aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--arch/ia64/Kconfig6
-rw-r--r--arch/ia64/kernel/Makefile1
-rw-r--r--arch/ia64/kernel/cpufreq/Kconfig29
-rw-r--r--arch/ia64/kernel/cpufreq/Makefile1
-rw-r--r--arch/ia64/kernel/cpufreq/acpi-cpufreq.c499
-rw-r--r--include/asm-ia64/acpi.h5
-rw-r--r--include/asm-ia64/pal.h21
7 files changed, 562 insertions, 0 deletions
diff --git a/arch/ia64/Kconfig b/arch/ia64/Kconfig
index 80988136f26d..3deced637f07 100644
--- a/arch/ia64/Kconfig
+++ b/arch/ia64/Kconfig
@@ -383,6 +383,12 @@ source "drivers/acpi/Kconfig"
383 383
384endif 384endif
385 385
386if PM
387
388source "arch/ia64/kernel/cpufreq/Kconfig"
389
390endif
391
386endmenu 392endmenu
387 393
388if !IA64_HP_SIM 394if !IA64_HP_SIM
diff --git a/arch/ia64/kernel/Makefile b/arch/ia64/kernel/Makefile
index e1fb68ddec26..b242594be55b 100644
--- a/arch/ia64/kernel/Makefile
+++ b/arch/ia64/kernel/Makefile
@@ -20,6 +20,7 @@ obj-$(CONFIG_SMP) += smp.o smpboot.o domain.o
20obj-$(CONFIG_NUMA) += numa.o 20obj-$(CONFIG_NUMA) += numa.o
21obj-$(CONFIG_PERFMON) += perfmon_default_smpl.o 21obj-$(CONFIG_PERFMON) += perfmon_default_smpl.o
22obj-$(CONFIG_IA64_CYCLONE) += cyclone.o 22obj-$(CONFIG_IA64_CYCLONE) += cyclone.o
23obj-$(CONFIG_CPU_FREQ) += cpufreq/
23obj-$(CONFIG_IA64_MCA_RECOVERY) += mca_recovery.o 24obj-$(CONFIG_IA64_MCA_RECOVERY) += mca_recovery.o
24obj-$(CONFIG_KPROBES) += kprobes.o jprobes.o 25obj-$(CONFIG_KPROBES) += kprobes.o jprobes.o
25obj-$(CONFIG_IA64_UNCACHED_ALLOCATOR) += uncached.o 26obj-$(CONFIG_IA64_UNCACHED_ALLOCATOR) += uncached.o
diff --git a/arch/ia64/kernel/cpufreq/Kconfig b/arch/ia64/kernel/cpufreq/Kconfig
new file mode 100644
index 000000000000..2d9d5279b981
--- /dev/null
+++ b/arch/ia64/kernel/cpufreq/Kconfig
@@ -0,0 +1,29 @@
1
2#
3# CPU Frequency scaling
4#
5
6menu "CPU Frequency scaling"
7
8source "drivers/cpufreq/Kconfig"
9
10if CPU_FREQ
11
12comment "CPUFreq processor drivers"
13
14config IA64_ACPI_CPUFREQ
15 tristate "ACPI Processor P-States driver"
