diff options
-rw-r--r-- | mm/Kconfig | 20 | ||||
-rw-r--r-- | mm/Makefile | 1 | ||||
-rw-r--r-- | mm/zswap.c | 943 |
3 files changed, 964 insertions, 0 deletions
diff --git a/mm/Kconfig b/mm/Kconfig index 45503ed5f3aa..8028dcc6615c 100644 --- a/mm/Kconfig +++ b/mm/Kconfig | |||
@@ -488,6 +488,26 @@ config ZBUD | |||
488 | deterministic reclaim properties that make it preferable to a higher | 488 | deterministic reclaim properties that make it preferable to a higher |
489 | density approach when reclaim will be used. | 489 | density approach when reclaim will be used. |
490 | 490 | ||
491 | config ZSWAP | ||
492 | bool "Compressed cache for swap pages (EXPERIMENTAL)" | ||
493 | depends on FRONTSWAP && CRYPTO=y | ||
494 | select CRYPTO_LZO | ||
495 | select ZBUD | ||
496 | default n | ||
497 | help | ||
498 | A lightweight compressed cache for swap pages. It takes | ||
499 | pages that are in the process of being swapped out and attempts to | ||
500 | compress them into a dynamically allocated RAM-based memory pool. | ||
501 | This can result in a significant I/O reduction on swap device and, | ||
502 | in the case where decompressing from RAM is faster that swap device | ||
503 | reads, can also improve workload performance. | ||
504 | |||
505 | This is marked experimental because it is a new feature (as of | ||
506 | v3.11) that interacts heavily with memory reclaim. While these | ||
507 | interactions don't cause any known issues on simple memory setups, | ||
508 | they have not be fully explored on the large set of potential | ||
509 | configurations and workloads that exist. | ||
510 | |||
491 | config MEM_SOFT_DIRTY | 511 | config MEM_SOFT_DIRTY |
492 | bool "Track memory changes" | 512 | bool "Track memory changes" |
493 | depends on CHECKPOINT_RESTORE && HAVE_ARCH_SOFT_DIRTY | 513 | depends on CHECKPOINT_RESTORE && HAVE_ARCH_SOFT_DIRTY |
diff --git a/mm/Makefile b/mm/Makefile index 95f0197ce3d3..f00803386a67 100644 --- a/mm/Makefile +++ b/mm/Makefile | |||
@@ -32,6 +32,7 @@ obj-$(CONFIG_HAVE_MEMBLOCK) += memblock.o | |||
32 | obj-$(CONFIG_BOUNCE) += bounce.o | 32 | obj-$(CONFIG_BOUNCE) += bounce.o |
33 | obj-$(CONFIG_SWAP) += page_io.o swap_state.o swapfile.o | 33 | obj-$(CONFIG_SWAP) += page_io.o swap_state.o swapfile.o |
34 | obj-$(CONFIG_FRONTSWAP) += frontswap.o | 34 | obj-$(CONFIG_FRONTSWAP) += frontswap.o |
35 | obj-$(CONFIG_ZSWAP) += zswap.o | ||
35 | obj-$(CONFIG_HAS_DMA) += dmapool.o | 36 | obj-$(CONFIG_HAS_DMA) += dmapool.o |
36 | obj-$(CONFIG_HUGETLBFS) += hugetlb.o | 37 | obj-$(CONFIG_HUGETLBFS) += hugetlb.o |
37 | obj-$(CONFIG_NUMA) += mempolicy.o | 38 | obj-$(CONFIG_NUMA) += mempolicy.o |
diff --git a/mm/zswap.c b/mm/zswap.c new file mode 100644 index 000000000000..deda2b671e12 --- /dev/null +++ b/mm/zswap.c | |||
@@ -0,0 +1,943 @@ | |||
1 | /* | ||
2 | * zswap.c - zswap driver file | ||
3 | * | ||
4 | * zswap is a backend for frontswap that takes pages that are in the process | ||
5 | * of being swapped out and attempts to compress and store them in a | ||
6 | * RAM-based memory pool. This can result in a significant I/O reduction on | ||
7 | * the swap device and, in the case where decompressing from RAM is faster | ||
8 | * than reading from the swap device, can also improve workload performance. | ||
9 | * | ||
10 | * Copyright (C) 2012 Seth Jennings <sjenning@linux.vnet.ibm.com> | ||
11 | * | ||
12 | * This program is free software; you can redistribute it and/or | ||
13 | * modify it under the terms of the GNU General Public License | ||
14 | * as published by the Free Software Foundation; either version 2 | ||
15 | * of the License, or (at your option) any later version. | ||
16 | * | ||
17 | * This program is distributed in the hope that it will be useful, | ||
18 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
19 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
20 | * GNU General Public License for more details. | ||
21 | */ | ||
22 | |||
23 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | ||
24 | |||
25 | #include <linux/module.h> | ||
26 | #include <linux/cpu.h> | ||
27 | #include <linux/highmem.h> | ||
28 | #include <linux/slab.h> | ||
29 | #include <linux/spinlock.h> | ||
30 | #include <linux/types.h> | ||
31 | #include <linux/atomic.h> | ||
32 | #include <linux/frontswap.h> | ||
33 | #include <linux/rbtree.h> | ||
34 | #include <linux/swap.h> | ||
35 | #include <linux/crypto.h> | ||
36 | #include <linux/mempool.h> | ||
37 | #include <linux/zbud.h> | ||
38 | |||
39 | #include <linux/mm_types.h> | ||
40 | #include <linux/page-flags.h> | ||
