diff options
-rw-r--r-- | drivers/edac/sb_edac.c | 1894 |
1 files changed, 1894 insertions, 0 deletions
diff --git a/drivers/edac/sb_edac.c b/drivers/edac/sb_edac.c new file mode 100644 index 000000000000..785c2769f05b --- /dev/null +++ b/drivers/edac/sb_edac.c | |||
@@ -0,0 +1,1894 @@ | |||
1 | /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module | ||
2 | * | ||
3 | * This driver supports the memory controllers found on the Intel | ||
4 | * processor family Sandy Bridge. | ||
5 | * | ||
6 | * This file may be distributed under the terms of the | ||
7 | * GNU General Public License version 2 only. | ||
8 | * | ||
9 | * Copyright (c) 2011 by: | ||
10 | * Mauro Carvalho Chehab <mchehab@redhat.com> | ||
11 | */ | ||
12 | |||
13 | #include <linux/module.h> | ||
14 | #include <linux/init.h> | ||
15 | #include <linux/pci.h> | ||
16 | #include <linux/pci_ids.h> | ||
17 | #include <linux/slab.h> | ||
18 | #include <linux/delay.h> | ||
19 | #include <linux/edac.h> | ||
20 | #include <linux/mmzone.h> | ||
21 | #include <linux/edac_mce.h> | ||
22 | #include <linux/smp.h> | ||
23 | #include <linux/bitmap.h> | ||
24 | #include <asm/processor.h> | ||
25 | |||
26 | #include "edac_core.h" | ||
27 | |||
28 | /* Static vars */ | ||
29 | static LIST_HEAD(sbridge_edac_list); | ||
30 | static DEFINE_MUTEX(sbridge_edac_lock); | ||
31 | static int probed; | ||
32 | |||
33 | /* | ||
34 | * Alter this version for the module when modifications are made | ||
35 | */ | ||
36 | #define SBRIDGE_REVISION " Ver: 1.0.0 " | ||
37 | #define EDAC_MOD_STR "sbridge_edac" | ||
38 | |||
39 | /* | ||
40 | * Debug macros | ||
41 | */ | ||
42 | #define sbridge_printk(level, fmt, arg...) \ | ||
43 | edac_printk(level, "sbridge", fmt, ##arg) | ||
44 | |||
45 | #define sbridge_mc_printk(mci, level, fmt, arg...) \ | ||
46 | edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg) | ||
47 | |||
48 | /* | ||
49 | * Get a bit field at register value <v>, from bit <lo> to bit <hi> | ||
50 | */ | ||
51 | #define GET_BITFIELD(v, lo, hi) \ | ||
52 | (((v) & ((1ULL << ((hi) - (lo) + 1)) - 1) << (lo)) >> (lo)) | ||
53 | |||
54 | /* | ||
55 | * sbridge Memory Controller Registers | ||
56 | */ | ||
57 | |||
58 | /* | ||
59 | * FIXME: For now, let's order by device function, as it makes | ||
60 | * easier for driver's development proccess. This table should be | ||
61 | * moved to pci_id.h when submitted upstream | ||
62 | */ | ||
63 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0 0x3cf4 /* 12.6 */ | ||
64 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1 0x3cf6 /* 12.7 */ | ||
65 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_BR 0x3cf5 /* 13.6 */ | ||
66 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0 0x3ca0 /* 14.0 */ | ||
67 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA 0x3ca8 /* 15.0 */ | ||
68 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS 0x3c71 /* 15.1 */ | ||
69 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0 0x3caa /* 15.2 */ | ||
70 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1 0x3cab /* 15.3 */ | ||
71 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2 0x3cac /* 15.4 */ | ||
72 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3 0x3cad /* 15.5 */ | ||
73 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO 0x3cb8 /* 17.0 */ | ||
74 | |||
75 | /* | ||
76 | * Currently, unused, but will be needed in the future | ||
77 | * implementations, as they hold the error counters | ||
78 | */ | ||
79 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR0 0x3c72 /* 16.2 */ | ||
80 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR1 0x3c73 /* 16.3 */ | ||
81 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR2 0x3c76 /* 16.6 */ | ||
82 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR3 0x3c77 /* 16.7 */ | ||
83 | |||
84 | /* Devices 12 Function 6, Offsets 0x80 to 0xcc */ | ||
85 | static const u32 dram_rule[] = { | ||
86 | 0x80, 0x88, 0x90, 0x98, 0xa0, | ||
87 | 0xa8, 0xb0, 0xb8, 0xc0, 0xc8, | ||
88 | }; | ||
89 | #define MAX_SAD ARRAY_SIZE(dram_rule) | ||
90 | |||
91 | #define SAD_LIMIT(reg) ((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff) | ||
92 | #define DRAM_ATTR(reg) GET_BITFIELD(reg, 2, 3) | ||
93 | #define INTERLEAVE_MODE(reg) GET_BITFIELD(reg, 1, 1) | ||
94 | #define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0) | ||
95 | |||
96 | static char *get_dram_attr(u32 reg) | ||
97 | { | ||
98 | switch(DRAM_ATTR(reg)) { | ||
99 | case 0: | ||
100 | return "DRAM"; | ||
101 | case 1: | ||
102 | return "MMCFG"; | ||
103 | case 2: | ||
104 | return "NXM"; | ||
105 | default: | ||
106 | return "unknown"; | ||
107 | } | ||
108 | } | ||
109 | |||
110 | static const u32 interleave_list[] = { | ||
111 | 0x84, 0x8c, 0x94, 0x9c, 0xa4, | ||
112 | 0xac, 0xb4, 0xbc, 0xc4, 0xcc, | ||
113 | }; | ||
114 | #define MAX_INTERLEAVE ARRAY_SIZE(interleave_list) | ||
115 | |||
116 | #define SAD_PKG0(reg) GET_BITFIELD(reg, 0, 2) | ||
117 | #define SAD_PKG1(reg) GET_BITFIELD(reg, 3, 5) | ||
118 | #define SAD_PKG2(reg) GET_BITFIELD(reg, 8, 10) | ||
119 | #define SAD_PKG3(reg) GET_BITFIELD(reg, 11, 13) | ||
120 | #define SAD_PKG4(reg) GET_BITFIELD(reg, 16, 18) | ||
121 | #define SAD_PKG5(reg) GET_BITFIELD(reg, 19, 21) | ||
122 | #define SAD_PKG6(reg) GET_BITFIELD(reg, 24, 26) | ||
123 | #define SAD_PKG7(reg) GET_BITFIELD(reg, 27, 29) | ||
124 | |||
125 | static inline int sad_pkg(u32 reg, int interleave) | ||
126 | { | ||
127 | switch (interleave) { | ||
128 | case 0: | ||
129 | return SAD_PKG0(reg); | ||
130 | case 1: | ||
131 | return SAD_PKG1(reg); | ||
132 | case 2: | ||
133 | return SAD_PKG2(reg); | ||
134 | case 3: | ||
135 | return SAD_PKG3(reg); | ||
136 | case 4: | ||
137 | return SAD_PKG4(reg); | ||
138 | case 5: | ||
139 | return SAD_PKG5(reg); | ||
140 | case 6: | ||
141 | return SAD_PKG6(reg); | ||
142 | case 7: | ||
143 | return SAD_PKG7(reg); | ||
144 | default: | ||
145 | return -EINVAL; | ||
146 | } | ||
147 | } | ||
148 | |||
149 | /* Devices 12 Function 7 */ | ||
150 | |||
151 | #define TOLM 0x80 | ||
152 | #define TOHM 0x84 | ||
153 | |||
154 | #define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff) | ||
155 | #define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff) | ||
156 | |||
157 | /* Device 13 Function 6 */ | ||
158 | |||
159 | #define SAD_TARGET 0xf0 | ||
160 | |||
161 | #define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11) | ||
162 | |||
163 | #define SAD_CONTROL 0xf4 | ||
164 | |||
165 | #define NODE_ID(reg) GET_BITFIELD(reg, 0, 2) | ||
166 | |||
167 | /* Device 14 function 0 */ | ||
168 | |||
169 | static const u32 tad_dram_rule[] = { | ||
170 | 0x40, 0x44, 0x48, 0x4c, | ||
171 | 0x50, 0x54, 0x58, 0x5c, | ||
172 | 0x60, 0x64, 0x68, 0x6c, | ||
173 | }; | ||
174 | #define MAX_TAD ARRAY_SIZE(tad_dram_rule) | ||
175 | |||
176 | #define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff) | ||
177 | #define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11) | ||
178 | #define TAD_CH(reg) GET_BITFIELD(reg, 8, 9) | ||
179 | #define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7) | ||
180 | #define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5) | ||
181 | #define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3) | ||
182 | #define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1) | ||
183 | |||
184 | /* Device 15, function 0 */ | ||
185 | |||
186 | #define MCMTR 0x7c | ||
187 | |||
188 | #define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2) | ||
189 | #define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1) | ||
190 | #define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0) | ||
191 | |||
192 | /* Device 15, function 1 */ | ||
193 | |||
194 | #define RASENABLES 0xac | ||
195 | #define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0) | ||
196 | |||
197 | /* Device 15, functions 2-5 */ | ||
198 | |||
199 | static const int mtr_regs[] = { | ||
200 | 0x80, 0x84, 0x88, | ||
201 | }; | ||
202 | |||
203 | #define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19) | ||
204 | #define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14) | ||
205 | #define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13) | ||
206 | #define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4) | ||
