diff options
| -rw-r--r-- | Documentation/filesystems/ntfs.txt | 42 | ||||
| -rw-r--r-- | fs/ntfs/ChangeLog | 85 | ||||
| -rw-r--r-- | fs/ntfs/Makefile | 2 | ||||
| -rw-r--r-- | fs/ntfs/aops.c | 832 | ||||
| -rw-r--r-- | fs/ntfs/attrib.c | 983 | ||||
| -rw-r--r-- | fs/ntfs/attrib.h | 10 | ||||
| -rw-r--r-- | fs/ntfs/file.c | 2255 | ||||
| -rw-r--r-- | fs/ntfs/inode.c | 514 | ||||
| -rw-r--r-- | fs/ntfs/layout.h | 31 | ||||
| -rw-r--r-- | fs/ntfs/lcnalloc.c | 56 | ||||
| -rw-r--r-- | fs/ntfs/lcnalloc.h | 43 | ||||
| -rw-r--r-- | fs/ntfs/malloc.h | 3 | ||||
| -rw-r--r-- | fs/ntfs/mft.c | 26 | ||||
| -rw-r--r-- | fs/ntfs/super.c | 2 |
14 files changed, 3841 insertions, 1043 deletions
diff --git a/Documentation/filesystems/ntfs.txt b/Documentation/filesystems/ntfs.txt index a5fbc8e897fa..614de3124901 100644 --- a/Documentation/filesystems/ntfs.txt +++ b/Documentation/filesystems/ntfs.txt | |||
| @@ -50,9 +50,14 @@ userspace utilities, etc. | |||
| 50 | Features | 50 | Features |
| 51 | ======== | 51 | ======== |
| 52 | 52 | ||
| 53 | - This is a complete rewrite of the NTFS driver that used to be in the kernel. | 53 | - This is a complete rewrite of the NTFS driver that used to be in the 2.4 and |
| 54 | This new driver implements NTFS read support and is functionally equivalent | 54 | earlier kernels. This new driver implements NTFS read support and is |
| 55 | to the old ntfs driver. | 55 | functionally equivalent to the old ntfs driver and it also implements limited |
| 56 | write support. The biggest limitation at present is that files/directories | ||
| 57 | cannot be created or deleted. See below for the list of write features that | ||
| 58 | are so far supported. Another limitation is that writing to compressed files | ||
| 59 | is not implemented at all. Also, neither read nor write access to encrypted | ||
| 60 | files is so far implemented. | ||
| 56 | - The new driver has full support for sparse files on NTFS 3.x volumes which | 61 | - The new driver has full support for sparse files on NTFS 3.x volumes which |
| 57 | the old driver isn't happy with. | 62 | the old driver isn't happy with. |
| 58 | - The new driver supports execution of binaries due to mmap() now being | 63 | - The new driver supports execution of binaries due to mmap() now being |
| @@ -78,7 +83,20 @@ Features | |||
| 78 | - The new driver supports fsync(2), fdatasync(2), and msync(2). | 83 | - The new driver supports fsync(2), fdatasync(2), and msync(2). |
| 79 | - The new driver supports readv(2) and writev(2). | 84 | - The new driver supports readv(2) and writev(2). |
| 80 | - The new driver supports access time updates (including mtime and ctime). | 85 | - The new driver supports access time updates (including mtime and ctime). |
| 81 | 86 | - The new driver supports truncate(2) and open(2) with O_TRUNC. But at present | |
| 87 | only very limited support for highly fragmented files, i.e. ones which have | ||
| 88 | their data attribute split across multiple extents, is included. Another | ||
| 89 | limitation is that at present truncate(2) will never create sparse files, | ||
| 90 | since to mark a file sparse we need to modify the directory entry for the | ||
| 91 | file and we do not implement directory modifications yet. | ||
| 92 | - The new driver supports write(2) which can both overwrite existing data and | ||
| 93 | extend the file size so that you can write beyond the existing data. Also, | ||
| 94 | writing into sparse regions is supported and the holes are filled in with | ||
| 95 | clusters. But at present only limited support for highly fragmented files, | ||
| 96 | i.e. ones which have their data attribute split across multiple extents, is | ||
| 97 | included. Another limitation is that write(2) will never create sparse | ||
| 98 | files, since to mark a file sparse we need to modify the directory entry for | ||
| 99 | the file and we do not implement directory modifications yet. | ||
| 82 | 100 | ||
| 83 | Supported mount options | 101 | Supported mount options |
| 84 | ======================= | 102 | ======================= |
| @@ -439,6 +457,22 @@ ChangeLog | |||
| 439 | 457 | ||
| 440 | Note, a technical ChangeLog aimed at kernel hackers is in fs/ntfs/ChangeLog. | 458 | Note, a technical ChangeLog aimed at kernel hackers is in fs/ntfs/ChangeLog. |
| 441 | 459 | ||
| 460 | 2.1.25: | ||
| 461 | - Write support is now extended with write(2) being able to both | ||
| 462 | overwrite existing file data and to extend files. Also, if a write | ||
| 463 | to a sparse region occurs, write(2) will fill in the hole. Note, | ||
| 464 | mmap(2) based writes still do not support writing into holes or | ||
| 465 | writing beyond the initialized size. | ||
| 466 | - Write support has a new feature and that is that truncate(2) and | ||
| 467 | open(2) with O_TRUNC are now implemented thus files can be both made | ||
| 468 | smaller and larger. | ||
| 469 | - Note: Both write(2) and truncate(2)/open(2) with O_TRUNC still have | ||
| 470 | limitations in that they | ||
| 471 | - only provide limited support for highly fragmented files. | ||
| 472 | - only work on regular, i.e. uncompressed and unencrypted files. | ||
| 473 | - never create sparse files although this will change once directory | ||
| 474 | operations are implemented. | ||
| 475 | - Lots of bug fixes and enhancements across the board. | ||
| 442 | 2.1.24: | 476 | 2.1.24: |
| 443 | - Support journals ($LogFile) which have been modified by chkdsk. This | 477 | - Support journals ($LogFile) which have been modified by chkdsk. This |
| 444 | means users can boot into Windows after we marked the volume dirty. | 478 | means users can boot into Windows after we marked the volume dirty. |
diff --git a/fs/ntfs/ChangeLog b/fs/ntfs/ChangeLog index de58579a1d0e..50a7749cfca1 100644 --- a/fs/ntfs/ChangeLog +++ b/fs/ntfs/ChangeLog | |||
| @@ -1,18 +1,15 @@ | |||
| 1 | ToDo/Notes: | 1 | ToDo/Notes: |
| 2 | - Find and fix bugs. | 2 | - Find and fix bugs. |
| 3 | - In between ntfs_prepare/commit_write, need exclusion between | 3 | - The only places in the kernel where a file is resized are |
| 4 | simultaneous file extensions. This is given to us by holding i_sem | 4 | ntfs_file_write*() and ntfs_truncate() for both of which i_sem is |
| 5 | on the inode. The only places in the kernel when a file is resized | 5 | held. Just have to be careful in read-/writepage and other helpers |
| 6 | are prepare/commit write and truncate for both of which i_sem is | 6 | not running under i_sem that we play nice... Also need to be careful |
| 7 | held. Just have to be careful in readpage/writepage and all other | 7 | with initialized_size extension in ntfs_file_write*() and writepage. |
| 8 | helpers not running under i_sem that we play nice... | 8 | UPDATE: The only things that need to be checked are the compressed |
| 9 | Also need to be careful with initialized_size extention in | 9 | write and the other attribute resize/write cases like index |
| 10 | ntfs_prepare_write. Basically, just be _very_ careful in this code... | 10 | attributes, etc. For now none of these are implemented so are safe. |
| 11 | UPDATE: The only things that need to be checked are read/writepage | 11 | - Implement filling in of holes in aops.c::ntfs_writepage() and its |
| 12 | which do not hold i_sem. Note writepage cannot change i_size but it | 12 | helpers. |
| 13 | needs to cope with a concurrent i_size change, just like readpage. | ||
| 14 | Also both need to cope with concurrent changes to the other sizes, | ||
| 15 | i.e. initialized/allocated/compressed size, as well. | ||
| 16 | - Implement mft.c::sync_mft_mirror_umount(). We currently will just | 13 | - Implement mft.c::sync_mft_mirror_umount(). We currently will just |
| 17 | leave the volume dirty on umount if the final iput(vol->mft_ino) | 14 | leave the volume dirty on umount if the final iput(vol->mft_ino) |
| 18 | causes a write of any mirrored mft records due to the mft mirror | 15 | causes a write of any mirrored mft records due to the mft mirror |
| @@ -22,6 +19,68 @@ ToDo/Notes: | |||
| 22 | - Enable the code for setting the NT4 compatibility flag when we start | 19 | - Enable the code for setting the NT4 compatibility flag when we start |
| 23 | making NTFS 1.2 specific modifications. | 20 | making NTFS 1.2 specific modifications. |
| 24 | 21 | ||
| 22 | 2.1.25 - (Almost) fully implement write(2) and truncate(2). | ||
| 23 | |||
| 24 | - Change ntfs_map_runlist_nolock(), ntfs_attr_find_vcn_nolock() and | ||
| 25 | {__,}ntfs_cluster_free() to also take an optional attribute search | ||
| 26 | context as argument. This allows calling these functions with the | ||
| 27 | mft record mapped. Update all callers. | ||
| 28 | - Fix potential deadlock in ntfs_mft_data_extend_allocation_nolock() | ||
| 29 | error handling by passing in the active search context when calling | ||
| 30 | ntfs_cluster_free(). | ||
| 31 | - Change ntfs_cluster_alloc() to take an extra boolean parameter | ||
| 32 | specifying whether the cluster are being allocated to extend an | ||
| 33 | attribute or to fill a hole. | ||
| 34 | - Change ntfs_attr_make_non_resident() to call ntfs_cluster_alloc() | ||
| 35 | with @is_extension set to TRUE and remove the runlist terminator | ||
| 36 | fixup code as this is now done by ntfs_cluster_alloc(). | ||
| 37 | - Change ntfs_attr_make_non_resident to take the attribute value size | ||
| 38 | as an extra parameter. This is needed since we need to know the size | ||
| 39 | before we can map the mft record and our callers always know it. The | ||
| 40 | reason we cannot simply read the size from the vfs inode i_size is | ||
| 41 | that this is not necessarily uptodate. This happens when | ||
| 42 | ntfs_attr_make_non_resident() is called in the ->truncate call path. | ||
| 43 | - Fix ntfs_attr_make_non_resident() to update the vfs inode i_blocks | ||
| 44 | which is zero for a resident attribute but should no longer be zero | ||
| 45 | once the attribute is non-resident as it then has real clusters | ||
| 46 | allocated. | ||
| 47 | - Add fs/ntfs/attrib.[hc]::ntfs_attr_extend_allocation(), a function to | ||
| 48 | extend the allocation of an attributes. Optionally, the data size, | ||
| 49 | but not the initialized size can be extended, too. | ||
| 50 | - Implement fs/ntfs/inode.[hc]::ntfs_truncate(). It only supports | ||
| 51 | uncompressed and unencrypted files and it never creates sparse files | ||
| 52 | at least for the moment (making a file sparse requires us to modify | ||
| 53 | its directory entries and we do not support directory operations at | ||
| 54 | the moment). Also, support for highly fragmented files, i.e. ones | ||
| 55 | whose data attribute is split across multiple extents, is severly | ||
| 56 | limited. When such a case is encountered, EOPNOTSUPP is returned. | ||
| 57 | - Enable ATTR_SIZE attribute changes in ntfs_setattr(). This completes | ||
| 58 | the initial implementation of file truncation. Now both open(2)ing | ||
| 59 | a file with the O_TRUNC flag and the {,f}truncate(2) system calls | ||
| 60 | will resize a file appropriately. The limitations are that only | ||
| 61 | uncompressed and unencrypted files are supported. Also, there is | ||
| 62 | only very limited support for highly fragmented files (the ones whose | ||
| 63 | $DATA attribute is split into multiple attribute extents). | ||
| 64 | - In attrib.c::ntfs_attr_set() call balance_dirty_pages_ratelimited() | ||
| 65 | and cond_resched() in the main loop as we could be dirtying a lot of | ||
| 66 | pages and this ensures we play nice with the VM and the system as a | ||
| 67 | whole. | ||
| 68 | - Implement file operations ->write, ->aio_write, ->writev for regular | ||
| 69 | files. This replaces the old use of generic_file_write(), et al and | ||
| 70 | the address space operations ->prepare_write and ->commit_write. | ||
| 71 | This means that both sparse and non-sparse (unencrypted and | ||
| 72 | uncompressed) files can now be extended using the normal write(2) | ||
| 73 | code path. There are two limitations at present and these are that | ||
| 74 | we never create sparse files and that we only have limited support | ||
| 75 | for highly fragmented files, i.e. ones whose data attribute is split | ||
| 76 | across multiple extents. When such a case is encountered, | ||
| 77 | EOPNOTSUPP is returned. | ||
| 78 | - $EA attributes can be both resident and non-resident. | ||
| 79 | - Use %z for size_t to fix compilation warnings. (Andrew Morton) | ||
| 80 | - Fix compilation warnings with gcc-4.0.2 on SUSE 10.0. | ||
| 81 | - Document extended attribute ($EA) NEED_EA flag. (Based on libntfs | ||
| 82 | patch by Yura Pakhuchiy.) | ||
| 83 | |||
| 25 | 2.1.24 - Lots of bug fixes and support more clean journal states. | 84 | 2.1.24 - Lots of bug fixes and support more clean journal states. |
| 26 | 85 | ||
| 27 | - Support journals ($LogFile) which have been modified by chkdsk. This | 86 | - Support journals ($LogFile) which have been modified by chkdsk. This |
diff --git a/fs/ntfs/Makefile b/fs/ntfs/Makefile index 894b2b876d35..d0d45d1c853a 100644 --- a/fs/ntfs/Makefile +++ b/fs/ntfs/Makefile | |||
| @@ -6,7 +6,7 @@ ntfs-objs := aops.o attrib.o collate.o compress.o debug.o dir.o file.o \ | |||
| 6 | index.o inode.o mft.o mst.o namei.o runlist.o super.o sysctl.o \ | 6 | index.o inode.o mft.o mst.o namei.o runlist.o super.o sysctl.o \ |
| 7 | unistr.o upcase.o | 7 | unistr.o upcase.o |
| 8 | 8 | ||
| 9 | EXTRA_CFLAGS = -DNTFS_VERSION=\"2.1.24\" | 9 | EXTRA_CFLAGS = -DNTFS_VERSION=\"2.1.25\" |
| 10 | 10 | ||
| 11 | ifeq ($(CONFIG_NTFS_DEBUG),y) | 11 | ifeq ($(CONFIG_NTFS_DEBUG),y) |
| 12 | EXTRA_CFLAGS += -DDEBUG | 12 | EXTRA_CFLAGS += -DDEBUG |
diff --git a/fs/ntfs/aops.c b/fs/ntfs/aops.c index 5e80c07c6a4d..1c0a4315876a 100644 --- a/fs/ntfs/aops.c +++ b/fs/ntfs/aops.c | |||
| @@ -1391,8 +1391,7 @@ retry_writepage: | |||
| 1391 | if (NInoEncrypted(ni)) { | 1391 | if (NInoEncrypted(ni)) { |
| 1392 | unlock_page(page); | 1392 | unlock_page(page); |
| 1393 | BUG_ON(ni->type != AT_DATA); | 1393 | BUG_ON(ni->type != AT_DATA); |
| 1394 | ntfs_debug("Denying write access to encrypted " | 1394 | ntfs_debug("Denying write access to encrypted file."); |
| 1395 | "file."); | ||
| 1396 | return -EACCES; | 1395 | return -EACCES; |
| 1397 | } | 1396 | } |
| 1398 | /* Compressed data streams are handled in compress.c. */ | 1397 | /* Compressed data streams are handled in compress.c. */ |
| @@ -1508,8 +1507,8 @@ retry_writepage: | |||
| 1508 | /* Zero out of bounds area in the page cache page. */ | 1507 | /* Zero out of bounds area in the page cache page. */ |
| 1509 | memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len); | 1508 | memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len); |
| 1510 | kunmap_atomic(kaddr, KM_USER0); | 1509 | kunmap_atomic(kaddr, KM_USER0); |
| 1511 | flush_dcache_mft_record_page(ctx->ntfs_ino); | ||
| 1512 | flush_dcache_page(page); | 1510 | flush_dcache_page(page); |
| 1511 | flush_dcache_mft_record_page(ctx->ntfs_ino); | ||
| 1513 | /* We are done with the page. */ | 1512 | /* We are done with the page. */ |
| 1514 | end_page_writeback(page); | 1513 | end_page_writeback(page); |
| 1515 | /* Finally, mark the mft record dirty, so it gets written back. */ | 1514 | /* Finally, mark the mft record dirty, so it gets written back. */ |
| @@ -1542,830 +1541,6 @@ err_out: | |||
| 1542 | return err; | 1541 | return err; |
| 1543 | } | 1542 | } |
| 1544 | 1543 | ||
| 1545 | /** | ||
| 1546 | * ntfs_prepare_nonresident_write - | ||
| 1547 | * | ||
| 1548 | */ | ||
| 1549 | static int ntfs_prepare_nonresident_write(struct page *page, | ||
| 1550 | unsigned from, unsigned to) | ||
| 1551 | { | ||
| 1552 | VCN vcn; | ||
| 1553 | LCN lcn; | ||
| 1554 | s64 initialized_size; | ||
| 1555 | loff_t i_size; | ||
| 1556 | sector_t block, ablock, iblock; | ||
| 1557 | struct inode *vi; | ||
| 1558 | ntfs_inode *ni; | ||
| 1559 | ntfs_volume *vol; | ||
| 1560 | runlist_element *rl; | ||
| 1561 | struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; | ||
| 1562 | unsigned long flags; | ||
| 1563 | unsigned int vcn_ofs, block_start, block_end, blocksize; | ||
| 1564 | int err; | ||
| 1565 | BOOL is_retry; | ||
| 1566 | unsigned char blocksize_bits; | ||
| 1567 | |||
| 1568 | vi = page->mapping->host; | ||
| 1569 | ni = NTFS_I(vi); | ||
| 1570 | vol = ni->vol; | ||
| 1571 | |||
| 1572 | ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index " | ||
| 1573 | "0x%lx, from = %u, to = %u.", ni->mft_no, ni->type, | ||
| 1574 | page->index, from, to); | ||
| 1575 | |||
| 1576 | BUG_ON(!NInoNonResident(ni)); | ||
| 1577 | |||
| 1578 | blocksize_bits = vi->i_blkbits; | ||
| 1579 | blocksize = 1 << blocksize_bits; | ||
| 1580 | |||
| 1581 | /* | ||
| 1582 | * create_empty_buffers() will create uptodate/dirty buffers if the | ||
| 1583 | * page is uptodate/dirty. | ||
| 1584 | */ | ||
| 1585 | if (!page_has_buffers(page)) | ||
| 1586 | create_empty_buffers(page, blocksize, 0); | ||
| 1587 | bh = head = page_buffers(page); | ||
| 1588 | if (unlikely(!bh)) | ||
| 1589 | return -ENOMEM; | ||
| 1590 | |||
| 1591 | /* The first block in the page. */ | ||
| 1592 | block = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits); | ||
| 1593 | |||
| 1594 | read_lock_irqsave(&ni->size_lock, flags); | ||
| 1595 | /* | ||
| 1596 | * The first out of bounds block for the allocated size. No need to | ||
| 1597 | * round up as allocated_size is in multiples of cluster size and the | ||
| 1598 | * minimum cluster size is 512 bytes, which is equal to the smallest | ||
| 1599 | * blocksize. | ||
| 1600 | */ | ||
| 1601 | ablock = ni->allocated_size >> blocksize_bits; | ||
| 1602 | i_size = i_size_read(vi); | ||
| 1603 | initialized_size = ni->initialized_size; | ||
| 1604 | read_unlock_irqrestore(&ni->size_lock, flags); | ||
| 1605 | |||
| 1606 | /* The last (fully or partially) initialized block. */ | ||
| 1607 | iblock = initialized_size >> blocksize_bits; | ||
| 1608 | |||
| 1609 | /* Loop through all the buffers in the page. */ | ||
| 1610 | block_start = 0; | ||
| 1611 | rl = NULL; | ||
| 1612 | err = 0; | ||
| 1613 | do { | ||
| 1614 | block_end = block_start + blocksize; | ||
| 1615 | /* | ||
| 1616 | * If buffer @bh is outside the write, just mark it uptodate | ||
| 1617 | * if the page is uptodate and continue with the next buffer. | ||
| 1618 | */ | ||
| 1619 | if (block_end <= from || block_start >= to) { | ||
| 1620 | if (PageUptodate(page)) { | ||
| 1621 | if (!buffer_uptodate(bh)) | ||
| 1622 | set_buffer_uptodate(bh); | ||
| 1623 | } | ||
| 1624 | continue; | ||
| 1625 | } | ||
| 1626 | /* | ||
| 1627 | * @bh is at least partially being written to. | ||
| 1628 | * Make sure it is not marked as new. | ||
| 1629 | */ | ||
| 1630 | //if (buffer_new(bh)) | ||
| 1631 | // clear_buffer_new(bh); | ||
| 1632 | |||
| 1633 | if (block >= ablock) { | ||
| 1634 | // TODO: block is above allocated_size, need to | ||
| 1635 | // allocate it. Best done in one go to accommodate not | ||
| 1636 | // only block but all above blocks up to and including: | ||
| 1637 | // ((page->index << PAGE_CACHE_SHIFT) + to + blocksize | ||
| 1638 | // - 1) >> blobksize_bits. Obviously will need to round | ||
| 1639 | // up to next cluster boundary, too. This should be | ||
| 1640 | // done with a helper function, so it can be reused. | ||
| 1641 | ntfs_error(vol->sb, "Writing beyond allocated size " | ||
| 1642 | "is not supported yet. Sorry."); | ||
| 1643 | err = -EOPNOTSUPP; | ||
| 1644 | goto err_out; | ||
| 1645 | // Need to update ablock. | ||
| 1646 | // Need to set_buffer_new() on all block bhs that are | ||
| 1647 | // newly allocated. | ||
| 1648 | } | ||
| 1649 | /* | ||
| 1650 | * Now we have enough allocated size to fulfill the whole | ||
| 1651 | * request, i.e. block < ablock is true. | ||
| 1652 | */ | ||
| 1653 | if (unlikely((block >= iblock) && | ||
| 1654 | (initialized_size < i_size))) { | ||
| 1655 | /* | ||
| 1656 | * If this page is fully outside initialized size, zero | ||
| 1657 | * out all pages between the current initialized size | ||
| 1658 | * and the current page. Just use ntfs_readpage() to do | ||
| 1659 | * the zeroing transparently. | ||
| 1660 | */ | ||
| 1661 | if (block > iblock) { | ||
| 1662 | // TODO: | ||
| 1663 | // For each page do: | ||
| 1664 | // - read_cache_page() | ||
| 1665 | // Again for each page do: | ||
| 1666 | // - wait_on_page_locked() | ||
| 1667 | // - Check (PageUptodate(page) && | ||
| 1668 | // !PageError(page)) | ||
| 1669 | // Update initialized size in the attribute and | ||
| 1670 | // in the inode. | ||
| 1671 | // Again, for each page do: | ||
| 1672 | // __set_page_dirty_buffers(); | ||
| 1673 | // page_cache_release() | ||
| 1674 | // We don't need to wait on the writes. | ||
| 1675 | // Update iblock. | ||
| 1676 | } | ||
| 1677 | /* | ||
| 1678 | * The current page straddles initialized size. Zero | ||
| 1679 | * all non-uptodate buffers and set them uptodate (and | ||
| 1680 | * dirty?). Note, there aren't any non-uptodate buffers | ||
| 1681 | * if the page is uptodate. | ||
| 1682 | * FIXME: For an uptodate page, the buffers may need to | ||
| 1683 | * be written out because they were not initialized on | ||
| 1684 | * disk before. | ||
| 1685 | */ | ||
| 1686 | if (!PageUptodate(page)) { | ||
| 1687 | // TODO: | ||
| 1688 | // Zero any non-uptodate buffers up to i_size. | ||
| 1689 | // Set them uptodate and dirty. | ||
| 1690 | } | ||
| 1691 | // TODO: | ||
| 1692 | // Update initialized size in the attribute and in the | ||
| 1693 | // inode (up to i_size). | ||
| 1694 | // Update iblock. | ||
| 1695 | // FIXME: This is inefficient. Try to batch the two | ||
| 1696 | // size changes to happen in one go. | ||
| 1697 | ntfs_error(vol->sb, "Writing beyond initialized size " | ||
| 1698 | "is not supported yet. Sorry."); | ||
| 1699 | err = -EOPNOTSUPP; | ||
| 1700 | goto err_out; | ||
| 1701 | // Do NOT set_buffer_new() BUT DO clear buffer range | ||
| 1702 | // outside write request range. | ||
| 1703 | // set_buffer_uptodate() on complete buffers as well as | ||
| 1704 | // set_buffer_dirty(). | ||
| 1705 | } | ||
| 1706 | |||
| 1707 | /* Need to map unmapped buffers. */ | ||
| 1708 | if (!buffer_mapped(bh)) { | ||
| 1709 | /* Unmapped buffer. Need to map it. */ | ||
| 1710 | bh->b_bdev = vol->sb->s_bdev; | ||
| 1711 | |||
| 1712 | /* Convert block into corresponding vcn and offset. */ | ||
| 1713 | vcn = (VCN)block << blocksize_bits >> | ||
| 1714 | vol->cluster_size_bits; | ||
| 1715 | vcn_ofs = ((VCN)block << blocksize_bits) & | ||
| 1716 | vol->cluster_size_mask; | ||
| 1717 | |||
| 1718 | is_retry = FALSE; | ||
| 1719 | if (!rl) { | ||
| 1720 | lock_retry_remap: | ||
| 1721 | down_read(&ni->runlist.lock); | ||
| 1722 | rl = ni->runlist.rl; | ||
| 1723 | } | ||
| 1724 | if (likely(rl != NULL)) { | ||
| 1725 | /* Seek to element containing target vcn. */ | ||
| 1726 | while (rl->length && rl[1].vcn <= vcn) | ||
| 1727 | rl++; | ||
| 1728 | lcn = ntfs_rl_vcn_to_lcn(rl, vcn); | ||
| 1729 | } else | ||
| 1730 | lcn = LCN_RL_NOT_MAPPED; | ||
| 1731 | if (unlikely(lcn < 0)) { | ||
| 1732 | /* | ||
| 1733 | * We extended the attribute allocation above. | ||
| 1734 | * If we hit an ENOENT here it means that the | ||
| 1735 | * allocation was insufficient which is a bug. | ||
| 1736 | */ | ||
| 1737 | BUG_ON(lcn == LCN_ENOENT); | ||
| 1738 | |||
| 1739 | /* It is a hole, need to instantiate it. */ | ||
