over to a CPU that is running a task |
@@ -1092,13 +1279,11 @@ static int push_rt_task(struct rq *rq) | |||
1092 | { | 1279 | { |
1093 | struct task_struct *next_task; | 1280 | struct task_struct *next_task; |
1094 | struct rq *lowest_rq; | 1281 | struct rq *lowest_rq; |
1095 | int ret = 0; | ||
1096 | int paranoid = RT_MAX_TRIES; | ||
1097 | 1282 | ||
1098 | if (!rq->rt.overloaded) | 1283 | if (!rq->rt.overloaded) |
1099 | return 0; | 1284 | return 0; |
1100 | 1285 | ||
1101 | next_task = pick_next_highest_task_rt(rq, -1); | 1286 | next_task = pick_next_pushable_task(rq); |
1102 | if (!next_task) | 1287 | if (!next_task) |
1103 | return 0; | 1288 | return 0; |
1104 | 1289 | ||
@@ -1127,16 +1312,34 @@ static int push_rt_task(struct rq *rq) | |||
1127 | struct task_struct *task; | 1312 | struct task_struct *task; |
1128 | /* | 1313 | /* |
1129 | * find lock_lowest_rq releases rq->lock | 1314 | * find lock_lowest_rq releases rq->lock |
1130 | * so it is possible that next_task has changed. | 1315 | * so it is possible that next_task has migrated. |
1131 | * If it has, then try again. | 1316 | * |
1317 | * We need to make sure that the task is still on the same | ||
1318 | * run-queue and is also still the next task eligible for | ||
1319 | * pushing. | ||
1132 | */ | 1320 | */ |
1133 | task = pick_next_highest_task_rt(rq, -1); | 1321 | task = pick_next_pushable_task(rq); |
1134 | if (unlikely(task != next_task) && task && paranoid--) { | 1322 | if (task_cpu(next_task) == rq->cpu && task == next_task) { |
1135 | put_task_struct(next_task); | 1323 | /* |
1136 | next_task = task; | 1324 | * If we get here, the task hasnt moved at all, but |
1137 | goto retry; | 1325 | * it has failed to push. We will not try again, |
1326 | * since the other cpus will pull from us when they | ||
1327 | * are ready. | ||
1328 | */ | ||
1329 | dequeue_pushable_task(rq, next_task); | ||
1330 | goto out; | ||
1138 | } | 1331 | } |
1139 | goto out; | 1332 | |
1333 | if (!task) | ||
1334 | /* No more tasks, just exit */ | ||
1335 | goto out; | ||
1336 | |||
1337 | /* | ||
1338 | * Something has shifted, try again. | ||
1339 | */ | ||
1340 | put_task_struct(next_task); | ||
1341 | next_task = task; | ||
1342 | goto retry; | ||
1140 | } | 1343 | } |
1141 | 1344 | ||
1142 | deactivate_task(rq, next_task, 0); | 1345 | deactivate_task(rq, next_task, 0); |
@@ -1147,23 +1350,12 @@ static int push_rt_task(struct rq *rq) | |||
1147 | 1350 | ||
1148 | double_unlock_balance(rq, lowest_rq); | 1351 | double_unlock_balance(rq, lowest_rq); |
1149 | 1352 | ||
1150 | ret = 1; | ||
1151 | out: | 1353 | out: |
1152 | put_task_struct(next_task); | 1354 | put_task_struct(next_task); |
1153 | 1355 | ||
1154 | return ret; | 1356 | return 1; |
1155 | } | 1357 | } |
1156 | 1358 | ||
1157 | /* | ||
1158 | * TODO: Currently we just use the second highest prio task on | ||
1159 | * the queue, and stop when it can't migrate (or there's | ||
1160 | * no more RT tasks). There may be a case where a lower | ||
1161 | * priority RT task has a different affinity than the | ||
1162 | * higher RT task. In this case the lower RT task could | ||
1163 | * possibly be able to migrate where as the higher priority | ||
1164 | * RT task could not. We currently ignore this issue. | ||
1165 | * Enhancements are welcome! | ||
1166 | */ | ||
