diff options
-rw-r--r-- | block/Kconfig.iosched | 22 | ||||
-rw-r--r-- | block/Makefile | 1 | ||||
-rw-r--r-- | block/as-iosched.c | 1520 | ||||
-rw-r--r-- | block/elevator.c | 10 |
4 files changed, 6 insertions, 1547 deletions
diff --git a/block/Kconfig.iosched b/block/Kconfig.iosched index 7e803fc88770..baad3dae3655 100644 --- a/block/Kconfig.iosched +++ b/block/Kconfig.iosched | |||
@@ -12,24 +12,14 @@ config IOSCHED_NOOP | |||
12 | that do their own scheduling and require only minimal assistance from | 12 | that do their own scheduling and require only minimal assistance from |
13 | the kernel. | 13 | the kernel. |
14 | 14 | ||
15 | config IOSCHED_AS | ||
16 | tristate "Anticipatory I/O scheduler" | ||
17 | default y | ||
18 | ---help--- | ||
19 | The anticipatory I/O scheduler is generally a good choice for most | ||
20 | environments, but is quite large and complex when compared to the | ||
21 | deadline I/O scheduler, it can also be slower in some cases | ||
22 | especially some database loads. | ||
23 | |||
24 | config IOSCHED_DEADLINE | 15 | config IOSCHED_DEADLINE |
25 | tristate "Deadline I/O scheduler" | 16 | tristate "Deadline I/O scheduler" |
26 | default y | 17 | default y |
27 | ---help--- | 18 | ---help--- |
28 | The deadline I/O scheduler is simple and compact, and is often as | 19 | The deadline I/O scheduler is simple and compact. It will provide |
29 | good as the anticipatory I/O scheduler, and in some database | 20 | CSCAN service with FIFO expiration of requests, switching to |
30 | workloads, better. In the case of a single process performing I/O to | 21 | a new point in the service tree and doing a batch of IO from there |
31 | a disk at any one time, its behaviour is almost identical to the | 22 | in case of expiry. |
32 | anticipatory I/O scheduler and so is a good choice. | ||
33 | 23 | ||
34 | config IOSCHED_CFQ | 24 | config IOSCHED_CFQ |
35 | tristate "CFQ I/O scheduler" | 25 | tristate "CFQ I/O scheduler" |
@@ -47,9 +37,6 @@ choice | |||
47 | Select the I/O scheduler which will be used by default for all | 37 | Select the I/O scheduler which will be used by default for all |
48 | block devices. | 38 | block devices. |
49 | 39 | ||
50 | config DEFAULT_AS | ||
51 | bool "Anticipatory" if IOSCHED_AS=y | ||
52 | |||
53 | config DEFAULT_DEADLINE | 40 | config DEFAULT_DEADLINE |
54 | bool "Deadline" if IOSCHED_DEADLINE=y | 41 | bool "Deadline" if IOSCHED_DEADLINE=y |
55 | 42 | ||
@@ -63,7 +50,6 @@ endchoice | |||
63 | 50 | ||
64 | config DEFAULT_IOSCHED | 51 | config DEFAULT_IOSCHED |
65 | string | 52 | string |
66 | default "anticipatory" if DEFAULT_AS | ||
67 | default "deadline" if DEFAULT_DEADLINE | 53 | default "deadline" if DEFAULT_DEADLINE |
68 | default "cfq" if DEFAULT_CFQ | 54 | default "cfq" if DEFAULT_CFQ |
69 | default "noop" if DEFAULT_NOOP | 55 | default "noop" if DEFAULT_NOOP |
diff --git a/block/Makefile b/block/Makefile index ba74ca6bfa14..7914108952f2 100644 --- a/block/Makefile +++ b/block/Makefile | |||
@@ -9,7 +9,6 @@ obj-$(CONFIG_BLOCK) := elevator.o blk-core.o blk-tag.o blk-sysfs.o \ | |||
9 | 9 | ||
10 | obj-$(CONFIG_BLK_DEV_BSG) += bsg.o | 10 | obj-$(CONFIG_BLK_DEV_BSG) += bsg.o |
11 | obj-$(CONFIG_IOSCHED_NOOP) += noop-iosched.o | 11 | obj-$(CONFIG_IOSCHED_NOOP) += noop-iosched.o |
12 | obj-$(CONFIG_IOSCHED_AS) += as-iosched.o | ||
13 | obj-$(CONFIG_IOSCHED_DEADLINE) += deadline-iosched.o | 12 | obj-$(CONFIG_IOSCHED_DEADLINE) += deadline-iosched.o |
14 | obj-$(CONFIG_IOSCHED_CFQ) += cfq-iosched.o | 13 | obj-$(CONFIG_IOSCHED_CFQ) += cfq-iosched.o |
15 | 14 | ||
diff --git a/block/as-iosched.c b/block/as-iosched.c deleted file mode 100644 index ce8ba57c6557..000000000000 --- a/block/as-iosched.c +++ /dev/null | |||
@@ -1,1520 +0,0 @@ | |||
1 | /* | ||
2 | * Anticipatory & deadline i/o scheduler. | ||
3 | * | ||
4 | * Copyright (C) 2002 Jens Axboe <axboe@kernel.dk> | ||
5 | * Nick Piggin <nickpiggin@yahoo.com.au> | ||
6 | * | ||
7 | */ | ||
8 | #include <linux/kernel.h> | ||
9 | #include <linux/fs.h> | ||
10 | #include <linux/blkdev.h> | ||
11 | #include <linux/elevator.h> | ||
12 | #include <linux/bio.h> | ||
13 | #include <linux/module.h> | ||
14 | #include <linux/slab.h> | ||
15 | #include <linux/init.h> | ||
16 | #include <linux/compiler.h> | ||
17 | #include <linux/rbtree.h> | ||
18 | #include <linux/interrupt.h> | ||
19 | |||
20 | /* | ||
21 | * See Documentation/block/as-iosched.txt | ||
22 | */ | ||
23 | |||
24 | /* | ||
25 | * max time before a read is submitted. | ||
26 | */ | ||
27 | #define default_read_expire (HZ / 8) | ||
28 | |||
29 | /* | ||
30 | * ditto for writes, these limits are not hard, even | ||
31 | * if the disk is capable of satisfying them. | ||
32 | */ | ||
33 | #define default_write_expire (HZ / 4) | ||
34 | |||
35 | /* | ||
36 | * read_batch_expire describes how long we will allow a stream of reads to | ||
37 | * persist before looking to see whether it is time to switch over to writes. | ||
38 | */ | ||
39 | #define default_read_batch_expire (HZ / 2) | ||
40 | |||
41 | /* | ||
42 | * write_batch_expire describes how long we want a stream of writes to run for. | ||
43 | * This is not a hard limit, but a target we set for the auto-tuning thingy. | ||
44 | * See, the problem is: we can send a lot of writes to disk cache / TCQ in | ||
45 | * a short amount of time... | ||
46 | */ | ||
47 | #define default_write_batch_expire (HZ / 8) | ||
48 | |||
49 | /* | ||
50 | * max time we may wait to anticipate a read (default around 6ms) | ||
51 | */ | ||
52 | #define default_antic_expire ((HZ / 150) ? HZ / 150 : 1) | ||
53 | |||
54 | /* | ||
55 | * Keep track of up to 20ms thinktimes. We can go as big as we like here, | ||
56 | * however huge values tend to interfere and not decay fast enough. A program | ||
57 | * might be in a non-io phase of operation. Waiting on user input for example, | ||
58 | * or doing a lengthy computation. A small penalty can be justified there, and | ||
59 | * will still catch out those processes that constantly have large thinktimes. | ||
60 | */ | ||
61 | #define MAX_THINKTIME (HZ/50UL) | ||
62 | |||
63 | /* Bits in as_io_context.state */ | ||
64 | enum as_io_states { | ||
65 | AS_TASK_RUNNING=0, /* Process has not exited */ | ||
66 | AS_TASK_IOSTARTED, /* Process has started some IO */ | ||
67 | AS_TASK_IORUNNING, /* Process has completed some IO */ | ||
68 | }; | ||
69 | |||
70 | enum anticipation_status { | ||
71 | ANTIC_OFF=0, /* Not anticipating (normal operation) */ | ||
72 | ANTIC_WAIT_REQ, /* The last read has not yet completed */ | ||
73 | ANTIC_WAIT_NEXT, /* Currently anticipating a request vs | ||
74 | last read (which has completed) */ | ||
75 | ANTIC_FINISHED, /* Anticipating but have found a candidate | ||
76 | * or timed out */ | ||
77 | }; | ||
78 | |||
79 | struct as_data { | ||
80 | /* | ||
81 | * run time data | ||
82 | */ | ||
83 | |||
84 | struct request_queue *q; /* the "owner" queue */ | ||
85 | |||
86 | /* | ||
87 | * requests (as_rq s) are present on both sort_list and fifo_list | ||
88 | */ | ||
89 | struct rb_root sort_list[2]; | ||
90 | struct list_head fifo_list[2]; | ||
91 | |||
92 | struct request *next_rq[2]; /* next in sort order */ | ||
93 | sector_t last_sector[2]; /* last SYNC & ASYNC sectors */ | ||
94 | |||
95 | unsigned long exit_prob; /* probability a task will exit while | ||
96 | being waited on */ | ||
97 | unsigned long exit_no_coop; /* probablility an exited task will | ||
