aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--arch/x86/Kconfig2
-rw-r--r--arch/x86/kernel/hpet.c7
-rw-r--r--arch/x86/kernel/quirks.c2
-rw-r--r--drivers/char/hpet.c2
-rw-r--r--drivers/clocksource/acpi_pm.c10
-rw-r--r--drivers/input/touchscreen/ads7846.c4
-rw-r--r--fs/exec.c8
-rw-r--r--include/linux/hrtimer.h34
-rw-r--r--include/linux/interrupt.h3
-rw-r--r--include/linux/posix-timers.h6
-rw-r--r--include/linux/timex.h73
-rw-r--r--kernel/hrtimer.c331
-rw-r--r--kernel/posix-timers.c40
-rw-r--r--kernel/sched.c2
-rw-r--r--kernel/time/ntp.c4
-rw-r--r--kernel/time/tick-sched.c44
-rw-r--r--kernel/trace/trace_sysprof.c1
-rw-r--r--sound/core/hrtimer.c1
-rw-r--r--sound/drivers/pcsp/pcsp.c1
19 files changed, 169 insertions, 406 deletions
diff --git a/arch/x86/Kconfig b/arch/x86/Kconfig
index 98a0ed52b5c3..66c14961a9b5 100644
--- a/arch/x86/Kconfig
+++ b/arch/x86/Kconfig
@@ -479,7 +479,7 @@ config HPET_TIMER
479 The HPET provides a stable time base on SMP 479 The HPET provides a stable time base on SMP
480 systems, unlike the TSC, but it is more expensive to access, 480 systems, unlike the TSC, but it is more expensive to access,
481 as it is off-chip. You can find the HPET spec at 481 as it is off-chip. You can find the HPET spec at
482 <http://www.intel.com/hardwaredesign/hpetspec.htm>. 482 <http://www.intel.com/hardwaredesign/hpetspec_1.pdf>.
483 483
484 You can safely choose Y here. However, HPET will only be 484 You can safely choose Y here. However, HPET will only be
485 activated if the platform and the BIOS support this feature. 485 activated if the platform and the BIOS support this feature.
diff --git a/arch/x86/kernel/hpet.c b/arch/x86/kernel/hpet.c
index 3f0a3edf0a57..845ea097383e 100644
--- a/arch/x86/kernel/hpet.c
+++ b/arch/x86/kernel/hpet.c
@@ -813,7 +813,7 @@ int __init hpet_enable(void)
813 813
814out_nohpet: 814out_nohpet:
815 hpet_clear_mapping(); 815 hpet_clear_mapping();
816 boot_hpet_disable = 1; 816 hpet_address = 0;
817 return 0; 817 return 0;
818} 818}
819 819
@@ -836,10 +836,11 @@ static __init int hpet_late_init(void)
836 836
837 hpet_address = force_hpet_address; 837 hpet_address = force_hpet_address;
838 hpet_enable(); 838 hpet_enable();
839 if (!hpet_virt_address)
840 return -ENODEV;
841 } 839 }
842 840
841 if (!hpet_virt_address)
842 return -ENODEV;
843
843 hpet_reserve_platform_timers(hpet_readl(HPET_ID)); 844 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
844 845
845 for_each_online_cpu(cpu) { 846 for_each_online_cpu(cpu) {
diff --git a/arch/x86/kernel/quirks.c b/arch/x86/kernel/quirks.c
index 67465ed89310..309949e9e1c1 100644
--- a/arch/x86/kernel/quirks.c
+++ b/arch/x86/kernel/quirks.c
@@ -168,6 +168,8 @@ DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ICH7_31,
168 ich_force_enable_hpet); 168 ich_force_enable_hpet);
169DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ICH8_1, 169DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ICH8_1,
170 ich_force_enable_hpet); 170 ich_force_enable_hpet);
171DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ICH8_4,
172 ich_force_enable_hpet);
171DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ICH9_7, 173DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ICH9_7,
172 ich_force_enable_hpet); 174 ich_force_enable_hpet);
173 175
diff --git a/drivers/char/hpet.c b/drivers/char/hpet.c
index 53fdc7ff3870..32b8bbf5003e 100644
--- a/drivers/char/hpet.c
+++ b/drivers/char/hpet.c
@@ -46,7 +46,7 @@
46/* 46/*
47 * The High Precision Event Timer driver. 47 * The High Precision Event Timer driver.
48 * This driver is closely modelled after the rtc.c driver. 48 * This driver is closely modelled after the rtc.c driver.
49 * http://www.intel.com/hardwaredesign/hpetspec.htm 49 * http://www.intel.com/hardwaredesign/hpetspec_1.pdf
50 */ 50 */
51#define HPET_USER_FREQ (64) 51#define HPET_USER_FREQ (64)
52#define HPET_DRIFT (500) 52#define HPET_DRIFT (500)
diff --git a/drivers/clocksource/acpi_pm.c b/drivers/clocksource/acpi_pm.c
index c20171078d1d..e1129fad96dd 100644
--- a/drivers/clocksource/acpi_pm.c
+++ b/drivers/clocksource/acpi_pm.c
@@ -57,11 +57,6 @@ u32 acpi_pm_read_verified(void)
57 return v2; 57 return v2;
58} 58}
59 59
60static cycle_t acpi_pm_read_slow(void)
61{
62 return (cycle_t)acpi_pm_read_verified();
63}
64
65static cycle_t acpi_pm_read(void) 60static cycle_t acpi_pm_read(void)
66{ 61{
67 return (cycle_t)read_pmtmr(); 62 return (cycle_t)read_pmtmr();
@@ -88,6 +83,11 @@ static int __init acpi_pm_good_setup(char *__str)
88} 83}
89__setup("acpi_pm_good", acpi_pm_good_setup); 84__setup("acpi_pm_good", acpi_pm_good_setup);
90 85
86static cycle_t acpi_pm_read_slow(void)
87{
88 return (cycle_t)acpi_pm_read_verified();
89}
90
91static inline void acpi_pm_need_workaround(void) 91static inline void acpi_pm_need_workaround(void)
92{ 92{
93 clocksource_acpi_pm.read = acpi_pm_read_slow; 93 clocksource_acpi_pm.read = acpi_pm_read_slow;
diff --git a/drivers/input/touchscreen/ads7846.c b/drivers/input/touchscreen/ads7846.c
index b9b7fc6ff1eb..e1ece89fe922 100644
--- a/drivers/input/touchscreen/ads7846.c
+++ b/drivers/input/touchscreen/ads7846.c
@@ -697,7 +697,7 @@ static enum hrtimer_restart ads7846_timer(struct hrtimer *handle)
697 struct ads7846 *ts = container_of(handle, struct ads7846, timer); 697 struct ads7846 *ts = container_of(handle, struct ads7846, timer);
698 int status = 0; 698 int status = 0;
699 699
700 spin_lock_irq(&ts->lock); 700 spin_lock(&ts->lock);
701 701
702 if (unlikely(!get_pendown_state(ts) || 702 if (unlikely(!get_pendown_state(ts) ||
703 device_suspended(&ts->spi->dev))) { 703 device_suspended(&ts->spi->dev))) {
@@ -728,7 +728,7 @@ static enum hrtimer_restart ads7846_timer(struct hrtimer *handle)