16 select CPU_FREQ_TABLE
17 depends on ACPI_PROCESSOR
18 help
19 This driver adds a CPUFreq driver which utilizes the ACPI
20 Processor Performance States.
21
22 For details, take a look at <file:Documentation/cpu-freq/>.
23
24 If in doubt, say N.
25
26endif # CPU_FREQ
27
28endmenu
29
diff --git a/arch/ia64/kernel/cpufreq/Makefile b/arch/ia64/kernel/cpufreq/Makefile
new file mode 100644
index 000000000000..f748d34c02f0
--- /dev/null
+++ b/arch/ia64/kernel/cpufreq/Makefile
@@ -0,0 +1 @@
obj-$(CONFIG_IA64_ACPI_CPUFREQ) += acpi-cpufreq.o
diff --git a/arch/ia64/kernel/cpufreq/acpi-cpufreq.c b/arch/ia64/kernel/cpufreq/acpi-cpufreq.c
new file mode 100644
index 000000000000..da4d5cf80a48
--- /dev/null
+++ b/arch/ia64/kernel/cpufreq/acpi-cpufreq.c
@@ -0,0 +1,499 @@
1/*
2 * arch/ia64/kernel/cpufreq/acpi-cpufreq.c
3 * This file provides the ACPI based P-state support. This
4 * module works with generic cpufreq infrastructure. Most of
5 * the code is based on i386 version
6 * (arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c)
7 *
8 * Copyright (C) 2005 Intel Corp
9 * Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 */
11
12#include <linux/config.h>
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/init.h>
16#include <linux/cpufreq.h>
17#include <linux/proc_fs.h>
18#include <linux/seq_file.h>
19#include <asm/io.h>
20#include <asm/uaccess.h>
21#include <asm/pal.h>
22
23#include <linux/acpi.h>
24#include <acpi/processor.h>
25
26#define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
27
28MODULE_AUTHOR("Venkatesh Pallipadi");
29MODULE_DESCRIPTION("ACPI Processor P-States Driver");
30MODULE_LICENSE("GPL");
31
32
33struct cpufreq_acpi_io {
34 struct acpi_processor_performance acpi_data;
35 struct cpufreq_frequency_table *freq_table;
36 unsigned int resume;
37};
38
39static struct cpufreq_acpi_io *acpi_io_data[NR_CPUS];
40
41static struct cpufreq_driver acpi_cpufreq_driver;
42
43
44static int
45processor_set_pstate (
46 u32 value)
47{
48 s64 retval;
49
50 dprintk("processor_set_pstate\n");
51
52 retval = ia64_pal_set_pstate((u64)value);
53
54 if (retval) {
55 dprintk("Failed to set freq to 0x%x, with error 0x%x\n",
56 value, retval);
57 return -ENODEV;
58 }
59 return (int)retval;
60}
61
62
63static int
64processor_get_pstate (
65 u32 *value)
66{
67 u64 pstate_index = 0;
68 s64 retval;
69
70 dprintk("processor_get_pstate\n");
71
72 retval = ia64_pal_get_pstate(&pstate_index);
73 *value = (u32) pstate_index;
74
75 if (retval)
76 dprintk("Failed to get current freq with "
77 "error 0x%x, idx 0x%x\n", retval, *value);
78
79 return (int)retval;
80}
81
82
83/* To be used only after data->acpi_data is initialized */
84static unsigned
85extract_clock (
86 struct cpufreq_acpi_io *data,
87 unsigned value,
88 unsigned int cpu)
89{
90 unsigned long i;
91
92 dprintk("extract_clock\n");
93
94 for (i = 0; i < data->acpi_data.state_count; i++) {
95 if (value >= data->acpi_data.states[i].control)
96 return data->acpi_data.states[i].core_frequency;
97 }
98 return data->acpi_data.states[i-1].core_frequency;
99}
100
101
102static unsigned int
103processor_get_freq (
104 struct cpufreq_acpi_io *data,
105 unsigned int cpu)
106{
107 int ret = 0;
108 u32 value = 0;
109 cpumask_t saved_mask;
110 unsigned long clock_freq;
111
112 dprintk("processor_get_freq\n");
113
114 saved_mask = current->cpus_allowed;
115 set_cpus_allowed(current, cpumask_of_cpu(cpu));
116 if (smp_processor_id() != cpu) {
117 ret = -EAGAIN;
118 goto migrate_end;
119 }
120
121 /*
122 * processor_get_pstate gets the average frequency since the
123 * last get. So, do two PAL_get_freq()...
124 */
125 ret = processor_get_pstate(&value);
126 ret = processor_get_pstate(&value);
127
128 if (ret) {
129 set_cpus_allowed(current, saved_mask);
130 printk(KERN_WARNING "get performance failed with error %d\n",
131 ret);
132 ret = -EAGAIN;
133 goto migrate_end;
134 }
135 clock_freq = extract_clock(data, value, cpu);
136 ret = (clock_freq*1000);
137
138migrate_end:
139 set_cpus_allowed(current, saved_mask);
140 return ret;
141}
142
143
144static int
145processor_set_freq (
146 struct cpufreq_acpi_io *data,
147 unsigned int cpu,
148 int state)
149{
150 int ret = 0;
151 u32 value = 0;
152 struct cpufreq_freqs cpufreq_freqs;
153 cpumask_t saved_mask;
154 int retval;
155
156 dprintk("processor_set_freq\n");
157
158 saved_mask = current->cpus_allowed;
159 set_cpus_allowed(current, cpumask_of_cpu(cpu));
160 if (smp_processor_id() != cpu) {
161 retval = -EAGAIN;
162 goto migrate_end;
163 }
164
165 if (state == data->acpi_data.state) {
166 if (unlikely(data->resume)) {
167 dprintk("Called after resume, resetting to P%d\n", state);
168 data->resume = 0;
169 } else {
170 dprintk("Already at target state (P%d)\n", state);
171 retval = 0;
172 goto migrate_end;
173 }
174 }
175
176 dprintk("Transitioning from P%d to P%d\n",
177 data->acpi_data.state, state);
178
179 /* cpufreq frequency struct */
180 cpufreq_freqs.cpu = cpu;
181 cpufreq_freqs.old = data->freq_table[data->acpi_data.state].frequency;
182 cpufreq_freqs.new = data->freq_table[state].frequency;
183
184 /* notify cpufreq */
185 cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE);
186
187 /*
188 * First we write the target state's 'control' value to the
189 * control_register.