1167 | static void push_rt_tasks(struct rq *rq) | 1359 | static void push_rt_tasks(struct rq *rq) |
1168 | { | 1360 | { |
1169 | /* push_rt_task will return true if it moved an RT */ | 1361 | /* push_rt_task will return true if it moved an RT */ |
@@ -1174,33 +1366,35 @@ static void push_rt_tasks(struct rq *rq) | |||
1174 | static int pull_rt_task(struct rq *this_rq) | 1366 | static int pull_rt_task(struct rq *this_rq) |
1175 | { | 1367 | { |
1176 | int this_cpu = this_rq->cpu, ret = 0, cpu; | 1368 | int this_cpu = this_rq->cpu, ret = 0, cpu; |
1177 | struct task_struct *p, *next; | 1369 | struct task_struct *p; |
1178 | struct rq *src_rq; | 1370 | struct rq *src_rq; |
1179 | 1371 | ||
1180 | if (likely(!rt_overloaded(this_rq))) | 1372 | if (likely(!rt_overloaded(this_rq))) |
1181 | return 0; | 1373 | return 0; |
1182 | 1374 | ||
1183 | next = pick_next_task_rt(this_rq); | ||
1184 | |||
1185 | for_each_cpu(cpu, this_rq->rd->rto_mask) { | 1375 | for_each_cpu(cpu, this_rq->rd->rto_mask) { |
1186 | if (this_cpu == cpu) | 1376 | if (this_cpu == cpu) |
1187 | continue; | 1377 | continue; |
1188 | 1378 | ||
1189 | src_rq = cpu_rq(cpu); | 1379 | src_rq = cpu_rq(cpu); |
1380 | |||
1381 | /* | ||
1382 | * Don't bother taking the src_rq->lock if the next highest | ||
1383 | * task is known to be lower-priority than our current task. | ||
1384 | * This may look racy, but if this value is about to go | ||
1385 | * logically higher, the src_rq will push this task away. | ||
1386 | * And if its going logically lower, we do not care | ||
1387 | */ | ||
1388 | if (src_rq->rt.highest_prio.next >= | ||
1389 | this_rq->rt.highest_prio.curr) | ||
1390 | continue; | ||
1391 | |||
1190 | /* | 1392 | /* |
1191 | * We can potentially drop this_rq's lock in | 1393 | * We can potentially drop this_rq's lock in |
1192 | * double_lock_balance, and another CPU could | 1394 | * double_lock_balance, and another CPU could |
1193 | * steal our next task - hence we must cause | 1395 | * alter this_rq |
1194 | * the caller to recalculate the next task | ||
1195 | * in that case: | ||
1196 | */ | 1396 | */ |
1197 | if (double_lock_balance(this_rq, src_rq)) { | 1397 | double_lock_balance(this_rq, src_rq); |
1198 | struct task_struct *old_next = next; | ||
1199 | |||
1200 | next = pick_next_task_rt(this_rq); | ||
1201 | if (next != old_next) | ||
1202 | ret = 1; | ||
1203 | } | ||
1204 | 1398 | ||
1205 | /* | 1399 | /* |
1206 | * Are there still pullable RT tasks? | 1400 | * Are there still pullable RT tasks? |
@@ -1214,7 +1408,7 @@ static int pull_rt_task(struct rq *this_rq) | |||
1214 | * Do we have an RT task that preempts | 1408 | * Do we have an RT task that preempts |
1215 | * the to-be-scheduled task? | 1409 | * the to-be-scheduled task? |
1216 | */ | 1410 | */ |
1217 | if (p && (!next || (p->prio < next->prio))) { | 1411 | if (p && (p->prio < this_rq->rt.highest_prio.curr)) { |
1218 | WARN_ON(p == src_rq->curr); | 1412 | WARN_ON(p == src_rq->curr); |
1219 | WARN_ON(!p->se.on_rq); | 1413 | WARN_ON(!p->se.on_rq); |
1220 | 1414 | ||
@@ -1224,12 +1418,9 @@ static int pull_rt_task(struct rq *this_rq) | |||
1224 | * This is just that p is wakeing up and hasn't | 1418 | * This is just that p is wakeing up and hasn't |
1225 | * had a chance to schedule. We only pull | 1419 | * had a chance to schedule. We only pull |
1226 | * p if it is lower in priority than the | 1420 | * p if it is lower in priority than the |