728 dev_err(&ts->spi->dev, "spi_async --> %d\n", status); 728 dev_err(&ts->spi->dev, "spi_async --> %d\n", status);
729 } 729 }
730 730
731 spin_unlock_irq(&ts->lock); 731 spin_unlock(&ts->lock);
732 return HRTIMER_NORESTART; 732 return HRTIMER_NORESTART;
733} 733}
734 734
diff --git a/fs/exec.c b/fs/exec.c
index 1f59ea079cbb..02d2e120542d 100644
--- a/fs/exec.c
+++ b/fs/exec.c
@@ -773,7 +773,6 @@ static int de_thread(struct task_struct *tsk)
773 struct signal_struct *sig = tsk->signal; 773 struct signal_struct *sig = tsk->signal;
774 struct sighand_struct *oldsighand = tsk->sighand; 774 struct sighand_struct *oldsighand = tsk->sighand;
775 spinlock_t *lock = &oldsighand->siglock; 775 spinlock_t *lock = &oldsighand->siglock;
776 struct task_struct *leader = NULL;
777 int count; 776 int count;
778 777
779 if (thread_group_empty(tsk)) 778 if (thread_group_empty(tsk))
@@ -811,7 +810,7 @@ static int de_thread(struct task_struct *tsk)
811 * and to assume its PID: 810 * and to assume its PID:
812 */ 811 */
813 if (!thread_group_leader(tsk)) { 812 if (!thread_group_leader(tsk)) {
814 leader = tsk->group_leader; 813 struct task_struct *leader = tsk->group_leader;
815 814
816 sig->notify_count = -1; /* for exit_notify() */ 815 sig->notify_count = -1; /* for exit_notify() */
817 for (;;) { 816 for (;;) {
@@ -863,8 +862,9 @@ static int de_thread(struct task_struct *tsk)
863 862
864 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 863 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
865 leader->exit_state = EXIT_DEAD; 864 leader->exit_state = EXIT_DEAD;
866
867 write_unlock_irq(&tasklist_lock); 865 write_unlock_irq(&tasklist_lock);
866
867 release_task(leader);
868 } 868 }
869 869
870 sig->group_exit_task = NULL; 870 sig->group_exit_task = NULL;
@@ -873,8 +873,6 @@ static int de_thread(struct task_struct *tsk)
873no_thread_group: 873no_thread_group:
874 exit_itimers(sig); 874 exit_itimers(sig);
875 flush_itimer_signals(); 875 flush_itimer_signals();
876 if (leader)
877 release_task(leader);
878 876
879 if (atomic_read(&oldsighand->count) != 1) { 877 if (atomic_read(&oldsighand->count) != 1) {
880 struct sighand_struct *newsighand; 878 struct sighand_struct *newsighand;
diff --git a/include/linux/hrtimer.h b/include/linux/hrtimer.h
index 3eba43878dcb..bd37078c2d7d 100644
--- a/include/linux/hrtimer.h
+++ b/include/linux/hrtimer.h
@@ -43,26 +43,6 @@ enum hrtimer_restart {
43}; 43};
44 44
45/* 45/*
46 * hrtimer callback modes:
47 *
48 * HRTIMER_CB_SOFTIRQ: Callback must run in softirq context
49 * HRTIMER_CB_IRQSAFE_PERCPU: Callback must run in hardirq context
50 * Special mode for tick emulation and
51 * scheduler timer. Such timers are per
52 * cpu and not allowed to be migrated on
53 * cpu unplug.
54 * HRTIMER_CB_IRQSAFE_UNLOCKED: Callback should run in hardirq context
55 * with timer->base lock unlocked
56 * used for timers which call wakeup to
57 * avoid lock order problems with rq->lock
58 */
59enum hrtimer_cb_mode {
60 HRTIMER_CB_SOFTIRQ,
61 HRTIMER_CB_IRQSAFE_PERCPU,
62 HRTIMER_CB_IRQSAFE_UNLOCKED,
63};
64
65/*
66 * Values to track state of the timer 46 * Values to track state of the timer
67 * 47 *
68 * Possible states: 48 * Possible states:
@@ -70,7 +50,6 @@ enum hrtimer_cb_mode {
70 * 0x00 inactive 50 * 0x00 inactive
71 * 0x01 enqueued into rbtree 51 * 0x01 enqueued into rbtree
72 * 0x02 callback function running 52 * 0x02 callback function running
73 * 0x04 callback pending (high resolution mode)
74 * 53 *
75 * Special cases: 54 * Special cases:
76 * 0x03 callback function running and enqueued 55 * 0x03 callback function running and enqueued
@@ -92,8 +71,7 @@ enum hrtimer_cb_mode {
92#define HRTIMER_STATE_INACTIVE 0x00 71#define HRTIMER_STATE_INACTIVE 0x00
93#define HRTIMER_STATE_ENQUEUED 0x01 72#define HRTIMER_STATE_ENQUEUED 0x01
94#define HRTIMER_STATE_CALLBACK 0x02 73#define HRTIMER_STATE_CALLBACK 0x02
95#define HRTIMER_STATE_PENDING 0x04 74#define HRTIMER_STATE_MIGRATE 0x04
96#define HRTIMER_STATE_MIGRATE 0x08
97 75
98/** 76/**
99 * struct hrtimer - the basic hrtimer structure 77 * struct hrtimer - the basic hrtimer structure
@@ -109,8 +87,6 @@ enum hrtimer_cb_mode {
109 * @function: timer expiry callback function 87 * @function: timer expiry callback function
110 * @base: pointer to the timer base (per cpu and per clock) 88 * @base: pointer to the timer base (per cpu and per clock)
111 * @state: state information (See bit values above) 89 * @state: state information (See bit values above)
112 * @cb_mode: high resolution timer feature to select the callback execution
113 * mode
114 * @cb_entry: list head to enqueue an expired timer into the callback list 90 * @cb_entry: list head to enqueue an expired timer into the callback list
115 * @start_site: timer statistics field to store the site where the timer 91 * @start_site: timer statistics field to store the site where the timer
116 * was started 92 * was started
@@ -129,7 +105,6 @@ struct hrtimer {
129 struct hrtimer_clock_base *base; 105 struct hrtimer_clock_base *base;
130 unsigned long state; 106 unsigned long state;
131 struct list_head cb_entry; 107 struct list_head cb_entry;
132 enum hrtimer_cb_mode cb_mode;
133#ifdef CONFIG_TIMER_STATS 108#ifdef CONFIG_TIMER_STATS
134 int start_pid; 109 int start_pid;
135 void *start_site; 110 void *start_site;
@@ -188,15 +163,11 @@ struct hrtimer_clock_base {
188 * @check_clocks: Indictator, when set evaluate time source and clock 163 * @check_clocks: Indictator, when set evaluate time source and clock
189 * event devices whether high resolution mode can be 164 * event devices whether high resolution mode can be
190 * activated. 165 * activated.
191 * @cb_pending: Expired timers are moved from the rbtree to this
192 * list in the timer interrupt. The list is processed
193 * in the softirq.
