diff options
-rw-r--r-- | arch/arm/Kconfig | 8 | ||||
-rw-r--r-- | arch/arm/kernel/Makefile | 1 | ||||
-rw-r--r-- | arch/arm/kernel/perf_event.c | 1348 |
3 files changed, 1357 insertions, 0 deletions
diff --git a/arch/arm/Kconfig b/arch/arm/Kconfig index 74d1e767f0b7..9fb91ce106bc 100644 --- a/arch/arm/Kconfig +++ b/arch/arm/Kconfig | |||
@@ -1174,6 +1174,14 @@ config HIGHPTE | |||
1174 | depends on HIGHMEM | 1174 | depends on HIGHMEM |
1175 | depends on !OUTER_CACHE | 1175 | depends on !OUTER_CACHE |
1176 | 1176 | ||
1177 | config HW_PERF_EVENTS | ||
1178 | bool "Enable hardware performance counter support for perf events" | ||
1179 | depends on PERF_EVENTS && CPU_HAS_PMU && CPU_V6 | ||
1180 | default y | ||
1181 | help | ||
1182 | Enable hardware performance counter support for perf events. If | ||
1183 | disabled, perf events will use software events only. | ||
1184 | |||
1177 | source "mm/Kconfig" | 1185 | source "mm/Kconfig" |
1178 | 1186 | ||
1179 | config LEDS | 1187 | config LEDS |
diff --git a/arch/arm/kernel/Makefile b/arch/arm/kernel/Makefile index 216890d804c2..c76e6d2679b8 100644 --- a/arch/arm/kernel/Makefile +++ b/arch/arm/kernel/Makefile | |||
@@ -47,6 +47,7 @@ obj-$(CONFIG_CPU_XSC3) += xscale-cp0.o | |||
47 | obj-$(CONFIG_CPU_MOHAWK) += xscale-cp0.o | 47 | obj-$(CONFIG_CPU_MOHAWK) += xscale-cp0.o |
48 | obj-$(CONFIG_IWMMXT) += iwmmxt.o | 48 | obj-$(CONFIG_IWMMXT) += iwmmxt.o |
49 | obj-$(CONFIG_CPU_HAS_PMU) += pmu.o | 49 | obj-$(CONFIG_CPU_HAS_PMU) += pmu.o |
50 | obj-$(CONFIG_HW_PERF_EVENTS) += perf_event.o | ||
50 | AFLAGS_iwmmxt.o := -Wa,-mcpu=iwmmxt | 51 | AFLAGS_iwmmxt.o := -Wa,-mcpu=iwmmxt |
51 | 52 | ||
52 | ifneq ($(CONFIG_ARCH_EBSA110),y) | 53 | ifneq ($(CONFIG_ARCH_EBSA110),y) |
diff --git a/arch/arm/kernel/perf_event.c b/arch/arm/kernel/perf_event.c new file mode 100644 index 000000000000..7b1022b9aa52 --- /dev/null +++ b/arch/arm/kernel/perf_event.c | |||
@@ -0,0 +1,1348 @@ | |||
1 | #undef DEBUG | ||
2 | |||
3 | /* | ||
4 | * ARM performance counter support. | ||
5 | * | ||
6 | * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles | ||
7 | * | ||
8 | * This code is based on the sparc64 perf event code, which is in turn based | ||
9 | * on the x86 code. Callchain code is based on the ARM OProfile backtrace | ||
10 | * code. | ||
11 | */ | ||
12 | #define pr_fmt(fmt) "hw perfevents: " fmt | ||
13 | |||
14 | #include <linux/interrupt.h> | ||
15 | #include <linux/kernel.h> | ||
16 | #include <linux/perf_event.h> | ||
17 | #include <linux/spinlock.h> | ||
18 | #include <linux/uaccess.h> | ||
19 | |||
20 | #include <asm/cputype.h> | ||
21 | #include <asm/irq.h> | ||
22 | #include <asm/irq_regs.h> | ||
23 | #include <asm/pmu.h> | ||
24 | #include <asm/stacktrace.h> | ||
25 | |||
26 | static const struct pmu_irqs *pmu_irqs; | ||
27 | |||
28 | /* | ||
29 | * Hardware lock to serialize accesses to PMU registers. Needed for the | ||
30 | * read/modify/write sequences. | ||
31 | */ | ||
32 | DEFINE_SPINLOCK(pmu_lock); | ||
33 | |||
34 | /* | ||
35 | * ARMv6 supports a maximum of 3 events, starting from index 1. If we add | ||
36 | * another platform that supports more, we need to increase this to be the | ||
37 | * largest of all platforms. | ||
38 | */ | ||
39 | #define ARMPMU_MAX_HWEVENTS 4 | ||
40 | |||
41 | /* The events for a given CPU. */ | ||
42 | struct cpu_hw_events { | ||
43 | /* | ||
44 | * The events that are active on the CPU for the given index. Index 0 | ||
45 | * is reserved. | ||
46 | */ | ||
47 | struct perf_event *events[ARMPMU_MAX_HWEVENTS]; | ||
48 | |||
49 | /* | ||
50 | * A 1 bit for an index indicates that the counter is being used for | ||
51 | * an event. A 0 means that the counter can be used. | ||
52 | */ | ||
53 | unsigned long used_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)]; | ||
54 | |||
55 | /* | ||
56 | * A 1 bit for an index indicates that the counter is actively being | ||
57 | * used. | ||
58 | */ | ||
59 | unsigned long active_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)]; | ||
60 | }; | ||
61 | DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); | ||
62 | |||
63 | struct arm_pmu { | ||
64 | const char *name; | ||
65 | irqreturn_t (*handle_irq)(int irq_num, void *dev); | ||
66 | void (*enable)(struct hw_perf_event *evt, int idx); | ||
67 | void (*disable)(struct hw_perf_event *evt, int idx); | ||
68 | int (*event_map)(int evt); | ||
69 | u64 (*raw_event)(u64); | ||
70 | int (*get_event_idx)(struct cpu_hw_events *cpuc, | ||
71 | struct hw_perf_event *hwc); | ||
72 | u32 (*read_counter)(int idx); | ||
73 | void (*write_counter)(int idx, u32 val); | ||
74 | void (*start)(void); | ||
75 | void (*stop)(void); | ||
76 | int num_events; | ||
77 | u64 max_period; | ||
78 | }; | ||
79 | |||
80 | /* Set at runtime when we know what CPU type we are. */ | ||
81 | static const struct arm_pmu *armpmu; | ||
82 | |||
83 | #define HW_OP_UNSUPPORTED 0xFFFF | ||
84 | |||
85 | #define C(_x) \ | ||
86 | PERF_COUNT_HW_CACHE_##_x | ||
87 | |||
88 | #define CACHE_OP_UNSUPPORTED 0xFFFF | ||
89 | |||
90 | static unsigned armpmu_perf_cache_map[PERF_COUNT_HW_CACHE_MAX] | ||
91 | [PERF_COUNT_HW_CACHE_OP_MAX] | ||
92 | [PERF_COUNT_HW_CACHE_RESULT_MAX]; | ||
93 | |||
94 | static int | ||
95 | armpmu_map_cache_event(u64 config) | ||
96 | { | ||
97 | unsigned int cache_type, cache_op, cache_result, ret; | ||
98 | |||
99 | cache_type = (config >> 0) & 0xff; | ||
100 | if (cache_type >= PERF_COUNT_HW_CACHE_MAX) | ||
101 | return -EINVAL; | ||
102 | |||
103 | cache_op = (config >> 8) & 0xff; | ||
104 | if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) | ||
105 | return -EINVAL; | ||
106 | |||
107 | cache_result = (config >> 16) & 0xff; | ||
108 | if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) | ||
109 | return -EINVAL; | ||
110 | |||
111 | ret = (int)armpmu_perf_cache_map[cache_type][cache_op][cache_result]; | ||
112 | |||
113 | if (ret == CACHE_OP_UNSUPPORTED) | ||
114 | return -ENOENT; | ||
115 | |||
116 | return ret; | ||
117 | } | ||
118 | |||
119 | static int | ||
120 | armpmu_event_set_period(struct perf_event *event, | ||
121 | struct hw_perf_event *hwc, | ||
122 | int idx) | ||
123 | { | ||
124 | s64 left = atomic64_read(&hwc->period_left); | ||
125 | s64 period = hwc->sample_period; | ||
126 | int ret = 0; | ||
