diff options
| -rw-r--r-- | Documentation/devicetree/bindings/dma/fsl-edma.txt | 76 | ||||
| -rw-r--r-- | drivers/dma/Kconfig | 10 | ||||
| -rw-r--r-- | drivers/dma/Makefile | 1 | ||||
| -rw-r--r-- | drivers/dma/fsl-edma.c | 975 |
4 files changed, 1062 insertions, 0 deletions
diff --git a/Documentation/devicetree/bindings/dma/fsl-edma.txt b/Documentation/devicetree/bindings/dma/fsl-edma.txt new file mode 100644 index 000000000000..191d7bd8a6fe --- /dev/null +++ b/Documentation/devicetree/bindings/dma/fsl-edma.txt | |||
| @@ -0,0 +1,76 @@ | |||
| 1 | * Freescale enhanced Direct Memory Access(eDMA) Controller | ||
| 2 | |||
| 3 | The eDMA channels have multiplex capability by programmble memory-mapped | ||
| 4 | registers. channels are split into two groups, called DMAMUX0 and DMAMUX1, | ||
| 5 | specific DMA request source can only be multiplexed by any channel of certain | ||
| 6 | group, DMAMUX0 or DMAMUX1, but not both. | ||
| 7 | |||
| 8 | * eDMA Controller | ||
| 9 | Required properties: | ||
| 10 | - compatible : | ||
| 11 | - "fsl,vf610-edma" for eDMA used similar to that on Vybrid vf610 SoC | ||
| 12 | - reg : Specifies base physical address(s) and size of the eDMA registers. | ||
| 13 | The 1st region is eDMA control register's address and size. | ||
| 14 | The 2nd and the 3rd regions are programmable channel multiplexing | ||
| 15 | control register's address and size. | ||
| 16 | - interrupts : A list of interrupt-specifiers, one for each entry in | ||
| 17 | interrupt-names. | ||
| 18 | - interrupt-names : Should contain: | ||
| 19 | "edma-tx" - the transmission interrupt | ||
| 20 | "edma-err" - the error interrupt | ||
| 21 | - #dma-cells : Must be <2>. | ||
| 22 | The 1st cell specifies the DMAMUX(0 for DMAMUX0 and 1 for DMAMUX1). | ||
| 23 | Specific request source can only be multiplexed by specific channels | ||
| 24 | group called DMAMUX. | ||
| 25 | The 2nd cell specifies the request source(slot) ID. | ||
| 26 | See the SoC's reference manual for all the supported request sources. | ||
| 27 | - dma-channels : Number of channels supported by the controller | ||
| 28 | - clock-names : A list of channel group clock names. Should contain: | ||
| 29 | "dmamux0" - clock name of mux0 group | ||
| 30 | "dmamux1" - clock name of mux1 group | ||
| 31 | - clocks : A list of phandle and clock-specifier pairs, one for each entry in | ||
| 32 | clock-names. | ||
| 33 | |||
| 34 | Optional properties: | ||
| 35 | - big-endian: If present registers and hardware scatter/gather descriptors | ||
| 36 | of the eDMA are implemented in big endian mode, otherwise in little | ||
| 37 | mode. | ||
| 38 | |||
| 39 | |||
| 40 | Examples: | ||
| 41 | |||
| 42 | edma0: dma-controller@40018000 { | ||
| 43 | #dma-cells = <2>; | ||
| 44 | compatible = "fsl,vf610-edma"; | ||
| 45 | reg = <0x40018000 0x2000>, | ||
| 46 | <0x40024000 0x1000>, | ||
| 47 | <0x40025000 0x1000>; | ||
| 48 | interrupts = <0 8 IRQ_TYPE_LEVEL_HIGH>, | ||
| 49 | <0 9 IRQ_TYPE_LEVEL_HIGH>; | ||
| 50 | interrupt-names = "edma-tx", "edma-err"; | ||
| 51 | dma-channels = <32>; | ||
| 52 | clock-names = "dmamux0", "dmamux1"; | ||
| 53 | clocks = <&clks VF610_CLK_DMAMUX0>, | ||
| 54 | <&clks VF610_CLK_DMAMUX1>; | ||
| 55 | }; | ||
| 56 | |||
| 57 | |||
| 58 | * DMA clients | ||
| 59 | DMA client drivers that uses the DMA function must use the format described | ||
| 60 | in the dma.txt file, using a two-cell specifier for each channel: the 1st | ||
| 61 | specifies the channel group(DMAMUX) in which this request can be multiplexed, | ||
| 62 | and the 2nd specifies the request source. | ||
| 63 | |||
| 64 | Examples: | ||
| 65 | |||
| 66 | sai2: sai@40031000 { | ||
| 67 | compatible = "fsl,vf610-sai"; | ||
| 68 | reg = <0x40031000 0x1000>; | ||
| 69 | interrupts = <0 86 IRQ_TYPE_LEVEL_HIGH>; | ||
| 70 | clock-names = "sai"; | ||
| 71 | clocks = <&clks VF610_CLK_SAI2>; | ||
| 72 | dma-names = "tx", "rx"; | ||
| 73 | dmas = <&edma0 0 21>, | ||
| 74 | <&edma0 0 20>; | ||
| 75 | status = "disabled"; | ||
| 76 | }; | ||
diff --git a/drivers/dma/Kconfig b/drivers/dma/Kconfig index e4382ecc22a2..830b88d8744c 100644 --- a/drivers/dma/Kconfig +++ b/drivers/dma/Kconfig | |||
| @@ -349,6 +349,16 @@ config MOXART_DMA | |||
| 349 | select DMA_VIRTUAL_CHANNELS | 349 | select DMA_VIRTUAL_CHANNELS |
| 350 | help | 350 | help |
| 351 | Enable support for the MOXA ART SoC DMA controller. | 351 | Enable support for the MOXA ART SoC DMA controller. |
| 352 | |||
| 353 | config FSL_EDMA | ||
| 354 | tristate "Freescale eDMA engine support" | ||
| 355 | depends on OF | ||
| 356 | select DMA_ENGINE | ||
| 357 | select DMA_VIRTUAL_CHANNELS | ||
| 358 | help | ||
| 359 | Support the Freescale eDMA engine with programmable channel | ||
| 360 | multiplexing capability for DMA request sources(slot). | ||
| 361 | This module can be found on Freescale Vybrid and LS-1 SoCs. | ||
| 352 | 362 | ||
| 353 | config DMA_ENGINE | 363 | config DMA_ENGINE |
| 354 | bool | 364 | bool |
diff --git a/drivers/dma/Makefile b/drivers/dma/Makefile index a029d0f4a1be..995946283f8d 100644 --- a/drivers/dma/Makefile +++ b/drivers/dma/Makefile | |||
| @@ -44,3 +44,4 @@ obj-$(CONFIG_DMA_JZ4740) += dma-jz4740.o | |||
| 44 | obj-$(CONFIG_TI_CPPI41) += cppi41.o | 44 | obj-$(CONFIG_TI_CPPI41) += cppi41.o |
| 45 | obj-$(CONFIG_K3_DMA) += k3dma.o | 45 | obj-$(CONFIG_K3_DMA) += k3dma.o |
| 46 | obj-$(CONFIG_MOXART_DMA) += moxart-dma.o | 46 | obj-$(CONFIG_MOXART_DMA) += moxart-dma.o |
| 47 | obj-$(CONFIG_FSL_EDMA) += fsl-edma.o | ||