| 1740 | if (lcn == LCN_HOLE) { | ||
| 1741 | // TODO: Instantiate the hole. | ||
| 1742 | // clear_buffer_new(bh); | ||
| 1743 | // unmap_underlying_metadata(bh->b_bdev, | ||
| 1744 | // bh->b_blocknr); | ||
| 1745 | // For non-uptodate buffers, need to | ||
| 1746 | // zero out the region outside the | ||
| 1747 | // request in this bh or all bhs, | ||
| 1748 | // depending on what we implemented | ||
| 1749 | // above. | ||
| 1750 | // Need to flush_dcache_page(). | ||
| 1751 | // Or could use set_buffer_new() | ||
| 1752 | // instead? | ||
| 1753 | ntfs_error(vol->sb, "Writing into " | ||
| 1754 | "sparse regions is " | ||
| 1755 | "not supported yet. " | ||
| 1756 | "Sorry."); | ||
| 1757 | err = -EOPNOTSUPP; | ||
| 1758 | if (!rl) | ||
| 1759 | up_read(&ni->runlist.lock); | ||
| 1760 | goto err_out; | ||
| 1761 | } else if (!is_retry && | ||
| 1762 | lcn == LCN_RL_NOT_MAPPED) { | ||
| 1763 | is_retry = TRUE; | ||
| 1764 | /* | ||
| 1765 | * Attempt to map runlist, dropping | ||
| 1766 | * lock for the duration. | ||
| 1767 | */ | ||
| 1768 | up_read(&ni->runlist.lock); | ||
| 1769 | err = ntfs_map_runlist(ni, vcn); | ||
| 1770 | if (likely(!err)) | ||
| 1771 | goto lock_retry_remap; | ||
| 1772 | rl = NULL; | ||
| 1773 | } else if (!rl) | ||
| 1774 | up_read(&ni->runlist.lock); | ||
| 1775 | /* | ||
| 1776 | * Failed to map the buffer, even after | ||
| 1777 | * retrying. | ||
| 1778 | */ | ||
| 1779 | if (!err) | ||
| 1780 | err = -EIO; | ||
| 1781 | bh->b_blocknr = -1; | ||
| 1782 | ntfs_error(vol->sb, "Failed to write to inode " | ||
| 1783 | "0x%lx, attribute type 0x%x, " | ||
| 1784 | "vcn 0x%llx, offset 0x%x " | ||
| 1785 | "because its location on disk " | ||
| 1786 | "could not be determined%s " | ||
| 1787 | "(error code %i).", | ||
| 1788 | ni->mft_no, ni->type, | ||
| 1789 | (unsigned long long)vcn, | ||
| 1790 | vcn_ofs, is_retry ? " even " | ||
| 1791 | "after retrying" : "", err); | ||
| 1792 | goto err_out; | ||
| 1793 | } | ||
| 1794 | /* We now have a successful remap, i.e. lcn >= 0. */ | ||
| 1795 | |||
| 1796 | /* Setup buffer head to correct block. */ | ||
| 1797 | bh->b_blocknr = ((lcn << vol->cluster_size_bits) | ||
| 1798 | + vcn_ofs) >> blocksize_bits; | ||
| 1799 | set_buffer_mapped(bh); | ||
| 1800 | |||
| 1801 | // FIXME: Something analogous to this is needed for | ||
| 1802 | // each newly allocated block, i.e. BH_New. | ||
| 1803 | // FIXME: Might need to take this out of the | ||
| 1804 | // if (!buffer_mapped(bh)) {}, depending on how we | ||
| 1805 | // implement things during the allocated_size and | ||
| 1806 | // initialized_size extension code above. | ||
| 1807 | if (buffer_new(bh)) { | ||
| 1808 | clear_buffer_new(bh); | ||
| 1809 | unmap_underlying_metadata(bh->b_bdev, | ||
| 1810 | bh->b_blocknr); | ||
| 1811 | if (PageUptodate(page)) { | ||
| 1812 | set_buffer_uptodate(bh); | ||
| 1813 | continue; | ||
| 1814 | } | ||
| 1815 | /* | ||
| 1816 | * Page is _not_ uptodate, zero surrounding | ||
| 1817 | * region. NOTE: This is how we decide if to | ||
| 1818 | * zero or not! | ||
| 1819 | */ | ||
| 1820 | if (block_end > to || block_start < from) { | ||
| 1821 | void *kaddr; | ||
| 1822 | |||
| 1823 | kaddr = kmap_atomic(page, KM_USER0); | ||
| 1824 | if (block_end > to) | ||
| 1825 | memset(kaddr + to, 0, | ||
| 1826 | block_end - to); | ||
| 1827 | if (block_start < from) | ||
| 1828 | memset(kaddr + block_start, 0, | ||
| 1829 | from - | ||
| 1830 | block_start); | ||
| 1831 | flush_dcache_page(page); | ||
| 1832 | kunmap_atomic(kaddr, KM_USER0); | ||
| 1833 | } | ||
| 1834 | continue; | ||
| 1835 | } | ||
| 1836 | } | ||
| 1837 | /* @bh is mapped, set it uptodate if the page is uptodate. */ | ||
| 1838 | if (PageUptodate(page)) { | ||
| 1839 | if (!buffer_uptodate(bh)) | ||
| 1840 | set_buffer_uptodate(bh); | ||
| 1841 | continue; | ||
| 1842 | } | ||
| 1843 | /* | ||
| 1844 | * The page is not uptodate. The buffer is mapped. If it is not | ||
| 1845 | * uptodate, and it is only partially being written to, we need | ||
| 1846 | * to read the buffer in before the write, i.e. right now. | ||
| 1847 | */ | ||
| 1848 | if (!buffer_uptodate(bh) && | ||
| 1849 | (block_start < from || block_end > to)) { | ||
| 1850 | ll_rw_block(READ, 1, &bh); | ||
| 1851 | *wait_bh++ = bh; | ||
| 1852 | } | ||
| 1853 | } while (block++, block_start = block_end, | ||
| 1854 | (bh = bh->b_this_page) != head); | ||
| 1855 | |||
| 1856 | /* Release the lock if we took it. */ | ||
| 1857 | if (rl) { | ||
| 1858 | up_read(&ni->runlist.lock); | ||
| 1859 | rl = NULL; | ||
| 1860 | } | ||
| 1861 | |||
| 1862 | /* If we issued read requests, let them complete. */ | ||
| 1863 | while (wait_bh > wait) { | ||
| 1864 | wait_on_buffer(*--wait_bh); | ||
| 1865 | if (!buffer_uptodate(*wait_bh)) | ||
| 1866 | return -EIO; | ||
| 1867 | } | ||
| 1868 | |||
| 1869 | ntfs_debug("Done."); | ||
| 1870 | return 0; | ||
| 1871 | err_out: | ||
| 1872 | /* | ||
| 1873 | * Zero out any newly allocated blocks to avoid exposing stale data. | ||
| 1874 | * If BH_New is set, we know that the block was newly allocated in the | ||
| 1875 | * above loop. | ||
| 1876 | * FIXME: What about initialized_size increments? Have we done all the | ||
| 1877 | * required zeroing above? If not this error handling is broken, and | ||
| 1878 | * in particular the if (block_end <= from) check is completely bogus. | ||
| 1879 | */ | ||
| 1880 | bh = head; | ||
| 1881 | block_start = 0; | ||
| 1882 | is_retry = FALSE; | ||
| 1883 | do { | ||
| 1884 | block_end = block_start + blocksize; | ||
| 1885 | if (block_end <= from) | ||
| 1886 | continue; | ||
| 1887 | if (block_start >= to) | ||
| 1888 | break; | ||
| 1889 | if (buffer_new(bh)) { | ||
| 1890 | void *kaddr; | ||
| 1891 | |||
| 1892 | clear_buffer_new(bh); | ||
| 1893 | kaddr = kmap_atomic(page, KM_USER0); | ||
| 1894 | memset(kaddr + block_start, 0, bh->b_size); | ||
| 1895 | kunmap_atomic(kaddr, KM_USER0); | ||
| 1896 | set_buffer_uptodate(bh); | ||
| 1897 | mark_buffer_dirty(bh); | ||
| 1898 | is_retry = TRUE; | ||
| 1899 | } | ||
| 1900 | } while (block_start = block_end, (bh = bh->b_this_page) != head); | ||
| 1901 | if (is_retry) | ||
| 1902 | flush_dcache_page(page); | ||
| 1903 | if (rl) | ||
| 1904 | up_read(&ni->runlist.lock); | ||
| 1905 | return err; | ||
| 1906 | } | ||
| 1907 | |||
| 1908 | /** | ||
| 1909 | * ntfs_prepare_write - prepare a page for receiving data | ||
| 1910 | * | ||
| 1911 | * This is called from generic_file_write() with i_sem held on the inode | ||
| 1912 | * (@page->mapping->host). The @page is locked but not kmap()ped. The source | ||
| 1913 | * data has not yet been copied into the @page. | ||
| 1914 | * | ||
| 1915 | * Need to extend the attribute/fill in holes if necessary, create blocks and | ||
| 1916 | * make partially overwritten blocks uptodate, | ||
| 1917 | * | ||
| 1918 | * i_size is not to be modified yet. | ||
| 1919 | * | ||
| 1920 | * Return 0 on success or -errno on error. | ||
| 1921 | * | ||
| 1922 | * Should be using block_prepare_write() [support for sparse files] or | ||
| 1923 | * cont_prepare_write() [no support for sparse files]. Cannot do that due to | ||
| 1924 | * ntfs specifics but can look at them for implementation guidance. | ||
| 1925 | * | ||
| 1926 | * Note: In the range, @from is inclusive and @to is exclusive, i.e. @from is | ||
| 1927 | * the first byte in the page that will be written to and @to is the first byte | ||
| 1928 | * after the last byte that will be written to. | ||
| 1929 | */ | ||
| 1930 | static int ntfs_prepare_write(struct file *file, struct page *page, | ||
| 1931 | unsigned from, unsigned to) | ||
| 1932 | { | ||
| 1933 | s64 new_size; | ||
| 1934 | loff_t i_size; | ||
| 1935 | struct inode *vi = page->mapping->host; | ||
| 1936 | ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi); | ||
| 1937 | ntfs_volume *vol = ni->vol; | ||
| 1938 | ntfs_attr_search_ctx *ctx = NULL; | ||
| 1939 | MFT_RECORD *m = NULL; | ||
| 1940 | ATTR_RECORD *a; | ||
| 1941 | u8 *kaddr; | ||
| 1942 | u32 attr_len; | ||
| 1943 | int err; | ||
| 1944 | |||
| 1945 | ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index " | ||
| 1946 | "0x%lx, from = %u, to = %u.", vi->i_ino, ni->type, | ||
| 1947 | page->index, from, to); | ||
| 1948 | BUG_ON(!PageLocked(page)); | ||
| 1949 | BUG_ON(from > PAGE_CACHE_SIZE); | ||
| 1950 | BUG_ON(to > PAGE_CACHE_SIZE); | ||
| 1951 | BUG_ON(from > to); | ||
| 1952 | BUG_ON(NInoMstProtected(ni)); | ||
| 1953 | /* | ||
| 1954 | * If a previous ntfs_truncate() failed, repeat it and abort if it | ||
| 1955 | * fails again. | ||
| 1956 | */ | ||
| 1957 | if (unlikely(NInoTruncateFailed(ni))) { | ||
| 1958 | down_write(&vi->i_alloc_sem); | ||
| 1959 | err = ntfs_truncate(vi); | ||
| 1960 | up_write(&vi->i_alloc_sem); | ||
| 1961 | if (err || NInoTruncateFailed(ni)) { | ||
| 1962 | if (!err) | ||
| 1963 | err = -EIO; | ||
| 1964 | goto err_out; | ||
| 1965 | } | ||
| 1966 | } | ||
| 1967 | /* If the attribute is not resident, deal with it elsewhere. */ | ||
| 1968 | if (NInoNonResident(ni)) { | ||
| 1969 | /* | ||
| 1970 | * Only unnamed $DATA attributes can be compressed, encrypted, | ||
| 1971 | * and/or sparse. | ||
| 1972 | */ | ||
| 1973 | if (ni->type == AT_DATA && !ni->name_len) { | ||
| 1974 | /* If file is encrypted, deny access, just like NT4. */ | ||
| 1975 | if (NInoEncrypted(ni)) { | ||
| 1976 | ntfs_debug("Denying write access to encrypted " | ||
| 1977 | "file."); | ||
| 1978 | return -EACCES; | ||
| 1979 | } | ||
| 1980 | /* Compressed data streams are handled in compress.c. */ | ||
| 1981 | if (NInoCompressed(ni)) { | ||
| 1982 | // TODO: Implement and replace this check with | ||
| 1983 | // return ntfs_write_compressed_block(page); | ||
| 1984 | ntfs_error(vi->i_sb, "Writing to compressed " | ||
| 1985 | "files is not supported yet. " | ||
| 1986 | "Sorry."); | ||
| 1987 | return -EOPNOTSUPP; | ||
| 1988 | } | ||
| 1989 | // TODO: Implement and remove this check. | ||
| 1990 | if (NInoSparse(ni)) { | ||
| 1991 | ntfs_error(vi->i_sb, "Writing to sparse files " | ||
| 1992 | "is not supported yet. Sorry."); | ||
| 1993 | return -EOPNOTSUPP; | ||
| 1994 | } | ||
| 1995 | } | ||
| 1996 | /* Normal data stream. */ | ||
| 1997 | return ntfs_prepare_nonresident_write(page, from, to); | ||
| 1998 | } | ||
| 1999 | /* | ||
| 2000 | * Attribute is resident, implying it is not compressed, encrypted, or | ||
| 2001 | * sparse. | ||
| 2002 | */ | ||
| 2003 | BUG_ON(page_has_buffers(page)); | ||
| 2004 | new_size = ((s64)page->index << PAGE_CACHE_SHIFT) + to; | ||
| 2005 | /* If we do not need to resize the attribute allocation we are done. */ | ||
| 2006 | if (new_size <= i_size_read(vi)) | ||
| 2007 | goto done; | ||
| 2008 | /* Map, pin, and lock the (base) mft record. */ | ||
| 2009 | if (!NInoAttr(ni)) | ||
| 2010 | base_ni = ni; | ||
| 2011 | else | ||
| 2012 | base_ni = ni->ext.base_ntfs_ino; | ||
| 2013 | m = map_mft_record(base_ni); | ||
| 2014 | if (IS_ERR(m)) { | ||
| 2015 | err = PTR_ERR(m); | ||
| 2016 | m = NULL; | ||
| 2017 | ctx = NULL; | ||
| 2018 | goto err_out; | ||
| 2019 | } | ||
| 2020 | ctx = ntfs_attr_get_search_ctx(base_ni, m); | ||
| 2021 | if (unlikely(!ctx)) { | ||
| 2022 | err = -ENOMEM; | ||
| 2023 | goto err_out; | ||
| 2024 | } | ||
| 2025 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | ||
| 2026 | CASE_SENSITIVE, 0, NULL, 0, ctx); | ||
| 2027 | if (unlikely(err)) { | ||
| 2028 | if (err == -ENOENT) | ||
| 2029 | err = -EIO; | ||
| 2030 | goto err_out; | ||
| 2031 | } | ||
| 2032 | m = ctx->mrec; | ||
| 2033 | a = ctx->attr; | ||
| 2034 | /* The total length of the attribute value. */ | ||
| 2035 | attr_len = le32_to_cpu(a->data.resident.value_length); | ||
| 2036 | /* Fix an eventual previous failure of ntfs_commit_write(). */ | ||
| 2037 | i_size = i_size_read(vi); | ||
| 2038 | if (unlikely(attr_len > i_size)) { | ||
| 2039 | attr_len = i_size; | ||
| 2040 | a->data.resident.value_length = cpu_to_le32(attr_len); | ||
| 2041 | } | ||
| 2042 | /* If we do not need to resize the attribute allocation we are done. */ | ||
| 2043 | if (new_size <= attr_len) | ||
| 2044 | goto done_unm; | ||
| 2045 | /* Check if new size is allowed in $AttrDef. */ | ||
| 2046 | err = ntfs_attr_size_bounds_check(vol, ni->type, new_size); | ||
| 2047 | if (unlikely(err)) { | ||
| 2048 | if (err == -ERANGE) { | ||
| 2049 | ntfs_error(vol->sb, "Write would cause the inode " | ||
| 2050 | "0x%lx to exceed the maximum size for " | ||
| 2051 | "its attribute type (0x%x). Aborting " | ||
| 2052 | "write.", vi->i_ino, | ||
| 2053 | le32_to_cpu(ni->type)); | ||
| 2054 | } else { | ||
| 2055 | ntfs_error(vol->sb, "Inode 0x%lx has unknown " | ||
| 2056 | "attribute type 0x%x. Aborting " | ||
| 2057 | "write.", vi->i_ino, | ||
| 2058 | le32_to_cpu(ni->type)); | ||
| 2059 | err = -EIO; | ||
| 2060 | } | ||
| 2061 | goto err_out2; | ||
| 2062 | } | ||
| 2063 | /* | ||
| 2064 | * Extend the attribute record to be able to store the new attribute | ||
| 2065 | * size. | ||
| 2066 | */ | ||
| 2067 | if (new_size >= vol->mft_record_size || ntfs_attr_record_resize(m, a, | ||
| 2068 | le16_to_cpu(a->data.resident.value_offset) + | ||
| 2069 | new_size)) { | ||
| 2070 | /* Not enough space in the mft record. */ | ||
| 2071 | ntfs_error(vol->sb, "Not enough space in the mft record for " | ||
| 2072 | "the resized attribute value. This is not " | ||
| 2073 | "supported yet. Aborting write."); | ||
| 2074 | err = -EOPNOTSUPP; | ||
| 2075 | goto err_out2; | ||
| 2076 | } | ||
| 2077 | /* | ||
| 2078 | * We have enough space in the mft record to fit the write. This | ||
| 2079 | * implies the attribute is smaller than the mft record and hence the | ||
| 2080 | * attribute must be in a single page and hence page->index must be 0. | ||
| 2081 | */ | ||
| 2082 | BUG_ON(page->index); | ||
| 2083 | /* | ||
| 2084 | * If the beginning of the write is past the old size, enlarge the | ||
| 2085 | * attribute value up to the beginning of the write and fill it with | ||
| 2086 | * zeroes. | ||
| 2087 | */ | ||
| 2088 | if (from > attr_len) { | ||
| 2089 | memset((u8*)a + le16_to_cpu(a->data.resident.value_offset) + | ||
| 2090 | attr_len, 0, from - attr_len); | ||
| 2091 | a->data.resident.value_length = cpu_to_le32(from); | ||
| 2092 | /* Zero the corresponding area in the page as well. */ | ||
| 2093 | if (PageUptodate(page)) { | ||
| 2094 | kaddr = kmap_atomic(page, KM_USER0); | ||
| 2095 | memset(kaddr + attr_len, 0, from - attr_len); | ||
| 2096 | kunmap_atomic(kaddr, KM_USER0); | ||
| 2097 | flush_dcache_page(page); | ||
| 2098 | } | ||
| 2099 | } | ||
| 2100 | flush_dcache_mft_record_page(ctx->ntfs_ino); | ||
| 2101 | mark_mft_record_dirty(ctx->ntfs_ino); | ||
| 2102 | done_unm: | ||
| 2103 | ntfs_attr_put_search_ctx(ctx); | ||
| 2104 | unmap_mft_record(base_ni); | ||
| 2105 | /* | ||
| 2106 | * Because resident attributes are handled by memcpy() to/from the | ||
| 2107 | * corresponding MFT record, and because this form of i/o is byte | ||
| 2108 | * aligned rather than block aligned, there is no need to bring the | ||
| 2109 | * page uptodate here as in the non-resident case where we need to | ||
| 2110 | * bring the buffers straddled by the write uptodate before | ||
| 2111 | * generic_file_write() does the copying from userspace. | ||
| 2112 | * | ||
| 2113 | * We thus defer the uptodate bringing of the page region outside the | ||
| 2114 | * region written to to ntfs_commit_write(), which makes the code | ||
| 2115 | * simpler and saves one atomic kmap which is good. | ||
| 2116 | */ | ||
| 2117 | done: | ||
| 2118 | ntfs_debug("Done."); | ||
| 2119 | return 0; | ||
| 2120 | err_out: | ||
| 2121 | if (err == -ENOMEM) | ||
| 2122 | ntfs_warning(vi->i_sb, "Error allocating memory required to " | ||
| 2123 | "prepare the write."); | ||
| 2124 | else { | ||
| 2125 | ntfs_error(vi->i_sb, "Resident attribute prepare write failed " | ||
| 2126 | "with error %i.", err); | ||
| 2127 | NVolSetErrors(vol); | ||
| 2128 | make_bad_inode(vi); | ||
| 2129 | } | ||
| 2130 | err_out2: | ||
| 2131 | if (ctx) | ||
| 2132 | ntfs_attr_put_search_ctx(ctx); | ||
| 2133 | if (m) | ||
| 2134 | unmap_mft_record(base_ni); | ||
| 2135 | return err; | ||
| 2136 | } | ||
| 2137 | |||
| 2138 | /** | ||
| 2139 | * ntfs_commit_nonresident_write - | ||
| 2140 | * | ||
| 2141 | */ | ||
| 2142 | static int ntfs_commit_nonresident_write(struct page *page, | ||
| 2143 | unsigned from, unsigned to) | ||
| 2144 | { | ||
| 2145 | s64 pos = ((s64)page->index << PAGE_CACHE_SHIFT) + to; | ||
| 2146 | struct inode *vi = page->mapping->host; | ||
| 2147 | struct buffer_head *bh, *head; | ||
| 2148 | unsigned int block_start, block_end, blocksize; | ||
| 2149 | BOOL partial; | ||
| 2150 | |||
| 2151 | ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index " | ||
| 2152 | "0x%lx, from = %u, to = %u.", vi->i_ino, | ||
| 2153 | NTFS_I(vi)->type, page->index, from, to); | ||
| 2154 | blocksize = 1 << vi->i_blkbits; | ||
| 2155 | |||
| 2156 | // FIXME: We need a whole slew of special cases in here for compressed | ||
| 2157 | // files for example... | ||
| 2158 | // For now, we know ntfs_prepare_write() would have failed so we can't | ||
| 2159 | // get here in any of the cases which we have to special case, so we | ||
| 2160 | // are just a ripped off, unrolled generic_commit_write(). | ||
| 2161 | |||
| 2162 | bh = head = page_buffers(page); | ||
| 2163 | block_start = 0; | ||
| 2164 | partial = FALSE; | ||
| 2165 | do { | ||
| 2166 | block_end = block_start + blocksize; | ||
| 2167 | if (block_end <= from || block_start >= to) { | ||
| 2168 | if (!buffer_uptodate(bh)) | ||
| 2169 | partial = TRUE; | ||
| 2170 | } else { | ||
| 2171 | set_buffer_uptodate(bh); | ||
| 2172 | mark_buffer_dirty(bh); | ||
| 2173 | } | ||
| 2174 | } while (block_start = block_end, (bh = bh->b_this_page) != head); | ||
| 2175 | /* | ||
| 2176 | * If this is a partial write which happened to make all buffers | ||
| 2177 | * uptodate then we can optimize away a bogus ->readpage() for the next | ||
| 2178 | * read(). Here we 'discover' whether the page went uptodate as a | ||
| 2179 | * result of this (potentially partial) write. | ||
| 2180 | */ | ||
| 2181 | if (!partial) | ||
| 2182 | SetPageUptodate(page); | ||
| 2183 | /* | ||
| 2184 | * Not convinced about this at all. See disparity comment above. For | ||
| 2185 | * now we know ntfs_prepare_write() would have failed in the write | ||
| 2186 | * exceeds i_size case, so this will never trigger which is fine. | ||
| 2187 | */ | ||
| 2188 | if (pos > i_size_read(vi)) { | ||
| 2189 | ntfs_error(vi->i_sb, "Writing beyond the existing file size is " | ||
| 2190 | "not supported yet. Sorry."); | ||
| 2191 | return -EOPNOTSUPP; | ||
| 2192 | // vi->i_size = pos; | ||
| 2193 | // mark_inode_dirty(vi); | ||
| 2194 | } | ||
| 2195 | ntfs_debug("Done."); | ||
| 2196 | return 0; | ||
| 2197 | } | ||
| 2198 | |||
| 2199 | /** | ||
| 2200 | * ntfs_commit_write - commit the received data | ||
| 2201 | * | ||
| 2202 | * This is called from generic_file_write() with i_sem held on the inode | ||
| 2203 | * (@page->mapping->host). The @page is locked but not kmap()ped. The source | ||
| 2204 | * data has already been copied into the @page. ntfs_prepare_write() has been | ||
| 2205 | * called before the data copied and it returned success so we can take the | ||
| 2206 | * results of various BUG checks and some error handling for granted. | ||
| 2207 | * | ||
| 2208 | * Need to mark modified blocks dirty so they get written out later when | ||
| 2209 | * ntfs_writepage() is invoked by the VM. | ||
| 2210 | * | ||
| 2211 | * Return 0 on success or -errno on error. | ||
| 2212 | * | ||
| 2213 | * Should be using generic_commit_write(). This marks buffers uptodate and | ||
| 2214 | * dirty, sets the page uptodate if all buffers in the page are uptodate, and | ||
| 2215 | * updates i_size if the end of io is beyond i_size. In that case, it also | ||
| 2216 | * marks the inode dirty. | ||
| 2217 | * | ||
| 2218 | * Cannot use generic_commit_write() due to ntfs specialities but can look at | ||
| 2219 | * it for implementation guidance. | ||
| 2220 | * | ||
| 2221 | * If things have gone as outlined in ntfs_prepare_write(), then we do not | ||
| 2222 | * need to do any page content modifications here at all, except in the write | ||
| 2223 | * to resident attribute case, where we need to do the uptodate bringing here | ||
| 2224 | * which we combine with the copying into the mft record which means we save | ||
| 2225 | * one atomic kmap. | ||
| 2226 | */ | ||
| 2227 | static int ntfs_commit_write(struct file *file, struct page *page, | ||
| 2228 | unsigned from, unsigned to) | ||
| 2229 | { | ||
| 2230 | struct inode *vi = page->mapping->host; | ||
| 2231 | ntfs_inode *base_ni, *ni = NTFS_I(vi); | ||
| 2232 | char *kaddr, *kattr; | ||
| 2233 | ntfs_attr_search_ctx *ctx; | ||
| 2234 | MFT_RECORD *m; | ||
| 2235 | ATTR_RECORD *a; | ||
| 2236 | u32 attr_len; | ||
| 2237 | int err; | ||
| 2238 | |||
| 2239 | ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index " | ||
| 2240 | "0x%lx, from = %u, to = %u.", vi->i_ino, ni->type, | ||
| 2241 | page->index, from, to); | ||
| 2242 | /* If the attribute is not resident, deal with it elsewhere. */ | ||
| 2243 | if (NInoNonResident(ni)) { | ||
| 2244 | /* Only unnamed $DATA attributes can be compressed/encrypted. */ | ||
| 2245 | if (ni->type == AT_DATA && !ni->name_len) { | ||
| 2246 | /* Encrypted files need separate handling. */ | ||
| 2247 | if (NInoEncrypted(ni)) { | ||
| 2248 | // We never get here at present! | ||
| 2249 | BUG(); | ||
| 2250 | } | ||
| 2251 | /* Compressed data streams are handled in compress.c. */ | ||
| 2252 | if (NInoCompressed(ni)) { | ||
| 2253 | // TODO: Implement this! | ||
| 2254 | // return ntfs_write_compressed_block(page); | ||
| 2255 | // We never get here at present! | ||
| 2256 | BUG(); | ||
| 2257 | } | ||
| 2258 | } | ||
| 2259 | /* Normal data stream. */ | ||
| 2260 | return ntfs_commit_nonresident_write(page, from, to); | ||
| 2261 | } | ||
| 2262 | /* | ||
| 2263 | * Attribute is resident, implying it is not compressed, encrypted, or | ||
| 2264 | * sparse. | ||
| 2265 | */ | ||
| 2266 | if (!NInoAttr(ni)) | ||
| 2267 | base_ni = ni; | ||
| 2268 | else | ||
| 2269 | base_ni = ni->ext.base_ntfs_ino; | ||
| 2270 | /* Map, pin, and lock the mft record. */ | ||
| 2271 | m = map_mft_record(base_ni); | ||
| 2272 | if (IS_ERR(m)) { | ||
| 2273 | err = PTR_ERR(m); | ||
| 2274 | m = NULL; | ||
| 2275 | ctx = NULL; | ||
| 2276 | goto err_out; | ||
| 2277 | } | ||
| 2278 | ctx = ntfs_attr_get_search_ctx(base_ni, m); | ||
| 2279 | if (unlikely(!ctx)) { | ||
| 2280 | err = -ENOMEM; | ||
| 2281 | goto err_out; | ||
| 2282 | } | ||
| 2283 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | ||
| 2284 | CASE_SENSITIVE, 0, NULL, 0, ctx); | ||
| 2285 | if (unlikely(err)) { | ||
| 2286 | if (err == -ENOENT) | ||
| 2287 | err = -EIO; | ||
| 2288 | goto err_out; | ||
| 2289 | } | ||
| 2290 | a = ctx->attr; | ||
| 2291 | /* The total length of the attribute value. */ | ||
| 2292 | attr_len = le32_to_cpu(a->data.resident.value_length); | ||
| 2293 | BUG_ON(from > attr_len); | ||
| 2294 | kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset); | ||
| 2295 | kaddr = kmap_atomic(page, KM_USER0); | ||
| 2296 | /* Copy the received data from the page to the mft record. */ | ||