1227 | * current task on the run queue or | 1421 | * current task on the run queue |
1228 | * this_rq next task is lower in prio than | ||
1229 | * the current task on that rq. | ||
1230 | */ | 1422 | */ |
1231 | if (p->prio < src_rq->curr->prio || | 1423 | if (p->prio < src_rq->curr->prio) |
1232 | (next && next->prio < src_rq->curr->prio)) | ||
1233 | goto skip; | 1424 | goto skip; |
1234 | 1425 | ||
1235 | ret = 1; | 1426 | ret = 1; |
@@ -1242,13 +1433,7 @@ static int pull_rt_task(struct rq *this_rq) | |||
1242 | * case there's an even higher prio task | 1433 | * case there's an even higher prio task |
1243 | * in another runqueue. (low likelyhood | 1434 | * in another runqueue. (low likelyhood |
1244 | * but possible) | 1435 | * but possible) |
1245 | * | ||
1246 | * Update next so that we won't pick a task | ||
1247 | * on another cpu with a priority lower (or equal) | ||
1248 | * than the one we just picked. | ||
1249 | */ | 1436 | */ |
1250 | next = p; | ||
1251 | |||
1252 | } | 1437 | } |
1253 | skip: | 1438 | skip: |
1254 | double_unlock_balance(this_rq, src_rq); | 1439 | double_unlock_balance(this_rq, src_rq); |
@@ -1260,24 +1445,27 @@ static int pull_rt_task(struct rq *this_rq) | |||
1260 | static void pre_schedule_rt(struct rq *rq, struct task_struct *prev) | 1445 | static void pre_schedule_rt(struct rq *rq, struct task_struct *prev) |
1261 | { | 1446 | { |
1262 | /* Try to pull RT tasks here if we lower this rq's prio */ | 1447 | /* Try to pull RT tasks here if we lower this rq's prio */ |
1263 | if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio) | 1448 | if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio) |
1264 | pull_rt_task(rq); | 1449 | pull_rt_task(rq); |
1265 | } | 1450 | } |
1266 | 1451 | ||
1452 | /* | ||
1453 | * assumes rq->lock is held | ||
1454 | */ | ||
1455 | static int needs_post_schedule_rt(struct rq *rq) | ||
1456 | { | ||
1457 | return has_pushable_tasks(rq); | ||
1458 | } | ||
1459 | |||
1267 | static void post_schedule_rt(struct rq *rq) | 1460 | static void post_schedule_rt(struct rq *rq) |
1268 | { | 1461 | { |
1269 | /* | 1462 | /* |
1270 | * If we have more than one rt_task queued, then | 1463 | * This is only called if needs_post_schedule_rt() indicates that |
1271 | * see if we can push the other rt_tasks off to other CPUS. | 1464 | * we need to push tasks away |
1272 | * Note we may release the rq lock, and since | ||
1273 | * the lock was owned by prev, we need to release it | ||
1274 | * first via finish_lock_switch and then reaquire it here. | ||
1275 | */ | 1465 | */ |
1276 | if (unlikely(rq->rt.overloaded)) { | 1466 | spin_lock_irq(&rq->lock); |
1277 | spin_lock_irq(&rq->lock); | 1467 | push_rt_tasks(rq); |
1278 | push_rt_tasks(rq); | 1468 | spin_unlock_irq(&rq->lock); |
1279 | spin_unlock_irq(&rq->lock); | ||
1280 | } | ||
1281 | } | 1469 | } |
1282 | 1470 | ||
1283 | /* | 1471 | /* |
@@ -1288,7 +1476,8 @@ static void task_wake_up_rt(struct rq *rq, struct task_struct *p) | |||
1288 | { | 1476 | { |
1289 | if (!task_running(rq, p) && | 1477 | if (!task_running(rq, p) && |
1290 | !test_tsk_need_resched(rq->curr) && | 1478 | !test_tsk_need_resched(rq->curr) && |
1291 | rq->rt.overloaded) | 1479 | has_pushable_tasks(rq) && |
1480 | p->rt.nr_cpus_allowed > 1) | ||
1292 | push_rt_tasks(rq); | 1481 | push_rt_tasks(rq); |