190 */
191
192 value = (u32) data->acpi_data.states[state].control;
193
194 dprintk("Transitioning to state: 0x%08x\n", value);
195
196 ret = processor_set_pstate(value);
197 if (ret) {
198 unsigned int tmp = cpufreq_freqs.new;
199 cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE);
200 cpufreq_freqs.new = cpufreq_freqs.old;
201 cpufreq_freqs.old = tmp;
202 cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE);
203 cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE);
204 printk(KERN_WARNING "Transition failed with error %d\n", ret);
205 retval = -ENODEV;
206 goto migrate_end;
207 }
208
209 cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE);
210
211 data->acpi_data.state = state;
212
213 retval = 0;
214
215migrate_end:
216 set_cpus_allowed(current, saved_mask);
217 return (retval);
218}
219
220
221static unsigned int
222acpi_cpufreq_get (
223 unsigned int cpu)
224{
225 struct cpufreq_acpi_io *data = acpi_io_data[cpu];
226
227 dprintk("acpi_cpufreq_get\n");
228
229 return processor_get_freq(data, cpu);
230}
231
232
233static int
234acpi_cpufreq_target (
235 struct cpufreq_policy *policy,
236 unsigned int target_freq,
237 unsigned int relation)
238{
239 struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
240 unsigned int next_state = 0;
241 unsigned int result = 0;
242
243 dprintk("acpi_cpufreq_setpolicy\n");
244
245 result = cpufreq_frequency_table_target(policy,
246 data->freq_table, target_freq, relation, &next_state);
247 if (result)
248 return (result);
249
250 result = processor_set_freq(data, policy->cpu, next_state);
251
252 return (result);
253}
254
255
256static int
257acpi_cpufreq_verify (
258 struct cpufreq_policy *policy)
259{
260 unsigned int result = 0;
261 struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
262
263 dprintk("acpi_cpufreq_verify\n");
264
265 result = cpufreq_frequency_table_verify(policy,
266 data->freq_table);
267
268 return (result);
269}
270
271
272/*
273 * processor_init_pdc - let BIOS know about the SMP capabilities
274 * of this driver
275 * @perf: processor-specific acpi_io_data struct
276 * @cpu: CPU being initialized
277 *
278 * To avoid issues with legacy OSes, some BIOSes require to be informed of
279 * the SMP capabilities of OS P-state driver. Here we set the bits in _PDC
280 * accordingly. Actual call to _PDC is done in driver/acpi/processor.c
281 */
282static void
283processor_init_pdc (
284 struct acpi_processor_performance *perf,
285 unsigned int cpu,
286 struct acpi_object_list *obj_list
287 )
288{
289 union acpi_object *obj;
290 u32 *buf;
291
292 dprintk("processor_init_pdc\n");
293
294 perf->pdc = NULL;
295 /* Initialize pdc. It will be used later. */
296 if (!obj_list)
297 return;
298
299 if (!(obj_list->count && obj_list->pointer))
300 return;
301
302 obj = obj_list->pointer;
303 if ((obj->buffer.length == 12) && obj->buffer.pointer) {
304 buf = (u32 *)obj->buffer.pointer;
305 buf[0] = ACPI_PDC_REVISION_ID;
306 buf[1] = 1;
307 buf[2] = ACPI_PDC_EST_CAPABILITY_SMP;
308 perf->pdc = obj_list;
309 }
310 return;
311}
312
313
314static int
315acpi_cpufreq_cpu_init (
316 struct cpufreq_policy *policy)
317{
318 unsigned int i;
319 unsigned int cpu = policy->cpu;
320 struct cpufreq_acpi_io *data;
321 unsigned int result = 0;
322
323 union acpi_object arg0 = {ACPI_TYPE_BUFFER};
324 u32 arg0_buf[3];
325 struct acpi_object_list arg_list = {1, &arg0};
326
327 dprintk("acpi_cpufreq_cpu_init\n");
328 /* setup arg_list for _PDC settings */