127 | |||
128 | if (unlikely(left <= -period)) { | ||
129 | left = period; | ||
130 | atomic64_set(&hwc->period_left, left); | ||
131 | hwc->last_period = period; | ||
132 | ret = 1; | ||
133 | } | ||
134 | |||
135 | if (unlikely(left <= 0)) { | ||
136 | left += period; | ||
137 | atomic64_set(&hwc->period_left, left); | ||
138 | hwc->last_period = period; | ||
139 | ret = 1; | ||
140 | } | ||
141 | |||
142 | if (left > (s64)armpmu->max_period) | ||
143 | left = armpmu->max_period; | ||
144 | |||
145 | atomic64_set(&hwc->prev_count, (u64)-left); | ||
146 | |||
147 | armpmu->write_counter(idx, (u64)(-left) & 0xffffffff); | ||
148 | |||
149 | perf_event_update_userpage(event); | ||
150 | |||
151 | return ret; | ||
152 | } | ||
153 | |||
154 | static u64 | ||
155 | armpmu_event_update(struct perf_event *event, | ||
156 | struct hw_perf_event *hwc, | ||
157 | int idx) | ||
158 | { | ||
159 | int shift = 64 - 32; | ||
160 | s64 prev_raw_count, new_raw_count; | ||
161 | s64 delta; | ||
162 | |||
163 | again: | ||
164 | prev_raw_count = atomic64_read(&hwc->prev_count); | ||
165 | new_raw_count = armpmu->read_counter(idx); | ||
166 | |||
167 | if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count, | ||
168 | new_raw_count) != prev_raw_count) | ||
169 | goto again; | ||
170 | |||
171 | delta = (new_raw_count << shift) - (prev_raw_count << shift); | ||
172 | delta >>= shift; | ||
173 | |||
174 | atomic64_add(delta, &event->count); | ||
175 | atomic64_sub(delta, &hwc->period_left); | ||
176 | |||
177 | return new_raw_count; | ||
178 | } | ||
179 | |||
180 | static void | ||
181 | armpmu_disable(struct perf_event *event) | ||
182 | { | ||
183 | struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); | ||
184 | struct hw_perf_event *hwc = &event->hw; | ||
185 | int idx = hwc->idx; | ||
186 | |||
187 | WARN_ON(idx < 0); | ||
188 | |||
189 | clear_bit(idx, cpuc->active_mask); | ||
190 | armpmu->disable(hwc, idx); | ||
191 | |||
192 | barrier(); | ||
193 | |||
194 | armpmu_event_update(event, hwc, idx); | ||
195 | cpuc->events[idx] = NULL; | ||
196 | clear_bit(idx, cpuc->used_mask); | ||
197 | |||
198 | perf_event_update_userpage(event); | ||
199 | } | ||
200 | |||
201 | static void | ||
202 | armpmu_read(struct perf_event *event) | ||
203 | { | ||
204 | struct hw_perf_event *hwc = &event->hw; | ||
205 | |||
206 | /* Don't read disabled counters! */ | ||
207 | if (hwc->idx < 0) | ||
208 | return; | ||
209 | |||
210 | armpmu_event_update(event, hwc, hwc->idx); | ||
211 | } | ||
212 | |||
213 | static void | ||
214 | armpmu_unthrottle(struct perf_event *event) | ||
215 | { | ||
216 | struct hw_perf_event *hwc = &event->hw; | ||
217 | |||
218 | /* | ||
219 | * Set the period again. Some counters can't be stopped, so when we | ||
220 | * were throttled we simply disabled the IRQ source and the counter | ||
221 | * may have been left counting. If we don't do this step then we may | ||
222 | * get an interrupt too soon or *way* too late if the overflow has | ||
223 | * happened since disabling. | ||
224 | */ | ||
225 | armpmu_event_set_period(event, hwc, hwc->idx); | ||
226 | armpmu->enable(hwc, hwc->idx); | ||
227 | } | ||
228 | |||
229 | static int | ||
230 | armpmu_enable(struct perf_event *event) | ||
231 | { | ||
232 | struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); | ||
233 | struct hw_perf_event *hwc = &event->hw; | ||
234 | int idx; | ||
235 | int err = 0; | ||
236 | |||
237 | /* If we don't have a space for the counter then finish early. */ | ||
238 | idx = armpmu->get_event_idx(cpuc, hwc); | ||
239 | if (idx < 0) { | ||
240 | err = idx; | ||
241 | goto out; | ||
242 | } | ||
243 | |||
244 | /* | ||
245 | * If there is an event in the counter we are going to use then make | ||
246 | * sure it is disabled. | ||
247 | */ | ||
248 | event->hw.idx = idx; | ||
249 | armpmu->disable(hwc, idx); | ||
250 | cpuc->events[idx] = event; | ||
251 | set_bit(idx, cpuc->active_mask); | ||
252 | |||
253 | /* Set the period for the event. */ | ||
254 | armpmu_event_set_period(event, hwc, idx); | ||
255 | |||
256 | /* Enable the event. */ | ||
257 | armpmu->enable(hwc, idx); | ||
258 | |||
259 | /* Propagate our changes to the userspace mapping. */ | ||
260 | perf_event_update_userpage(event); | ||
261 | |||
262 | out: | ||
263 | return err; | ||
264 | } | ||
265 | |||
266 | static struct pmu pmu = { | ||
267 | .enable = armpmu_enable, | ||
268 | .disable = armpmu_disable, | ||
269 | .unthrottle = armpmu_unthrottle, | ||
270 | .read = armpmu_read, | ||
271 | }; | ||
272 | |||
273 | static int | ||
274 | validate_event(struct cpu_hw_events *cpuc, | ||
275 | struct perf_event *event) | ||
276 | { | ||
277 | struct hw_perf_event fake_event = event->hw; | ||
278 | |||
279 | if (event->pmu && event->pmu != &pmu) | ||
280 | return 0; | ||
281 | |||
282 | return armpmu->get_event_idx(cpuc, &fake_event) >= 0; | ||
283 | } | ||
284 | |||
285 | static int | ||
286 | validate_group(struct perf_event *event) | ||
287 | { | ||
288 | struct perf_event *sibling, *leader = event->group_leader; | ||
289 | struct cpu_hw_events fake_pmu; | ||
290 | |||
291 | memset(&fake_pmu, 0, sizeof(fake_pmu)); | ||
292 | |||
293 | if (!validate_event(&fake_pmu, leader)) | ||
294 | return -ENOSPC; | ||
295 | |||
296 | list_for_each_entry(sibling, &leader->sibling_list, group_entry) { | ||
297 | if (!validate_event(&fake_pmu, sibling)) | ||
298 | return -ENOSPC; | ||
299 | } | ||
300 | |||
301 | if (!validate_event(&fake_pmu, event)) | ||
302 | return -ENOSPC; | ||
303 | |||
304 | return 0; | ||
305 | } | ||
306 | |||
307 | static int | ||
308 | armpmu_reserve_hardware(void) | ||
309 | { | ||
310 | int i; | ||
311 | int err; | ||
312 | |||
313 | pmu_irqs = reserve_pmu(); | ||
314 | if (IS_ERR(pmu_irqs)) { | ||
315 | pr_warning("unable to reserve pmu\n"); | ||
316 | return PTR_ERR(pmu_irqs); | ||
317 | } | ||
318 | |||
319 | init_pmu(); | ||
320 | |||
321 | if (pmu_irqs->num_irqs < 1) { | ||
322 | pr_err("no irqs for PMUs defined\n"); | ||
323 | return -ENODEV; | ||
324 | } | ||
325 | |||
326 | for (i = 0; i < pmu_irqs->num_irqs; ++i) { | ||
327 | err = request_irq(pmu_irqs->irqs[i], armpmu->handle_irq, | ||
328 | IRQF_DISABLED, "armpmu", NULL); | ||
329 | if (err) { | ||
330 | pr_warning("unable to request IRQ%d for ARM " | ||