41 | #include <linux/swapops.h> | ||
42 | #include <linux/writeback.h> | ||
43 | #include <linux/pagemap.h> | ||
44 | |||
45 | /********************************* | ||
46 | * statistics | ||
47 | **********************************/ | ||
48 | /* Number of memory pages used by the compressed pool */ | ||
49 | static u64 zswap_pool_pages; | ||
50 | /* The number of compressed pages currently stored in zswap */ | ||
51 | static atomic_t zswap_stored_pages = ATOMIC_INIT(0); | ||
52 | |||
53 | /* | ||
54 | * The statistics below are not protected from concurrent access for | ||
55 | * performance reasons so they may not be a 100% accurate. However, | ||
56 | * they do provide useful information on roughly how many times a | ||
57 | * certain event is occurring. | ||
58 | */ | ||
59 | |||
60 | /* Pool limit was hit (see zswap_max_pool_percent) */ | ||
61 | static u64 zswap_pool_limit_hit; | ||
62 | /* Pages written back when pool limit was reached */ | ||
63 | static u64 zswap_written_back_pages; | ||
64 | /* Store failed due to a reclaim failure after pool limit was reached */ | ||
65 | static u64 zswap_reject_reclaim_fail; | ||
66 | /* Compressed page was too big for the allocator to (optimally) store */ | ||
67 | static u64 zswap_reject_compress_poor; | ||
68 | /* Store failed because underlying allocator could not get memory */ | ||
69 | static u64 zswap_reject_alloc_fail; | ||
70 | /* Store failed because the entry metadata could not be allocated (rare) */ | ||
71 | static u64 zswap_reject_kmemcache_fail; | ||
72 | /* Duplicate store was encountered (rare) */ | ||
73 | static u64 zswap_duplicate_entry; | ||
74 | |||
75 | /********************************* | ||
76 | * tunables | ||
77 | **********************************/ | ||
78 | /* Enable/disable zswap (disabled by default, fixed at boot for now) */ | ||
79 | static bool zswap_enabled __read_mostly; | ||
80 | module_param_named(enabled, zswap_enabled, bool, 0); | ||
81 | |||
82 | /* Compressor to be used by zswap (fixed at boot for now) */ | ||
83 | #define ZSWAP_COMPRESSOR_DEFAULT "lzo" | ||
84 | static char *zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT; | ||
85 | module_param_named(compressor, zswap_compressor, charp, 0); | ||
86 | |||
87 | /* The maximum percentage of memory that the compressed pool can occupy */ | ||
88 | static unsigned int zswap_max_pool_percent = 20; | ||
89 | module_param_named(max_pool_percent, | ||
90 | zswap_max_pool_percent, uint, 0644); | ||
91 | |||
92 | /********************************* | ||
93 | * compression functions | ||
94 | **********************************/ | ||
95 | /* per-cpu compression transforms */ | ||
96 | static struct crypto_comp * __percpu *zswap_comp_pcpu_tfms; | ||
97 | |||
98 | enum comp_op { | ||
99 | ZSWAP_COMPOP_COMPRESS, | ||
100 | ZSWAP_COMPOP_DECOMPRESS | ||
101 | }; | ||
102 | |||
103 | static int zswap_comp_op(enum comp_op op, const u8 *src, unsigned int slen, | ||
104 | u8 *dst, unsigned int *dlen) | ||
105 | { | ||
106 | struct crypto_comp *tfm; | ||
107 | int ret; | ||
108 | |||
109 | tfm = *per_cpu_ptr(zswap_comp_pcpu_tfms, get_cpu()); | ||
110 | switch (op) { | ||
111 | case ZSWAP_COMPOP_COMPRESS: | ||
112 | ret = crypto_comp_compress(tfm, src, slen, dst, dlen); | ||
113 | break; | ||
114 | case ZSWAP_COMPOP_DECOMPRESS: | ||
115 | ret = crypto_comp_decompress(tfm, src, slen, dst, dlen); | ||
116 | break; | ||
117 | default: | ||
118 | ret = -EINVAL; | ||
119 | } | ||
120 | |||
121 | put_cpu(); | ||
122 | return ret; | ||
123 | } | ||
124 | |||
125 | static int __init zswap_comp_init(void) | ||
126 | { | ||
127 | if (!crypto_has_comp(zswap_compressor, 0, 0)) { | ||
128 | pr_info("%s compressor not available\n", zswap_compressor); | ||
129 | /* fall back to default compressor */ | ||
130 | zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT; | ||
131 | if (!crypto_has_comp(zswap_compressor, 0, 0)) | ||
132 | /* can't even load the default compressor */ | ||
133 | return -ENODEV; | ||
134 | } | ||
135 | pr_info("using %s compressor\n", zswap_compressor); | ||
136 | |||
137 | /* alloc percpu transforms */ | ||
138 | zswap_comp_pcpu_tfms = alloc_percpu(struct crypto_comp *); | ||
139 | if (!zswap_comp_pcpu_tfms) | ||
140 | return -ENOMEM; | ||
141 | return 0; | ||
142 | } | ||
143 | |||
144 | static void zswap_comp_exit(void) | ||
145 | { | ||
146 | /* free percpu transforms */ | ||
147 | if (zswap_comp_pcpu_tfms) | ||
148 | free_percpu(zswap_comp_pcpu_tfms); | ||
149 | } | ||
150 | |||
151 | /********************************* | ||
152 | * data structures | ||
153 | **********************************/ | ||
