aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--drivers/cpufreq/cpufreq_conservative.c328
1 files changed, 188 insertions, 140 deletions
diff --git a/drivers/cpufreq/cpufreq_conservative.c b/drivers/cpufreq/cpufreq_conservative.c
index a16a5b8c1dc5..c9bd0c55ad1e 100644
--- a/drivers/cpufreq/cpufreq_conservative.c
+++ b/drivers/cpufreq/cpufreq_conservative.c
@@ -13,22 +13,17 @@
13 13
14#include <linux/kernel.h> 14#include <linux/kernel.h>
15#include <linux/module.h> 15#include <linux/module.h>
16#include <linux/smp.h>
17#include <linux/init.h> 16#include <linux/init.h>
18#include <linux/interrupt.h>
19#include <linux/ctype.h>
20#include <linux/cpufreq.h> 17#include <linux/cpufreq.h>
21#include <linux/sysctl.h>
22#include <linux/types.h>
23#include <linux/fs.h>
24#include <linux/sysfs.h>
25#include <linux/cpu.h> 18#include <linux/cpu.h>
26#include <linux/kmod.h>
27#include <linux/workqueue.h>
28#include <linux/jiffies.h> 19#include <linux/jiffies.h>
29#include <linux/kernel_stat.h> 20#include <linux/kernel_stat.h>
30#include <linux/percpu.h>
31#include <linux/mutex.h> 21#include <linux/mutex.h>
22#include <linux/hrtimer.h>
23#include <linux/tick.h>
24#include <linux/ktime.h>
25#include <linux/sched.h>
26
32/* 27/*
33 * dbs is used in this file as a shortform for demandbased switching 28 * dbs is used in this file as a shortform for demandbased switching
34 * It helps to keep variable names smaller, simpler 29 * It helps to keep variable names smaller, simpler
@@ -43,14 +38,14 @@
43 * latency of the processor. The governor will work on any processor with 38 * latency of the processor. The governor will work on any processor with
44 * transition latency <= 10mS, using appropriate sampling 39 * transition latency <= 10mS, using appropriate sampling
45 * rate. 40 * rate.
46 * For CPUs with transition latency > 10mS (mostly drivers 41 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
47 * with CPUFREQ_ETERNAL), this governor will not work. 42 * this governor will not work.
48 * All times here are in uS. 43 * All times here are in uS.
49 */ 44 */
50static unsigned int def_sampling_rate; 45static unsigned int def_sampling_rate;
51#define MIN_SAMPLING_RATE_RATIO (2) 46#define MIN_SAMPLING_RATE_RATIO (2)
52/* for correct statistics, we need at least 10 ticks between each measure */ 47/* for correct statistics, we need at least 10 ticks between each measure */
53#define MIN_STAT_SAMPLING_RATE \ 48#define MIN_STAT_SAMPLING_RATE \
54 (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10)) 49 (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
55#define MIN_SAMPLING_RATE \ 50#define MIN_SAMPLING_RATE \
56 (def_sampling_rate / MIN_SAMPLING_RATE_RATIO) 51 (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
@@ -75,12 +70,15 @@ static unsigned int minimum_sampling_rate(void)
75static void do_dbs_timer(struct work_struct *work); 70static void do_dbs_timer(struct work_struct *work);
76 71
77struct cpu_dbs_info_s { 72struct cpu_dbs_info_s {
73 cputime64_t prev_cpu_idle;
74 cputime64_t prev_cpu_wall;
75 cputime64_t prev_cpu_nice;
78 struct cpufreq_policy *cur_policy; 76 struct cpufreq_policy *cur_policy;
79 unsigned int prev_cpu_idle_up; 77 struct delayed_work work;
80 unsigned int prev_cpu_idle_down;
81 unsigned int enable;
82 unsigned int down_skip; 78 unsigned int down_skip;
83 unsigned int requested_freq; 79 unsigned int requested_freq;
80 int cpu;
81 unsigned int enable:1;
84}; 82};
85static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info); 83static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
86 84
@@ -95,18 +93,17 @@ static unsigned int dbs_enable; /* number of CPUs using this policy */
95 * is recursive for the same process. -Venki 93 * is recursive for the same process. -Venki
96 */ 94 */
97static DEFINE_MUTEX(dbs_mutex); 95static DEFINE_MUTEX(dbs_mutex);