331 | "perf counters\n", pmu_irqs->irqs[i]); | ||
332 | break; | ||
333 | } | ||
334 | } | ||
335 | |||
336 | if (err) { | ||
337 | for (i = i - 1; i >= 0; --i) | ||
338 | free_irq(pmu_irqs->irqs[i], NULL); | ||
339 | release_pmu(pmu_irqs); | ||
340 | pmu_irqs = NULL; | ||
341 | } | ||
342 | |||
343 | return err; | ||
344 | } | ||
345 | |||
346 | static void | ||
347 | armpmu_release_hardware(void) | ||
348 | { | ||
349 | int i; | ||
350 | |||
351 | for (i = pmu_irqs->num_irqs - 1; i >= 0; --i) | ||
352 | free_irq(pmu_irqs->irqs[i], NULL); | ||
353 | armpmu->stop(); | ||
354 | |||
355 | release_pmu(pmu_irqs); | ||
356 | pmu_irqs = NULL; | ||
357 | } | ||
358 | |||
359 | static atomic_t active_events = ATOMIC_INIT(0); | ||
360 | static DEFINE_MUTEX(pmu_reserve_mutex); | ||
361 | |||
362 | static void | ||
363 | hw_perf_event_destroy(struct perf_event *event) | ||
364 | { | ||
365 | if (atomic_dec_and_mutex_lock(&active_events, &pmu_reserve_mutex)) { | ||
366 | armpmu_release_hardware(); | ||
367 | mutex_unlock(&pmu_reserve_mutex); | ||
368 | } | ||
369 | } | ||
370 | |||
371 | static int | ||
372 | __hw_perf_event_init(struct perf_event *event) | ||
373 | { | ||
374 | struct hw_perf_event *hwc = &event->hw; | ||
375 | int mapping, err; | ||
376 | |||
377 | /* Decode the generic type into an ARM event identifier. */ | ||
378 | if (PERF_TYPE_HARDWARE == event->attr.type) { | ||
379 | mapping = armpmu->event_map(event->attr.config); | ||
380 | } else if (PERF_TYPE_HW_CACHE == event->attr.type) { | ||
381 | mapping = armpmu_map_cache_event(event->attr.config); | ||
382 | } else if (PERF_TYPE_RAW == event->attr.type) { | ||
383 | mapping = armpmu->raw_event(event->attr.config); | ||
384 | } else { | ||
385 | pr_debug("event type %x not supported\n", event->attr.type); | ||
386 | return -EOPNOTSUPP; | ||
387 | } | ||
388 | |||
389 | if (mapping < 0) { | ||
390 | pr_debug("event %x:%llx not supported\n", event->attr.type, | ||
391 | event->attr.config); | ||
392 | return mapping; | ||
393 | } | ||
394 | |||
395 | /* | ||
396 | * Check whether we need to exclude the counter from certain modes. | ||
397 | * The ARM performance counters are on all of the time so if someone | ||
398 | * has asked us for some excludes then we have to fail. | ||
399 | */ | ||
400 | if (event->attr.exclude_kernel || event->attr.exclude_user || | ||
401 | event->attr.exclude_hv || event->attr.exclude_idle) { | ||
402 | pr_debug("ARM performance counters do not support " | ||
403 | "mode exclusion\n"); | ||
404 | return -EPERM; | ||
405 | } | ||
406 | |||
407 | /* | ||
408 | * We don't assign an index until we actually place the event onto | ||
409 | * hardware. Use -1 to signify that we haven't decided where to put it | ||
410 | * yet. For SMP systems, each core has it's own PMU so we can't do any | ||
411 | * clever allocation or constraints checking at this point. | ||
412 | */ | ||
413 | hwc->idx = -1; | ||
414 | |||
415 | /* | ||
416 | * Store the event encoding into the config_base field. config and | ||
417 | * event_base are unused as the only 2 things we need to know are | ||
418 | * the event mapping and the counter to use. The counter to use is | ||
419 | * also the indx and the config_base is the event type. | ||
420 | */ | ||
421 | hwc->config_base = (unsigned long)mapping; | ||
422 | hwc->config = 0; | ||
423 | hwc->event_base = 0; | ||
424 | |||
425 | if (!hwc->sample_period) { | ||
426 | hwc->sample_period = armpmu->max_period; | ||
427 | hwc->last_period = hwc->sample_period; | ||
428 | atomic64_set(&hwc->period_left, hwc->sample_period); | ||
429 | } | ||
430 | |||
431 | err = 0; | ||
432 | if (event->group_leader != event) { | ||
433 | err = validate_group(event); | ||
434 | if (err) | ||
435 | return -EINVAL; | ||
436 | } | ||
437 | |||
438 | return err; | ||
439 | } | ||
440 | |||
441 | const struct pmu * | ||
442 | hw_perf_event_init(struct perf_event *event) | ||
443 | { | ||
444 | int err = 0; | ||
445 | |||
446 | if (!armpmu) | ||
447 | return ERR_PTR(-ENODEV); | ||
448 | |||
449 | event->destroy = hw_perf_event_destroy; | ||
450 | |||
451 | if (!atomic_inc_not_zero(&active_events)) { | ||
452 | if (atomic_read(&active_events) > perf_max_events) { | ||
453 | atomic_dec(&active_events); | ||
454 | return ERR_PTR(-ENOSPC); | ||
455 | } | ||
456 | |||
457 | mutex_lock(&pmu_reserve_mutex); | ||
458 | if (atomic_read(&active_events) == 0) { | ||
459 | err = armpmu_reserve_hardware(); | ||
460 | } | ||
461 | |||
462 | if (!err) | ||
463 | atomic_inc(&active_events); | ||
464 | mutex_unlock(&pmu_reserve_mutex); | ||
465 | } | ||
466 | |||
467 | if (err) | ||
468 | return ERR_PTR(err); | ||
469 | |||
470 | err = __hw_perf_event_init(event); | ||
471 | if (err) | ||
472 | hw_perf_event_destroy(event); | ||
473 | |||
474 | return err ? ERR_PTR(err) : &pmu; | ||
475 | } | ||
476 | |||
477 | void | ||
478 | hw_perf_enable(void) | ||
479 | { | ||
480 | /* Enable all of the perf events on hardware. */ | ||
481 | int idx; | ||
482 | struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); | ||
483 | |||
484 | if (!armpmu) | ||
485 | return; | ||
486 | |||
487 | for (idx = 0; idx <= armpmu->num_events; ++idx) { | ||
488 | struct perf_event *event = cpuc->events[idx]; | ||
489 | |||
490 | if (!event) | ||
491 | continue; | ||
492 | |||
493 | armpmu->enable(&event->hw, idx); | ||
494 | } | ||
495 | |||
496 | armpmu->start(); | ||
497 | } | ||
498 | |||
499 | void | ||
500 | hw_perf_disable(void) | ||
501 | { | ||
502 | if (armpmu) | ||
503 | armpmu->stop(); | ||
504 | } | ||
505 | |||
506 | /* | ||
507 | * ARMv6 Performance counter handling code. | ||
508 | * | ||
509 | * ARMv6 has 2 configurable performance counters and a single cycle counter. | ||
510 | * They all share a single reset bit but can be written to zero so we can use | ||
511 | * that for a reset. | ||
512 | * | ||
513 | * The counters can't be individually enabled or disabled so when we remove | ||
514 | * one event and replace it with another we could get spurious counts from the | ||
515 | * wrong event. However, we can take advantage of the fact that the | ||
516 | * performance counters can export events to the event bus, and the event bus | ||
517 | * itself can be monitored. This requires that we *don't* export the events to | ||