diff --git a/drivers/dma/fsl-edma.c b/drivers/dma/fsl-edma.c new file mode 100644 index 000000000000..9025300a1670 --- /dev/null +++ b/drivers/dma/fsl-edma.c | |||
| @@ -0,0 +1,975 @@ | |||
| 1 | /* | ||
| 2 | * drivers/dma/fsl-edma.c | ||
| 3 | * | ||
| 4 | * Copyright 2013-2014 Freescale Semiconductor, Inc. | ||
| 5 | * | ||
| 6 | * Driver for the Freescale eDMA engine with flexible channel multiplexing | ||
| 7 | * capability for DMA request sources. The eDMA block can be found on some | ||
| 8 | * Vybrid and Layerscape SoCs. | ||
| 9 | * | ||
| 10 | * This program is free software; you can redistribute it and/or modify it | ||
| 11 | * under the terms of the GNU General Public License as published by the | ||
| 12 | * Free Software Foundation; either version 2 of the License, or (at your | ||
| 13 | * option) any later version. | ||
| 14 | */ | ||
| 15 | |||
| 16 | #include <linux/init.h> | ||
| 17 | #include <linux/module.h> | ||
| 18 | #include <linux/interrupt.h> | ||
| 19 | #include <linux/clk.h> | ||
| 20 | #include <linux/dma-mapping.h> | ||
| 21 | #include <linux/dmapool.h> | ||
| 22 | #include <linux/slab.h> | ||
| 23 | #include <linux/spinlock.h> | ||
| 24 | #include <linux/of.h> | ||
| 25 | #include <linux/of_device.h> | ||
| 26 | #include <linux/of_address.h> | ||
| 27 | #include <linux/of_irq.h> | ||
| 28 | #include <linux/of_dma.h> | ||
| 29 | |||
| 30 | #include "virt-dma.h" | ||
| 31 | |||
| 32 | #define EDMA_CR 0x00 | ||
| 33 | #define EDMA_ES 0x04 | ||
| 34 | #define EDMA_ERQ 0x0C | ||
| 35 | #define EDMA_EEI 0x14 | ||
| 36 | #define EDMA_SERQ 0x1B | ||
| 37 | #define EDMA_CERQ 0x1A | ||
| 38 | #define EDMA_SEEI 0x19 | ||
| 39 | #define EDMA_CEEI 0x18 | ||
| 40 | #define EDMA_CINT 0x1F | ||
| 41 | #define EDMA_CERR 0x1E | ||
| 42 | #define EDMA_SSRT 0x1D | ||
| 43 | #define EDMA_CDNE 0x1C | ||
| 44 | #define EDMA_INTR 0x24 | ||
| 45 | #define EDMA_ERR 0x2C | ||
| 46 | |||
| 47 | #define EDMA_TCD_SADDR(x) (0x1000 + 32 * (x)) | ||
| 48 | #define EDMA_TCD_SOFF(x) (0x1004 + 32 * (x)) | ||
| 49 | #define EDMA_TCD_ATTR(x) (0x1006 + 32 * (x)) | ||
| 50 | #define EDMA_TCD_NBYTES(x) (0x1008 + 32 * (x)) | ||
| 51 | #define EDMA_TCD_SLAST(x) (0x100C + 32 * (x)) | ||
| 52 | #define EDMA_TCD_DADDR(x) (0x1010 + 32 * (x)) | ||
| 53 | #define EDMA_TCD_DOFF(x) (0x1014 + 32 * (x)) | ||
| 54 | #define EDMA_TCD_CITER_ELINK(x) (0x1016 + 32 * (x)) | ||
| 55 | #define EDMA_TCD_CITER(x) (0x1016 + 32 * (x)) | ||
| 56 | #define EDMA_TCD_DLAST_SGA(x) (0x1018 + 32 * (x)) | ||
| 57 | #define EDMA_TCD_CSR(x) (0x101C + 32 * (x)) | ||
| 58 | #define EDMA_TCD_BITER_ELINK(x) (0x101E + 32 * (x)) | ||
| 59 | #define EDMA_TCD_BITER(x) (0x101E + 32 * (x)) | ||
| 60 | |||
| 61 | #define EDMA_CR_EDBG BIT(1) | ||
| 62 | #define EDMA_CR_ERCA BIT(2) | ||
| 63 | #define EDMA_CR_ERGA BIT(3) | ||
| 64 | #define EDMA_CR_HOE BIT(4) | ||
| 65 | #define EDMA_CR_HALT BIT(5) | ||
| 66 | #define EDMA_CR_CLM BIT(6) | ||
| 67 | #define EDMA_CR_EMLM BIT(7) | ||
| 68 | #define EDMA_CR_ECX BIT(16) | ||
| 69 | #define EDMA_CR_CX BIT(17) | ||
| 70 | |||
| 71 | #define EDMA_SEEI_SEEI(x) ((x) & 0x1F) | ||
| 72 | #define EDMA_CEEI_CEEI(x) ((x) & 0x1F) | ||
| 73 | #define EDMA_CINT_CINT(x) ((x) & 0x1F) | ||
| 74 | #define EDMA_CERR_CERR(x) ((x) & 0x1F) | ||
| 75 | |||
| 76 | #define EDMA_TCD_ATTR_DSIZE(x) (((x) & 0x0007)) | ||
| 77 | #define EDMA_TCD_ATTR_DMOD(x) (((x) & 0x001F) << 3) | ||
| 78 | #define EDMA_TCD_ATTR_SSIZE(x) (((x) & 0x0007) << 8) | ||
| 79 | #define EDMA_TCD_ATTR_SMOD(x) (((x) & 0x001F) << 11) | ||
| 80 | #define EDMA_TCD_ATTR_SSIZE_8BIT (0x0000) | ||
| 81 | #define EDMA_TCD_ATTR_SSIZE_16BIT (0x0100) | ||
| 82 | #define EDMA_TCD_ATTR_SSIZE_32BIT (0x0200) | ||
| 83 | #define EDMA_TCD_ATTR_SSIZE_64BIT (0x0300) | ||
| 84 | #define EDMA_TCD_ATTR_SSIZE_32BYTE (0x0500) | ||
| 85 | #define EDMA_TCD_ATTR_DSIZE_8BIT (0x0000) | ||
| 86 | #define EDMA_TCD_ATTR_DSIZE_16BIT (0x0001) | ||
| 87 | #define EDMA_TCD_ATTR_DSIZE_32BIT (0x0002) | ||
| 88 | #define EDMA_TCD_ATTR_DSIZE_64BIT (0x0003) | ||
| 89 | #define EDMA_TCD_ATTR_DSIZE_32BYTE (0x0005) | ||
| 90 | |||
| 91 | #define EDMA_TCD_SOFF_SOFF(x) (x) | ||
| 92 | #define EDMA_TCD_NBYTES_NBYTES(x) (x) | ||
| 93 | #define EDMA_TCD_SLAST_SLAST(x) (x) | ||
| 94 | #define EDMA_TCD_DADDR_DADDR(x) (x) | ||
| 95 | #define EDMA_TCD_CITER_CITER(x) ((x) & 0x7FFF) | ||
| 96 | #define EDMA_TCD_DOFF_DOFF(x) (x) | ||
| 97 | #define EDMA_TCD_DLAST_SGA_DLAST_SGA(x) (x) | ||
| 98 | #define EDMA_TCD_BITER_BITER(x) ((x) & 0x7FFF) | ||
| 99 | |||
| 100 | #define EDMA_TCD_CSR_START BIT(0) | ||
| 101 | #define EDMA_TCD_CSR_INT_MAJOR BIT(1) | ||
| 102 | #define EDMA_TCD_CSR_INT_HALF BIT(2) | ||
| 103 | #define EDMA_TCD_CSR_D_REQ BIT(3) | ||
| 104 | #define EDMA_TCD_CSR_E_SG BIT(4) | ||
| 105 | #define EDMA_TCD_CSR_E_LINK BIT(5) | ||
| 106 | #define EDMA_TCD_CSR_ACTIVE BIT(6) | ||
| 107 | #define EDMA_TCD_CSR_DONE BIT(7) | ||
| 108 | |||
| 109 | #define EDMAMUX_CHCFG_DIS 0x0 | ||
| 110 | #define EDMAMUX_CHCFG_ENBL 0x80 | ||
| 111 | #define EDMAMUX_CHCFG_SOURCE(n) ((n) & 0x3F) | ||
| 112 | |||
| 113 | #define DMAMUX_NR 2 | ||
| 114 | |||
| 115 | #define FSL_EDMA_BUSWIDTHS BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ | ||
| 116 | BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ | ||
| 117 | BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \ | ||
| 118 | BIT(DMA_SLAVE_BUSWIDTH_8_BYTES) | ||
| 119 | |||
| 120 | struct fsl_edma_hw_tcd { | ||
| 121 | u32 saddr; | ||
| 122 | u16 soff; | ||
| 123 | u16 attr; | ||