154 | /* | ||
155 | * struct zswap_entry | ||
156 | * | ||
157 | * This structure contains the metadata for tracking a single compressed | ||
158 | * page within zswap. | ||
159 | * | ||
160 | * rbnode - links the entry into red-black tree for the appropriate swap type | ||
161 | * refcount - the number of outstanding reference to the entry. This is needed | ||
162 | * to protect against premature freeing of the entry by code | ||
163 | * concurent calls to load, invalidate, and writeback. The lock | ||
164 | * for the zswap_tree structure that contains the entry must | ||
165 | * be held while changing the refcount. Since the lock must | ||
166 | * be held, there is no reason to also make refcount atomic. | ||
167 | * offset - the swap offset for the entry. Index into the red-black tree. | ||
168 | * handle - zsmalloc allocation handle that stores the compressed page data | ||
169 | * length - the length in bytes of the compressed page data. Needed during | ||
170 | * decompression | ||
171 | */ | ||
172 | struct zswap_entry { | ||
173 | struct rb_node rbnode; | ||
174 | pgoff_t offset; | ||
175 | int refcount; | ||
176 | unsigned int length; | ||
177 | unsigned long handle; | ||
178 | }; | ||
179 | |||
180 | struct zswap_header { | ||
181 | swp_entry_t swpentry; | ||
182 | }; | ||
183 | |||
184 | /* | ||
185 | * The tree lock in the zswap_tree struct protects a few things: | ||
186 | * - the rbtree | ||
187 | * - the refcount field of each entry in the tree | ||
188 | */ | ||
189 | struct zswap_tree { | ||
190 | struct rb_root rbroot; | ||
191 | spinlock_t lock; | ||
192 | struct zbud_pool *pool; | ||
193 | }; | ||
194 | |||
195 | static struct zswap_tree *zswap_trees[MAX_SWAPFILES]; | ||
196 | |||
197 | /********************************* | ||
198 | * zswap entry functions | ||
199 | **********************************/ | ||
200 | static struct kmem_cache *zswap_entry_cache; | ||
201 | |||
202 | static int zswap_entry_cache_create(void) | ||
203 | { | ||
204 | zswap_entry_cache = KMEM_CACHE(zswap_entry, 0); | ||
205 | return (zswap_entry_cache == NULL); | ||
206 | } | ||
207 | |||
208 | static void zswap_entry_cache_destory(void) | ||
209 | { | ||
210 | kmem_cache_destroy(zswap_entry_cache); | ||
211 | } | ||
212 | |||
213 | static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp) | ||
214 | { | ||
215 | struct zswap_entry *entry; | ||
216 | entry = kmem_cache_alloc(zswap_entry_cache, gfp); | ||
217 | if (!entry) | ||
218 | return NULL; | ||
219 | entry->refcount = 1; | ||
220 | return entry; | ||
221 | } | ||
222 | |||
223 | static void zswap_entry_cache_free(struct zswap_entry *entry) | ||
224 | { | ||
225 | kmem_cache_free(zswap_entry_cache, entry); | ||
226 | } | ||
227 | |||
228 | /* caller must hold the tree lock */ | ||
229 | static void zswap_entry_get(struct zswap_entry *entry) | ||
230 | { | ||
231 | entry->refcount++; | ||
232 | } | ||
233 | |||
234 | /* caller must hold the tree lock */ | ||
235 | static int zswap_entry_put(struct zswap_entry *entry) | ||
236 | { | ||
237 | entry->refcount--; | ||
238 | return entry->refcount; | ||
239 | } | ||
240 | |||
241 | /********************************* | ||
242 | * rbtree functions | ||
243 | **********************************/ | ||
244 | static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset) | ||
245 | { | ||
246 | struct rb_node *node = root->rb_node; | ||
247 | struct zswap_entry *entry; | ||
248 | |||
249 | while (node) { | ||
250 | entry = rb_entry(node, struct zswap_entry, rbnode); | ||
251 | if (entry->offset > offset) | ||
252 | node = node->rb_left; | ||
253 | else if (entry->offset < offset) | ||
254 | node = node->rb_right; | ||
255 | else | ||
256 | return entry; | ||
257 | } | ||
258 | return NULL; | ||
259 | } | ||
260 | |||
261 | /* | ||
262 | * In the case that a entry with the same offset is found, a pointer to | ||
263 | * the existing entry is stored in dupentry and the function returns -EEXIST | ||
264 | */ | ||
265 | static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry, | ||
266 | struct zswap_entry **dupentry) | ||
267 | { | ||
268 | struct rb_node **link = &root->rb_node, *parent = NULL; | ||
269 | struct zswap_entry *myentry; | ||
270 | |||
271 | while (*link) { | ||
272 | parent = *link; | ||
273 | myentry = rb_entry(parent, struct zswap_entry, rbnode); | ||
274 | if (myentry->offset > entry->offset) | ||
275 | link = &(*link)->rb_left; | ||
276 | else if (myentry->offset < entry->offset) | ||
277 | link = &(*link)->rb_right; | ||
278 | else { | ||
279 | *dupentry = myentry; | ||