194 * @nr_events: Total number of timer interrupt events 166 * @nr_events: Total number of timer interrupt events
195 */ 167 */
196struct hrtimer_cpu_base { 168struct hrtimer_cpu_base {
197 spinlock_t lock; 169 spinlock_t lock;
198 struct hrtimer_clock_base clock_base[HRTIMER_MAX_CLOCK_BASES]; 170 struct hrtimer_clock_base clock_base[HRTIMER_MAX_CLOCK_BASES];
199 struct list_head cb_pending;
200#ifdef CONFIG_HIGH_RES_TIMERS 171#ifdef CONFIG_HIGH_RES_TIMERS
201 ktime_t expires_next; 172 ktime_t expires_next;
202 int hres_active; 173 int hres_active;
@@ -404,8 +375,7 @@ static inline int hrtimer_active(const struct hrtimer *timer)
404 */ 375 */
405static inline int hrtimer_is_queued(struct hrtimer *timer) 376static inline int hrtimer_is_queued(struct hrtimer *timer)
406{ 377{
407 return timer->state & 378 return timer->state & HRTIMER_STATE_ENQUEUED;
408 (HRTIMER_STATE_ENQUEUED | HRTIMER_STATE_PENDING);
409} 379}
410 380
411/* 381/*
diff --git a/include/linux/interrupt.h b/include/linux/interrupt.h
index f58a0cf8929a..d6210a97a8ca 100644
--- a/include/linux/interrupt.h
+++ b/include/linux/interrupt.h
@@ -251,9 +251,6 @@ enum
251 BLOCK_SOFTIRQ, 251 BLOCK_SOFTIRQ,
252 TASKLET_SOFTIRQ, 252 TASKLET_SOFTIRQ,
253 SCHED_SOFTIRQ, 253 SCHED_SOFTIRQ,
254#ifdef CONFIG_HIGH_RES_TIMERS
255 HRTIMER_SOFTIRQ,
256#endif
257 RCU_SOFTIRQ, /* Preferable RCU should always be the last softirq */ 254 RCU_SOFTIRQ, /* Preferable RCU should always be the last softirq */
258 255
259 NR_SOFTIRQS 256 NR_SOFTIRQS
diff --git a/include/linux/posix-timers.h b/include/linux/posix-timers.h
index a7c721355549..4f71bf4e628c 100644
--- a/include/linux/posix-timers.h
+++ b/include/linux/posix-timers.h
@@ -45,7 +45,11 @@ struct k_itimer {
45 int it_requeue_pending; /* waiting to requeue this timer */ 45 int it_requeue_pending; /* waiting to requeue this timer */
46#define REQUEUE_PENDING 1 46#define REQUEUE_PENDING 1
47 int it_sigev_notify; /* notify word of sigevent struct */ 47 int it_sigev_notify; /* notify word of sigevent struct */
48 struct task_struct *it_process; /* process to send signal to */ 48 struct signal_struct *it_signal;
49 union {
50 struct pid *it_pid; /* pid of process to send signal to */
51 struct task_struct *it_process; /* for clock_nanosleep */
52 };
49 struct sigqueue *sigq; /* signal queue entry. */ 53 struct sigqueue *sigq; /* signal queue entry. */
50 union { 54 union {
51 struct { 55 struct {
diff --git a/include/linux/timex.h b/include/linux/timex.h
index 9007313b5b71..998a55d80acf 100644
--- a/include/linux/timex.h
+++ b/include/linux/timex.h
@@ -53,47 +53,11 @@
53#ifndef _LINUX_TIMEX_H 53#ifndef _LINUX_TIMEX_H
54#define _LINUX_TIMEX_H 54#define _LINUX_TIMEX_H
55 55
56#include <linux/compiler.h>
57#include <linux/time.h> 56#include <linux/time.h>
58 57
59#include <asm/param.h>
60
61#define NTP_API 4 /* NTP API version */ 58#define NTP_API 4 /* NTP API version */
62 59
63/* 60/*
64 * SHIFT_KG and SHIFT_KF establish the damping of the PLL and are chosen
65 * for a slightly underdamped convergence characteristic. SHIFT_KH
66 * establishes the damping of the FLL and is chosen by wisdom and black
67 * art.
68 *
69 * MAXTC establishes the maximum time constant of the PLL. With the
70 * SHIFT_KG and SHIFT_KF values given and a time constant range from
71 * zero to MAXTC, the PLL will converge in 15 minutes to 16 hours,
72 * respectively.
73 */
74#define SHIFT_PLL 4 /* PLL frequency factor (shift) */
75#define SHIFT_FLL 2 /* FLL frequency factor (shift) */
76#define MAXTC 10 /* maximum time constant (shift) */
77
78/*
79 * SHIFT_USEC defines the scaling (shift) of the time_freq and
80 * time_tolerance variables, which represent the current frequency
81 * offset and maximum frequency tolerance.
82 */
83#define SHIFT_USEC 16 /* frequency offset scale (shift) */
84#define PPM_SCALE (NSEC_PER_USEC << (NTP_SCALE_SHIFT - SHIFT_USEC))
85#define PPM_SCALE_INV_SHIFT 19
86#define PPM_SCALE_INV ((1ll << (PPM_SCALE_INV_SHIFT + NTP_SCALE_SHIFT)) / \
87 PPM_SCALE + 1)
88
89#define MAXPHASE 500000000l /* max phase error (ns) */
90#define MAXFREQ 500000 /* max frequency error (ns/s) */
91#define MAXFREQ_SCALED ((s64)MAXFREQ << NTP_SCALE_SHIFT)
92#define MINSEC 256 /* min interval between updates (s) */
93#define MAXSEC 2048 /* max interval between updates (s) */
94#define NTP_PHASE_LIMIT ((MAXPHASE / NSEC_PER_USEC) << 5) /* beyond max. dispersion */
95
96/*
97 * syscall interface - used (mainly by NTP daemon) 61 * syscall interface - used (mainly by NTP daemon)
98 * to discipline kernel clock oscillator 62 * to discipline kernel clock oscillator
99 */ 63 */
@@ -199,9 +163,46 @@ struct timex {
199#define TIME_BAD TIME_ERROR /* bw compat */ 163#define TIME_BAD TIME_ERROR /* bw compat */
200 164
201#ifdef __KERNEL__ 165#ifdef __KERNEL__
166#include <linux/compiler.h>
167#include <linux/types.h>
168#include <linux/param.h>
169
202#include <asm/timex.h> 170#include <asm/timex.h>
203 171
204/* 172/*
173 * SHIFT_KG and SHIFT_KF establish the damping of the PLL and are chosen
174 * for a slightly underdamped convergence characteristic. SHIFT_KH
175 * establishes the damping of the FLL and is chosen by wisdom and black
176 * art.
177 *
178 * MAXTC establishes the maximum time constant of the PLL. With the
179 * SHIFT_KG and SHIFT_KF values given and a time constant range from
180 * zero to MAXTC, the PLL will converge in 15 minutes to 16 hours,
181 * respectively.
182 */
183#define SHIFT_PLL 4 /* PLL frequency factor (shift) */
184#define SHIFT_FLL 2 /* FLL frequency factor (shift) */
185#define MAXTC 10 /* maximum time constant (shift) */
186
187/*
188 * SHIFT_USEC defines the scaling (shift) of the time_freq and
189 * time_tolerance variables, which represent the current frequency
190 * offset and maximum frequency tolerance.
191 */
192#define SHIFT_USEC 16 /* frequency offset scale (shift) */
193#define PPM_SCALE (NSEC_PER_USEC << (NTP_SCALE_SHIFT - SHIFT_USEC))
194#define PPM_SCALE_INV_SHIFT 19
195#define PPM_SCALE_INV ((1ll << (PPM_SCALE_INV_SHIFT + NTP_SCALE_SHIFT)) / \
196 PPM_SCALE + 1)
197
198#define MAXPHASE 500000000l /* max phase error (ns) */
199#define MAXFREQ 500000 /* max frequency error (ns/s) */
200#define MAXFREQ_SCALED ((s64)MAXFREQ << NTP_SCALE_SHIFT)
201#define MINSEC 256 /* min interval between updates (s) */
202#define MAXSEC 2048 /* max interval between updates (s) */
203#define NTP_PHASE_LIMIT ((MAXPHASE / NSEC_PER_USEC) << 5) /* beyond max. dispersion */
204
205/*
205 * kernel variables 206 * kernel variables
206 * Note: maximum error = NTP synch distance = dispersion + delay / 2; 207 * Note: maximum error = NTP synch distance = dispersion + delay / 2;
207 * estimated error = NTP dispersion. 208 * estimated error = NTP dispersion.
diff --git a/kernel/hrtimer.c b/kernel/hrtimer.c
index 47e63349d1b2..bda9cb924276 100644
--- a/kernel/hrtimer.c
+++ b/kernel/hrtimer.c
@@ -442,22 +442,6 @@ static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
442static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } 442static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
443#endif 443#endif
444 444
445/*
446 * Check, whether the timer is on the callback pending list
447 */
448static inline int hrtimer_cb_pending(const struct hrtimer *timer)
449{
450 return timer->state & HRTIMER_STATE_PENDING;
451}
452
453/*
454 * Remove a timer from the callback pending list
455 */
456static inline void hrtimer_remove_cb_pending(struct hrtimer *timer)
457{
458 list_del_init(&timer->cb_entry);
459}
460
461/* High resolution timer related functions */ 445/* High resolution timer related functions */
462#ifdef CONFIG_HIGH_RES_TIMERS 446#ifdef CONFIG_HIGH_RES_TIMERS
463 447
@@ -651,6 +635,8 @@ static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
651{ 635{
652} 636}
653 637
638static void __run_hrtimer(struct hrtimer *timer);
639
654/* 640/*
655 * When High resolution timers are active, try to reprogram. Note, that in case 641 * When High resolution timers are active, try to reprogram. Note, that in case
656 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry 642 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
@@ -661,31 +647,14 @@ static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
661 struct hrtimer_clock_base *base) 647 struct hrtimer_clock_base *base)
662{ 648{
663 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) { 649 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
664 650 /*
665 /* Timer is expired, act upon the callback mode */ 651 * XXX: recursion check?