1293 | } | 1482 | } |
1294 | 1483 | ||
@@ -1324,6 +1513,24 @@ static void set_cpus_allowed_rt(struct task_struct *p, | |||
1324 | if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) { | 1513 | if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) { |
1325 | struct rq *rq = task_rq(p); | 1514 | struct rq *rq = task_rq(p); |
1326 | 1515 | ||
1516 | if (!task_current(rq, p)) { | ||
1517 | /* | ||
1518 | * Make sure we dequeue this task from the pushable list | ||
1519 | * before going further. It will either remain off of | ||
1520 | * the list because we are no longer pushable, or it | ||
1521 | * will be requeued. | ||
1522 | */ | ||
1523 | if (p->rt.nr_cpus_allowed > 1) | ||
1524 | dequeue_pushable_task(rq, p); | ||
1525 | |||
1526 | /* | ||
1527 | * Requeue if our weight is changing and still > 1 | ||
1528 | */ | ||
1529 | if (weight > 1) | ||
1530 | enqueue_pushable_task(rq, p); | ||
1531 | |||
1532 | } | ||
1533 | |||
1327 | if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) { | 1534 | if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) { |
1328 | rq->rt.rt_nr_migratory++; | 1535 | rq->rt.rt_nr_migratory++; |
1329 | } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) { | 1536 | } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) { |
@@ -1331,7 +1538,7 @@ static void set_cpus_allowed_rt(struct task_struct *p, | |||
1331 | rq->rt.rt_nr_migratory--; | 1538 | rq->rt.rt_nr_migratory--; |
1332 | } | 1539 | } |
1333 | 1540 | ||
1334 | update_rt_migration(rq); | 1541 | update_rt_migration(&rq->rt); |
1335 | } | 1542 | } |
1336 | 1543 | ||
1337 | cpumask_copy(&p->cpus_allowed, new_mask); | 1544 | cpumask_copy(&p->cpus_allowed, new_mask); |
@@ -1346,7 +1553,7 @@ static void rq_online_rt(struct rq *rq) | |||
1346 | 1553 | ||
1347 | __enable_runtime(rq); | 1554 | __enable_runtime(rq); |
1348 | 1555 | ||
1349 | cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio); | 1556 | cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); |
1350 | } | 1557 | } |
1351 | 1558 | ||
1352 | /* Assumes rq->lock is held */ | 1559 | /* Assumes rq->lock is held */ |
@@ -1438,7 +1645,7 @@ static void prio_changed_rt(struct rq *rq, struct task_struct *p, | |||
1438 | * can release the rq lock and p could migrate. | 1645 | * can release the rq lock and p could migrate. |
1439 | * Only reschedule if p is still on the same runqueue. | 1646 | * Only reschedule if p is still on the same runqueue. |
1440 | */ | 1647 | */ |
1441 | if (p->prio > rq->rt.highest_prio && rq->curr == p) | 1648 | if (p->prio > rq->rt.highest_prio.curr && rq->curr == p) |
1442 | resched_task(p); | 1649 | resched_task(p); |
1443 | #else | 1650 | #else |
1444 | /* For UP simply resched on drop of prio */ | 1651 | /* For UP simply resched on drop of prio */ |
@@ -1509,6 +1716,9 @@ static void set_curr_task_rt(struct rq *rq) | |||
1509 | struct task_struct *p = rq->curr; | 1716 | struct task_struct *p = rq->curr; |
1510 | 1717 | ||
1511 | p->se.exec_start = rq->clock; | 1718 | p->se.exec_start = rq->clock; |
1719 | |||
1720 | /* The running task is never eligible for pushing */ | ||
1721 | dequeue_pushable_task(rq, p); | ||
1512 | } | 1722 | } |
1513 | 1723 | ||
1514 | static const struct sched_class rt_sched_class = { | 1724 | static const struct sched_class rt_sched_class = { |
@@ -1531,6 +1741,7 @@ static const struct sched_class rt_sched_class = { | |||