280 | return -EEXIST; | ||
281 | } | ||
282 | } | ||
283 | rb_link_node(&entry->rbnode, parent, link); | ||
284 | rb_insert_color(&entry->rbnode, root); | ||
285 | return 0; | ||
286 | } | ||
287 | |||
288 | /********************************* | ||
289 | * per-cpu code | ||
290 | **********************************/ | ||
291 | static DEFINE_PER_CPU(u8 *, zswap_dstmem); | ||
292 | |||
293 | static int __zswap_cpu_notifier(unsigned long action, unsigned long cpu) | ||
294 | { | ||
295 | struct crypto_comp *tfm; | ||
296 | u8 *dst; | ||
297 | |||
298 | switch (action) { | ||
299 | case CPU_UP_PREPARE: | ||
300 | tfm = crypto_alloc_comp(zswap_compressor, 0, 0); | ||
301 | if (IS_ERR(tfm)) { | ||
302 | pr_err("can't allocate compressor transform\n"); | ||
303 | return NOTIFY_BAD; | ||
304 | } | ||
305 | *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = tfm; | ||
306 | dst = kmalloc(PAGE_SIZE * 2, GFP_KERNEL); | ||
307 | if (!dst) { | ||
308 | pr_err("can't allocate compressor buffer\n"); | ||
309 | crypto_free_comp(tfm); | ||
310 | *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = NULL; | ||
311 | return NOTIFY_BAD; | ||
312 | } | ||
313 | per_cpu(zswap_dstmem, cpu) = dst; | ||
314 | break; | ||
315 | case CPU_DEAD: | ||
316 | case CPU_UP_CANCELED: | ||
317 | tfm = *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu); | ||
318 | if (tfm) { | ||
319 | crypto_free_comp(tfm); | ||
320 | *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = NULL; | ||
321 | } | ||
322 | dst = per_cpu(zswap_dstmem, cpu); | ||
323 | kfree(dst); | ||
324 | per_cpu(zswap_dstmem, cpu) = NULL; | ||
325 | break; | ||
326 | default: | ||
327 | break; | ||
328 | } | ||
329 | return NOTIFY_OK; | ||
330 | } | ||
331 | |||
332 | static int zswap_cpu_notifier(struct notifier_block *nb, | ||
333 | unsigned long action, void *pcpu) | ||
334 | { | ||
335 | unsigned long cpu = (unsigned long)pcpu; | ||
336 | return __zswap_cpu_notifier(action, cpu); | ||
337 | } | ||
338 | |||
339 | static struct notifier_block zswap_cpu_notifier_block = { | ||
340 | .notifier_call = zswap_cpu_notifier | ||
341 | }; | ||
342 | |||
343 | static int zswap_cpu_init(void) | ||
344 | { | ||
345 | unsigned long cpu; | ||
346 | |||
347 | get_online_cpus(); | ||
348 | for_each_online_cpu(cpu) | ||
349 | if (__zswap_cpu_notifier(CPU_UP_PREPARE, cpu) != NOTIFY_OK) | ||
350 | goto cleanup; | ||
351 | register_cpu_notifier(&zswap_cpu_notifier_block); | ||
352 | put_online_cpus(); | ||
353 | return 0; | ||
354 | |||
355 | cleanup: | ||
356 | for_each_online_cpu(cpu) | ||
357 | __zswap_cpu_notifier(CPU_UP_CANCELED, cpu); | ||
358 | put_online_cpus(); | ||
359 | return -ENOMEM; | ||
360 | } | ||
361 | |||
362 | /********************************* | ||
363 | * helpers | ||
364 | **********************************/ | ||
365 | static bool zswap_is_full(void) | ||
366 | { | ||
367 | return (totalram_pages * zswap_max_pool_percent / 100 < | ||
368 | zswap_pool_pages); | ||
369 | } | ||
370 | |||
371 | /* | ||
372 | * Carries out the common pattern of freeing and entry's zsmalloc allocation, | ||
373 | * freeing the entry itself, and decrementing the number of stored pages. | ||
374 | */ | ||
375 | static void zswap_free_entry(struct zswap_tree *tree, struct zswap_entry *entry) | ||
376 | { | ||
377 | zbud_free(tree->pool, entry->handle); | ||
378 | zswap_entry_cache_free(entry); | ||
379 | atomic_dec(&zswap_stored_pages); | ||
380 | zswap_pool_pages = zbud_get_pool_size(tree->pool); | ||
381 | } | ||
382 | |||
383 | /********************************* | ||
384 | * writeback code | ||
385 | **********************************/ | ||
386 | /* return enum for zswap_get_swap_cache_page */ | ||
387 | enum zswap_get_swap_ret { | ||
388 | ZSWAP_SWAPCACHE_NEW, | ||
389 | ZSWAP_SWAPCACHE_EXIST, | ||
390 | ZSWAP_SWAPCACHE_NOMEM | ||
391 | }; | ||
392 | |||
393 | /* | ||
394 | * zswap_get_swap_cache_page | ||
395 | * | ||
396 | * This is an adaption of read_swap_cache_async() | ||
397 | * | ||
398 | * This function tries to find a page with the given swap entry | ||
399 | * in the swapper_space address space (the swap cache). If the page | ||
400 | * is found, it is returned in retpage. Otherwise, a page is allocated, | ||
401 | * added to the swap cache, and returned in retpage. | ||
402 | * | ||
403 | * If success, the swap cache page is returned in retpage | ||
404 | * Returns 0 if page was already in the swap cache, page is not locked | ||
405 | * Returns 1 if the new page needs to be populated, page is locked | ||
406 | * Returns <0 on error | ||
407 | */ | ||