| 2297 | memcpy(kattr + from, kaddr + from, to - from); | ||
| 2298 | /* Update the attribute length if necessary. */ | ||
| 2299 | if (to > attr_len) { | ||
| 2300 | attr_len = to; | ||
| 2301 | a->data.resident.value_length = cpu_to_le32(attr_len); | ||
| 2302 | } | ||
| 2303 | /* | ||
| 2304 | * If the page is not uptodate, bring the out of bounds area(s) | ||
| 2305 | * uptodate by copying data from the mft record to the page. | ||
| 2306 | */ | ||
| 2307 | if (!PageUptodate(page)) { | ||
| 2308 | if (from > 0) | ||
| 2309 | memcpy(kaddr, kattr, from); | ||
| 2310 | if (to < attr_len) | ||
| 2311 | memcpy(kaddr + to, kattr + to, attr_len - to); | ||
| 2312 | /* Zero the region outside the end of the attribute value. */ | ||
| 2313 | if (attr_len < PAGE_CACHE_SIZE) | ||
| 2314 | memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len); | ||
| 2315 | /* | ||
| 2316 | * The probability of not having done any of the above is | ||
| 2317 | * extremely small, so we just flush unconditionally. | ||
| 2318 | */ | ||
| 2319 | flush_dcache_page(page); | ||
| 2320 | SetPageUptodate(page); | ||
| 2321 | } | ||
| 2322 | kunmap_atomic(kaddr, KM_USER0); | ||
| 2323 | /* Update i_size if necessary. */ | ||
| 2324 | if (i_size_read(vi) < attr_len) { | ||
| 2325 | unsigned long flags; | ||
| 2326 | |||
| 2327 | write_lock_irqsave(&ni->size_lock, flags); | ||
| 2328 | ni->allocated_size = ni->initialized_size = attr_len; | ||
| 2329 | i_size_write(vi, attr_len); | ||
| 2330 | write_unlock_irqrestore(&ni->size_lock, flags); | ||
| 2331 | } | ||
| 2332 | /* Mark the mft record dirty, so it gets written back. */ | ||
| 2333 | flush_dcache_mft_record_page(ctx->ntfs_ino); | ||
| 2334 | mark_mft_record_dirty(ctx->ntfs_ino); | ||
| 2335 | ntfs_attr_put_search_ctx(ctx); | ||
| 2336 | unmap_mft_record(base_ni); | ||
| 2337 | ntfs_debug("Done."); | ||
| 2338 | return 0; | ||
| 2339 | err_out: | ||
| 2340 | if (err == -ENOMEM) { | ||
| 2341 | ntfs_warning(vi->i_sb, "Error allocating memory required to " | ||
| 2342 | "commit the write."); | ||
| 2343 | if (PageUptodate(page)) { | ||
| 2344 | ntfs_warning(vi->i_sb, "Page is uptodate, setting " | ||
| 2345 | "dirty so the write will be retried " | ||
| 2346 | "later on by the VM."); | ||
| 2347 | /* | ||
| 2348 | * Put the page on mapping->dirty_pages, but leave its | ||
| 2349 | * buffers' dirty state as-is. | ||
| 2350 | */ | ||
| 2351 | __set_page_dirty_nobuffers(page); | ||
| 2352 | err = 0; | ||
| 2353 | } else | ||
| 2354 | ntfs_error(vi->i_sb, "Page is not uptodate. Written " | ||
| 2355 | "data has been lost."); | ||
| 2356 | } else { | ||
| 2357 | ntfs_error(vi->i_sb, "Resident attribute commit write failed " | ||
| 2358 | "with error %i.", err); | ||
| 2359 | NVolSetErrors(ni->vol); | ||
| 2360 | make_bad_inode(vi); | ||
| 2361 | } | ||
| 2362 | if (ctx) | ||
| 2363 | ntfs_attr_put_search_ctx(ctx); | ||
| 2364 | if (m) | ||
| 2365 | unmap_mft_record(base_ni); | ||
| 2366 | return err; | ||
| 2367 | } | ||
| 2368 | |||
| 2369 | #endif /* NTFS_RW */ | 1544 | #endif /* NTFS_RW */ |
| 2370 | 1545 | ||
| 2371 | /** | 1546 | /** |
| @@ -2377,9 +1552,6 @@ struct address_space_operations ntfs_aops = { | |||
| 2377 | disk request queue. */ | 1552 | disk request queue. */ |
| 2378 | #ifdef NTFS_RW | 1553 | #ifdef NTFS_RW |
| 2379 | .writepage = ntfs_writepage, /* Write dirty page to disk. */ | 1554 | .writepage = ntfs_writepage, /* Write dirty page to disk. */ |
| 2380 | .prepare_write = ntfs_prepare_write, /* Prepare page and buffers | ||
| 2381 | ready to receive data. */ | ||
| 2382 | .commit_write = ntfs_commit_write, /* Commit received data. */ | ||
| 2383 | #endif /* NTFS_RW */ | 1555 | #endif /* NTFS_RW */ |
| 2384 | }; | 1556 | }; |
| 2385 | 1557 | ||
diff --git a/fs/ntfs/attrib.c b/fs/ntfs/attrib.c index 3f9a4ff42ee5..eda056bac256 100644 --- a/fs/ntfs/attrib.c +++ b/fs/ntfs/attrib.c | |||
| @@ -21,7 +21,9 @@ | |||
| 21 | */ | 21 | */ |
| 22 | 22 | ||
| 23 | #include <linux/buffer_head.h> | 23 | #include <linux/buffer_head.h> |
| 24 | #include <linux/sched.h> | ||
| 24 | #include <linux/swap.h> | 25 | #include <linux/swap.h> |
| 26 | #include <linux/writeback.h> | ||
| 25 | 27 | ||
| 26 | #include "attrib.h" | 28 | #include "attrib.h" |
| 27 | #include "debug.h" | 29 | #include "debug.h" |
| @@ -36,9 +38,27 @@ | |||
| 36 | * ntfs_map_runlist_nolock - map (a part of) a runlist of an ntfs inode | 38 | * ntfs_map_runlist_nolock - map (a part of) a runlist of an ntfs inode |
| 37 | * @ni: ntfs inode for which to map (part of) a runlist | 39 | * @ni: ntfs inode for which to map (part of) a runlist |
| 38 | * @vcn: map runlist part containing this vcn | 40 | * @vcn: map runlist part containing this vcn |
| 41 | * @ctx: active attribute search context if present or NULL if not | ||
| 39 | * | 42 | * |
| 40 | * Map the part of a runlist containing the @vcn of the ntfs inode @ni. | 43 | * Map the part of a runlist containing the @vcn of the ntfs inode @ni. |
| 41 | * | 44 | * |
| 45 | * If @ctx is specified, it is an active search context of @ni and its base mft | ||
| 46 | * record. This is needed when ntfs_map_runlist_nolock() encounters unmapped | ||
| 47 | * runlist fragments and allows their mapping. If you do not have the mft | ||
| 48 | * record mapped, you can specify @ctx as NULL and ntfs_map_runlist_nolock() | ||
| 49 | * will perform the necessary mapping and unmapping. | ||
| 50 | * | ||
| 51 | * Note, ntfs_map_runlist_nolock() saves the state of @ctx on entry and | ||
| 52 | * restores it before returning. Thus, @ctx will be left pointing to the same | ||
| 53 | * attribute on return as on entry. However, the actual pointers in @ctx may | ||
| 54 | * point to different memory locations on return, so you must remember to reset | ||
| 55 | * any cached pointers from the @ctx, i.e. after the call to | ||
| 56 | * ntfs_map_runlist_nolock(), you will probably want to do: | ||
| 57 | * m = ctx->mrec; | ||
| 58 | * a = ctx->attr; | ||
| 59 | * Assuming you cache ctx->attr in a variable @a of type ATTR_RECORD * and that | ||
| 60 | * you cache ctx->mrec in a variable @m of type MFT_RECORD *. | ||
| 61 | * | ||
| 42 | * Return 0 on success and -errno on error. There is one special error code | 62 | * Return 0 on success and -errno on error. There is one special error code |
| 43 | * which is not an error as such. This is -ENOENT. It means that @vcn is out | 63 | * which is not an error as such. This is -ENOENT. It means that @vcn is out |
| 44 | * of bounds of the runlist. | 64 | * of bounds of the runlist. |
| @@ -46,19 +66,32 @@ | |||
| 46 | * Note the runlist can be NULL after this function returns if @vcn is zero and | 66 | * Note the runlist can be NULL after this function returns if @vcn is zero and |
| 47 | * the attribute has zero allocated size, i.e. there simply is no runlist. | 67 | * the attribute has zero allocated size, i.e. there simply is no runlist. |
| 48 | * | 68 | * |
| 49 | * Locking: - The runlist must be locked for writing. | 69 | * WARNING: If @ctx is supplied, regardless of whether success or failure is |
| 50 | * - This function modifies the runlist. | 70 | * returned, you need to check IS_ERR(@ctx->mrec) and if TRUE the @ctx |
| 71 | * is no longer valid, i.e. you need to either call | ||
| 72 | * ntfs_attr_reinit_search_ctx() or ntfs_attr_put_search_ctx() on it. | ||
| 73 | * In that case PTR_ERR(@ctx->mrec) will give you the error code for | ||
| 74 | * why the mapping of the old inode failed. | ||
| 75 | * | ||
| 76 | * Locking: - The runlist described by @ni must be locked for writing on entry | ||
| 77 | * and is locked on return. Note the runlist will be modified. | ||
| 78 | * - If @ctx is NULL, the base mft record of @ni must not be mapped on | ||
| 79 | * entry and it will be left unmapped on return. | ||
| 80 | * - If @ctx is not NULL, the base mft record must be mapped on entry | ||
| 81 | * and it will be left mapped on return. | ||
| 51 | */ | 82 | */ |
| 52 | int ntfs_map_runlist_nolock(ntfs_inode *ni, VCN vcn) | 83 | int ntfs_map_runlist_nolock(ntfs_inode *ni, VCN vcn, ntfs_attr_search_ctx *ctx) |
| 53 | { | 84 | { |
| 54 | VCN end_vcn; | 85 | VCN end_vcn; |
| 86 | unsigned long flags; | ||
| 55 | ntfs_inode *base_ni; | 87 | ntfs_inode *base_ni; |
| 56 | MFT_RECORD *m; | 88 | MFT_RECORD *m; |
| 57 | ATTR_RECORD *a; | 89 | ATTR_RECORD *a; |
| 58 | ntfs_attr_search_ctx *ctx; | ||
| 59 | runlist_element *rl; | 90 | runlist_element *rl; |
| 60 | unsigned long flags; | 91 | struct page *put_this_page = NULL; |
| 61 | int err = 0; | 92 | int err = 0; |
| 93 | BOOL ctx_is_temporary, ctx_needs_reset; | ||
| 94 | ntfs_attr_search_ctx old_ctx = { NULL, }; | ||
| 62 | 95 | ||
| 63 | ntfs_debug("Mapping runlist part containing vcn 0x%llx.", | 96 | ntfs_debug("Mapping runlist part containing vcn 0x%llx.", |
| 64 | (unsigned long long)vcn); | 97 | (unsigned long long)vcn); |
| @@ -66,20 +99,77 @@ int ntfs_map_runlist_nolock(ntfs_inode *ni, VCN vcn) | |||
| 66 | base_ni = ni; | 99 | base_ni = ni; |
| 67 | else | 100 | else |
| 68 | base_ni = ni->ext.base_ntfs_ino; | 101 | base_ni = ni->ext.base_ntfs_ino; |
| 69 | m = map_mft_record(base_ni); | 102 | if (!ctx) { |
| 70 | if (IS_ERR(m)) | 103 | ctx_is_temporary = ctx_needs_reset = TRUE; |
| 71 | return PTR_ERR(m); | 104 | m = map_mft_record(base_ni); |
| 72 | ctx = ntfs_attr_get_search_ctx(base_ni, m); | 105 | if (IS_ERR(m)) |
| 73 | if (unlikely(!ctx)) { | 106 | return PTR_ERR(m); |
| 74 | err = -ENOMEM; | 107 | ctx = ntfs_attr_get_search_ctx(base_ni, m); |
| 75 | goto err_out; | 108 | if (unlikely(!ctx)) { |
| 109 | err = -ENOMEM; | ||
| 110 | goto err_out; | ||
| 111 | } | ||
| 112 | } else { | ||
| 113 | VCN allocated_size_vcn; | ||
| 114 | |||
| 115 | BUG_ON(IS_ERR(ctx->mrec)); | ||
| 116 | a = ctx->attr; | ||
| 117 | BUG_ON(!a->non_resident); | ||
| 118 | ctx_is_temporary = FALSE; | ||
| 119 | end_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); | ||
| 120 | read_lock_irqsave(&ni->size_lock, flags); | ||
| 121 | allocated_size_vcn = ni->allocated_size >> | ||
| 122 | ni->vol->cluster_size_bits; | ||
| 123 | read_unlock_irqrestore(&ni->size_lock, flags); | ||
| 124 | if (!a->data.non_resident.lowest_vcn && end_vcn <= 0) | ||
| 125 | end_vcn = allocated_size_vcn - 1; | ||
| 126 | /* | ||
| 127 | * If we already have the attribute extent containing @vcn in | ||
| 128 | * @ctx, no need to look it up again. We slightly cheat in | ||
| 129 | * that if vcn exceeds the allocated size, we will refuse to | ||
| 130 | * map the runlist below, so there is definitely no need to get | ||
| 131 | * the right attribute extent. | ||
| 132 | */ | ||
| 133 | if (vcn >= allocated_size_vcn || (a->type == ni->type && | ||
| 134 | a->name_length == ni->name_len && | ||
| 135 | !memcmp((u8*)a + le16_to_cpu(a->name_offset), | ||
| 136 | ni->name, ni->name_len) && | ||
| 137 | sle64_to_cpu(a->data.non_resident.lowest_vcn) | ||
| 138 | <= vcn && end_vcn >= vcn)) | ||
| 139 | ctx_needs_reset = FALSE; | ||
| 140 | else { | ||
| 141 | /* Save the old search context. */ | ||
| 142 | old_ctx = *ctx; | ||
| 143 | /* | ||
| 144 | * If the currently mapped (extent) inode is not the | ||
| 145 | * base inode we will unmap it when we reinitialize the | ||
| 146 | * search context which means we need to get a | ||
| 147 | * reference to the page containing the mapped mft | ||
| 148 | * record so we do not accidentally drop changes to the | ||
| 149 | * mft record when it has not been marked dirty yet. | ||
| 150 | */ | ||
| 151 | if (old_ctx.base_ntfs_ino && old_ctx.ntfs_ino != | ||
| 152 | old_ctx.base_ntfs_ino) { | ||
| 153 | put_this_page = old_ctx.ntfs_ino->page; | ||
| 154 | page_cache_get(put_this_page); | ||
| 155 | } | ||
| 156 | /* | ||
| 157 | * Reinitialize the search context so we can lookup the | ||
| 158 | * needed attribute extent. | ||
| 159 | */ | ||
| 160 | ntfs_attr_reinit_search_ctx(ctx); | ||
| 161 | ctx_needs_reset = TRUE; | ||
| 162 | } | ||
| 76 | } | 163 | } |
| 77 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | 164 | if (ctx_needs_reset) { |
| 78 | CASE_SENSITIVE, vcn, NULL, 0, ctx); | 165 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, |
| 79 | if (unlikely(err)) { | 166 | CASE_SENSITIVE, vcn, NULL, 0, ctx); |
| 80 | if (err == -ENOENT) | 167 | if (unlikely(err)) { |
| 81 | err = -EIO; | 168 | if (err == -ENOENT) |
| 82 | goto err_out; | 169 | err = -EIO; |
| 170 | goto err_out; | ||
| 171 | } | ||
| 172 | BUG_ON(!ctx->attr->non_resident); | ||
| 83 | } | 173 | } |
| 84 | a = ctx->attr; | 174 | a = ctx->attr; |
| 85 | /* | 175 | /* |
| @@ -89,11 +179,9 @@ int ntfs_map_runlist_nolock(ntfs_inode *ni, VCN vcn) | |||
| 89 | * ntfs_mapping_pairs_decompress() fails. | 179 | * ntfs_mapping_pairs_decompress() fails. |
| 90 | */ | 180 | */ |
| 91 | end_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn) + 1; | 181 | end_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn) + 1; |
| 92 | if (unlikely(!a->data.non_resident.lowest_vcn && end_vcn <= 1)) { | 182 | if (!a->data.non_resident.lowest_vcn && end_vcn == 1) |
| 93 | read_lock_irqsave(&ni->size_lock, flags); | 183 | end_vcn = sle64_to_cpu(a->data.non_resident.allocated_size) >> |
| 94 | end_vcn = ni->allocated_size >> ni->vol->cluster_size_bits; | 184 | ni->vol->cluster_size_bits; |
| 95 | read_unlock_irqrestore(&ni->size_lock, flags); | ||
| 96 | } | ||
| 97 | if (unlikely(vcn >= end_vcn)) { | 185 | if (unlikely(vcn >= end_vcn)) { |
| 98 | err = -ENOENT; | 186 | err = -ENOENT; |
| 99 | goto err_out; | 187 | goto err_out; |
| @@ -104,9 +192,93 @@ int ntfs_map_runlist_nolock(ntfs_inode *ni, VCN vcn) | |||
| 104 | else | 192 | else |
| 105 | ni->runlist.rl = rl; | 193 | ni->runlist.rl = rl; |
| 106 | err_out: | 194 | err_out: |
| 107 | if (likely(ctx)) | 195 | if (ctx_is_temporary) { |
| 108 | ntfs_attr_put_search_ctx(ctx); | 196 | if (likely(ctx)) |
| 109 | unmap_mft_record(base_ni); | 197 | ntfs_attr_put_search_ctx(ctx); |
| 198 | unmap_mft_record(base_ni); | ||
| 199 | } else if (ctx_needs_reset) { | ||
| 200 | /* | ||
| 201 | * If there is no attribute list, restoring the search context | ||
| 202 | * is acomplished simply by copying the saved context back over | ||
| 203 | * the caller supplied context. If there is an attribute list, | ||
| 204 | * things are more complicated as we need to deal with mapping | ||
| 205 | * of mft records and resulting potential changes in pointers. | ||
| 206 | */ | ||
| 207 | if (NInoAttrList(base_ni)) { | ||
| 208 | /* | ||
| 209 | * If the currently mapped (extent) inode is not the | ||
| 210 | * one we had before, we need to unmap it and map the | ||
| 211 | * old one. | ||
| 212 | */ | ||
| 213 | if (ctx->ntfs_ino != old_ctx.ntfs_ino) { | ||
| 214 | /* | ||
| 215 | * If the currently mapped inode is not the | ||
| 216 | * base inode, unmap it. | ||
| 217 | */ | ||
| 218 | if (ctx->base_ntfs_ino && ctx->ntfs_ino != | ||
| 219 | ctx->base_ntfs_ino) { | ||
| 220 | unmap_extent_mft_record(ctx->ntfs_ino); | ||
| 221 | ctx->mrec = ctx->base_mrec; | ||
| 222 | BUG_ON(!ctx->mrec); | ||
| 223 | } | ||
| 224 | /* | ||
| 225 | * If the old mapped inode is not the base | ||
| 226 | * inode, map it. | ||
| 227 | */ | ||
| 228 | if (old_ctx.base_ntfs_ino && | ||
| 229 | old_ctx.ntfs_ino != | ||
| 230 | old_ctx.base_ntfs_ino) { | ||
| 231 | retry_map: | ||
| 232 | ctx->mrec = map_mft_record( | ||
| 233 | old_ctx.ntfs_ino); | ||
| 234 | /* | ||
| 235 | * Something bad has happened. If out | ||
| 236 | * of memory retry till it succeeds. | ||
| 237 | * Any other errors are fatal and we | ||
| 238 | * return the error code in ctx->mrec. | ||
| 239 | * Let the caller deal with it... We | ||
| 240 | * just need to fudge things so the | ||
| 241 | * caller can reinit and/or put the | ||
| 242 | * search context safely. | ||
| 243 | */ | ||
| 244 | if (IS_ERR(ctx->mrec)) { | ||
| 245 | if (PTR_ERR(ctx->mrec) == | ||
| 246 | -ENOMEM) { | ||
| 247 | schedule(); | ||
| 248 | goto retry_map; | ||
| 249 | } else | ||
| 250 | old_ctx.ntfs_ino = | ||
| 251 | old_ctx. | ||
| 252 | base_ntfs_ino; | ||
| 253 | } | ||
| 254 | } | ||
| 255 | } | ||
| 256 | /* Update the changed pointers in the saved context. */ | ||
| 257 | if (ctx->mrec != old_ctx.mrec) { | ||
| 258 | if (!IS_ERR(ctx->mrec)) | ||
| 259 | old_ctx.attr = (ATTR_RECORD*)( | ||
| 260 | (u8*)ctx->mrec + | ||
| 261 | ((u8*)old_ctx.attr - | ||
| 262 | (u8*)old_ctx.mrec)); | ||
| 263 | old_ctx.mrec = ctx->mrec; | ||
| 264 | } | ||
| 265 | } | ||
| 266 | /* Restore the search context to the saved one. */ | ||
| 267 | *ctx = old_ctx; | ||
| 268 | /* | ||
| 269 | * We drop the reference on the page we took earlier. In the | ||
| 270 | * case that IS_ERR(ctx->mrec) is true this means we might lose | ||
| 271 | * some changes to the mft record that had been made between | ||
| 272 | * the last time it was marked dirty/written out and now. This | ||
| 273 | * at this stage is not a problem as the mapping error is fatal | ||
| 274 | * enough that the mft record cannot be written out anyway and | ||
| 275 | * the caller is very likely to shutdown the whole inode | ||
| 276 | * immediately and mark the volume dirty for chkdsk to pick up | ||
| 277 | * the pieces anyway. | ||
| 278 | */ | ||
| 279 | if (put_this_page) | ||
| 280 | page_cache_release(put_this_page); | ||
| 281 | } | ||
| 110 | return err; | 282 | return err; |
| 111 | } | 283 | } |
| 112 | 284 | ||
| @@ -122,8 +294,8 @@ err_out: | |||
| 122 | * of bounds of the runlist. | 294 | * of bounds of the runlist. |
| 123 | * | 295 | * |
| 124 | * Locking: - The runlist must be unlocked on entry and is unlocked on return. | 296 | * Locking: - The runlist must be unlocked on entry and is unlocked on return. |
| 125 | * - This function takes the runlist lock for writing and modifies the | 297 | * - This function takes the runlist lock for writing and may modify |
| 126 | * runlist. | 298 | * the runlist. |
| 127 | */ | 299 | */ |
| 128 | int ntfs_map_runlist(ntfs_inode *ni, VCN vcn) | 300 | int ntfs_map_runlist(ntfs_inode *ni, VCN vcn) |
| 129 | { | 301 | { |
| @@ -133,7 +305,7 @@ int ntfs_map_runlist(ntfs_inode *ni, VCN vcn) | |||
| 133 | /* Make sure someone else didn't do the work while we were sleeping. */ | 305 | /* Make sure someone else didn't do the work while we were sleeping. */ |
| 134 | if (likely(ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn) <= | 306 | if (likely(ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn) <= |
| 135 | LCN_RL_NOT_MAPPED)) | 307 | LCN_RL_NOT_MAPPED)) |
| 136 | err = ntfs_map_runlist_nolock(ni, vcn); | 308 | err = ntfs_map_runlist_nolock(ni, vcn, NULL); |
| 137 | up_write(&ni->runlist.lock); | 309 | up_write(&ni->runlist.lock); |
| 138 | return err; | 310 | return err; |
| 139 | } | 311 | } |
| @@ -212,7 +384,7 @@ retry_remap: | |||
| 212 | goto retry_remap; | 384 | goto retry_remap; |
| 213 | } | 385 | } |
| 214 | } | 386 | } |
| 215 | err = ntfs_map_runlist_nolock(ni, vcn); | 387 | err = ntfs_map_runlist_nolock(ni, vcn, NULL); |
| 216 | if (!write_locked) { | 388 | if (!write_locked) { |
| 217 | up_write(&ni->runlist.lock); | 389 | up_write(&ni->runlist.lock); |
| 218 | down_read(&ni->runlist.lock); | 390 | down_read(&ni->runlist.lock); |
| @@ -236,9 +408,9 @@ retry_remap: | |||
| 236 | 408 | ||
| 237 | /** | 409 | /** |
| 238 | * ntfs_attr_find_vcn_nolock - find a vcn in the runlist of an ntfs inode | 410 | * ntfs_attr_find_vcn_nolock - find a vcn in the runlist of an ntfs inode |
| 239 | * @ni: ntfs inode describing the runlist to search | 411 | * @ni: ntfs inode describing the runlist to search |
| 240 | * @vcn: vcn to find | 412 | * @vcn: vcn to find |
| 241 | * @write_locked: true if the runlist is locked for writing | 413 | * @ctx: active attribute search context if present or NULL if not |
| 242 | * | 414 | * |
| 243 | * Find the virtual cluster number @vcn in the runlist described by the ntfs | 415 | * Find the virtual cluster number @vcn in the runlist described by the ntfs |
| 244 | * inode @ni and return the address of the runlist element containing the @vcn. | 416 | * inode @ni and return the address of the runlist element containing the @vcn. |
| @@ -246,9 +418,22 @@ retry_remap: | |||
| 246 | * If the @vcn is not mapped yet, the attempt is made to map the attribute | 418 | * If the @vcn is not mapped yet, the attempt is made to map the attribute |
| 247 | * extent containing the @vcn and the vcn to lcn conversion is retried. | 419 | * extent containing the @vcn and the vcn to lcn conversion is retried. |
| 248 | * | 420 | * |
| 249 | * If @write_locked is true the caller has locked the runlist for writing and | 421 | * If @ctx is specified, it is an active search context of @ni and its base mft |
| 250 | * if false for reading. | 422 | * record. This is needed when ntfs_attr_find_vcn_nolock() encounters unmapped |
| 251 | * | 423 | * runlist fragments and allows their mapping. If you do not have the mft |
| 424 | * record mapped, you can specify @ctx as NULL and ntfs_attr_find_vcn_nolock() | ||
| 425 | * will perform the necessary mapping and unmapping. | ||
| 426 | * | ||
| 427 | * Note, ntfs_attr_find_vcn_nolock() saves the state of @ctx on entry and | ||
| 428 | * restores it before returning. Thus, @ctx will be left pointing to the same | ||
| 429 | * attribute on return as on entry. However, the actual pointers in @ctx may | ||
| 430 | * point to different memory locations on return, so you must remember to reset | ||
| 431 | * any cached pointers from the @ctx, i.e. after the call to | ||
| 432 | * ntfs_attr_find_vcn_nolock(), you will probably want to do: | ||
| 433 | * m = ctx->mrec; | ||
| 434 | * a = ctx->attr; | ||
| 435 | * Assuming you cache ctx->attr in a variable @a of type ATTR_RECORD * and that | ||
| 436 | * you cache ctx->mrec in a variable @m of type MFT_RECORD *. | ||
| 252 | * Note you need to distinguish between the lcn of the returned runlist element | 437 | * Note you need to distinguish between the lcn of the returned runlist element |
| 253 | * being >= 0 and LCN_HOLE. In the later case you have to return zeroes on | 438 | * being >= 0 and LCN_HOLE. In the later case you have to return zeroes on |
| 254 | * read and allocate clusters on write. | 439 | * read and allocate clusters on write. |
| @@ -263,22 +448,31 @@ retry_remap: | |||
| 263 | * -ENOMEM - Not enough memory to map runlist. | 448 | * -ENOMEM - Not enough memory to map runlist. |
| 264 | * -EIO - Critical error (runlist/file is corrupt, i/o error, etc). | 449 | * -EIO - Critical error (runlist/file is corrupt, i/o error, etc). |
| 265 | * | 450 | * |
| 266 | * Locking: - The runlist must be locked on entry and is left locked on return. | 451 | * WARNING: If @ctx is supplied, regardless of whether success or failure is |
| 267 | * - If @write_locked is FALSE, i.e. the runlist is locked for reading, | 452 | * returned, you need to check IS_ERR(@ctx->mrec) and if TRUE the @ctx |
| 268 | * the lock may be dropped inside the function so you cannot rely on | 453 | * is no longer valid, i.e. you need to either call |
| 269 | * the runlist still being the same when this function returns. | 454 | * ntfs_attr_reinit_search_ctx() or ntfs_attr_put_search_ctx() on it. |
| 455 | * In that case PTR_ERR(@ctx->mrec) will give you the error code for | ||
| 456 | * why the mapping of the old inode failed. | ||
| 457 | * | ||
| 458 | * Locking: - The runlist described by @ni must be locked for writing on entry | ||
| 459 | * and is locked on return. Note the runlist may be modified when | ||