| 124 | u32 nbytes; | ||
| 125 | u32 slast; | ||
| 126 | u32 daddr; | ||
| 127 | u16 doff; | ||
| 128 | u16 citer; | ||
| 129 | u32 dlast_sga; | ||
| 130 | u16 csr; | ||
| 131 | u16 biter; | ||
| 132 | }; | ||
| 133 | |||
| 134 | struct fsl_edma_sw_tcd { | ||
| 135 | dma_addr_t ptcd; | ||
| 136 | struct fsl_edma_hw_tcd *vtcd; | ||
| 137 | }; | ||
| 138 | |||
| 139 | struct fsl_edma_slave_config { | ||
| 140 | enum dma_transfer_direction dir; | ||
| 141 | enum dma_slave_buswidth addr_width; | ||
| 142 | u32 dev_addr; | ||
| 143 | u32 burst; | ||
| 144 | u32 attr; | ||
| 145 | }; | ||
| 146 | |||
| 147 | struct fsl_edma_chan { | ||
| 148 | struct virt_dma_chan vchan; | ||
| 149 | enum dma_status status; | ||
| 150 | struct fsl_edma_engine *edma; | ||
| 151 | struct fsl_edma_desc *edesc; | ||
| 152 | struct fsl_edma_slave_config fsc; | ||
| 153 | struct dma_pool *tcd_pool; | ||
| 154 | }; | ||
| 155 | |||
| 156 | struct fsl_edma_desc { | ||
| 157 | struct virt_dma_desc vdesc; | ||
| 158 | struct fsl_edma_chan *echan; | ||
| 159 | bool iscyclic; | ||
| 160 | unsigned int n_tcds; | ||
| 161 | struct fsl_edma_sw_tcd tcd[]; | ||
| 162 | }; | ||
| 163 | |||
| 164 | struct fsl_edma_engine { | ||
| 165 | struct dma_device dma_dev; | ||
| 166 | void __iomem *membase; | ||
| 167 | void __iomem *muxbase[DMAMUX_NR]; | ||
| 168 | struct clk *muxclk[DMAMUX_NR]; | ||
| 169 | struct mutex fsl_edma_mutex; | ||
| 170 | u32 n_chans; | ||
| 171 | int txirq; | ||
| 172 | int errirq; | ||
| 173 | bool big_endian; | ||
| 174 | struct fsl_edma_chan chans[]; | ||
| 175 | }; | ||
| 176 | |||
| 177 | /* | ||
| 178 | * R/W functions for big- or little-endian registers | ||
| 179 | * the eDMA controller's endian is independent of the CPU core's endian. | ||
| 180 | */ | ||
| 181 | |||
| 182 | static u16 edma_readw(struct fsl_edma_engine *edma, void __iomem *addr) | ||
| 183 | { | ||
| 184 | if (edma->big_endian) | ||
| 185 | return ioread16be(addr); | ||
| 186 | else | ||
| 187 | return ioread16(addr); | ||
| 188 | } | ||
| 189 | |||
| 190 | static u32 edma_readl(struct fsl_edma_engine *edma, void __iomem *addr) | ||
| 191 | { | ||
| 192 | if (edma->big_endian) | ||
| 193 | return ioread32be(addr); | ||
| 194 | else | ||
| 195 | return ioread32(addr); | ||
| 196 | } | ||
| 197 | |||
| 198 | static void edma_writeb(struct fsl_edma_engine *edma, u8 val, void __iomem *addr) | ||
| 199 | { | ||
| 200 | iowrite8(val, addr); | ||
| 201 | } | ||
| 202 | |||
| 203 | static void edma_writew(struct fsl_edma_engine *edma, u16 val, void __iomem *addr) | ||
| 204 | { | ||
| 205 | if (edma->big_endian) | ||
| 206 | iowrite16be(val, addr); | ||
| 207 | else | ||
| 208 | iowrite16(val, addr); | ||
| 209 | } | ||
| 210 | |||
| 211 | static void edma_writel(struct fsl_edma_engine *edma, u32 val, void __iomem *addr) | ||
| 212 | { | ||
| 213 | if (edma->big_endian) | ||
| 214 | iowrite32be(val, addr); | ||
| 215 | else | ||
| 216 | iowrite32(val, addr); | ||
| 217 | } | ||
| 218 | |||
| 219 | static struct fsl_edma_chan *to_fsl_edma_chan(struct dma_chan *chan) | ||
| 220 | { | ||
| 221 | return container_of(chan, struct fsl_edma_chan, vchan.chan); | ||
| 222 | } | ||
| 223 | |||
| 224 | static struct fsl_edma_desc *to_fsl_edma_desc(struct virt_dma_desc *vd) | ||
| 225 | { | ||
| 226 | return container_of(vd, struct fsl_edma_desc, vdesc); | ||
| 227 | } | ||
| 228 | |||
| 229 | static void fsl_edma_enable_request(struct fsl_edma_chan *fsl_chan) | ||
| 230 | { | ||
| 231 | void __iomem *addr = fsl_chan->edma->membase; | ||
| 232 | u32 ch = fsl_chan->vchan.chan.chan_id; | ||
| 233 | |||
| 234 | edma_writeb(fsl_chan->edma, EDMA_SEEI_SEEI(ch), addr + EDMA_SEEI); | ||
| 235 | edma_writeb(fsl_chan->edma, ch, addr + EDMA_SERQ); | ||
| 236 | } | ||
| 237 | |||
| 238 | static void fsl_edma_disable_request(struct fsl_edma_chan *fsl_chan) | ||
| 239 | { | ||
| 240 | void __iomem *addr = fsl_chan->edma->membase; | ||
| 241 | u32 ch = fsl_chan->vchan.chan.chan_id; | ||
| 242 | |||
| 243 | edma_writeb(fsl_chan->edma, ch, addr + EDMA_CERQ); | ||
| 244 | edma_writeb(fsl_chan->edma, EDMA_CEEI_CEEI(ch), addr + EDMA_CEEI); | ||
| 245 | } | ||
| 246 | |||
| 247 | static void fsl_edma_chan_mux(struct fsl_edma_chan *fsl_chan, | ||
| 248 | unsigned int slot, bool enable) | ||
| 249 | { | ||
| 250 | u32 ch = fsl_chan->vchan.chan.chan_id; | ||
| 251 | void __iomem *muxaddr = fsl_chan->edma->muxbase[ch / DMAMUX_NR]; | ||
| 252 | unsigned chans_per_mux, ch_off; | ||
| 253 | |||
| 254 | chans_per_mux = fsl_chan->edma->n_chans / DMAMUX_NR; | ||
| 255 | ch_off = fsl_chan->vchan.chan.chan_id % chans_per_mux; | ||
| 256 | |||
| 257 | if (enable) | ||
| 258 | edma_writeb(fsl_chan->edma, | ||
| 259 | EDMAMUX_CHCFG_ENBL | EDMAMUX_CHCFG_SOURCE(slot), | ||
| 260 | muxaddr + ch_off); | ||
| 261 | else | ||
| 262 | edma_writeb(fsl_chan->edma, EDMAMUX_CHCFG_DIS, muxaddr + ch_off); | ||
| 263 | } | ||
| 264 | |||
| 265 | static unsigned int fsl_edma_get_tcd_attr(enum dma_slave_buswidth addr_width) | ||
| 266 | { | ||
| 267 | switch (addr_width) { | ||
| 268 | case 1: | ||
| 269 | return EDMA_TCD_ATTR_SSIZE_8BIT | EDMA_TCD_ATTR_DSIZE_8BIT; | ||
| 270 | case 2: | ||
| 271 | return EDMA_TCD_ATTR_SSIZE_16BIT | EDMA_TCD_ATTR_DSIZE_16BIT; | ||
| 272 | case 4: | ||
| 273 | return EDMA_TCD_ATTR_SSIZE_32BIT | EDMA_TCD_ATTR_DSIZE_32BIT; | ||
| 274 | case 8: | ||
| 275 | return EDMA_TCD_ATTR_SSIZE_64BIT | EDMA_TCD_ATTR_DSIZE_64BIT; | ||
| 276 | default: | ||
| 277 | return EDMA_TCD_ATTR_SSIZE_32BIT | EDMA_TCD_ATTR_DSIZE_32BIT; | ||