207 | #define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1) | ||
208 | |||
209 | static const u32 tad_ch_nilv_offset[] = { | ||
210 | 0x90, 0x94, 0x98, 0x9c, | ||
211 | 0xa0, 0xa4, 0xa8, 0xac, | ||
212 | 0xb0, 0xb4, 0xb8, 0xbc, | ||
213 | }; | ||
214 | #define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29) | ||
215 | #define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26) | ||
216 | |||
217 | static const u32 rir_way_limit[] = { | ||
218 | 0x108, 0x10c, 0x110, 0x114, 0x118, | ||
219 | }; | ||
220 | #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit) | ||
221 | |||
222 | #define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31) | ||
223 | #define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29) | ||
224 | #define RIR_LIMIT(reg) ((GET_BITFIELD(reg, 1, 10) << 29)| 0x1fffffff) | ||
225 | |||
226 | #define MAX_RIR_WAY 8 | ||
227 | |||
228 | static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = { | ||
229 | { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c }, | ||
230 | { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c }, | ||
231 | { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c }, | ||
232 | { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c }, | ||
233 | { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc }, | ||
234 | }; | ||
235 | |||
236 | #define RIR_RNK_TGT(reg) GET_BITFIELD(reg, 16, 19) | ||
237 | #define RIR_OFFSET(reg) GET_BITFIELD(reg, 2, 14) | ||
238 | |||
239 | /* Device 16, functions 2-7 */ | ||
240 | |||
241 | /* | ||
242 | * FIXME: Implement the error count reads directly | ||
243 | */ | ||
244 | |||
245 | static const u32 correrrcnt[] = { | ||
246 | 0x104, 0x108, 0x10c, 0x110, | ||
247 | }; | ||
248 | |||
249 | #define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31) | ||
250 | #define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30) | ||
251 | #define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15) | ||
252 | #define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14) | ||
253 | |||
254 | static const u32 correrrthrsld[] = { | ||
255 | 0x11c, 0x120, 0x124, 0x128, | ||
256 | }; | ||
257 | |||
258 | #define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30) | ||
259 | #define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14) | ||
260 | |||
261 | |||
262 | /* Device 17, function 0 */ | ||
263 | |||
264 | #define RANK_CFG_A 0x0328 | ||
265 | |||
266 | #define IS_RDIMM_ENABLED(reg) GET_BITFIELD(reg, 11, 11) | ||
267 | |||
268 | /* | ||
269 | * sbridge structs | ||
270 | */ | ||
271 | |||
272 | #define NUM_CHANNELS 4 | ||
273 | #define MAX_DIMMS 3 /* Max DIMMS per channel */ | ||
274 | |||
275 | struct sbridge_info { | ||
276 | u32 mcmtr; | ||
277 | }; | ||
278 | |||
279 | struct sbridge_channel { | ||
280 | u32 ranks; | ||
281 | u32 dimms; | ||
282 | }; | ||
283 | |||
284 | struct pci_id_descr { | ||
285 | int dev; | ||
286 | int func; | ||
287 | int dev_id; | ||
288 | int optional; | ||
289 | }; | ||
290 | |||
291 | struct pci_id_table { | ||
292 | const struct pci_id_descr *descr; | ||
293 | int n_devs; | ||
294 | }; | ||
295 | |||
296 | struct sbridge_dev { | ||
297 | struct list_head list; | ||
298 | u8 bus, mc; | ||
299 | u8 node_id, source_id; | ||
300 | struct pci_dev **pdev; | ||
301 | int n_devs; | ||
302 | struct mem_ctl_info *mci; | ||
303 | }; | ||
304 | |||
305 | struct sbridge_pvt { | ||
306 | struct pci_dev *pci_ta, *pci_ddrio, *pci_ras; | ||
307 | struct pci_dev *pci_sad0, *pci_sad1, *pci_ha0; | ||
308 | struct pci_dev *pci_br; | ||
309 | struct pci_dev *pci_tad[NUM_CHANNELS]; | ||
310 | |||
311 | struct sbridge_dev *sbridge_dev; | ||
312 | |||
313 | struct sbridge_info info; | ||
314 | struct sbridge_channel channel[NUM_CHANNELS]; | ||
315 | |||
316 | int csrow_map[NUM_CHANNELS][MAX_DIMMS]; | ||
317 | |||
318 | /* Memory type detection */ | ||
319 | bool is_mirrored, is_lockstep, is_close_pg; | ||
320 | |||
321 | /* mcelog glue */ | ||
322 | struct edac_mce edac_mce; | ||
323 | |||
324 | /* Fifo double buffers */ | ||
325 | struct mce mce_entry[MCE_LOG_LEN]; | ||
326 | struct mce mce_outentry[MCE_LOG_LEN]; | ||
327 | |||
328 | /* Fifo in/out counters */ | ||
329 | unsigned mce_in, mce_out; | ||
330 | |||
331 | /* Count indicator to show errors not got */ | ||
332 | unsigned mce_overrun; | ||
333 | |||
334 | /* Memory description */ | ||
335 | u64 tolm, tohm; | ||
336 | }; | ||
337 | |||
338 | #define PCI_DESCR(device, function, device_id) \ | ||
339 | .dev = (device), \ | ||
340 | .func = (function), \ | ||
341 | .dev_id = (device_id) | ||
342 | |||
343 | static const struct pci_id_descr pci_dev_descr_sbridge[] = { | ||
344 | /* Processor Home Agent */ | ||
345 | { PCI_DESCR(14, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0) }, | ||
346 | |||
347 | /* Memory controller */ | ||
348 | { PCI_DESCR(15, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA) }, | ||
349 | { PCI_DESCR(15, 1, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS) }, | ||
350 | { PCI_DESCR(15, 2, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0) }, | ||
351 | { PCI_DESCR(15, 3, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1) }, | ||
352 | { PCI_DESCR(15, 4, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2) }, | ||
353 | { PCI_DESCR(15, 5, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3) }, | ||
354 | { PCI_DESCR(17, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO) }, | ||
355 | |||
356 | /* System Address Decoder */ | ||
357 | { PCI_DESCR(12, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0) }, | ||
358 | { PCI_DESCR(12, 7, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1) }, | ||
359 | |||
360 | /* Broadcast Registers */ | ||
361 | { PCI_DESCR(13, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_BR) }, | ||
362 | }; | ||
363 | |||
364 | #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) } | ||
365 | static const struct pci_id_table pci_dev_descr_sbridge_table[] = { | ||
366 | PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge), | ||
367 | {0,} /* 0 terminated list. */ | ||
368 | }; | ||
369 | |||
370 | /* | ||
371 | * pci_device_id table for which devices we are looking for | ||
372 | */ | ||
373 | static const struct pci_device_id sbridge_pci_tbl[] __devinitdata = { | ||
374 | {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)}, | ||
375 | {0,} /* 0 terminated list. */ | ||
376 | }; | ||
377 | |||
378 | |||
379 | /**************************************************************************** | ||
380 | Anciliary status routines | ||
381 | ****************************************************************************/ | ||
382 | |||
383 | static inline int numrank(u32 mtr) | ||
384 | { | ||
385 | int ranks = (1 << RANK_CNT_BITS(mtr)); | ||
386 | |||
387 | if (ranks > 4) { | ||
388 | debugf0("Invalid number of ranks: %d (max = 4) raw value = %x (%04x)", | ||
389 | ranks, (unsigned int)RANK_CNT_BITS(mtr), mtr); | ||
390 | return -EINVAL; | ||
391 | } | ||
392 | |||
393 | return ranks; | ||
394 | } | ||
395 | |||
396 | static inline int numrow(u32 mtr) | ||
397 | { | ||
398 | int rows = (RANK_WIDTH_BITS(mtr) + 12); | ||
399 | |||
400 | if (rows < 13 || rows > 18) { | ||
401 | debugf0("Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)", | ||
402 | rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr); | ||
403 | return -EINVAL; | ||
404 | } | ||
405 | |||
406 | return 1 << rows; | ||
407 | } | ||
408 | |||
409 | static inline int numcol(u32 mtr) | ||
410 | { | ||
411 | int cols = (COL_WIDTH_BITS(mtr) + 10); | ||
412 | |||
413 | if (cols > 12) { | ||
414 | debugf0("Invalid number of cols: %d (max = 4) raw value = %x (%04x)", | ||
415 | cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr); | ||
416 | return -EINVAL; | ||
417 | } | ||
418 | |||
419 | return 1 << cols; | ||
420 | } | ||
421 | |||
422 | static struct sbridge_dev *get_sbridge_dev(u8 bus) | ||
423 | { | ||
424 | struct sbridge_dev *sbridge_dev; | ||
425 | |||
426 | list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) { | ||
427 | if (sbridge_dev->bus == bus) | ||
428 | return sbridge_dev; | ||
429 | } | ||
430 | |||
431 | return NULL; | ||
432 | } | ||
433 | |||
434 | static struct sbridge_dev *alloc_sbridge_dev(u8 bus, | ||
