aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--crypto/api.c60
-rw-r--r--include/linux/crypto.h14
2 files changed, 63 insertions, 11 deletions
diff --git a/crypto/api.c b/crypto/api.c
index 1e4692a13474..bc4b7901acdf 100644
--- a/crypto/api.c
+++ b/crypto/api.c
@@ -372,6 +372,66 @@ struct crypto_tfm *crypto_alloc_tfm(const char *name, u32 flags)
372 return tfm; 372 return tfm;
373} 373}
374 374
375/*
376 * crypto_alloc_base - Locate algorithm and allocate transform
377 * @alg_name: Name of algorithm
378 * @type: Type of algorithm
379 * @mask: Mask for type comparison
380 *
381 * crypto_alloc_base() will first attempt to locate an already loaded
382 * algorithm. If that fails and the kernel supports dynamically loadable
383 * modules, it will then attempt to load a module of the same name or
384 * alias. If that fails it will send a query to any loaded crypto manager
385 * to construct an algorithm on the fly. A refcount is grabbed on the
386 * algorithm which is then associated with the new transform.
387 *
388 * The returned transform is of a non-determinate type. Most people
389 * should use one of the more specific allocation functions such as
390 * crypto_alloc_blkcipher.
391 *
392 * In case of error the return value is an error pointer.
393 */
394struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask)
395{
396 struct crypto_tfm *tfm;
397 int err;
398
399 for (;;) {
400 struct crypto_alg *alg;
401
402 alg = crypto_alg_mod_lookup(alg_name, type, mask);
403 err = PTR_ERR(alg);
404 tfm = ERR_PTR(err);
405 if (IS_ERR(alg))
406 goto err;
407
408 tfm = __crypto_alloc_tfm(alg, 0);
409 if (!IS_ERR(tfm))
410 break;
411
412 crypto_mod_put(alg);
413 err = PTR_ERR(tfm);
414
415err:
416 if (err != -EAGAIN)
417 break;
418 if (signal_pending(current)) {
419 err = -EINTR;
420 break;
421 }
422 };
423
424 return tfm;
425}
426EXPORT_SYMBOL_GPL(crypto_alloc_base);
427
428/*
429 * crypto_free_tfm - Free crypto transform
430 * @tfm: Transform to free
431 *
432 * crypto_free_tfm() frees up the transform and any associated resources,
433 * then drops the refcount on the associated algorithm.
434 */
375void crypto_free_tfm(struct crypto_tfm *tfm) 435void crypto_free_tfm(struct crypto_tfm *tfm)
376{ 436{
377 struct crypto_alg *alg; 437 struct crypto_alg *alg;
diff --git a/include/linux/crypto.h b/include/linux/crypto.h
index 530dc4bf363c..6847ab0ea30e 100644
--- a/include/linux/crypto.h
+++ b/include/linux/crypto.h
@@ -194,8 +194,8 @@ static inline int crypto_alg_available(const char *name, u32 flags)
194 194
195/* 195/*
196 * Transforms: user-instantiated objects which encapsulate algorithms 196 * Transforms: user-instantiated objects which encapsulate algorithms
197 * and core processing logic. Managed via crypto_alloc_tfm() and 197 * and core processing logic. Managed via crypto_alloc_*() and
198 * crypto_free_tfm(), as well as the various helpers below. 198 * crypto_free_*(), as well as the various helpers below.
199 */ 199 */
200 200
201struct cipher_tfm { 201struct cipher_tfm {
@@ -278,16 +278,8 @@ struct crypto_attr_alg {
278 * Transform user interface. 278 * Transform user interface.
279 */ 279 */
280 280
281/*
282 * crypto_alloc_tfm() will first attempt to locate an already loaded algorithm.
283 * If that fails and the kernel supports dynamically loadable modules, it
284 * will then attempt to load a module of the same name or alias. A refcount
285 * is grabbed on the algorithm which is then associated with the new transform.
286 *
287 * crypto_free_tfm() frees up the transform and any associated resources,
288 * then drops the refcount on the associated algorithm.
289 */
290struct crypto_tfm *crypto_alloc_tfm(const char *alg_name, u32 tfm_flags); 281struct crypto_tfm *crypto_alloc_tfm(const char *alg_name, u32 tfm_flags);
282struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
291void crypto_free_tfm(struct crypto_tfm *tfm); 283void crypto_free_tfm(struct crypto_tfm *tfm);
292 284
293/* 285/*