329 arg0.buffer.length = 12;
330 arg0.buffer.pointer = (u8 *) arg0_buf;
331
332 data = kmalloc(sizeof(struct cpufreq_acpi_io), GFP_KERNEL);
333 if (!data)
334 return (-ENOMEM);
335
336 memset(data, 0, sizeof(struct cpufreq_acpi_io));
337
338 acpi_io_data[cpu] = data;
339
340 processor_init_pdc(&data->acpi_data, cpu, &arg_list);
341 result = acpi_processor_register_performance(&data->acpi_data, cpu);
342 data->acpi_data.pdc = NULL;
343
344 if (result)
345 goto err_free;
346
347 /* capability check */
348 if (data->acpi_data.state_count <= 1) {
349 dprintk("No P-States\n");
350 result = -ENODEV;
351 goto err_unreg;
352 }
353
354 if ((data->acpi_data.control_register.space_id !=
355 ACPI_ADR_SPACE_FIXED_HARDWARE) ||
356 (data->acpi_data.status_register.space_id !=
357 ACPI_ADR_SPACE_FIXED_HARDWARE)) {
358 dprintk("Unsupported address space [%d, %d]\n",
359 (u32) (data->acpi_data.control_register.space_id),
360 (u32) (data->acpi_data.status_register.space_id));
361 result = -ENODEV;
362 goto err_unreg;
363 }
364
365 /* alloc freq_table */
366 data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
367 (data->acpi_data.state_count + 1),
368 GFP_KERNEL);
369 if (!data->freq_table) {
370 result = -ENOMEM;
371 goto err_unreg;
372 }
373
374 /* detect transition latency */
375 policy->cpuinfo.transition_latency = 0;
376 for (i=0; i<data->acpi_data.state_count; i++) {
377 if ((data->acpi_data.states[i].transition_latency * 1000) >
378 policy->cpuinfo.transition_latency) {
379 policy->cpuinfo.transition_latency =
380 data->acpi_data.states[i].transition_latency * 1000;
381 }
382 }
383 policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
384
385 policy->cur = processor_get_freq(data, policy->cpu);
386
387 /* table init */
388 for (i = 0; i <= data->acpi_data.state_count; i++)
389 {
390 data->freq_table[i].index = i;
391 if (i < data->acpi_data.state_count) {
392 data->freq_table[i].frequency =
393 data->acpi_data.states[i].core_frequency * 1000;
394 } else {
395 data->freq_table[i].frequency = CPUFREQ_TABLE_END;
396 }
397 }
398
399 result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
400 if (result) {
401 goto err_freqfree;
402 }
403
404 /* notify BIOS that we exist */
405 acpi_processor_notify_smm(THIS_MODULE);
406
407 printk(KERN_INFO "acpi-cpufreq: CPU%u - ACPI performance management "
408 "activated.\n", cpu);
409
410 for (i = 0; i < data->acpi_data.state_count; i++)
411 dprintk(" %cP%d: %d MHz, %d mW, %d uS, %d uS, 0x%x 0x%x\n",
412 (i == data->acpi_data.state?'*':' '), i,
413 (u32) data->acpi_data.states[i].core_frequency,
414 (u32) data->acpi_data.states[i].power,
415 (u32) data->acpi_data.states[i].transition_latency,
416 (u32) data->acpi_data.states[i].bus_master_latency,
417 (u32) data->acpi_data.states[i].status,
418 (u32) data->acpi_data.states[i].control);
419
420 cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
421
422 /* the first call to ->target() should result in us actually
423 * writing something to the appropriate registers. */
424 data->resume = 1;
425
426 return (result);
427
428 err_freqfree:
429 kfree(data->freq_table);
430 err_unreg:
431 acpi_processor_unregister_performance(&data->acpi_data, cpu);
432 err_free:
433 kfree(data);
434 acpi_io_data[cpu] = NULL;
435
436 return (result);
437}
438
439
440static int
441acpi_cpufreq_cpu_exit (
442 struct cpufreq_policy *policy)
443{
444 struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
445
446 dprintk("acpi_cpufreq_cpu_exit\n");
447