435 | const struct pci_id_table *table) | ||
436 | { | ||
437 | struct sbridge_dev *sbridge_dev; | ||
438 | |||
439 | sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL); | ||
440 | if (!sbridge_dev) | ||
441 | return NULL; | ||
442 | |||
443 | sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs, | ||
444 | GFP_KERNEL); | ||
445 | if (!sbridge_dev->pdev) { | ||
446 | kfree(sbridge_dev); | ||
447 | return NULL; | ||
448 | } | ||
449 | |||
450 | sbridge_dev->bus = bus; | ||
451 | sbridge_dev->n_devs = table->n_devs; | ||
452 | list_add_tail(&sbridge_dev->list, &sbridge_edac_list); | ||
453 | |||
454 | return sbridge_dev; | ||
455 | } | ||
456 | |||
457 | static void free_sbridge_dev(struct sbridge_dev *sbridge_dev) | ||
458 | { | ||
459 | list_del(&sbridge_dev->list); | ||
460 | kfree(sbridge_dev->pdev); | ||
461 | kfree(sbridge_dev); | ||
462 | } | ||
463 | |||
464 | /**************************************************************************** | ||
465 | Memory check routines | ||
466 | ****************************************************************************/ | ||
467 | static struct pci_dev *get_pdev_slot_func(u8 bus, unsigned slot, | ||
468 | unsigned func) | ||
469 | { | ||
470 | struct sbridge_dev *sbridge_dev = get_sbridge_dev(bus); | ||
471 | int i; | ||
472 | |||
473 | if (!sbridge_dev) | ||
474 | return NULL; | ||
475 | |||
476 | for (i = 0; i < sbridge_dev->n_devs; i++) { | ||
477 | if (!sbridge_dev->pdev[i]) | ||
478 | continue; | ||
479 | |||
480 | if (PCI_SLOT(sbridge_dev->pdev[i]->devfn) == slot && | ||
481 | PCI_FUNC(sbridge_dev->pdev[i]->devfn) == func) { | ||
482 | debugf1("Associated %02x.%02x.%d with %p\n", | ||
483 | bus, slot, func, sbridge_dev->pdev[i]); | ||
484 | return sbridge_dev->pdev[i]; | ||
485 | } | ||
486 | } | ||
487 | |||
488 | return NULL; | ||
489 | } | ||
490 | |||
491 | /** | ||
492 | * sbridge_get_active_channels() - gets the number of channels and csrows | ||
493 | * bus: Device bus | ||
494 | * @channels: Number of channels that will be returned | ||
495 | * @csrows: Number of csrows found | ||
496 | * | ||
497 | * Since EDAC core needs to know in advance the number of available channels | ||
498 | * and csrows, in order to allocate memory for csrows/channels, it is needed | ||
499 | * to run two similar steps. At the first step, implemented on this function, | ||
500 | * it checks the number of csrows/channels present at one socket, identified | ||
501 | * by the associated PCI bus. | ||
502 | * this is used in order to properly allocate the size of mci components. | ||
503 | * Note: one csrow is one dimm. | ||
504 | */ | ||
505 | static int sbridge_get_active_channels(const u8 bus, unsigned *channels, | ||
506 | unsigned *csrows) | ||
507 | { | ||
508 | struct pci_dev *pdev = NULL; | ||
509 | int i, j; | ||
510 | u32 mcmtr; | ||
511 | |||
512 | *channels = 0; | ||
513 | *csrows = 0; | ||
514 | |||
515 | pdev = get_pdev_slot_func(bus, 15, 0); | ||
516 | if (!pdev) { | ||
517 | sbridge_printk(KERN_ERR, "Couldn't find PCI device " | ||
518 | "%2x.%02d.%d!!!\n", | ||
519 | bus, 15, 0); | ||
520 | return -ENODEV; | ||
521 | } | ||
522 | |||
523 | pci_read_config_dword(pdev, MCMTR, &mcmtr); | ||
524 | if (!IS_ECC_ENABLED(mcmtr)) { | ||
525 | sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n"); | ||
526 | return -ENODEV; | ||
527 | } | ||
528 | |||
529 | for (i = 0; i < NUM_CHANNELS; i++) { | ||
530 | u32 mtr; | ||
531 | |||
532 | /* Device 15 functions 2 - 5 */ | ||
533 | pdev = get_pdev_slot_func(bus, 15, 2 + i); | ||
534 | if (!pdev) { | ||
535 | sbridge_printk(KERN_ERR, "Couldn't find PCI device " | ||
536 | "%2x.%02d.%d!!!\n", | ||
537 | bus, 15, 2 + i); | ||
538 | return -ENODEV; | ||
539 | } | ||
540 | (*channels)++; | ||
541 | |||
542 | for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) { | ||
543 | pci_read_config_dword(pdev, mtr_regs[j], &mtr); | ||
544 | debugf1("Bus#%02x channel #%d MTR%d = %x\n", bus, i, j, mtr); | ||
545 | if (IS_DIMM_PRESENT(mtr)) | ||
546 | (*csrows)++; | ||
547 | } | ||
548 | } | ||
549 | |||
550 | debugf0("Number of active channels: %d, number of active dimms: %d\n", | ||
551 | *channels, *csrows); | ||
552 | |||
553 | return 0; | ||
554 | } | ||
555 | |||
556 | static int get_dimm_config(const struct mem_ctl_info *mci) | ||
557 | { | ||
558 | struct sbridge_pvt *pvt = mci->pvt_info; | ||
559 | struct csrow_info *csr; | ||
560 | int i, j, banks, ranks, rows, cols, size, npages; | ||
561 | int csrow = 0; | ||
562 | unsigned long last_page = 0; | ||
563 | u32 reg; | ||
564 | enum edac_type mode; | ||
565 | |||
566 | pci_read_config_dword(pvt->pci_br, SAD_TARGET, ®); | ||
567 | pvt->sbridge_dev->source_id = SOURCE_ID(reg); | ||
568 | |||
569 | pci_read_config_dword(pvt->pci_br, SAD_CONTROL, ®); | ||
570 | pvt->sbridge_dev->node_id = NODE_ID(reg); | ||
571 | debugf0("mc#%d: Node ID: %d, source ID: %d\n", | ||
572 | pvt->sbridge_dev->mc, | ||
573 | pvt->sbridge_dev->node_id, | ||
574 | pvt->sbridge_dev->source_id); | ||
575 | |||
576 | pci_read_config_dword(pvt->pci_ras, RASENABLES, ®); | ||
577 | if (IS_MIRROR_ENABLED(reg)) { | ||
578 | debugf0("Memory mirror is enabled\n"); | ||
579 | pvt->is_mirrored = true; | ||
580 | } else { | ||
581 | debugf0("Memory mirror is disabled\n"); | ||
582 | pvt->is_mirrored = false; | ||
583 | } | ||
584 | |||
585 | pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr); | ||
586 | if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) { | ||
587 | debugf0("Lockstep is enabled\n"); | ||
588 | mode = EDAC_S8ECD8ED; | ||
589 | pvt->is_lockstep = true; | ||
590 | } else { | ||
591 | debugf0("Lockstep is disabled\n"); | ||
592 | mode = EDAC_S4ECD4ED; | ||
593 | pvt->is_lockstep = false; | ||
594 | } | ||
595 | if (IS_CLOSE_PG(pvt->info.mcmtr)) { | ||
596 | debugf0("address map is on closed page mode\n"); | ||
597 | pvt->is_close_pg = true; | ||
598 | } else { | ||
599 | debugf0("address map is on open page mode\n"); | ||
600 | pvt->is_close_pg = false; | ||
601 | } | ||
602 | |||
603 | pci_read_config_dword(pvt->pci_ta, RANK_CFG_A, ®); | ||
604 | if (IS_RDIMM_ENABLED(reg)) { | ||
605 | /* FIXME: Can also be LRDIMM */ | ||
606 | debugf0("Memory is registered\n"); | ||
607 | mode = MEM_RDDR3; | ||
608 | } else { | ||
609 | debugf0("Memory is unregistered\n"); | ||
610 | mode = MEM_DDR3; | ||
611 | } | ||
612 | |||
613 | /* On all supported DDR3 DIMM types, there are 8 banks available */ | ||
614 | banks = 8; | ||
615 | |||
616 | for (i = 0; i < NUM_CHANNELS; i++) { | ||
617 | u32 mtr; | ||
618 | |||
619 | for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) { | ||
620 | pci_read_config_dword(pvt->pci_tad[i], | ||
621 | mtr_regs[j], &mtr); | ||
622 | debugf4("Channel #%d MTR%d = %x\n", i, j, mtr); | ||
623 | if (IS_DIMM_PRESENT(mtr)) { | ||
624 | pvt->channel[i].dimms++; | ||
625 | |||
626 | ranks = numrank(mtr); | ||
627 | rows = numrow(mtr); | ||
628 | cols = numcol(mtr); | ||
629 | |||
630 | /* DDR3 has 8 I/O banks */ | ||
631 | size = (rows * cols * banks * ranks) >> (20 - 3); | ||
632 | npages = MiB_TO_PAGES(size); | ||
633 | |||
634 | debugf0("mc#%d: channel %d, dimm %d, %d Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n", | ||
635 | pvt->sbridge_dev->mc, i, j, | ||
636 | size, npages, | ||
637 | banks, ranks, rows, cols); | ||
638 | csr = &mci->csrows[csrow]; | ||
639 | |||
640 | csr->first_page = last_page; | ||
641 | csr->last_page = last_page + npages - 1; | ||
642 | csr->page_mask = 0UL; /* Unused */ | ||
643 | csr->nr_pages = npages; | ||
644 | csr->grain = 32; | ||
645 | csr->csrow_idx = csrow; | ||
646 | csr->dtype = (banks == 8) ? DEV_X8 : DEV_X4; | ||
647 | csr->ce_count = 0; | ||
648 | csr->ue_count = 0; | ||
649 | csr->mtype = mode; | ||
650 | csr->edac_mode = mode; | ||
651 | csr->nr_channels = 1; | ||
652 | csr->channels[0].chan_idx = i; | ||
653 | csr->channels[0].ce_count = 0; | ||
654 | pvt->csrow_map[i][j] = csrow; | ||
655 | snprintf(csr->channels[0].label, | ||
656 | sizeof(csr->channels[0].label), | ||
657 | "CPU_SrcID#%u_Channel#%u_DIMM#%u", | ||
658 | pvt->sbridge_dev->source_id, i, j); | ||
659 | last_page += npages; | ||
660 | csrow++; | ||
661 | } | ||
662 | } | ||
663 | } | ||
664 | |||
665 | return 0; | ||
666 | } | ||