666 switch(timer->cb_mode) { 652 * hrtimer_forward() should round up with timer granularity
667 case HRTIMER_CB_IRQSAFE_PERCPU: 653 * so that we never get into inf recursion here,
668 case HRTIMER_CB_IRQSAFE_UNLOCKED: 654 * it doesn't do that though
669 /* 655 */
670 * This is solely for the sched tick emulation with 656 __run_hrtimer(timer);
671 * dynamic tick support to ensure that we do not 657 return 1;
672 * restart the tick right on the edge and end up with
673 * the tick timer in the softirq ! The calling site
674 * takes care of this. Also used for hrtimer sleeper !
675 */
676 debug_hrtimer_deactivate(timer);
677 return 1;
678 case HRTIMER_CB_SOFTIRQ:
679 /*
680 * Move everything else into the softirq pending list !
681 */
682 list_add_tail(&timer->cb_entry,
683 &base->cpu_base->cb_pending);
684 timer->state = HRTIMER_STATE_PENDING;
685 return 1;
686 default:
687 BUG();
688 }
689 } 658 }
690 return 0; 659 return 0;
691} 660}
@@ -724,11 +693,6 @@ static int hrtimer_switch_to_hres(void)
724 return 1; 693 return 1;
725} 694}
726 695
727static inline void hrtimer_raise_softirq(void)
728{
729 raise_softirq(HRTIMER_SOFTIRQ);
730}
731
732#else 696#else
733 697
734static inline int hrtimer_hres_active(void) { return 0; } 698static inline int hrtimer_hres_active(void) { return 0; }
@@ -747,7 +711,6 @@ static inline int hrtimer_reprogram(struct hrtimer *timer,
747{ 711{
748 return 0; 712 return 0;
749} 713}
750static inline void hrtimer_raise_softirq(void) { }
751 714
752#endif /* CONFIG_HIGH_RES_TIMERS */ 715#endif /* CONFIG_HIGH_RES_TIMERS */
753 716
@@ -890,10 +853,7 @@ static void __remove_hrtimer(struct hrtimer *timer,
890 struct hrtimer_clock_base *base, 853 struct hrtimer_clock_base *base,
891 unsigned long newstate, int reprogram) 854 unsigned long newstate, int reprogram)
892{ 855{
893 /* High res. callback list. NOP for !HIGHRES */ 856 if (timer->state & HRTIMER_STATE_ENQUEUED) {
894 if (hrtimer_cb_pending(timer))
895 hrtimer_remove_cb_pending(timer);
896 else {
897 /* 857 /*
898 * Remove the timer from the rbtree and replace the 858 * Remove the timer from the rbtree and replace the
899 * first entry pointer if necessary. 859 * first entry pointer if necessary.
@@ -953,7 +913,7 @@ hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, unsigned long delta_n
953{ 913{
954 struct hrtimer_clock_base *base, *new_base; 914 struct hrtimer_clock_base *base, *new_base;
955 unsigned long flags; 915 unsigned long flags;
956 int ret, raise; 916 int ret;
957 917
958 base = lock_hrtimer_base(timer, &flags); 918 base = lock_hrtimer_base(timer, &flags);
959 919
@@ -988,26 +948,8 @@ hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, unsigned long delta_n
988 enqueue_hrtimer(timer, new_base, 948 enqueue_hrtimer(timer, new_base,
989 new_base->cpu_base == &__get_cpu_var(hrtimer_bases)); 949 new_base->cpu_base == &__get_cpu_var(hrtimer_bases));
990 950
991 /*
992 * The timer may be expired and moved to the cb_pending
993 * list. We can not raise the softirq with base lock held due
994 * to a possible deadlock with runqueue lock.
995 */
996 raise = timer->state == HRTIMER_STATE_PENDING;
997
998 /*
999 * We use preempt_disable to prevent this task from migrating after
1000 * setting up the softirq and raising it. Otherwise, if me migrate
1001 * we will raise the softirq on the wrong CPU.
1002 */
1003 preempt_disable();
1004
1005 unlock_hrtimer_base(timer, &flags); 951 unlock_hrtimer_base(timer, &flags);
1006 952
1007 if (raise)
1008 hrtimer_raise_softirq();
1009 preempt_enable();
1010
1011 return ret; 953 return ret;
1012} 954}
1013EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); 955EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
@@ -1192,75 +1134,6 @@ int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1192} 1134}
1193EXPORT_SYMBOL_GPL(hrtimer_get_res); 1135EXPORT_SYMBOL_GPL(hrtimer_get_res);
1194 1136
1195static void run_hrtimer_pending(struct hrtimer_cpu_base *cpu_base)
1196{
1197 spin_lock_irq(&cpu_base->lock);
1198
1199 while (!list_empty(&cpu_base->cb_pending)) {
1200 enum hrtimer_restart (*fn)(struct hrtimer *);
1201 struct hrtimer *timer;
1202 int restart;
1203 int emulate_hardirq_ctx = 0;
1204
1205 timer = list_entry(cpu_base->cb_pending.next,
1206 struct hrtimer, cb_entry);
1207
1208 debug_hrtimer_deactivate(timer);
1209 timer_stats_account_hrtimer(timer);
1210
1211 fn = timer->function;
1212 /*
1213 * A timer might have been added to the cb_pending list
1214 * when it was migrated during a cpu-offline operation.
1215 * Emulate hardirq context for such timers.
1216 */
1217 if (timer->cb_mode == HRTIMER_CB_IRQSAFE_PERCPU ||
1218 timer->cb_mode == HRTIMER_CB_IRQSAFE_UNLOCKED)
1219 emulate_hardirq_ctx = 1;
1220
1221 __remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0);
1222 spin_unlock_irq(&cpu_base->lock);
1223
1224 if (unlikely(emulate_hardirq_ctx)) {
1225 local_irq_disable();
1226 restart = fn(timer);
1227 local_irq_enable();
1228 } else
1229 restart = fn(timer);
1230
1231 spin_lock_irq(&cpu_base->lock);
1232
1233 timer->state &= ~HRTIMER_STATE_CALLBACK;
1234 if (restart == HRTIMER_RESTART) {
1235 BUG_ON(hrtimer_active(timer));
1236 /*
1237 * Enqueue the timer, allow reprogramming of the event
1238 * device
1239 */
1240 enqueue_hrtimer(timer, timer->base, 1);
1241 } else if (hrtimer_active(timer)) {
1242 /*
1243 * If the timer was rearmed on another CPU, reprogram
1244 * the event device.
1245 */
1246 struct hrtimer_clock_base *base = timer->base;
1247
1248 if (base->first == &timer->node &&
1249 hrtimer_reprogram(timer, base)) {
1250 /*
1251 * Timer is expired. Thus move it from tree to
1252 * pending list again.