1531 | .rq_online = rq_online_rt, | 1741 | .rq_online = rq_online_rt, |
1532 | .rq_offline = rq_offline_rt, | 1742 | .rq_offline = rq_offline_rt, |
1533 | .pre_schedule = pre_schedule_rt, | 1743 | .pre_schedule = pre_schedule_rt, |
1744 | .needs_post_schedule = needs_post_schedule_rt, | ||
1534 | .post_schedule = post_schedule_rt, | 1745 | .post_schedule = post_schedule_rt, |
1535 | .task_wake_up = task_wake_up_rt, | 1746 | .task_wake_up = task_wake_up_rt, |
1536 | .switched_from = switched_from_rt, | 1747 | .switched_from = switched_from_rt, |
diff --git a/lib/Kconfig b/lib/Kconfig index 03c2c24b9083..fc8ea1ca59d8 100644 --- a/lib/Kconfig +++ b/lib/Kconfig | |||
@@ -136,12 +136,6 @@ config TEXTSEARCH_BM | |||
136 | config TEXTSEARCH_FSM | 136 | config TEXTSEARCH_FSM |
137 | tristate | 137 | tristate |
138 | 138 | ||
139 | # | ||
140 | # plist support is select#ed if needed | ||
141 | # | ||
142 | config PLIST | ||
143 | boolean | ||
144 | |||
145 | config HAS_IOMEM | 139 | config HAS_IOMEM |
146 | boolean | 140 | boolean |
147 | depends on !NO_IOMEM | 141 | depends on !NO_IOMEM |
diff --git a/lib/Makefile b/lib/Makefile index 32b0e64ded27..902d73851044 100644 --- a/lib/Makefile +++ b/lib/Makefile | |||
@@ -11,7 +11,8 @@ lib-y := ctype.o string.o vsprintf.o cmdline.o \ | |||
11 | rbtree.o radix-tree.o dump_stack.o \ | 11 | rbtree.o radix-tree.o dump_stack.o \ |
12 | idr.o int_sqrt.o extable.o prio_tree.o \ | 12 | idr.o int_sqrt.o extable.o prio_tree.o \ |
13 | sha1.o irq_regs.o reciprocal_div.o argv_split.o \ | 13 | sha1.o irq_regs.o reciprocal_div.o argv_split.o \ |
14 | proportions.o prio_heap.o ratelimit.o show_mem.o is_single_threaded.o | 14 | proportions.o prio_heap.o ratelimit.o show_mem.o \ |
15 | is_single_threaded.o plist.o | ||
15 | 16 | ||
16 | lib-$(CONFIG_MMU) += ioremap.o | 17 | lib-$(CONFIG_MMU) += ioremap.o |
17 | lib-$(CONFIG_SMP) += cpumask.o | 18 | lib-$(CONFIG_SMP) += cpumask.o |
@@ -40,7 +41,6 @@ lib-$(CONFIG_GENERIC_FIND_NEXT_BIT) += find_next_bit.o | |||
40 | lib-$(CONFIG_GENERIC_FIND_LAST_BIT) += find_last_bit.o | 41 | lib-$(CONFIG_GENERIC_FIND_LAST_BIT) += find_last_bit.o |
41 | obj-$(CONFIG_GENERIC_HWEIGHT) += hweight.o | 42 | obj-$(CONFIG_GENERIC_HWEIGHT) += hweight.o |
42 | obj-$(CONFIG_LOCK_KERNEL) += kernel_lock.o | 43 | obj-$(CONFIG_LOCK_KERNEL) += kernel_lock.o |
43 | obj-$(CONFIG_PLIST) += plist.o | ||
44 | obj-$(CONFIG_DEBUG_PREEMPT) += smp_processor_id.o | 44 | obj-$(CONFIG_DEBUG_PREEMPT) += smp_processor_id.o |
45 | obj-$(CONFIG_DEBUG_LIST) += list_debug.o | 45 | obj-$(CONFIG_DEBUG_LIST) += list_debug.o |
46 | obj-$(CONFIG_DEBUG_OBJECTS) += debugobjects.o | 46 | obj-$(CONFIG_DEBUG_OBJECTS) += debugobjects.o |
diff --git a/lib/kernel_lock.c b/lib/kernel_lock.c index 01a3c22c1b5a..39f1029e3525 100644 --- a/lib/kernel_lock.c +++ b/lib/kernel_lock.c | |||
@@ -39,7 +39,7 @@ static __cacheline_aligned_in_smp DEFINE_SPINLOCK(kernel_flag); | |||
39 | int __lockfunc __reacquire_kernel_lock(void) | 39 | int __lockfunc __reacquire_kernel_lock(void) |
40 | { | 40 | { |
41 | while (!_raw_spin_trylock(&kernel_flag)) { | 41 | while (!_raw_spin_trylock(&kernel_flag)) { |
42 | if (test_thread_flag(TIF_NEED_RESCHED)) | 42 | if (need_resched()) |
43 | return -EAGAIN; | 43 | return -EAGAIN; |
44 | cpu_relax(); | 44 | cpu_relax(); |
45 | } | 45 | } |