| 278 | } | ||
| 279 | } | ||
| 280 | |||
| 281 | static void fsl_edma_free_desc(struct virt_dma_desc *vdesc) | ||
| 282 | { | ||
| 283 | struct fsl_edma_desc *fsl_desc; | ||
| 284 | int i; | ||
| 285 | |||
| 286 | fsl_desc = to_fsl_edma_desc(vdesc); | ||
| 287 | for (i = 0; i < fsl_desc->n_tcds; i++) | ||
| 288 | dma_pool_free(fsl_desc->echan->tcd_pool, | ||
| 289 | fsl_desc->tcd[i].vtcd, | ||
| 290 | fsl_desc->tcd[i].ptcd); | ||
| 291 | kfree(fsl_desc); | ||
| 292 | } | ||
| 293 | |||
| 294 | static int fsl_edma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, | ||
| 295 | unsigned long arg) | ||
| 296 | { | ||
| 297 | struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); | ||
| 298 | struct dma_slave_config *cfg = (void *)arg; | ||
| 299 | unsigned long flags; | ||
| 300 | LIST_HEAD(head); | ||
| 301 | |||
| 302 | switch (cmd) { | ||
| 303 | case DMA_TERMINATE_ALL: | ||
| 304 | spin_lock_irqsave(&fsl_chan->vchan.lock, flags); | ||
| 305 | fsl_edma_disable_request(fsl_chan); | ||
| 306 | fsl_chan->edesc = NULL; | ||
| 307 | vchan_get_all_descriptors(&fsl_chan->vchan, &head); | ||
| 308 | spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); | ||
| 309 | vchan_dma_desc_free_list(&fsl_chan->vchan, &head); | ||
| 310 | return 0; | ||
| 311 | |||
| 312 | case DMA_SLAVE_CONFIG: | ||
| 313 | fsl_chan->fsc.dir = cfg->direction; | ||
| 314 | if (cfg->direction == DMA_DEV_TO_MEM) { | ||
| 315 | fsl_chan->fsc.dev_addr = cfg->src_addr; | ||
| 316 | fsl_chan->fsc.addr_width = cfg->src_addr_width; | ||
| 317 | fsl_chan->fsc.burst = cfg->src_maxburst; | ||
| 318 | fsl_chan->fsc.attr = fsl_edma_get_tcd_attr(cfg->src_addr_width); | ||
| 319 | } else if (cfg->direction == DMA_MEM_TO_DEV) { | ||
| 320 | fsl_chan->fsc.dev_addr = cfg->dst_addr; | ||
| 321 | fsl_chan->fsc.addr_width = cfg->dst_addr_width; | ||
| 322 | fsl_chan->fsc.burst = cfg->dst_maxburst; | ||
| 323 | fsl_chan->fsc.attr = fsl_edma_get_tcd_attr(cfg->dst_addr_width); | ||
| 324 | } else { | ||
| 325 | return -EINVAL; | ||
| 326 | } | ||
| 327 | return 0; | ||
| 328 | |||
| 329 | case DMA_PAUSE: | ||
| 330 | spin_lock_irqsave(&fsl_chan->vchan.lock, flags); | ||
| 331 | if (fsl_chan->edesc) { | ||
| 332 | fsl_edma_disable_request(fsl_chan); | ||
| 333 | fsl_chan->status = DMA_PAUSED; | ||
| 334 | } | ||
| 335 | spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); | ||
| 336 | return 0; | ||
| 337 | |||
| 338 | case DMA_RESUME: | ||
| 339 | spin_lock_irqsave(&fsl_chan->vchan.lock, flags); | ||
| 340 | if (fsl_chan->edesc) { | ||
| 341 | fsl_edma_enable_request(fsl_chan); | ||
| 342 | fsl_chan->status = DMA_IN_PROGRESS; | ||
| 343 | } | ||
| 344 | spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); | ||
| 345 | return 0; | ||
| 346 | |||
| 347 | default: | ||
| 348 | return -ENXIO; | ||
| 349 | } | ||
| 350 | } | ||
| 351 | |||
| 352 | static size_t fsl_edma_desc_residue(struct fsl_edma_chan *fsl_chan, | ||
| 353 | struct virt_dma_desc *vdesc, bool in_progress) | ||
| 354 | { | ||
| 355 | struct fsl_edma_desc *edesc = fsl_chan->edesc; | ||
| 356 | void __iomem *addr = fsl_chan->edma->membase; | ||
| 357 | u32 ch = fsl_chan->vchan.chan.chan_id; | ||
| 358 | enum dma_transfer_direction dir = fsl_chan->fsc.dir; | ||
| 359 | dma_addr_t cur_addr, dma_addr; | ||
| 360 | size_t len, size; | ||
| 361 | int i; | ||
| 362 | |||
| 363 | /* calculate the total size in this desc */ | ||
| 364 | for (len = i = 0; i < fsl_chan->edesc->n_tcds; i++) | ||
| 365 | len += edma_readl(fsl_chan->edma, &(edesc->tcd[i].vtcd->nbytes)) | ||
| 366 | * edma_readw(fsl_chan->edma, &(edesc->tcd[i].vtcd->biter)); | ||
| 367 | |||
| 368 | if (!in_progress) | ||
| 369 | return len; | ||
| 370 | |||
| 371 | if (dir == DMA_MEM_TO_DEV) | ||
| 372 | cur_addr = edma_readl(fsl_chan->edma, addr + EDMA_TCD_SADDR(ch)); | ||
| 373 | else | ||
| 374 | cur_addr = edma_readl(fsl_chan->edma, addr + EDMA_TCD_DADDR(ch)); | ||
| 375 | |||
| 376 | /* figure out the finished and calculate the residue */ | ||
| 377 | for (i = 0; i < fsl_chan->edesc->n_tcds; i++) { | ||
| 378 | size = edma_readl(fsl_chan->edma, &(edesc->tcd[i].vtcd->nbytes)) | ||
| 379 | * edma_readw(fsl_chan->edma, &(edesc->tcd[i].vtcd->biter)); | ||
| 380 | if (dir == DMA_MEM_TO_DEV) | ||
| 381 | dma_addr = edma_readl(fsl_chan->edma, | ||
| 382 | &(edesc->tcd[i].vtcd->saddr)); | ||
| 383 | else | ||
| 384 | dma_addr = edma_readl(fsl_chan->edma, | ||
| 385 | &(edesc->tcd[i].vtcd->daddr)); | ||
| 386 | |||
| 387 | len -= size; | ||
| 388 | if (cur_addr > dma_addr && cur_addr < dma_addr + size) { | ||
| 389 | len += dma_addr + size - cur_addr; | ||
| 390 | break; | ||
| 391 | } | ||
| 392 | } | ||
| 393 | |||
| 394 | return len; | ||
| 395 | } | ||
| 396 | |||
| 397 | static enum dma_status fsl_edma_tx_status(struct dma_chan *chan, | ||
| 398 | dma_cookie_t cookie, struct dma_tx_state *txstate) | ||
| 399 | { | ||
| 400 | struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); | ||
| 401 | struct virt_dma_desc *vdesc; | ||
| 402 | enum dma_status status; | ||
| 403 | unsigned long flags; | ||
| 404 | |||
| 405 | status = dma_cookie_status(chan, cookie, txstate); | ||
| 406 | if (status == DMA_COMPLETE) | ||
| 407 | return status; | ||
| 408 | |||
| 409 | if (!txstate) | ||
| 410 | return fsl_chan->status; | ||
| 411 | |||
| 412 | spin_lock_irqsave(&fsl_chan->vchan.lock, flags); | ||
| 413 | vdesc = vchan_find_desc(&fsl_chan->vchan, cookie); | ||
| 414 | if (fsl_chan->edesc && cookie == fsl_chan->edesc->vdesc.tx.cookie) | ||