518 | * the event bus. The procedure for disabling a configurable counter is: | ||
519 | * - change the counter to count the ETMEXTOUT[0] signal (0x20). This | ||
520 | * effectively stops the counter from counting. | ||
521 | * - disable the counter's interrupt generation (each counter has it's | ||
522 | * own interrupt enable bit). | ||
523 | * Once stopped, the counter value can be written as 0 to reset. | ||
524 | * | ||
525 | * To enable a counter: | ||
526 | * - enable the counter's interrupt generation. | ||
527 | * - set the new event type. | ||
528 | * | ||
529 | * Note: the dedicated cycle counter only counts cycles and can't be | ||
530 | * enabled/disabled independently of the others. When we want to disable the | ||
531 | * cycle counter, we have to just disable the interrupt reporting and start | ||
532 | * ignoring that counter. When re-enabling, we have to reset the value and | ||
533 | * enable the interrupt. | ||
534 | */ | ||
535 | |||
536 | enum armv6_perf_types { | ||
537 | ARMV6_PERFCTR_ICACHE_MISS = 0x0, | ||
538 | ARMV6_PERFCTR_IBUF_STALL = 0x1, | ||
539 | ARMV6_PERFCTR_DDEP_STALL = 0x2, | ||
540 | ARMV6_PERFCTR_ITLB_MISS = 0x3, | ||
541 | ARMV6_PERFCTR_DTLB_MISS = 0x4, | ||
542 | ARMV6_PERFCTR_BR_EXEC = 0x5, | ||
543 | ARMV6_PERFCTR_BR_MISPREDICT = 0x6, | ||
544 | ARMV6_PERFCTR_INSTR_EXEC = 0x7, | ||
545 | ARMV6_PERFCTR_DCACHE_HIT = 0x9, | ||
546 | ARMV6_PERFCTR_DCACHE_ACCESS = 0xA, | ||
547 | ARMV6_PERFCTR_DCACHE_MISS = 0xB, | ||
548 | ARMV6_PERFCTR_DCACHE_WBACK = 0xC, | ||
549 | ARMV6_PERFCTR_SW_PC_CHANGE = 0xD, | ||
550 | ARMV6_PERFCTR_MAIN_TLB_MISS = 0xF, | ||
551 | ARMV6_PERFCTR_EXPL_D_ACCESS = 0x10, | ||
552 | ARMV6_PERFCTR_LSU_FULL_STALL = 0x11, | ||
553 | ARMV6_PERFCTR_WBUF_DRAINED = 0x12, | ||
554 | ARMV6_PERFCTR_CPU_CYCLES = 0xFF, | ||
555 | ARMV6_PERFCTR_NOP = 0x20, | ||
556 | }; | ||
557 | |||
558 | enum armv6_counters { | ||
559 | ARMV6_CYCLE_COUNTER = 1, | ||
560 | ARMV6_COUNTER0, | ||
561 | ARMV6_COUNTER1, | ||
562 | }; | ||
563 | |||
564 | /* | ||
565 | * The hardware events that we support. We do support cache operations but | ||
566 | * we have harvard caches and no way to combine instruction and data | ||
567 | * accesses/misses in hardware. | ||
568 | */ | ||
569 | static const unsigned armv6_perf_map[PERF_COUNT_HW_MAX] = { | ||
570 | [PERF_COUNT_HW_CPU_CYCLES] = ARMV6_PERFCTR_CPU_CYCLES, | ||
571 | [PERF_COUNT_HW_INSTRUCTIONS] = ARMV6_PERFCTR_INSTR_EXEC, | ||
572 | [PERF_COUNT_HW_CACHE_REFERENCES] = HW_OP_UNSUPPORTED, | ||
573 | [PERF_COUNT_HW_CACHE_MISSES] = HW_OP_UNSUPPORTED, | ||
574 | [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV6_PERFCTR_BR_EXEC, | ||
575 | [PERF_COUNT_HW_BRANCH_MISSES] = ARMV6_PERFCTR_BR_MISPREDICT, | ||
576 | [PERF_COUNT_HW_BUS_CYCLES] = HW_OP_UNSUPPORTED, | ||
577 | }; | ||
578 | |||
579 | static const unsigned armv6_perf_cache_map[PERF_COUNT_HW_CACHE_MAX] | ||
580 | [PERF_COUNT_HW_CACHE_OP_MAX] | ||
581 | [PERF_COUNT_HW_CACHE_RESULT_MAX] = { | ||
582 | [C(L1D)] = { | ||
583 | /* | ||
584 | * The performance counters don't differentiate between read | ||
585 | * and write accesses/misses so this isn't strictly correct, | ||
586 | * but it's the best we can do. Writes and reads get | ||
587 | * combined. | ||
588 | */ | ||
589 | [C(OP_READ)] = { | ||
590 | [C(RESULT_ACCESS)] = ARMV6_PERFCTR_DCACHE_ACCESS, | ||
591 | [C(RESULT_MISS)] = ARMV6_PERFCTR_DCACHE_MISS, | ||
592 | }, | ||
593 | [C(OP_WRITE)] = { | ||
594 | [C(RESULT_ACCESS)] = ARMV6_PERFCTR_DCACHE_ACCESS, | ||
595 | [C(RESULT_MISS)] = ARMV6_PERFCTR_DCACHE_MISS, | ||
596 | }, | ||
597 | [C(OP_PREFETCH)] = { | ||
598 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, | ||
599 | [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, | ||
600 | }, | ||
601 | }, | ||
602 | [C(L1I)] = { | ||
603 | [C(OP_READ)] = { | ||
604 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, | ||
605 | [C(RESULT_MISS)] = ARMV6_PERFCTR_ICACHE_MISS, | ||
606 | }, | ||
607 | [C(OP_WRITE)] = { | ||
608 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, | ||
609 | [C(RESULT_MISS)] = ARMV6_PERFCTR_ICACHE_MISS, | ||
610 | }, | ||
611 | [C(OP_PREFETCH)] = { | ||
612 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, | ||
613 | [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, | ||
614 | }, | ||
615 | }, | ||
616 | [C(LL)] = { | ||
617 | [C(OP_READ)] = { | ||
618 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, | ||
619 | [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, | ||
620 | }, | ||
621 | [C(OP_WRITE)] = { | ||
622 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, | ||
623 | [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, | ||
624 | }, | ||
625 | [C(OP_PREFETCH)] = { | ||
626 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, | ||
627 | [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, | ||
628 | }, | ||
629 | }, | ||
630 | [C(DTLB)] = { | ||
631 | /* | ||
632 | * The ARM performance counters can count micro DTLB misses, | ||
633 | * micro ITLB misses and main TLB misses. There isn't an event | ||
634 | * for TLB misses, so use the micro misses here and if users | ||
635 | * want the main TLB misses they can use a raw counter. | ||
636 | */ | ||
637 | [C(OP_READ)] = { | ||
638 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, | ||
639 | [C(RESULT_MISS)] = ARMV6_PERFCTR_DTLB_MISS, | ||
640 | }, | ||
641 | [C(OP_WRITE)] = { | ||
642 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, | ||
643 | [C(RESULT_MISS)] = ARMV6_PERFCTR_DTLB_MISS, | ||
644 | }, | ||
645 | [C(OP_PREFETCH)] = { | ||
646 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, | ||
647 | [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, | ||
648 | }, | ||
649 | }, | ||
650 | [C(ITLB)] = { | ||
651 | [C(OP_READ)] = { | ||
652 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, | ||
653 | [C(RESULT_MISS)] = ARMV6_PERFCTR_ITLB_MISS, | ||
654 | }, | ||
655 | [C(OP_WRITE)] = { | ||
656 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, | ||
657 | [C(RESULT_MISS)] = ARMV6_PERFCTR_ITLB_MISS, | ||
658 | }, | ||
659 | [C(OP_PREFETCH)] = { | ||
660 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, | ||
661 | [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, | ||
662 | }, | ||
663 | }, | ||