408 | static int zswap_get_swap_cache_page(swp_entry_t entry, | ||
409 | struct page **retpage) | ||
410 | { | ||
411 | struct page *found_page, *new_page = NULL; | ||
412 | struct address_space *swapper_space = &swapper_spaces[swp_type(entry)]; | ||
413 | int err; | ||
414 | |||
415 | *retpage = NULL; | ||
416 | do { | ||
417 | /* | ||
418 | * First check the swap cache. Since this is normally | ||
419 | * called after lookup_swap_cache() failed, re-calling | ||
420 | * that would confuse statistics. | ||
421 | */ | ||
422 | found_page = find_get_page(swapper_space, entry.val); | ||
423 | if (found_page) | ||
424 | break; | ||
425 | |||
426 | /* | ||
427 | * Get a new page to read into from swap. | ||
428 | */ | ||
429 | if (!new_page) { | ||
430 | new_page = alloc_page(GFP_KERNEL); | ||
431 | if (!new_page) | ||
432 | break; /* Out of memory */ | ||
433 | } | ||
434 | |||
435 | /* | ||
436 | * call radix_tree_preload() while we can wait. | ||
437 | */ | ||
438 | err = radix_tree_preload(GFP_KERNEL); | ||
439 | if (err) | ||
440 | break; | ||
441 | |||
442 | /* | ||
443 | * Swap entry may have been freed since our caller observed it. | ||
444 | */ | ||
445 | err = swapcache_prepare(entry); | ||
446 | if (err == -EEXIST) { /* seems racy */ | ||
447 | radix_tree_preload_end(); | ||
448 | continue; | ||
449 | } | ||
450 | if (err) { /* swp entry is obsolete ? */ | ||
451 | radix_tree_preload_end(); | ||
452 | break; | ||
453 | } | ||
454 | |||
455 | /* May fail (-ENOMEM) if radix-tree node allocation failed. */ | ||
456 | __set_page_locked(new_page); | ||
457 | SetPageSwapBacked(new_page); | ||
458 | err = __add_to_swap_cache(new_page, entry); | ||
459 | if (likely(!err)) { | ||
460 | radix_tree_preload_end(); | ||
461 | lru_cache_add_anon(new_page); | ||
462 | *retpage = new_page; | ||
463 | return ZSWAP_SWAPCACHE_NEW; | ||
464 | } | ||
465 | radix_tree_preload_end(); | ||
466 | ClearPageSwapBacked(new_page); | ||
467 | __clear_page_locked(new_page); | ||
468 | /* | ||
469 | * add_to_swap_cache() doesn't return -EEXIST, so we can safely | ||
470 | * clear SWAP_HAS_CACHE flag. | ||
471 | */ | ||
472 | swapcache_free(entry, NULL); | ||
473 | } while (err != -ENOMEM); | ||
474 | |||
475 | if (new_page) | ||
476 | page_cache_release(new_page); | ||
477 | if (!found_page) | ||
478 | return ZSWAP_SWAPCACHE_NOMEM; | ||
479 | *retpage = found_page; | ||
480 | return ZSWAP_SWAPCACHE_EXIST; | ||
481 | } | ||
482 | |||
483 | /* | ||
484 | * Attempts to free an entry by adding a page to the swap cache, | ||
485 | * decompressing the entry data into the page, and issuing a | ||
486 | * bio write to write the page back to the swap device. | ||
487 | * | ||
488 | * This can be thought of as a "resumed writeback" of the page | ||
489 | * to the swap device. We are basically resuming the same swap | ||
490 | * writeback path that was intercepted with the frontswap_store() | ||
491 | * in the first place. After the page has been decompressed into | ||
492 | * the swap cache, the compressed version stored by zswap can be | ||
493 | * freed. | ||
494 | */ | ||
495 | static int zswap_writeback_entry(struct zbud_pool *pool, unsigned long handle) | ||
496 | { | ||
497 | struct zswap_header *zhdr; | ||
498 | swp_entry_t swpentry; | ||
499 | struct zswap_tree *tree; | ||
500 | pgoff_t offset; | ||
501 | struct zswap_entry *entry; | ||
502 | struct page *page; | ||
503 | u8 *src, *dst; | ||
504 | unsigned int dlen; | ||
505 | int ret, refcount; | ||
506 | struct writeback_control wbc = { | ||
507 | .sync_mode = WB_SYNC_NONE, | ||
508 | }; | ||
509 | |||
510 | /* extract swpentry from data */ | ||
511 | zhdr = zbud_map(pool, handle); | ||
512 | swpentry = zhdr->swpentry; /* here */ | ||
513 | zbud_unmap(pool, handle); | ||
514 | tree = zswap_trees[swp_type(swpentry)]; | ||
515 | offset = swp_offset(swpentry); | ||
516 | BUG_ON(pool != tree->pool); | ||
517 | |||
518 | /* find and ref zswap entry */ | ||
519 | spin_lock(&tree->lock); | ||
520 | entry = zswap_rb_search(&tree->rbroot, offset); | ||
521 | if (!entry) { | ||
522 | /* entry was invalidated */ | ||
523 | spin_unlock(&tree->lock); | ||
524 | return 0; | ||
525 | } | ||
526 | zswap_entry_get(entry); | ||
527 | spin_unlock(&tree->lock); | ||
528 | BUG_ON(offset != entry->offset); | ||
529 | |||
530 | /* try to allocate swap cache page */ | ||
531 | switch (zswap_get_swap_cache_page(swpentry, &page)) { | ||
532 | case ZSWAP_SWAPCACHE_NOMEM: /* no memory */ | ||
533 | ret = -ENOMEM; | ||
534 | goto fail; | ||
535 | |||
536 | case ZSWAP_SWAPCACHE_EXIST: /* page is unlocked */ | ||