98 | not be part of a later cooperating | ||
99 | request */ | ||
100 | unsigned long new_ttime_total; /* mean thinktime on new proc */ | ||
101 | unsigned long new_ttime_mean; | ||
102 | u64 new_seek_total; /* mean seek on new proc */ | ||
103 | sector_t new_seek_mean; | ||
104 | |||
105 | unsigned long current_batch_expires; | ||
106 | unsigned long last_check_fifo[2]; | ||
107 | int changed_batch; /* 1: waiting for old batch to end */ | ||
108 | int new_batch; /* 1: waiting on first read complete */ | ||
109 | int batch_data_dir; /* current batch SYNC / ASYNC */ | ||
110 | int write_batch_count; /* max # of reqs in a write batch */ | ||
111 | int current_write_count; /* how many requests left this batch */ | ||
112 | int write_batch_idled; /* has the write batch gone idle? */ | ||
113 | |||
114 | enum anticipation_status antic_status; | ||
115 | unsigned long antic_start; /* jiffies: when it started */ | ||
116 | struct timer_list antic_timer; /* anticipatory scheduling timer */ | ||
117 | struct work_struct antic_work; /* Deferred unplugging */ | ||
118 | struct io_context *io_context; /* Identify the expected process */ | ||
119 | int ioc_finished; /* IO associated with io_context is finished */ | ||
120 | int nr_dispatched; | ||
121 | |||
122 | /* | ||
123 | * settings that change how the i/o scheduler behaves | ||
124 | */ | ||
125 | unsigned long fifo_expire[2]; | ||
126 | unsigned long batch_expire[2]; | ||
127 | unsigned long antic_expire; | ||
128 | }; | ||
129 | |||
130 | /* | ||
131 | * per-request data. | ||
132 | */ | ||
133 | enum arq_state { | ||
134 | AS_RQ_NEW=0, /* New - not referenced and not on any lists */ | ||
135 | AS_RQ_QUEUED, /* In the request queue. It belongs to the | ||
136 | scheduler */ | ||
137 | AS_RQ_DISPATCHED, /* On the dispatch list. It belongs to the | ||
138 | driver now */ | ||
139 | AS_RQ_PRESCHED, /* Debug poisoning for requests being used */ | ||
140 | AS_RQ_REMOVED, | ||
141 | AS_RQ_MERGED, | ||
142 | AS_RQ_POSTSCHED, /* when they shouldn't be */ | ||
143 | }; | ||
144 | |||
145 | #define RQ_IOC(rq) ((struct io_context *) (rq)->elevator_private) | ||
146 | #define RQ_STATE(rq) ((enum arq_state)(rq)->elevator_private2) | ||
147 | #define RQ_SET_STATE(rq, state) ((rq)->elevator_private2 = (void *) state) | ||
148 | |||
149 | static DEFINE_PER_CPU(unsigned long, as_ioc_count); | ||
150 | static struct completion *ioc_gone; | ||
151 | static DEFINE_SPINLOCK(ioc_gone_lock); | ||
152 | |||
153 | static void as_move_to_dispatch(struct as_data *ad, struct request *rq); | ||
154 | static void as_antic_stop(struct as_data *ad); | ||
155 | |||
156 | /* | ||
157 | * IO Context helper functions | ||
158 | */ | ||
159 | |||
160 | /* Called to deallocate the as_io_context */ | ||
161 | static void free_as_io_context(struct as_io_context *aic) | ||
162 | { | ||
163 | kfree(aic); | ||
164 | elv_ioc_count_dec(as_ioc_count); | ||
165 | if (ioc_gone) { | ||
166 | /* | ||
167 | * AS scheduler is exiting, grab exit lock and check | ||
168 | * the pending io context count. If it hits zero, | ||
169 | * complete ioc_gone and set it back to NULL. | ||
170 | */ | ||
171 | spin_lock(&ioc_gone_lock); | ||
172 | if (ioc_gone && !elv_ioc_count_read(as_ioc_count)) { | ||
173 | complete(ioc_gone); | ||
174 | ioc_gone = NULL; | ||
175 | } | ||
176 | spin_unlock(&ioc_gone_lock); | ||
177 | } | ||
178 | } | ||
179 | |||
180 | static void as_trim(struct io_context *ioc) | ||
181 | { | ||
182 | spin_lock_irq(&ioc->lock); | ||
183 | if (ioc->aic) | ||
184 | free_as_io_context(ioc->aic); | ||
185 | ioc->aic = NULL; | ||
186 | spin_unlock_irq(&ioc->lock); | ||
187 | } | ||
188 | |||
189 | /* Called when the task exits */ | ||
190 | static void exit_as_io_context(struct as_io_context *aic) | ||
191 | { | ||
192 | WARN_ON(!test_bit(AS_TASK_RUNNING, &aic->state)); | ||
193 | clear_bit(AS_TASK_RUNNING, &aic->state); | ||
194 | } | ||
195 | |||
196 | static struct as_io_context *alloc_as_io_context(void) | ||
197 | { | ||
198 | struct as_io_context *ret; | ||
199 | |||
200 | ret = kmalloc(sizeof(*ret), GFP_ATOMIC); | ||
201 | if (ret) { | ||
202 | ret->dtor = free_as_io_context; | ||
203 | ret->exit = exit_as_io_context; | ||
204 | ret->state = 1 << AS_TASK_RUNNING; | ||
205 | atomic_set(&ret->nr_queued, 0); | ||
206 | atomic_set(&ret->nr_dispatched, 0); | ||
207 | spin_lock_init(&ret->lock); | ||
208 | ret->ttime_total = 0; | ||
209 | ret->ttime_samples = 0; | ||
210 | ret->ttime_mean = 0; | ||
211 | ret->seek_total = 0; | ||
212 | ret->seek_samples = 0; | ||
213 | ret->seek_mean = 0; | ||
214 | elv_ioc_count_inc(as_ioc_count); | ||
215 | } | ||
216 | |||
217 | return ret; | ||
218 | } | ||
219 | |||
220 | /* | ||
221 | * If the current task has no AS IO context then create one and initialise it. | ||
222 | * Then take a ref on the task's io context and return it. | ||
223 | */ | ||
224 | static struct io_context *as_get_io_context(int node) | ||
225 | { | ||
226 | struct io_context *ioc = get_io_context(GFP_ATOMIC, node); | ||
227 | if (ioc && !ioc->aic) { | ||
228 | ioc->aic = alloc_as_io_context(); | ||
229 | if (!ioc->aic) { | ||
230 | put_io_context(ioc); | ||
231 | ioc = NULL; | ||
232 | } | ||
233 | } | ||
234 | return ioc; | ||
235 | } | ||
236 | |||
237 | static void as_put_io_context(struct request *rq) | ||
238 | { | ||
239 | struct as_io_context *aic; | ||
240 | |||
241 | if (unlikely(!RQ_IOC(rq))) | ||
242 | return; | ||
243 | |||
244 | aic = RQ_IOC(rq)->aic; | ||
245 | |||
246 | if (rq_is_sync(rq) && aic) { | ||
247 | unsigned long flags; | ||
248 | |||
249 | spin_lock_irqsave(&aic->lock, flags); | ||
250 | set_bit(AS_TASK_IORUNNING, &aic->state); | ||
251 | aic->last_end_request = jiffies; | ||
252 | spin_unlock_irqrestore(&aic->lock, flags); | ||
253 | } | ||
254 | |||
255 | put_io_context(RQ_IOC(rq)); | ||
256 | } | ||
257 | |||
258 | /* | ||
259 | * rb tree support functions | ||
260 | */ | ||
261 | #define RQ_RB_ROOT(ad, rq) (&(ad)->sort_list[rq_is_sync((rq))]) | ||
262 | |||
263 | static void as_add_rq_rb(struct as_data *ad, struct request *rq) | ||
264 | { | ||
265 | struct request *alias; | ||
266 | |||
267 | while ((unlikely(alias = elv_rb_add(RQ_RB_ROOT(ad, rq), rq)))) { | ||
268 | as_move_to_dispatch(ad, alias); | ||
269 | as_antic_stop(ad); | ||
270 | } | ||
271 | } | ||
272 | |||
273 | static inline void as_del_rq_rb(struct as_data *ad, struct request *rq) | ||
274 | { | ||
275 | elv_rb_del(RQ_RB_ROOT(ad, rq), rq); | ||
276 | } | ||
277 | |||
278 | /* | ||
279 | * IO Scheduler proper | ||
280 | */ | ||
281 | |||
282 | #define MAXBACK (1024 * 1024) /* | ||
283 | * Maximum distance the disk will go backward | ||
284 | * for a request. | ||
285 | */ | ||
286 | |||
287 | #define BACK_PENALTY 2 | ||
288 | |||
289 | /* | ||
290 | * as_choose_req selects the preferred one of two requests of the same data_dir | ||
291 | * ignoring time - eg. timeouts, which is the job of as_dispatch_request | ||
292 | */ | ||
293 | static struct request * | ||
294 | as_choose_req(struct as_data *ad, struct request *rq1, struct request *rq2) | ||
295 | { | ||
296 | int data_dir; | ||
297 | sector_t last, s1, s2, d1, d2; | ||
298 | int r1_wrap=0, r2_wrap=0; /* requests are behind the disk head */ | ||
299 | const sector_t maxback = MAXBACK; | ||
300 | |||
301 | if (rq1 == NULL || rq1 == rq2) | ||
302 | return rq2; | ||
303 | if (rq2 == NULL) | ||
304 | return rq1; | ||
305 | |||