664 | [C(BPU)] = { | ||
665 | [C(OP_READ)] = { | ||
666 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, | ||
667 | [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, | ||
668 | }, | ||
669 | [C(OP_WRITE)] = { | ||
670 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, | ||
671 | [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, | ||
672 | }, | ||
673 | [C(OP_PREFETCH)] = { | ||
674 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, | ||
675 | [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, | ||
676 | }, | ||
677 | }, | ||
678 | }; | ||
679 | |||
680 | enum armv6mpcore_perf_types { | ||
681 | ARMV6MPCORE_PERFCTR_ICACHE_MISS = 0x0, | ||
682 | ARMV6MPCORE_PERFCTR_IBUF_STALL = 0x1, | ||
683 | ARMV6MPCORE_PERFCTR_DDEP_STALL = 0x2, | ||
684 | ARMV6MPCORE_PERFCTR_ITLB_MISS = 0x3, | ||
685 | ARMV6MPCORE_PERFCTR_DTLB_MISS = 0x4, | ||
686 | ARMV6MPCORE_PERFCTR_BR_EXEC = 0x5, | ||
687 | ARMV6MPCORE_PERFCTR_BR_NOTPREDICT = 0x6, | ||
688 | ARMV6MPCORE_PERFCTR_BR_MISPREDICT = 0x7, | ||
689 | ARMV6MPCORE_PERFCTR_INSTR_EXEC = 0x8, | ||
690 | ARMV6MPCORE_PERFCTR_DCACHE_RDACCESS = 0xA, | ||
691 | ARMV6MPCORE_PERFCTR_DCACHE_RDMISS = 0xB, | ||
692 | ARMV6MPCORE_PERFCTR_DCACHE_WRACCESS = 0xC, | ||
693 | ARMV6MPCORE_PERFCTR_DCACHE_WRMISS = 0xD, | ||
694 | ARMV6MPCORE_PERFCTR_DCACHE_EVICTION = 0xE, | ||
695 | ARMV6MPCORE_PERFCTR_SW_PC_CHANGE = 0xF, | ||
696 | ARMV6MPCORE_PERFCTR_MAIN_TLB_MISS = 0x10, | ||
697 | ARMV6MPCORE_PERFCTR_EXPL_MEM_ACCESS = 0x11, | ||
698 | ARMV6MPCORE_PERFCTR_LSU_FULL_STALL = 0x12, | ||
699 | ARMV6MPCORE_PERFCTR_WBUF_DRAINED = 0x13, | ||
700 | ARMV6MPCORE_PERFCTR_CPU_CYCLES = 0xFF, | ||
701 | }; | ||
702 | |||
703 | /* | ||
704 | * The hardware events that we support. We do support cache operations but | ||
705 | * we have harvard caches and no way to combine instruction and data | ||
706 | * accesses/misses in hardware. | ||
707 | */ | ||
708 | static const unsigned armv6mpcore_perf_map[PERF_COUNT_HW_MAX] = { | ||
709 | [PERF_COUNT_HW_CPU_CYCLES] = ARMV6MPCORE_PERFCTR_CPU_CYCLES, | ||
710 | [PERF_COUNT_HW_INSTRUCTIONS] = ARMV6MPCORE_PERFCTR_INSTR_EXEC, | ||
711 | [PERF_COUNT_HW_CACHE_REFERENCES] = HW_OP_UNSUPPORTED, | ||
712 | [PERF_COUNT_HW_CACHE_MISSES] = HW_OP_UNSUPPORTED, | ||
713 | [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV6MPCORE_PERFCTR_BR_EXEC, | ||
714 | [PERF_COUNT_HW_BRANCH_MISSES] = ARMV6MPCORE_PERFCTR_BR_MISPREDICT, | ||
715 | [PERF_COUNT_HW_BUS_CYCLES] = HW_OP_UNSUPPORTED, | ||
716 | }; | ||
717 | |||
718 | static const unsigned armv6mpcore_perf_cache_map[PERF_COUNT_HW_CACHE_MAX] | ||
719 | [PERF_COUNT_HW_CACHE_OP_MAX] | ||
720 | [PERF_COUNT_HW_CACHE_RESULT_MAX] = { | ||
721 | [C(L1D)] = { | ||
722 | [C(OP_READ)] = { | ||
723 | [C(RESULT_ACCESS)] = | ||
724 | ARMV6MPCORE_PERFCTR_DCACHE_RDACCESS, | ||
725 | [C(RESULT_MISS)] = | ||
726 | ARMV6MPCORE_PERFCTR_DCACHE_RDMISS, | ||
727 | }, | ||
728 | [C(OP_WRITE)] = { | ||
729 | [C(RESULT_ACCESS)] = | ||
730 | ARMV6MPCORE_PERFCTR_DCACHE_WRACCESS, | ||
731 | [C(RESULT_MISS)] = | ||
732 | ARMV6MPCORE_PERFCTR_DCACHE_WRMISS, | ||
733 | }, | ||
734 | [C(OP_PREFETCH)] = { | ||
735 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, | ||
736 | [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, | ||
737 | }, | ||
738 | }, | ||
739 | [C(L1I)] = { | ||
740 | [C(OP_READ)] = { | ||
741 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, | ||
742 | [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ICACHE_MISS, | ||
743 | }, | ||
744 | [C(OP_WRITE)] = { | ||
745 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, | ||
746 | [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ICACHE_MISS, | ||
747 | }, | ||
748 | [C(OP_PREFETCH)] = { | ||
749 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, | ||
750 | [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, | ||
751 | }, | ||
752 | }, | ||
753 | [C(LL)] = { | ||
754 | [C(OP_READ)] = { | ||
755 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, | ||
756 | [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, | ||
757 | }, | ||
758 | [C(OP_WRITE)] = { | ||
759 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, | ||
760 | [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, | ||
761 | }, | ||
762 | [C(OP_PREFETCH)] = { | ||
763 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, | ||
764 | [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, | ||
765 | }, | ||
766 | }, | ||
767 | [C(DTLB)] = { | ||
768 | /* | ||
769 | * The ARM performance counters can count micro DTLB misses, | ||
770 | * micro ITLB misses and main TLB misses. There isn't an event | ||
771 | * for TLB misses, so use the micro misses here and if users | ||
772 | * want the main TLB misses they can use a raw counter. | ||
773 | */ | ||
774 | [C(OP_READ)] = { | ||
775 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, | ||
776 | [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_DTLB_MISS, | ||
777 | }, | ||
778 | [C(OP_WRITE)] = { | ||
779 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, | ||
780 | [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_DTLB_MISS, | ||
781 | }, | ||
782 | [C(OP_PREFETCH)] = { | ||
783 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, | ||
784 | [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, | ||
785 | }, | ||
786 | }, | ||
787 | [C(ITLB)] = { | ||
788 | [C(OP_READ)] = { | ||
789 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, | ||
790 | [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ITLB_MISS, | ||
791 | }, | ||
792 | [C(OP_WRITE)] = { | ||
793 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, | ||
794 | [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ITLB_MISS, | ||
795 | }, | ||
796 | [C(OP_PREFETCH)] = { | ||
797 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, | ||
798 | [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, | ||
799 | }, | ||
800 | }, | ||
801 | [C(BPU)] = { | ||
802 | [C(OP_READ)] = { | ||
803 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, | ||
804 | [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, | ||
805 | }, | ||
806 | [C(OP_WRITE)] = { | ||
807 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, | ||
808 | [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, | ||
809 | }, | ||
810 | [C(OP_PREFETCH)] = { | ||