667 | |||
668 | static void get_memory_layout(const struct mem_ctl_info *mci) | ||
669 | { | ||
670 | struct sbridge_pvt *pvt = mci->pvt_info; | ||
671 | int i, j, k, n_sads, n_tads, sad_interl; | ||
672 | u32 reg; | ||
673 | u64 limit, prv = 0; | ||
674 | u64 tmp_mb; | ||
675 | u32 rir_way; | ||
676 | |||
677 | /* | ||
678 | * Step 1) Get TOLM/TOHM ranges | ||
679 | */ | ||
680 | |||
681 | /* Address range is 32:28 */ | ||
682 | pci_read_config_dword(pvt->pci_sad1, TOLM, | ||
683 | ®); | ||
684 | pvt->tolm = GET_TOLM(reg); | ||
685 | tmp_mb = (1 + pvt->tolm) >> 20; | ||
686 | |||
687 | debugf0("TOLM: %Lu.%03Lu GB (0x%016Lx)\n", | ||
688 | tmp_mb / 1000, tmp_mb % 1000, (u64)pvt->tolm); | ||
689 | |||
690 | /* Address range is already 45:25 */ | ||
691 | pci_read_config_dword(pvt->pci_sad1, TOHM, | ||
692 | ®); | ||
693 | pvt->tohm = GET_TOHM(reg); | ||
694 | tmp_mb = (1 + pvt->tohm) >> 20; | ||
695 | |||
696 | debugf0("TOHM: %Lu.%03Lu GB (0x%016Lx)", | ||
697 | tmp_mb / 1000, tmp_mb % 1000, (u64)pvt->tohm); | ||
698 | |||
699 | /* | ||
700 | * Step 2) Get SAD range and SAD Interleave list | ||
701 | * TAD registers contain the interleave wayness. However, it | ||
702 | * seems simpler to just discover it indirectly, with the | ||
703 | * algorithm bellow. | ||
704 | */ | ||
705 | prv = 0; | ||
706 | for (n_sads = 0; n_sads < MAX_SAD; n_sads++) { | ||
707 | /* SAD_LIMIT Address range is 45:26 */ | ||
708 | pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads], | ||
709 | ®); | ||
710 | limit = SAD_LIMIT(reg); | ||
711 | |||
712 | if (!DRAM_RULE_ENABLE(reg)) | ||
713 | continue; | ||
714 | |||
715 | if (limit <= prv) | ||
716 | break; | ||
717 | |||
718 | tmp_mb = (limit + 1) >> 20; | ||
719 | debugf0("SAD#%d %s up to %Lu.%03Lu GB (0x%016Lx) %s reg=0x%08x\n", | ||
720 | n_sads, | ||
721 | get_dram_attr(reg), | ||
722 | tmp_mb / 1000, tmp_mb % 1000, | ||
723 | ((u64)tmp_mb) << 20L, | ||
724 | INTERLEAVE_MODE(reg) ? "Interleave: 8:6" : "Interleave: [8:6]XOR[18:16]", | ||
725 | reg); | ||
726 | prv = limit; | ||
727 | |||
728 | pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads], | ||
729 | ®); | ||
730 | sad_interl = sad_pkg(reg, 0); | ||
731 | for (j = 0; j < 8; j++) { | ||
732 | if (j > 0 && sad_interl == sad_pkg(reg, j)) | ||
733 | break; | ||
734 | |||
735 | debugf0("SAD#%d, interleave #%d: %d\n", | ||
736 | n_sads, j, sad_pkg(reg, j)); | ||
737 | } | ||
738 | } | ||
739 | |||
740 | /* | ||
741 | * Step 3) Get TAD range | ||
742 | */ | ||
743 | prv = 0; | ||
744 | for (n_tads = 0; n_tads < MAX_TAD; n_tads++) { | ||
745 | pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads], | ||
746 | ®); | ||
747 | limit = TAD_LIMIT(reg); | ||
748 | if (limit <= prv) | ||
749 | break; | ||
750 | tmp_mb = (limit + 1) >> 20; | ||
751 | |||
752 | debugf0("TAD#%d: up to %Lu.%03Lu GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n", | ||
753 | n_tads, tmp_mb / 1000, tmp_mb % 1000, | ||
754 | ((u64)tmp_mb) << 20L, | ||
755 | (u32)TAD_SOCK(reg), | ||
756 | (u32)TAD_CH(reg), | ||
757 | (u32)TAD_TGT0(reg), | ||
758 | (u32)TAD_TGT1(reg), | ||
759 | (u32)TAD_TGT2(reg), | ||
760 | (u32)TAD_TGT3(reg), | ||
761 | reg); | ||
762 | prv = tmp_mb; | ||
763 | } | ||
764 | |||
765 | /* | ||
766 | * Step 4) Get TAD offsets, per each channel | ||
767 | */ | ||
768 | for (i = 0; i < NUM_CHANNELS; i++) { | ||
769 | if (!pvt->channel[i].dimms) | ||
770 | continue; | ||
771 | for (j = 0; j < n_tads; j++) { | ||
772 | pci_read_config_dword(pvt->pci_tad[i], | ||
773 | tad_ch_nilv_offset[j], | ||
774 | ®); | ||
775 | tmp_mb = TAD_OFFSET(reg) >> 20; | ||
776 | debugf0("TAD CH#%d, offset #%d: %Lu.%03Lu GB (0x%016Lx), reg=0x%08x\n", | ||
777 | i, j, | ||
778 | tmp_mb / 1000, tmp_mb % 1000, | ||
779 | ((u64)tmp_mb) << 20L, | ||
780 | reg); | ||
781 | } | ||
782 | } | ||
783 | |||
784 | /* | ||
785 | * Step 6) Get RIR Wayness/Limit, per each channel | ||
786 | */ | ||
787 | for (i = 0; i < NUM_CHANNELS; i++) { | ||
788 | if (!pvt->channel[i].dimms) | ||
789 | continue; | ||
790 | for (j = 0; j < MAX_RIR_RANGES; j++) { | ||
791 | pci_read_config_dword(pvt->pci_tad[i], | ||
792 | rir_way_limit[j], | ||
793 | ®); | ||
794 | |||
795 | if (!IS_RIR_VALID(reg)) | ||
796 | continue; | ||
797 | |||
798 | tmp_mb = RIR_LIMIT(reg) >> 20; | ||
799 | rir_way = 1 << RIR_WAY(reg); | ||
800 | debugf0("CH#%d RIR#%d, limit: %Lu.%03Lu GB (0x%016Lx), way: %d, reg=0x%08x\n", | ||
801 | i, j, | ||
802 | tmp_mb / 1000, tmp_mb % 1000, | ||
803 | ((u64)tmp_mb) << 20L, | ||
804 | rir_way, | ||
805 | reg); | ||
806 | |||
807 | for (k = 0; k < rir_way; k++) { | ||
808 | pci_read_config_dword(pvt->pci_tad[i], | ||
809 | rir_offset[j][k], | ||
810 | ®); | ||
811 | tmp_mb = RIR_OFFSET(reg) << 6; | ||
812 | |||
813 | debugf0("CH#%d RIR#%d INTL#%d, offset %Lu.%03Lu GB (0x%016Lx), tgt: %d, reg=0x%08x\n", | ||
814 | i, j, k, | ||
815 | tmp_mb / 1000, tmp_mb % 1000, | ||
816 | ((u64)tmp_mb) << 20L, | ||
817 | (u32)RIR_RNK_TGT(reg), | ||
818 | reg); | ||
819 | } | ||
820 | } | ||
821 | } | ||
822 | } | ||
823 | |||
824 | struct mem_ctl_info *get_mci_for_node_id(u8 node_id) | ||
825 | { | ||
826 | struct sbridge_dev *sbridge_dev; | ||
827 | |||
828 | list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) { | ||
829 | if (sbridge_dev->node_id == node_id) | ||
830 | return sbridge_dev->mci; | ||
831 | } | ||
832 | return NULL; | ||
833 | } | ||
834 | |||
835 | static int get_memory_error_data(struct mem_ctl_info *mci, | ||
836 | u64 addr, | ||
837 | u8 *socket, | ||
838 | long *channel_mask, | ||
839 | u8 *rank, | ||
840 | char *area_type) | ||
841 | { | ||
842 | struct mem_ctl_info *new_mci; | ||
843 | struct sbridge_pvt *pvt = mci->pvt_info; | ||
844 | char msg[256]; | ||
845 | int n_rir, n_sads, n_tads, sad_way, sck_xch; | ||
846 | int sad_interl, idx, base_ch; | ||
847 | int interleave_mode; | ||
848 | unsigned sad_interleave[MAX_INTERLEAVE]; | ||
849 | u32 reg; | ||
850 | u8 ch_way,sck_way; | ||
851 | u32 tad_offset; | ||
852 | u32 rir_way; | ||
853 | u64 ch_addr, offset, limit, prv = 0; | ||
854 | |||
855 | |||
856 | /* | ||
857 | * Step 0) Check if the address is at special memory ranges | ||
858 | * The check bellow is probably enough to fill all cases where | ||
859 | * the error is not inside a memory, except for the legacy | ||
860 | * range (e. g. VGA addresses). It is unlikely, however, that the | ||
861 | * memory controller would generate an error on that range. | ||
862 | */ | ||
863 | if ((addr > (u64) pvt->tolm) && (addr < (1L << 32))) { | ||
864 | sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr); | ||
865 | edac_mc_handle_ce_no_info(mci, msg); | ||
866 | return -EINVAL; | ||
867 | } | ||
868 | if (addr >= (u64)pvt->tohm) { | ||
869 | sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr); | ||
870 | edac_mc_handle_ce_no_info(mci, msg); | ||
871 | return -EINVAL; | ||
872 | } | ||
873 | |||
874 | /* | ||
875 | * Step 1) Get socket | ||
876 | */ | ||
877 | for (n_sads = 0; n_sads < MAX_SAD; n_sads++) { | ||
878 | pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads], | ||
879 | ®); | ||
880 | |||
881 | if (!DRAM_RULE_ENABLE(reg)) | ||
882 | continue; | ||
883 | |||
884 | limit = SAD_LIMIT(reg); | ||
885 | if (limit <= prv) { | ||
886 | sprintf(msg, "Can't discover the memory socket"); | ||
887 | edac_mc_handle_ce_no_info(mci, msg); | ||
888 | return -EINVAL; | ||
889 | } | ||
890 | if (addr <= limit) | ||
891 | break; | ||
892 | prv = limit; | ||
893 | } | ||
894 | if (n_sads == MAX_SAD) { | ||
895 | sprintf(msg, "Can't discover the memory socket"); | ||
896 | edac_mc_handle_ce_no_info(mci, msg); | ||
897 | return -EINVAL; | ||
898 | } | ||
899 | area_type = get_dram_attr(reg); | ||
900 | interleave_mode = INTERLEAVE_MODE(reg); | ||
901 | |||
902 | pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads], | ||
903 | ®); | ||
904 | sad_interl = sad_pkg(reg, 0); | ||
905 | for (sad_way = 0; sad_way < 8; sad_way++) { | ||
906 | if (sad_way > 0 && sad_interl == sad_pkg(reg, sad_way)) | ||
907 | break; | ||
908 | sad_interleave[sad_way] = sad_pkg(reg, sad_way); | ||
909 | debugf0("SAD interleave #%d: %d\n", | ||
910 | sad_way, sad_interleave[sad_way]); | ||
911 | } | ||
912 | debugf0("mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n", | ||