306 | data_dir = rq_is_sync(rq1); | ||
307 | |||
308 | last = ad->last_sector[data_dir]; | ||
309 | s1 = blk_rq_pos(rq1); | ||
310 | s2 = blk_rq_pos(rq2); | ||
311 | |||
312 | BUG_ON(data_dir != rq_is_sync(rq2)); | ||
313 | |||
314 | /* | ||
315 | * Strict one way elevator _except_ in the case where we allow | ||
316 | * short backward seeks which are biased as twice the cost of a | ||
317 | * similar forward seek. | ||
318 | */ | ||
319 | if (s1 >= last) | ||
320 | d1 = s1 - last; | ||
321 | else if (s1+maxback >= last) | ||
322 | d1 = (last - s1)*BACK_PENALTY; | ||
323 | else { | ||
324 | r1_wrap = 1; | ||
325 | d1 = 0; /* shut up, gcc */ | ||
326 | } | ||
327 | |||
328 | if (s2 >= last) | ||
329 | d2 = s2 - last; | ||
330 | else if (s2+maxback >= last) | ||
331 | d2 = (last - s2)*BACK_PENALTY; | ||
332 | else { | ||
333 | r2_wrap = 1; | ||
334 | d2 = 0; | ||
335 | } | ||
336 | |||
337 | /* Found required data */ | ||
338 | if (!r1_wrap && r2_wrap) | ||
339 | return rq1; | ||
340 | else if (!r2_wrap && r1_wrap) | ||
341 | return rq2; | ||
342 | else if (r1_wrap && r2_wrap) { | ||
343 | /* both behind the head */ | ||
344 | if (s1 <= s2) | ||
345 | return rq1; | ||
346 | else | ||
347 | return rq2; | ||
348 | } | ||
349 | |||
350 | /* Both requests in front of the head */ | ||
351 | if (d1 < d2) | ||
352 | return rq1; | ||
353 | else if (d2 < d1) | ||
354 | return rq2; | ||
355 | else { | ||
356 | if (s1 >= s2) | ||
357 | return rq1; | ||
358 | else | ||
359 | return rq2; | ||
360 | } | ||
361 | } | ||
362 | |||
363 | /* | ||
364 | * as_find_next_rq finds the next request after @prev in elevator order. | ||
365 | * this with as_choose_req form the basis for how the scheduler chooses | ||
366 | * what request to process next. Anticipation works on top of this. | ||
367 | */ | ||
368 | static struct request * | ||
369 | as_find_next_rq(struct as_data *ad, struct request *last) | ||
370 | { | ||
371 | struct rb_node *rbnext = rb_next(&last->rb_node); | ||
372 | struct rb_node *rbprev = rb_prev(&last->rb_node); | ||
373 | struct request *next = NULL, *prev = NULL; | ||
374 | |||
375 | BUG_ON(RB_EMPTY_NODE(&last->rb_node)); | ||
376 | |||
377 | if (rbprev) | ||
378 | prev = rb_entry_rq(rbprev); | ||
379 | |||
380 | if (rbnext) | ||
381 | next = rb_entry_rq(rbnext); | ||
382 | else { | ||
383 | const int data_dir = rq_is_sync(last); | ||
384 | |||
385 | rbnext = rb_first(&ad->sort_list[data_dir]); | ||
386 | if (rbnext && rbnext != &last->rb_node) | ||
387 | next = rb_entry_rq(rbnext); | ||
388 | } | ||
389 | |||
390 | return as_choose_req(ad, next, prev); | ||
391 | } | ||
392 | |||
393 | /* | ||
394 | * anticipatory scheduling functions follow | ||
395 | */ | ||
396 | |||
397 | /* | ||
398 | * as_antic_expired tells us when we have anticipated too long. | ||
399 | * The funny "absolute difference" math on the elapsed time is to handle | ||
400 | * jiffy wraps, and disks which have been idle for 0x80000000 jiffies. | ||
401 | */ | ||
402 | static int as_antic_expired(struct as_data *ad) | ||
403 | { | ||
404 | long delta_jif; | ||
405 | |||
406 | delta_jif = jiffies - ad->antic_start; | ||
407 | if (unlikely(delta_jif < 0)) | ||
408 | delta_jif = -delta_jif; | ||
409 | if (delta_jif < ad->antic_expire) | ||
410 | return 0; | ||
411 | |||
412 | return 1; | ||
413 | } | ||
414 | |||
415 | /* | ||
416 | * as_antic_waitnext starts anticipating that a nice request will soon be | ||
417 | * submitted. See also as_antic_waitreq | ||
418 | */ | ||
419 | static void as_antic_waitnext(struct as_data *ad) | ||
420 | { | ||
421 | unsigned long timeout; | ||
422 | |||
423 | BUG_ON(ad->antic_status != ANTIC_OFF | ||
424 | && ad->antic_status != ANTIC_WAIT_REQ); | ||
425 | |||
426 | timeout = ad->antic_start + ad->antic_expire; | ||
427 | |||
428 | mod_timer(&ad->antic_timer, timeout); | ||
429 | |||
430 | ad->antic_status = ANTIC_WAIT_NEXT; | ||
431 | } | ||
432 | |||
433 | /* | ||
434 | * as_antic_waitreq starts anticipating. We don't start timing the anticipation | ||
435 | * until the request that we're anticipating on has finished. This means we | ||
436 | * are timing from when the candidate process wakes up hopefully. | ||
437 | */ | ||
438 | static void as_antic_waitreq(struct as_data *ad) | ||
439 | { | ||
440 | BUG_ON(ad->antic_status == ANTIC_FINISHED); | ||
441 | if (ad->antic_status == ANTIC_OFF) { | ||
442 | if (!ad->io_context || ad->ioc_finished) | ||
443 | as_antic_waitnext(ad); | ||
444 | else | ||
445 | ad->antic_status = ANTIC_WAIT_REQ; | ||
446 | } | ||
447 | } | ||
448 | |||
449 | /* | ||
450 | * This is called directly by the functions in this file to stop anticipation. | ||
451 | * We kill the timer and schedule a call to the request_fn asap. | ||
452 | */ | ||
453 | static void as_antic_stop(struct as_data *ad) | ||
454 | { | ||
455 | int status = ad->antic_status; | ||
456 | |||
457 | if (status == ANTIC_WAIT_REQ || status == ANTIC_WAIT_NEXT) { | ||
458 | if (status == ANTIC_WAIT_NEXT) | ||
459 | del_timer(&ad->antic_timer); | ||
460 | ad->antic_status = ANTIC_FINISHED; | ||
461 | /* see as_work_handler */ | ||
462 | kblockd_schedule_work(ad->q, &ad->antic_work); | ||
463 | } | ||
464 | } | ||
465 | |||
466 | /* | ||
467 | * as_antic_timeout is the timer function set by as_antic_waitnext. | ||
468 | */ | ||
469 | static void as_antic_timeout(unsigned long data) | ||
470 | { | ||
471 | struct request_queue *q = (struct request_queue *)data; | ||
472 | struct as_data *ad = q->elevator->elevator_data; | ||
473 | unsigned long flags; | ||
474 | |||
475 | spin_lock_irqsave(q->queue_lock, flags); | ||
476 | if (ad->antic_status == ANTIC_WAIT_REQ | ||
477 | || ad->antic_status == ANTIC_WAIT_NEXT) { | ||
478 | struct as_io_context *aic; | ||
479 | spin_lock(&ad->io_context->lock); | ||
480 | aic = ad->io_context->aic; | ||
481 | |||
482 | ad->antic_status = ANTIC_FINISHED; | ||
483 | kblockd_schedule_work(q, &ad->antic_work); | ||
484 | |||
485 | if (aic->ttime_samples == 0) { | ||
486 | /* process anticipated on has exited or timed out*/ | ||
487 | ad->exit_prob = (7*ad->exit_prob + 256)/8; | ||
488 | } | ||
489 | if (!test_bit(AS_TASK_RUNNING, &aic->state)) { | ||
490 | /* process not "saved" by a cooperating request */ | ||
491 | ad->exit_no_coop = (7*ad->exit_no_coop + 256)/8; | ||
492 | } | ||
493 | spin_unlock(&ad->io_context->lock); | ||
494 | } | ||
495 | spin_unlock_irqrestore(q->queue_lock, flags); | ||
496 | } | ||
497 | |||
498 | static void as_update_thinktime(struct as_data *ad, struct as_io_context *aic, | ||
499 | unsigned long ttime) | ||
500 | { | ||
501 | /* fixed point: 1.0 == 1<<8 */ | ||
502 | if (aic->ttime_samples == 0) { | ||
503 | ad->new_ttime_total = (7*ad->new_ttime_total + 256*ttime) / 8; | ||
504 | ad->new_ttime_mean = ad->new_ttime_total / 256; | ||
505 | |||
506 | ad->exit_prob = (7*ad->exit_prob)/8; | ||
507 | } | ||
508 | aic->ttime_samples = (7*aic->ttime_samples + 256) / 8; | ||
509 | aic->ttime_total = (7*aic->ttime_total + 256*ttime) / 8; | ||
510 | aic->ttime_mean = (aic->ttime_total + 128) / aic->ttime_samples; | ||
511 | } | ||
512 | |||
513 | static void as_update_seekdist(struct as_data *ad, struct as_io_context *aic, | ||
514 | sector_t sdist) | ||
515 | { | ||
516 | u64 total; | ||
517 | |||
518 | if (aic->seek_samples == 0) { | ||
519 | ad->new_seek_total = (7*ad->new_seek_total + 256*(u64)sdist)/8; | ||
520 | ad->new_seek_mean = ad->new_seek_total / 256; | ||