98static DECLARE_DELAYED_WORK(dbs_work, do_dbs_timer);
99 96
100struct dbs_tuners { 97static struct workqueue_struct *kconservative_wq;
98
99static struct dbs_tuners {
101 unsigned int sampling_rate; 100 unsigned int sampling_rate;
102 unsigned int sampling_down_factor; 101 unsigned int sampling_down_factor;
103 unsigned int up_threshold; 102 unsigned int up_threshold;
104 unsigned int down_threshold; 103 unsigned int down_threshold;
105 unsigned int ignore_nice; 104 unsigned int ignore_nice;
106 unsigned int freq_step; 105 unsigned int freq_step;
107}; 106} dbs_tuners_ins = {
108
109static struct dbs_tuners dbs_tuners_ins = {
110 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD, 107 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
111 .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD, 108 .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
112 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR, 109 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
@@ -114,18 +111,37 @@ static struct dbs_tuners dbs_tuners_ins = {
114 .freq_step = 5, 111 .freq_step = 5,
115}; 112};
116 113
117static inline unsigned int get_cpu_idle_time(unsigned int cpu) 114static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
115 cputime64_t *wall)
118{ 116{
119 unsigned int add_nice = 0, ret; 117 cputime64_t idle_time;
118 cputime64_t cur_wall_time;
119 cputime64_t busy_time;
120
121 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
122 busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
123 kstat_cpu(cpu).cpustat.system);
120 124
121 if (dbs_tuners_ins.ignore_nice) 125 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
122 add_nice = kstat_cpu(cpu).cpustat.nice; 126 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
127 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
128 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
123 129
124 ret = kstat_cpu(cpu).cpustat.idle + 130 idle_time = cputime64_sub(cur_wall_time, busy_time);
125 kstat_cpu(cpu).cpustat.iowait + 131 if (wall)
126 add_nice; 132 *wall = cur_wall_time;
127 133
128 return ret; 134 return idle_time;
135}
136
137static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
138{
139 u64 idle_time = get_cpu_idle_time_us(cpu, wall);
140
141 if (idle_time == -1ULL)
142 return get_cpu_idle_time_jiffy(cpu, wall);
143
144 return idle_time;
129} 145}
130 146
131/* keep track of frequency transitions */ 147/* keep track of frequency transitions */
@@ -186,8 +202,8 @@ static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
186 return sprintf(buf, "%u\n", MIN_SAMPLING_RATE); 202 return sprintf(buf, "%u\n", MIN_SAMPLING_RATE);
187} 203}
188 204
189#define define_one_ro(_name) \ 205#define define_one_ro(_name) \
190static struct freq_attr _name = \ 206static struct freq_attr _name = \
191__ATTR(_name, 0444, show_##_name, NULL) 207__ATTR(_name, 0444, show_##_name, NULL)
192 208
193define_one_ro(sampling_rate_max); 209define_one_ro(sampling_rate_max);
@@ -213,6 +229,7 @@ static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
213 unsigned int input; 229 unsigned int input;
214 int ret; 230 int ret;
215 ret = sscanf(buf, "%u", &input); 231 ret = sscanf(buf, "%u", &input);
232
216 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1) 233 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
217 return -EINVAL; 234 return -EINVAL;
218 235
@@ -230,11 +247,10 @@ static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
230 int ret; 247 int ret;
231 ret = sscanf(buf, "%u", &input); 248 ret = sscanf(buf, "%u", &input);
232 249
233 mutex_lock(&dbs_mutex); 250 if (ret != 1)
234 if (ret != 1) {
235 mutex_unlock(&dbs_mutex);
236 return -EINVAL; 251 return -EINVAL;
237 } 252
253 mutex_lock(&dbs_mutex);
238 dbs_tuners_ins.sampling_rate = max(input, minimum_sampling_rate()); 254 dbs_tuners_ins.sampling_rate = max(input, minimum_sampling_rate());