| 460 | * needed runlist fragments need to be mapped. | ||
| 461 | * - If @ctx is NULL, the base mft record of @ni must not be mapped on | ||
| 462 | * entry and it will be left unmapped on return. | ||
| 463 | * - If @ctx is not NULL, the base mft record must be mapped on entry | ||
| 464 | * and it will be left mapped on return. | ||
| 270 | */ | 465 | */ |
| 271 | runlist_element *ntfs_attr_find_vcn_nolock(ntfs_inode *ni, const VCN vcn, | 466 | runlist_element *ntfs_attr_find_vcn_nolock(ntfs_inode *ni, const VCN vcn, |
| 272 | const BOOL write_locked) | 467 | ntfs_attr_search_ctx *ctx) |
| 273 | { | 468 | { |
| 274 | unsigned long flags; | 469 | unsigned long flags; |
| 275 | runlist_element *rl; | 470 | runlist_element *rl; |
| 276 | int err = 0; | 471 | int err = 0; |
| 277 | BOOL is_retry = FALSE; | 472 | BOOL is_retry = FALSE; |
| 278 | 473 | ||
| 279 | ntfs_debug("Entering for i_ino 0x%lx, vcn 0x%llx, %s_locked.", | 474 | ntfs_debug("Entering for i_ino 0x%lx, vcn 0x%llx, with%s ctx.", |
| 280 | ni->mft_no, (unsigned long long)vcn, | 475 | ni->mft_no, (unsigned long long)vcn, ctx ? "" : "out"); |
| 281 | write_locked ? "write" : "read"); | ||
| 282 | BUG_ON(!ni); | 476 | BUG_ON(!ni); |
| 283 | BUG_ON(!NInoNonResident(ni)); | 477 | BUG_ON(!NInoNonResident(ni)); |
| 284 | BUG_ON(vcn < 0); | 478 | BUG_ON(vcn < 0); |
| @@ -312,33 +506,22 @@ retry_remap: | |||
| 312 | } | 506 | } |
| 313 | if (!err && !is_retry) { | 507 | if (!err && !is_retry) { |
| 314 | /* | 508 | /* |
| 315 | * The @vcn is in an unmapped region, map the runlist and | 509 | * If the search context is invalid we cannot map the unmapped |
| 316 | * retry. | 510 | * region. |
| 317 | */ | 511 | */ |
| 318 | if (!write_locked) { | 512 | if (IS_ERR(ctx->mrec)) |
| 319 | up_read(&ni->runlist.lock); | 513 | err = PTR_ERR(ctx->mrec); |
| 320 | down_write(&ni->runlist.lock); | 514 | else { |
| 321 | if (unlikely(ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn) != | 515 | /* |
| 322 | LCN_RL_NOT_MAPPED)) { | 516 | * The @vcn is in an unmapped region, map the runlist |
| 323 | up_write(&ni->runlist.lock); | 517 | * and retry. |
| 324 | down_read(&ni->runlist.lock); | 518 | */ |
| 519 | err = ntfs_map_runlist_nolock(ni, vcn, ctx); | ||
| 520 | if (likely(!err)) { | ||
| 521 | is_retry = TRUE; | ||
| 325 | goto retry_remap; | 522 | goto retry_remap; |
| 326 | } | 523 | } |
| 327 | } | 524 | } |
| 328 | err = ntfs_map_runlist_nolock(ni, vcn); | ||
| 329 | if (!write_locked) { | ||
| 330 | up_write(&ni->runlist.lock); | ||
| 331 | down_read(&ni->runlist.lock); | ||
| 332 | } | ||
| 333 | if (likely(!err)) { | ||
| 334 | is_retry = TRUE; | ||
| 335 | goto retry_remap; | ||
| 336 | } | ||
| 337 | /* | ||
| 338 | * -EINVAL coming from a failed mapping attempt is equivalent | ||
| 339 | * to i/o error for us as it should not happen in our code | ||
| 340 | * paths. | ||
| 341 | */ | ||
| 342 | if (err == -EINVAL) | 525 | if (err == -EINVAL) |
| 343 | err = -EIO; | 526 | err = -EIO; |
| 344 | } else if (!err) | 527 | } else if (!err) |
| @@ -1011,6 +1194,7 @@ int ntfs_attr_lookup(const ATTR_TYPE type, const ntfschar *name, | |||
| 1011 | ntfs_inode *base_ni; | 1194 | ntfs_inode *base_ni; |
| 1012 | 1195 | ||
| 1013 | ntfs_debug("Entering."); | 1196 | ntfs_debug("Entering."); |
| 1197 | BUG_ON(IS_ERR(ctx->mrec)); | ||
| 1014 | if (ctx->base_ntfs_ino) | 1198 | if (ctx->base_ntfs_ino) |
| 1015 | base_ni = ctx->base_ntfs_ino; | 1199 | base_ni = ctx->base_ntfs_ino; |
| 1016 | else | 1200 | else |
| @@ -1227,7 +1411,7 @@ int ntfs_attr_can_be_non_resident(const ntfs_volume *vol, const ATTR_TYPE type) | |||
| 1227 | */ | 1411 | */ |
| 1228 | int ntfs_attr_can_be_resident(const ntfs_volume *vol, const ATTR_TYPE type) | 1412 | int ntfs_attr_can_be_resident(const ntfs_volume *vol, const ATTR_TYPE type) |
| 1229 | { | 1413 | { |
| 1230 | if (type == AT_INDEX_ALLOCATION || type == AT_EA) | 1414 | if (type == AT_INDEX_ALLOCATION) |
| 1231 | return -EPERM; | 1415 | return -EPERM; |
| 1232 | return 0; | 1416 | return 0; |
| 1233 | } | 1417 | } |
| @@ -1319,10 +1503,17 @@ int ntfs_resident_attr_value_resize(MFT_RECORD *m, ATTR_RECORD *a, | |||
| 1319 | /** | 1503 | /** |
| 1320 | * ntfs_attr_make_non_resident - convert a resident to a non-resident attribute | 1504 | * ntfs_attr_make_non_resident - convert a resident to a non-resident attribute |
| 1321 | * @ni: ntfs inode describing the attribute to convert | 1505 | * @ni: ntfs inode describing the attribute to convert |
| 1506 | * @data_size: size of the resident data to copy to the non-resident attribute | ||
| 1322 | * | 1507 | * |
| 1323 | * Convert the resident ntfs attribute described by the ntfs inode @ni to a | 1508 | * Convert the resident ntfs attribute described by the ntfs inode @ni to a |
| 1324 | * non-resident one. | 1509 | * non-resident one. |
| 1325 | * | 1510 | * |
| 1511 | * @data_size must be equal to the attribute value size. This is needed since | ||
| 1512 | * we need to know the size before we can map the mft record and our callers | ||
| 1513 | * always know it. The reason we cannot simply read the size from the vfs | ||
| 1514 | * inode i_size is that this is not necessarily uptodate. This happens when | ||
| 1515 | * ntfs_attr_make_non_resident() is called in the ->truncate call path(s). | ||
| 1516 | * | ||
| 1326 | * Return 0 on success and -errno on error. The following error return codes | 1517 | * Return 0 on success and -errno on error. The following error return codes |
| 1327 | * are defined: | 1518 | * are defined: |
| 1328 | * -EPERM - The attribute is not allowed to be non-resident. | 1519 | * -EPERM - The attribute is not allowed to be non-resident. |
| @@ -1343,7 +1534,7 @@ int ntfs_resident_attr_value_resize(MFT_RECORD *m, ATTR_RECORD *a, | |||
| 1343 | * | 1534 | * |
| 1344 | * Locking: - The caller must hold i_sem on the inode. | 1535 | * Locking: - The caller must hold i_sem on the inode. |
| 1345 | */ | 1536 | */ |
| 1346 | int ntfs_attr_make_non_resident(ntfs_inode *ni) | 1537 | int ntfs_attr_make_non_resident(ntfs_inode *ni, const u32 data_size) |
| 1347 | { | 1538 | { |
| 1348 | s64 new_size; | 1539 | s64 new_size; |
| 1349 | struct inode *vi = VFS_I(ni); | 1540 | struct inode *vi = VFS_I(ni); |
| @@ -1381,11 +1572,9 @@ int ntfs_attr_make_non_resident(ntfs_inode *ni) | |||
| 1381 | * The size needs to be aligned to a cluster boundary for allocation | 1572 | * The size needs to be aligned to a cluster boundary for allocation |
| 1382 | * purposes. | 1573 | * purposes. |
| 1383 | */ | 1574 | */ |
| 1384 | new_size = (i_size_read(vi) + vol->cluster_size - 1) & | 1575 | new_size = (data_size + vol->cluster_size - 1) & |
| 1385 | ~(vol->cluster_size - 1); | 1576 | ~(vol->cluster_size - 1); |
| 1386 | if (new_size > 0) { | 1577 | if (new_size > 0) { |
| 1387 | runlist_element *rl2; | ||
| 1388 | |||
| 1389 | /* | 1578 | /* |
| 1390 | * Will need the page later and since the page lock nests | 1579 | * Will need the page later and since the page lock nests |
| 1391 | * outside all ntfs locks, we need to get the page now. | 1580 | * outside all ntfs locks, we need to get the page now. |
| @@ -1396,7 +1585,7 @@ int ntfs_attr_make_non_resident(ntfs_inode *ni) | |||
| 1396 | return -ENOMEM; | 1585 | return -ENOMEM; |
| 1397 | /* Start by allocating clusters to hold the attribute value. */ | 1586 | /* Start by allocating clusters to hold the attribute value. */ |
| 1398 | rl = ntfs_cluster_alloc(vol, 0, new_size >> | 1587 | rl = ntfs_cluster_alloc(vol, 0, new_size >> |
| 1399 | vol->cluster_size_bits, -1, DATA_ZONE); | 1588 | vol->cluster_size_bits, -1, DATA_ZONE, TRUE); |
| 1400 | if (IS_ERR(rl)) { | 1589 | if (IS_ERR(rl)) { |
| 1401 | err = PTR_ERR(rl); | 1590 | err = PTR_ERR(rl); |
| 1402 | ntfs_debug("Failed to allocate cluster%s, error code " | 1591 | ntfs_debug("Failed to allocate cluster%s, error code " |
| @@ -1405,12 +1594,6 @@ int ntfs_attr_make_non_resident(ntfs_inode *ni) | |||
| 1405 | err); | 1594 | err); |
| 1406 | goto page_err_out; | 1595 | goto page_err_out; |
| 1407 | } | 1596 | } |
| 1408 | /* Change the runlist terminator to LCN_ENOENT. */ | ||
| 1409 | rl2 = rl; | ||
| 1410 | while (rl2->length) | ||
| 1411 | rl2++; | ||
| 1412 | BUG_ON(rl2->lcn != LCN_RL_NOT_MAPPED); | ||
| 1413 | rl2->lcn = LCN_ENOENT; | ||
| 1414 | } else { | 1597 | } else { |
| 1415 | rl = NULL; | 1598 | rl = NULL; |
| 1416 | page = NULL; | 1599 | page = NULL; |
| @@ -1473,7 +1656,7 @@ int ntfs_attr_make_non_resident(ntfs_inode *ni) | |||
| 1473 | * attribute value. | 1656 | * attribute value. |
| 1474 | */ | 1657 | */ |
| 1475 | attr_size = le32_to_cpu(a->data.resident.value_length); | 1658 | attr_size = le32_to_cpu(a->data.resident.value_length); |
| 1476 | BUG_ON(attr_size != i_size_read(vi)); | 1659 | BUG_ON(attr_size != data_size); |
| 1477 | if (page && !PageUptodate(page)) { | 1660 | if (page && !PageUptodate(page)) { |
| 1478 | kaddr = kmap_atomic(page, KM_USER0); | 1661 | kaddr = kmap_atomic(page, KM_USER0); |
| 1479 | memcpy(kaddr, (u8*)a + | 1662 | memcpy(kaddr, (u8*)a + |
| @@ -1538,7 +1721,9 @@ int ntfs_attr_make_non_resident(ntfs_inode *ni) | |||
| 1538 | ffs(ni->itype.compressed.block_size) - 1; | 1721 | ffs(ni->itype.compressed.block_size) - 1; |
| 1539 | ni->itype.compressed.block_clusters = 1U << | 1722 | ni->itype.compressed.block_clusters = 1U << |
| 1540 | a->data.non_resident.compression_unit; | 1723 | a->data.non_resident.compression_unit; |
| 1541 | } | 1724 | vi->i_blocks = ni->itype.compressed.size >> 9; |
| 1725 | } else | ||
| 1726 | vi->i_blocks = ni->allocated_size >> 9; | ||
| 1542 | write_unlock_irqrestore(&ni->size_lock, flags); | 1727 | write_unlock_irqrestore(&ni->size_lock, flags); |
| 1543 | /* | 1728 | /* |
| 1544 | * This needs to be last since the address space operations ->readpage | 1729 | * This needs to be last since the address space operations ->readpage |
| @@ -1652,6 +1837,640 @@ page_err_out: | |||
| 1652 | } | 1837 | } |
| 1653 | 1838 | ||
| 1654 | /** | 1839 | /** |
| 1840 | * ntfs_attr_extend_allocation - extend the allocated space of an attribute | ||
| 1841 | * @ni: ntfs inode of the attribute whose allocation to extend | ||
| 1842 | * @new_alloc_size: new size in bytes to which to extend the allocation to | ||
| 1843 | * @new_data_size: new size in bytes to which to extend the data to | ||
| 1844 | * @data_start: beginning of region which is required to be non-sparse | ||
| 1845 | * | ||
| 1846 | * Extend the allocated space of an attribute described by the ntfs inode @ni | ||
| 1847 | * to @new_alloc_size bytes. If @data_start is -1, the whole extension may be | ||
| 1848 | * implemented as a hole in the file (as long as both the volume and the ntfs | ||
| 1849 | * inode @ni have sparse support enabled). If @data_start is >= 0, then the | ||
| 1850 | * region between the old allocated size and @data_start - 1 may be made sparse | ||
| 1851 | * but the regions between @data_start and @new_alloc_size must be backed by | ||
| 1852 | * actual clusters. | ||
| 1853 | * | ||
| 1854 | * If @new_data_size is -1, it is ignored. If it is >= 0, then the data size | ||
| 1855 | * of the attribute is extended to @new_data_size. Note that the i_size of the | ||
| 1856 | * vfs inode is not updated. Only the data size in the base attribute record | ||
| 1857 | * is updated. The caller has to update i_size separately if this is required. | ||
| 1858 | * WARNING: It is a BUG() for @new_data_size to be smaller than the old data | ||
| 1859 | * size as well as for @new_data_size to be greater than @new_alloc_size. | ||
| 1860 | * | ||
| 1861 | * For resident attributes this involves resizing the attribute record and if | ||
| 1862 | * necessary moving it and/or other attributes into extent mft records and/or | ||
| 1863 | * converting the attribute to a non-resident attribute which in turn involves | ||
| 1864 | * extending the allocation of a non-resident attribute as described below. | ||
| 1865 | * | ||
| 1866 | * For non-resident attributes this involves allocating clusters in the data | ||
| 1867 | * zone on the volume (except for regions that are being made sparse) and | ||
| 1868 | * extending the run list to describe the allocated clusters as well as | ||
| 1869 | * updating the mapping pairs array of the attribute. This in turn involves | ||
| 1870 | * resizing the attribute record and if necessary moving it and/or other | ||
| 1871 | * attributes into extent mft records and/or splitting the attribute record | ||
| 1872 | * into multiple extent attribute records. | ||
| 1873 | * | ||
| 1874 | * Also, the attribute list attribute is updated if present and in some of the | ||
| 1875 | * above cases (the ones where extent mft records/attributes come into play), | ||
| 1876 | * an attribute list attribute is created if not already present. | ||
| 1877 | * | ||
| 1878 | * Return the new allocated size on success and -errno on error. In the case | ||
| 1879 | * that an error is encountered but a partial extension at least up to | ||
| 1880 | * @data_start (if present) is possible, the allocation is partially extended | ||
| 1881 | * and this is returned. This means the caller must check the returned size to | ||
| 1882 | * determine if the extension was partial. If @data_start is -1 then partial | ||
| 1883 | * allocations are not performed. | ||
| 1884 | * | ||
| 1885 | * WARNING: Do not call ntfs_attr_extend_allocation() for $MFT/$DATA. | ||
| 1886 | * | ||
| 1887 | * Locking: This function takes the runlist lock of @ni for writing as well as | ||
| 1888 | * locking the mft record of the base ntfs inode. These locks are maintained | ||
| 1889 | * throughout execution of the function. These locks are required so that the | ||
| 1890 | * attribute can be resized safely and so that it can for example be converted | ||
| 1891 | * from resident to non-resident safely. | ||
| 1892 | * | ||
| 1893 | * TODO: At present attribute list attribute handling is not implemented. | ||
| 1894 | * | ||
| 1895 | * TODO: At present it is not safe to call this function for anything other | ||
| 1896 | * than the $DATA attribute(s) of an uncompressed and unencrypted file. | ||
| 1897 | */ | ||
| 1898 | s64 ntfs_attr_extend_allocation(ntfs_inode *ni, s64 new_alloc_size, | ||
| 1899 | const s64 new_data_size, const s64 data_start) | ||
| 1900 | { | ||
| 1901 | VCN vcn; | ||
| 1902 | s64 ll, allocated_size, start = data_start; | ||
| 1903 | struct inode *vi = VFS_I(ni); | ||
| 1904 | ntfs_volume *vol = ni->vol; | ||
| 1905 | ntfs_inode *base_ni; | ||
| 1906 | MFT_RECORD *m; | ||
| 1907 | ATTR_RECORD *a; | ||
| 1908 | ntfs_attr_search_ctx *ctx; | ||
| 1909 | runlist_element *rl, *rl2; | ||
| 1910 | unsigned long flags; | ||
| 1911 | int err, mp_size; | ||
| 1912 | u32 attr_len = 0; /* Silence stupid gcc warning. */ | ||
| 1913 | BOOL mp_rebuilt; | ||
| 1914 | |||
| 1915 | #ifdef NTFS_DEBUG | ||
| 1916 | read_lock_irqsave(&ni->size_lock, flags); | ||
| 1917 | allocated_size = ni->allocated_size; | ||
| 1918 | read_unlock_irqrestore(&ni->size_lock, flags); | ||
| 1919 | ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, " | ||
| 1920 | "old_allocated_size 0x%llx, " | ||
| 1921 | "new_allocated_size 0x%llx, new_data_size 0x%llx, " | ||
| 1922 | "data_start 0x%llx.", vi->i_ino, | ||
| 1923 | (unsigned)le32_to_cpu(ni->type), | ||
| 1924 | (unsigned long long)allocated_size, | ||
| 1925 | (unsigned long long)new_alloc_size, | ||
| 1926 | (unsigned long long)new_data_size, | ||
| 1927 | (unsigned long long)start); | ||
| 1928 | #endif | ||
| 1929 | retry_extend: | ||
| 1930 | /* | ||
| 1931 | * For non-resident attributes, @start and @new_size need to be aligned | ||
| 1932 | * to cluster boundaries for allocation purposes. | ||
| 1933 | */ | ||
| 1934 | if (NInoNonResident(ni)) { | ||
| 1935 | if (start > 0) | ||
| 1936 | start &= ~(s64)vol->cluster_size_mask; | ||
| 1937 | new_alloc_size = (new_alloc_size + vol->cluster_size - 1) & | ||
| 1938 | ~(s64)vol->cluster_size_mask; | ||
| 1939 | } | ||
| 1940 | BUG_ON(new_data_size >= 0 && new_data_size > new_alloc_size); | ||
| 1941 | /* Check if new size is allowed in $AttrDef. */ | ||
| 1942 | err = ntfs_attr_size_bounds_check(vol, ni->type, new_alloc_size); | ||
| 1943 | if (unlikely(err)) { | ||
| 1944 | /* Only emit errors when the write will fail completely. */ | ||
| 1945 | read_lock_irqsave(&ni->size_lock, flags); | ||
| 1946 | allocated_size = ni->allocated_size; | ||
| 1947 | read_unlock_irqrestore(&ni->size_lock, flags); | ||
| 1948 | if (start < 0 || start >= allocated_size) { | ||
| 1949 | if (err == -ERANGE) { | ||
| 1950 | ntfs_error(vol->sb, "Cannot extend allocation " | ||
| 1951 | "of inode 0x%lx, attribute " | ||
| 1952 | "type 0x%x, because the new " | ||
| 1953 | "allocation would exceed the " | ||
| 1954 | "maximum allowed size for " | ||
| 1955 | "this attribute type.", | ||
| 1956 | vi->i_ino, (unsigned) | ||
| 1957 | le32_to_cpu(ni->type)); | ||
| 1958 | } else { | ||
| 1959 | ntfs_error(vol->sb, "Cannot extend allocation " | ||
| 1960 | "of inode 0x%lx, attribute " | ||
| 1961 | "type 0x%x, because this " | ||
| 1962 | "attribute type is not " | ||
| 1963 | "defined on the NTFS volume. " | ||
| 1964 | "Possible corruption! You " | ||
| 1965 | "should run chkdsk!", | ||
| 1966 | vi->i_ino, (unsigned) | ||
| 1967 | le32_to_cpu(ni->type)); | ||
| 1968 | } | ||
| 1969 | } | ||
| 1970 | /* Translate error code to be POSIX conformant for write(2). */ | ||
| 1971 | if (err == -ERANGE) | ||
| 1972 | err = -EFBIG; | ||
| 1973 | else | ||
| 1974 | err = -EIO; | ||
| 1975 | return err; | ||
| 1976 | } | ||
| 1977 | if (!NInoAttr(ni)) | ||
| 1978 | base_ni = ni; | ||
| 1979 | else | ||
| 1980 | base_ni = ni->ext.base_ntfs_ino; | ||
| 1981 | /* | ||
| 1982 | * We will be modifying both the runlist (if non-resident) and the mft | ||
| 1983 | * record so lock them both down. | ||
| 1984 | */ | ||
| 1985 | down_write(&ni->runlist.lock); | ||
| 1986 | m = map_mft_record(base_ni); | ||
| 1987 | if (IS_ERR(m)) { | ||
| 1988 | err = PTR_ERR(m); | ||
| 1989 | m = NULL; | ||
| 1990 | ctx = NULL; | ||
| 1991 | goto err_out; | ||
| 1992 | } | ||
| 1993 | ctx = ntfs_attr_get_search_ctx(base_ni, m); | ||
| 1994 | if (unlikely(!ctx)) { | ||
| 1995 | err = -ENOMEM; | ||
| 1996 | goto err_out; | ||
| 1997 | } | ||
| 1998 | read_lock_irqsave(&ni->size_lock, flags); | ||
| 1999 | allocated_size = ni->allocated_size; | ||
| 2000 | read_unlock_irqrestore(&ni->size_lock, flags); | ||
| 2001 | /* | ||
| 2002 | * If non-resident, seek to the last extent. If resident, there is | ||
| 2003 | * only one extent, so seek to that. | ||
| 2004 | */ | ||
| 2005 | vcn = NInoNonResident(ni) ? allocated_size >> vol->cluster_size_bits : | ||
| 2006 | 0; | ||
| 2007 | /* | ||
| 2008 | * Abort if someone did the work whilst we waited for the locks. If we | ||
| 2009 | * just converted the attribute from resident to non-resident it is | ||
| 2010 | * likely that exactly this has happened already. We cannot quite | ||
| 2011 | * abort if we need to update the data size. | ||
| 2012 | */ | ||
| 2013 | if (unlikely(new_alloc_size <= allocated_size)) { | ||
| 2014 | ntfs_debug("Allocated size already exceeds requested size."); | ||
| 2015 | new_alloc_size = allocated_size; | ||
| 2016 | if (new_data_size < 0) | ||
| 2017 | goto done; | ||
| 2018 | /* | ||
| 2019 | * We want the first attribute extent so that we can update the | ||
| 2020 | * data size. | ||
| 2021 | */ | ||
| 2022 | vcn = 0; | ||
| 2023 | } | ||
| 2024 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | ||
| 2025 | CASE_SENSITIVE, vcn, NULL, 0, ctx); | ||
| 2026 | if (unlikely(err)) { | ||
| 2027 | if (err == -ENOENT) | ||
| 2028 | err = -EIO; | ||
| 2029 | goto err_out; | ||
| 2030 | } | ||
| 2031 | m = ctx->mrec; | ||
| 2032 | a = ctx->attr; | ||
| 2033 | /* Use goto to reduce indentation. */ | ||
| 2034 | if (a->non_resident) | ||
| 2035 | goto do_non_resident_extend; | ||
| 2036 | BUG_ON(NInoNonResident(ni)); | ||
| 2037 | /* The total length of the attribute value. */ | ||
| 2038 | attr_len = le32_to_cpu(a->data.resident.value_length); | ||
| 2039 | /* | ||
| 2040 | * Extend the attribute record to be able to store the new attribute | ||
| 2041 | * size. ntfs_attr_record_resize() will not do anything if the size is | ||
| 2042 | * not changing. | ||
| 2043 | */ | ||
| 2044 | if (new_alloc_size < vol->mft_record_size && | ||
| 2045 | !ntfs_attr_record_resize(m, a, | ||
| 2046 | le16_to_cpu(a->data.resident.value_offset) + | ||
| 2047 | new_alloc_size)) { | ||
| 2048 | /* The resize succeeded! */ | ||
| 2049 | write_lock_irqsave(&ni->size_lock, flags); | ||
| 2050 | ni->allocated_size = le32_to_cpu(a->length) - | ||
| 2051 | le16_to_cpu(a->data.resident.value_offset); | ||
| 2052 | write_unlock_irqrestore(&ni->size_lock, flags); | ||
| 2053 | if (new_data_size >= 0) { | ||
| 2054 | BUG_ON(new_data_size < attr_len); | ||
| 2055 | a->data.resident.value_length = | ||
| 2056 | cpu_to_le32((u32)new_data_size); | ||
| 2057 | } | ||
| 2058 | goto flush_done; | ||
| 2059 | } | ||
| 2060 | /* | ||
| 2061 | * We have to drop all the locks so we can call | ||
| 2062 | * ntfs_attr_make_non_resident(). This could be optimised by try- | ||
| 2063 | * locking the first page cache page and only if that fails dropping | ||
| 2064 | * the locks, locking the page, and redoing all the locking and | ||
| 2065 | * lookups. While this would be a huge optimisation, it is not worth | ||
| 2066 | * it as this is definitely a slow code path. | ||
| 2067 | */ | ||
| 2068 | ntfs_attr_put_search_ctx(ctx); | ||
| 2069 | unmap_mft_record(base_ni); | ||
| 2070 | up_write(&ni->runlist.lock); | ||
| 2071 | /* | ||
| 2072 | * Not enough space in the mft record, try to make the attribute | ||
| 2073 | * non-resident and if successful restart the extension process. | ||
| 2074 | */ | ||
| 2075 | err = ntfs_attr_make_non_resident(ni, attr_len); | ||
| 2076 | if (likely(!err)) | ||
| 2077 | goto retry_extend; | ||
| 2078 | /* | ||
| 2079 | * Could not make non-resident. If this is due to this not being | ||
| 2080 | * permitted for this attribute type or there not being enough space, | ||
| 2081 | * try to make other attributes non-resident. Otherwise fail. | ||
| 2082 | */ | ||
| 2083 | if (unlikely(err != -EPERM && err != -ENOSPC)) { | ||
| 2084 | /* Only emit errors when the write will fail completely. */ | ||
| 2085 | read_lock_irqsave(&ni->size_lock, flags); | ||
| 2086 | allocated_size = ni->allocated_size; | ||
| 2087 | read_unlock_irqrestore(&ni->size_lock, flags); | ||
| 2088 | if (start < 0 || start >= allocated_size) | ||
| 2089 | ntfs_error(vol->sb, "Cannot extend allocation of " | ||
| 2090 | "inode 0x%lx, attribute type 0x%x, " | ||
| 2091 | "because the conversion from resident " | ||
| 2092 | "to non-resident attribute failed " | ||
| 2093 | "with error code %i.", vi->i_ino, | ||
| 2094 | (unsigned)le32_to_cpu(ni->type), err); | ||
| 2095 | if (err != -ENOMEM) | ||
| 2096 | err = -EIO; | ||
| 2097 | goto conv_err_out; | ||
| 2098 | } | ||
| 2099 | /* TODO: Not implemented from here, abort. */ | ||
| 2100 | read_lock_irqsave(&ni->size_lock, flags); | ||
| 2101 | allocated_size = ni->allocated_size; | ||
| 2102 | read_unlock_irqrestore(&ni->size_lock, flags); | ||
| 2103 | if (start < 0 || start >= allocated_size) { | ||
| 2104 | if (err == -ENOSPC) | ||
| 2105 | ntfs_error(vol->sb, "Not enough space in the mft " | ||
| 2106 | "record/on disk for the non-resident " | ||