521 | } | ||
522 | |||
523 | /* | ||
524 | * Don't allow the seek distance to get too large from the | ||
525 | * odd fragment, pagein, etc | ||
526 | */ | ||
527 | if (aic->seek_samples <= 60) /* second&third seek */ | ||
528 | sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*1024); | ||
529 | else | ||
530 | sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*64); | ||
531 | |||
532 | aic->seek_samples = (7*aic->seek_samples + 256) / 8; | ||
533 | aic->seek_total = (7*aic->seek_total + (u64)256*sdist) / 8; | ||
534 | total = aic->seek_total + (aic->seek_samples/2); | ||
535 | do_div(total, aic->seek_samples); | ||
536 | aic->seek_mean = (sector_t)total; | ||
537 | } | ||
538 | |||
539 | /* | ||
540 | * as_update_iohist keeps a decaying histogram of IO thinktimes, and | ||
541 | * updates @aic->ttime_mean based on that. It is called when a new | ||
542 | * request is queued. | ||
543 | */ | ||
544 | static void as_update_iohist(struct as_data *ad, struct as_io_context *aic, | ||
545 | struct request *rq) | ||
546 | { | ||
547 | int data_dir = rq_is_sync(rq); | ||
548 | unsigned long thinktime = 0; | ||
549 | sector_t seek_dist; | ||
550 | |||
551 | if (aic == NULL) | ||
552 | return; | ||
553 | |||
554 | if (data_dir == BLK_RW_SYNC) { | ||
555 | unsigned long in_flight = atomic_read(&aic->nr_queued) | ||
556 | + atomic_read(&aic->nr_dispatched); | ||
557 | spin_lock(&aic->lock); | ||
558 | if (test_bit(AS_TASK_IORUNNING, &aic->state) || | ||
559 | test_bit(AS_TASK_IOSTARTED, &aic->state)) { | ||
560 | /* Calculate read -> read thinktime */ | ||
561 | if (test_bit(AS_TASK_IORUNNING, &aic->state) | ||
562 | && in_flight == 0) { | ||
563 | thinktime = jiffies - aic->last_end_request; | ||
564 | thinktime = min(thinktime, MAX_THINKTIME-1); | ||
565 | } | ||
566 | as_update_thinktime(ad, aic, thinktime); | ||
567 | |||
568 | /* Calculate read -> read seek distance */ | ||
569 | if (aic->last_request_pos < blk_rq_pos(rq)) | ||
570 | seek_dist = blk_rq_pos(rq) - | ||
571 | aic->last_request_pos; | ||
572 | else | ||
573 | seek_dist = aic->last_request_pos - | ||
574 | blk_rq_pos(rq); | ||
575 | as_update_seekdist(ad, aic, seek_dist); | ||
576 | } | ||
577 | aic->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq); | ||
578 | set_bit(AS_TASK_IOSTARTED, &aic->state); | ||
579 | spin_unlock(&aic->lock); | ||
580 | } | ||
581 | } | ||
582 | |||
583 | /* | ||
584 | * as_close_req decides if one request is considered "close" to the | ||
585 | * previous one issued. | ||
586 | */ | ||
587 | static int as_close_req(struct as_data *ad, struct as_io_context *aic, | ||
588 | struct request *rq) | ||
589 | { | ||
590 | unsigned long delay; /* jiffies */ | ||
591 | sector_t last = ad->last_sector[ad->batch_data_dir]; | ||
592 | sector_t next = blk_rq_pos(rq); | ||
593 | sector_t delta; /* acceptable close offset (in sectors) */ | ||
594 | sector_t s; | ||
595 | |||
596 | if (ad->antic_status == ANTIC_OFF || !ad->ioc_finished) | ||
597 | delay = 0; | ||
598 | else | ||
599 | delay = jiffies - ad->antic_start; | ||
600 | |||
601 | if (delay == 0) | ||
602 | delta = 8192; | ||
603 | else if (delay <= (20 * HZ / 1000) && delay <= ad->antic_expire) | ||
604 | delta = 8192 << delay; | ||
605 | else | ||
606 | return 1; | ||
607 | |||
608 | if ((last <= next + (delta>>1)) && (next <= last + delta)) | ||
609 | return 1; | ||
610 | |||
611 | if (last < next) | ||
612 | s = next - last; | ||
613 | else | ||
614 | s = last - next; | ||
615 | |||
616 | if (aic->seek_samples == 0) { | ||
617 | /* | ||
618 | * Process has just started IO. Use past statistics to | ||
619 | * gauge success possibility | ||
620 | */ | ||
621 | if (ad->new_seek_mean > s) { | ||
622 | /* this request is better than what we're expecting */ | ||
623 | return 1; | ||
624 | } | ||
625 | |||
626 | } else { | ||
627 | if (aic->seek_mean > s) { | ||
628 | /* this request is better than what we're expecting */ | ||
629 | return 1; | ||
630 | } | ||
631 | } | ||
632 | |||
633 | return 0; | ||
634 | } | ||
635 | |||
636 | /* | ||
637 | * as_can_break_anticipation returns true if we have been anticipating this | ||
638 | * request. | ||
639 | * | ||
640 | * It also returns true if the process against which we are anticipating | ||
641 | * submits a write - that's presumably an fsync, O_SYNC write, etc. We want to | ||
642 | * dispatch it ASAP, because we know that application will not be submitting | ||
643 | * any new reads. | ||
644 | * | ||
645 | * If the task which has submitted the request has exited, break anticipation. | ||
646 | * | ||
647 | * If this task has queued some other IO, do not enter enticipation. | ||
648 | */ | ||
649 | static int as_can_break_anticipation(struct as_data *ad, struct request *rq) | ||
650 | { | ||
651 | struct io_context *ioc; | ||
652 | struct as_io_context *aic; | ||
653 | |||
654 | ioc = ad->io_context; | ||
655 | BUG_ON(!ioc); | ||
656 | spin_lock(&ioc->lock); | ||
657 | |||
658 | if (rq && ioc == RQ_IOC(rq)) { | ||
659 | /* request from same process */ | ||
660 | spin_unlock(&ioc->lock); | ||
661 | return 1; | ||
662 | } | ||
663 | |||
664 | if (ad->ioc_finished && as_antic_expired(ad)) { | ||
665 | /* | ||
666 | * In this situation status should really be FINISHED, | ||
667 | * however the timer hasn't had the chance to run yet. | ||
668 | */ | ||
669 | spin_unlock(&ioc->lock); | ||
670 | return 1; | ||
671 | } | ||
672 | |||
673 | aic = ioc->aic; | ||
674 | if (!aic) { | ||
675 | spin_unlock(&ioc->lock); | ||
676 | return 0; | ||
677 | } | ||
678 | |||
679 | if (atomic_read(&aic->nr_queued) > 0) { | ||
680 | /* process has more requests queued */ | ||
681 | spin_unlock(&ioc->lock); | ||
682 | return 1; | ||
683 | } | ||
684 | |||
685 | if (atomic_read(&aic->nr_dispatched) > 0) { | ||
686 | /* process has more requests dispatched */ | ||
687 | spin_unlock(&ioc->lock); | ||
688 | return 1; | ||
689 | } | ||
690 | |||
691 | if (rq && rq_is_sync(rq) && as_close_req(ad, aic, rq)) { | ||
692 | /* | ||
693 | * Found a close request that is not one of ours. | ||
694 | * | ||
695 | * This makes close requests from another process update | ||
696 | * our IO history. Is generally useful when there are | ||
697 | * two or more cooperating processes working in the same | ||
698 | * area. | ||
699 | */ | ||
700 | if (!test_bit(AS_TASK_RUNNING, &aic->state)) { | ||
701 | if (aic->ttime_samples == 0) | ||
702 | ad->exit_prob = (7*ad->exit_prob + 256)/8; | ||
703 | |||
704 | ad->exit_no_coop = (7*ad->exit_no_coop)/8; | ||
705 | } | ||
706 | |||
707 | as_update_iohist(ad, aic, rq); | ||
708 | spin_unlock(&ioc->lock); | ||
709 | return 1; | ||
710 | } | ||
711 | |||
712 | if (!test_bit(AS_TASK_RUNNING, &aic->state)) { | ||
713 | /* process anticipated on has exited */ | ||
714 | if (aic->ttime_samples == 0) | ||
715 | ad->exit_prob = (7*ad->exit_prob + 256)/8; | ||
716 | |||
717 | if (ad->exit_no_coop > 128) { | ||
718 | spin_unlock(&ioc->lock); | ||
719 | return 1; | ||
720 | } | ||
721 | } | ||
722 | |||
723 | if (aic->ttime_samples == 0) { | ||
724 | if (ad->new_ttime_mean > ad->antic_expire) { | ||
725 | spin_unlock(&ioc->lock); | ||
726 | return 1; | ||
727 | } | ||
728 | if (ad->exit_prob * ad->exit_no_coop > 128*256) { | ||
729 | spin_unlock(&ioc->lock); | ||
730 | return 1; | ||
731 | } | ||
732 | } else if (aic->ttime_mean > ad->antic_expire) { | ||
733 | /* the process thinks too much between requests */ | ||