239 mutex_unlock(&dbs_mutex); 255 mutex_unlock(&dbs_mutex);
240 256
@@ -250,7 +266,7 @@ static ssize_t store_up_threshold(struct cpufreq_policy *unused,
250 266
251 mutex_lock(&dbs_mutex); 267 mutex_lock(&dbs_mutex);
252 if (ret != 1 || input > 100 || 268 if (ret != 1 || input > 100 ||
253 input <= dbs_tuners_ins.down_threshold) { 269 input <= dbs_tuners_ins.down_threshold) {
254 mutex_unlock(&dbs_mutex); 270 mutex_unlock(&dbs_mutex);
255 return -EINVAL; 271 return -EINVAL;
256 } 272 }
@@ -269,7 +285,9 @@ static ssize_t store_down_threshold(struct cpufreq_policy *unused,
269 ret = sscanf(buf, "%u", &input); 285 ret = sscanf(buf, "%u", &input);
270 286
271 mutex_lock(&dbs_mutex); 287 mutex_lock(&dbs_mutex);
272 if (ret != 1 || input > 100 || input >= dbs_tuners_ins.up_threshold) { 288 /* cannot be lower than 11 otherwise freq will not fall */
289 if (ret != 1 || input < 11 || input > 100 ||
290 input >= dbs_tuners_ins.up_threshold) {
273 mutex_unlock(&dbs_mutex); 291 mutex_unlock(&dbs_mutex);
274 return -EINVAL; 292 return -EINVAL;
275 } 293 }
@@ -302,12 +320,14 @@ static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
302 } 320 }
303 dbs_tuners_ins.ignore_nice = input; 321 dbs_tuners_ins.ignore_nice = input;
304 322
305 /* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */ 323 /* we need to re-evaluate prev_cpu_idle */
306 for_each_online_cpu(j) { 324 for_each_online_cpu(j) {
307 struct cpu_dbs_info_s *j_dbs_info; 325 struct cpu_dbs_info_s *dbs_info;
308 j_dbs_info = &per_cpu(cpu_dbs_info, j); 326 dbs_info = &per_cpu(cpu_dbs_info, j);
309 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j); 327 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
310 j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up; 328 &dbs_info->prev_cpu_wall);
329 if (dbs_tuners_ins.ignore_nice)
330 dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
311 } 331 }
312 mutex_unlock(&dbs_mutex); 332 mutex_unlock(&dbs_mutex);
313 333
@@ -319,7 +339,6 @@ static ssize_t store_freq_step(struct cpufreq_policy *policy,
319{ 339{
320 unsigned int input; 340 unsigned int input;
321 int ret; 341 int ret;
322
323 ret = sscanf(buf, "%u", &input); 342 ret = sscanf(buf, "%u", &input);
324 343
325 if (ret != 1) 344 if (ret != 1)
@@ -367,55 +386,78 @@ static struct attribute_group dbs_attr_group = {
367 386
368/************************** sysfs end ************************/ 387/************************** sysfs end ************************/
369 388
370static void dbs_check_cpu(int cpu) 389static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
371{ 390{
372 unsigned int idle_ticks, up_idle_ticks, down_idle_ticks; 391 unsigned int load = 0;
373 unsigned int tmp_idle_ticks, total_idle_ticks;
374 unsigned int freq_target; 392 unsigned int freq_target;
375 unsigned int freq_down_sampling_rate;
376 struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
377 struct cpufreq_policy *policy;
378 393
379 if (!this_dbs_info->enable) 394 struct cpufreq_policy *policy;
380 return; 395 unsigned int j;
381 396
382 policy = this_dbs_info->cur_policy; 397 policy = this_dbs_info->cur_policy;
383 398
384 /* 399 /*
385 * The default safe range is 20% to 80% 400 * Every sampling_rate, we check, if current idle time is less
386 * Every sampling_rate, we check 401 * than 20% (default), then we try to increase frequency
387 * - If current idle time is less than 20%, then we try to 402 * Every sampling_rate*sampling_down_factor, we check, if current
388 * increase frequency 403 * idle time is more than 80%, then we try to decrease frequency
389 * Every sampling_rate*sampling_down_factor, we check
390 * - If current idle time is more than 80%, then we try to
391 * decrease frequency
392 * 404 *
393 * Any frequency increase takes it to the maximum frequency. 405 * Any frequency increase takes it to the maximum frequency.