| 2107 | "attribute value. This case is not " | ||
| 2108 | "implemented yet."); | ||
| 2109 | else /* if (err == -EPERM) */ | ||
| 2110 | ntfs_error(vol->sb, "This attribute type may not be " | ||
| 2111 | "non-resident. This case is not " | ||
| 2112 | "implemented yet."); | ||
| 2113 | } | ||
| 2114 | err = -EOPNOTSUPP; | ||
| 2115 | goto conv_err_out; | ||
| 2116 | #if 0 | ||
| 2117 | // TODO: Attempt to make other attributes non-resident. | ||
| 2118 | if (!err) | ||
| 2119 | goto do_resident_extend; | ||
| 2120 | /* | ||
| 2121 | * Both the attribute list attribute and the standard information | ||
| 2122 | * attribute must remain in the base inode. Thus, if this is one of | ||
| 2123 | * these attributes, we have to try to move other attributes out into | ||
| 2124 | * extent mft records instead. | ||
| 2125 | */ | ||
| 2126 | if (ni->type == AT_ATTRIBUTE_LIST || | ||
| 2127 | ni->type == AT_STANDARD_INFORMATION) { | ||
| 2128 | // TODO: Attempt to move other attributes into extent mft | ||
| 2129 | // records. | ||
| 2130 | err = -EOPNOTSUPP; | ||
| 2131 | if (!err) | ||
| 2132 | goto do_resident_extend; | ||
| 2133 | goto err_out; | ||
| 2134 | } | ||
| 2135 | // TODO: Attempt to move this attribute to an extent mft record, but | ||
| 2136 | // only if it is not already the only attribute in an mft record in | ||
| 2137 | // which case there would be nothing to gain. | ||
| 2138 | err = -EOPNOTSUPP; | ||
| 2139 | if (!err) | ||
| 2140 | goto do_resident_extend; | ||
| 2141 | /* There is nothing we can do to make enough space. )-: */ | ||
| 2142 | goto err_out; | ||
| 2143 | #endif | ||
| 2144 | do_non_resident_extend: | ||
| 2145 | BUG_ON(!NInoNonResident(ni)); | ||
| 2146 | if (new_alloc_size == allocated_size) { | ||
| 2147 | BUG_ON(vcn); | ||
| 2148 | goto alloc_done; | ||
| 2149 | } | ||
| 2150 | /* | ||
| 2151 | * If the data starts after the end of the old allocation, this is a | ||
| 2152 | * $DATA attribute and sparse attributes are enabled on the volume and | ||
| 2153 | * for this inode, then create a sparse region between the old | ||
| 2154 | * allocated size and the start of the data. Otherwise simply proceed | ||
| 2155 | * with filling the whole space between the old allocated size and the | ||
| 2156 | * new allocated size with clusters. | ||
| 2157 | */ | ||
| 2158 | if ((start >= 0 && start <= allocated_size) || ni->type != AT_DATA || | ||
| 2159 | !NVolSparseEnabled(vol) || NInoSparseDisabled(ni)) | ||
| 2160 | goto skip_sparse; | ||
| 2161 | // TODO: This is not implemented yet. We just fill in with real | ||
| 2162 | // clusters for now... | ||
| 2163 | ntfs_debug("Inserting holes is not-implemented yet. Falling back to " | ||
| 2164 | "allocating real clusters instead."); | ||
| 2165 | skip_sparse: | ||
| 2166 | rl = ni->runlist.rl; | ||
| 2167 | if (likely(rl)) { | ||
| 2168 | /* Seek to the end of the runlist. */ | ||
| 2169 | while (rl->length) | ||
| 2170 | rl++; | ||
| 2171 | } | ||
| 2172 | /* If this attribute extent is not mapped, map it now. */ | ||
| 2173 | if (unlikely(!rl || rl->lcn == LCN_RL_NOT_MAPPED || | ||
| 2174 | (rl->lcn == LCN_ENOENT && rl > ni->runlist.rl && | ||
| 2175 | (rl-1)->lcn == LCN_RL_NOT_MAPPED))) { | ||
| 2176 | if (!rl && !allocated_size) | ||
| 2177 | goto first_alloc; | ||
| 2178 | rl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl); | ||
| 2179 | if (IS_ERR(rl)) { | ||
| 2180 | err = PTR_ERR(rl); | ||
| 2181 | if (start < 0 || start >= allocated_size) | ||
| 2182 | ntfs_error(vol->sb, "Cannot extend allocation " | ||
| 2183 | "of inode 0x%lx, attribute " | ||
| 2184 | "type 0x%x, because the " | ||
| 2185 | "mapping of a runlist " | ||
| 2186 | "fragment failed with error " | ||
| 2187 | "code %i.", vi->i_ino, | ||
| 2188 | (unsigned)le32_to_cpu(ni->type), | ||
| 2189 | err); | ||
| 2190 | if (err != -ENOMEM) | ||
| 2191 | err = -EIO; | ||
| 2192 | goto err_out; | ||
| 2193 | } | ||
| 2194 | ni->runlist.rl = rl; | ||
| 2195 | /* Seek to the end of the runlist. */ | ||
| 2196 | while (rl->length) | ||
| 2197 | rl++; | ||
| 2198 | } | ||
| 2199 | /* | ||
| 2200 | * We now know the runlist of the last extent is mapped and @rl is at | ||
| 2201 | * the end of the runlist. We want to begin allocating clusters | ||
| 2202 | * starting at the last allocated cluster to reduce fragmentation. If | ||
| 2203 | * there are no valid LCNs in the attribute we let the cluster | ||
| 2204 | * allocator choose the starting cluster. | ||
| 2205 | */ | ||
| 2206 | /* If the last LCN is a hole or simillar seek back to last real LCN. */ | ||
| 2207 | while (rl->lcn < 0 && rl > ni->runlist.rl) | ||
| 2208 | rl--; | ||
| 2209 | first_alloc: | ||
| 2210 | // FIXME: Need to implement partial allocations so at least part of the | ||
| 2211 | // write can be performed when start >= 0. (Needed for POSIX write(2) | ||
| 2212 | // conformance.) | ||
| 2213 | rl2 = ntfs_cluster_alloc(vol, allocated_size >> vol->cluster_size_bits, | ||
| 2214 | (new_alloc_size - allocated_size) >> | ||
| 2215 | vol->cluster_size_bits, (rl && (rl->lcn >= 0)) ? | ||
| 2216 | rl->lcn + rl->length : -1, DATA_ZONE, TRUE); | ||
| 2217 | if (IS_ERR(rl2)) { | ||
| 2218 | err = PTR_ERR(rl2); | ||
| 2219 | if (start < 0 || start >= allocated_size) | ||
| 2220 | ntfs_error(vol->sb, "Cannot extend allocation of " | ||
| 2221 | "inode 0x%lx, attribute type 0x%x, " | ||
| 2222 | "because the allocation of clusters " | ||
| 2223 | "failed with error code %i.", vi->i_ino, | ||
| 2224 | (unsigned)le32_to_cpu(ni->type), err); | ||
| 2225 | if (err != -ENOMEM && err != -ENOSPC) | ||
| 2226 | err = -EIO; | ||
| 2227 | goto err_out; | ||
| 2228 | } | ||
| 2229 | rl = ntfs_runlists_merge(ni->runlist.rl, rl2); | ||
| 2230 | if (IS_ERR(rl)) { | ||
| 2231 | err = PTR_ERR(rl); | ||
| 2232 | if (start < 0 || start >= allocated_size) | ||
| 2233 | ntfs_error(vol->sb, "Cannot extend allocation of " | ||
| 2234 | "inode 0x%lx, attribute type 0x%x, " | ||
| 2235 | "because the runlist merge failed " | ||
| 2236 | "with error code %i.", vi->i_ino, | ||
| 2237 | (unsigned)le32_to_cpu(ni->type), err); | ||
| 2238 | if (err != -ENOMEM) | ||
| 2239 | err = -EIO; | ||
| 2240 | if (ntfs_cluster_free_from_rl(vol, rl2)) { | ||
| 2241 | ntfs_error(vol->sb, "Failed to release allocated " | ||
| 2242 | "cluster(s) in error code path. Run " | ||
| 2243 | "chkdsk to recover the lost " | ||
| 2244 | "cluster(s)."); | ||
| 2245 | NVolSetErrors(vol); | ||
| 2246 | } | ||
| 2247 | ntfs_free(rl2); | ||
| 2248 | goto err_out; | ||
| 2249 | } | ||
| 2250 | ni->runlist.rl = rl; | ||
| 2251 | ntfs_debug("Allocated 0x%llx clusters.", (long long)(new_alloc_size - | ||
| 2252 | allocated_size) >> vol->cluster_size_bits); | ||
| 2253 | /* Find the runlist element with which the attribute extent starts. */ | ||
| 2254 | ll = sle64_to_cpu(a->data.non_resident.lowest_vcn); | ||
| 2255 | rl2 = ntfs_rl_find_vcn_nolock(rl, ll); | ||
| 2256 | BUG_ON(!rl2); | ||
| 2257 | BUG_ON(!rl2->length); | ||
| 2258 | BUG_ON(rl2->lcn < LCN_HOLE); | ||
| 2259 | mp_rebuilt = FALSE; | ||
| 2260 | /* Get the size for the new mapping pairs array for this extent. */ | ||
| 2261 | mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1); | ||
| 2262 | if (unlikely(mp_size <= 0)) { | ||
| 2263 | err = mp_size; | ||
| 2264 | if (start < 0 || start >= allocated_size) | ||
| 2265 | ntfs_error(vol->sb, "Cannot extend allocation of " | ||
| 2266 | "inode 0x%lx, attribute type 0x%x, " | ||
| 2267 | "because determining the size for the " | ||
| 2268 | "mapping pairs failed with error code " | ||
| 2269 | "%i.", vi->i_ino, | ||
| 2270 | (unsigned)le32_to_cpu(ni->type), err); | ||
| 2271 | err = -EIO; | ||
| 2272 | goto undo_alloc; | ||
| 2273 | } | ||
| 2274 | /* Extend the attribute record to fit the bigger mapping pairs array. */ | ||
| 2275 | attr_len = le32_to_cpu(a->length); | ||
| 2276 | err = ntfs_attr_record_resize(m, a, mp_size + | ||
| 2277 | le16_to_cpu(a->data.non_resident.mapping_pairs_offset)); | ||
| 2278 | if (unlikely(err)) { | ||
| 2279 | BUG_ON(err != -ENOSPC); | ||
| 2280 | // TODO: Deal with this by moving this extent to a new mft | ||
| 2281 | // record or by starting a new extent in a new mft record, | ||
| 2282 | // possibly by extending this extent partially and filling it | ||
| 2283 | // and creating a new extent for the remainder, or by making | ||
| 2284 | // other attributes non-resident and/or by moving other | ||
| 2285 | // attributes out of this mft record. | ||
| 2286 | if (start < 0 || start >= allocated_size) | ||
| 2287 | ntfs_error(vol->sb, "Not enough space in the mft " | ||
| 2288 | "record for the extended attribute " | ||
| 2289 | "record. This case is not " | ||
| 2290 | "implemented yet."); | ||
| 2291 | err = -EOPNOTSUPP; | ||
| 2292 | goto undo_alloc; | ||
| 2293 | } | ||
| 2294 | mp_rebuilt = TRUE; | ||
| 2295 | /* Generate the mapping pairs array directly into the attr record. */ | ||
| 2296 | err = ntfs_mapping_pairs_build(vol, (u8*)a + | ||
| 2297 | le16_to_cpu(a->data.non_resident.mapping_pairs_offset), | ||
| 2298 | mp_size, rl2, ll, -1, NULL); | ||
| 2299 | if (unlikely(err)) { | ||
| 2300 | if (start < 0 || start >= allocated_size) | ||
| 2301 | ntfs_error(vol->sb, "Cannot extend allocation of " | ||
| 2302 | "inode 0x%lx, attribute type 0x%x, " | ||
| 2303 | "because building the mapping pairs " | ||
| 2304 | "failed with error code %i.", vi->i_ino, | ||
| 2305 | (unsigned)le32_to_cpu(ni->type), err); | ||
| 2306 | err = -EIO; | ||
| 2307 | goto undo_alloc; | ||
| 2308 | } | ||
| 2309 | /* Update the highest_vcn. */ | ||
| 2310 | a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >> | ||
| 2311 | vol->cluster_size_bits) - 1); | ||
| 2312 | /* | ||
| 2313 | * We now have extended the allocated size of the attribute. Reflect | ||
| 2314 | * this in the ntfs_inode structure and the attribute record. | ||
| 2315 | */ | ||
| 2316 | if (a->data.non_resident.lowest_vcn) { | ||
| 2317 | /* | ||
| 2318 | * We are not in the first attribute extent, switch to it, but | ||
| 2319 | * first ensure the changes will make it to disk later. | ||
| 2320 | */ | ||
| 2321 | flush_dcache_mft_record_page(ctx->ntfs_ino); | ||
| 2322 | mark_mft_record_dirty(ctx->ntfs_ino); | ||
| 2323 | ntfs_attr_reinit_search_ctx(ctx); | ||
| 2324 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | ||
| 2325 | CASE_SENSITIVE, 0, NULL, 0, ctx); | ||
| 2326 | if (unlikely(err)) | ||
| 2327 | goto restore_undo_alloc; | ||
| 2328 | /* @m is not used any more so no need to set it. */ | ||
| 2329 | a = ctx->attr; | ||
| 2330 | } | ||
| 2331 | write_lock_irqsave(&ni->size_lock, flags); | ||
| 2332 | ni->allocated_size = new_alloc_size; | ||
| 2333 | a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size); | ||
| 2334 | /* | ||
| 2335 | * FIXME: This would fail if @ni is a directory, $MFT, or an index, | ||
| 2336 | * since those can have sparse/compressed set. For example can be | ||
| 2337 | * set compressed even though it is not compressed itself and in that | ||
| 2338 | * case the bit means that files are to be created compressed in the | ||
| 2339 | * directory... At present this is ok as this code is only called for | ||
| 2340 | * regular files, and only for their $DATA attribute(s). | ||
| 2341 | * FIXME: The calculation is wrong if we created a hole above. For now | ||
| 2342 | * it does not matter as we never create holes. | ||
| 2343 | */ | ||
| 2344 | if (NInoSparse(ni) || NInoCompressed(ni)) { | ||
| 2345 | ni->itype.compressed.size += new_alloc_size - allocated_size; | ||
| 2346 | a->data.non_resident.compressed_size = | ||
| 2347 | cpu_to_sle64(ni->itype.compressed.size); | ||
| 2348 | vi->i_blocks = ni->itype.compressed.size >> 9; | ||
| 2349 | } else | ||
| 2350 | vi->i_blocks = new_alloc_size >> 9; | ||
| 2351 | write_unlock_irqrestore(&ni->size_lock, flags); | ||
| 2352 | alloc_done: | ||
| 2353 | if (new_data_size >= 0) { | ||
| 2354 | BUG_ON(new_data_size < | ||
| 2355 | sle64_to_cpu(a->data.non_resident.data_size)); | ||
| 2356 | a->data.non_resident.data_size = cpu_to_sle64(new_data_size); | ||
| 2357 | } | ||
| 2358 | flush_done: | ||
| 2359 | /* Ensure the changes make it to disk. */ | ||
| 2360 | flush_dcache_mft_record_page(ctx->ntfs_ino); | ||
| 2361 | mark_mft_record_dirty(ctx->ntfs_ino); | ||
| 2362 | done: | ||
| 2363 | ntfs_attr_put_search_ctx(ctx); | ||
| 2364 | unmap_mft_record(base_ni); | ||
| 2365 | up_write(&ni->runlist.lock); | ||
| 2366 | ntfs_debug("Done, new_allocated_size 0x%llx.", | ||
| 2367 | (unsigned long long)new_alloc_size); | ||
| 2368 | return new_alloc_size; | ||
| 2369 | restore_undo_alloc: | ||
| 2370 | if (start < 0 || start >= allocated_size) | ||
| 2371 | ntfs_error(vol->sb, "Cannot complete extension of allocation " | ||
| 2372 | "of inode 0x%lx, attribute type 0x%x, because " | ||
| 2373 | "lookup of first attribute extent failed with " | ||
| 2374 | "error code %i.", vi->i_ino, | ||
| 2375 | (unsigned)le32_to_cpu(ni->type), err); | ||
| 2376 | if (err == -ENOENT) | ||
| 2377 | err = -EIO; | ||
| 2378 | ntfs_attr_reinit_search_ctx(ctx); | ||
| 2379 | if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len, CASE_SENSITIVE, | ||
| 2380 | allocated_size >> vol->cluster_size_bits, NULL, 0, | ||
| 2381 | ctx)) { | ||
| 2382 | ntfs_error(vol->sb, "Failed to find last attribute extent of " | ||
| 2383 | "attribute in error code path. Run chkdsk to " | ||
| 2384 | "recover."); | ||
| 2385 | write_lock_irqsave(&ni->size_lock, flags); | ||
| 2386 | ni->allocated_size = new_alloc_size; | ||
| 2387 | /* | ||
| 2388 | * FIXME: This would fail if @ni is a directory... See above. | ||
| 2389 | * FIXME: The calculation is wrong if we created a hole above. | ||
| 2390 | * For now it does not matter as we never create holes. | ||
| 2391 | */ | ||
| 2392 | if (NInoSparse(ni) || NInoCompressed(ni)) { | ||
| 2393 | ni->itype.compressed.size += new_alloc_size - | ||
| 2394 | allocated_size; | ||
| 2395 | vi->i_blocks = ni->itype.compressed.size >> 9; | ||
| 2396 | } else | ||
| 2397 | vi->i_blocks = new_alloc_size >> 9; | ||
| 2398 | write_unlock_irqrestore(&ni->size_lock, flags); | ||
| 2399 | ntfs_attr_put_search_ctx(ctx); | ||
| 2400 | unmap_mft_record(base_ni); | ||
| 2401 | up_write(&ni->runlist.lock); | ||
| 2402 | /* | ||
| 2403 | * The only thing that is now wrong is the allocated size of the | ||
| 2404 | * base attribute extent which chkdsk should be able to fix. | ||
| 2405 | */ | ||
| 2406 | NVolSetErrors(vol); | ||
| 2407 | return err; | ||
| 2408 | } | ||
| 2409 | ctx->attr->data.non_resident.highest_vcn = cpu_to_sle64( | ||
| 2410 | (allocated_size >> vol->cluster_size_bits) - 1); | ||
| 2411 | undo_alloc: | ||
| 2412 | ll = allocated_size >> vol->cluster_size_bits; | ||
| 2413 | if (ntfs_cluster_free(ni, ll, -1, ctx) < 0) { | ||
| 2414 | ntfs_error(vol->sb, "Failed to release allocated cluster(s) " | ||
| 2415 | "in error code path. Run chkdsk to recover " | ||
| 2416 | "the lost cluster(s)."); | ||
| 2417 | NVolSetErrors(vol); | ||
| 2418 | } | ||
| 2419 | m = ctx->mrec; | ||
| 2420 | a = ctx->attr; | ||
| 2421 | /* | ||
| 2422 | * If the runlist truncation fails and/or the search context is no | ||
| 2423 | * longer valid, we cannot resize the attribute record or build the | ||
| 2424 | * mapping pairs array thus we mark the inode bad so that no access to | ||
| 2425 | * the freed clusters can happen. | ||
| 2426 | */ | ||
| 2427 | if (ntfs_rl_truncate_nolock(vol, &ni->runlist, ll) || IS_ERR(m)) { | ||
| 2428 | ntfs_error(vol->sb, "Failed to %s in error code path. Run " | ||
| 2429 | "chkdsk to recover.", IS_ERR(m) ? | ||
| 2430 | "restore attribute search context" : | ||
| 2431 | "truncate attribute runlist"); | ||
| 2432 | make_bad_inode(vi); | ||
| 2433 | make_bad_inode(VFS_I(base_ni)); | ||
| 2434 | NVolSetErrors(vol); | ||
| 2435 | } else if (mp_rebuilt) { | ||
| 2436 | if (ntfs_attr_record_resize(m, a, attr_len)) { | ||
| 2437 | ntfs_error(vol->sb, "Failed to restore attribute " | ||
| 2438 | "record in error code path. Run " | ||
| 2439 | "chkdsk to recover."); | ||
| 2440 | make_bad_inode(vi); | ||
| 2441 | make_bad_inode(VFS_I(base_ni)); | ||
| 2442 | NVolSetErrors(vol); | ||
| 2443 | } else /* if (success) */ { | ||
| 2444 | if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu( | ||
| 2445 | a->data.non_resident. | ||
| 2446 | mapping_pairs_offset), attr_len - | ||
| 2447 | le16_to_cpu(a->data.non_resident. | ||
| 2448 | mapping_pairs_offset), rl2, ll, -1, | ||
| 2449 | NULL)) { | ||
| 2450 | ntfs_error(vol->sb, "Failed to restore " | ||
| 2451 | "mapping pairs array in error " | ||
| 2452 | "code path. Run chkdsk to " | ||
| 2453 | "recover."); | ||
| 2454 | make_bad_inode(vi); | ||
| 2455 | make_bad_inode(VFS_I(base_ni)); | ||
| 2456 | NVolSetErrors(vol); | ||
| 2457 | } | ||
| 2458 | flush_dcache_mft_record_page(ctx->ntfs_ino); | ||
| 2459 | mark_mft_record_dirty(ctx->ntfs_ino); | ||
| 2460 | } | ||
| 2461 | } | ||
| 2462 | err_out: | ||
| 2463 | if (ctx) | ||
| 2464 | ntfs_attr_put_search_ctx(ctx); | ||
| 2465 | if (m) | ||
| 2466 | unmap_mft_record(base_ni); | ||
| 2467 | up_write(&ni->runlist.lock); | ||
| 2468 | conv_err_out: | ||
| 2469 | ntfs_debug("Failed. Returning error code %i.", err); | ||
| 2470 | return err; | ||
| 2471 | } | ||
| 2472 | |||
| 2473 | /** | ||
| 1655 | * ntfs_attr_set - fill (a part of) an attribute with a byte | 2474 | * ntfs_attr_set - fill (a part of) an attribute with a byte |
| 1656 | * @ni: ntfs inode describing the attribute to fill | 2475 | * @ni: ntfs inode describing the attribute to fill |
| 1657 | * @ofs: offset inside the attribute at which to start to fill | 2476 | * @ofs: offset inside the attribute at which to start to fill |
| @@ -1773,6 +2592,8 @@ int ntfs_attr_set(ntfs_inode *ni, const s64 ofs, const s64 cnt, const u8 val) | |||
| 1773 | /* Finally unlock and release the page. */ | 2592 | /* Finally unlock and release the page. */ |
| 1774 | unlock_page(page); | 2593 | unlock_page(page); |
| 1775 | page_cache_release(page); | 2594 | page_cache_release(page); |
| 2595 | balance_dirty_pages_ratelimited(mapping); | ||
| 2596 | cond_resched(); | ||
| 1776 | } | 2597 | } |
| 1777 | /* If there is a last partial page, need to do it the slow way. */ | 2598 | /* If there is a last partial page, need to do it the slow way. */ |
| 1778 | if (end_ofs) { | 2599 | if (end_ofs) { |
diff --git a/fs/ntfs/attrib.h b/fs/ntfs/attrib.h index 0618ed6fd7b3..9074886b44ba 100644 --- a/fs/ntfs/attrib.h +++ b/fs/ntfs/attrib.h | |||
| @@ -60,14 +60,15 @@ typedef struct { | |||
| 60 | ATTR_RECORD *base_attr; | 60 | ATTR_RECORD *base_attr; |
| 61 | } ntfs_attr_search_ctx; | 61 | } ntfs_attr_search_ctx; |
| 62 | 62 | ||
| 63 | extern int ntfs_map_runlist_nolock(ntfs_inode *ni, VCN vcn); | 63 | extern int ntfs_map_runlist_nolock(ntfs_inode *ni, VCN vcn, |
| 64 | ntfs_attr_search_ctx *ctx); | ||
| 64 | extern int ntfs_map_runlist(ntfs_inode *ni, VCN vcn); | 65 | extern int ntfs_map_runlist(ntfs_inode *ni, VCN vcn); |
| 65 | 66 | ||
| 66 | extern LCN ntfs_attr_vcn_to_lcn_nolock(ntfs_inode *ni, const VCN vcn, | 67 | extern LCN ntfs_attr_vcn_to_lcn_nolock(ntfs_inode *ni, const VCN vcn, |
| 67 | const BOOL write_locked); | 68 | const BOOL write_locked); |
| 68 | 69 | ||
| 69 | extern runlist_element *ntfs_attr_find_vcn_nolock(ntfs_inode *ni, | 70 | extern runlist_element *ntfs_attr_find_vcn_nolock(ntfs_inode *ni, |
| 70 | const VCN vcn, const BOOL write_locked); | 71 | const VCN vcn, ntfs_attr_search_ctx *ctx); |
| 71 | 72 | ||
| 72 | int ntfs_attr_lookup(const ATTR_TYPE type, const ntfschar *name, | 73 | int ntfs_attr_lookup(const ATTR_TYPE type, const ntfschar *name, |
| 73 | const u32 name_len, const IGNORE_CASE_BOOL ic, | 74 | const u32 name_len, const IGNORE_CASE_BOOL ic, |
| @@ -102,7 +103,10 @@ extern int ntfs_attr_record_resize(MFT_RECORD *m, ATTR_RECORD *a, u32 new_size); | |||
| 102 | extern int ntfs_resident_attr_value_resize(MFT_RECORD *m, ATTR_RECORD *a, | 103 | extern int ntfs_resident_attr_value_resize(MFT_RECORD *m, ATTR_RECORD *a, |
| 103 | const u32 new_size); | 104 | const u32 new_size); |
| 104 | 105 | ||
| 105 | extern int ntfs_attr_make_non_resident(ntfs_inode *ni); | 106 | extern int ntfs_attr_make_non_resident(ntfs_inode *ni, const u32 data_size); |
| 107 | |||
| 108 | extern s64 ntfs_attr_extend_allocation(ntfs_inode *ni, s64 new_alloc_size, | ||
| 109 | const s64 new_data_size, const s64 data_start); | ||
| 106 | 110 | ||
| 107 | extern int ntfs_attr_set(ntfs_inode *ni, const s64 ofs, const s64 cnt, | 111 | extern int ntfs_attr_set(ntfs_inode *ni, const s64 ofs, const s64 cnt, |
| 108 | const u8 val); | 112 | const u8 val); |
diff --git a/fs/ntfs/file.c b/fs/ntfs/file.c index be9fd1dd423d..cf3e6ced2d01 100644 --- a/fs/ntfs/file.c +++ b/fs/ntfs/file.c | |||
| @@ -19,11 +19,24 @@ | |||
| 19 | * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | 19 | * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 20 | */ | 20 | */ |
| 21 | 21 | ||
| 22 | #include <linux/pagemap.h> | ||
| 23 | #include <linux/buffer_head.h> | 22 | #include <linux/buffer_head.h> |
| 23 | #include <linux/pagemap.h> | ||
| 24 | #include <linux/pagevec.h> | ||
| 25 | #include <linux/sched.h> | ||
| 26 | #include <linux/swap.h> | ||
| 27 | #include <linux/uio.h> | ||
| 28 | #include <linux/writeback.h> | ||
| 24 | 29 | ||
| 30 | #include <asm/page.h> | ||
| 31 | #include <asm/uaccess.h> | ||
| 32 | |||
| 33 | #include "attrib.h" | ||
| 34 | #include "bitmap.h" | ||
| 25 | #include "inode.h" | 35 | #include "inode.h" |
| 26 | #include "debug.h" | 36 | #include "debug.h" |
| 37 | #include "lcnalloc.h" | ||
| 38 | #include "malloc.h" | ||
| 39 | #include "mft.h" | ||
| 27 | #include "ntfs.h" | 40 | #include "ntfs.h" |
| 28 | 41 | ||
| 29 | /** | 42 | /** |
| @@ -56,6 +69,2184 @@ static int ntfs_file_open(struct inode *vi, struct file *filp) | |||
| 56 | #ifdef NTFS_RW | 69 | #ifdef NTFS_RW |
| 57 | 70 | ||
| 58 | /** | 71 | /** |
| 72 | * ntfs_attr_extend_initialized - extend the initialized size of an attribute | ||
| 73 | * @ni: ntfs inode of the attribute to extend | ||
| 74 | * @new_init_size: requested new initialized size in bytes | ||
| 75 | * @cached_page: store any allocated but unused page here | ||
| 76 | * @lru_pvec: lru-buffering pagevec of the caller | ||
| 77 | * | ||
| 78 | * Extend the initialized size of an attribute described by the ntfs inode @ni | ||
| 79 | * to @new_init_size bytes. This involves zeroing any non-sparse space between | ||
| 80 | * the old initialized size and @new_init_size both in the page cache and on | ||
| 81 | * disk (if relevant complete pages are already uptodate in the page cache then | ||
| 82 | * these are simply marked dirty). | ||
| 83 | * | ||
| 84 | * As a side-effect, the file size (vfs inode->i_size) may be incremented as, | ||
| 85 | * in the resident attribute case, it is tied to the initialized size and, in | ||
| 86 | * the non-resident attribute case, it may not fall below the initialized size. | ||
| 87 | * | ||
| 88 | * Note that if the attribute is resident, we do not need to touch the page | ||
| 89 | * cache at all. This is because if the page cache page is not uptodate we | ||
| 90 | * bring it uptodate later, when doing the write to the mft record since we | ||
| 91 | * then already have the page mapped. And if the page is uptodate, the | ||
| 92 | * non-initialized region will already have been zeroed when the page was | ||
| 93 | * brought uptodate and the region may in fact already have been overwritten | ||