1253 */
1254 __remove_hrtimer(timer, base,
1255 HRTIMER_STATE_PENDING, 0);
1256 list_add_tail(&timer->cb_entry,
1257 &base->cpu_base->cb_pending);
1258 }
1259 }
1260 }
1261 spin_unlock_irq(&cpu_base->lock);
1262}
1263
1264static void __run_hrtimer(struct hrtimer *timer) 1137static void __run_hrtimer(struct hrtimer *timer)
1265{ 1138{
1266 struct hrtimer_clock_base *base = timer->base; 1139 struct hrtimer_clock_base *base = timer->base;
@@ -1268,25 +1141,21 @@ static void __run_hrtimer(struct hrtimer *timer)
1268 enum hrtimer_restart (*fn)(struct hrtimer *); 1141 enum hrtimer_restart (*fn)(struct hrtimer *);
1269 int restart; 1142 int restart;
1270 1143
1144 WARN_ON(!irqs_disabled());
1145
1271 debug_hrtimer_deactivate(timer); 1146 debug_hrtimer_deactivate(timer);
1272 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0); 1147 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1273 timer_stats_account_hrtimer(timer); 1148 timer_stats_account_hrtimer(timer);
1274
1275 fn = timer->function; 1149 fn = timer->function;
1276 if (timer->cb_mode == HRTIMER_CB_IRQSAFE_PERCPU || 1150
1277 timer->cb_mode == HRTIMER_CB_IRQSAFE_UNLOCKED) { 1151 /*
1278 /* 1152 * Because we run timers from hardirq context, there is no chance
1279 * Used for scheduler timers, avoid lock inversion with 1153 * they get migrated to another cpu, therefore its safe to unlock
1280 * rq->lock and tasklist_lock. 1154 * the timer base.
1281 * 1155 */
1282 * These timers are required to deal with enqueue expiry 1156 spin_unlock(&cpu_base->lock);
1283 * themselves and are not allowed to migrate. 1157 restart = fn(timer);
1284 */ 1158 spin_lock(&cpu_base->lock);
1285 spin_unlock(&cpu_base->lock);
1286 restart = fn(timer);
1287 spin_lock(&cpu_base->lock);
1288 } else
1289 restart = fn(timer);
1290 1159
1291 /* 1160 /*
1292 * Note: We clear the CALLBACK bit after enqueue_hrtimer to avoid 1161 * Note: We clear the CALLBACK bit after enqueue_hrtimer to avoid
@@ -1311,7 +1180,7 @@ void hrtimer_interrupt(struct clock_event_device *dev)
1311 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); 1180 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1312 struct hrtimer_clock_base *base; 1181 struct hrtimer_clock_base *base;
1313 ktime_t expires_next, now; 1182 ktime_t expires_next, now;
1314 int i, raise = 0; 1183 int i;
1315 1184
1316 BUG_ON(!cpu_base->hres_active); 1185 BUG_ON(!cpu_base->hres_active);
1317 cpu_base->nr_events++; 1186 cpu_base->nr_events++;
@@ -1360,16 +1229,6 @@ void hrtimer_interrupt(struct clock_event_device *dev)
1360 break; 1229 break;
1361 } 1230 }
1362 1231
1363 /* Move softirq callbacks to the pending list */
1364 if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
1365 __remove_hrtimer(timer, base,
1366 HRTIMER_STATE_PENDING, 0);
1367 list_add_tail(&timer->cb_entry,
1368 &base->cpu_base->cb_pending);
1369 raise = 1;
1370 continue;
1371 }
1372
1373 __run_hrtimer(timer); 1232 __run_hrtimer(timer);
1374 } 1233 }
1375 spin_unlock(&cpu_base->lock); 1234 spin_unlock(&cpu_base->lock);
@@ -1383,10 +1242,6 @@ void hrtimer_interrupt(struct clock_event_device *dev)
1383 if (tick_program_event(expires_next, 0)) 1242 if (tick_program_event(expires_next, 0))
1384 goto retry; 1243 goto retry;
1385 } 1244 }
1386
1387 /* Raise softirq ? */
1388 if (raise)
1389 raise_softirq(HRTIMER_SOFTIRQ);
1390} 1245}
1391 1246
1392/** 1247/**
@@ -1413,11 +1268,6 @@ void hrtimer_peek_ahead_timers(void)
1413 local_irq_restore(flags); 1268 local_irq_restore(flags);
1414} 1269}
1415 1270
1416static void run_hrtimer_softirq(struct softirq_action *h)
1417{
1418 run_hrtimer_pending(&__get_cpu_var(hrtimer_bases));
1419}
1420
1421#endif /* CONFIG_HIGH_RES_TIMERS */ 1271#endif /* CONFIG_HIGH_RES_TIMERS */
1422 1272
1423/* 1273/*
@@ -1429,8 +1279,6 @@ static void run_hrtimer_softirq(struct softirq_action *h)
1429 */ 1279 */
1430void hrtimer_run_pending(void) 1280void hrtimer_run_pending(void)
1431{ 1281{
1432 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1433
1434 if (hrtimer_hres_active()) 1282 if (hrtimer_hres_active())
1435 return; 1283 return;
1436 1284
@@ -1444,8 +1292,6 @@ void hrtimer_run_pending(void)
1444 */ 1292 */
1445 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) 1293 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1446 hrtimer_switch_to_hres(); 1294 hrtimer_switch_to_hres();
1447
1448 run_hrtimer_pending(cpu_base);
1449} 1295}
1450 1296
1451/* 1297/*
@@ -1482,14 +1328,6 @@ void hrtimer_run_queues(void)
1482 hrtimer_get_expires_tv64(timer)) 1328 hrtimer_get_expires_tv64(timer))
1483 break; 1329 break;
1484 1330
1485 if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
1486 __remove_hrtimer(timer, base,
1487 HRTIMER_STATE_PENDING, 0);
1488 list_add_tail(&timer->cb_entry,
1489 &base->cpu_base->cb_pending);
1490 continue;
1491 }
1492
1493 __run_hrtimer(timer); 1331 __run_hrtimer(timer);
1494 } 1332 }
1495 spin_unlock(&cpu_base->lock); 1333 spin_unlock(&cpu_base->lock);
@@ -1516,9 +1354,6 @@ void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1516{ 1354{
1517 sl->timer.function = hrtimer_wakeup; 1355 sl->timer.function = hrtimer_wakeup;
1518 sl->task = task; 1356 sl->task = task;
1519#ifdef CONFIG_HIGH_RES_TIMERS
1520 sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
1521#endif
1522} 1357}
1523 1358
1524static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) 1359static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
@@ -1655,18 +1490,16 @@ static void __cpuinit init_hrtimers_cpu(int cpu)
1655 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) 1490 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1656 cpu_base->clock_base[i].cpu_base = cpu_base; 1491 cpu_base->clock_base[i].cpu_base = cpu_base;
1657 1492
1658 INIT_LIST_HEAD(&cpu_base->cb_pending);
1659 hrtimer_init_hres(cpu_base); 1493 hrtimer_init_hres(cpu_base);
1660} 1494}
1661 1495
1662#ifdef CONFIG_HOTPLUG_CPU 1496#ifdef CONFIG_HOTPLUG_CPU
1663 1497
1664static int migrate_hrtimer_list(struct hrtimer_clock_base *old_base, 1498static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1665 struct hrtimer_clock_base *new_base, int dcpu) 1499 struct hrtimer_clock_base *new_base)
1666{ 1500{
1667 struct hrtimer *timer; 1501 struct hrtimer *timer;
1668 struct rb_node *node; 1502 struct rb_node *node;
1669 int raise = 0;
1670 1503
1671 while ((node = rb_first(&old_base->active))) { 1504 while ((node = rb_first(&old_base->active))) {
1672 timer = rb_entry(node, struct hrtimer, node); 1505 timer = rb_entry(node, struct hrtimer, node);
@@ -1674,18 +1507,6 @@ static int migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1674 debug_hrtimer_deactivate(timer); 1507 debug_hrtimer_deactivate(timer);
1675 1508
1676 /* 1509 /*
1677 * Should not happen. Per CPU timers should be
1678 * canceled _before_ the migration code is called
1679 */
1680 if (timer->cb_mode == HRTIMER_CB_IRQSAFE_PERCPU) {
1681 __remove_hrtimer(timer, old_base,
1682 HRTIMER_STATE_INACTIVE, 0);
1683 WARN(1, "hrtimer (%p %p)active but cpu %d dead\n",
1684 timer, timer->function, dcpu);
1685 continue;
1686 }
1687
1688 /*
1689 * Mark it as STATE_MIGRATE not INACTIVE otherwise the 1510 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1690 * timer could be seen as !active and just vanish away 1511 * timer could be seen as !active and just vanish away
1691 * under us on another CPU 1512 * under us on another CPU
@@ -1693,69 +1514,34 @@ static int migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1693 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0); 1514 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1694 timer->base = new_base; 1515 timer->base = new_base;
1695 /* 1516 /*
1696 * Enqueue the timer. Allow reprogramming of the event device 1517 * Enqueue the timers on the new cpu, but do not reprogram
1518 * the timer as that would enable a deadlock between
1519 * hrtimer_enqueue_reprogramm() running the timer and us still
1520 * holding a nested base lock.