394 * Frequency reduction happens at minimum steps of 406 * Frequency reduction happens at minimum steps of
395 * 5% (default) of max_frequency 407 * 5% (default) of maximum frequency
396 */ 408 */
397 409
398 /* Check for frequency increase */ 410 /* Get Absolute Load */
399 idle_ticks = UINT_MAX; 411 for_each_cpu(j, policy->cpus) {
412 struct cpu_dbs_info_s *j_dbs_info;
413 cputime64_t cur_wall_time, cur_idle_time;
414 unsigned int idle_time, wall_time;
400 415
401 /* Check for frequency increase */ 416 j_dbs_info = &per_cpu(cpu_dbs_info, j);
402 total_idle_ticks = get_cpu_idle_time(cpu); 417
403 tmp_idle_ticks = total_idle_ticks - 418 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
404 this_dbs_info->prev_cpu_idle_up; 419
405 this_dbs_info->prev_cpu_idle_up = total_idle_ticks; 420 wall_time = (unsigned int) cputime64_sub(cur_wall_time,
421 j_dbs_info->prev_cpu_wall);
422 j_dbs_info->prev_cpu_wall = cur_wall_time;
406 423
407 if (tmp_idle_ticks < idle_ticks) 424 idle_time = (unsigned int) cputime64_sub(cur_idle_time,
408 idle_ticks = tmp_idle_ticks; 425 j_dbs_info->prev_cpu_idle);
426 j_dbs_info->prev_cpu_idle = cur_idle_time;
409 427
410 /* Scale idle ticks by 100 and compare with up and down ticks */ 428 if (dbs_tuners_ins.ignore_nice) {
411 idle_ticks *= 100; 429 cputime64_t cur_nice;
412 up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) * 430 unsigned long cur_nice_jiffies;
413 usecs_to_jiffies(dbs_tuners_ins.sampling_rate); 431
432 cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
433 j_dbs_info->prev_cpu_nice);
434 /*
435 * Assumption: nice time between sampling periods will
436 * be less than 2^32 jiffies for 32 bit sys
437 */
438 cur_nice_jiffies = (unsigned long)
439 cputime64_to_jiffies64(cur_nice);
440
441 j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
442 idle_time += jiffies_to_usecs(cur_nice_jiffies);
443 }
444
445 if (unlikely(!wall_time || wall_time < idle_time))
446 continue;
447
448 load = 100 * (wall_time - idle_time) / wall_time;
449 }
450
451 /*
452 * break out if we 'cannot' reduce the speed as the user might
453 * want freq_step to be zero
454 */
455 if (dbs_tuners_ins.freq_step == 0)
456 return;
414 457
415 if (idle_ticks < up_idle_ticks) { 458 /* Check for frequency increase */
459 if (load > dbs_tuners_ins.up_threshold) {
416 this_dbs_info->down_skip = 0; 460 this_dbs_info->down_skip = 0;
417 this_dbs_info->prev_cpu_idle_down =
418 this_dbs_info->prev_cpu_idle_up;
419 461
420 /* if we are already at full speed then break out early */ 462 /* if we are already at full speed then break out early */
421 if (this_dbs_info->requested_freq == policy->max) 463 if (this_dbs_info->requested_freq == policy->max)
@@ -436,49 +478,24 @@ static void dbs_check_cpu(int cpu)
436 return; 478 return;
437 } 479 }
438 480
439 /* Check for frequency decrease */ 481 /*
440 this_dbs_info->down_skip++; 482 * The optimal frequency is the frequency that is the lowest that
441 if (this_dbs_info->down_skip < dbs_tuners_ins.sampling_down_factor) 483 * can support the current CPU usage without triggering the up
442 return; 484 * policy. To be safe, we focus 10 points under the threshold.