811 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, | ||
812 | [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, | ||
813 | }, | ||
814 | }, | ||
815 | }; | ||
816 | |||
817 | static inline unsigned long | ||
818 | armv6_pmcr_read(void) | ||
819 | { | ||
820 | u32 val; | ||
821 | asm volatile("mrc p15, 0, %0, c15, c12, 0" : "=r"(val)); | ||
822 | return val; | ||
823 | } | ||
824 | |||
825 | static inline void | ||
826 | armv6_pmcr_write(unsigned long val) | ||
827 | { | ||
828 | asm volatile("mcr p15, 0, %0, c15, c12, 0" : : "r"(val)); | ||
829 | } | ||
830 | |||
831 | #define ARMV6_PMCR_ENABLE (1 << 0) | ||
832 | #define ARMV6_PMCR_CTR01_RESET (1 << 1) | ||
833 | #define ARMV6_PMCR_CCOUNT_RESET (1 << 2) | ||
834 | #define ARMV6_PMCR_CCOUNT_DIV (1 << 3) | ||
835 | #define ARMV6_PMCR_COUNT0_IEN (1 << 4) | ||
836 | #define ARMV6_PMCR_COUNT1_IEN (1 << 5) | ||
837 | #define ARMV6_PMCR_CCOUNT_IEN (1 << 6) | ||
838 | #define ARMV6_PMCR_COUNT0_OVERFLOW (1 << 8) | ||
839 | #define ARMV6_PMCR_COUNT1_OVERFLOW (1 << 9) | ||
840 | #define ARMV6_PMCR_CCOUNT_OVERFLOW (1 << 10) | ||
841 | #define ARMV6_PMCR_EVT_COUNT0_SHIFT 20 | ||
842 | #define ARMV6_PMCR_EVT_COUNT0_MASK (0xFF << ARMV6_PMCR_EVT_COUNT0_SHIFT) | ||
843 | #define ARMV6_PMCR_EVT_COUNT1_SHIFT 12 | ||
844 | #define ARMV6_PMCR_EVT_COUNT1_MASK (0xFF << ARMV6_PMCR_EVT_COUNT1_SHIFT) | ||
845 | |||
846 | #define ARMV6_PMCR_OVERFLOWED_MASK \ | ||
847 | (ARMV6_PMCR_COUNT0_OVERFLOW | ARMV6_PMCR_COUNT1_OVERFLOW | \ | ||
848 | ARMV6_PMCR_CCOUNT_OVERFLOW) | ||
849 | |||
850 | static inline int | ||
851 | armv6_pmcr_has_overflowed(unsigned long pmcr) | ||
852 | { | ||
853 | return (pmcr & ARMV6_PMCR_OVERFLOWED_MASK); | ||
854 | } | ||
855 | |||
856 | static inline int | ||
857 | armv6_pmcr_counter_has_overflowed(unsigned long pmcr, | ||
858 | enum armv6_counters counter) | ||
859 | { | ||
860 | int ret = 0; | ||
861 | |||
862 | if (ARMV6_CYCLE_COUNTER == counter) | ||
863 | ret = pmcr & ARMV6_PMCR_CCOUNT_OVERFLOW; | ||
864 | else if (ARMV6_COUNTER0 == counter) | ||
865 | ret = pmcr & ARMV6_PMCR_COUNT0_OVERFLOW; | ||
866 | else if (ARMV6_COUNTER1 == counter) | ||
867 | ret = pmcr & ARMV6_PMCR_COUNT1_OVERFLOW; | ||
868 | else | ||
869 | WARN_ONCE(1, "invalid counter number (%d)\n", counter); | ||
870 | |||
871 | return ret; | ||
872 | } | ||
873 | |||
874 | static inline u32 | ||
875 | armv6pmu_read_counter(int counter) | ||
876 | { | ||
877 | unsigned long value = 0; | ||
878 | |||
879 | if (ARMV6_CYCLE_COUNTER == counter) | ||
880 | asm volatile("mrc p15, 0, %0, c15, c12, 1" : "=r"(value)); | ||
881 | else if (ARMV6_COUNTER0 == counter) | ||
882 | asm volatile("mrc p15, 0, %0, c15, c12, 2" : "=r"(value)); | ||
883 | else if (ARMV6_COUNTER1 == counter) | ||
884 | asm volatile("mrc p15, 0, %0, c15, c12, 3" : "=r"(value)); | ||
885 | else | ||
886 | WARN_ONCE(1, "invalid counter number (%d)\n", counter); | ||
887 | |||
888 | return value; | ||
889 | } | ||
890 | |||
891 | static inline void | ||
892 | armv6pmu_write_counter(int counter, | ||
893 | u32 value) | ||
894 | { | ||
895 | if (ARMV6_CYCLE_COUNTER == counter) | ||
896 | asm volatile("mcr p15, 0, %0, c15, c12, 1" : : "r"(value)); | ||
897 | else if (ARMV6_COUNTER0 == counter) | ||
898 | asm volatile("mcr p15, 0, %0, c15, c12, 2" : : "r"(value)); | ||
899 | else if (ARMV6_COUNTER1 == counter) | ||
900 | asm volatile("mcr p15, 0, %0, c15, c12, 3" : : "r"(value)); | ||
901 | else | ||
902 | WARN_ONCE(1, "invalid counter number (%d)\n", counter); | ||
903 | } | ||
904 | |||
905 | void | ||
906 | armv6pmu_enable_event(struct hw_perf_event *hwc, | ||
907 | int idx) | ||
908 | { | ||
909 | unsigned long val, mask, evt, flags; | ||
910 | |||
911 | if (ARMV6_CYCLE_COUNTER == idx) { | ||
912 | mask = 0; | ||
913 | evt = ARMV6_PMCR_CCOUNT_IEN; | ||
914 | } else if (ARMV6_COUNTER0 == idx) { | ||
915 | mask = ARMV6_PMCR_EVT_COUNT0_MASK; | ||
916 | evt = (hwc->config_base << ARMV6_PMCR_EVT_COUNT0_SHIFT) | | ||
917 | ARMV6_PMCR_COUNT0_IEN; | ||
918 | } else if (ARMV6_COUNTER1 == idx) { | ||
919 | mask = ARMV6_PMCR_EVT_COUNT1_MASK; | ||
920 | evt = (hwc->config_base << ARMV6_PMCR_EVT_COUNT1_SHIFT) | | ||
921 | ARMV6_PMCR_COUNT1_IEN; | ||
922 | } else { | ||
923 | WARN_ONCE(1, "invalid counter number (%d)\n", idx); | ||
924 | return; | ||
925 | } | ||
926 | |||
927 | /* | ||
928 | * Mask out the current event and set the counter to count the event | ||
929 | * that we're interested in. | ||
930 | */ | ||
931 | spin_lock_irqsave(&pmu_lock, flags); | ||
932 | val = armv6_pmcr_read(); | ||
933 | val &= ~mask; | ||
934 | val |= evt; | ||
935 | armv6_pmcr_write(val); | ||
936 | spin_unlock_irqrestore(&pmu_lock, flags); | ||
937 | } | ||
938 | |||
939 | static irqreturn_t | ||
940 | armv6pmu_handle_irq(int irq_num, | ||
941 | void *dev) | ||
942 | { | ||
943 | unsigned long pmcr = armv6_pmcr_read(); | ||
944 | struct perf_sample_data data; | ||
945 | struct cpu_hw_events *cpuc; | ||
946 | struct pt_regs *regs; | ||
947 | int idx; | ||
948 | |||
949 | if (!armv6_pmcr_has_overflowed(pmcr)) | ||
950 | return IRQ_NONE; | ||
951 | |||
952 | regs = get_irq_regs(); | ||
953 | |||
954 | /* | ||
955 | * The interrupts are cleared by writing the overflow flags back to | ||
956 | * the control register. All of the other bits don't have any effect | ||
957 | * if they are rewritten, so write the whole value back. | ||
958 | */ | ||
959 | armv6_pmcr_write(pmcr); | ||
960 | |||
961 | data.addr = 0; | ||
962 | |||
963 | cpuc = &__get_cpu_var(cpu_hw_events); | ||
964 | for (idx = 0; idx <= armpmu->num_events; ++idx) { | ||
965 | struct perf_event *event = cpuc->events[idx]; | ||
966 | struct hw_perf_event *hwc; | ||
967 | |||
968 | if (!test_bit(idx, cpuc->active_mask)) | ||
969 | continue; | ||
970 | |||
971 | /* | ||
972 | * We have a single interrupt for all counters. Check that | ||
973 | * each counter has overflowed before we process it. | ||
974 | */ | ||
975 | if (!armv6_pmcr_counter_has_overflowed(pmcr, idx)) | ||
976 | continue; | ||
977 | |||
978 | hwc = &event->hw; | ||
979 | armpmu_event_update(event, hwc, idx); | ||
980 | data.period = event->hw.last_period; | ||
981 | if (!armpmu_event_set_period(event, hwc, idx)) | ||
982 | continue; | ||
983 | |||
984 | if (perf_event_overflow(event, 0, &data, regs)) | ||