| 94 | * with new data via mmap() based writes, so we cannot just zero it. And since | ||
| 95 | * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped | ||
| 96 | * is unspecified, we choose not to do zeroing and thus we do not need to touch | ||
| 97 | * the page at all. For a more detailed explanation see ntfs_truncate() in | ||
| 98 | * fs/ntfs/inode.c. | ||
| 99 | * | ||
| 100 | * @cached_page and @lru_pvec are just optimizations for dealing with multiple | ||
| 101 | * pages. | ||
| 102 | * | ||
| 103 | * Return 0 on success and -errno on error. In the case that an error is | ||
| 104 | * encountered it is possible that the initialized size will already have been | ||
| 105 | * incremented some way towards @new_init_size but it is guaranteed that if | ||
| 106 | * this is the case, the necessary zeroing will also have happened and that all | ||
| 107 | * metadata is self-consistent. | ||
| 108 | * | ||
| 109 | * Locking: i_sem on the vfs inode corrseponsind to the ntfs inode @ni must be | ||
| 110 | * held by the caller. | ||
| 111 | */ | ||
| 112 | static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size, | ||
| 113 | struct page **cached_page, struct pagevec *lru_pvec) | ||
| 114 | { | ||
| 115 | s64 old_init_size; | ||
| 116 | loff_t old_i_size; | ||
| 117 | pgoff_t index, end_index; | ||
| 118 | unsigned long flags; | ||
| 119 | struct inode *vi = VFS_I(ni); | ||
| 120 | ntfs_inode *base_ni; | ||
| 121 | MFT_RECORD *m = NULL; | ||
| 122 | ATTR_RECORD *a; | ||
| 123 | ntfs_attr_search_ctx *ctx = NULL; | ||
| 124 | struct address_space *mapping; | ||
| 125 | struct page *page = NULL; | ||
| 126 | u8 *kattr; | ||
| 127 | int err; | ||
| 128 | u32 attr_len; | ||
| 129 | |||
| 130 | read_lock_irqsave(&ni->size_lock, flags); | ||
| 131 | old_init_size = ni->initialized_size; | ||
| 132 | old_i_size = i_size_read(vi); | ||
| 133 | BUG_ON(new_init_size > ni->allocated_size); | ||
| 134 | read_unlock_irqrestore(&ni->size_lock, flags); | ||
| 135 | ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, " | ||
| 136 | "old_initialized_size 0x%llx, " | ||
| 137 | "new_initialized_size 0x%llx, i_size 0x%llx.", | ||
| 138 | vi->i_ino, (unsigned)le32_to_cpu(ni->type), | ||
| 139 | (unsigned long long)old_init_size, | ||
| 140 | (unsigned long long)new_init_size, old_i_size); | ||
| 141 | if (!NInoAttr(ni)) | ||
| 142 | base_ni = ni; | ||
| 143 | else | ||
| 144 | base_ni = ni->ext.base_ntfs_ino; | ||
| 145 | /* Use goto to reduce indentation and we need the label below anyway. */ | ||
| 146 | if (NInoNonResident(ni)) | ||
| 147 | goto do_non_resident_extend; | ||
| 148 | BUG_ON(old_init_size != old_i_size); | ||
| 149 | m = map_mft_record(base_ni); | ||
| 150 | if (IS_ERR(m)) { | ||
| 151 | err = PTR_ERR(m); | ||
| 152 | m = NULL; | ||
| 153 | goto err_out; | ||
| 154 | } | ||
| 155 | ctx = ntfs_attr_get_search_ctx(base_ni, m); | ||
| 156 | if (unlikely(!ctx)) { | ||
| 157 | err = -ENOMEM; | ||
| 158 | goto err_out; | ||
| 159 | } | ||
| 160 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | ||
| 161 | CASE_SENSITIVE, 0, NULL, 0, ctx); | ||
| 162 | if (unlikely(err)) { | ||
| 163 | if (err == -ENOENT) | ||
| 164 | err = -EIO; | ||
| 165 | goto err_out; | ||
| 166 | } | ||
| 167 | m = ctx->mrec; | ||
| 168 | a = ctx->attr; | ||
| 169 | BUG_ON(a->non_resident); | ||
| 170 | /* The total length of the attribute value. */ | ||
| 171 | attr_len = le32_to_cpu(a->data.resident.value_length); | ||
| 172 | BUG_ON(old_i_size != (loff_t)attr_len); | ||
| 173 | /* | ||
| 174 | * Do the zeroing in the mft record and update the attribute size in | ||
| 175 | * the mft record. | ||
| 176 | */ | ||
| 177 | kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset); | ||
| 178 | memset(kattr + attr_len, 0, new_init_size - attr_len); | ||
| 179 | a->data.resident.value_length = cpu_to_le32((u32)new_init_size); | ||
| 180 | /* Finally, update the sizes in the vfs and ntfs inodes. */ | ||
| 181 | write_lock_irqsave(&ni->size_lock, flags); | ||
| 182 | i_size_write(vi, new_init_size); | ||
| 183 | ni->initialized_size = new_init_size; | ||
| 184 | write_unlock_irqrestore(&ni->size_lock, flags); | ||
| 185 | goto done; | ||
| 186 | do_non_resident_extend: | ||
| 187 | /* | ||
| 188 | * If the new initialized size @new_init_size exceeds the current file | ||
| 189 | * size (vfs inode->i_size), we need to extend the file size to the | ||
| 190 | * new initialized size. | ||
| 191 | */ | ||
| 192 | if (new_init_size > old_i_size) { | ||
| 193 | m = map_mft_record(base_ni); | ||
| 194 | if (IS_ERR(m)) { | ||
| 195 | err = PTR_ERR(m); | ||
| 196 | m = NULL; | ||
| 197 | goto err_out; | ||
| 198 | } | ||
| 199 | ctx = ntfs_attr_get_search_ctx(base_ni, m); | ||
| 200 | if (unlikely(!ctx)) { | ||
| 201 | err = -ENOMEM; | ||
| 202 | goto err_out; | ||
| 203 | } | ||
| 204 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | ||
| 205 | CASE_SENSITIVE, 0, NULL, 0, ctx); | ||
| 206 | if (unlikely(err)) { | ||
| 207 | if (err == -ENOENT) | ||
| 208 | err = -EIO; | ||
| 209 | goto err_out; | ||
| 210 | } | ||
| 211 | m = ctx->mrec; | ||
| 212 | a = ctx->attr; | ||
| 213 | BUG_ON(!a->non_resident); | ||
| 214 | BUG_ON(old_i_size != (loff_t) | ||
| 215 | sle64_to_cpu(a->data.non_resident.data_size)); | ||
| 216 | a->data.non_resident.data_size = cpu_to_sle64(new_init_size); | ||
| 217 | flush_dcache_mft_record_page(ctx->ntfs_ino); | ||
| 218 | mark_mft_record_dirty(ctx->ntfs_ino); | ||
| 219 | /* Update the file size in the vfs inode. */ | ||
| 220 | i_size_write(vi, new_init_size); | ||
| 221 | ntfs_attr_put_search_ctx(ctx); | ||
| 222 | ctx = NULL; | ||
| 223 | unmap_mft_record(base_ni); | ||
| 224 | m = NULL; | ||
| 225 | } | ||
| 226 | mapping = vi->i_mapping; | ||
| 227 | index = old_init_size >> PAGE_CACHE_SHIFT; | ||
| 228 | end_index = (new_init_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; | ||
| 229 | do { | ||
| 230 | /* | ||
| 231 | * Read the page. If the page is not present, this will zero | ||
| 232 | * the uninitialized regions for us. | ||
| 233 | */ | ||
| 234 | page = read_cache_page(mapping, index, | ||
| 235 | (filler_t*)mapping->a_ops->readpage, NULL); | ||
| 236 | if (IS_ERR(page)) { | ||
| 237 | err = PTR_ERR(page); | ||
| 238 | goto init_err_out; | ||
| 239 | } | ||
| 240 | wait_on_page_locked(page); | ||
| 241 | if (unlikely(!PageUptodate(page) || PageError(page))) { | ||
| 242 | page_cache_release(page); | ||
| 243 | err = -EIO; | ||
| 244 | goto init_err_out; | ||
| 245 | } | ||
| 246 | /* | ||
| 247 | * Update the initialized size in the ntfs inode. This is | ||
| 248 | * enough to make ntfs_writepage() work. | ||
| 249 | */ | ||
| 250 | write_lock_irqsave(&ni->size_lock, flags); | ||
| 251 | ni->initialized_size = (index + 1) << PAGE_CACHE_SHIFT; | ||
| 252 | if (ni->initialized_size > new_init_size) | ||
| 253 | ni->initialized_size = new_init_size; | ||
| 254 | write_unlock_irqrestore(&ni->size_lock, flags); | ||
| 255 | /* Set the page dirty so it gets written out. */ | ||
| 256 | set_page_dirty(page); | ||
| 257 | page_cache_release(page); | ||
| 258 | /* | ||
| 259 | * Play nice with the vm and the rest of the system. This is | ||
| 260 | * very much needed as we can potentially be modifying the | ||
| 261 | * initialised size from a very small value to a really huge | ||
| 262 | * value, e.g. | ||
| 263 | * f = open(somefile, O_TRUNC); | ||
| 264 | * truncate(f, 10GiB); | ||
| 265 | * seek(f, 10GiB); | ||
| 266 | * write(f, 1); | ||
| 267 | * And this would mean we would be marking dirty hundreds of | ||
| 268 | * thousands of pages or as in the above example more than | ||
| 269 | * two and a half million pages! | ||
| 270 | * | ||
| 271 | * TODO: For sparse pages could optimize this workload by using | ||
| 272 | * the FsMisc / MiscFs page bit as a "PageIsSparse" bit. This | ||
| 273 | * would be set in readpage for sparse pages and here we would | ||
| 274 | * not need to mark dirty any pages which have this bit set. | ||
| 275 | * The only caveat is that we have to clear the bit everywhere | ||
| 276 | * where we allocate any clusters that lie in the page or that | ||
| 277 | * contain the page. | ||
| 278 | * | ||
| 279 | * TODO: An even greater optimization would be for us to only | ||
| 280 | * call readpage() on pages which are not in sparse regions as | ||
| 281 | * determined from the runlist. This would greatly reduce the | ||
| 282 | * number of pages we read and make dirty in the case of sparse | ||
| 283 | * files. | ||
| 284 | */ | ||
| 285 | balance_dirty_pages_ratelimited(mapping); | ||
| 286 | cond_resched(); | ||
| 287 | } while (++index < end_index); | ||
| 288 | read_lock_irqsave(&ni->size_lock, flags); | ||
| 289 | BUG_ON(ni->initialized_size != new_init_size); | ||
| 290 | read_unlock_irqrestore(&ni->size_lock, flags); | ||
| 291 | /* Now bring in sync the initialized_size in the mft record. */ | ||
| 292 | m = map_mft_record(base_ni); | ||
| 293 | if (IS_ERR(m)) { | ||
| 294 | err = PTR_ERR(m); | ||
| 295 | m = NULL; | ||
| 296 | goto init_err_out; | ||
| 297 | } | ||
| 298 | ctx = ntfs_attr_get_search_ctx(base_ni, m); | ||
| 299 | if (unlikely(!ctx)) { | ||
| 300 | err = -ENOMEM; | ||
| 301 | goto init_err_out; | ||
| 302 | } | ||
| 303 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | ||
| 304 | CASE_SENSITIVE, 0, NULL, 0, ctx); | ||
| 305 | if (unlikely(err)) { | ||
| 306 | if (err == -ENOENT) | ||
| 307 | err = -EIO; | ||
| 308 | goto init_err_out; | ||
| 309 | } | ||
| 310 | m = ctx->mrec; | ||
| 311 | a = ctx->attr; | ||
| 312 | BUG_ON(!a->non_resident); | ||
| 313 | a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size); | ||
| 314 | done: | ||
| 315 | flush_dcache_mft_record_page(ctx->ntfs_ino); | ||
| 316 | mark_mft_record_dirty(ctx->ntfs_ino); | ||
| 317 | if (ctx) | ||
| 318 | ntfs_attr_put_search_ctx(ctx); | ||
| 319 | if (m) | ||
| 320 | unmap_mft_record(base_ni); | ||
| 321 | ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.", | ||
| 322 | (unsigned long long)new_init_size, i_size_read(vi)); | ||
| 323 | return 0; | ||
| 324 | init_err_out: | ||
| 325 | write_lock_irqsave(&ni->size_lock, flags); | ||
| 326 | ni->initialized_size = old_init_size; | ||
| 327 | write_unlock_irqrestore(&ni->size_lock, flags); | ||
| 328 | err_out: | ||
| 329 | if (ctx) | ||
| 330 | ntfs_attr_put_search_ctx(ctx); | ||
| 331 | if (m) | ||
| 332 | unmap_mft_record(base_ni); | ||
| 333 | ntfs_debug("Failed. Returning error code %i.", err); | ||
| 334 | return err; | ||
| 335 | } | ||
| 336 | |||
| 337 | /** | ||
| 338 | * ntfs_fault_in_pages_readable - | ||
| 339 | * | ||
| 340 | * Fault a number of userspace pages into pagetables. | ||
| 341 | * | ||
| 342 | * Unlike include/linux/pagemap.h::fault_in_pages_readable(), this one copes | ||
| 343 | * with more than two userspace pages as well as handling the single page case | ||
| 344 | * elegantly. | ||
| 345 | * | ||
| 346 | * If you find this difficult to understand, then think of the while loop being | ||
| 347 | * the following code, except that we do without the integer variable ret: | ||
| 348 | * | ||
| 349 | * do { | ||
| 350 | * ret = __get_user(c, uaddr); | ||
| 351 | * uaddr += PAGE_SIZE; | ||
| 352 | * } while (!ret && uaddr < end); | ||
| 353 | * | ||
| 354 | * Note, the final __get_user() may well run out-of-bounds of the user buffer, | ||
| 355 | * but _not_ out-of-bounds of the page the user buffer belongs to, and since | ||
| 356 | * this is only a read and not a write, and since it is still in the same page, | ||
| 357 | * it should not matter and this makes the code much simpler. | ||
| 358 | */ | ||
| 359 | static inline void ntfs_fault_in_pages_readable(const char __user *uaddr, | ||
| 360 | int bytes) | ||
| 361 | { | ||
| 362 | const char __user *end; | ||
| 363 | volatile char c; | ||
| 364 | |||
| 365 | /* Set @end to the first byte outside the last page we care about. */ | ||
| 366 | end = (const char __user*)PAGE_ALIGN((ptrdiff_t __user)uaddr + bytes); | ||
| 367 | |||
| 368 | while (!__get_user(c, uaddr) && (uaddr += PAGE_SIZE, uaddr < end)) | ||
| 369 | ; | ||
| 370 | } | ||
| 371 | |||
| 372 | /** | ||
| 373 | * ntfs_fault_in_pages_readable_iovec - | ||
| 374 | * | ||
| 375 | * Same as ntfs_fault_in_pages_readable() but operates on an array of iovecs. | ||
| 376 | */ | ||
| 377 | static inline void ntfs_fault_in_pages_readable_iovec(const struct iovec *iov, | ||
| 378 | size_t iov_ofs, int bytes) | ||
| 379 | { | ||
| 380 | do { | ||
| 381 | const char __user *buf; | ||
| 382 | unsigned len; | ||
| 383 | |||
| 384 | buf = iov->iov_base + iov_ofs; | ||
| 385 | len = iov->iov_len - iov_ofs; | ||
| 386 | if (len > bytes) | ||
| 387 | len = bytes; | ||
| 388 | ntfs_fault_in_pages_readable(buf, len); | ||
| 389 | bytes -= len; | ||
| 390 | iov++; | ||
| 391 | iov_ofs = 0; | ||
| 392 | } while (bytes); | ||
| 393 | } | ||
| 394 | |||
| 395 | /** | ||
| 396 | * __ntfs_grab_cache_pages - obtain a number of locked pages | ||
| 397 | * @mapping: address space mapping from which to obtain page cache pages | ||
| 398 | * @index: starting index in @mapping at which to begin obtaining pages | ||
| 399 | * @nr_pages: number of page cache pages to obtain | ||
| 400 | * @pages: array of pages in which to return the obtained page cache pages | ||
| 401 | * @cached_page: allocated but as yet unused page | ||
| 402 | * @lru_pvec: lru-buffering pagevec of caller | ||
| 403 | * | ||
| 404 | * Obtain @nr_pages locked page cache pages from the mapping @maping and | ||
| 405 | * starting at index @index. | ||
| 406 | * | ||
| 407 | * If a page is newly created, increment its refcount and add it to the | ||
| 408 | * caller's lru-buffering pagevec @lru_pvec. | ||
| 409 | * | ||
| 410 | * This is the same as mm/filemap.c::__grab_cache_page(), except that @nr_pages | ||
| 411 | * are obtained at once instead of just one page and that 0 is returned on | ||
| 412 | * success and -errno on error. | ||
| 413 | * | ||
| 414 | * Note, the page locks are obtained in ascending page index order. | ||
| 415 | */ | ||
| 416 | static inline int __ntfs_grab_cache_pages(struct address_space *mapping, | ||
| 417 | pgoff_t index, const unsigned nr_pages, struct page **pages, | ||
| 418 | struct page **cached_page, struct pagevec *lru_pvec) | ||
| 419 | { | ||
| 420 | int err, nr; | ||
| 421 | |||
| 422 | BUG_ON(!nr_pages); | ||
| 423 | err = nr = 0; | ||
| 424 | do { | ||
| 425 | pages[nr] = find_lock_page(mapping, index); | ||
| 426 | if (!pages[nr]) { | ||
| 427 | if (!*cached_page) { | ||
| 428 | *cached_page = page_cache_alloc(mapping); | ||
| 429 | if (unlikely(!*cached_page)) { | ||
| 430 | err = -ENOMEM; | ||
| 431 | goto err_out; | ||
| 432 | } | ||
| 433 | } | ||
| 434 | err = add_to_page_cache(*cached_page, mapping, index, | ||
| 435 | GFP_KERNEL); | ||
| 436 | if (unlikely(err)) { | ||
| 437 | if (err == -EEXIST) | ||
| 438 | continue; | ||
| 439 | goto err_out; | ||
| 440 | } | ||
| 441 | pages[nr] = *cached_page; | ||
| 442 | page_cache_get(*cached_page); | ||
| 443 | if (unlikely(!pagevec_add(lru_pvec, *cached_page))) | ||
| 444 | __pagevec_lru_add(lru_pvec); | ||
| 445 | *cached_page = NULL; | ||
| 446 | } | ||
| 447 | index++; | ||
| 448 | nr++; | ||
| 449 | } while (nr < nr_pages); | ||
| 450 | out: | ||
| 451 | return err; | ||
| 452 | err_out: | ||
| 453 | while (nr > 0) { | ||
| 454 | unlock_page(pages[--nr]); | ||
| 455 | page_cache_release(pages[nr]); | ||
| 456 | } | ||
| 457 | goto out; | ||
| 458 | } | ||
| 459 | |||
| 460 | static inline int ntfs_submit_bh_for_read(struct buffer_head *bh) | ||
| 461 | { | ||
| 462 | lock_buffer(bh); | ||
| 463 | get_bh(bh); | ||
| 464 | bh->b_end_io = end_buffer_read_sync; | ||
| 465 | return submit_bh(READ, bh); | ||
| 466 | } | ||
| 467 | |||
| 468 | /** | ||
| 469 | * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data | ||
| 470 | * @pages: array of destination pages | ||
| 471 | * @nr_pages: number of pages in @pages | ||
| 472 | * @pos: byte position in file at which the write begins | ||
| 473 | * @bytes: number of bytes to be written | ||
| 474 | * | ||
| 475 | * This is called for non-resident attributes from ntfs_file_buffered_write() | ||
| 476 | * with i_sem held on the inode (@pages[0]->mapping->host). There are | ||
| 477 | * @nr_pages pages in @pages which are locked but not kmap()ped. The source | ||
| 478 | * data has not yet been copied into the @pages. | ||
| 479 | * | ||
| 480 | * Need to fill any holes with actual clusters, allocate buffers if necessary, | ||
| 481 | * ensure all the buffers are mapped, and bring uptodate any buffers that are | ||
| 482 | * only partially being written to. | ||
| 483 | * | ||
| 484 | * If @nr_pages is greater than one, we are guaranteed that the cluster size is | ||
| 485 | * greater than PAGE_CACHE_SIZE, that all pages in @pages are entirely inside | ||
| 486 | * the same cluster and that they are the entirety of that cluster, and that | ||
| 487 | * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole. | ||
| 488 | * | ||
| 489 | * i_size is not to be modified yet. | ||
| 490 | * | ||
| 491 | * Return 0 on success or -errno on error. | ||
| 492 | */ | ||
| 493 | static int ntfs_prepare_pages_for_non_resident_write(struct page **pages, | ||
| 494 | unsigned nr_pages, s64 pos, size_t bytes) | ||
| 495 | { | ||
| 496 | VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend; | ||
| 497 | LCN lcn; | ||
| 498 | s64 bh_pos, vcn_len, end, initialized_size; | ||
| 499 | sector_t lcn_block; | ||
| 500 | struct page *page; | ||
| 501 | struct inode *vi; | ||
| 502 | ntfs_inode *ni, *base_ni = NULL; | ||
| 503 | ntfs_volume *vol; | ||
| 504 | runlist_element *rl, *rl2; | ||
| 505 | struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; | ||
| 506 | ntfs_attr_search_ctx *ctx = NULL; | ||
| 507 | MFT_RECORD *m = NULL; | ||
| 508 | ATTR_RECORD *a = NULL; | ||
| 509 | unsigned long flags; | ||
| 510 | u32 attr_rec_len = 0; | ||
| 511 | unsigned blocksize, u; | ||
| 512 | int err, mp_size; | ||
| 513 | BOOL rl_write_locked, was_hole, is_retry; | ||
| 514 | unsigned char blocksize_bits; | ||
| 515 | struct { | ||
| 516 | u8 runlist_merged:1; | ||
| 517 | u8 mft_attr_mapped:1; | ||
| 518 | u8 mp_rebuilt:1; | ||
| 519 | u8 attr_switched:1; | ||
| 520 | } status = { 0, 0, 0, 0 }; | ||
| 521 | |||
| 522 | BUG_ON(!nr_pages); | ||
| 523 | BUG_ON(!pages); | ||
| 524 | BUG_ON(!*pages); | ||
| 525 | vi = pages[0]->mapping->host; | ||
| 526 | ni = NTFS_I(vi); | ||
| 527 | vol = ni->vol; | ||
| 528 | ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page " | ||
| 529 | "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.", | ||
| 530 | vi->i_ino, ni->type, pages[0]->index, nr_pages, | ||
| 531 | (long long)pos, bytes); | ||
| 532 | blocksize_bits = vi->i_blkbits; | ||
| 533 | blocksize = 1 << blocksize_bits; | ||
| 534 | u = 0; | ||
| 535 | do { | ||
| 536 | struct page *page = pages[u]; | ||
| 537 | /* | ||
| 538 | * create_empty_buffers() will create uptodate/dirty buffers if | ||
| 539 | * the page is uptodate/dirty. | ||
| 540 | */ | ||
| 541 | if (!page_has_buffers(page)) { | ||
| 542 | create_empty_buffers(page, blocksize, 0); | ||
| 543 | if (unlikely(!page_has_buffers(page))) | ||
| 544 | return -ENOMEM; | ||
| 545 | } | ||
| 546 | } while (++u < nr_pages); | ||
| 547 | rl_write_locked = FALSE; | ||
| 548 | rl = NULL; | ||
| 549 | err = 0; | ||
| 550 | vcn = lcn = -1; | ||
| 551 | vcn_len = 0; | ||
| 552 | lcn_block = -1; | ||
| 553 | was_hole = FALSE; | ||
| 554 | cpos = pos >> vol->cluster_size_bits; | ||
| 555 | end = pos + bytes; | ||
| 556 | cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits; | ||
| 557 | /* | ||
| 558 | * Loop over each page and for each page over each buffer. Use goto to | ||
| 559 | * reduce indentation. | ||
| 560 | */ | ||
| 561 | u = 0; | ||
| 562 | do_next_page: | ||
| 563 | page = pages[u]; | ||
| 564 | bh_pos = (s64)page->index << PAGE_CACHE_SHIFT; | ||
| 565 | bh = head = page_buffers(page); | ||
| 566 | do { | ||
| 567 | VCN cdelta; | ||
| 568 | s64 bh_end; | ||
| 569 | unsigned bh_cofs; | ||
| 570 | |||
| 571 | /* Clear buffer_new on all buffers to reinitialise state. */ | ||
| 572 | if (buffer_new(bh)) | ||
| 573 | clear_buffer_new(bh); | ||
| 574 | bh_end = bh_pos + blocksize; | ||
| 575 | bh_cpos = bh_pos >> vol->cluster_size_bits; | ||
| 576 | bh_cofs = bh_pos & vol->cluster_size_mask; | ||
| 577 | if (buffer_mapped(bh)) { | ||
| 578 | /* | ||
| 579 | * The buffer is already mapped. If it is uptodate, | ||
| 580 | * ignore it. | ||
| 581 | */ | ||
| 582 | if (buffer_uptodate(bh)) | ||
| 583 | continue; | ||
| 584 | /* | ||
| 585 | * The buffer is not uptodate. If the page is uptodate | ||
| 586 | * set the buffer uptodate and otherwise ignore it. | ||
| 587 | */ | ||
| 588 | if (PageUptodate(page)) { | ||
| 589 | set_buffer_uptodate(bh); | ||
| 590 | continue; | ||
| 591 | } | ||
| 592 | /* | ||
| 593 | * Neither the page nor the buffer are uptodate. If | ||
| 594 | * the buffer is only partially being written to, we | ||
| 595 | * need to read it in before the write, i.e. now. | ||
| 596 | */ | ||
| 597 | if ((bh_pos < pos && bh_end > pos) || | ||
| 598 | (bh_pos < end && bh_end > end)) { | ||
| 599 | /* | ||
| 600 | * If the buffer is fully or partially within | ||
| 601 | * the initialized size, do an actual read. | ||
| 602 | * Otherwise, simply zero the buffer. | ||
| 603 | */ | ||
| 604 | read_lock_irqsave(&ni->size_lock, flags); | ||
| 605 | initialized_size = ni->initialized_size; | ||
| 606 | read_unlock_irqrestore(&ni->size_lock, flags); | ||
| 607 | if (bh_pos < initialized_size) { | ||
| 608 | ntfs_submit_bh_for_read(bh); | ||
| 609 | *wait_bh++ = bh; | ||
| 610 | } else { | ||
| 611 | u8 *kaddr = kmap_atomic(page, KM_USER0); | ||
| 612 | memset(kaddr + bh_offset(bh), 0, | ||
| 613 | blocksize); | ||
| 614 | kunmap_atomic(kaddr, KM_USER0); | ||
| 615 | flush_dcache_page(page); | ||
| 616 | set_buffer_uptodate(bh); | ||
| 617 | } | ||
| 618 | } | ||
| 619 | continue; | ||
| 620 | } | ||
| 621 | /* Unmapped buffer. Need to map it. */ | ||
| 622 | bh->b_bdev = vol->sb->s_bdev; | ||
| 623 | /* | ||
| 624 | * If the current buffer is in the same clusters as the map | ||
| 625 | * cache, there is no need to check the runlist again. The | ||
| 626 | * map cache is made up of @vcn, which is the first cached file | ||
| 627 | * cluster, @vcn_len which is the number of cached file | ||
| 628 | * clusters, @lcn is the device cluster corresponding to @vcn, | ||
| 629 | * and @lcn_block is the block number corresponding to @lcn. | ||
| 630 | */ | ||
| 631 | cdelta = bh_cpos - vcn; | ||
| 632 | if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) { | ||
| 633 | map_buffer_cached: | ||
| 634 | BUG_ON(lcn < 0); | ||
| 635 | bh->b_blocknr = lcn_block + | ||
| 636 | (cdelta << (vol->cluster_size_bits - | ||
| 637 | blocksize_bits)) + | ||
| 638 | (bh_cofs >> blocksize_bits); | ||
| 639 | set_buffer_mapped(bh); | ||
| 640 | /* | ||
| 641 | * If the page is uptodate so is the buffer. If the | ||
| 642 | * buffer is fully outside the write, we ignore it if | ||
| 643 | * it was already allocated and we mark it dirty so it | ||
| 644 | * gets written out if we allocated it. On the other | ||
| 645 | * hand, if we allocated the buffer but we are not | ||
| 646 | * marking it dirty we set buffer_new so we can do | ||
| 647 | * error recovery. | ||
| 648 | */ | ||
| 649 | if (PageUptodate(page)) { | ||