913 | pvt->sbridge_dev->mc, | ||
914 | n_sads, | ||
915 | addr, | ||
916 | limit, | ||
917 | sad_way + 7, | ||
918 | INTERLEAVE_MODE(reg) ? "" : "XOR[18:16]"); | ||
919 | if (interleave_mode) | ||
920 | idx = ((addr >> 6) ^ (addr >> 16)) & 7; | ||
921 | else | ||
922 | idx = (addr >> 6) & 7; | ||
923 | switch (sad_way) { | ||
924 | case 1: | ||
925 | idx = 0; | ||
926 | break; | ||
927 | case 2: | ||
928 | idx = idx & 1; | ||
929 | break; | ||
930 | case 4: | ||
931 | idx = idx & 3; | ||
932 | break; | ||
933 | case 8: | ||
934 | break; | ||
935 | default: | ||
936 | sprintf(msg, "Can't discover socket interleave"); | ||
937 | edac_mc_handle_ce_no_info(mci, msg); | ||
938 | return -EINVAL; | ||
939 | } | ||
940 | *socket = sad_interleave[idx]; | ||
941 | debugf0("SAD interleave index: %d (wayness %d) = CPU socket %d\n", | ||
942 | idx, sad_way, *socket); | ||
943 | |||
944 | /* | ||
945 | * Move to the proper node structure, in order to access the | ||
946 | * right PCI registers | ||
947 | */ | ||
948 | new_mci = get_mci_for_node_id(*socket); | ||
949 | if (!new_mci) { | ||
950 | sprintf(msg, "Struct for socket #%u wasn't initialized", | ||
951 | *socket); | ||
952 | edac_mc_handle_ce_no_info(mci, msg); | ||
953 | return -EINVAL; | ||
954 | } | ||
955 | mci = new_mci; | ||
956 | pvt = mci->pvt_info; | ||
957 | |||
958 | /* | ||
959 | * Step 2) Get memory channel | ||
960 | */ | ||
961 | prv = 0; | ||
962 | for (n_tads = 0; n_tads < MAX_TAD; n_tads++) { | ||
963 | pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads], | ||
964 | ®); | ||
965 | limit = TAD_LIMIT(reg); | ||
966 | if (limit <= prv) { | ||
967 | sprintf(msg, "Can't discover the memory channel"); | ||
968 | edac_mc_handle_ce_no_info(mci, msg); | ||
969 | return -EINVAL; | ||
970 | } | ||
971 | if (addr <= limit) | ||
972 | break; | ||
973 | prv = limit; | ||
974 | } | ||
975 | ch_way = TAD_CH(reg) + 1; | ||
976 | sck_way = TAD_SOCK(reg) + 1; | ||
977 | /* | ||
978 | * FIXME: Is it right to always use channel 0 for offsets? | ||
979 | */ | ||
980 | pci_read_config_dword(pvt->pci_tad[0], | ||
981 | tad_ch_nilv_offset[n_tads], | ||
982 | &tad_offset); | ||
983 | |||
984 | if (ch_way == 3) | ||
985 | idx = addr >> 6; | ||
986 | else | ||
987 | idx = addr >> (6 + sck_way); | ||
988 | idx = idx % ch_way; | ||
989 | |||
990 | /* | ||
991 | * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ??? | ||
992 | */ | ||
993 | switch (idx) { | ||
994 | case 0: | ||
995 | base_ch = TAD_TGT0(reg); | ||
996 | break; | ||
997 | case 1: | ||
998 | base_ch = TAD_TGT1(reg); | ||
999 | break; | ||
1000 | case 2: | ||
1001 | base_ch = TAD_TGT2(reg); | ||
1002 | break; | ||
1003 | case 3: | ||
1004 | base_ch = TAD_TGT3(reg); | ||
1005 | break; | ||
1006 | default: | ||
1007 | sprintf(msg, "Can't discover the TAD target"); | ||
1008 | edac_mc_handle_ce_no_info(mci, msg); | ||
1009 | return -EINVAL; | ||
1010 | } | ||
1011 | *channel_mask = 1 << base_ch; | ||
1012 | |||
1013 | if (pvt->is_mirrored) { | ||
1014 | *channel_mask |= 1 << ((base_ch + 2) % 4); | ||
1015 | switch(ch_way) { | ||
1016 | case 2: | ||
1017 | case 4: | ||
1018 | sck_xch = 1 << sck_way * (ch_way >> 1); | ||
1019 | break; | ||
1020 | default: | ||
1021 | sprintf(msg, "Invalid mirror set. Can't decode addr"); | ||
1022 | edac_mc_handle_ce_no_info(mci, msg); | ||
1023 | return -EINVAL; | ||
1024 | } | ||
1025 | } else | ||
1026 | sck_xch = (1 << sck_way) * ch_way; | ||
1027 | |||
1028 | if (pvt->is_lockstep) | ||
1029 | *channel_mask |= 1 << ((base_ch + 1) % 4); | ||
1030 | |||
1031 | offset = TAD_OFFSET(tad_offset); | ||
1032 | |||
1033 | debugf0("TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n", | ||
1034 | n_tads, | ||
1035 | addr, | ||
1036 | limit, | ||
1037 | (u32)TAD_SOCK(reg), | ||
1038 | ch_way, | ||
1039 | offset, | ||
1040 | idx, | ||
1041 | base_ch, | ||
1042 | *channel_mask); | ||
1043 | |||
1044 | /* Calculate channel address */ | ||
1045 | /* Remove the TAD offset */ | ||
1046 | |||
1047 | if (offset > addr) { | ||
1048 | sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!", | ||
1049 | offset, addr); | ||
1050 | edac_mc_handle_ce_no_info(mci, msg); | ||
1051 | return -EINVAL; | ||
1052 | } | ||
1053 | addr -= offset; | ||
1054 | /* Store the low bits [0:6] of the addr */ | ||
1055 | ch_addr = addr & 0x7f; | ||
1056 | /* Remove socket wayness and remove 6 bits */ | ||
1057 | addr >>= 6; | ||
1058 | addr /= sck_xch; | ||
1059 | #if 0 | ||
1060 | /* Divide by channel way */ | ||
1061 | addr = addr / ch_way; | ||
1062 | #endif | ||
1063 | /* Recover the last 6 bits */ | ||
1064 | ch_addr |= addr << 6; | ||
1065 | |||
1066 | /* | ||
1067 | * Step 3) Decode rank | ||
1068 | */ | ||
1069 | for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) { | ||
1070 | pci_read_config_dword(pvt->pci_tad[base_ch], | ||
1071 | rir_way_limit[n_rir], | ||
1072 | ®); | ||
1073 | |||
1074 | if (!IS_RIR_VALID(reg)) | ||
1075 | continue; | ||
1076 | |||
1077 | limit = RIR_LIMIT(reg); | ||
1078 | |||
1079 | debugf0("RIR#%d, limit: %Lu.%03Lu GB (0x%016Lx), way: %d\n", | ||
1080 | n_rir, | ||
1081 | (limit >> 20) / 1000, (limit >> 20) % 1000, | ||
1082 | limit, | ||
1083 | 1 << RIR_WAY(reg)); | ||
1084 | if (ch_addr <= limit) | ||
1085 | break; | ||
1086 | } | ||
1087 | if (n_rir == MAX_RIR_RANGES) { | ||
1088 | sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx", | ||
1089 | ch_addr); | ||
1090 | edac_mc_handle_ce_no_info(mci, msg); | ||
1091 | return -EINVAL; | ||
1092 | } | ||
1093 | rir_way = RIR_WAY(reg); | ||
1094 | if (pvt->is_close_pg) | ||
1095 | idx = (ch_addr >> 6); | ||
1096 | else | ||
1097 | idx = (ch_addr >> 13); /* FIXME: Datasheet says to shift by 15 */ | ||
1098 | idx %= 1 << rir_way; | ||
1099 | |||
1100 | pci_read_config_dword(pvt->pci_tad[base_ch], | ||
1101 | rir_offset[n_rir][idx], | ||
1102 | ®); | ||
1103 | *rank = RIR_RNK_TGT(reg); | ||
1104 | |||
1105 | debugf0("RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n", | ||
1106 | n_rir, | ||
1107 | ch_addr, | ||
1108 | limit, | ||
1109 | rir_way, | ||
1110 | idx); | ||
1111 | |||
1112 | return 0; | ||
1113 | } | ||
1114 | |||
1115 | /**************************************************************************** | ||
1116 | Device initialization routines: put/get, init/exit | ||
1117 | ****************************************************************************/ | ||
1118 | |||
1119 | /* | ||
1120 | * sbridge_put_all_devices 'put' all the devices that we have | ||
1121 | * reserved via 'get' | ||
1122 | */ | ||
1123 | static void sbridge_put_devices(struct sbridge_dev *sbridge_dev) | ||
1124 | { | ||
1125 | int i; | ||
1126 | |||
1127 | debugf0(__FILE__ ": %s()\n", __func__); | ||
1128 | for (i = 0; i < sbridge_dev->n_devs; i++) { | ||
1129 | struct pci_dev *pdev = sbridge_dev->pdev[i]; | ||
1130 | if (!pdev) | ||
1131 | continue; | ||
1132 | debugf0("Removing dev %02x:%02x.%d\n", | ||
1133 | pdev->bus->number, | ||
1134 | PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); | ||
1135 | pci_dev_put(pdev); | ||
1136 | } | ||
1137 | } | ||
1138 | |||
1139 | static void sbridge_put_all_devices(void) | ||
1140 | { | ||
1141 | struct sbridge_dev *sbridge_dev, *tmp; | ||
1142 | |||
1143 | list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) { | ||
1144 | sbridge_put_devices(sbridge_dev); | ||
1145 | free_sbridge_dev(sbridge_dev); | ||
1146 | } | ||
1147 | } | ||
1148 | |||
1149 | /* | ||
1150 | * sbridge_get_all_devices Find and perform 'get' operation on the MCH's | ||
1151 | * device/functions we want to reference for this driver | ||
1152 | * | ||
1153 | * Need to 'get' device 16 func 1 and func 2 | ||
1154 | */ | ||
1155 | static int sbridge_get_onedevice(struct pci_dev **prev, | ||
1156 | u8 *num_mc, | ||
1157 | const struct pci_id_table *table, | ||
1158 | const unsigned devno) | ||
1159 | { | ||
1160 | struct sbridge_dev *sbridge_dev; | ||
1161 | const struct pci_id_descr *dev_descr = &table->descr[devno]; | ||
1162 | |||
1163 | struct pci_dev *pdev = NULL; | ||
1164 | u8 bus = 0; | ||
1165 | |||
1166 | sbridge_printk(KERN_INFO, | ||
1167 | "Seeking for: dev %02x.%d PCI ID %04x:%04x\n", | ||
1168 | dev_descr->dev, dev_descr->func, | ||