| 415 | txstate->residue = fsl_edma_desc_residue(fsl_chan, vdesc, true); | ||
| 416 | else if (vdesc) | ||
| 417 | txstate->residue = fsl_edma_desc_residue(fsl_chan, vdesc, false); | ||
| 418 | else | ||
| 419 | txstate->residue = 0; | ||
| 420 | |||
| 421 | spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); | ||
| 422 | |||
| 423 | return fsl_chan->status; | ||
| 424 | } | ||
| 425 | |||
| 426 | static void fsl_edma_set_tcd_params(struct fsl_edma_chan *fsl_chan, | ||
| 427 | u32 src, u32 dst, u16 attr, u16 soff, u32 nbytes, | ||
| 428 | u32 slast, u16 citer, u16 biter, u32 doff, u32 dlast_sga, | ||
| 429 | u16 csr) | ||
| 430 | { | ||
| 431 | void __iomem *addr = fsl_chan->edma->membase; | ||
| 432 | u32 ch = fsl_chan->vchan.chan.chan_id; | ||
| 433 | |||
| 434 | /* | ||
| 435 | * TCD parameters have been swapped in fill_tcd_params(), | ||
| 436 | * so just write them to registers in the cpu endian here | ||
| 437 | */ | ||
| 438 | writew(0, addr + EDMA_TCD_CSR(ch)); | ||
| 439 | writel(src, addr + EDMA_TCD_SADDR(ch)); | ||
| 440 | writel(dst, addr + EDMA_TCD_DADDR(ch)); | ||
| 441 | writew(attr, addr + EDMA_TCD_ATTR(ch)); | ||
| 442 | writew(soff, addr + EDMA_TCD_SOFF(ch)); | ||
| 443 | writel(nbytes, addr + EDMA_TCD_NBYTES(ch)); | ||
| 444 | writel(slast, addr + EDMA_TCD_SLAST(ch)); | ||
| 445 | writew(citer, addr + EDMA_TCD_CITER(ch)); | ||
| 446 | writew(biter, addr + EDMA_TCD_BITER(ch)); | ||
| 447 | writew(doff, addr + EDMA_TCD_DOFF(ch)); | ||
| 448 | writel(dlast_sga, addr + EDMA_TCD_DLAST_SGA(ch)); | ||
| 449 | writew(csr, addr + EDMA_TCD_CSR(ch)); | ||
| 450 | } | ||
| 451 | |||
| 452 | static void fill_tcd_params(struct fsl_edma_engine *edma, | ||
| 453 | struct fsl_edma_hw_tcd *tcd, u32 src, u32 dst, | ||
| 454 | u16 attr, u16 soff, u32 nbytes, u32 slast, u16 citer, | ||
| 455 | u16 biter, u16 doff, u32 dlast_sga, bool major_int, | ||
| 456 | bool disable_req, bool enable_sg) | ||
| 457 | { | ||
| 458 | u16 csr = 0; | ||
| 459 | |||
| 460 | /* | ||
| 461 | * eDMA hardware SGs require the TCD parameters stored in memory | ||
| 462 | * the same endian as the eDMA module so that they can be loaded | ||
| 463 | * automatically by the engine | ||
| 464 | */ | ||
| 465 | edma_writel(edma, src, &(tcd->saddr)); | ||
| 466 | edma_writel(edma, dst, &(tcd->daddr)); | ||
| 467 | edma_writew(edma, attr, &(tcd->attr)); | ||
| 468 | edma_writew(edma, EDMA_TCD_SOFF_SOFF(soff), &(tcd->soff)); | ||
| 469 | edma_writel(edma, EDMA_TCD_NBYTES_NBYTES(nbytes), &(tcd->nbytes)); | ||
| 470 | edma_writel(edma, EDMA_TCD_SLAST_SLAST(slast), &(tcd->slast)); | ||
| 471 | edma_writew(edma, EDMA_TCD_CITER_CITER(citer), &(tcd->citer)); | ||
| 472 | edma_writew(edma, EDMA_TCD_DOFF_DOFF(doff), &(tcd->doff)); | ||
| 473 | edma_writel(edma, EDMA_TCD_DLAST_SGA_DLAST_SGA(dlast_sga), &(tcd->dlast_sga)); | ||
| 474 | edma_writew(edma, EDMA_TCD_BITER_BITER(biter), &(tcd->biter)); | ||
| 475 | if (major_int) | ||
| 476 | csr |= EDMA_TCD_CSR_INT_MAJOR; | ||
| 477 | |||
| 478 | if (disable_req) | ||
| 479 | csr |= EDMA_TCD_CSR_D_REQ; | ||
| 480 | |||
| 481 | if (enable_sg) | ||
| 482 | csr |= EDMA_TCD_CSR_E_SG; | ||
| 483 | |||
| 484 | edma_writew(edma, csr, &(tcd->csr)); | ||
| 485 | } | ||
| 486 | |||
| 487 | static struct fsl_edma_desc *fsl_edma_alloc_desc(struct fsl_edma_chan *fsl_chan, | ||
| 488 | int sg_len) | ||
| 489 | { | ||
| 490 | struct fsl_edma_desc *fsl_desc; | ||
| 491 | int i; | ||
| 492 | |||
| 493 | fsl_desc = kzalloc(sizeof(*fsl_desc) + sizeof(struct fsl_edma_sw_tcd) * sg_len, | ||
| 494 | GFP_NOWAIT); | ||
| 495 | if (!fsl_desc) | ||
| 496 | return NULL; | ||
| 497 | |||
| 498 | fsl_desc->echan = fsl_chan; | ||
| 499 | fsl_desc->n_tcds = sg_len; | ||
| 500 | for (i = 0; i < sg_len; i++) { | ||
| 501 | fsl_desc->tcd[i].vtcd = dma_pool_alloc(fsl_chan->tcd_pool, | ||
| 502 | GFP_NOWAIT, &fsl_desc->tcd[i].ptcd); | ||
| 503 | if (!fsl_desc->tcd[i].vtcd) | ||
| 504 | goto err; | ||
| 505 | } | ||
| 506 | return fsl_desc; | ||
| 507 | |||
| 508 | err: | ||
| 509 | while (--i >= 0) | ||
| 510 | dma_pool_free(fsl_chan->tcd_pool, fsl_desc->tcd[i].vtcd, | ||
| 511 | fsl_desc->tcd[i].ptcd); | ||
| 512 | kfree(fsl_desc); | ||
| 513 | return NULL; | ||
| 514 | } | ||
| 515 | |||
| 516 | static struct dma_async_tx_descriptor *fsl_edma_prep_dma_cyclic( | ||
| 517 | struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len, | ||
| 518 | size_t period_len, enum dma_transfer_direction direction, | ||
| 519 | unsigned long flags, void *context) | ||
| 520 | { | ||
| 521 | struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); | ||
| 522 | struct fsl_edma_desc *fsl_desc; | ||
| 523 | dma_addr_t dma_buf_next; | ||
| 524 | int sg_len, i; | ||
| 525 | u32 src_addr, dst_addr, last_sg, nbytes; | ||
| 526 | u16 soff, doff, iter; | ||
| 527 | |||
| 528 | if (!is_slave_direction(fsl_chan->fsc.dir)) | ||
| 529 | return NULL; | ||
| 530 | |||
| 531 | sg_len = buf_len / period_len; | ||
| 532 | fsl_desc = fsl_edma_alloc_desc(fsl_chan, sg_len); | ||
| 533 | if (!fsl_desc) | ||
| 534 | return NULL; | ||
| 535 | fsl_desc->iscyclic = true; | ||
| 536 | |||
| 537 | dma_buf_next = dma_addr; | ||
| 538 | nbytes = fsl_chan->fsc.addr_width * fsl_chan->fsc.burst; | ||
| 539 | iter = period_len / nbytes; | ||
| 540 | |||
| 541 | for (i = 0; i < sg_len; i++) { | ||
| 542 | if (dma_buf_next >= dma_addr + buf_len) | ||
| 543 | dma_buf_next = dma_addr; | ||
| 544 | |||
| 545 | /* get next sg's physical address */ | ||
| 546 | last_sg = fsl_desc->tcd[(i + 1) % sg_len].ptcd; | ||