537 | /* page is already in the swap cache, ignore for now */ | ||
538 | page_cache_release(page); | ||
539 | ret = -EEXIST; | ||
540 | goto fail; | ||
541 | |||
542 | case ZSWAP_SWAPCACHE_NEW: /* page is locked */ | ||
543 | /* decompress */ | ||
544 | dlen = PAGE_SIZE; | ||
545 | src = (u8 *)zbud_map(tree->pool, entry->handle) + | ||
546 | sizeof(struct zswap_header); | ||
547 | dst = kmap_atomic(page); | ||
548 | ret = zswap_comp_op(ZSWAP_COMPOP_DECOMPRESS, src, | ||
549 | entry->length, dst, &dlen); | ||
550 | kunmap_atomic(dst); | ||
551 | zbud_unmap(tree->pool, entry->handle); | ||
552 | BUG_ON(ret); | ||
553 | BUG_ON(dlen != PAGE_SIZE); | ||
554 | |||
555 | /* page is up to date */ | ||
556 | SetPageUptodate(page); | ||
557 | } | ||
558 | |||
559 | /* start writeback */ | ||
560 | __swap_writepage(page, &wbc, end_swap_bio_write); | ||
561 | page_cache_release(page); | ||
562 | zswap_written_back_pages++; | ||
563 | |||
564 | spin_lock(&tree->lock); | ||
565 | |||
566 | /* drop local reference */ | ||
567 | zswap_entry_put(entry); | ||
568 | /* drop the initial reference from entry creation */ | ||
569 | refcount = zswap_entry_put(entry); | ||
570 | |||
571 | /* | ||
572 | * There are three possible values for refcount here: | ||
573 | * (1) refcount is 1, load is in progress, unlink from rbtree, | ||
574 | * load will free | ||
575 | * (2) refcount is 0, (normal case) entry is valid, | ||
576 | * remove from rbtree and free entry | ||
577 | * (3) refcount is -1, invalidate happened during writeback, | ||
578 | * free entry | ||
579 | */ | ||
580 | if (refcount >= 0) { | ||
581 | /* no invalidate yet, remove from rbtree */ | ||
582 | rb_erase(&entry->rbnode, &tree->rbroot); | ||
583 | } | ||
584 | spin_unlock(&tree->lock); | ||
585 | if (refcount <= 0) { | ||
586 | /* free the entry */ | ||
587 | zswap_free_entry(tree, entry); | ||
588 | return 0; | ||
589 | } | ||
590 | return -EAGAIN; | ||
591 | |||
592 | fail: | ||
593 | spin_lock(&tree->lock); | ||
594 | zswap_entry_put(entry); | ||
595 | spin_unlock(&tree->lock); | ||
596 | return ret; | ||
597 | } | ||
598 | |||
599 | /********************************* | ||
600 | * frontswap hooks | ||
601 | **********************************/ | ||
602 | /* attempts to compress and store an single page */ | ||
603 | static int zswap_frontswap_store(unsigned type, pgoff_t offset, | ||
604 | struct page *page) | ||
605 | { | ||
606 | struct zswap_tree *tree = zswap_trees[type]; | ||
607 | struct zswap_entry *entry, *dupentry; | ||
608 | int ret; | ||
609 | unsigned int dlen = PAGE_SIZE, len; | ||
610 | unsigned long handle; | ||
611 | char *buf; | ||
612 | u8 *src, *dst; | ||
613 | struct zswap_header *zhdr; | ||
614 | |||
615 | if (!tree) { | ||
616 | ret = -ENODEV; | ||
617 | goto reject; | ||
618 | } | ||
619 | |||
620 | /* reclaim space if needed */ | ||
621 | if (zswap_is_full()) { | ||
622 | zswap_pool_limit_hit++; | ||
623 | if (zbud_reclaim_page(tree->pool, 8)) { | ||
624 | zswap_reject_reclaim_fail++; | ||
625 | ret = -ENOMEM; | ||
626 | goto reject; | ||
627 | } | ||
628 | } | ||
629 | |||
630 | /* allocate entry */ | ||
631 | entry = zswap_entry_cache_alloc(GFP_KERNEL); | ||
632 | if (!entry) { | ||
633 | zswap_reject_kmemcache_fail++; | ||
634 | ret = -ENOMEM; | ||
635 | goto reject; | ||
636 | } | ||
637 | |||
638 | /* compress */ | ||
639 | dst = get_cpu_var(zswap_dstmem); | ||
640 | src = kmap_atomic(page); | ||
641 | ret = zswap_comp_op(ZSWAP_COMPOP_COMPRESS, src, PAGE_SIZE, dst, &dlen); | ||
642 | kunmap_atomic(src); | ||
643 | if (ret) { | ||
644 | ret = -EINVAL; | ||
645 | goto freepage; | ||
646 | } | ||
647 | |||
648 | /* store */ | ||
649 | len = dlen + sizeof(struct zswap_header); | ||
650 | ret = zbud_alloc(tree->pool, len, __GFP_NORETRY | __GFP_NOWARN, | ||
651 | &handle); | ||
652 | if (ret == -ENOSPC) { | ||
653 | zswap_reject_compress_poor++; | ||
654 | goto freepage; | ||
655 | } | ||
656 | if (ret) { | ||
657 | zswap_reject_alloc_fail++; | ||
658 | goto freepage; | ||
659 | } | ||
660 | zhdr = zbud_map(tree->pool, handle); | ||
661 | zhdr->swpentry = swp_entry(type, offset); | ||
662 | buf = (u8 *)(zhdr + 1); | ||
663 | memcpy(buf, dst, dlen); | ||
664 | zbud_unmap(tree->pool, handle); | ||
665 | put_cpu_var(zswap_dstmem); | ||
666 | |||
667 | /* populate entry */ | ||
668 | entry->offset = offset; | ||
669 | entry->handle = handle; | ||
670 | entry->length = dlen; | ||
671 | |||
672 | /* map */ | ||
673 | spin_lock(&tree->lock); | ||
674 | do { | ||
675 | ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry); | ||
676 | if (ret == -EEXIST) { | ||