443 485 */
444 /* Check for frequency decrease */ 486 if (load < (dbs_tuners_ins.down_threshold - 10)) {
445 total_idle_ticks = this_dbs_info->prev_cpu_idle_up;
446 tmp_idle_ticks = total_idle_ticks -
447 this_dbs_info->prev_cpu_idle_down;
448 this_dbs_info->prev_cpu_idle_down = total_idle_ticks;
449
450 if (tmp_idle_ticks < idle_ticks)
451 idle_ticks = tmp_idle_ticks;
452
453 /* Scale idle ticks by 100 and compare with up and down ticks */
454 idle_ticks *= 100;
455 this_dbs_info->down_skip = 0;
456
457 freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
458 dbs_tuners_ins.sampling_down_factor;
459 down_idle_ticks = (100 - dbs_tuners_ins.down_threshold) *
460 usecs_to_jiffies(freq_down_sampling_rate);
461
462 if (idle_ticks > down_idle_ticks) {
463 /*
464 * if we are already at the lowest speed then break out early
465 * or if we 'cannot' reduce the speed as the user might want
466 * freq_target to be zero
467 */
468 if (this_dbs_info->requested_freq == policy->min
469 || dbs_tuners_ins.freq_step == 0)
470 return;
471
472 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100; 487 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
473 488
474 /* max freq cannot be less than 100. But who knows.... */
475 if (unlikely(freq_target == 0))
476 freq_target = 5;
477
478 this_dbs_info->requested_freq -= freq_target; 489 this_dbs_info->requested_freq -= freq_target;
479 if (this_dbs_info->requested_freq < policy->min) 490 if (this_dbs_info->requested_freq < policy->min)
480 this_dbs_info->requested_freq = policy->min; 491 this_dbs_info->requested_freq = policy->min;
481 492
493 /*
494 * if we cannot reduce the frequency anymore, break out early
495 */
496 if (policy->cur == policy->min)
497 return;
498
482 __cpufreq_driver_target(policy, this_dbs_info->requested_freq, 499 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
483 CPUFREQ_RELATION_H); 500 CPUFREQ_RELATION_H);
484 return; 501 return;
@@ -487,27 +504,45 @@ static void dbs_check_cpu(int cpu)
487 504
488static void do_dbs_timer(struct work_struct *work) 505static void do_dbs_timer(struct work_struct *work)
489{ 506{
490 int i; 507 struct cpu_dbs_info_s *dbs_info =
491 mutex_lock(&dbs_mutex); 508 container_of(work, struct cpu_dbs_info_s, work.work);
492 for_each_online_cpu(i) 509 unsigned int cpu = dbs_info->cpu;
493 dbs_check_cpu(i); 510
494 schedule_delayed_work(&dbs_work, 511 /* We want all CPUs to do sampling nearly on same jiffy */
495 usecs_to_jiffies(dbs_tuners_ins.sampling_rate)); 512 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
496 mutex_unlock(&dbs_mutex); 513
514 delay -= jiffies % delay;
515
516 if (lock_policy_rwsem_write(cpu) < 0)
517 return;
518
519 if (!dbs_info->enable) {
520 unlock_policy_rwsem_write(cpu);
521 return;
522 }
523
524 dbs_check_cpu(dbs_info);
525
526 queue_delayed_work_on(cpu, kconservative_wq, &dbs_info->work, delay);
527 unlock_policy_rwsem_write(cpu);
497} 528}
498 529
499static inline void dbs_timer_init(void) 530static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
500{ 531{
501 init_timer_deferrable(&dbs_work.timer); 532 /* We want all CPUs to do sampling nearly on same jiffy */
502 schedule_delayed_work(&dbs_work, 533 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
503 usecs_to_jiffies(dbs_tuners_ins.sampling_rate)); 534 delay -= jiffies % delay;
504 return; 535
536 dbs_info->enable = 1;
537 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
538 queue_delayed_work_on(dbs_info->cpu, kconservative_wq, &dbs_info->work,
539 delay);
505} 540}
506 541
507static inline void dbs_timer_exit(void) 542static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
508{ 543{
509 cancel_delayed_work(&dbs_work); 544 dbs_info->enable = 0;
510 return; 545 cancel_delayed_work(&dbs_info->work);