| 547 | |||
| 548 | if (fsl_chan->fsc.dir == DMA_MEM_TO_DEV) { | ||
| 549 | src_addr = dma_buf_next; | ||
| 550 | dst_addr = fsl_chan->fsc.dev_addr; | ||
| 551 | soff = fsl_chan->fsc.addr_width; | ||
| 552 | doff = 0; | ||
| 553 | } else { | ||
| 554 | src_addr = fsl_chan->fsc.dev_addr; | ||
| 555 | dst_addr = dma_buf_next; | ||
| 556 | soff = 0; | ||
| 557 | doff = fsl_chan->fsc.addr_width; | ||
| 558 | } | ||
| 559 | |||
| 560 | fill_tcd_params(fsl_chan->edma, fsl_desc->tcd[i].vtcd, src_addr, | ||
| 561 | dst_addr, fsl_chan->fsc.attr, soff, nbytes, 0, | ||
| 562 | iter, iter, doff, last_sg, true, false, true); | ||
| 563 | dma_buf_next += period_len; | ||
| 564 | } | ||
| 565 | |||
| 566 | return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags); | ||
| 567 | } | ||
| 568 | |||
| 569 | static struct dma_async_tx_descriptor *fsl_edma_prep_slave_sg( | ||
| 570 | struct dma_chan *chan, struct scatterlist *sgl, | ||
| 571 | unsigned int sg_len, enum dma_transfer_direction direction, | ||
| 572 | unsigned long flags, void *context) | ||
| 573 | { | ||
| 574 | struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); | ||
| 575 | struct fsl_edma_desc *fsl_desc; | ||
| 576 | struct scatterlist *sg; | ||
| 577 | u32 src_addr, dst_addr, last_sg, nbytes; | ||
| 578 | u16 soff, doff, iter; | ||
| 579 | int i; | ||
| 580 | |||
| 581 | if (!is_slave_direction(fsl_chan->fsc.dir)) | ||
| 582 | return NULL; | ||
| 583 | |||
| 584 | fsl_desc = fsl_edma_alloc_desc(fsl_chan, sg_len); | ||
| 585 | if (!fsl_desc) | ||
| 586 | return NULL; | ||
| 587 | fsl_desc->iscyclic = false; | ||
| 588 | |||
| 589 | nbytes = fsl_chan->fsc.addr_width * fsl_chan->fsc.burst; | ||
| 590 | for_each_sg(sgl, sg, sg_len, i) { | ||
| 591 | /* get next sg's physical address */ | ||
| 592 | last_sg = fsl_desc->tcd[(i + 1) % sg_len].ptcd; | ||
| 593 | |||
| 594 | if (fsl_chan->fsc.dir == DMA_MEM_TO_DEV) { | ||
| 595 | src_addr = sg_dma_address(sg); | ||
| 596 | dst_addr = fsl_chan->fsc.dev_addr; | ||
| 597 | soff = fsl_chan->fsc.addr_width; | ||
| 598 | doff = 0; | ||
| 599 | } else { | ||
| 600 | src_addr = fsl_chan->fsc.dev_addr; | ||
| 601 | dst_addr = sg_dma_address(sg); | ||
| 602 | soff = 0; | ||
| 603 | doff = fsl_chan->fsc.addr_width; | ||
| 604 | } | ||
| 605 | |||
| 606 | iter = sg_dma_len(sg) / nbytes; | ||
| 607 | if (i < sg_len - 1) { | ||
| 608 | last_sg = fsl_desc->tcd[(i + 1)].ptcd; | ||
| 609 | fill_tcd_params(fsl_chan->edma, fsl_desc->tcd[i].vtcd, | ||
| 610 | src_addr, dst_addr, fsl_chan->fsc.attr, | ||
| 611 | soff, nbytes, 0, iter, iter, doff, last_sg, | ||
| 612 | false, false, true); | ||
| 613 | } else { | ||
| 614 | last_sg = 0; | ||
| 615 | fill_tcd_params(fsl_chan->edma, fsl_desc->tcd[i].vtcd, | ||
| 616 | src_addr, dst_addr, fsl_chan->fsc.attr, | ||
| 617 | soff, nbytes, 0, iter, iter, doff, last_sg, | ||
| 618 | true, true, false); | ||
| 619 | } | ||
| 620 | } | ||
| 621 | |||
| 622 | return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags); | ||
| 623 | } | ||
| 624 | |||
| 625 | static void fsl_edma_xfer_desc(struct fsl_edma_chan *fsl_chan) | ||
| 626 | { | ||
| 627 | struct fsl_edma_hw_tcd *tcd; | ||
| 628 | struct virt_dma_desc *vdesc; | ||
| 629 | |||
| 630 | vdesc = vchan_next_desc(&fsl_chan->vchan); | ||
| 631 | if (!vdesc) | ||
| 632 | return; | ||
| 633 | fsl_chan->edesc = to_fsl_edma_desc(vdesc); | ||
| 634 | tcd = fsl_chan->edesc->tcd[0].vtcd; | ||
| 635 | fsl_edma_set_tcd_params(fsl_chan, tcd->saddr, tcd->daddr, tcd->attr, | ||
| 636 | tcd->soff, tcd->nbytes, tcd->slast, tcd->citer, | ||
| 637 | tcd->biter, tcd->doff, tcd->dlast_sga, tcd->csr); | ||
| 638 | fsl_edma_enable_request(fsl_chan); | ||
| 639 | fsl_chan->status = DMA_IN_PROGRESS; | ||
| 640 | } | ||
| 641 | |||
| 642 | static irqreturn_t fsl_edma_tx_handler(int irq, void *dev_id) | ||
| 643 | { | ||
| 644 | struct fsl_edma_engine *fsl_edma = dev_id; | ||
| 645 | unsigned int intr, ch; | ||
| 646 | void __iomem *base_addr; | ||
| 647 | struct fsl_edma_chan *fsl_chan; | ||
| 648 | |||
| 649 | base_addr = fsl_edma->membase; | ||
| 650 | |||
| 651 | intr = edma_readl(fsl_edma, base_addr + EDMA_INTR); | ||
| 652 | if (!intr) | ||
| 653 | return IRQ_NONE; | ||
| 654 | |||
| 655 | for (ch = 0; ch < fsl_edma->n_chans; ch++) { | ||
| 656 | if (intr & (0x1 << ch)) { | ||
| 657 | edma_writeb(fsl_edma, EDMA_CINT_CINT(ch), | ||
| 658 | base_addr + EDMA_CINT); | ||
| 659 | |||
| 660 | fsl_chan = &fsl_edma->chans[ch]; | ||
| 661 | |||
| 662 | spin_lock(&fsl_chan->vchan.lock); | ||
| 663 | if (!fsl_chan->edesc->iscyclic) { | ||
| 664 | list_del(&fsl_chan->edesc->vdesc.node); | ||
| 665 | vchan_cookie_complete(&fsl_chan->edesc->vdesc); | ||
| 666 | fsl_chan->edesc = NULL; | ||
| 667 | fsl_chan->status = DMA_COMPLETE; | ||
| 668 | } else { | ||
| 669 | vchan_cyclic_callback(&fsl_chan->edesc->vdesc); | ||
| 670 | } | ||
| 671 | |||
| 672 | if (!fsl_chan->edesc) | ||
| 673 | fsl_edma_xfer_desc(fsl_chan); | ||
| 674 | |||
| 675 | spin_unlock(&fsl_chan->vchan.lock); | ||
| 676 | } | ||
| 677 | } | ||
| 678 | return IRQ_HANDLED; | ||
| 679 | } | ||
| 680 | |||
| 681 | static irqreturn_t fsl_edma_err_handler(int irq, void *dev_id) | ||
| 682 | { | ||
| 683 | struct fsl_edma_engine *fsl_edma = dev_id; | ||
| 684 | unsigned int err, ch; | ||
| 685 | |||
| 686 | err = edma_readl(fsl_edma, fsl_edma->membase + EDMA_ERR); | ||
| 687 | if (!err) | ||
| 688 | return IRQ_NONE; | ||
| 689 | |||
| 690 | for (ch = 0; ch < fsl_edma->n_chans; ch++) { | ||
| 691 | if (err & (0x1 << ch)) { | ||