677 | zswap_duplicate_entry++; | ||
678 | /* remove from rbtree */ | ||
679 | rb_erase(&dupentry->rbnode, &tree->rbroot); | ||
680 | if (!zswap_entry_put(dupentry)) { | ||
681 | /* free */ | ||
682 | zswap_free_entry(tree, dupentry); | ||
683 | } | ||
684 | } | ||
685 | } while (ret == -EEXIST); | ||
686 | spin_unlock(&tree->lock); | ||
687 | |||
688 | /* update stats */ | ||
689 | atomic_inc(&zswap_stored_pages); | ||
690 | zswap_pool_pages = zbud_get_pool_size(tree->pool); | ||
691 | |||
692 | return 0; | ||
693 | |||
694 | freepage: | ||
695 | put_cpu_var(zswap_dstmem); | ||
696 | zswap_entry_cache_free(entry); | ||
697 | reject: | ||
698 | return ret; | ||
699 | } | ||
700 | |||
701 | /* | ||
702 | * returns 0 if the page was successfully decompressed | ||
703 | * return -1 on entry not found or error | ||
704 | */ | ||
705 | static int zswap_frontswap_load(unsigned type, pgoff_t offset, | ||
706 | struct page *page) | ||
707 | { | ||
708 | struct zswap_tree *tree = zswap_trees[type]; | ||
709 | struct zswap_entry *entry; | ||
710 | u8 *src, *dst; | ||
711 | unsigned int dlen; | ||
712 | int refcount, ret; | ||
713 | |||
714 | /* find */ | ||
715 | spin_lock(&tree->lock); | ||
716 | entry = zswap_rb_search(&tree->rbroot, offset); | ||
717 | if (!entry) { | ||
718 | /* entry was written back */ | ||
719 | spin_unlock(&tree->lock); | ||
720 | return -1; | ||
721 | } | ||
722 | zswap_entry_get(entry); | ||
723 | spin_unlock(&tree->lock); | ||
724 | |||
725 | /* decompress */ | ||
726 | dlen = PAGE_SIZE; | ||
727 | src = (u8 *)zbud_map(tree->pool, entry->handle) + | ||
728 | sizeof(struct zswap_header); | ||
729 | dst = kmap_atomic(page); | ||
730 | ret = zswap_comp_op(ZSWAP_COMPOP_DECOMPRESS, src, entry->length, | ||
731 | dst, &dlen); | ||
732 | kunmap_atomic(dst); | ||
733 | zbud_unmap(tree->pool, entry->handle); | ||
734 | BUG_ON(ret); | ||
735 | |||
736 | spin_lock(&tree->lock); | ||
737 | refcount = zswap_entry_put(entry); | ||
738 | if (likely(refcount)) { | ||
739 | spin_unlock(&tree->lock); | ||
740 | return 0; | ||
741 | } | ||
742 | spin_unlock(&tree->lock); | ||
743 | |||
744 | /* | ||
745 | * We don't have to unlink from the rbtree because | ||
746 | * zswap_writeback_entry() or zswap_frontswap_invalidate page() | ||
747 | * has already done this for us if we are the last reference. | ||
748 | */ | ||
749 | /* free */ | ||
750 | |||
751 | zswap_free_entry(tree, entry); | ||
752 | |||
753 | return 0; | ||
754 | } | ||
755 | |||
756 | /* frees an entry in zswap */ | ||
757 | static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset) | ||
758 | { | ||
759 | struct zswap_tree *tree = zswap_trees[type]; | ||
760 | struct zswap_entry *entry; | ||
761 | int refcount; | ||
762 | |||
763 | /* find */ | ||
764 | spin_lock(&tree->lock); | ||
765 | entry = zswap_rb_search(&tree->rbroot, offset); | ||
766 | if (!entry) { | ||
767 | /* entry was written back */ | ||
768 | spin_unlock(&tree->lock); | ||
769 | return; | ||
770 | } | ||
771 | |||
772 | /* remove from rbtree */ | ||
773 | rb_erase(&entry->rbnode, &tree->rbroot); | ||
774 | |||
775 | /* drop the initial reference from entry creation */ | ||
776 | refcount = zswap_entry_put(entry); | ||
777 | |||
778 | spin_unlock(&tree->lock); | ||
779 | |||
780 | if (refcount) { | ||
781 | /* writeback in progress, writeback will free */ | ||
782 | return; | ||
783 | } | ||
784 | |||
785 | /* free */ | ||
786 | zswap_free_entry(tree, entry); | ||
787 | } | ||
788 | |||
789 | /* frees all zswap entries for the given swap type */ | ||
790 | static void zswap_frontswap_invalidate_area(unsigned type) | ||
791 | { | ||
792 | struct zswap_tree *tree = zswap_trees[type]; | ||
793 | struct rb_node *node; | ||
794 | struct zswap_entry *entry; | ||
795 | |||
796 | if (!tree) | ||
797 | return; | ||
798 | |||
799 | /* walk the tree and free everything */ | ||
800 | spin_lock(&tree->lock); | ||
801 | /* | ||
802 | * TODO: Even though this code should not be executed because | ||
803 | * the try_to_unuse() in swapoff should have emptied the tree, | ||
804 | * it is very wasteful to rebalance the tree after every | ||
805 | * removal when we are freeing the whole tree. | ||
806 | * | ||
807 | * If post-order traversal code is ever added to the rbtree | ||
808 | * implementation, it should be used here. | ||
809 | */ | ||
810 | while ((node = rb_first(&tree->rbroot))) { | ||
811 | entry = rb_entry(node, struct zswap_entry, rbnode); | ||
812 | rb_erase(&entry->rbnode, &tree->rbroot); | ||
813 | zbud_free(tree->pool, entry->handle); | ||
814 | zswap_entry_cache_free(entry); | ||
