diff options
-rw-r--r-- | drivers/rtc/class.c | 7 | ||||
-rw-r--r-- | drivers/rtc/interface.c | 180 | ||||
-rw-r--r-- | include/linux/rtc.h | 1 |
3 files changed, 188 insertions, 0 deletions
diff --git a/drivers/rtc/class.c b/drivers/rtc/class.c index c404b61386bf..09b4437b3e61 100644 --- a/drivers/rtc/class.c +++ b/drivers/rtc/class.c | |||
@@ -117,6 +117,7 @@ struct rtc_device *rtc_device_register(const char *name, struct device *dev, | |||
117 | struct module *owner) | 117 | struct module *owner) |
118 | { | 118 | { |
119 | struct rtc_device *rtc; | 119 | struct rtc_device *rtc; |
120 | struct rtc_wkalrm alrm; | ||
120 | int id, err; | 121 | int id, err; |
121 | 122 | ||
122 | if (idr_pre_get(&rtc_idr, GFP_KERNEL) == 0) { | 123 | if (idr_pre_get(&rtc_idr, GFP_KERNEL) == 0) { |
@@ -166,6 +167,12 @@ struct rtc_device *rtc_device_register(const char *name, struct device *dev, | |||
166 | rtc->pie_timer.function = rtc_pie_update_irq; | 167 | rtc->pie_timer.function = rtc_pie_update_irq; |
167 | rtc->pie_enabled = 0; | 168 | rtc->pie_enabled = 0; |
168 | 169 | ||
170 | /* Check to see if there is an ALARM already set in hw */ | ||
171 | err = __rtc_read_alarm(rtc, &alrm); | ||
172 | |||
173 | if (!err && !rtc_valid_tm(&alrm.time)) | ||
174 | rtc_set_alarm(rtc, &alrm); | ||
175 | |||
169 | strlcpy(rtc->name, name, RTC_DEVICE_NAME_SIZE); | 176 | strlcpy(rtc->name, name, RTC_DEVICE_NAME_SIZE); |
170 | dev_set_name(&rtc->dev, "rtc%d", id); | 177 | dev_set_name(&rtc->dev, "rtc%d", id); |
171 | 178 | ||
diff --git a/drivers/rtc/interface.c b/drivers/rtc/interface.c index cb2f0728fd70..8ec6b069a7f5 100644 --- a/drivers/rtc/interface.c +++ b/drivers/rtc/interface.c | |||
@@ -116,6 +116,186 @@ int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs) | |||
116 | } | 116 | } |
117 | EXPORT_SYMBOL_GPL(rtc_set_mmss); | 117 | EXPORT_SYMBOL_GPL(rtc_set_mmss); |
118 | 118 | ||
119 | static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm) | ||
120 | { | ||
121 | int err; | ||
122 | |||
123 | err = mutex_lock_interruptible(&rtc->ops_lock); | ||
124 | if (err) | ||
125 | return err; | ||
126 | |||
127 | if (rtc->ops == NULL) | ||
128 | err = -ENODEV; | ||
129 | else if (!rtc->ops->read_alarm) | ||
130 | err = -EINVAL; | ||
131 | else { | ||
132 | memset(alarm, 0, sizeof(struct rtc_wkalrm)); | ||
133 | err = rtc->ops->read_alarm(rtc->dev.parent, alarm); | ||
134 | } | ||
135 | |||
136 | mutex_unlock(&rtc->ops_lock); | ||
137 | return err; | ||
138 | } | ||
139 | |||
140 | int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) | ||
141 | { | ||
142 | int err; | ||
143 | struct rtc_time before, now; | ||
144 | int first_time = 1; | ||
145 | unsigned long t_now, t_alm; | ||
146 | enum { none, day, month, year } missing = none; | ||
147 | unsigned days; | ||
148 | |||
149 | /* The lower level RTC driver may return -1 in some fields, | ||
150 | * creating invalid alarm->time values, for reasons like: | ||
151 | * | ||
152 | * - The hardware may not be capable of filling them in; | ||
153 | * many alarms match only on time-of-day fields, not | ||
154 | * day/month/year calendar data. | ||
155 | * | ||
156 | * - Some hardware uses illegal values as "wildcard" match | ||
157 | * values, which non-Linux firmware (like a BIOS) may try | ||
158 | * to set up as e.g. "alarm 15 minutes after each hour". | ||