1169 | PCI_VENDOR_ID_INTEL, dev_descr->dev_id); | ||
1170 | |||
1171 | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, | ||
1172 | dev_descr->dev_id, *prev); | ||
1173 | |||
1174 | if (!pdev) { | ||
1175 | if (*prev) { | ||
1176 | *prev = pdev; | ||
1177 | return 0; | ||
1178 | } | ||
1179 | |||
1180 | if (dev_descr->optional) | ||
1181 | return 0; | ||
1182 | |||
1183 | if (devno == 0) | ||
1184 | return -ENODEV; | ||
1185 | |||
1186 | sbridge_printk(KERN_INFO, | ||
1187 | "Device not found: dev %02x.%d PCI ID %04x:%04x\n", | ||
1188 | dev_descr->dev, dev_descr->func, | ||
1189 | PCI_VENDOR_ID_INTEL, dev_descr->dev_id); | ||
1190 | |||
1191 | /* End of list, leave */ | ||
1192 | return -ENODEV; | ||
1193 | } | ||
1194 | bus = pdev->bus->number; | ||
1195 | |||
1196 | sbridge_dev = get_sbridge_dev(bus); | ||
1197 | if (!sbridge_dev) { | ||
1198 | sbridge_dev = alloc_sbridge_dev(bus, table); | ||
1199 | if (!sbridge_dev) { | ||
1200 | pci_dev_put(pdev); | ||
1201 | return -ENOMEM; | ||
1202 | } | ||
1203 | (*num_mc)++; | ||
1204 | } | ||
1205 | |||
1206 | if (sbridge_dev->pdev[devno]) { | ||
1207 | sbridge_printk(KERN_ERR, | ||
1208 | "Duplicated device for " | ||
1209 | "dev %02x:%d.%d PCI ID %04x:%04x\n", | ||
1210 | bus, dev_descr->dev, dev_descr->func, | ||
1211 | PCI_VENDOR_ID_INTEL, dev_descr->dev_id); | ||
1212 | pci_dev_put(pdev); | ||
1213 | return -ENODEV; | ||
1214 | } | ||
1215 | |||
1216 | sbridge_dev->pdev[devno] = pdev; | ||
1217 | |||
1218 | /* Sanity check */ | ||
1219 | if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev || | ||
1220 | PCI_FUNC(pdev->devfn) != dev_descr->func)) { | ||
1221 | sbridge_printk(KERN_ERR, | ||
1222 | "Device PCI ID %04x:%04x " | ||
1223 | "has dev %02x:%d.%d instead of dev %02x:%02x.%d\n", | ||
1224 | PCI_VENDOR_ID_INTEL, dev_descr->dev_id, | ||
1225 | bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), | ||
1226 | bus, dev_descr->dev, dev_descr->func); | ||
1227 | return -ENODEV; | ||
1228 | } | ||
1229 | |||
1230 | /* Be sure that the device is enabled */ | ||
1231 | if (unlikely(pci_enable_device(pdev) < 0)) { | ||
1232 | sbridge_printk(KERN_ERR, | ||
1233 | "Couldn't enable " | ||
1234 | "dev %02x:%d.%d PCI ID %04x:%04x\n", | ||
1235 | bus, dev_descr->dev, dev_descr->func, | ||
1236 | PCI_VENDOR_ID_INTEL, dev_descr->dev_id); | ||
1237 | return -ENODEV; | ||
1238 | } | ||
1239 | |||
1240 | debugf0("Detected dev %02x:%d.%d PCI ID %04x:%04x\n", | ||
1241 | bus, dev_descr->dev, | ||
1242 | dev_descr->func, | ||
1243 | PCI_VENDOR_ID_INTEL, dev_descr->dev_id); | ||
1244 | |||
1245 | /* | ||
1246 | * As stated on drivers/pci/search.c, the reference count for | ||
1247 | * @from is always decremented if it is not %NULL. So, as we need | ||
1248 | * to get all devices up to null, we need to do a get for the device | ||
1249 | */ | ||
1250 | pci_dev_get(pdev); | ||
1251 | |||
1252 | *prev = pdev; | ||
1253 | |||
1254 | return 0; | ||
1255 | } | ||
1256 | |||
1257 | static int sbridge_get_all_devices(u8 *num_mc) | ||
1258 | { | ||
1259 | int i, rc; | ||
1260 | struct pci_dev *pdev = NULL; | ||
1261 | const struct pci_id_table *table = pci_dev_descr_sbridge_table; | ||
1262 | |||
1263 | while (table && table->descr) { | ||
1264 | for (i = 0; i < table->n_devs; i++) { | ||
1265 | pdev = NULL; | ||
1266 | do { | ||
1267 | rc = sbridge_get_onedevice(&pdev, num_mc, | ||
1268 | table, i); | ||
1269 | if (rc < 0) { | ||
1270 | if (i == 0) { | ||
1271 | i = table->n_devs; | ||
1272 | break; | ||
1273 | } | ||
1274 | sbridge_put_all_devices(); | ||
1275 | return -ENODEV; | ||
1276 | } | ||
1277 | } while (pdev); | ||
1278 | } | ||
1279 | table++; | ||
1280 | } | ||
1281 | |||
1282 | return 0; | ||
1283 | } | ||
1284 | |||
1285 | static int mci_bind_devs(struct mem_ctl_info *mci, | ||
1286 | struct sbridge_dev *sbridge_dev) | ||
1287 | { | ||
1288 | struct sbridge_pvt *pvt = mci->pvt_info; | ||
1289 | struct pci_dev *pdev; | ||
1290 | int i, func, slot; | ||
1291 | |||
1292 | for (i = 0; i < sbridge_dev->n_devs; i++) { | ||
1293 | pdev = sbridge_dev->pdev[i]; | ||
1294 | if (!pdev) | ||
1295 | continue; | ||
1296 | slot = PCI_SLOT(pdev->devfn); | ||
1297 | func = PCI_FUNC(pdev->devfn); | ||
1298 | switch (slot) { | ||
1299 | case 12: | ||
1300 | switch (func) { | ||
1301 | case 6: | ||
1302 | pvt->pci_sad0 = pdev; | ||
1303 | break; | ||
1304 | case 7: | ||
1305 | pvt->pci_sad1 = pdev; | ||
1306 | break; | ||
1307 | default: | ||
1308 | goto error; | ||
1309 | } | ||
1310 | break; | ||
1311 | case 13: | ||
1312 | switch (func) { | ||
1313 | case 6: | ||
1314 | pvt->pci_br = pdev; | ||
1315 | break; | ||
1316 | default: | ||
1317 | goto error; | ||
1318 | } | ||
1319 | break; | ||
1320 | case 14: | ||
1321 | switch (func) { | ||
1322 | case 0: | ||
1323 | pvt->pci_ha0 = pdev; | ||
1324 | break; | ||
1325 | default: | ||
1326 | goto error; | ||
1327 | } | ||
1328 | break; | ||
1329 | case 15: | ||
1330 | switch (func) { | ||
1331 | case 0: | ||
1332 | pvt->pci_ta = pdev; | ||
1333 | break; | ||
1334 | case 1: | ||
1335 | pvt->pci_ras = pdev; | ||
1336 | break; | ||
1337 | case 2: | ||
1338 | case 3: | ||
1339 | case 4: | ||
1340 | case 5: | ||
1341 | pvt->pci_tad[func - 2] = pdev; | ||
1342 | break; | ||
1343 | default: | ||
1344 | goto error; | ||
1345 | } | ||
1346 | break; | ||
1347 | case 17: | ||
1348 | switch (func) { | ||
1349 | case 0: | ||
1350 | pvt->pci_ddrio = pdev; | ||
1351 | break; | ||
1352 | default: | ||
1353 | goto error; | ||
1354 | } | ||
1355 | break; | ||
1356 | default: | ||
1357 | goto error; | ||
1358 | } | ||
1359 | |||
1360 | debugf0("Associated PCI %02x.%02d.%d with dev = %p\n", | ||
1361 | sbridge_dev->bus, | ||
1362 | PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), | ||
1363 | pdev); | ||
1364 | } | ||
1365 | |||
1366 | /* Check if everything were registered */ | ||
1367 | if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 || | ||
1368 | !pvt-> pci_tad || !pvt->pci_ras || !pvt->pci_ta || | ||
1369 | !pvt->pci_ddrio) | ||
1370 | goto enodev; | ||
1371 | |||
1372 | for (i = 0; i < NUM_CHANNELS; i++) { | ||
1373 | if (!pvt->pci_tad[i]) | ||
1374 | goto enodev; | ||
1375 | } | ||
1376 | return 0; | ||
1377 | |||
1378 | enodev: | ||
1379 | sbridge_printk(KERN_ERR, "Some needed devices are missing\n"); | ||
1380 | return -ENODEV; | ||
1381 | |||
1382 | error: | ||
1383 | sbridge_printk(KERN_ERR, "Device %d, function %d " | ||
1384 | "is out of the expected range\n", | ||
1385 | slot, func); | ||
1386 | return -EINVAL; | ||
1387 | } | ||
1388 | |||
1389 | /**************************************************************************** | ||
1390 | Error check routines | ||
1391 | ****************************************************************************/ | ||
1392 | |||
1393 | /* | ||
1394 | * While Sandy Bridge has error count registers, SMI BIOS read values from | ||
1395 | * and resets the counters. So, they are not reliable for the OS to read | ||
1396 | * from them. So, we have no option but to just trust on whatever MCE is | ||
1397 | * telling us about the errors. | ||
1398 | */ | ||
1399 | static void sbridge_mce_output_error(struct mem_ctl_info *mci, | ||
1400 | const struct mce *m) | ||
1401 | { | ||
1402 | struct mem_ctl_info *new_mci; | ||
1403 | struct sbridge_pvt *pvt = mci->pvt_info; | ||
1404 | char *type, *optype, *msg, *recoverable_msg; | ||
1405 | bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0); | ||
1406 | bool overflow = GET_BITFIELD(m->status, 62, 62); | ||
1407 | bool uncorrected_error = GET_BITFIELD(m->status, 61, 61); | ||
1408 | bool recoverable = GET_BITFIELD(m->status, 56, 56); | ||
1409 | u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52); | ||
1410 | u32 mscod = GET_BITFIELD(m->status, 16, 31); | ||
1411 | u32 errcode = GET_BITFIELD(m->status, 0, 15); | ||
1412 | u32 channel = GET_BITFIELD(m->status, 0, 3); | ||
1413 | u32 optypenum = GET_BITFIELD(m->status, 4, 6); | ||
1414 | long channel_mask, first_channel; | ||
1415 | u8 rank, socket; | ||
1416 | int csrow, rc, dimm; | ||
1417 | char *area_type = "Unknown"; | ||
1418 | |||
1419 | if (ripv) | ||
1420 | type = "NON_FATAL"; | ||
1421 | else | ||
1422 | type = "FATAL"; | ||
1423 | |||
1424 | /* | ||