734 | spin_unlock(&ioc->lock); | ||
735 | return 1; | ||
736 | } | ||
737 | spin_unlock(&ioc->lock); | ||
738 | return 0; | ||
739 | } | ||
740 | |||
741 | /* | ||
742 | * as_can_anticipate indicates whether we should either run rq | ||
743 | * or keep anticipating a better request. | ||
744 | */ | ||
745 | static int as_can_anticipate(struct as_data *ad, struct request *rq) | ||
746 | { | ||
747 | #if 0 /* disable for now, we need to check tag level as well */ | ||
748 | /* | ||
749 | * SSD device without seek penalty, disable idling | ||
750 | */ | ||
751 | if (blk_queue_nonrot(ad->q)) axman | ||
752 | return 0; | ||
753 | #endif | ||
754 | |||
755 | if (!ad->io_context) | ||
756 | /* | ||
757 | * Last request submitted was a write | ||
758 | */ | ||
759 | return 0; | ||
760 | |||
761 | if (ad->antic_status == ANTIC_FINISHED) | ||
762 | /* | ||
763 | * Don't restart if we have just finished. Run the next request | ||
764 | */ | ||
765 | return 0; | ||
766 | |||
767 | if (as_can_break_anticipation(ad, rq)) | ||
768 | /* | ||
769 | * This request is a good candidate. Don't keep anticipating, | ||
770 | * run it. | ||
771 | */ | ||
772 | return 0; | ||
773 | |||
774 | /* | ||
775 | * OK from here, we haven't finished, and don't have a decent request! | ||
776 | * Status is either ANTIC_OFF so start waiting, | ||
777 | * ANTIC_WAIT_REQ so continue waiting for request to finish | ||
778 | * or ANTIC_WAIT_NEXT so continue waiting for an acceptable request. | ||
779 | */ | ||
780 | |||
781 | return 1; | ||
782 | } | ||
783 | |||
784 | /* | ||
785 | * as_update_rq must be called whenever a request (rq) is added to | ||
786 | * the sort_list. This function keeps caches up to date, and checks if the | ||
787 | * request might be one we are "anticipating" | ||
788 | */ | ||
789 | static void as_update_rq(struct as_data *ad, struct request *rq) | ||
790 | { | ||
791 | const int data_dir = rq_is_sync(rq); | ||
792 | |||
793 | /* keep the next_rq cache up to date */ | ||
794 | ad->next_rq[data_dir] = as_choose_req(ad, rq, ad->next_rq[data_dir]); | ||
795 | |||
796 | /* | ||
797 | * have we been anticipating this request? | ||
798 | * or does it come from the same process as the one we are anticipating | ||
799 | * for? | ||
800 | */ | ||
801 | if (ad->antic_status == ANTIC_WAIT_REQ | ||
802 | || ad->antic_status == ANTIC_WAIT_NEXT) { | ||
803 | if (as_can_break_anticipation(ad, rq)) | ||
804 | as_antic_stop(ad); | ||
805 | } | ||
806 | } | ||
807 | |||
808 | /* | ||
809 | * Gathers timings and resizes the write batch automatically | ||
810 | */ | ||
811 | static void update_write_batch(struct as_data *ad) | ||
812 | { | ||
813 | unsigned long batch = ad->batch_expire[BLK_RW_ASYNC]; | ||
814 | long write_time; | ||
815 | |||
816 | write_time = (jiffies - ad->current_batch_expires) + batch; | ||
817 | if (write_time < 0) | ||
818 | write_time = 0; | ||
819 | |||
820 | if (write_time > batch && !ad->write_batch_idled) { | ||
821 | if (write_time > batch * 3) | ||
822 | ad->write_batch_count /= 2; | ||
823 | else | ||
824 | ad->write_batch_count--; | ||
825 | } else if (write_time < batch && ad->current_write_count == 0) { | ||
826 | if (batch > write_time * 3) | ||
827 | ad->write_batch_count *= 2; | ||
828 | else | ||
829 | ad->write_batch_count++; | ||
830 | } | ||
831 | |||
832 | if (ad->write_batch_count < 1) | ||
833 | ad->write_batch_count = 1; | ||
834 | } | ||
835 | |||
836 | /* | ||
837 | * as_completed_request is to be called when a request has completed and | ||
838 | * returned something to the requesting process, be it an error or data. | ||
839 | */ | ||
840 | static void as_completed_request(struct request_queue *q, struct request *rq) | ||
841 | { | ||
842 | struct as_data *ad = q->elevator->elevator_data; | ||
843 | |||
844 | WARN_ON(!list_empty(&rq->queuelist)); | ||
845 | |||
846 | if (RQ_STATE(rq) != AS_RQ_REMOVED) { | ||
847 | WARN(1, "rq->state %d\n", RQ_STATE(rq)); | ||
848 | goto out; | ||
849 | } | ||
850 | |||
851 | if (ad->changed_batch && ad->nr_dispatched == 1) { | ||
852 | ad->current_batch_expires = jiffies + | ||
853 | ad->batch_expire[ad->batch_data_dir]; | ||
854 | kblockd_schedule_work(q, &ad->antic_work); | ||
855 | ad->changed_batch = 0; | ||
856 | |||
857 | if (ad->batch_data_dir == BLK_RW_SYNC) | ||
858 | ad->new_batch = 1; | ||
859 | } | ||
860 | WARN_ON(ad->nr_dispatched == 0); | ||
861 | ad->nr_dispatched--; | ||
862 | |||
863 | /* | ||
864 | * Start counting the batch from when a request of that direction is | ||
865 | * actually serviced. This should help devices with big TCQ windows | ||
866 | * and writeback caches | ||
867 | */ | ||
868 | if (ad->new_batch && ad->batch_data_dir == rq_is_sync(rq)) { | ||
869 | update_write_batch(ad); | ||
870 | ad->current_batch_expires = jiffies + | ||
871 | ad->batch_expire[BLK_RW_SYNC]; | ||
872 | ad->new_batch = 0; | ||
873 | } | ||
874 | |||
875 | if (ad->io_context == RQ_IOC(rq) && ad->io_context) { | ||
876 | ad->antic_start = jiffies; | ||
877 | ad->ioc_finished = 1; | ||
878 | if (ad->antic_status == ANTIC_WAIT_REQ) { | ||
879 | /* | ||
880 | * We were waiting on this request, now anticipate | ||
881 | * the next one | ||
882 | */ | ||
883 | as_antic_waitnext(ad); | ||
884 | } | ||
885 | } | ||
886 | |||
887 | as_put_io_context(rq); | ||
888 | out: | ||
889 | RQ_SET_STATE(rq, AS_RQ_POSTSCHED); | ||
890 | } | ||
891 | |||
892 | /* | ||
893 | * as_remove_queued_request removes a request from the pre dispatch queue | ||
894 | * without updating refcounts. It is expected the caller will drop the | ||
895 | * reference unless it replaces the request at somepart of the elevator | ||
896 | * (ie. the dispatch queue) | ||
897 | */ | ||
898 | static void as_remove_queued_request(struct request_queue *q, | ||
899 | struct request *rq) | ||
900 | { | ||
901 | const int data_dir = rq_is_sync(rq); | ||
902 | struct as_data *ad = q->elevator->elevator_data; | ||
903 | struct io_context *ioc; | ||
904 | |||
905 | WARN_ON(RQ_STATE(rq) != AS_RQ_QUEUED); | ||
906 | |||
907 | ioc = RQ_IOC(rq); | ||
908 | if (ioc && ioc->aic) { | ||
909 | BUG_ON(!atomic_read(&ioc->aic->nr_queued)); | ||
910 | atomic_dec(&ioc->aic->nr_queued); | ||
911 | } | ||
912 | |||
913 | /* | ||
914 | * Update the "next_rq" cache if we are about to remove its | ||
915 | * entry | ||
916 | */ | ||
917 | if (ad->next_rq[data_dir] == rq) | ||
918 | ad->next_rq[data_dir] = as_find_next_rq(ad, rq); | ||
919 | |||
920 | rq_fifo_clear(rq); | ||
921 | as_del_rq_rb(ad, rq); | ||
922 | } | ||
923 | |||
924 | /* | ||
925 | * as_fifo_expired returns 0 if there are no expired requests on the fifo, | ||
926 | * 1 otherwise. It is ratelimited so that we only perform the check once per | ||
927 | * `fifo_expire' interval. Otherwise a large number of expired requests | ||
928 | * would create a hopeless seekstorm. | ||
929 | * | ||
930 | * See as_antic_expired comment. | ||
931 | */ | ||
932 | static int as_fifo_expired(struct as_data *ad, int adir) | ||
933 | { | ||
934 | struct request *rq; | ||
935 | long delta_jif; | ||
936 | |||
937 | delta_jif = jiffies - ad->last_check_fifo[adir]; | ||
938 | if (unlikely(delta_jif < 0)) | ||
939 | delta_jif = -delta_jif; | ||
940 | if (delta_jif < ad->fifo_expire[adir]) | ||
941 | return 0; | ||
942 | |||
943 | ad->last_check_fifo[adir] = jiffies; | ||
944 | |||
945 | if (list_empty(&ad->fifo_list[adir])) | ||
946 | return 0; | ||
947 | |||