| 650 | if (!buffer_uptodate(bh)) | ||
| 651 | set_buffer_uptodate(bh); | ||
| 652 | if (unlikely(was_hole)) { | ||
| 653 | /* We allocated the buffer. */ | ||
| 654 | unmap_underlying_metadata(bh->b_bdev, | ||
| 655 | bh->b_blocknr); | ||
| 656 | if (bh_end <= pos || bh_pos >= end) | ||
| 657 | mark_buffer_dirty(bh); | ||
| 658 | else | ||
| 659 | set_buffer_new(bh); | ||
| 660 | } | ||
| 661 | continue; | ||
| 662 | } | ||
| 663 | /* Page is _not_ uptodate. */ | ||
| 664 | if (likely(!was_hole)) { | ||
| 665 | /* | ||
| 666 | * Buffer was already allocated. If it is not | ||
| 667 | * uptodate and is only partially being written | ||
| 668 | * to, we need to read it in before the write, | ||
| 669 | * i.e. now. | ||
| 670 | */ | ||
| 671 | if (!buffer_uptodate(bh) && ((bh_pos < pos && | ||
| 672 | bh_end > pos) || | ||
| 673 | (bh_end > end && | ||
| 674 | bh_end > end))) { | ||
| 675 | /* | ||
| 676 | * If the buffer is fully or partially | ||
| 677 | * within the initialized size, do an | ||
| 678 | * actual read. Otherwise, simply zero | ||
| 679 | * the buffer. | ||
| 680 | */ | ||
| 681 | read_lock_irqsave(&ni->size_lock, | ||
| 682 | flags); | ||
| 683 | initialized_size = ni->initialized_size; | ||
| 684 | read_unlock_irqrestore(&ni->size_lock, | ||
| 685 | flags); | ||
| 686 | if (bh_pos < initialized_size) { | ||
| 687 | ntfs_submit_bh_for_read(bh); | ||
| 688 | *wait_bh++ = bh; | ||
| 689 | } else { | ||
| 690 | u8 *kaddr = kmap_atomic(page, | ||
| 691 | KM_USER0); | ||
| 692 | memset(kaddr + bh_offset(bh), | ||
| 693 | 0, blocksize); | ||
| 694 | kunmap_atomic(kaddr, KM_USER0); | ||
| 695 | flush_dcache_page(page); | ||
| 696 | set_buffer_uptodate(bh); | ||
| 697 | } | ||
| 698 | } | ||
| 699 | continue; | ||
| 700 | } | ||
| 701 | /* We allocated the buffer. */ | ||
| 702 | unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); | ||
| 703 | /* | ||
| 704 | * If the buffer is fully outside the write, zero it, | ||
| 705 | * set it uptodate, and mark it dirty so it gets | ||
| 706 | * written out. If it is partially being written to, | ||
| 707 | * zero region surrounding the write but leave it to | ||
| 708 | * commit write to do anything else. Finally, if the | ||
| 709 | * buffer is fully being overwritten, do nothing. | ||
| 710 | */ | ||
| 711 | if (bh_end <= pos || bh_pos >= end) { | ||
| 712 | if (!buffer_uptodate(bh)) { | ||
| 713 | u8 *kaddr = kmap_atomic(page, KM_USER0); | ||
| 714 | memset(kaddr + bh_offset(bh), 0, | ||
| 715 | blocksize); | ||
| 716 | kunmap_atomic(kaddr, KM_USER0); | ||
| 717 | flush_dcache_page(page); | ||
| 718 | set_buffer_uptodate(bh); | ||
| 719 | } | ||
| 720 | mark_buffer_dirty(bh); | ||
| 721 | continue; | ||
| 722 | } | ||
| 723 | set_buffer_new(bh); | ||
| 724 | if (!buffer_uptodate(bh) && | ||
| 725 | (bh_pos < pos || bh_end > end)) { | ||
| 726 | u8 *kaddr; | ||
| 727 | unsigned pofs; | ||
| 728 | |||
| 729 | kaddr = kmap_atomic(page, KM_USER0); | ||
| 730 | if (bh_pos < pos) { | ||
| 731 | pofs = bh_pos & ~PAGE_CACHE_MASK; | ||
| 732 | memset(kaddr + pofs, 0, pos - bh_pos); | ||
| 733 | } | ||
| 734 | if (bh_end > end) { | ||
| 735 | pofs = end & ~PAGE_CACHE_MASK; | ||
| 736 | memset(kaddr + pofs, 0, bh_end - end); | ||
| 737 | } | ||
| 738 | kunmap_atomic(kaddr, KM_USER0); | ||
| 739 | flush_dcache_page(page); | ||
| 740 | } | ||
| 741 | continue; | ||
| 742 | } | ||
| 743 | /* | ||
| 744 | * Slow path: this is the first buffer in the cluster. If it | ||
| 745 | * is outside allocated size and is not uptodate, zero it and | ||
| 746 | * set it uptodate. | ||
| 747 | */ | ||
| 748 | read_lock_irqsave(&ni->size_lock, flags); | ||
| 749 | initialized_size = ni->allocated_size; | ||
| 750 | read_unlock_irqrestore(&ni->size_lock, flags); | ||
| 751 | if (bh_pos > initialized_size) { | ||
| 752 | if (PageUptodate(page)) { | ||
| 753 | if (!buffer_uptodate(bh)) | ||
| 754 | set_buffer_uptodate(bh); | ||
| 755 | } else if (!buffer_uptodate(bh)) { | ||
| 756 | u8 *kaddr = kmap_atomic(page, KM_USER0); | ||
| 757 | memset(kaddr + bh_offset(bh), 0, blocksize); | ||
| 758 | kunmap_atomic(kaddr, KM_USER0); | ||
| 759 | flush_dcache_page(page); | ||
| 760 | set_buffer_uptodate(bh); | ||
| 761 | } | ||
| 762 | continue; | ||
| 763 | } | ||
| 764 | is_retry = FALSE; | ||
| 765 | if (!rl) { | ||
| 766 | down_read(&ni->runlist.lock); | ||
| 767 | retry_remap: | ||
| 768 | rl = ni->runlist.rl; | ||
| 769 | } | ||
| 770 | if (likely(rl != NULL)) { | ||
| 771 | /* Seek to element containing target cluster. */ | ||
| 772 | while (rl->length && rl[1].vcn <= bh_cpos) | ||
| 773 | rl++; | ||
| 774 | lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos); | ||
| 775 | if (likely(lcn >= 0)) { | ||
| 776 | /* | ||
| 777 | * Successful remap, setup the map cache and | ||
| 778 | * use that to deal with the buffer. | ||
| 779 | */ | ||
| 780 | was_hole = FALSE; | ||
| 781 | vcn = bh_cpos; | ||
| 782 | vcn_len = rl[1].vcn - vcn; | ||
| 783 | lcn_block = lcn << (vol->cluster_size_bits - | ||
| 784 | blocksize_bits); | ||
| 785 | cdelta = 0; | ||
| 786 | /* | ||
| 787 | * If the number of remaining clusters in the | ||
| 788 | * @pages is smaller or equal to the number of | ||
| 789 | * cached clusters, unlock the runlist as the | ||
| 790 | * map cache will be used from now on. | ||
| 791 | */ | ||
| 792 | if (likely(vcn + vcn_len >= cend)) { | ||
| 793 | if (rl_write_locked) { | ||
| 794 | up_write(&ni->runlist.lock); | ||
| 795 | rl_write_locked = FALSE; | ||
| 796 | } else | ||
| 797 | up_read(&ni->runlist.lock); | ||
| 798 | rl = NULL; | ||
| 799 | } | ||
| 800 | goto map_buffer_cached; | ||
| 801 | } | ||
| 802 | } else | ||
| 803 | lcn = LCN_RL_NOT_MAPPED; | ||
| 804 | /* | ||
| 805 | * If it is not a hole and not out of bounds, the runlist is | ||
| 806 | * probably unmapped so try to map it now. | ||
| 807 | */ | ||
| 808 | if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) { | ||
| 809 | if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) { | ||
| 810 | /* Attempt to map runlist. */ | ||
| 811 | if (!rl_write_locked) { | ||
| 812 | /* | ||
| 813 | * We need the runlist locked for | ||
| 814 | * writing, so if it is locked for | ||
| 815 | * reading relock it now and retry in | ||
| 816 | * case it changed whilst we dropped | ||
| 817 | * the lock. | ||
| 818 | */ | ||
| 819 | up_read(&ni->runlist.lock); | ||
| 820 | down_write(&ni->runlist.lock); | ||
| 821 | rl_write_locked = TRUE; | ||
| 822 | goto retry_remap; | ||
| 823 | } | ||
| 824 | err = ntfs_map_runlist_nolock(ni, bh_cpos, | ||
| 825 | NULL); | ||
| 826 | if (likely(!err)) { | ||
| 827 | is_retry = TRUE; | ||
| 828 | goto retry_remap; | ||
| 829 | } | ||
| 830 | /* | ||
| 831 | * If @vcn is out of bounds, pretend @lcn is | ||
| 832 | * LCN_ENOENT. As long as the buffer is out | ||
| 833 | * of bounds this will work fine. | ||
| 834 | */ | ||
| 835 | if (err == -ENOENT) { | ||
| 836 | lcn = LCN_ENOENT; | ||
| 837 | err = 0; | ||
| 838 | goto rl_not_mapped_enoent; | ||
| 839 | } | ||
| 840 | } else | ||
| 841 | err = -EIO; | ||
| 842 | /* Failed to map the buffer, even after retrying. */ | ||
| 843 | bh->b_blocknr = -1; | ||
| 844 | ntfs_error(vol->sb, "Failed to write to inode 0x%lx, " | ||
| 845 | "attribute type 0x%x, vcn 0x%llx, " | ||
| 846 | "vcn offset 0x%x, because its " | ||
| 847 | "location on disk could not be " | ||
| 848 | "determined%s (error code %i).", | ||
| 849 | ni->mft_no, ni->type, | ||
| 850 | (unsigned long long)bh_cpos, | ||
| 851 | (unsigned)bh_pos & | ||
| 852 | vol->cluster_size_mask, | ||
| 853 | is_retry ? " even after retrying" : "", | ||
| 854 | err); | ||
| 855 | break; | ||
| 856 | } | ||
| 857 | rl_not_mapped_enoent: | ||
| 858 | /* | ||
| 859 | * The buffer is in a hole or out of bounds. We need to fill | ||
| 860 | * the hole, unless the buffer is in a cluster which is not | ||
| 861 | * touched by the write, in which case we just leave the buffer | ||
| 862 | * unmapped. This can only happen when the cluster size is | ||
| 863 | * less than the page cache size. | ||
| 864 | */ | ||
| 865 | if (unlikely(vol->cluster_size < PAGE_CACHE_SIZE)) { | ||
| 866 | bh_cend = (bh_end + vol->cluster_size - 1) >> | ||
| 867 | vol->cluster_size_bits; | ||
| 868 | if ((bh_cend <= cpos || bh_cpos >= cend)) { | ||
| 869 | bh->b_blocknr = -1; | ||
| 870 | /* | ||
| 871 | * If the buffer is uptodate we skip it. If it | ||
| 872 | * is not but the page is uptodate, we can set | ||
| 873 | * the buffer uptodate. If the page is not | ||
| 874 | * uptodate, we can clear the buffer and set it | ||
| 875 | * uptodate. Whether this is worthwhile is | ||
| 876 | * debatable and this could be removed. | ||
| 877 | */ | ||
| 878 | if (PageUptodate(page)) { | ||
| 879 | if (!buffer_uptodate(bh)) | ||
| 880 | set_buffer_uptodate(bh); | ||
| 881 | } else if (!buffer_uptodate(bh)) { | ||
| 882 | u8 *kaddr = kmap_atomic(page, KM_USER0); | ||
| 883 | memset(kaddr + bh_offset(bh), 0, | ||
| 884 | blocksize); | ||
| 885 | kunmap_atomic(kaddr, KM_USER0); | ||
| 886 | flush_dcache_page(page); | ||
| 887 | set_buffer_uptodate(bh); | ||
| 888 | } | ||
| 889 | continue; | ||
| 890 | } | ||
| 891 | } | ||
| 892 | /* | ||
| 893 | * Out of bounds buffer is invalid if it was not really out of | ||
| 894 | * bounds. | ||
| 895 | */ | ||
| 896 | BUG_ON(lcn != LCN_HOLE); | ||
| 897 | /* | ||
| 898 | * We need the runlist locked for writing, so if it is locked | ||
| 899 | * for reading relock it now and retry in case it changed | ||
| 900 | * whilst we dropped the lock. | ||
| 901 | */ | ||
| 902 | BUG_ON(!rl); | ||
| 903 | if (!rl_write_locked) { | ||
| 904 | up_read(&ni->runlist.lock); | ||
| 905 | down_write(&ni->runlist.lock); | ||
| 906 | rl_write_locked = TRUE; | ||
| 907 | goto retry_remap; | ||
| 908 | } | ||
| 909 | /* Find the previous last allocated cluster. */ | ||
| 910 | BUG_ON(rl->lcn != LCN_HOLE); | ||
| 911 | lcn = -1; | ||
| 912 | rl2 = rl; | ||
| 913 | while (--rl2 >= ni->runlist.rl) { | ||
| 914 | if (rl2->lcn >= 0) { | ||
| 915 | lcn = rl2->lcn + rl2->length; | ||
| 916 | break; | ||
| 917 | } | ||
| 918 | } | ||
| 919 | rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE, | ||
| 920 | FALSE); | ||
| 921 | if (IS_ERR(rl2)) { | ||
| 922 | err = PTR_ERR(rl2); | ||
| 923 | ntfs_debug("Failed to allocate cluster, error code %i.", | ||
| 924 | err); | ||
| 925 | break; | ||
| 926 | } | ||
| 927 | lcn = rl2->lcn; | ||
| 928 | rl = ntfs_runlists_merge(ni->runlist.rl, rl2); | ||
| 929 | if (IS_ERR(rl)) { | ||
| 930 | err = PTR_ERR(rl); | ||
| 931 | if (err != -ENOMEM) | ||
| 932 | err = -EIO; | ||
| 933 | if (ntfs_cluster_free_from_rl(vol, rl2)) { | ||
| 934 | ntfs_error(vol->sb, "Failed to release " | ||
| 935 | "allocated cluster in error " | ||
| 936 | "code path. Run chkdsk to " | ||
| 937 | "recover the lost cluster."); | ||
| 938 | NVolSetErrors(vol); | ||
| 939 | } | ||
| 940 | ntfs_free(rl2); | ||
| 941 | break; | ||
| 942 | } | ||
| 943 | ni->runlist.rl = rl; | ||
| 944 | status.runlist_merged = 1; | ||
| 945 | ntfs_debug("Allocated cluster, lcn 0x%llx.", lcn); | ||
| 946 | /* Map and lock the mft record and get the attribute record. */ | ||
| 947 | if (!NInoAttr(ni)) | ||
| 948 | base_ni = ni; | ||
| 949 | else | ||
| 950 | base_ni = ni->ext.base_ntfs_ino; | ||
| 951 | m = map_mft_record(base_ni); | ||
| 952 | if (IS_ERR(m)) { | ||
| 953 | err = PTR_ERR(m); | ||
| 954 | break; | ||
| 955 | } | ||
| 956 | ctx = ntfs_attr_get_search_ctx(base_ni, m); | ||
| 957 | if (unlikely(!ctx)) { | ||
| 958 | err = -ENOMEM; | ||
| 959 | unmap_mft_record(base_ni); | ||
| 960 | break; | ||
| 961 | } | ||
| 962 | status.mft_attr_mapped = 1; | ||
| 963 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | ||
| 964 | CASE_SENSITIVE, bh_cpos, NULL, 0, ctx); | ||
| 965 | if (unlikely(err)) { | ||
| 966 | if (err == -ENOENT) | ||
| 967 | err = -EIO; | ||
| 968 | break; | ||
| 969 | } | ||
| 970 | m = ctx->mrec; | ||
| 971 | a = ctx->attr; | ||
| 972 | /* | ||
| 973 | * Find the runlist element with which the attribute extent | ||
| 974 | * starts. Note, we cannot use the _attr_ version because we | ||
| 975 | * have mapped the mft record. That is ok because we know the | ||
| 976 | * runlist fragment must be mapped already to have ever gotten | ||
| 977 | * here, so we can just use the _rl_ version. | ||
| 978 | */ | ||
| 979 | vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn); | ||
| 980 | rl2 = ntfs_rl_find_vcn_nolock(rl, vcn); | ||
| 981 | BUG_ON(!rl2); | ||
| 982 | BUG_ON(!rl2->length); | ||
| 983 | BUG_ON(rl2->lcn < LCN_HOLE); | ||
| 984 | highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); | ||
| 985 | /* | ||
| 986 | * If @highest_vcn is zero, calculate the real highest_vcn | ||
| 987 | * (which can really be zero). | ||
| 988 | */ | ||
| 989 | if (!highest_vcn) | ||
| 990 | highest_vcn = (sle64_to_cpu( | ||
| 991 | a->data.non_resident.allocated_size) >> | ||
| 992 | vol->cluster_size_bits) - 1; | ||
| 993 | /* | ||
| 994 | * Determine the size of the mapping pairs array for the new | ||
| 995 | * extent, i.e. the old extent with the hole filled. | ||
| 996 | */ | ||
| 997 | mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn, | ||
| 998 | highest_vcn); | ||
| 999 | if (unlikely(mp_size <= 0)) { | ||
| 1000 | if (!(err = mp_size)) | ||
| 1001 | err = -EIO; | ||
| 1002 | ntfs_debug("Failed to get size for mapping pairs " | ||
| 1003 | "array, error code %i.", err); | ||
| 1004 | break; | ||
| 1005 | } | ||
| 1006 | /* | ||
| 1007 | * Resize the attribute record to fit the new mapping pairs | ||
| 1008 | * array. | ||
| 1009 | */ | ||
| 1010 | attr_rec_len = le32_to_cpu(a->length); | ||
| 1011 | err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu( | ||
| 1012 | a->data.non_resident.mapping_pairs_offset)); | ||
| 1013 | if (unlikely(err)) { | ||
| 1014 | BUG_ON(err != -ENOSPC); | ||
| 1015 | // TODO: Deal with this by using the current attribute | ||
| 1016 | // and fill it with as much of the mapping pairs | ||
| 1017 | // array as possible. Then loop over each attribute | ||
| 1018 | // extent rewriting the mapping pairs arrays as we go | ||
| 1019 | // along and if when we reach the end we have not | ||
| 1020 | // enough space, try to resize the last attribute | ||
| 1021 | // extent and if even that fails, add a new attribute | ||
| 1022 | // extent. | ||
| 1023 | // We could also try to resize at each step in the hope | ||
| 1024 | // that we will not need to rewrite every single extent. | ||
| 1025 | // Note, we may need to decompress some extents to fill | ||
| 1026 | // the runlist as we are walking the extents... | ||
| 1027 | ntfs_error(vol->sb, "Not enough space in the mft " | ||
| 1028 | "record for the extended attribute " | ||
| 1029 | "record. This case is not " | ||
| 1030 | "implemented yet."); | ||
| 1031 | err = -EOPNOTSUPP; | ||
| 1032 | break ; | ||
| 1033 | } | ||
| 1034 | status.mp_rebuilt = 1; | ||
| 1035 | /* | ||
| 1036 | * Generate the mapping pairs array directly into the attribute | ||
| 1037 | * record. | ||
| 1038 | */ | ||
| 1039 | err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu( | ||
| 1040 | a->data.non_resident.mapping_pairs_offset), | ||
| 1041 | mp_size, rl2, vcn, highest_vcn, NULL); | ||
| 1042 | if (unlikely(err)) { | ||
| 1043 | ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, " | ||
| 1044 | "attribute type 0x%x, because building " | ||
| 1045 | "the mapping pairs failed with error " | ||
| 1046 | "code %i.", vi->i_ino, | ||
| 1047 | (unsigned)le32_to_cpu(ni->type), err); | ||
| 1048 | err = -EIO; | ||
| 1049 | break; | ||
| 1050 | } | ||
| 1051 | /* Update the highest_vcn but only if it was not set. */ | ||
| 1052 | if (unlikely(!a->data.non_resident.highest_vcn)) | ||
| 1053 | a->data.non_resident.highest_vcn = | ||
| 1054 | cpu_to_sle64(highest_vcn); | ||
| 1055 | /* | ||
| 1056 | * If the attribute is sparse/compressed, update the compressed | ||
| 1057 | * size in the ntfs_inode structure and the attribute record. | ||
| 1058 | */ | ||
| 1059 | if (likely(NInoSparse(ni) || NInoCompressed(ni))) { | ||
| 1060 | /* | ||
| 1061 | * If we are not in the first attribute extent, switch | ||
| 1062 | * to it, but first ensure the changes will make it to | ||
| 1063 | * disk later. | ||
| 1064 | */ | ||
| 1065 | if (a->data.non_resident.lowest_vcn) { | ||
| 1066 | flush_dcache_mft_record_page(ctx->ntfs_ino); | ||
| 1067 | mark_mft_record_dirty(ctx->ntfs_ino); | ||
| 1068 | ntfs_attr_reinit_search_ctx(ctx); | ||
| 1069 | err = ntfs_attr_lookup(ni->type, ni->name, | ||
| 1070 | ni->name_len, CASE_SENSITIVE, | ||
| 1071 | 0, NULL, 0, ctx); | ||
| 1072 | if (unlikely(err)) { | ||
| 1073 | status.attr_switched = 1; | ||
| 1074 | break; | ||
| 1075 | } | ||
| 1076 | /* @m is not used any more so do not set it. */ | ||
| 1077 | a = ctx->attr; | ||
| 1078 | } | ||
| 1079 | write_lock_irqsave(&ni->size_lock, flags); | ||
| 1080 | ni->itype.compressed.size += vol->cluster_size; | ||
| 1081 | a->data.non_resident.compressed_size = | ||
| 1082 | cpu_to_sle64(ni->itype.compressed.size); | ||
| 1083 | write_unlock_irqrestore(&ni->size_lock, flags); | ||
| 1084 | } | ||
| 1085 | /* Ensure the changes make it to disk. */ | ||
| 1086 | flush_dcache_mft_record_page(ctx->ntfs_ino); | ||
| 1087 | mark_mft_record_dirty(ctx->ntfs_ino); | ||
| 1088 | ntfs_attr_put_search_ctx(ctx); | ||
| 1089 | unmap_mft_record(base_ni); | ||
| 1090 | /* Successfully filled the hole. */ | ||
| 1091 | status.runlist_merged = 0; | ||
| 1092 | status.mft_attr_mapped = 0; | ||
| 1093 | status.mp_rebuilt = 0; | ||
| 1094 | /* Setup the map cache and use that to deal with the buffer. */ | ||
| 1095 | was_hole = TRUE; | ||
| 1096 | vcn = bh_cpos; | ||
| 1097 | vcn_len = 1; | ||
| 1098 | lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits); | ||
| 1099 | cdelta = 0; | ||
| 1100 | /* | ||
| 1101 | * If the number of remaining clusters in the @pages is smaller | ||
| 1102 | * or equal to the number of cached clusters, unlock the | ||
| 1103 | * runlist as the map cache will be used from now on. | ||
| 1104 | */ | ||
| 1105 | if (likely(vcn + vcn_len >= cend)) { | ||
| 1106 | up_write(&ni->runlist.lock); | ||
| 1107 | rl_write_locked = FALSE; | ||
| 1108 | rl = NULL; | ||
| 1109 | } | ||
| 1110 | goto map_buffer_cached; | ||
| 1111 | } while (bh_pos += blocksize, (bh = bh->b_this_page) != head); | ||
| 1112 | /* If there are no errors, do the next page. */ | ||
| 1113 | if (likely(!err && ++u < nr_pages)) | ||
| 1114 | goto do_next_page; | ||
| 1115 | /* If there are no errors, release the runlist lock if we took it. */ | ||
| 1116 | if (likely(!err)) { | ||
| 1117 | if (unlikely(rl_write_locked)) { | ||
| 1118 | up_write(&ni->runlist.lock); | ||
| 1119 | rl_write_locked = FALSE; | ||
| 1120 | } else if (unlikely(rl)) | ||
| 1121 | up_read(&ni->runlist.lock); | ||
| 1122 | rl = NULL; | ||
| 1123 | } | ||
| 1124 | /* If we issued read requests, let them complete. */ | ||
| 1125 | read_lock_irqsave(&ni->size_lock, flags); | ||
| 1126 | initialized_size = ni->initialized_size; | ||
| 1127 | read_unlock_irqrestore(&ni->size_lock, flags); | ||
| 1128 | while (wait_bh > wait) { | ||
| 1129 | bh = *--wait_bh; | ||
| 1130 | wait_on_buffer(bh); | ||
| 1131 | if (likely(buffer_uptodate(bh))) { | ||
| 1132 | page = bh->b_page; | ||
| 1133 | bh_pos = ((s64)page->index << PAGE_CACHE_SHIFT) + | ||
| 1134 | bh_offset(bh); | ||
| 1135 | /* | ||
| 1136 | * If the buffer overflows the initialized size, need | ||
| 1137 | * to zero the overflowing region. | ||
| 1138 | */ | ||
| 1139 | if (unlikely(bh_pos + blocksize > initialized_size)) { | ||
| 1140 | u8 *kaddr; | ||
| 1141 | int ofs = 0; | ||
| 1142 | |||
| 1143 | if (likely(bh_pos < initialized_size)) | ||
| 1144 | ofs = initialized_size - bh_pos; | ||
| 1145 | kaddr = kmap_atomic(page, KM_USER0); | ||
| 1146 | memset(kaddr + bh_offset(bh) + ofs, 0, | ||
| 1147 | blocksize - ofs); | ||
| 1148 | kunmap_atomic(kaddr, KM_USER0); | ||
| 1149 | flush_dcache_page(page); | ||
| 1150 | } | ||
| 1151 | } else /* if (unlikely(!buffer_uptodate(bh))) */ | ||
| 1152 | err = -EIO; | ||
| 1153 | } | ||
| 1154 | if (likely(!err)) { | ||
| 1155 | /* Clear buffer_new on all buffers. */ | ||
| 1156 | u = 0; | ||
| 1157 | do { | ||
| 1158 | bh = head = page_buffers(pages[u]); | ||
| 1159 | do { | ||
| 1160 | if (buffer_new(bh)) | ||
| 1161 | clear_buffer_new(bh); | ||
| 1162 | } while ((bh = bh->b_this_page) != head); | ||
| 1163 | } while (++u < nr_pages); | ||
| 1164 | ntfs_debug("Done."); | ||
| 1165 | return err; | ||
| 1166 | } | ||
| 1167 | if (status.attr_switched) { | ||
| 1168 | /* Get back to the attribute extent we modified. */ | ||
| 1169 | ntfs_attr_reinit_search_ctx(ctx); | ||
| 1170 | if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | ||
| 1171 | CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) { | ||
| 1172 | ntfs_error(vol->sb, "Failed to find required " | ||
| 1173 | "attribute extent of attribute in " | ||
| 1174 | "error code path. Run chkdsk to " | ||
| 1175 | "recover."); | ||
| 1176 | write_lock_irqsave(&ni->size_lock, flags); | ||
| 1177 | ni->itype.compressed.size += vol->cluster_size; | ||
| 1178 | write_unlock_irqrestore(&ni->size_lock, flags); | ||
| 1179 | flush_dcache_mft_record_page(ctx->ntfs_ino); | ||
| 1180 | mark_mft_record_dirty(ctx->ntfs_ino); | ||
| 1181 | /* | ||
| 1182 | * The only thing that is now wrong is the compressed | ||
| 1183 | * size of the base attribute extent which chkdsk | ||
| 1184 | * should be able to fix. | ||
| 1185 | */ | ||
| 1186 | NVolSetErrors(vol); | ||
| 1187 | } else { | ||
| 1188 | m = ctx->mrec; | ||
| 1189 | a = ctx->attr; | ||
| 1190 | status.attr_switched = 0; | ||
| 1191 | } | ||
| 1192 | } | ||
| 1193 | /* | ||
| 1194 | * If the runlist has been modified, need to restore it by punching a | ||
| 1195 | * hole into it and we then need to deallocate the on-disk cluster as | ||
| 1196 | * well. Note, we only modify the runlist if we are able to generate a | ||
| 1197 | * new mapping pairs array, i.e. only when the mapped attribute extent | ||
| 1198 | * is not switched. | ||
| 1199 | */ | ||
| 1200 | if (status.runlist_merged && !status.attr_switched) { | ||
| 1201 | BUG_ON(!rl_write_locked); | ||
| 1202 | /* Make the file cluster we allocated sparse in the runlist. */ | ||
| 1203 | if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) { | ||
| 1204 | ntfs_error(vol->sb, "Failed to punch hole into " | ||
| 1205 | "attribute runlist in error code " | ||
| 1206 | "path. Run chkdsk to recover the " | ||
| 1207 | "lost cluster."); | ||
| 1208 | make_bad_inode(vi); | ||
| 1209 | make_bad_inode(VFS_I(base_ni)); | ||
| 1210 | NVolSetErrors(vol); | ||
| 1211 | } else /* if (success) */ { | ||
| 1212 | status.runlist_merged = 0; | ||
| 1213 | /* | ||
| 1214 | * Deallocate the on-disk cluster we allocated but only | ||
| 1215 | * if we succeeded in punching its vcn out of the | ||
| 1216 | * runlist. | ||
| 1217 | */ | ||
| 1218 | down_write(&vol->lcnbmp_lock); | ||
| 1219 | if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) { | ||
| 1220 | ntfs_error(vol->sb, "Failed to release " | ||
| 1221 | "allocated cluster in error " | ||
| 1222 | "code path. Run chkdsk to " | ||
| 1223 | "recover the lost cluster."); | ||
| 1224 | NVolSetErrors(vol); | ||
| 1225 | } | ||
| 1226 | up_write(&vol->lcnbmp_lock); | ||
| 1227 | } | ||
| 1228 | } | ||
| 1229 | /* | ||
| 1230 | * Resize the attribute record to its old size and rebuild the mapping | ||