| 692 | fsl_edma_disable_request(&fsl_edma->chans[ch]); | ||
| 693 | edma_writeb(fsl_edma, EDMA_CERR_CERR(ch), | ||
| 694 | fsl_edma->membase + EDMA_CERR); | ||
| 695 | fsl_edma->chans[ch].status = DMA_ERROR; | ||
| 696 | } | ||
| 697 | } | ||
| 698 | return IRQ_HANDLED; | ||
| 699 | } | ||
| 700 | |||
| 701 | static irqreturn_t fsl_edma_irq_handler(int irq, void *dev_id) | ||
| 702 | { | ||
| 703 | if (fsl_edma_tx_handler(irq, dev_id) == IRQ_HANDLED) | ||
| 704 | return IRQ_HANDLED; | ||
| 705 | |||
| 706 | return fsl_edma_err_handler(irq, dev_id); | ||
| 707 | } | ||
| 708 | |||
| 709 | static void fsl_edma_issue_pending(struct dma_chan *chan) | ||
| 710 | { | ||
| 711 | struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); | ||
| 712 | unsigned long flags; | ||
| 713 | |||
| 714 | spin_lock_irqsave(&fsl_chan->vchan.lock, flags); | ||
| 715 | |||
| 716 | if (vchan_issue_pending(&fsl_chan->vchan) && !fsl_chan->edesc) | ||
| 717 | fsl_edma_xfer_desc(fsl_chan); | ||
| 718 | |||
| 719 | spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); | ||
| 720 | } | ||
| 721 | |||
| 722 | static struct dma_chan *fsl_edma_xlate(struct of_phandle_args *dma_spec, | ||
| 723 | struct of_dma *ofdma) | ||
| 724 | { | ||
| 725 | struct fsl_edma_engine *fsl_edma = ofdma->of_dma_data; | ||
| 726 | struct dma_chan *chan; | ||
| 727 | |||
| 728 | if (dma_spec->args_count != 2) | ||
| 729 | return NULL; | ||
| 730 | |||
| 731 | mutex_lock(&fsl_edma->fsl_edma_mutex); | ||
| 732 | list_for_each_entry(chan, &fsl_edma->dma_dev.channels, device_node) { | ||
| 733 | if (chan->client_count) | ||
| 734 | continue; | ||
| 735 | if ((chan->chan_id / DMAMUX_NR) == dma_spec->args[0]) { | ||
| 736 | chan = dma_get_slave_channel(chan); | ||
| 737 | if (chan) { | ||
| 738 | chan->device->privatecnt++; | ||
| 739 | fsl_edma_chan_mux(to_fsl_edma_chan(chan), | ||
| 740 | dma_spec->args[1], true); | ||
| 741 | mutex_unlock(&fsl_edma->fsl_edma_mutex); | ||
| 742 | return chan; | ||
| 743 | } | ||
| 744 | } | ||
| 745 | } | ||
| 746 | mutex_unlock(&fsl_edma->fsl_edma_mutex); | ||
| 747 | return NULL; | ||
| 748 | } | ||
| 749 | |||
| 750 | static int fsl_edma_alloc_chan_resources(struct dma_chan *chan) | ||
| 751 | { | ||
| 752 | struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); | ||
| 753 | |||
| 754 | fsl_chan->tcd_pool = dma_pool_create("tcd_pool", chan->device->dev, | ||
| 755 | sizeof(struct fsl_edma_hw_tcd), | ||
| 756 | 32, 0); | ||
| 757 | return 0; | ||
| 758 | } | ||
| 759 | |||
| 760 | static void fsl_edma_free_chan_resources(struct dma_chan *chan) | ||
| 761 | { | ||
| 762 | struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); | ||
| 763 | unsigned long flags; | ||
| 764 | LIST_HEAD(head); | ||
| 765 | |||
| 766 | spin_lock_irqsave(&fsl_chan->vchan.lock, flags); | ||
| 767 | fsl_edma_disable_request(fsl_chan); | ||
| 768 | fsl_edma_chan_mux(fsl_chan, 0, false); | ||
| 769 | fsl_chan->edesc = NULL; | ||
| 770 | vchan_get_all_descriptors(&fsl_chan->vchan, &head); | ||
| 771 | spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); | ||
| 772 | |||
| 773 | vchan_dma_desc_free_list(&fsl_chan->vchan, &head); | ||
| 774 | dma_pool_destroy(fsl_chan->tcd_pool); | ||
| 775 | fsl_chan->tcd_pool = NULL; | ||
| 776 | } | ||
| 777 | |||
| 778 | static int fsl_dma_device_slave_caps(struct dma_chan *dchan, | ||
| 779 | struct dma_slave_caps *caps) | ||
| 780 | { | ||
| 781 | caps->src_addr_widths = FSL_EDMA_BUSWIDTHS; | ||
| 782 | caps->dstn_addr_widths = FSL_EDMA_BUSWIDTHS; | ||
| 783 | caps->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); | ||
| 784 | caps->cmd_pause = true; | ||
| 785 | caps->cmd_terminate = true; | ||
| 786 | |||
| 787 | return 0; | ||
| 788 | } | ||
| 789 | |||
| 790 | static int | ||
| 791 | fsl_edma_irq_init(struct platform_device *pdev, struct fsl_edma_engine *fsl_edma) | ||
| 792 | { | ||
| 793 | int ret; | ||
| 794 | |||
| 795 | fsl_edma->txirq = platform_get_irq_byname(pdev, "edma-tx"); | ||
| 796 | if (fsl_edma->txirq < 0) { | ||
| 797 | dev_err(&pdev->dev, "Can't get edma-tx irq.\n"); | ||
| 798 | return fsl_edma->txirq; | ||
| 799 | } | ||
| 800 | |||
| 801 | fsl_edma->errirq = platform_get_irq_byname(pdev, "edma-err"); | ||
| 802 | if (fsl_edma->errirq < 0) { | ||
| 803 | dev_err(&pdev->dev, "Can't get edma-err irq.\n"); | ||
| 804 | return fsl_edma->errirq; | ||
| 805 | } | ||
| 806 | |||
| 807 | if (fsl_edma->txirq == fsl_edma->errirq) { | ||
| 808 | ret = devm_request_irq(&pdev->dev, fsl_edma->txirq, | ||
| 809 | fsl_edma_irq_handler, 0, "eDMA", fsl_edma); | ||
| 810 | if (ret) { | ||
| 811 | dev_err(&pdev->dev, "Can't register eDMA IRQ.\n"); | ||
| 812 | return ret; | ||
| 813 | } | ||
| 814 | } else { | ||
| 815 | ret = devm_request_irq(&pdev->dev, fsl_edma->txirq, | ||
| 816 | fsl_edma_tx_handler, 0, "eDMA tx", fsl_edma); | ||
| 817 | if (ret) { | ||
| 818 | dev_err(&pdev->dev, "Can't register eDMA tx IRQ.\n"); | ||
| 819 | return ret; | ||
| 820 | } | ||
| 821 | |||
| 822 | ret = devm_request_irq(&pdev->dev, fsl_edma->errirq, | ||
| 823 | fsl_edma_err_handler, 0, "eDMA err", fsl_edma); | ||
| 824 | if (ret) { | ||
| 825 | dev_err(&pdev->dev, "Can't register eDMA err IRQ.\n"); | ||
| 826 | return ret; | ||
| 827 | } | ||
| 828 | } | ||
| 829 | |||
| 830 | return 0; | ||
| 831 | } | ||
| 832 | |||
| 833 | static int fsl_edma_probe(struct platform_device *pdev) | ||
| 834 | { | ||
| 835 | struct device_node *np = pdev->dev.of_node; | ||
| 836 | struct fsl_edma_engine *fsl_edma; | ||