511} 546}
512 547
513static int cpufreq_governor_dbs(struct cpufreq_policy *policy, 548static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
@@ -541,11 +576,13 @@ static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
541 j_dbs_info = &per_cpu(cpu_dbs_info, j); 576 j_dbs_info = &per_cpu(cpu_dbs_info, j);
542 j_dbs_info->cur_policy = policy; 577 j_dbs_info->cur_policy = policy;
543 578
544 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(cpu); 579 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
545 j_dbs_info->prev_cpu_idle_down 580 &j_dbs_info->prev_cpu_wall);
546 = j_dbs_info->prev_cpu_idle_up; 581 if (dbs_tuners_ins.ignore_nice) {
582 j_dbs_info->prev_cpu_nice =
583 kstat_cpu(j).cpustat.nice;
584 }
547 } 585 }
548 this_dbs_info->enable = 1;
549 this_dbs_info->down_skip = 0; 586 this_dbs_info->down_skip = 0;
550 this_dbs_info->requested_freq = policy->cur; 587 this_dbs_info->requested_freq = policy->cur;
551 588
@@ -567,30 +604,30 @@ static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
567 604
568 dbs_tuners_ins.sampling_rate = def_sampling_rate; 605 dbs_tuners_ins.sampling_rate = def_sampling_rate;
569 606
570 dbs_timer_init();
571 cpufreq_register_notifier( 607 cpufreq_register_notifier(
572 &dbs_cpufreq_notifier_block, 608 &dbs_cpufreq_notifier_block,
573 CPUFREQ_TRANSITION_NOTIFIER); 609 CPUFREQ_TRANSITION_NOTIFIER);
574 } 610 }
611 dbs_timer_init(this_dbs_info);
575 612
576 mutex_unlock(&dbs_mutex); 613 mutex_unlock(&dbs_mutex);
614
577 break; 615 break;
578 616
579 case CPUFREQ_GOV_STOP: 617 case CPUFREQ_GOV_STOP:
580 mutex_lock(&dbs_mutex); 618 mutex_lock(&dbs_mutex);
581 this_dbs_info->enable = 0; 619 dbs_timer_exit(this_dbs_info);
582 sysfs_remove_group(&policy->kobj, &dbs_attr_group); 620 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
583 dbs_enable--; 621 dbs_enable--;
622
584 /* 623 /*
585 * Stop the timerschedule work, when this governor 624 * Stop the timerschedule work, when this governor
586 * is used for first time 625 * is used for first time
587 */ 626 */
588 if (dbs_enable == 0) { 627 if (dbs_enable == 0)
589 dbs_timer_exit();
590 cpufreq_unregister_notifier( 628 cpufreq_unregister_notifier(
591 &dbs_cpufreq_notifier_block, 629 &dbs_cpufreq_notifier_block,
592 CPUFREQ_TRANSITION_NOTIFIER); 630 CPUFREQ_TRANSITION_NOTIFIER);
593 }
594 631
595 mutex_unlock(&dbs_mutex); 632 mutex_unlock(&dbs_mutex);
596 633
@@ -607,6 +644,7 @@ static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
607 this_dbs_info->cur_policy, 644 this_dbs_info->cur_policy,
608 policy->min, CPUFREQ_RELATION_L); 645 policy->min, CPUFREQ_RELATION_L);
609 mutex_unlock(&dbs_mutex); 646 mutex_unlock(&dbs_mutex);
647
610 break; 648 break;
611 } 649 }
612 return 0; 650 return 0;
@@ -624,15 +662,25 @@ struct cpufreq_governor cpufreq_gov_conservative = {
624 662
625static int __init cpufreq_gov_dbs_init(void) 663static int __init cpufreq_gov_dbs_init(void)
626{ 664{
627 return cpufreq_register_governor(&cpufreq_gov_conservative); 665 int err;
666
667 kconservative_wq = create_workqueue("kconservative");
668 if (!kconservative_wq) {
669 printk(KERN_ERR "Creation of kconservative failed\n");
670 return -EFAULT;
671 }
672
673 err = cpufreq_register_governor(&cpufreq_gov_conservative);
674 if (err)
675 destroy_workqueue(kconservative_wq);
676
677 return err;
628} 678}
629 679
630static void __exit cpufreq_gov_dbs_exit(void) 680static void __exit cpufreq_gov_dbs_exit(void)
631{ 681{
632 /* Make sure that the scheduled work is indeed not running */
633 flush_scheduled_work();
634
635 cpufreq_unregister_governor(&cpufreq_gov_conservative); 682 cpufreq_unregister_governor(&cpufreq_gov_conservative);
683 destroy_workqueue(kconservative_wq);
636} 684}
637 685
638 686