1521 *
1522 * Instead we tickle the hrtimer interrupt after the migration
1523 * is done, which will run all expired timers and re-programm
1524 * the timer device.
1697 */ 1525 */
1698 enqueue_hrtimer(timer, new_base, 1); 1526 enqueue_hrtimer(timer, new_base, 0);
1699 1527
1700#ifdef CONFIG_HIGH_RES_TIMERS
1701 /*
1702 * Happens with high res enabled when the timer was
1703 * already expired and the callback mode is
1704 * HRTIMER_CB_IRQSAFE_UNLOCKED (hrtimer_sleeper). The
1705 * enqueue code does not move them to the soft irq
1706 * pending list for performance/latency reasons, but
1707 * in the migration state, we need to do that
1708 * otherwise we end up with a stale timer.
1709 */
1710 if (timer->state == HRTIMER_STATE_MIGRATE) {
1711 timer->state = HRTIMER_STATE_PENDING;
1712 list_add_tail(&timer->cb_entry,
1713 &new_base->cpu_base->cb_pending);
1714 raise = 1;
1715 }
1716#endif
1717 /* Clear the migration state bit */ 1528 /* Clear the migration state bit */
1718 timer->state &= ~HRTIMER_STATE_MIGRATE; 1529 timer->state &= ~HRTIMER_STATE_MIGRATE;
1719 } 1530 }
1720 return raise;
1721}
1722
1723#ifdef CONFIG_HIGH_RES_TIMERS
1724static int migrate_hrtimer_pending(struct hrtimer_cpu_base *old_base,
1725 struct hrtimer_cpu_base *new_base)
1726{
1727 struct hrtimer *timer;
1728 int raise = 0;
1729
1730 while (!list_empty(&old_base->cb_pending)) {
1731 timer = list_entry(old_base->cb_pending.next,
1732 struct hrtimer, cb_entry);
1733
1734 __remove_hrtimer(timer, timer->base, HRTIMER_STATE_PENDING, 0);
1735 timer->base = &new_base->clock_base[timer->base->index];
1736 list_add_tail(&timer->cb_entry, &new_base->cb_pending);
1737 raise = 1;
1738 }
1739 return raise;
1740}
1741#else
1742static int migrate_hrtimer_pending(struct hrtimer_cpu_base *old_base,
1743 struct hrtimer_cpu_base *new_base)
1744{
1745 return 0;
1746} 1531}
1747#endif
1748 1532
1749static void migrate_hrtimers(int cpu) 1533static int migrate_hrtimers(int scpu)
1750{ 1534{
1751 struct hrtimer_cpu_base *old_base, *new_base; 1535 struct hrtimer_cpu_base *old_base, *new_base;
1752 int i, raise = 0; 1536 int dcpu, i;
1753 1537
1754 BUG_ON(cpu_online(cpu)); 1538 BUG_ON(cpu_online(scpu));
1755 old_base = &per_cpu(hrtimer_bases, cpu); 1539 old_base = &per_cpu(hrtimer_bases, scpu);
1756 new_base = &get_cpu_var(hrtimer_bases); 1540 new_base = &get_cpu_var(hrtimer_bases);
1757 1541
1758 tick_cancel_sched_timer(cpu); 1542 dcpu = smp_processor_id();
1543
1544 tick_cancel_sched_timer(scpu);
1759 /* 1545 /*
1760 * The caller is globally serialized and nobody else 1546 * The caller is globally serialized and nobody else
1761 * takes two locks at once, deadlock is not possible. 1547 * takes two locks at once, deadlock is not possible.
@@ -1764,41 +1550,47 @@ static void migrate_hrtimers(int cpu)
1764 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 1550 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1765 1551
1766 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1552 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1767 if (migrate_hrtimer_list(&old_base->clock_base[i], 1553 migrate_hrtimer_list(&old_base->clock_base[i],
1768 &new_base->clock_base[i], cpu)) 1554 &new_base->clock_base[i]);
1769 raise = 1;
1770 } 1555 }
1771 1556
1772 if (migrate_hrtimer_pending(old_base, new_base))
1773 raise = 1;
1774
1775 spin_unlock(&old_base->lock); 1557 spin_unlock(&old_base->lock);
1776 spin_unlock_irq(&new_base->lock); 1558 spin_unlock_irq(&new_base->lock);
1777 put_cpu_var(hrtimer_bases); 1559 put_cpu_var(hrtimer_bases);
1778 1560
1779 if (raise) 1561 return dcpu;
1780 hrtimer_raise_softirq(); 1562}
1563
1564static void tickle_timers(void *arg)
1565{
1566 hrtimer_peek_ahead_timers();
1781} 1567}
1568
1782#endif /* CONFIG_HOTPLUG_CPU */ 1569#endif /* CONFIG_HOTPLUG_CPU */
1783 1570
1784static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self, 1571static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1785 unsigned long action, void *hcpu) 1572 unsigned long action, void *hcpu)
1786{ 1573{
1787 unsigned int cpu = (long)hcpu; 1574 int scpu = (long)hcpu;
1788 1575
1789 switch (action) { 1576 switch (action) {
1790 1577
1791 case CPU_UP_PREPARE: 1578 case CPU_UP_PREPARE:
1792 case CPU_UP_PREPARE_FROZEN: 1579 case CPU_UP_PREPARE_FROZEN:
1793 init_hrtimers_cpu(cpu); 1580 init_hrtimers_cpu(scpu);
1794 break; 1581 break;
1795 1582
1796#ifdef CONFIG_HOTPLUG_CPU 1583#ifdef CONFIG_HOTPLUG_CPU
1797 case CPU_DEAD: 1584 case CPU_DEAD:
1798 case CPU_DEAD_FROZEN: 1585 case CPU_DEAD_FROZEN:
1799 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu); 1586 {
1800 migrate_hrtimers(cpu); 1587 int dcpu;
1588
1589 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1590 dcpu = migrate_hrtimers(scpu);
1591 smp_call_function_single(dcpu, tickle_timers, NULL, 0);
1801 break; 1592 break;
1593 }
1802#endif 1594#endif
1803 1595
1804 default: 1596 default:
@@ -1817,9 +1609,6 @@ void __init hrtimers_init(void)
1817 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE, 1609 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1818 (void *)(long)smp_processor_id()); 1610 (void *)(long)smp_processor_id());
1819 register_cpu_notifier(&hrtimers_nb); 1611 register_cpu_notifier(&hrtimers_nb);
1820#ifdef CONFIG_HIGH_RES_TIMERS
1821 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1822#endif
1823} 1612}
1824 1613
1825/** 1614/**
diff --git a/kernel/posix-timers.c b/kernel/posix-timers.c
index a140e44eebba..887c63787de6 100644
--- a/kernel/posix-timers.c
+++ b/kernel/posix-timers.c
@@ -116,7 +116,7 @@ static DEFINE_SPINLOCK(idr_lock);
116 * must supply functions here, even if the function just returns 116 * must supply functions here, even if the function just returns
117 * ENOSYS. The standard POSIX timer management code assumes the 117 * ENOSYS. The standard POSIX timer management code assumes the
118 * following: 1.) The k_itimer struct (sched.h) is used for the 118 * following: 1.) The k_itimer struct (sched.h) is used for the
119 * timer. 2.) The list, it_lock, it_clock, it_id and it_process 119 * timer. 2.) The list, it_lock, it_clock, it_id and it_pid
120 * fields are not modified by timer code. 120 * fields are not modified by timer code.