159 | * Linux uses only oneshot alarms. | ||
160 | * | ||
161 | * When we see that here, we deal with it by using values from | ||
162 | * a current RTC timestamp for any missing (-1) values. The | ||
163 | * RTC driver prevents "periodic alarm" modes. | ||
164 | * | ||
165 | * But this can be racey, because some fields of the RTC timestamp | ||
166 | * may have wrapped in the interval since we read the RTC alarm, | ||
167 | * which would lead to us inserting inconsistent values in place | ||
168 | * of the -1 fields. | ||
169 | * | ||
170 | * Reading the alarm and timestamp in the reverse sequence | ||
171 | * would have the same race condition, and not solve the issue. | ||
172 | * | ||
173 | * So, we must first read the RTC timestamp, | ||
174 | * then read the RTC alarm value, | ||
175 | * and then read a second RTC timestamp. | ||
176 | * | ||
177 | * If any fields of the second timestamp have changed | ||
178 | * when compared with the first timestamp, then we know | ||
179 | * our timestamp may be inconsistent with that used by | ||
180 | * the low-level rtc_read_alarm_internal() function. | ||
181 | * | ||
182 | * So, when the two timestamps disagree, we just loop and do | ||
183 | * the process again to get a fully consistent set of values. | ||
184 | * | ||
185 | * This could all instead be done in the lower level driver, | ||
186 | * but since more than one lower level RTC implementation needs it, | ||
187 | * then it's probably best best to do it here instead of there.. | ||
188 | */ | ||
189 | |||
190 | /* Get the "before" timestamp */ | ||
191 | err = rtc_read_time(rtc, &before); | ||
192 | if (err < 0) | ||
193 | return err; | ||
194 | do { | ||
195 | if (!first_time) | ||
196 | memcpy(&before, &now, sizeof(struct rtc_time)); | ||
197 | first_time = 0; | ||
198 | |||
199 | /* get the RTC alarm values, which may be incomplete */ | ||
200 | err = rtc_read_alarm_internal(rtc, alarm); | ||
201 | if (err) | ||
202 | return err; | ||
203 | |||
204 | /* full-function RTCs won't have such missing fields */ | ||
205 | if (rtc_valid_tm(&alarm->time) == 0) | ||
206 | return 0; | ||
207 | |||
208 | /* get the "after" timestamp, to detect wrapped fields */ | ||
209 | err = rtc_read_time(rtc, &now); | ||
210 | if (err < 0) | ||
211 | return err; | ||
212 | |||
213 | /* note that tm_sec is a "don't care" value here: */ | ||
214 | } while ( before.tm_min != now.tm_min | ||
215 | || before.tm_hour != now.tm_hour | ||
216 | || before.tm_mon != now.tm_mon | ||
217 | || before.tm_year != now.tm_year); | ||
218 | |||
219 | /* Fill in the missing alarm fields using the timestamp; we | ||
220 | * know there's at least one since alarm->time is invalid. | ||
221 | */ | ||
222 | if (alarm->time.tm_sec == -1) | ||
223 | alarm->time.tm_sec = now.tm_sec; | ||
224 | if (alarm->time.tm_min == -1) | ||
225 | alarm->time.tm_min = now.tm_min; | ||
226 | if (alarm->time.tm_hour == -1) | ||
227 | alarm->time.tm_hour = now.tm_hour; | ||
228 | |||
229 | /* For simplicity, only support date rollover for now */ | ||
230 | if (alarm->time.tm_mday == -1) { | ||
231 | alarm->time.tm_mday = now.tm_mday; | ||
232 | missing = day; | ||
233 | } | ||
234 | if (alarm->time.tm_mon == -1) { | ||
235 | alarm->time.tm_mon = now.tm_mon; | ||
236 | if (missing == none) | ||
237 | missing = month; | ||