948 | rq = rq_entry_fifo(ad->fifo_list[adir].next); | ||
949 | |||
950 | return time_after(jiffies, rq_fifo_time(rq)); | ||
951 | } | ||
952 | |||
953 | /* | ||
954 | * as_batch_expired returns true if the current batch has expired. A batch | ||
955 | * is a set of reads or a set of writes. | ||
956 | */ | ||
957 | static inline int as_batch_expired(struct as_data *ad) | ||
958 | { | ||
959 | if (ad->changed_batch || ad->new_batch) | ||
960 | return 0; | ||
961 | |||
962 | if (ad->batch_data_dir == BLK_RW_SYNC) | ||
963 | /* TODO! add a check so a complete fifo gets written? */ | ||
964 | return time_after(jiffies, ad->current_batch_expires); | ||
965 | |||
966 | return time_after(jiffies, ad->current_batch_expires) | ||
967 | || ad->current_write_count == 0; | ||
968 | } | ||
969 | |||
970 | /* | ||
971 | * move an entry to dispatch queue | ||
972 | */ | ||
973 | static void as_move_to_dispatch(struct as_data *ad, struct request *rq) | ||
974 | { | ||
975 | const int data_dir = rq_is_sync(rq); | ||
976 | |||
977 | BUG_ON(RB_EMPTY_NODE(&rq->rb_node)); | ||
978 | |||
979 | as_antic_stop(ad); | ||
980 | ad->antic_status = ANTIC_OFF; | ||
981 | |||
982 | /* | ||
983 | * This has to be set in order to be correctly updated by | ||
984 | * as_find_next_rq | ||
985 | */ | ||
986 | ad->last_sector[data_dir] = blk_rq_pos(rq) + blk_rq_sectors(rq); | ||
987 | |||
988 | if (data_dir == BLK_RW_SYNC) { | ||
989 | struct io_context *ioc = RQ_IOC(rq); | ||
990 | /* In case we have to anticipate after this */ | ||
991 | copy_io_context(&ad->io_context, &ioc); | ||
992 | } else { | ||
993 | if (ad->io_context) { | ||
994 | put_io_context(ad->io_context); | ||
995 | ad->io_context = NULL; | ||
996 | } | ||
997 | |||
998 | if (ad->current_write_count != 0) | ||
999 | ad->current_write_count--; | ||
1000 | } | ||
1001 | ad->ioc_finished = 0; | ||
1002 | |||
1003 | ad->next_rq[data_dir] = as_find_next_rq(ad, rq); | ||
1004 | |||
1005 | /* | ||
1006 | * take it off the sort and fifo list, add to dispatch queue | ||
1007 | */ | ||
1008 | as_remove_queued_request(ad->q, rq); | ||
1009 | WARN_ON(RQ_STATE(rq) != AS_RQ_QUEUED); | ||
1010 | |||
1011 | elv_dispatch_sort(ad->q, rq); | ||
1012 | |||
1013 | RQ_SET_STATE(rq, AS_RQ_DISPATCHED); | ||
1014 | if (RQ_IOC(rq) && RQ_IOC(rq)->aic) | ||
1015 | atomic_inc(&RQ_IOC(rq)->aic->nr_dispatched); | ||
1016 | ad->nr_dispatched++; | ||
1017 | } | ||
1018 | |||
1019 | /* | ||
1020 | * as_dispatch_request selects the best request according to | ||
1021 | * read/write expire, batch expire, etc, and moves it to the dispatch | ||
1022 | * queue. Returns 1 if a request was found, 0 otherwise. | ||
1023 | */ | ||
1024 | static int as_dispatch_request(struct request_queue *q, int force) | ||
1025 | { | ||
1026 | struct as_data *ad = q->elevator->elevator_data; | ||
1027 | const int reads = !list_empty(&ad->fifo_list[BLK_RW_SYNC]); | ||
1028 | const int writes = !list_empty(&ad->fifo_list[BLK_RW_ASYNC]); | ||
1029 | struct request *rq; | ||
1030 | |||
1031 | if (unlikely(force)) { | ||
1032 | /* | ||
1033 | * Forced dispatch, accounting is useless. Reset | ||
1034 | * accounting states and dump fifo_lists. Note that | ||
1035 | * batch_data_dir is reset to BLK_RW_SYNC to avoid | ||
1036 | * screwing write batch accounting as write batch | ||
1037 | * accounting occurs on W->R transition. | ||
1038 | */ | ||
1039 | int dispatched = 0; | ||
1040 | |||
1041 | ad->batch_data_dir = BLK_RW_SYNC; | ||
1042 | ad->changed_batch = 0; | ||
1043 | ad->new_batch = 0; | ||
1044 | |||
1045 | while (ad->next_rq[BLK_RW_SYNC]) { | ||
1046 | as_move_to_dispatch(ad, ad->next_rq[BLK_RW_SYNC]); | ||
1047 | dispatched++; | ||
1048 | } | ||
1049 | ad->last_check_fifo[BLK_RW_SYNC] = jiffies; | ||
1050 | |||
1051 | while (ad->next_rq[BLK_RW_ASYNC]) { | ||
1052 | as_move_to_dispatch(ad, ad->next_rq[BLK_RW_ASYNC]); | ||
1053 | dispatched++; | ||
1054 | } | ||
1055 | ad->last_check_fifo[BLK_RW_ASYNC] = jiffies; | ||
1056 | |||
1057 | return dispatched; | ||
1058 | } | ||
1059 | |||
1060 | /* Signal that the write batch was uncontended, so we can't time it */ | ||
1061 | if (ad->batch_data_dir == BLK_RW_ASYNC && !reads) { | ||
1062 | if (ad->current_write_count == 0 || !writes) | ||
1063 | ad->write_batch_idled = 1; | ||
1064 | } | ||
1065 | |||
1066 | if (!(reads || writes) | ||
1067 | || ad->antic_status == ANTIC_WAIT_REQ | ||
1068 | || ad->antic_status == ANTIC_WAIT_NEXT | ||
1069 | || ad->changed_batch) | ||
1070 | return 0; | ||
1071 | |||
1072 | if (!(reads && writes && as_batch_expired(ad))) { | ||
1073 | /* | ||
1074 | * batch is still running or no reads or no writes | ||
1075 | */ | ||
1076 | rq = ad->next_rq[ad->batch_data_dir]; | ||
1077 | |||
1078 | if (ad->batch_data_dir == BLK_RW_SYNC && ad->antic_expire) { | ||
1079 | if (as_fifo_expired(ad, BLK_RW_SYNC)) | ||
1080 | goto fifo_expired; | ||
1081 | |||
1082 | if (as_can_anticipate(ad, rq)) { | ||
1083 | as_antic_waitreq(ad); | ||
1084 | return 0; | ||
1085 | } | ||
1086 | } | ||
1087 | |||
1088 | if (rq) { | ||
1089 | /* we have a "next request" */ | ||
1090 | if (reads && !writes) | ||
1091 | ad->current_batch_expires = | ||
1092 | jiffies + ad->batch_expire[BLK_RW_SYNC]; | ||
1093 | goto dispatch_request; | ||
1094 | } | ||
1095 | } | ||
1096 | |||
1097 | /* | ||
1098 | * at this point we are not running a batch. select the appropriate | ||
1099 | * data direction (read / write) | ||
1100 | */ | ||
1101 | |||
1102 | if (reads) { | ||
1103 | BUG_ON(RB_EMPTY_ROOT(&ad->sort_list[BLK_RW_SYNC])); | ||
1104 | |||
1105 | if (writes && ad->batch_data_dir == BLK_RW_SYNC) | ||
1106 | /* | ||
1107 | * Last batch was a read, switch to writes | ||
1108 | */ | ||
1109 | goto dispatch_writes; | ||
1110 | |||
1111 | if (ad->batch_data_dir == BLK_RW_ASYNC) { | ||
1112 | WARN_ON(ad->new_batch); | ||
1113 | ad->changed_batch = 1; | ||
1114 | } | ||
1115 | ad->batch_data_dir = BLK_RW_SYNC; | ||
1116 | rq = rq_entry_fifo(ad->fifo_list[BLK_RW_SYNC].next); | ||
1117 | ad->last_check_fifo[ad->batch_data_dir] = jiffies; | ||
1118 | goto dispatch_request; | ||
1119 | } | ||
1120 | |||
1121 | /* | ||
1122 | * the last batch was a read | ||
1123 | */ | ||
1124 | |||
1125 | if (writes) { | ||
1126 | dispatch_writes: | ||
1127 | BUG_ON(RB_EMPTY_ROOT(&ad->sort_list[BLK_RW_ASYNC])); | ||
1128 | |||
1129 | if (ad->batch_data_dir == BLK_RW_SYNC) { | ||
1130 | ad->changed_batch = 1; | ||
1131 | |||
1132 | /* | ||
1133 | * new_batch might be 1 when the queue runs out of | ||
1134 | * reads. A subsequent submission of a write might | ||
1135 | * cause a change of batch before the read is finished. | ||
1136 | */ | ||
1137 | ad->new_batch = 0; | ||
1138 | } | ||
1139 | ad->batch_data_dir = BLK_RW_ASYNC; | ||
1140 | ad->current_write_count = ad->write_batch_count; | ||
1141 | ad->write_batch_idled = 0; | ||
1142 | rq = rq_entry_fifo(ad->fifo_list[BLK_RW_ASYNC].next); | ||
1143 | ad->last_check_fifo[BLK_RW_ASYNC] = jiffies; | ||
1144 | goto dispatch_request; | ||
1145 | } | ||
1146 | |||
1147 | BUG(); | ||
1148 | return 0; | ||
1149 | |||
1150 | dispatch_request: | ||
1151 | /* | ||
1152 | * If a request has expired, service it. | ||
1153 | */ | ||
1154 | |||
1155 | if (as_fifo_expired(ad, ad->batch_data_dir)) { | ||
1156 | fifo_expired: | ||
1157 | rq = rq_entry_fifo(ad->fifo_list[ad->batch_data_dir].next); | ||
1158 | } | ||
1159 | |||
1160 | if (ad->changed_batch) { | ||
1161 | WARN_ON(ad->new_batch); | ||