815 | atomic_dec(&zswap_stored_pages); | ||
816 | } | ||
817 | tree->rbroot = RB_ROOT; | ||
818 | spin_unlock(&tree->lock); | ||
819 | } | ||
820 | |||
821 | static struct zbud_ops zswap_zbud_ops = { | ||
822 | .evict = zswap_writeback_entry | ||
823 | }; | ||
824 | |||
825 | static void zswap_frontswap_init(unsigned type) | ||
826 | { | ||
827 | struct zswap_tree *tree; | ||
828 | |||
829 | tree = kzalloc(sizeof(struct zswap_tree), GFP_KERNEL); | ||
830 | if (!tree) | ||
831 | goto err; | ||
832 | tree->pool = zbud_create_pool(GFP_KERNEL, &zswap_zbud_ops); | ||
833 | if (!tree->pool) | ||
834 | goto freetree; | ||
835 | tree->rbroot = RB_ROOT; | ||
836 | spin_lock_init(&tree->lock); | ||
837 | zswap_trees[type] = tree; | ||
838 | return; | ||
839 | |||
840 | freetree: | ||
841 | kfree(tree); | ||
842 | err: | ||
843 | pr_err("alloc failed, zswap disabled for swap type %d\n", type); | ||
844 | } | ||
845 | |||
846 | static struct frontswap_ops zswap_frontswap_ops = { | ||
847 | .store = zswap_frontswap_store, | ||
848 | .load = zswap_frontswap_load, | ||
849 | .invalidate_page = zswap_frontswap_invalidate_page, | ||
850 | .invalidate_area = zswap_frontswap_invalidate_area, | ||
851 | .init = zswap_frontswap_init | ||
852 | }; | ||
853 | |||
854 | /********************************* | ||
855 | * debugfs functions | ||
856 | **********************************/ | ||
857 | #ifdef CONFIG_DEBUG_FS | ||
858 | #include <linux/debugfs.h> | ||
859 | |||
860 | static struct dentry *zswap_debugfs_root; | ||
861 | |||
862 | static int __init zswap_debugfs_init(void) | ||
863 | { | ||
864 | if (!debugfs_initialized()) | ||
865 | return -ENODEV; | ||
866 | |||
867 | zswap_debugfs_root = debugfs_create_dir("zswap", NULL); | ||
868 | if (!zswap_debugfs_root) | ||
869 | return -ENOMEM; | ||
870 | |||
871 | debugfs_create_u64("pool_limit_hit", S_IRUGO, | ||
872 | zswap_debugfs_root, &zswap_pool_limit_hit); | ||
873 | debugfs_create_u64("reject_reclaim_fail", S_IRUGO, | ||
874 | zswap_debugfs_root, &zswap_reject_reclaim_fail); | ||
875 | debugfs_create_u64("reject_alloc_fail", S_IRUGO, | ||
876 | zswap_debugfs_root, &zswap_reject_alloc_fail); | ||
877 | debugfs_create_u64("reject_kmemcache_fail", S_IRUGO, | ||
878 | zswap_debugfs_root, &zswap_reject_kmemcache_fail); | ||
879 | debugfs_create_u64("reject_compress_poor", S_IRUGO, | ||
880 | zswap_debugfs_root, &zswap_reject_compress_poor); | ||
881 | debugfs_create_u64("written_back_pages", S_IRUGO, | ||
882 | zswap_debugfs_root, &zswap_written_back_pages); | ||
883 | debugfs_create_u64("duplicate_entry", S_IRUGO, | ||
884 | zswap_debugfs_root, &zswap_duplicate_entry); | ||
885 | debugfs_create_u64("pool_pages", S_IRUGO, | ||
886 | zswap_debugfs_root, &zswap_pool_pages); | ||
887 | debugfs_create_atomic_t("stored_pages", S_IRUGO, | ||
888 | zswap_debugfs_root, &zswap_stored_pages); | ||
889 | |||
890 | return 0; | ||
891 | } | ||
892 | |||
893 | static void __exit zswap_debugfs_exit(void) | ||
894 | { | ||
895 | debugfs_remove_recursive(zswap_debugfs_root); | ||
896 | } | ||
897 | #else | ||
898 | static int __init zswap_debugfs_init(void) | ||
899 | { | ||
900 | return 0; | ||
901 | } | ||
902 | |||
903 | static void __exit zswap_debugfs_exit(void) { } | ||
904 | #endif | ||
905 | |||
906 | /********************************* | ||
907 | * module init and exit | ||
908 | **********************************/ | ||
909 | static int __init init_zswap(void) | ||
910 | { | ||
911 | if (!zswap_enabled) | ||
912 | return 0; | ||
913 | |||
914 | pr_info("loading zswap\n"); | ||
915 | if (zswap_entry_cache_create()) { | ||
916 | pr_err("entry cache creation failed\n"); | ||
917 | goto error; | ||
918 | } | ||
919 | if (zswap_comp_init()) { | ||
920 | pr_err("compressor initialization failed\n"); | ||
921 | goto compfail; | ||
922 | } | ||
923 | if (zswap_cpu_init()) { | ||
924 | pr_err("per-cpu initialization failed\n"); | ||
925 | goto pcpufail; | ||
926 | } | ||
927 | frontswap_register_ops(&zswap_frontswap_ops); | ||
928 | if (zswap_debugfs_init()) | ||
929 | pr_warn("debugfs initialization failed\n"); | ||
930 | return 0; | ||
931 | pcpufail: | ||
932 | zswap_comp_exit(); | ||
933 | compfail: | ||
934 | zswap_entry_cache_destory(); | ||
935 | error: | ||
936 | return -ENOMEM; | ||
937 | } | ||
938 | /* must be late so crypto has time to come up */ | ||
939 | late_initcall(init_zswap); | ||
940 | |||
941 | MODULE_LICENSE("GPL"); | ||
942 | MODULE_AUTHOR("Seth Jennings <sjenning@linux.vnet.ibm.com>"); | ||
943 | MODULE_DESCRIPTION("Compressed cache for swap pages"); | ||