448 if (data) {
449 cpufreq_frequency_table_put_attr(policy->cpu);
450 acpi_io_data[policy->cpu] = NULL;
451 acpi_processor_unregister_performance(&data->acpi_data,
452 policy->cpu);
453 kfree(data);
454 }
455
456 return (0);
457}
458
459
460static struct freq_attr* acpi_cpufreq_attr[] = {
461 &cpufreq_freq_attr_scaling_available_freqs,
462 NULL,
463};
464
465
466static struct cpufreq_driver acpi_cpufreq_driver = {
467 .verify = acpi_cpufreq_verify,
468 .target = acpi_cpufreq_target,
469 .get = acpi_cpufreq_get,
470 .init = acpi_cpufreq_cpu_init,
471 .exit = acpi_cpufreq_cpu_exit,
472 .name = "acpi-cpufreq",
473 .owner = THIS_MODULE,
474 .attr = acpi_cpufreq_attr,
475};
476
477
478static int __init
479acpi_cpufreq_init (void)
480{
481 dprintk("acpi_cpufreq_init\n");
482
483 return cpufreq_register_driver(&acpi_cpufreq_driver);
484}
485
486
487static void __exit
488acpi_cpufreq_exit (void)
489{
490 dprintk("acpi_cpufreq_exit\n");
491
492 cpufreq_unregister_driver(&acpi_cpufreq_driver);
493 return;
494}
495
496
497late_initcall(acpi_cpufreq_init);
498module_exit(acpi_cpufreq_exit);
499
diff --git a/include/asm-ia64/acpi.h b/include/asm-ia64/acpi.h
index 4c06d455139c..3a544ffc5008 100644
--- a/include/asm-ia64/acpi.h
+++ b/include/asm-ia64/acpi.h
@@ -116,6 +116,11 @@ extern int __initdata nid_to_pxm_map[MAX_NUMNODES];
116 116
117extern u16 ia64_acpiid_to_sapicid[]; 117extern u16 ia64_acpiid_to_sapicid[];
118 118
119/*
120 * Refer Intel ACPI _PDC support document for bit definitions
121 */
122#define ACPI_PDC_EST_CAPABILITY_SMP 0x8
123
119#endif /*__KERNEL__*/ 124#endif /*__KERNEL__*/
120 125
121#endif /*_ASM_ACPI_H*/ 126#endif /*_ASM_ACPI_H*/
diff --git a/include/asm-ia64/pal.h b/include/asm-ia64/pal.h
index 2303a10ee595..e828377ad295 100644
--- a/include/asm-ia64/pal.h
+++ b/include/asm-ia64/pal.h
@@ -75,6 +75,8 @@
75#define PAL_CACHE_READ 259 /* read tag & data of cacheline for diagnostic testing */ 75#define PAL_CACHE_READ 259 /* read tag & data of cacheline for diagnostic testing */
76#define PAL_CACHE_WRITE 260 /* write tag & data of cacheline for diagnostic testing */ 76#define PAL_CACHE_WRITE 260 /* write tag & data of cacheline for diagnostic testing */
77#define PAL_VM_TR_READ 261 /* read contents of translation register */ 77#define PAL_VM_TR_READ 261 /* read contents of translation register */
78#define PAL_GET_PSTATE 262 /* get the current P-state */
79#define PAL_SET_PSTATE 263 /* set the P-state */
78 80
79#ifndef __ASSEMBLY__ 81#ifndef __ASSEMBLY__
80 82
@@ -1111,6 +1113,25 @@ ia64_pal_halt_info (pal_power_mgmt_info_u_t *power_buf)
1111 return iprv.status; 1113 return iprv.status;
1112} 1114}
1113 1115
1116/* Get the current P-state information */
1117static inline s64
1118ia64_pal_get_pstate (u64 *pstate_index)
1119{
1120 struct ia64_pal_retval iprv;
1121 PAL_CALL_STK(iprv, PAL_GET_PSTATE, 0, 0, 0);
1122 *pstate_index = iprv.v0;
1123 return iprv.status;
1124}
1125
1126/* Set the P-state */
1127static inline s64
1128ia64_pal_set_pstate (u64 pstate_index)
1129{
1130 struct ia64_pal_retval iprv;
1131 PAL_CALL_STK(iprv, PAL_SET_PSTATE, pstate_index, 0, 0);
1132 return iprv.status;
1133}
1134
1114/* Cause the processor to enter LIGHT HALT state, where prefetching and execution are 1135/* Cause the processor to enter LIGHT HALT state, where prefetching and execution are
1115 * suspended, but cache and TLB coherency is maintained. 1136 * suspended, but cache and TLB coherency is maintained.
1116 */ 1137 */