1162 | |||
1163 | if (ad->nr_dispatched) | ||
1164 | return 0; | ||
1165 | |||
1166 | if (ad->batch_data_dir == BLK_RW_ASYNC) | ||
1167 | ad->current_batch_expires = jiffies + | ||
1168 | ad->batch_expire[BLK_RW_ASYNC]; | ||
1169 | else | ||
1170 | ad->new_batch = 1; | ||
1171 | |||
1172 | ad->changed_batch = 0; | ||
1173 | } | ||
1174 | |||
1175 | /* | ||
1176 | * rq is the selected appropriate request. | ||
1177 | */ | ||
1178 | as_move_to_dispatch(ad, rq); | ||
1179 | |||
1180 | return 1; | ||
1181 | } | ||
1182 | |||
1183 | /* | ||
1184 | * add rq to rbtree and fifo | ||
1185 | */ | ||
1186 | static void as_add_request(struct request_queue *q, struct request *rq) | ||
1187 | { | ||
1188 | struct as_data *ad = q->elevator->elevator_data; | ||
1189 | int data_dir; | ||
1190 | |||
1191 | RQ_SET_STATE(rq, AS_RQ_NEW); | ||
1192 | |||
1193 | data_dir = rq_is_sync(rq); | ||
1194 | |||
1195 | rq->elevator_private = as_get_io_context(q->node); | ||
1196 | |||
1197 | if (RQ_IOC(rq)) { | ||
1198 | as_update_iohist(ad, RQ_IOC(rq)->aic, rq); | ||
1199 | atomic_inc(&RQ_IOC(rq)->aic->nr_queued); | ||
1200 | } | ||
1201 | |||
1202 | as_add_rq_rb(ad, rq); | ||
1203 | |||
1204 | /* | ||
1205 | * set expire time and add to fifo list | ||
1206 | */ | ||
1207 | rq_set_fifo_time(rq, jiffies + ad->fifo_expire[data_dir]); | ||
1208 | list_add_tail(&rq->queuelist, &ad->fifo_list[data_dir]); | ||
1209 | |||
1210 | as_update_rq(ad, rq); /* keep state machine up to date */ | ||
1211 | RQ_SET_STATE(rq, AS_RQ_QUEUED); | ||
1212 | } | ||
1213 | |||
1214 | static void as_activate_request(struct request_queue *q, struct request *rq) | ||
1215 | { | ||
1216 | WARN_ON(RQ_STATE(rq) != AS_RQ_DISPATCHED); | ||
1217 | RQ_SET_STATE(rq, AS_RQ_REMOVED); | ||
1218 | if (RQ_IOC(rq) && RQ_IOC(rq)->aic) | ||
1219 | atomic_dec(&RQ_IOC(rq)->aic->nr_dispatched); | ||
1220 | } | ||
1221 | |||
1222 | static void as_deactivate_request(struct request_queue *q, struct request *rq) | ||
1223 | { | ||
1224 | WARN_ON(RQ_STATE(rq) != AS_RQ_REMOVED); | ||
1225 | RQ_SET_STATE(rq, AS_RQ_DISPATCHED); | ||
1226 | if (RQ_IOC(rq) && RQ_IOC(rq)->aic) | ||
1227 | atomic_inc(&RQ_IOC(rq)->aic->nr_dispatched); | ||
1228 | } | ||
1229 | |||
1230 | /* | ||
1231 | * as_queue_empty tells us if there are requests left in the device. It may | ||
1232 | * not be the case that a driver can get the next request even if the queue | ||
1233 | * is not empty - it is used in the block layer to check for plugging and | ||
1234 | * merging opportunities | ||
1235 | */ | ||
1236 | static int as_queue_empty(struct request_queue *q) | ||
1237 | { | ||
1238 | struct as_data *ad = q->elevator->elevator_data; | ||
1239 | |||
1240 | return list_empty(&ad->fifo_list[BLK_RW_ASYNC]) | ||
1241 | && list_empty(&ad->fifo_list[BLK_RW_SYNC]); | ||
1242 | } | ||
1243 | |||
1244 | static int | ||
1245 | as_merge(struct request_queue *q, struct request **req, struct bio *bio) | ||
1246 | { | ||
1247 | struct as_data *ad = q->elevator->elevator_data; | ||
1248 | sector_t rb_key = bio->bi_sector + bio_sectors(bio); | ||
1249 | struct request *__rq; | ||
1250 | |||
1251 | /* | ||
1252 | * check for front merge | ||
1253 | */ | ||
1254 | __rq = elv_rb_find(&ad->sort_list[bio_data_dir(bio)], rb_key); | ||
1255 | if (__rq && elv_rq_merge_ok(__rq, bio)) { | ||
1256 | *req = __rq; | ||
1257 | return ELEVATOR_FRONT_MERGE; | ||
1258 | } | ||
1259 | |||
1260 | return ELEVATOR_NO_MERGE; | ||
1261 | } | ||
1262 | |||
1263 | static void as_merged_request(struct request_queue *q, struct request *req, | ||
1264 | int type) | ||
1265 | { | ||
1266 | struct as_data *ad = q->elevator->elevator_data; | ||
1267 | |||
1268 | /* | ||
1269 | * if the merge was a front merge, we need to reposition request | ||
1270 | */ | ||
1271 | if (type == ELEVATOR_FRONT_MERGE) { | ||
1272 | as_del_rq_rb(ad, req); | ||
1273 | as_add_rq_rb(ad, req); | ||
1274 | /* | ||
1275 | * Note! At this stage of this and the next function, our next | ||
1276 | * request may not be optimal - eg the request may have "grown" | ||
1277 | * behind the disk head. We currently don't bother adjusting. | ||
1278 | */ | ||
1279 | } | ||
1280 | } | ||
1281 | |||
1282 | static void as_merged_requests(struct request_queue *q, struct request *req, | ||
1283 | struct request *next) | ||
1284 | { | ||
1285 | /* | ||
1286 | * if next expires before rq, assign its expire time to arq | ||
1287 | * and move into next position (next will be deleted) in fifo | ||
1288 | */ | ||
1289 | if (!list_empty(&req->queuelist) && !list_empty(&next->queuelist)) { | ||
1290 | if (time_before(rq_fifo_time(next), rq_fifo_time(req))) { | ||
1291 | list_move(&req->queuelist, &next->queuelist); | ||
1292 | rq_set_fifo_time(req, rq_fifo_time(next)); | ||
1293 | } | ||
1294 | } | ||
1295 | |||
1296 | /* | ||
1297 | * kill knowledge of next, this one is a goner | ||
1298 | */ | ||
1299 | as_remove_queued_request(q, next); | ||
1300 | as_put_io_context(next); | ||
1301 | |||
1302 | RQ_SET_STATE(next, AS_RQ_MERGED); | ||
1303 | } | ||
1304 | |||
1305 | /* | ||
1306 | * This is executed in a "deferred" process context, by kblockd. It calls the | ||
1307 | * driver's request_fn so the driver can submit that request. | ||
1308 | * | ||
1309 | * IMPORTANT! This guy will reenter the elevator, so set up all queue global | ||
1310 | * state before calling, and don't rely on any state over calls. | ||
1311 | * | ||
1312 | * FIXME! dispatch queue is not a queue at all! | ||
1313 | */ | ||
1314 | static void as_work_handler(struct work_struct *work) | ||
1315 | { | ||
1316 | struct as_data *ad = container_of(work, struct as_data, antic_work); | ||
1317 | |||
1318 | blk_run_queue(ad->q); | ||
1319 | } | ||
1320 | |||
1321 | static int as_may_queue(struct request_queue *q, int rw) | ||
1322 | { | ||
1323 | int ret = ELV_MQUEUE_MAY; | ||
1324 | struct as_data *ad = q->elevator->elevator_data; | ||
1325 | struct io_context *ioc; | ||
1326 | if (ad->antic_status == ANTIC_WAIT_REQ || | ||
1327 | ad->antic_status == ANTIC_WAIT_NEXT) { | ||
1328 | ioc = as_get_io_context(q->node); | ||
1329 | if (ad->io_context == ioc) | ||
1330 | ret = ELV_MQUEUE_MUST; | ||
1331 | put_io_context(ioc); | ||
1332 | } | ||
1333 | |||
1334 | return ret; | ||
1335 | } | ||
1336 | |||
1337 | static void as_exit_queue(struct elevator_queue *e) | ||
1338 | { | ||
1339 | struct as_data *ad = e->elevator_data; | ||
1340 | |||
1341 | del_timer_sync(&ad->antic_timer); | ||
1342 | cancel_work_sync(&ad->antic_work); | ||
1343 | |||
1344 | BUG_ON(!list_empty(&ad->fifo_list[BLK_RW_SYNC])); | ||
1345 | BUG_ON(!list_empty(&ad->fifo_list[BLK_RW_ASYNC])); | ||
1346 | |||
1347 | put_io_context(ad->io_context); | ||
1348 | kfree(ad); | ||
1349 | } | ||
1350 | |||
1351 | /* | ||
1352 | * initialize elevator private data (as_data). | ||
1353 | */ | ||
1354 | static void *as_init_queue(struct request_queue *q) | ||
1355 | { | ||
1356 | struct as_data *ad; | ||
1357 | |||
1358 | ad = kmalloc_node(sizeof(*ad), GFP_KERNEL | __GFP_ZERO, q->node); | ||
1359 | if (!ad) | ||
1360 | return NULL; | ||
1361 | |||
1362 | ad->q = q; /* Identify what queue the data belongs to */ | ||
1363 | |||
1364 | /* anticipatory scheduling helpers */ | ||
1365 | ad->antic_timer.function = as_antic_timeout; | ||
1366 | ad->antic_timer.data = (unsigned long)q; | ||
1367 | init_timer(&ad->antic_timer); | ||
1368 | INIT_WORK(&ad->antic_work, as_work_handler); | ||
1369 | |||