121 * 121 *
122 * At this time all functions EXCEPT clock_nanosleep can be 122 * At this time all functions EXCEPT clock_nanosleep can be
@@ -319,7 +319,8 @@ void do_schedule_next_timer(struct siginfo *info)
319 319
320int posix_timer_event(struct k_itimer *timr, int si_private) 320int posix_timer_event(struct k_itimer *timr, int si_private)
321{ 321{
322 int shared, ret; 322 struct task_struct *task;
323 int shared, ret = -1;
323 /* 324 /*
324 * FIXME: if ->sigq is queued we can race with 325 * FIXME: if ->sigq is queued we can race with
325 * dequeue_signal()->do_schedule_next_timer(). 326 * dequeue_signal()->do_schedule_next_timer().
@@ -333,8 +334,13 @@ int posix_timer_event(struct k_itimer *timr, int si_private)
333 */ 334 */
334 timr->sigq->info.si_sys_private = si_private; 335 timr->sigq->info.si_sys_private = si_private;
335 336
336 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID); 337 rcu_read_lock();
337 ret = send_sigqueue(timr->sigq, timr->it_process, shared); 338 task = pid_task(timr->it_pid, PIDTYPE_PID);
339 if (task) {
340 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
341 ret = send_sigqueue(timr->sigq, task, shared);
342 }
343 rcu_read_unlock();
338 /* If we failed to send the signal the timer stops. */ 344 /* If we failed to send the signal the timer stops. */
339 return ret > 0; 345 return ret > 0;
340} 346}
@@ -411,7 +417,7 @@ static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
411 return ret; 417 return ret;
412} 418}
413 419
414static struct task_struct * good_sigevent(sigevent_t * event) 420static struct pid *good_sigevent(sigevent_t * event)
415{ 421{
416 struct task_struct *rtn = current->group_leader; 422 struct task_struct *rtn = current->group_leader;
417 423
@@ -425,7 +431,7 @@ static struct task_struct * good_sigevent(sigevent_t * event)
425 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX))) 431 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
426 return NULL; 432 return NULL;
427 433
428 return rtn; 434 return task_pid(rtn);
429} 435}
430 436
431void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock) 437void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
@@ -464,6 +470,7 @@ static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
464 idr_remove(&posix_timers_id, tmr->it_id); 470 idr_remove(&posix_timers_id, tmr->it_id);
465 spin_unlock_irqrestore(&idr_lock, flags); 471 spin_unlock_irqrestore(&idr_lock, flags);
466 } 472 }
473 put_pid(tmr->it_pid);
467 sigqueue_free(tmr->sigq); 474 sigqueue_free(tmr->sigq);
468 kmem_cache_free(posix_timers_cache, tmr); 475 kmem_cache_free(posix_timers_cache, tmr);
469} 476}
@@ -477,7 +484,6 @@ sys_timer_create(const clockid_t which_clock,
477{ 484{
478 struct k_itimer *new_timer; 485 struct k_itimer *new_timer;
479 int error, new_timer_id; 486 int error, new_timer_id;
480 struct task_struct *process;
481 sigevent_t event; 487 sigevent_t event;
482 int it_id_set = IT_ID_NOT_SET; 488 int it_id_set = IT_ID_NOT_SET;
483 489
@@ -531,11 +537,9 @@ sys_timer_create(const clockid_t which_clock,
531 goto out; 537 goto out;
532 } 538 }
533 rcu_read_lock(); 539 rcu_read_lock();
534 process = good_sigevent(&event); 540 new_timer->it_pid = get_pid(good_sigevent(&event));
535 if (process)
536 get_task_struct(process);
537 rcu_read_unlock(); 541 rcu_read_unlock();
538 if (!process) { 542 if (!new_timer->it_pid) {
539 error = -EINVAL; 543 error = -EINVAL;
540 goto out; 544 goto out;
541 } 545 }
@@ -543,8 +547,7 @@ sys_timer_create(const clockid_t which_clock,
543 event.sigev_notify = SIGEV_SIGNAL; 547 event.sigev_notify = SIGEV_SIGNAL;
544 event.sigev_signo = SIGALRM; 548 event.sigev_signo = SIGALRM;
545 event.sigev_value.sival_int = new_timer->it_id; 549 event.sigev_value.sival_int = new_timer->it_id;
546 process = current->group_leader; 550 new_timer->it_pid = get_pid(task_tgid(current));
547 get_task_struct(process);
548 } 551 }
549 552
550 new_timer->it_sigev_notify = event.sigev_notify; 553 new_timer->it_sigev_notify = event.sigev_notify;
@@ -554,7 +557,7 @@ sys_timer_create(const clockid_t which_clock,
554 new_timer->sigq->info.si_code = SI_TIMER; 557 new_timer->sigq->info.si_code = SI_TIMER;
555 558
556 spin_lock_irq(&current->sighand->siglock); 559 spin_lock_irq(&current->sighand->siglock);
557 new_timer->it_process = process; 560 new_timer->it_signal = current->signal;
558 list_add(&new_timer->list, &current->signal->posix_timers); 561 list_add(&new_timer->list, &current->signal->posix_timers);
559 spin_unlock_irq(&current->sighand->siglock); 562 spin_unlock_irq(&current->sighand->siglock);
560 563
@@ -589,8 +592,7 @@ static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags)
589 timr = idr_find(&posix_timers_id, (int)timer_id); 592 timr = idr_find(&posix_timers_id, (int)timer_id);
590 if (timr) { 593 if (timr) {
591 spin_lock(&timr->it_lock); 594 spin_lock(&timr->it_lock);
592 if (timr->it_process && 595 if (timr->it_signal == current->signal) {
593 same_thread_group(timr->it_process, current)) {
594 spin_unlock(&idr_lock); 596 spin_unlock(&idr_lock);
595 return timr; 597 return timr;
596 } 598 }
@@ -837,8 +839,7 @@ retry_delete:
837 * This keeps any tasks waiting on the spin lock from thinking 839 * This keeps any tasks waiting on the spin lock from thinking
838 * they got something (see the lock code above). 840 * they got something (see the lock code above).
839 */ 841 */
840 put_task_struct(timer->it_process); 842 timer->it_signal = NULL;
841 timer->it_process = NULL;
842 843
843 unlock_timer(timer, flags); 844 unlock_timer(timer, flags);
844 release_posix_timer(timer, IT_ID_SET); 845 release_posix_timer(timer, IT_ID_SET);
@@ -864,8 +865,7 @@ retry_delete:
864 * This keeps any tasks waiting on the spin lock from thinking 865 * This keeps any tasks waiting on the spin lock from thinking
865 * they got something (see the lock code above). 866 * they got something (see the lock code above).