238 | } | ||
239 | if (alarm->time.tm_year == -1) { | ||
240 | alarm->time.tm_year = now.tm_year; | ||
241 | if (missing == none) | ||
242 | missing = year; | ||
243 | } | ||
244 | |||
245 | /* with luck, no rollover is needed */ | ||
246 | rtc_tm_to_time(&now, &t_now); | ||
247 | rtc_tm_to_time(&alarm->time, &t_alm); | ||
248 | if (t_now < t_alm) | ||
249 | goto done; | ||
250 | |||
251 | switch (missing) { | ||
252 | |||
253 | /* 24 hour rollover ... if it's now 10am Monday, an alarm that | ||
254 | * that will trigger at 5am will do so at 5am Tuesday, which | ||
255 | * could also be in the next month or year. This is a common | ||
256 | * case, especially for PCs. | ||
257 | */ | ||
258 | case day: | ||
259 | dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day"); | ||
260 | t_alm += 24 * 60 * 60; | ||
261 | rtc_time_to_tm(t_alm, &alarm->time); | ||
262 | break; | ||
263 | |||
264 | /* Month rollover ... if it's the 31th, an alarm on the 3rd will | ||
265 | * be next month. An alarm matching on the 30th, 29th, or 28th | ||
266 | * may end up in the month after that! Many newer PCs support | ||
267 | * this type of alarm. | ||
268 | */ | ||
269 | case month: | ||
270 | dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month"); | ||
271 | do { | ||
272 | if (alarm->time.tm_mon < 11) | ||
273 | alarm->time.tm_mon++; | ||
274 | else { | ||
275 | alarm->time.tm_mon = 0; | ||
276 | alarm->time.tm_year++; | ||
277 | } | ||
278 | days = rtc_month_days(alarm->time.tm_mon, | ||
279 | alarm->time.tm_year); | ||
280 | } while (days < alarm->time.tm_mday); | ||
281 | break; | ||
282 | |||
283 | /* Year rollover ... easy except for leap years! */ | ||
284 | case year: | ||
285 | dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year"); | ||
286 | do { | ||
287 | alarm->time.tm_year++; | ||
288 | } while (rtc_valid_tm(&alarm->time) != 0); | ||
289 | break; | ||
290 | |||
291 | default: | ||
292 | dev_warn(&rtc->dev, "alarm rollover not handled\n"); | ||
293 | } | ||
294 | |||
295 | done: | ||
296 | return 0; | ||
297 | } | ||
298 | |||
119 | int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) | 299 | int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) |
120 | { | 300 | { |
121 | int err; | 301 | int err; |
diff --git a/include/linux/rtc.h b/include/linux/rtc.h index 89c3e5182991..db3832d5f280 100644 --- a/include/linux/rtc.h +++ b/include/linux/rtc.h | |||
@@ -227,6 +227,7 @@ extern void rtc_device_unregister(struct rtc_device *rtc); | |||
227 | extern int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm); | 227 | extern int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm); |
228 | extern int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm); | 228 | extern int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm); |
229 | extern int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs); | 229 | extern int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs); |
230 | int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm); | ||
230 | extern int rtc_read_alarm(struct rtc_device *rtc, | 231 | extern int rtc_read_alarm(struct rtc_device *rtc, |
231 | struct rtc_wkalrm *alrm); | 232 | struct rtc_wkalrm *alrm); |
232 | extern int rtc_set_alarm(struct rtc_device *rtc, | 233 | extern int rtc_set_alarm(struct rtc_device *rtc, |