1370 | INIT_LIST_HEAD(&ad->fifo_list[BLK_RW_SYNC]); | ||
1371 | INIT_LIST_HEAD(&ad->fifo_list[BLK_RW_ASYNC]); | ||
1372 | ad->sort_list[BLK_RW_SYNC] = RB_ROOT; | ||
1373 | ad->sort_list[BLK_RW_ASYNC] = RB_ROOT; | ||
1374 | ad->fifo_expire[BLK_RW_SYNC] = default_read_expire; | ||
1375 | ad->fifo_expire[BLK_RW_ASYNC] = default_write_expire; | ||
1376 | ad->antic_expire = default_antic_expire; | ||
1377 | ad->batch_expire[BLK_RW_SYNC] = default_read_batch_expire; | ||
1378 | ad->batch_expire[BLK_RW_ASYNC] = default_write_batch_expire; | ||
1379 | |||
1380 | ad->current_batch_expires = jiffies + ad->batch_expire[BLK_RW_SYNC]; | ||
1381 | ad->write_batch_count = ad->batch_expire[BLK_RW_ASYNC] / 10; | ||
1382 | if (ad->write_batch_count < 2) | ||
1383 | ad->write_batch_count = 2; | ||
1384 | |||
1385 | return ad; | ||
1386 | } | ||
1387 | |||
1388 | /* | ||
1389 | * sysfs parts below | ||
1390 | */ | ||
1391 | |||
1392 | static ssize_t | ||
1393 | as_var_show(unsigned int var, char *page) | ||
1394 | { | ||
1395 | return sprintf(page, "%d\n", var); | ||
1396 | } | ||
1397 | |||
1398 | static ssize_t | ||
1399 | as_var_store(unsigned long *var, const char *page, size_t count) | ||
1400 | { | ||
1401 | char *p = (char *) page; | ||
1402 | |||
1403 | *var = simple_strtoul(p, &p, 10); | ||
1404 | return count; | ||
1405 | } | ||
1406 | |||
1407 | static ssize_t est_time_show(struct elevator_queue *e, char *page) | ||
1408 | { | ||
1409 | struct as_data *ad = e->elevator_data; | ||
1410 | int pos = 0; | ||
1411 | |||
1412 | pos += sprintf(page+pos, "%lu %% exit probability\n", | ||
1413 | 100*ad->exit_prob/256); | ||
1414 | pos += sprintf(page+pos, "%lu %% probability of exiting without a " | ||
1415 | "cooperating process submitting IO\n", | ||
1416 | 100*ad->exit_no_coop/256); | ||
1417 | pos += sprintf(page+pos, "%lu ms new thinktime\n", ad->new_ttime_mean); | ||
1418 | pos += sprintf(page+pos, "%llu sectors new seek distance\n", | ||
1419 | (unsigned long long)ad->new_seek_mean); | ||
1420 | |||
1421 | return pos; | ||
1422 | } | ||
1423 | |||
1424 | #define SHOW_FUNCTION(__FUNC, __VAR) \ | ||
1425 | static ssize_t __FUNC(struct elevator_queue *e, char *page) \ | ||
1426 | { \ | ||
1427 | struct as_data *ad = e->elevator_data; \ | ||
1428 | return as_var_show(jiffies_to_msecs((__VAR)), (page)); \ | ||
1429 | } | ||
1430 | SHOW_FUNCTION(as_read_expire_show, ad->fifo_expire[BLK_RW_SYNC]); | ||
1431 | SHOW_FUNCTION(as_write_expire_show, ad->fifo_expire[BLK_RW_ASYNC]); | ||
1432 | SHOW_FUNCTION(as_antic_expire_show, ad->antic_expire); | ||
1433 | SHOW_FUNCTION(as_read_batch_expire_show, ad->batch_expire[BLK_RW_SYNC]); | ||
1434 | SHOW_FUNCTION(as_write_batch_expire_show, ad->batch_expire[BLK_RW_ASYNC]); | ||
1435 | #undef SHOW_FUNCTION | ||
1436 | |||
1437 | #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \ | ||
1438 | static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \ | ||
1439 | { \ | ||
1440 | struct as_data *ad = e->elevator_data; \ | ||
1441 | int ret = as_var_store(__PTR, (page), count); \ | ||
1442 | if (*(__PTR) < (MIN)) \ | ||
1443 | *(__PTR) = (MIN); \ | ||
1444 | else if (*(__PTR) > (MAX)) \ | ||
1445 | *(__PTR) = (MAX); \ | ||
1446 | *(__PTR) = msecs_to_jiffies(*(__PTR)); \ | ||
1447 | return ret; \ | ||
1448 | } | ||
1449 | STORE_FUNCTION(as_read_expire_store, &ad->fifo_expire[BLK_RW_SYNC], 0, INT_MAX); | ||
1450 | STORE_FUNCTION(as_write_expire_store, | ||
1451 | &ad->fifo_expire[BLK_RW_ASYNC], 0, INT_MAX); | ||
1452 | STORE_FUNCTION(as_antic_expire_store, &ad->antic_expire, 0, INT_MAX); | ||
1453 | STORE_FUNCTION(as_read_batch_expire_store, | ||
1454 | &ad->batch_expire[BLK_RW_SYNC], 0, INT_MAX); | ||
1455 | STORE_FUNCTION(as_write_batch_expire_store, | ||
1456 | &ad->batch_expire[BLK_RW_ASYNC], 0, INT_MAX); | ||
1457 | #undef STORE_FUNCTION | ||
1458 | |||
1459 | #define AS_ATTR(name) \ | ||
1460 | __ATTR(name, S_IRUGO|S_IWUSR, as_##name##_show, as_##name##_store) | ||
1461 | |||
1462 | static struct elv_fs_entry as_attrs[] = { | ||
1463 | __ATTR_RO(est_time), | ||
1464 | AS_ATTR(read_expire), | ||
1465 | AS_ATTR(write_expire), | ||
1466 | AS_ATTR(antic_expire), | ||
1467 | AS_ATTR(read_batch_expire), | ||
1468 | AS_ATTR(write_batch_expire), | ||
1469 | __ATTR_NULL | ||
1470 | }; | ||
1471 | |||
1472 | static struct elevator_type iosched_as = { | ||
1473 | .ops = { | ||
1474 | .elevator_merge_fn = as_merge, | ||
1475 | .elevator_merged_fn = as_merged_request, | ||
1476 | .elevator_merge_req_fn = as_merged_requests, | ||
1477 | .elevator_dispatch_fn = as_dispatch_request, | ||
1478 | .elevator_add_req_fn = as_add_request, | ||
1479 | .elevator_activate_req_fn = as_activate_request, | ||
1480 | .elevator_deactivate_req_fn = as_deactivate_request, | ||
1481 | .elevator_queue_empty_fn = as_queue_empty, | ||
1482 | .elevator_completed_req_fn = as_completed_request, | ||
1483 | .elevator_former_req_fn = elv_rb_former_request, | ||
1484 | .elevator_latter_req_fn = elv_rb_latter_request, | ||
1485 | .elevator_may_queue_fn = as_may_queue, | ||
1486 | .elevator_init_fn = as_init_queue, | ||
1487 | .elevator_exit_fn = as_exit_queue, | ||
1488 | .trim = as_trim, | ||
1489 | }, | ||
1490 | |||
1491 | .elevator_attrs = as_attrs, | ||
1492 | .elevator_name = "anticipatory", | ||
1493 | .elevator_owner = THIS_MODULE, | ||
1494 | }; | ||
1495 | |||
1496 | static int __init as_init(void) | ||
1497 | { | ||
1498 | elv_register(&iosched_as); | ||
1499 | |||
1500 | return 0; | ||
1501 | } | ||
1502 | |||
1503 | static void __exit as_exit(void) | ||
1504 | { | ||
1505 | DECLARE_COMPLETION_ONSTACK(all_gone); | ||
1506 | elv_unregister(&iosched_as); | ||
1507 | ioc_gone = &all_gone; | ||
1508 | /* ioc_gone's update must be visible before reading ioc_count */ | ||
1509 | smp_wmb(); | ||
1510 | if (elv_ioc_count_read(as_ioc_count)) | ||
1511 | wait_for_completion(&all_gone); | ||
1512 | synchronize_rcu(); | ||
1513 | } | ||
1514 | |||
1515 | module_init(as_init); | ||
1516 | module_exit(as_exit); | ||
1517 | |||
1518 | MODULE_AUTHOR("Nick Piggin"); | ||
1519 | MODULE_LICENSE("GPL"); | ||
1520 | MODULE_DESCRIPTION("anticipatory IO scheduler"); | ||
diff --git a/block/elevator.c b/block/elevator.c index 1975b619c86d..bb30f0e92d4d 100644 --- a/block/elevator.c +++ b/block/elevator.c | |||
@@ -154,10 +154,7 @@ static struct elevator_type *elevator_get(const char *name) | |||
154 | 154 | ||
155 | spin_unlock(&elv_list_lock); | 155 | spin_unlock(&elv_list_lock); |
156 | 156 | ||
157 | if (!strcmp(name, "anticipatory")) | 157 | sprintf(elv, "%s-iosched", name); |
158 | sprintf(elv, "as-iosched"); | ||
159 | else | ||
160 | sprintf(elv, "%s-iosched", name); | ||
161 | 158 | ||
162 | request_module("%s", elv); | 159 | request_module("%s", elv); |
163 | spin_lock(&elv_list_lock); | 160 | spin_lock(&elv_list_lock); |
@@ -193,10 +190,7 @@ static int __init elevator_setup(char *str) | |||
193 | * Be backwards-compatible with previous kernels, so users | 190 | * Be backwards-compatible with previous kernels, so users |
194 | * won't get the wrong elevator. | 191 | * won't get the wrong elevator. |
195 | */ | 192 | */ |
196 | if (!strcmp(str, "as")) | 193 | strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1); |
197 | strcpy(chosen_elevator, "anticipatory"); | ||
198 | else | ||
199 | strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1); | ||
200 | return 1; | 194 | return 1; |
201 | } | 195 | } |
202 | 196 | ||