866 */ 867 */
867 put_task_struct(timer->it_process); 868 timer->it_signal = NULL;
868 timer->it_process = NULL;
869 869
870 unlock_timer(timer, flags); 870 unlock_timer(timer, flags);
871 release_posix_timer(timer, IT_ID_SET); 871 release_posix_timer(timer, IT_ID_SET);
diff --git a/kernel/sched.c b/kernel/sched.c
index 22aa9cab3fe5..fff1c4a20b65 100644
--- a/kernel/sched.c
+++ b/kernel/sched.c
@@ -209,7 +209,6 @@ void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
209 hrtimer_init(&rt_b->rt_period_timer, 209 hrtimer_init(&rt_b->rt_period_timer,
210 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 210 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
211 rt_b->rt_period_timer.function = sched_rt_period_timer; 211 rt_b->rt_period_timer.function = sched_rt_period_timer;
212 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
213} 212}
214 213
215static inline int rt_bandwidth_enabled(void) 214static inline int rt_bandwidth_enabled(void)
@@ -1139,7 +1138,6 @@ static void init_rq_hrtick(struct rq *rq)
1139 1138
1140 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1139 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1141 rq->hrtick_timer.function = hrtick; 1140 rq->hrtick_timer.function = hrtick;
1142 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
1143} 1141}
1144#else /* CONFIG_SCHED_HRTICK */ 1142#else /* CONFIG_SCHED_HRTICK */
1145static inline void hrtick_clear(struct rq *rq) 1143static inline void hrtick_clear(struct rq *rq)
diff --git a/kernel/time/ntp.c b/kernel/time/ntp.c
index 8ff15e5d486b..f5f793d92415 100644
--- a/kernel/time/ntp.c
+++ b/kernel/time/ntp.c
@@ -131,7 +131,7 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
131{ 131{
132 enum hrtimer_restart res = HRTIMER_NORESTART; 132 enum hrtimer_restart res = HRTIMER_NORESTART;
133 133
134 write_seqlock_irq(&xtime_lock); 134 write_seqlock(&xtime_lock);
135 135
136 switch (time_state) { 136 switch (time_state) {
137 case TIME_OK: 137 case TIME_OK:
@@ -164,7 +164,7 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
164 } 164 }
165 update_vsyscall(&xtime, clock); 165 update_vsyscall(&xtime, clock);
166 166
167 write_sequnlock_irq(&xtime_lock); 167 write_sequnlock(&xtime_lock);
168 168
169 return res; 169 return res;
170} 170}
diff --git a/kernel/time/tick-sched.c b/kernel/time/tick-sched.c
index 342fc9ccab46..8f3fc2582d38 100644
--- a/kernel/time/tick-sched.c
+++ b/kernel/time/tick-sched.c
@@ -247,7 +247,7 @@ void tick_nohz_stop_sched_tick(int inidle)
247 if (need_resched()) 247 if (need_resched())
248 goto end; 248 goto end;
249 249
250 if (unlikely(local_softirq_pending())) { 250 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
251 static int ratelimit; 251 static int ratelimit;
252 252
253 if (ratelimit < 10) { 253 if (ratelimit < 10) {
@@ -282,8 +282,31 @@ void tick_nohz_stop_sched_tick(int inidle)
282 /* Schedule the tick, if we are at least one jiffie off */ 282 /* Schedule the tick, if we are at least one jiffie off */
283 if ((long)delta_jiffies >= 1) { 283 if ((long)delta_jiffies >= 1) {
284 284
285 /*
286 * calculate the expiry time for the next timer wheel
287 * timer
288 */
289 expires = ktime_add_ns(last_update, tick_period.tv64 *
290 delta_jiffies);
291
292 /*
293 * If this cpu is the one which updates jiffies, then
294 * give up the assignment and let it be taken by the
295 * cpu which runs the tick timer next, which might be
296 * this cpu as well. If we don't drop this here the
297 * jiffies might be stale and do_timer() never
298 * invoked.
299 */
300 if (cpu == tick_do_timer_cpu)
301 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
302
285 if (delta_jiffies > 1) 303 if (delta_jiffies > 1)
286 cpu_set(cpu, nohz_cpu_mask); 304 cpu_set(cpu, nohz_cpu_mask);
305
306 /* Skip reprogram of event if its not changed */
307 if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
308 goto out;
309
287 /* 310 /*
288 * nohz_stop_sched_tick can be called several times before 311 * nohz_stop_sched_tick can be called several times before
289 * the nohz_restart_sched_tick is called. This happens when 312 * the nohz_restart_sched_tick is called. This happens when
@@ -306,17 +329,6 @@ void tick_nohz_stop_sched_tick(int inidle)
306 rcu_enter_nohz(); 329 rcu_enter_nohz();
307 } 330 }
308 331
309 /*
310 * If this cpu is the one which updates jiffies, then
311 * give up the assignment and let it be taken by the
312 * cpu which runs the tick timer next, which might be
313 * this cpu as well. If we don't drop this here the
314 * jiffies might be stale and do_timer() never
315 * invoked.
316 */
317 if (cpu == tick_do_timer_cpu)
318 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
319
320 ts->idle_sleeps++; 332 ts->idle_sleeps++;
321 333
322 /* 334 /*
@@ -332,12 +344,7 @@ void tick_nohz_stop_sched_tick(int inidle)
332 goto out; 344 goto out;
333 } 345 }
334 346
335 /* 347 /* Mark expiries */
336 * calculate the expiry time for the next timer wheel
337 * timer
338 */
339 expires = ktime_add_ns(last_update, tick_period.tv64 *
340 delta_jiffies);
341 ts->idle_expires = expires; 348 ts->idle_expires = expires;
342 349
343 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 350 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
@@ -681,7 +688,6 @@ void tick_setup_sched_timer(void)
681 */ 688 */
682 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 689 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
683 ts->sched_timer.function = tick_sched_timer; 690 ts->sched_timer.function = tick_sched_timer;
684 ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
685 691
686 /* Get the next period (per cpu) */ 692 /* Get the next period (per cpu) */
687 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 693 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
diff --git a/kernel/trace/trace_sysprof.c b/kernel/trace/trace_sysprof.c
index 01becf1f19ff..a5779bd975db 100644
--- a/kernel/trace/trace_sysprof.c
+++ b/kernel/trace/trace_sysprof.c
@@ -202,7 +202,6 @@ static void start_stack_timer(int cpu)
202 202
203 hrtimer_init(hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 203 hrtimer_init(hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
204 hrtimer->function = stack_trace_timer_fn; 204 hrtimer->function = stack_trace_timer_fn;
205 hrtimer->cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
206 205
207 hrtimer_start(hrtimer, ns_to_ktime(sample_period), HRTIMER_MODE_REL); 206 hrtimer_start(hrtimer, ns_to_ktime(sample_period), HRTIMER_MODE_REL);
208} 207}
diff --git a/sound/core/hrtimer.c b/sound/core/hrtimer.c
index c1d285921f80..34c7d48f5061 100644
--- a/sound/core/hrtimer.c
+++ b/sound/core/hrtimer.c
@@ -57,7 +57,6 @@ static int snd_hrtimer_open(struct snd_timer *t)
57 return -ENOMEM; 57 return -ENOMEM;
58 hrtimer_init(&stime->hrt, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 58 hrtimer_init(&stime->hrt, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
59 stime->timer = t; 59 stime->timer = t;
60 stime->hrt.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
61 stime->hrt.function = snd_hrtimer_callback; 60 stime->hrt.function = snd_hrtimer_callback;
62 t->private_data = stime; 61 t->private_data = stime;
63 return 0; 62 return 0;
diff --git a/sound/drivers/pcsp/pcsp.c b/sound/drivers/pcsp/pcsp.c
index 2a02f704f366..a4049eb94d35 100644
--- a/sound/drivers/pcsp/pcsp.c
+++ b/sound/drivers/pcsp/pcsp.c
@@ -96,7 +96,6 @@ static int __devinit snd_card_pcsp_probe(int devnum, struct device *dev)
96 return -EINVAL; 96 return -EINVAL;
97 97
98 hrtimer_init(&pcsp_chip.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 98 hrtimer_init(&pcsp_chip.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
99 pcsp_chip.timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
100 pcsp_chip.timer.function = pcsp_do_timer; 99 pcsp_chip.timer.function = pcsp_do_timer;
101 100
102 card = snd_card_new(index, id, THIS_MODULE, 0); 101 card = snd_card_new(index, id, THIS_MODULE, 0);