1425 | * According with Table 15-9 of the Intel Archictecture spec vol 3A, | ||
1426 | * memory errors should fit in this mask: | ||
1427 | * 000f 0000 1mmm cccc (binary) | ||
1428 | * where: | ||
1429 | * f = Correction Report Filtering Bit. If 1, subsequent errors | ||
1430 | * won't be shown | ||
1431 | * mmm = error type | ||
1432 | * cccc = channel | ||
1433 | * If the mask doesn't match, report an error to the parsing logic | ||
1434 | */ | ||
1435 | if (! ((errcode & 0xef80) == 0x80)) { | ||
1436 | optype = "Can't parse: it is not a mem"; | ||
1437 | } else { | ||
1438 | switch (optypenum) { | ||
1439 | case 0: | ||
1440 | optype = "generic undef request"; | ||
1441 | break; | ||
1442 | case 1: | ||
1443 | optype = "memory read"; | ||
1444 | break; | ||
1445 | case 2: | ||
1446 | optype = "memory write"; | ||
1447 | break; | ||
1448 | case 3: | ||
1449 | optype = "addr/cmd"; | ||
1450 | break; | ||
1451 | case 4: | ||
1452 | optype = "memory scrubbing"; | ||
1453 | break; | ||
1454 | default: | ||
1455 | optype = "reserved"; | ||
1456 | break; | ||
1457 | } | ||
1458 | } | ||
1459 | |||
1460 | rc = get_memory_error_data(mci, m->addr, &socket, | ||
1461 | &channel_mask, &rank, area_type); | ||
1462 | if (rc < 0) | ||
1463 | return; | ||
1464 | new_mci = get_mci_for_node_id(socket); | ||
1465 | if (!new_mci) { | ||
1466 | edac_mc_handle_ce_no_info(mci, "Error: socket got corrupted!"); | ||
1467 | return; | ||
1468 | } | ||
1469 | mci = new_mci; | ||
1470 | pvt = mci->pvt_info; | ||
1471 | |||
1472 | first_channel = find_first_bit(&channel_mask, NUM_CHANNELS); | ||
1473 | |||
1474 | if (rank < 4) | ||
1475 | dimm = 0; | ||
1476 | else if (rank < 8) | ||
1477 | dimm = 1; | ||
1478 | else | ||
1479 | dimm = 2; | ||
1480 | |||
1481 | csrow = pvt->csrow_map[first_channel][dimm]; | ||
1482 | |||
1483 | if (uncorrected_error && recoverable) | ||
1484 | recoverable_msg = " recoverable"; | ||
1485 | else | ||
1486 | recoverable_msg = ""; | ||
1487 | |||
1488 | /* | ||
1489 | * FIXME: What should we do with "channel" information on mcelog? | ||
1490 | * Probably, we can just discard it, as the channel information | ||
1491 | * comes from the get_memory_error_data() address decoding | ||
1492 | */ | ||
1493 | msg = kasprintf(GFP_ATOMIC, | ||
1494 | "%d %s error(s): %s on %s area %s%s: cpu=%d Err=%04x:%04x (ch=%d), " | ||
1495 | "addr = 0x%08llx => socket=%d, Channel=%ld(mask=%ld), rank=%d\n", | ||
1496 | core_err_cnt, | ||
1497 | area_type, | ||
1498 | optype, | ||
1499 | type, | ||
1500 | recoverable_msg, | ||
1501 | overflow ? "OVERFLOW" : "", | ||
1502 | m->cpu, | ||
1503 | mscod, errcode, | ||
1504 | channel, /* 1111b means not specified */ | ||
1505 | (long long) m->addr, | ||
1506 | socket, | ||
1507 | first_channel, /* This is the real channel on SB */ | ||
1508 | channel_mask, | ||
1509 | rank); | ||
1510 | |||
1511 | debugf0("%s", msg); | ||
1512 | |||
1513 | /* Call the helper to output message */ | ||
1514 | if (uncorrected_error) | ||
1515 | edac_mc_handle_fbd_ue(mci, csrow, 0, 0, msg); | ||
1516 | else | ||
1517 | edac_mc_handle_fbd_ce(mci, csrow, 0, msg); | ||
1518 | |||
1519 | kfree(msg); | ||
1520 | } | ||
1521 | |||
1522 | /* | ||
1523 | * sbridge_check_error Retrieve and process errors reported by the | ||
1524 | * hardware. Called by the Core module. | ||
1525 | */ | ||
1526 | static void sbridge_check_error(struct mem_ctl_info *mci) | ||
1527 | { | ||
1528 | struct sbridge_pvt *pvt = mci->pvt_info; | ||
1529 | int i; | ||
1530 | unsigned count = 0; | ||
1531 | struct mce *m; | ||
1532 | |||
1533 | /* | ||
1534 | * MCE first step: Copy all mce errors into a temporary buffer | ||
1535 | * We use a double buffering here, to reduce the risk of | ||
1536 | * loosing an error. | ||
1537 | */ | ||
1538 | smp_rmb(); | ||
1539 | count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in) | ||
1540 | % MCE_LOG_LEN; | ||
1541 | if (!count) | ||
1542 | return; | ||
1543 | |||
1544 | m = pvt->mce_outentry; | ||
1545 | if (pvt->mce_in + count > MCE_LOG_LEN) { | ||
1546 | unsigned l = MCE_LOG_LEN - pvt->mce_in; | ||
1547 | |||
1548 | memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l); | ||
1549 | smp_wmb(); | ||
1550 | pvt->mce_in = 0; | ||
1551 | count -= l; | ||
1552 | m += l; | ||
1553 | } | ||
1554 | memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count); | ||
1555 | smp_wmb(); | ||
1556 | pvt->mce_in += count; | ||
1557 | |||
1558 | smp_rmb(); | ||
1559 | if (pvt->mce_overrun) { | ||
1560 | sbridge_printk(KERN_ERR, "Lost %d memory errors\n", | ||
1561 | pvt->mce_overrun); | ||
1562 | smp_wmb(); | ||
1563 | pvt->mce_overrun = 0; | ||
1564 | } | ||
1565 | |||
1566 | /* | ||
1567 | * MCE second step: parse errors and display | ||
1568 | */ | ||
1569 | for (i = 0; i < count; i++) | ||
1570 | sbridge_mce_output_error(mci, &pvt->mce_outentry[i]); | ||
1571 | } | ||
1572 | |||
1573 | /* | ||
1574 | * sbridge_mce_check_error Replicates mcelog routine to get errors | ||
1575 | * This routine simply queues mcelog errors, and | ||
1576 | * return. The error itself should be handled later | ||
1577 | * by sbridge_check_error. | ||
1578 | * WARNING: As this routine should be called at NMI time, extra care should | ||
1579 | * be taken to avoid deadlocks, and to be as fast as possible. | ||
1580 | */ | ||
1581 | static int sbridge_mce_check_error(void *priv, struct mce *mce) | ||
1582 | { | ||
1583 | struct mem_ctl_info *mci = priv; | ||
1584 | struct sbridge_pvt *pvt = mci->pvt_info; | ||
1585 | |||
1586 | /* | ||
1587 | * Just let mcelog handle it if the error is | ||
1588 | * outside the memory controller. A memory error | ||
1589 | * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0. | ||
1590 | * bit 12 has an special meaning. | ||
1591 | */ | ||
1592 | if ((mce->status & 0xefff) >> 7 != 1) | ||
1593 | return 0; | ||
1594 | |||
1595 | printk("sbridge: HANDLING MCE MEMORY ERROR\n"); | ||
1596 | |||
1597 | printk("CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n", | ||
1598 | mce->extcpu, mce->mcgstatus, mce->bank, mce->status); | ||
1599 | printk("TSC %llx ", mce->tsc); | ||
1600 | printk("ADDR %llx ", mce->addr); | ||
1601 | printk("MISC %llx ", mce->misc); | ||
1602 | |||
1603 | printk("PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n", | ||
1604 | mce->cpuvendor, mce->cpuid, mce->time, | ||
1605 | mce->socketid, mce->apicid); | ||
1606 | |||
1607 | #ifdef CONFIG_SMP | ||
1608 | /* Only handle if it is the right mc controller */ | ||
1609 | if (cpu_data(mce->cpu).phys_proc_id != pvt->sbridge_dev->mc) | ||
1610 | return 0; | ||
1611 | #endif | ||
1612 | |||
1613 | smp_rmb(); | ||
1614 | if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) { | ||
1615 | smp_wmb(); | ||
1616 | pvt->mce_overrun++; | ||
1617 | return 0; | ||
1618 | } | ||
1619 | |||
1620 | /* Copy memory error at the ringbuffer */ | ||
1621 | memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce)); | ||
1622 | smp_wmb(); | ||
1623 | pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN; | ||
1624 | |||
1625 | /* Handle fatal errors immediately */ | ||
1626 | if (mce->mcgstatus & 1) | ||
1627 | sbridge_check_error(mci); | ||
1628 | |||
1629 | /* Advice mcelog that the error were handled */ | ||
1630 | return 1; | ||
1631 | } | ||
1632 | |||
1633 | /**************************************************************************** | ||
1634 | EDAC register/unregister logic | ||
1635 | ****************************************************************************/ | ||
1636 | |||
1637 | static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev) | ||
1638 | { | ||
1639 | struct mem_ctl_info *mci = sbridge_dev->mci; | ||
1640 | struct sbridge_pvt *pvt; | ||
1641 | |||
1642 | if (unlikely(!mci || !mci->pvt_info)) { | ||
1643 | debugf0("MC: " __FILE__ ": %s(): dev = %p\n", | ||
1644 | __func__, &sbridge_dev->pdev[0]->dev); | ||
1645 | |||
1646 | sbridge_printk(KERN_ERR, "Couldn't find mci handler\n"); | ||
1647 | return; | ||
1648 | } | ||
1649 | |||
1650 | pvt = mci->pvt_info; | ||
1651 | |||
1652 | debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n", | ||
1653 | __func__, mci, &sbridge_dev->pdev[0]->dev); | ||
1654 | |||
1655 | /* Disable MCE NMI handler */ | ||
1656 | edac_mce_unregister(&pvt->edac_mce); | ||
1657 | |||