985 | armpmu->disable(hwc, idx); | ||
986 | } | ||
987 | |||
988 | /* | ||
989 | * Handle the pending perf events. | ||
990 | * | ||
991 | * Note: this call *must* be run with interrupts enabled. For | ||
992 | * platforms that can have the PMU interrupts raised as a PMI, this | ||
993 | * will not work. | ||
994 | */ | ||
995 | perf_event_do_pending(); | ||
996 | |||
997 | return IRQ_HANDLED; | ||
998 | } | ||
999 | |||
1000 | static void | ||
1001 | armv6pmu_start(void) | ||
1002 | { | ||
1003 | unsigned long flags, val; | ||
1004 | |||
1005 | spin_lock_irqsave(&pmu_lock, flags); | ||
1006 | val = armv6_pmcr_read(); | ||
1007 | val |= ARMV6_PMCR_ENABLE; | ||
1008 | armv6_pmcr_write(val); | ||
1009 | spin_unlock_irqrestore(&pmu_lock, flags); | ||
1010 | } | ||
1011 | |||
1012 | void | ||
1013 | armv6pmu_stop(void) | ||
1014 | { | ||
1015 | unsigned long flags, val; | ||
1016 | |||
1017 | spin_lock_irqsave(&pmu_lock, flags); | ||
1018 | val = armv6_pmcr_read(); | ||
1019 | val &= ~ARMV6_PMCR_ENABLE; | ||
1020 | armv6_pmcr_write(val); | ||
1021 | spin_unlock_irqrestore(&pmu_lock, flags); | ||
1022 | } | ||
1023 | |||
1024 | static inline int | ||
1025 | armv6pmu_event_map(int config) | ||
1026 | { | ||
1027 | int mapping = armv6_perf_map[config]; | ||
1028 | if (HW_OP_UNSUPPORTED == mapping) | ||
1029 | mapping = -EOPNOTSUPP; | ||
1030 | return mapping; | ||
1031 | } | ||
1032 | |||
1033 | static inline int | ||
1034 | armv6mpcore_pmu_event_map(int config) | ||
1035 | { | ||
1036 | int mapping = armv6mpcore_perf_map[config]; | ||
1037 | if (HW_OP_UNSUPPORTED == mapping) | ||
1038 | mapping = -EOPNOTSUPP; | ||
1039 | return mapping; | ||
1040 | } | ||
1041 | |||
1042 | static u64 | ||
1043 | armv6pmu_raw_event(u64 config) | ||
1044 | { | ||
1045 | return config & 0xff; | ||
1046 | } | ||
1047 | |||
1048 | static int | ||
1049 | armv6pmu_get_event_idx(struct cpu_hw_events *cpuc, | ||
1050 | struct hw_perf_event *event) | ||
1051 | { | ||
1052 | /* Always place a cycle counter into the cycle counter. */ | ||
1053 | if (ARMV6_PERFCTR_CPU_CYCLES == event->config_base) { | ||
1054 | if (test_and_set_bit(ARMV6_CYCLE_COUNTER, cpuc->used_mask)) | ||
1055 | return -EAGAIN; | ||
1056 | |||
1057 | return ARMV6_CYCLE_COUNTER; | ||
1058 | } else { | ||
1059 | /* | ||
1060 | * For anything other than a cycle counter, try and use | ||
1061 | * counter0 and counter1. | ||
1062 | */ | ||
1063 | if (!test_and_set_bit(ARMV6_COUNTER1, cpuc->used_mask)) { | ||
1064 | return ARMV6_COUNTER1; | ||
1065 | } | ||
1066 | |||
1067 | if (!test_and_set_bit(ARMV6_COUNTER0, cpuc->used_mask)) { | ||
1068 | return ARMV6_COUNTER0; | ||
1069 | } | ||
1070 | |||
1071 | /* The counters are all in use. */ | ||
1072 | return -EAGAIN; | ||
1073 | } | ||
1074 | } | ||
1075 | |||
1076 | static void | ||
1077 | armv6pmu_disable_event(struct hw_perf_event *hwc, | ||
1078 | int idx) | ||
1079 | { | ||
1080 | unsigned long val, mask, evt, flags; | ||
1081 | |||
1082 | if (ARMV6_CYCLE_COUNTER == idx) { | ||
1083 | mask = ARMV6_PMCR_CCOUNT_IEN; | ||
1084 | evt = 0; | ||
1085 | } else if (ARMV6_COUNTER0 == idx) { | ||
1086 | mask = ARMV6_PMCR_COUNT0_IEN | ARMV6_PMCR_EVT_COUNT0_MASK; | ||
1087 | evt = ARMV6_PERFCTR_NOP << ARMV6_PMCR_EVT_COUNT0_SHIFT; | ||
1088 | } else if (ARMV6_COUNTER1 == idx) { | ||
1089 | mask = ARMV6_PMCR_COUNT1_IEN | ARMV6_PMCR_EVT_COUNT1_MASK; | ||
1090 | evt = ARMV6_PERFCTR_NOP << ARMV6_PMCR_EVT_COUNT1_SHIFT; | ||
1091 | } else { | ||
1092 | WARN_ONCE(1, "invalid counter number (%d)\n", idx); | ||
1093 | return; | ||
1094 | } | ||
1095 | |||
1096 | /* | ||
1097 | * Mask out the current event and set the counter to count the number | ||
1098 | * of ETM bus signal assertion cycles. The external reporting should | ||
1099 | * be disabled and so this should never increment. | ||
1100 | */ | ||
1101 | spin_lock_irqsave(&pmu_lock, flags); | ||
1102 | val = armv6_pmcr_read(); | ||
1103 | val &= ~mask; | ||
1104 | val |= evt; | ||
1105 | armv6_pmcr_write(val); | ||
1106 | spin_unlock_irqrestore(&pmu_lock, flags); | ||
1107 | } | ||
1108 | |||
1109 | static void | ||
1110 | armv6mpcore_pmu_disable_event(struct hw_perf_event *hwc, | ||
1111 | int idx) | ||
1112 | { | ||
1113 | unsigned long val, mask, flags, evt = 0; | ||
1114 | |||
1115 | if (ARMV6_CYCLE_COUNTER == idx) { | ||
1116 | mask = ARMV6_PMCR_CCOUNT_IEN; | ||
1117 | } else if (ARMV6_COUNTER0 == idx) { | ||
1118 | mask = ARMV6_PMCR_COUNT0_IEN; | ||
1119 | } else if (ARMV6_COUNTER1 == idx) { | ||
1120 | mask = ARMV6_PMCR_COUNT1_IEN; | ||
1121 | } else { | ||
1122 | WARN_ONCE(1, "invalid counter number (%d)\n", idx); | ||
1123 | return; | ||
1124 | } | ||
1125 | |||
1126 | /* | ||
1127 | * Unlike UP ARMv6, we don't have a way of stopping the counters. We | ||
1128 | * simply disable the interrupt reporting. | ||
1129 | */ | ||
1130 | spin_lock_irqsave(&pmu_lock, flags); | ||
1131 | val = armv6_pmcr_read(); | ||
1132 | val &= ~mask; | ||
1133 | val |= evt; | ||
1134 | armv6_pmcr_write(val); | ||
1135 | spin_unlock_irqrestore(&pmu_lock, flags); | ||
1136 | } | ||
1137 | |||
1138 | static const struct arm_pmu armv6pmu = { | ||
1139 | .name = "v6", | ||
1140 | .handle_irq = armv6pmu_handle_irq, | ||
1141 | .enable = armv6pmu_enable_event, | ||
1142 | .disable = armv6pmu_disable_event, | ||
1143 | .event_map = armv6pmu_event_map, | ||
1144 | .raw_event = armv6pmu_raw_event, | ||
1145 | .read_counter = armv6pmu_read_counter, | ||
1146 | .write_counter = armv6pmu_write_counter, | ||
1147 | .get_event_idx = armv6pmu_get_event_idx, | ||
1148 | .start = armv6pmu_start, | ||
1149 | .stop = armv6pmu_stop, | ||
1150 | .num_events = 3, | ||
1151 | .max_period = (1LLU << 32) - 1, | ||
1152 | }; | ||
1153 | |||
1154 | /* | ||
1155 | * ARMv6mpcore is almost identical to single core ARMv6 with the exception | ||
1156 | * that some of the events have different enumerations and that there is no | ||
1157 | * *hack* to stop the programmable counters. To stop the counters we simply | ||
1158 | * disable the interrupt reporting and update the event. When unthrottling we | ||
1159 | * reset the period and enable the interrupt reporting. | ||
1160 | */ | ||
1161 | static const struct arm_pmu armv6mpcore_pmu = { | ||
1162 | .name = "v6mpcore", | ||