| 837 | struct fsl_edma_chan *fsl_chan; | ||
| 838 | struct resource *res; | ||
| 839 | int len, chans; | ||
| 840 | int ret, i; | ||
| 841 | |||
| 842 | ret = of_property_read_u32(np, "dma-channels", &chans); | ||
| 843 | if (ret) { | ||
| 844 | dev_err(&pdev->dev, "Can't get dma-channels.\n"); | ||
| 845 | return ret; | ||
| 846 | } | ||
| 847 | |||
| 848 | len = sizeof(*fsl_edma) + sizeof(*fsl_chan) * chans; | ||
| 849 | fsl_edma = devm_kzalloc(&pdev->dev, len, GFP_KERNEL); | ||
| 850 | if (!fsl_edma) | ||
| 851 | return -ENOMEM; | ||
| 852 | |||
| 853 | fsl_edma->n_chans = chans; | ||
| 854 | mutex_init(&fsl_edma->fsl_edma_mutex); | ||
| 855 | |||
| 856 | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); | ||
| 857 | fsl_edma->membase = devm_ioremap_resource(&pdev->dev, res); | ||
| 858 | if (IS_ERR(fsl_edma->membase)) | ||
| 859 | return PTR_ERR(fsl_edma->membase); | ||
| 860 | |||
| 861 | for (i = 0; i < DMAMUX_NR; i++) { | ||
| 862 | char clkname[32]; | ||
| 863 | |||
| 864 | res = platform_get_resource(pdev, IORESOURCE_MEM, 1 + i); | ||
| 865 | fsl_edma->muxbase[i] = devm_ioremap_resource(&pdev->dev, res); | ||
| 866 | if (IS_ERR(fsl_edma->muxbase[i])) | ||
| 867 | return PTR_ERR(fsl_edma->muxbase[i]); | ||
| 868 | |||
| 869 | sprintf(clkname, "dmamux%d", i); | ||
| 870 | fsl_edma->muxclk[i] = devm_clk_get(&pdev->dev, clkname); | ||
| 871 | if (IS_ERR(fsl_edma->muxclk[i])) { | ||
| 872 | dev_err(&pdev->dev, "Missing DMAMUX block clock.\n"); | ||
| 873 | return PTR_ERR(fsl_edma->muxclk[i]); | ||
| 874 | } | ||
| 875 | |||
| 876 | ret = clk_prepare_enable(fsl_edma->muxclk[i]); | ||
| 877 | if (ret) { | ||
| 878 | dev_err(&pdev->dev, "DMAMUX clk block failed.\n"); | ||
| 879 | return ret; | ||
| 880 | } | ||
| 881 | |||
| 882 | } | ||
| 883 | |||
| 884 | ret = fsl_edma_irq_init(pdev, fsl_edma); | ||
| 885 | if (ret) | ||
| 886 | return ret; | ||
| 887 | |||
| 888 | fsl_edma->big_endian = of_property_read_bool(np, "big-endian"); | ||
| 889 | |||
| 890 | INIT_LIST_HEAD(&fsl_edma->dma_dev.channels); | ||
| 891 | for (i = 0; i < fsl_edma->n_chans; i++) { | ||
| 892 | struct fsl_edma_chan *fsl_chan = &fsl_edma->chans[i]; | ||
| 893 | |||
| 894 | fsl_chan->edma = fsl_edma; | ||
| 895 | |||
| 896 | fsl_chan->vchan.desc_free = fsl_edma_free_desc; | ||
| 897 | vchan_init(&fsl_chan->vchan, &fsl_edma->dma_dev); | ||
| 898 | |||
| 899 | edma_writew(fsl_edma, 0x0, fsl_edma->membase + EDMA_TCD_CSR(i)); | ||
| 900 | fsl_edma_chan_mux(fsl_chan, 0, false); | ||
| 901 | } | ||
| 902 | |||
| 903 | dma_cap_set(DMA_PRIVATE, fsl_edma->dma_dev.cap_mask); | ||
| 904 | dma_cap_set(DMA_SLAVE, fsl_edma->dma_dev.cap_mask); | ||
| 905 | dma_cap_set(DMA_CYCLIC, fsl_edma->dma_dev.cap_mask); | ||
| 906 | |||
| 907 | fsl_edma->dma_dev.dev = &pdev->dev; | ||
| 908 | fsl_edma->dma_dev.device_alloc_chan_resources | ||
| 909 | = fsl_edma_alloc_chan_resources; | ||
| 910 | fsl_edma->dma_dev.device_free_chan_resources | ||
| 911 | = fsl_edma_free_chan_resources; | ||
| 912 | fsl_edma->dma_dev.device_tx_status = fsl_edma_tx_status; | ||
| 913 | fsl_edma->dma_dev.device_prep_slave_sg = fsl_edma_prep_slave_sg; | ||
| 914 | fsl_edma->dma_dev.device_prep_dma_cyclic = fsl_edma_prep_dma_cyclic; | ||
| 915 | fsl_edma->dma_dev.device_control = fsl_edma_control; | ||
| 916 | fsl_edma->dma_dev.device_issue_pending = fsl_edma_issue_pending; | ||
| 917 | fsl_edma->dma_dev.device_slave_caps = fsl_dma_device_slave_caps; | ||
| 918 | |||
| 919 | platform_set_drvdata(pdev, fsl_edma); | ||
| 920 | |||
| 921 | ret = dma_async_device_register(&fsl_edma->dma_dev); | ||
| 922 | if (ret) { | ||
| 923 | dev_err(&pdev->dev, "Can't register Freescale eDMA engine.\n"); | ||
| 924 | return ret; | ||
| 925 | } | ||
| 926 | |||
| 927 | ret = of_dma_controller_register(np, fsl_edma_xlate, fsl_edma); | ||
| 928 | if (ret) { | ||
| 929 | dev_err(&pdev->dev, "Can't register Freescale eDMA of_dma.\n"); | ||
| 930 | dma_async_device_unregister(&fsl_edma->dma_dev); | ||
| 931 | return ret; | ||
| 932 | } | ||
| 933 | |||
| 934 | /* enable round robin arbitration */ | ||
| 935 | edma_writel(fsl_edma, EDMA_CR_ERGA | EDMA_CR_ERCA, fsl_edma->membase + EDMA_CR); | ||
| 936 | |||
| 937 | return 0; | ||
| 938 | } | ||
| 939 | |||
| 940 | static int fsl_edma_remove(struct platform_device *pdev) | ||
| 941 | { | ||
| 942 | struct device_node *np = pdev->dev.of_node; | ||
| 943 | struct fsl_edma_engine *fsl_edma = platform_get_drvdata(pdev); | ||
| 944 | int i; | ||
| 945 | |||
| 946 | of_dma_controller_free(np); | ||
| 947 | dma_async_device_unregister(&fsl_edma->dma_dev); | ||
| 948 | |||
| 949 | for (i = 0; i < DMAMUX_NR; i++) | ||
| 950 | clk_disable_unprepare(fsl_edma->muxclk[i]); | ||
| 951 | |||
| 952 | return 0; | ||
| 953 | } | ||
| 954 | |||
| 955 | static const struct of_device_id fsl_edma_dt_ids[] = { | ||
| 956 | { .compatible = "fsl,vf610-edma", }, | ||
| 957 | { /* sentinel */ } | ||
| 958 | }; | ||
| 959 | MODULE_DEVICE_TABLE(of, fsl_edma_dt_ids); | ||
| 960 | |||
| 961 | static struct platform_driver fsl_edma_driver = { | ||
| 962 | .driver = { | ||
| 963 | .name = "fsl-edma", | ||
| 964 | .owner = THIS_MODULE, | ||
| 965 | .of_match_table = fsl_edma_dt_ids, | ||
| 966 | }, | ||
| 967 | .probe = fsl_edma_probe, | ||
| 968 | .remove = fsl_edma_remove, | ||
| 969 | }; | ||
| 970 | |||
| 971 | module_platform_driver(fsl_edma_driver); | ||
| 972 | |||
| 973 | MODULE_ALIAS("platform:fsl-edma"); | ||
| 974 | MODULE_DESCRIPTION("Freescale eDMA engine driver"); | ||
| 975 | MODULE_LICENSE("GPL v2"); | ||