1658 | /* Remove MC sysfs nodes */ | ||
1659 | edac_mc_del_mc(mci->dev); | ||
1660 | |||
1661 | debugf1("%s: free mci struct\n", mci->ctl_name); | ||
1662 | kfree(mci->ctl_name); | ||
1663 | edac_mc_free(mci); | ||
1664 | sbridge_dev->mci = NULL; | ||
1665 | } | ||
1666 | |||
1667 | static int sbridge_register_mci(struct sbridge_dev *sbridge_dev) | ||
1668 | { | ||
1669 | struct mem_ctl_info *mci; | ||
1670 | struct sbridge_pvt *pvt; | ||
1671 | int rc, channels, csrows; | ||
1672 | |||
1673 | /* Check the number of active and not disabled channels */ | ||
1674 | rc = sbridge_get_active_channels(sbridge_dev->bus, &channels, &csrows); | ||
1675 | if (unlikely(rc < 0)) | ||
1676 | return rc; | ||
1677 | |||
1678 | /* allocate a new MC control structure */ | ||
1679 | mci = edac_mc_alloc(sizeof(*pvt), csrows, channels, sbridge_dev->mc); | ||
1680 | if (unlikely(!mci)) | ||
1681 | return -ENOMEM; | ||
1682 | |||
1683 | debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n", | ||
1684 | __func__, mci, &sbridge_dev->pdev[0]->dev); | ||
1685 | |||
1686 | pvt = mci->pvt_info; | ||
1687 | memset(pvt, 0, sizeof(*pvt)); | ||
1688 | |||
1689 | /* Associate sbridge_dev and mci for future usage */ | ||
1690 | pvt->sbridge_dev = sbridge_dev; | ||
1691 | sbridge_dev->mci = mci; | ||
1692 | |||
1693 | mci->mtype_cap = MEM_FLAG_DDR3; | ||
1694 | mci->edac_ctl_cap = EDAC_FLAG_NONE; | ||
1695 | mci->edac_cap = EDAC_FLAG_NONE; | ||
1696 | mci->mod_name = "sbridge_edac.c"; | ||
1697 | mci->mod_ver = SBRIDGE_REVISION; | ||
1698 | mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx); | ||
1699 | mci->dev_name = pci_name(sbridge_dev->pdev[0]); | ||
1700 | mci->ctl_page_to_phys = NULL; | ||
1701 | |||
1702 | /* Set the function pointer to an actual operation function */ | ||
1703 | mci->edac_check = sbridge_check_error; | ||
1704 | |||
1705 | /* Store pci devices at mci for faster access */ | ||
1706 | rc = mci_bind_devs(mci, sbridge_dev); | ||
1707 | if (unlikely(rc < 0)) | ||
1708 | goto fail0; | ||
1709 | |||
1710 | /* Get dimm basic config and the memory layout */ | ||
1711 | get_dimm_config(mci); | ||
1712 | get_memory_layout(mci); | ||
1713 | |||
1714 | /* record ptr to the generic device */ | ||
1715 | mci->dev = &sbridge_dev->pdev[0]->dev; | ||
1716 | |||
1717 | /* add this new MC control structure to EDAC's list of MCs */ | ||
1718 | if (unlikely(edac_mc_add_mc(mci))) { | ||
1719 | debugf0("MC: " __FILE__ | ||
1720 | ": %s(): failed edac_mc_add_mc()\n", __func__); | ||
1721 | rc = -EINVAL; | ||
1722 | goto fail0; | ||
1723 | } | ||
1724 | |||
1725 | /* Registers on edac_mce in order to receive memory errors */ | ||
1726 | pvt->edac_mce.priv = mci; | ||
1727 | pvt->edac_mce.check_error = sbridge_mce_check_error; | ||
1728 | rc = edac_mce_register(&pvt->edac_mce); | ||
1729 | if (unlikely(rc < 0)) { | ||
1730 | debugf0("MC: " __FILE__ | ||
1731 | ": %s(): failed edac_mce_register()\n", __func__); | ||
1732 | goto fail1; | ||
1733 | } | ||
1734 | |||
1735 | return 0; | ||
1736 | fail1: | ||
1737 | edac_mc_del_mc(mci->dev); | ||
1738 | |||
1739 | fail0: | ||
1740 | kfree(mci->ctl_name); | ||
1741 | edac_mc_free(mci); | ||
1742 | sbridge_dev->mci = NULL; | ||
1743 | return rc; | ||
1744 | } | ||
1745 | |||
1746 | /* | ||
1747 | * sbridge_probe Probe for ONE instance of device to see if it is | ||
1748 | * present. | ||
1749 | * return: | ||
1750 | * 0 for FOUND a device | ||
1751 | * < 0 for error code | ||
1752 | */ | ||
1753 | |||
1754 | static int __devinit sbridge_probe(struct pci_dev *pdev, | ||
1755 | const struct pci_device_id *id) | ||
1756 | { | ||
1757 | int rc; | ||
1758 | u8 mc, num_mc = 0; | ||
1759 | struct sbridge_dev *sbridge_dev; | ||
1760 | |||
1761 | /* get the pci devices we want to reserve for our use */ | ||
1762 | mutex_lock(&sbridge_edac_lock); | ||
1763 | |||
1764 | /* | ||
1765 | * All memory controllers are allocated at the first pass. | ||
1766 | */ | ||
1767 | if (unlikely(probed >= 1)) { | ||
1768 | mutex_unlock(&sbridge_edac_lock); | ||
1769 | return -ENODEV; | ||
1770 | } | ||
1771 | probed++; | ||
1772 | |||
1773 | rc = sbridge_get_all_devices(&num_mc); | ||
1774 | if (unlikely(rc < 0)) | ||
1775 | goto fail0; | ||
1776 | mc = 0; | ||
1777 | |||
1778 | list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) { | ||
1779 | debugf0("Registering MC#%d (%d of %d)\n", mc, mc + 1, num_mc); | ||
1780 | sbridge_dev->mc = mc++; | ||
1781 | rc = sbridge_register_mci(sbridge_dev); | ||
1782 | if (unlikely(rc < 0)) | ||
1783 | goto fail1; | ||
1784 | } | ||
1785 | |||
1786 | sbridge_printk(KERN_INFO, "Driver loaded.\n"); | ||
1787 | |||
1788 | mutex_unlock(&sbridge_edac_lock); | ||
1789 | return 0; | ||
1790 | |||
1791 | fail1: | ||
1792 | list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) | ||
1793 | sbridge_unregister_mci(sbridge_dev); | ||
1794 | |||
1795 | sbridge_put_all_devices(); | ||
1796 | fail0: | ||
1797 | mutex_unlock(&sbridge_edac_lock); | ||
1798 | return rc; | ||
1799 | } | ||
1800 | |||
1801 | /* | ||
1802 | * sbridge_remove destructor for one instance of device | ||
1803 | * | ||
1804 | */ | ||
1805 | static void __devexit sbridge_remove(struct pci_dev *pdev) | ||
1806 | { | ||
1807 | struct sbridge_dev *sbridge_dev; | ||
1808 | |||
1809 | debugf0(__FILE__ ": %s()\n", __func__); | ||
1810 | |||
1811 | /* | ||
1812 | * we have a trouble here: pdev value for removal will be wrong, since | ||
1813 | * it will point to the X58 register used to detect that the machine | ||
1814 | * is a Nehalem or upper design. However, due to the way several PCI | ||
1815 | * devices are grouped together to provide MC functionality, we need | ||
1816 | * to use a different method for releasing the devices | ||
1817 | */ | ||
1818 | |||
1819 | mutex_lock(&sbridge_edac_lock); | ||
1820 | |||
1821 | if (unlikely(!probed)) { | ||
1822 | mutex_unlock(&sbridge_edac_lock); | ||
1823 | return; | ||
1824 | } | ||
1825 | |||
1826 | list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) | ||
1827 | sbridge_unregister_mci(sbridge_dev); | ||
1828 | |||
1829 | /* Release PCI resources */ | ||
1830 | sbridge_put_all_devices(); | ||
1831 | |||
1832 | probed--; | ||
1833 | |||
1834 | mutex_unlock(&sbridge_edac_lock); | ||
1835 | } | ||
1836 | |||
1837 | MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl); | ||
1838 | |||
1839 | /* | ||
1840 | * sbridge_driver pci_driver structure for this module | ||
1841 | * | ||
1842 | */ | ||
1843 | static struct pci_driver sbridge_driver = { | ||
1844 | .name = "sbridge_edac", | ||
1845 | .probe = sbridge_probe, | ||
1846 | .remove = __devexit_p(sbridge_remove), | ||
1847 | .id_table = sbridge_pci_tbl, | ||
1848 | }; | ||
1849 | |||
1850 | /* | ||
1851 | * sbridge_init Module entry function | ||
1852 | * Try to initialize this module for its devices | ||
1853 | */ | ||
1854 | static int __init sbridge_init(void) | ||
1855 | { | ||
1856 | int pci_rc; | ||
1857 | |||
1858 | debugf2("MC: " __FILE__ ": %s()\n", __func__); | ||
1859 | |||
1860 | /* Ensure that the OPSTATE is set correctly for POLL or NMI */ | ||
1861 | opstate_init(); | ||
1862 | |||
1863 | pci_rc = pci_register_driver(&sbridge_driver); | ||
1864 | |||
1865 | if (pci_rc >= 0) | ||
1866 | return 0; | ||
1867 | |||
1868 | sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n", | ||
1869 | pci_rc); | ||
1870 | |||
1871 | return pci_rc; | ||
1872 | } | ||
1873 | |||
1874 | /* | ||
1875 | * sbridge_exit() Module exit function | ||
1876 | * Unregister the driver | ||
1877 | */ | ||
1878 | static void __exit sbridge_exit(void) | ||
1879 | { | ||
1880 | debugf2("MC: " __FILE__ ": %s()\n", __func__); | ||
1881 | pci_unregister_driver(&sbridge_driver); | ||
1882 | } | ||
1883 | |||
1884 | module_init(sbridge_init); | ||
1885 | module_exit(sbridge_exit); | ||
1886 | |||
1887 | module_param(edac_op_state, int, 0444); | ||
1888 | MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); | ||
1889 | |||
1890 | MODULE_LICENSE("GPL"); | ||
1891 | MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>"); | ||
1892 | MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)"); | ||
1893 | MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge memory controllers - " | ||
1894 | SBRIDGE_REVISION); | ||