1163 | .handle_irq = armv6pmu_handle_irq, | ||
1164 | .enable = armv6pmu_enable_event, | ||
1165 | .disable = armv6mpcore_pmu_disable_event, | ||
1166 | .event_map = armv6mpcore_pmu_event_map, | ||
1167 | .raw_event = armv6pmu_raw_event, | ||
1168 | .read_counter = armv6pmu_read_counter, | ||
1169 | .write_counter = armv6pmu_write_counter, | ||
1170 | .get_event_idx = armv6pmu_get_event_idx, | ||
1171 | .start = armv6pmu_start, | ||
1172 | .stop = armv6pmu_stop, | ||
1173 | .num_events = 3, | ||
1174 | .max_period = (1LLU << 32) - 1, | ||
1175 | }; | ||
1176 | |||
1177 | static int __init | ||
1178 | init_hw_perf_events(void) | ||
1179 | { | ||
1180 | unsigned long cpuid = read_cpuid_id(); | ||
1181 | unsigned long implementor = (cpuid & 0xFF000000) >> 24; | ||
1182 | unsigned long part_number = (cpuid & 0xFFF0); | ||
1183 | |||
1184 | /* We only support ARM CPUs implemented by ARM at the moment. */ | ||
1185 | if (0x41 == implementor) { | ||
1186 | switch (part_number) { | ||
1187 | case 0xB360: /* ARM1136 */ | ||
1188 | case 0xB560: /* ARM1156 */ | ||
1189 | case 0xB760: /* ARM1176 */ | ||
1190 | armpmu = &armv6pmu; | ||
1191 | memcpy(armpmu_perf_cache_map, armv6_perf_cache_map, | ||
1192 | sizeof(armv6_perf_cache_map)); | ||
1193 | perf_max_events = armv6pmu.num_events; | ||
1194 | break; | ||
1195 | case 0xB020: /* ARM11mpcore */ | ||
1196 | armpmu = &armv6mpcore_pmu; | ||
1197 | memcpy(armpmu_perf_cache_map, | ||
1198 | armv6mpcore_perf_cache_map, | ||
1199 | sizeof(armv6mpcore_perf_cache_map)); | ||
1200 | perf_max_events = armv6mpcore_pmu.num_events; | ||
1201 | break; | ||
1202 | default: | ||
1203 | pr_info("no hardware support available\n"); | ||
1204 | perf_max_events = -1; | ||
1205 | } | ||
1206 | } | ||
1207 | |||
1208 | if (armpmu) | ||
1209 | pr_info("enabled with %s PMU driver\n", | ||
1210 | armpmu->name); | ||
1211 | |||
1212 | return 0; | ||
1213 | } | ||
1214 | arch_initcall(init_hw_perf_events); | ||
1215 | |||
1216 | /* | ||
1217 | * Callchain handling code. | ||
1218 | */ | ||
1219 | static inline void | ||
1220 | callchain_store(struct perf_callchain_entry *entry, | ||
1221 | u64 ip) | ||
1222 | { | ||
1223 | if (entry->nr < PERF_MAX_STACK_DEPTH) | ||
1224 | entry->ip[entry->nr++] = ip; | ||
1225 | } | ||
1226 | |||
1227 | /* | ||
1228 | * The registers we're interested in are at the end of the variable | ||
1229 | * length saved register structure. The fp points at the end of this | ||
1230 | * structure so the address of this struct is: | ||
1231 | * (struct frame_tail *)(xxx->fp)-1 | ||
1232 | * | ||
1233 | * This code has been adapted from the ARM OProfile support. | ||
1234 | */ | ||
1235 | struct frame_tail { | ||
1236 | struct frame_tail *fp; | ||
1237 | unsigned long sp; | ||
1238 | unsigned long lr; | ||
1239 | } __attribute__((packed)); | ||
1240 | |||
1241 | /* | ||
1242 | * Get the return address for a single stackframe and return a pointer to the | ||
1243 | * next frame tail. | ||
1244 | */ | ||
1245 | static struct frame_tail * | ||
1246 | user_backtrace(struct frame_tail *tail, | ||
1247 | struct perf_callchain_entry *entry) | ||
1248 | { | ||
1249 | struct frame_tail buftail; | ||
1250 | |||
1251 | /* Also check accessibility of one struct frame_tail beyond */ | ||
1252 | if (!access_ok(VERIFY_READ, tail, sizeof(buftail))) | ||
1253 | return NULL; | ||
1254 | if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail))) | ||
1255 | return NULL; | ||
1256 | |||
1257 | callchain_store(entry, buftail.lr); | ||
1258 | |||
1259 | /* | ||
1260 | * Frame pointers should strictly progress back up the stack | ||
1261 | * (towards higher addresses). | ||
1262 | */ | ||
1263 | if (tail >= buftail.fp) | ||
1264 | return NULL; | ||
1265 | |||
1266 | return buftail.fp - 1; | ||
1267 | } | ||
1268 | |||
1269 | static void | ||
1270 | perf_callchain_user(struct pt_regs *regs, | ||
1271 | struct perf_callchain_entry *entry) | ||
1272 | { | ||
1273 | struct frame_tail *tail; | ||
1274 | |||
1275 | callchain_store(entry, PERF_CONTEXT_USER); | ||
1276 | |||
1277 | if (!user_mode(regs)) | ||
1278 | regs = task_pt_regs(current); | ||
1279 | |||
1280 | tail = (struct frame_tail *)regs->ARM_fp - 1; | ||
1281 | |||
1282 | while (tail && !((unsigned long)tail & 0x3)) | ||
1283 | tail = user_backtrace(tail, entry); | ||
1284 | } | ||
1285 | |||
1286 | /* | ||
1287 | * Gets called by walk_stackframe() for every stackframe. This will be called | ||
1288 | * whist unwinding the stackframe and is like a subroutine return so we use | ||
1289 | * the PC. | ||
1290 | */ | ||
1291 | static int | ||
1292 | callchain_trace(struct stackframe *fr, | ||
1293 | void *data) | ||
1294 | { | ||
1295 | struct perf_callchain_entry *entry = data; | ||
1296 | callchain_store(entry, fr->pc); | ||
1297 | return 0; | ||
1298 | } | ||
1299 | |||
1300 | static void | ||
1301 | perf_callchain_kernel(struct pt_regs *regs, | ||
1302 | struct perf_callchain_entry *entry) | ||
1303 | { | ||
1304 | struct stackframe fr; | ||
1305 | |||
1306 | callchain_store(entry, PERF_CONTEXT_KERNEL); | ||
1307 | fr.fp = regs->ARM_fp; | ||
1308 | fr.sp = regs->ARM_sp; | ||
1309 | fr.lr = regs->ARM_lr; | ||
1310 | fr.pc = regs->ARM_pc; | ||
1311 | walk_stackframe(&fr, callchain_trace, entry); | ||
1312 | } | ||
1313 | |||
1314 | static void | ||
1315 | perf_do_callchain(struct pt_regs *regs, | ||
1316 | struct perf_callchain_entry *entry) | ||
1317 | { | ||
1318 | int is_user; | ||
1319 | |||
1320 | if (!regs) | ||
1321 | return; | ||
1322 | |||
1323 | is_user = user_mode(regs); | ||
1324 | |||
1325 | if (!current || !current->pid) | ||
1326 | return; | ||
1327 | |||
1328 | if (is_user && current->state != TASK_RUNNING) | ||
1329 | return; | ||
1330 | |||
1331 | if (!is_user) | ||
1332 | perf_callchain_kernel(regs, entry); | ||
1333 | |||
1334 | if (current->mm) | ||
1335 | perf_callchain_user(regs, entry); | ||
1336 | } | ||
1337 | |||
1338 | static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry); | ||
1339 | |||
1340 | struct perf_callchain_entry * | ||
1341 | perf_callchain(struct pt_regs *regs) | ||
1342 | { | ||
1343 | struct perf_callchain_entry *entry = &__get_cpu_var(pmc_irq_entry); | ||
1344 | |||
1345 | entry->nr = 0; | ||
1346 | perf_do_callchain(regs, entry); | ||
1347 | return entry; | ||
1348 | } | ||