| 1231 | * pairs array. Note, we only can do this if the runlist has been | ||
| 1232 | * restored to its old state which also implies that the mapped | ||
| 1233 | * attribute extent is not switched. | ||
| 1234 | */ | ||
| 1235 | if (status.mp_rebuilt && !status.runlist_merged) { | ||
| 1236 | if (ntfs_attr_record_resize(m, a, attr_rec_len)) { | ||
| 1237 | ntfs_error(vol->sb, "Failed to restore attribute " | ||
| 1238 | "record in error code path. Run " | ||
| 1239 | "chkdsk to recover."); | ||
| 1240 | make_bad_inode(vi); | ||
| 1241 | make_bad_inode(VFS_I(base_ni)); | ||
| 1242 | NVolSetErrors(vol); | ||
| 1243 | } else /* if (success) */ { | ||
| 1244 | if (ntfs_mapping_pairs_build(vol, (u8*)a + | ||
| 1245 | le16_to_cpu(a->data.non_resident. | ||
| 1246 | mapping_pairs_offset), attr_rec_len - | ||
| 1247 | le16_to_cpu(a->data.non_resident. | ||
| 1248 | mapping_pairs_offset), ni->runlist.rl, | ||
| 1249 | vcn, highest_vcn, NULL)) { | ||
| 1250 | ntfs_error(vol->sb, "Failed to restore " | ||
| 1251 | "mapping pairs array in error " | ||
| 1252 | "code path. Run chkdsk to " | ||
| 1253 | "recover."); | ||
| 1254 | make_bad_inode(vi); | ||
| 1255 | make_bad_inode(VFS_I(base_ni)); | ||
| 1256 | NVolSetErrors(vol); | ||
| 1257 | } | ||
| 1258 | flush_dcache_mft_record_page(ctx->ntfs_ino); | ||
| 1259 | mark_mft_record_dirty(ctx->ntfs_ino); | ||
| 1260 | } | ||
| 1261 | } | ||
| 1262 | /* Release the mft record and the attribute. */ | ||
| 1263 | if (status.mft_attr_mapped) { | ||
| 1264 | ntfs_attr_put_search_ctx(ctx); | ||
| 1265 | unmap_mft_record(base_ni); | ||
| 1266 | } | ||
| 1267 | /* Release the runlist lock. */ | ||
| 1268 | if (rl_write_locked) | ||
| 1269 | up_write(&ni->runlist.lock); | ||
| 1270 | else if (rl) | ||
| 1271 | up_read(&ni->runlist.lock); | ||
| 1272 | /* | ||
| 1273 | * Zero out any newly allocated blocks to avoid exposing stale data. | ||
| 1274 | * If BH_New is set, we know that the block was newly allocated above | ||
| 1275 | * and that it has not been fully zeroed and marked dirty yet. | ||
| 1276 | */ | ||
| 1277 | nr_pages = u; | ||
| 1278 | u = 0; | ||
| 1279 | end = bh_cpos << vol->cluster_size_bits; | ||
| 1280 | do { | ||
| 1281 | page = pages[u]; | ||
| 1282 | bh = head = page_buffers(page); | ||
| 1283 | do { | ||
| 1284 | if (u == nr_pages && | ||
| 1285 | ((s64)page->index << PAGE_CACHE_SHIFT) + | ||
| 1286 | bh_offset(bh) >= end) | ||
| 1287 | break; | ||
| 1288 | if (!buffer_new(bh)) | ||
| 1289 | continue; | ||
| 1290 | clear_buffer_new(bh); | ||
| 1291 | if (!buffer_uptodate(bh)) { | ||
| 1292 | if (PageUptodate(page)) | ||
| 1293 | set_buffer_uptodate(bh); | ||
| 1294 | else { | ||
| 1295 | u8 *kaddr = kmap_atomic(page, KM_USER0); | ||
| 1296 | memset(kaddr + bh_offset(bh), 0, | ||
| 1297 | blocksize); | ||
| 1298 | kunmap_atomic(kaddr, KM_USER0); | ||
| 1299 | flush_dcache_page(page); | ||
| 1300 | set_buffer_uptodate(bh); | ||
| 1301 | } | ||
| 1302 | } | ||
| 1303 | mark_buffer_dirty(bh); | ||
| 1304 | } while ((bh = bh->b_this_page) != head); | ||
| 1305 | } while (++u <= nr_pages); | ||
| 1306 | ntfs_error(vol->sb, "Failed. Returning error code %i.", err); | ||
| 1307 | return err; | ||
| 1308 | } | ||
| 1309 | |||
| 1310 | /* | ||
| 1311 | * Copy as much as we can into the pages and return the number of bytes which | ||
| 1312 | * were sucessfully copied. If a fault is encountered then clear the pages | ||
| 1313 | * out to (ofs + bytes) and return the number of bytes which were copied. | ||
| 1314 | */ | ||
| 1315 | static inline size_t ntfs_copy_from_user(struct page **pages, | ||
| 1316 | unsigned nr_pages, unsigned ofs, const char __user *buf, | ||
| 1317 | size_t bytes) | ||
| 1318 | { | ||
| 1319 | struct page **last_page = pages + nr_pages; | ||
| 1320 | char *kaddr; | ||
| 1321 | size_t total = 0; | ||
| 1322 | unsigned len; | ||
| 1323 | int left; | ||
| 1324 | |||
| 1325 | do { | ||
| 1326 | len = PAGE_CACHE_SIZE - ofs; | ||
| 1327 | if (len > bytes) | ||
| 1328 | len = bytes; | ||
| 1329 | kaddr = kmap_atomic(*pages, KM_USER0); | ||
| 1330 | left = __copy_from_user_inatomic(kaddr + ofs, buf, len); | ||
| 1331 | kunmap_atomic(kaddr, KM_USER0); | ||
| 1332 | if (unlikely(left)) { | ||
| 1333 | /* Do it the slow way. */ | ||
| 1334 | kaddr = kmap(*pages); | ||
| 1335 | left = __copy_from_user(kaddr + ofs, buf, len); | ||
| 1336 | kunmap(*pages); | ||
| 1337 | if (unlikely(left)) | ||
| 1338 | goto err_out; | ||
| 1339 | } | ||
| 1340 | total += len; | ||
| 1341 | bytes -= len; | ||
| 1342 | if (!bytes) | ||
| 1343 | break; | ||
| 1344 | buf += len; | ||
| 1345 | ofs = 0; | ||
| 1346 | } while (++pages < last_page); | ||
| 1347 | out: | ||
| 1348 | return total; | ||
| 1349 | err_out: | ||
| 1350 | total += len - left; | ||
| 1351 | /* Zero the rest of the target like __copy_from_user(). */ | ||
| 1352 | while (++pages < last_page) { | ||
| 1353 | bytes -= len; | ||
| 1354 | if (!bytes) | ||
| 1355 | break; | ||
| 1356 | len = PAGE_CACHE_SIZE; | ||
| 1357 | if (len > bytes) | ||
| 1358 | len = bytes; | ||
| 1359 | kaddr = kmap_atomic(*pages, KM_USER0); | ||
| 1360 | memset(kaddr, 0, len); | ||
| 1361 | kunmap_atomic(kaddr, KM_USER0); | ||
| 1362 | } | ||
| 1363 | goto out; | ||
| 1364 | } | ||
| 1365 | |||
| 1366 | static size_t __ntfs_copy_from_user_iovec(char *vaddr, | ||
| 1367 | const struct iovec *iov, size_t iov_ofs, size_t bytes) | ||
| 1368 | { | ||
| 1369 | size_t total = 0; | ||
| 1370 | |||
| 1371 | while (1) { | ||
| 1372 | const char __user *buf = iov->iov_base + iov_ofs; | ||
| 1373 | unsigned len; | ||
| 1374 | size_t left; | ||
| 1375 | |||
| 1376 | len = iov->iov_len - iov_ofs; | ||
| 1377 | if (len > bytes) | ||
| 1378 | len = bytes; | ||
| 1379 | left = __copy_from_user_inatomic(vaddr, buf, len); | ||
| 1380 | total += len; | ||
| 1381 | bytes -= len; | ||
| 1382 | vaddr += len; | ||
| 1383 | if (unlikely(left)) { | ||
| 1384 | /* | ||
| 1385 | * Zero the rest of the target like __copy_from_user(). | ||
| 1386 | */ | ||
| 1387 | memset(vaddr, 0, bytes); | ||
| 1388 | total -= left; | ||
| 1389 | break; | ||
| 1390 | } | ||
| 1391 | if (!bytes) | ||
| 1392 | break; | ||
| 1393 | iov++; | ||
| 1394 | iov_ofs = 0; | ||
| 1395 | } | ||
| 1396 | return total; | ||
| 1397 | } | ||
| 1398 | |||
| 1399 | static inline void ntfs_set_next_iovec(const struct iovec **iovp, | ||
| 1400 | size_t *iov_ofsp, size_t bytes) | ||
| 1401 | { | ||
| 1402 | const struct iovec *iov = *iovp; | ||
| 1403 | size_t iov_ofs = *iov_ofsp; | ||
| 1404 | |||
| 1405 | while (bytes) { | ||
| 1406 | unsigned len; | ||
| 1407 | |||
| 1408 | len = iov->iov_len - iov_ofs; | ||
| 1409 | if (len > bytes) | ||
| 1410 | len = bytes; | ||
| 1411 | bytes -= len; | ||
| 1412 | iov_ofs += len; | ||
| 1413 | if (iov->iov_len == iov_ofs) { | ||
| 1414 | iov++; | ||
| 1415 | iov_ofs = 0; | ||
| 1416 | } | ||
| 1417 | } | ||
| 1418 | *iovp = iov; | ||
| 1419 | *iov_ofsp = iov_ofs; | ||
| 1420 | } | ||
| 1421 | |||
| 1422 | /* | ||
| 1423 | * This has the same side-effects and return value as ntfs_copy_from_user(). | ||
| 1424 | * The difference is that on a fault we need to memset the remainder of the | ||
| 1425 | * pages (out to offset + bytes), to emulate ntfs_copy_from_user()'s | ||
| 1426 | * single-segment behaviour. | ||
| 1427 | * | ||
| 1428 | * We call the same helper (__ntfs_copy_from_user_iovec()) both when atomic and | ||
| 1429 | * when not atomic. This is ok because __ntfs_copy_from_user_iovec() calls | ||
| 1430 | * __copy_from_user_inatomic() and it is ok to call this when non-atomic. In | ||
| 1431 | * fact, the only difference between __copy_from_user_inatomic() and | ||
| 1432 | * __copy_from_user() is that the latter calls might_sleep(). And on many | ||
| 1433 | * architectures __copy_from_user_inatomic() is just defined to | ||
| 1434 | * __copy_from_user() so it makes no difference at all on those architectures. | ||
| 1435 | */ | ||
| 1436 | static inline size_t ntfs_copy_from_user_iovec(struct page **pages, | ||
| 1437 | unsigned nr_pages, unsigned ofs, const struct iovec **iov, | ||
| 1438 | size_t *iov_ofs, size_t bytes) | ||
| 1439 | { | ||
| 1440 | struct page **last_page = pages + nr_pages; | ||
| 1441 | char *kaddr; | ||
| 1442 | size_t copied, len, total = 0; | ||
| 1443 | |||
| 1444 | do { | ||
| 1445 | len = PAGE_CACHE_SIZE - ofs; | ||
| 1446 | if (len > bytes) | ||
| 1447 | len = bytes; | ||
| 1448 | kaddr = kmap_atomic(*pages, KM_USER0); | ||
| 1449 | copied = __ntfs_copy_from_user_iovec(kaddr + ofs, | ||
| 1450 | *iov, *iov_ofs, len); | ||
| 1451 | kunmap_atomic(kaddr, KM_USER0); | ||
| 1452 | if (unlikely(copied != len)) { | ||
| 1453 | /* Do it the slow way. */ | ||
| 1454 | kaddr = kmap(*pages); | ||
| 1455 | copied = __ntfs_copy_from_user_iovec(kaddr + ofs, | ||
| 1456 | *iov, *iov_ofs, len); | ||
| 1457 | kunmap(*pages); | ||
| 1458 | if (unlikely(copied != len)) | ||
| 1459 | goto err_out; | ||
| 1460 | } | ||
| 1461 | total += len; | ||
| 1462 | bytes -= len; | ||
| 1463 | if (!bytes) | ||
| 1464 | break; | ||
| 1465 | ntfs_set_next_iovec(iov, iov_ofs, len); | ||
| 1466 | ofs = 0; | ||
| 1467 | } while (++pages < last_page); | ||
| 1468 | out: | ||
| 1469 | return total; | ||
| 1470 | err_out: | ||
| 1471 | total += copied; | ||
| 1472 | /* Zero the rest of the target like __copy_from_user(). */ | ||
| 1473 | while (++pages < last_page) { | ||
| 1474 | bytes -= len; | ||
| 1475 | if (!bytes) | ||
| 1476 | break; | ||
| 1477 | len = PAGE_CACHE_SIZE; | ||
| 1478 | if (len > bytes) | ||
| 1479 | len = bytes; | ||
| 1480 | kaddr = kmap_atomic(*pages, KM_USER0); | ||
| 1481 | memset(kaddr, 0, len); | ||
| 1482 | kunmap_atomic(kaddr, KM_USER0); | ||
| 1483 | } | ||
| 1484 | goto out; | ||
| 1485 | } | ||
| 1486 | |||
| 1487 | static inline void ntfs_flush_dcache_pages(struct page **pages, | ||
| 1488 | unsigned nr_pages) | ||
| 1489 | { | ||
| 1490 | BUG_ON(!nr_pages); | ||
| 1491 | do { | ||
| 1492 | /* | ||
| 1493 | * Warning: Do not do the decrement at the same time as the | ||
| 1494 | * call because flush_dcache_page() is a NULL macro on i386 | ||
| 1495 | * and hence the decrement never happens. | ||
| 1496 | */ | ||
| 1497 | flush_dcache_page(pages[nr_pages]); | ||
| 1498 | } while (--nr_pages > 0); | ||
| 1499 | } | ||
| 1500 | |||
| 1501 | /** | ||
| 1502 | * ntfs_commit_pages_after_non_resident_write - commit the received data | ||
| 1503 | * @pages: array of destination pages | ||
| 1504 | * @nr_pages: number of pages in @pages | ||
| 1505 | * @pos: byte position in file at which the write begins | ||
| 1506 | * @bytes: number of bytes to be written | ||
| 1507 | * | ||
| 1508 | * See description of ntfs_commit_pages_after_write(), below. | ||
| 1509 | */ | ||
| 1510 | static inline int ntfs_commit_pages_after_non_resident_write( | ||
| 1511 | struct page **pages, const unsigned nr_pages, | ||
| 1512 | s64 pos, size_t bytes) | ||
| 1513 | { | ||
| 1514 | s64 end, initialized_size; | ||
| 1515 | struct inode *vi; | ||
| 1516 | ntfs_inode *ni, *base_ni; | ||
| 1517 | struct buffer_head *bh, *head; | ||
| 1518 | ntfs_attr_search_ctx *ctx; | ||
| 1519 | MFT_RECORD *m; | ||
| 1520 | ATTR_RECORD *a; | ||
| 1521 | unsigned long flags; | ||
| 1522 | unsigned blocksize, u; | ||
| 1523 | int err; | ||
| 1524 | |||
| 1525 | vi = pages[0]->mapping->host; | ||
| 1526 | ni = NTFS_I(vi); | ||
| 1527 | blocksize = 1 << vi->i_blkbits; | ||
| 1528 | end = pos + bytes; | ||
| 1529 | u = 0; | ||
| 1530 | do { | ||
| 1531 | s64 bh_pos; | ||
| 1532 | struct page *page; | ||
| 1533 | BOOL partial; | ||
| 1534 | |||
| 1535 | page = pages[u]; | ||
| 1536 | bh_pos = (s64)page->index << PAGE_CACHE_SHIFT; | ||
| 1537 | bh = head = page_buffers(page); | ||
| 1538 | partial = FALSE; | ||
| 1539 | do { | ||
| 1540 | s64 bh_end; | ||
| 1541 | |||
| 1542 | bh_end = bh_pos + blocksize; | ||
| 1543 | if (bh_end <= pos || bh_pos >= end) { | ||
| 1544 | if (!buffer_uptodate(bh)) | ||
| 1545 | partial = TRUE; | ||
| 1546 | } else { | ||
| 1547 | set_buffer_uptodate(bh); | ||
| 1548 | mark_buffer_dirty(bh); | ||
| 1549 | } | ||
| 1550 | } while (bh_pos += blocksize, (bh = bh->b_this_page) != head); | ||
| 1551 | /* | ||
| 1552 | * If all buffers are now uptodate but the page is not, set the | ||
| 1553 | * page uptodate. | ||
| 1554 | */ | ||
| 1555 | if (!partial && !PageUptodate(page)) | ||
| 1556 | SetPageUptodate(page); | ||
| 1557 | } while (++u < nr_pages); | ||
| 1558 | /* | ||
| 1559 | * Finally, if we do not need to update initialized_size or i_size we | ||
| 1560 | * are finished. | ||
| 1561 | */ | ||
| 1562 | read_lock_irqsave(&ni->size_lock, flags); | ||
| 1563 | initialized_size = ni->initialized_size; | ||
| 1564 | read_unlock_irqrestore(&ni->size_lock, flags); | ||
| 1565 | if (end <= initialized_size) { | ||
| 1566 | ntfs_debug("Done."); | ||
| 1567 | return 0; | ||
| 1568 | } | ||
| 1569 | /* | ||
| 1570 | * Update initialized_size/i_size as appropriate, both in the inode and | ||
| 1571 | * the mft record. | ||
| 1572 | */ | ||
| 1573 | if (!NInoAttr(ni)) | ||
| 1574 | base_ni = ni; | ||
| 1575 | else | ||
| 1576 | base_ni = ni->ext.base_ntfs_ino; | ||
| 1577 | /* Map, pin, and lock the mft record. */ | ||
| 1578 | m = map_mft_record(base_ni); | ||
| 1579 | if (IS_ERR(m)) { | ||
| 1580 | err = PTR_ERR(m); | ||
| 1581 | m = NULL; | ||
| 1582 | ctx = NULL; | ||
| 1583 | goto err_out; | ||
| 1584 | } | ||
| 1585 | BUG_ON(!NInoNonResident(ni)); | ||
| 1586 | ctx = ntfs_attr_get_search_ctx(base_ni, m); | ||
| 1587 | if (unlikely(!ctx)) { | ||
| 1588 | err = -ENOMEM; | ||
| 1589 | goto err_out; | ||
| 1590 | } | ||
| 1591 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | ||
| 1592 | CASE_SENSITIVE, 0, NULL, 0, ctx); | ||
| 1593 | if (unlikely(err)) { | ||
| 1594 | if (err == -ENOENT) | ||
| 1595 | err = -EIO; | ||
| 1596 | goto err_out; | ||
| 1597 | } | ||
| 1598 | a = ctx->attr; | ||
| 1599 | BUG_ON(!a->non_resident); | ||
| 1600 | write_lock_irqsave(&ni->size_lock, flags); | ||
| 1601 | BUG_ON(end > ni->allocated_size); | ||
| 1602 | ni->initialized_size = end; | ||
| 1603 | a->data.non_resident.initialized_size = cpu_to_sle64(end); | ||
| 1604 | if (end > i_size_read(vi)) { | ||
| 1605 | i_size_write(vi, end); | ||
| 1606 | a->data.non_resident.data_size = | ||
| 1607 | a->data.non_resident.initialized_size; | ||
| 1608 | } | ||
| 1609 | write_unlock_irqrestore(&ni->size_lock, flags); | ||
| 1610 | /* Mark the mft record dirty, so it gets written back. */ | ||
| 1611 | flush_dcache_mft_record_page(ctx->ntfs_ino); | ||
| 1612 | mark_mft_record_dirty(ctx->ntfs_ino); | ||
| 1613 | ntfs_attr_put_search_ctx(ctx); | ||
| 1614 | unmap_mft_record(base_ni); | ||
| 1615 | ntfs_debug("Done."); | ||
| 1616 | return 0; | ||
| 1617 | err_out: | ||
| 1618 | if (ctx) | ||
| 1619 | ntfs_attr_put_search_ctx(ctx); | ||
| 1620 | if (m) | ||
| 1621 | unmap_mft_record(base_ni); | ||
| 1622 | ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error " | ||
| 1623 | "code %i).", err); | ||
| 1624 | if (err != -ENOMEM) { | ||
| 1625 | NVolSetErrors(ni->vol); | ||
| 1626 | make_bad_inode(VFS_I(base_ni)); | ||
| 1627 | make_bad_inode(vi); | ||
| 1628 | } | ||
| 1629 | return err; | ||
| 1630 | } | ||
| 1631 | |||
| 1632 | /** | ||
| 1633 | * ntfs_commit_pages_after_write - commit the received data | ||
| 1634 | * @pages: array of destination pages | ||
| 1635 | * @nr_pages: number of pages in @pages | ||
| 1636 | * @pos: byte position in file at which the write begins | ||
| 1637 | * @bytes: number of bytes to be written | ||
| 1638 | * | ||
| 1639 | * This is called from ntfs_file_buffered_write() with i_sem held on the inode | ||
| 1640 | * (@pages[0]->mapping->host). There are @nr_pages pages in @pages which are | ||
| 1641 | * locked but not kmap()ped. The source data has already been copied into the | ||
| 1642 | * @page. ntfs_prepare_pages_for_non_resident_write() has been called before | ||
| 1643 | * the data was copied (for non-resident attributes only) and it returned | ||
| 1644 | * success. | ||
| 1645 | * | ||
| 1646 | * Need to set uptodate and mark dirty all buffers within the boundary of the | ||
| 1647 | * write. If all buffers in a page are uptodate we set the page uptodate, too. | ||
| 1648 | * | ||
| 1649 | * Setting the buffers dirty ensures that they get written out later when | ||
| 1650 | * ntfs_writepage() is invoked by the VM. | ||
| 1651 | * | ||
| 1652 | * Finally, we need to update i_size and initialized_size as appropriate both | ||
| 1653 | * in the inode and the mft record. | ||
| 1654 | * | ||
| 1655 | * This is modelled after fs/buffer.c::generic_commit_write(), which marks | ||
| 1656 | * buffers uptodate and dirty, sets the page uptodate if all buffers in the | ||
| 1657 | * page are uptodate, and updates i_size if the end of io is beyond i_size. In | ||
| 1658 | * that case, it also marks the inode dirty. | ||
| 1659 | * | ||
| 1660 | * If things have gone as outlined in | ||
| 1661 | * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page | ||
| 1662 | * content modifications here for non-resident attributes. For resident | ||
| 1663 | * attributes we need to do the uptodate bringing here which we combine with | ||
| 1664 | * the copying into the mft record which means we save one atomic kmap. | ||
| 1665 | * | ||
| 1666 | * Return 0 on success or -errno on error. | ||
| 1667 | */ | ||
| 1668 | static int ntfs_commit_pages_after_write(struct page **pages, | ||
| 1669 | const unsigned nr_pages, s64 pos, size_t bytes) | ||
| 1670 | { | ||
| 1671 | s64 end, initialized_size; | ||
| 1672 | loff_t i_size; | ||
| 1673 | struct inode *vi; | ||
| 1674 | ntfs_inode *ni, *base_ni; | ||
| 1675 | struct page *page; | ||
| 1676 | ntfs_attr_search_ctx *ctx; | ||
| 1677 | MFT_RECORD *m; | ||
| 1678 | ATTR_RECORD *a; | ||
| 1679 | char *kattr, *kaddr; | ||
| 1680 | unsigned long flags; | ||
| 1681 | u32 attr_len; | ||
| 1682 | int err; | ||
| 1683 | |||
| 1684 | BUG_ON(!nr_pages); | ||
| 1685 | BUG_ON(!pages); | ||
| 1686 | page = pages[0]; | ||
| 1687 | BUG_ON(!page); | ||
| 1688 | vi = page->mapping->host; | ||
| 1689 | ni = NTFS_I(vi); | ||
| 1690 | ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page " | ||
| 1691 | "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.", | ||
| 1692 | vi->i_ino, ni->type, page->index, nr_pages, | ||
| 1693 | (long long)pos, bytes); | ||
| 1694 | if (NInoNonResident(ni)) | ||
| 1695 | return ntfs_commit_pages_after_non_resident_write(pages, | ||
| 1696 | nr_pages, pos, bytes); | ||
| 1697 | BUG_ON(nr_pages > 1); | ||
| 1698 | /* | ||
| 1699 | * Attribute is resident, implying it is not compressed, encrypted, or | ||
| 1700 | * sparse. | ||
| 1701 | */ | ||
| 1702 | if (!NInoAttr(ni)) | ||
| 1703 | base_ni = ni; | ||
| 1704 | else | ||
| 1705 | base_ni = ni->ext.base_ntfs_ino; | ||
| 1706 | BUG_ON(NInoNonResident(ni)); | ||
| 1707 | /* Map, pin, and lock the mft record. */ | ||
| 1708 | m = map_mft_record(base_ni); | ||
| 1709 | if (IS_ERR(m)) { | ||
| 1710 | err = PTR_ERR(m); | ||
| 1711 | m = NULL; | ||
| 1712 | ctx = NULL; | ||
| 1713 | goto err_out; | ||
| 1714 | } | ||
| 1715 | ctx = ntfs_attr_get_search_ctx(base_ni, m); | ||
| 1716 | if (unlikely(!ctx)) { | ||
| 1717 | err = -ENOMEM; | ||
| 1718 | goto err_out; | ||
| 1719 | } | ||
| 1720 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | ||
| 1721 | CASE_SENSITIVE, 0, NULL, 0, ctx); | ||
| 1722 | if (unlikely(err)) { | ||
| 1723 | if (err == -ENOENT) | ||
| 1724 | err = -EIO; | ||
| 1725 | goto err_out; | ||
| 1726 | } | ||
| 1727 | a = ctx->attr; | ||
| 1728 | BUG_ON(a->non_resident); | ||
| 1729 | /* The total length of the attribute value. */ | ||
| 1730 | attr_len = le32_to_cpu(a->data.resident.value_length); | ||
| 1731 | i_size = i_size_read(vi); | ||
| 1732 | BUG_ON(attr_len != i_size); | ||
| 1733 | BUG_ON(pos > attr_len); | ||
| 1734 | end = pos + bytes; | ||
| 1735 | BUG_ON(end > le32_to_cpu(a->length) - | ||
| 1736 | le16_to_cpu(a->data.resident.value_offset)); | ||
| 1737 | kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset); | ||
| 1738 | kaddr = kmap_atomic(page, KM_USER0); | ||
| 1739 | /* Copy the received data from the page to the mft record. */ | ||
| 1740 | memcpy(kattr + pos, kaddr + pos, bytes); | ||
| 1741 | /* Update the attribute length if necessary. */ | ||
| 1742 | if (end > attr_len) { | ||
| 1743 | attr_len = end; | ||
| 1744 | a->data.resident.value_length = cpu_to_le32(attr_len); | ||
| 1745 | } | ||
| 1746 | /* | ||
| 1747 | * If the page is not uptodate, bring the out of bounds area(s) | ||
| 1748 | * uptodate by copying data from the mft record to the page. | ||
| 1749 | */ | ||
| 1750 | if (!PageUptodate(page)) { | ||
| 1751 | if (pos > 0) | ||
| 1752 | memcpy(kaddr, kattr, pos); | ||
| 1753 | if (end < attr_len) | ||
| 1754 | memcpy(kaddr + end, kattr + end, attr_len - end); | ||
| 1755 | /* Zero the region outside the end of the attribute value. */ | ||
| 1756 | memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len); | ||
| 1757 | flush_dcache_page(page); | ||
| 1758 | SetPageUptodate(page); | ||
| 1759 | } | ||
| 1760 | kunmap_atomic(kaddr, KM_USER0); | ||
| 1761 | /* Update initialized_size/i_size if necessary. */ | ||
| 1762 | read_lock_irqsave(&ni->size_lock, flags); | ||
| 1763 | initialized_size = ni->initialized_size; | ||
| 1764 | BUG_ON(end > ni->allocated_size); | ||
| 1765 | read_unlock_irqrestore(&ni->size_lock, flags); | ||
| 1766 | BUG_ON(initialized_size != i_size); | ||
| 1767 | if (end > initialized_size) { | ||
| 1768 | unsigned long flags; | ||
| 1769 | |||
| 1770 | write_lock_irqsave(&ni->size_lock, flags); | ||
| 1771 | ni->initialized_size = end; | ||
| 1772 | i_size_write(vi, end); | ||
| 1773 | write_unlock_irqrestore(&ni->size_lock, flags); | ||
| 1774 | } | ||
| 1775 | /* Mark the mft record dirty, so it gets written back. */ | ||
| 1776 | flush_dcache_mft_record_page(ctx->ntfs_ino); | ||
| 1777 | mark_mft_record_dirty(ctx->ntfs_ino); | ||
| 1778 | ntfs_attr_put_search_ctx(ctx); | ||
| 1779 | unmap_mft_record(base_ni); | ||
| 1780 | ntfs_debug("Done."); | ||
| 1781 | return 0; | ||
| 1782 | err_out: | ||
| 1783 | if (err == -ENOMEM) { | ||
| 1784 | ntfs_warning(vi->i_sb, "Error allocating memory required to " | ||
| 1785 | "commit the write."); | ||
| 1786 | if (PageUptodate(page)) { | ||
| 1787 | ntfs_warning(vi->i_sb, "Page is uptodate, setting " | ||
| 1788 | "dirty so the write will be retried " | ||
| 1789 | "later on by the VM."); | ||
| 1790 | /* | ||
| 1791 | * Put the page on mapping->dirty_pages, but leave its | ||
| 1792 | * buffers' dirty state as-is. | ||
| 1793 | */ | ||
| 1794 | __set_page_dirty_nobuffers(page); | ||
| 1795 | err = 0; | ||
| 1796 | } else | ||
| 1797 | ntfs_error(vi->i_sb, "Page is not uptodate. Written " | ||
| 1798 | "data has been lost."); | ||
| 1799 | } else { | ||
| 1800 | ntfs_error(vi->i_sb, "Resident attribute commit write failed " | ||
| 1801 | "with error %i.", err); | ||
| 1802 | NVolSetErrors(ni->vol); | ||
| 1803 | make_bad_inode(VFS_I(base_ni)); | ||
| 1804 | make_bad_inode(vi); | ||
| 1805 | } | ||
| 1806 | if (ctx) | ||
| 1807 | ntfs_attr_put_search_ctx(ctx); | ||
| 1808 | if (m) | ||
| 1809 | unmap_mft_record(base_ni); | ||
| 1810 | return err; | ||
| 1811 | } | ||
| 1812 | |||
| 1813 | /** | ||
| 1814 | * ntfs_file_buffered_write - | ||
| 1815 | * | ||
| 1816 | * Locking: The vfs is holding ->i_sem on the inode. | ||
| 1817 | */ | ||
| 1818 | static ssize_t ntfs_file_buffered_write(struct kiocb *iocb, | ||
| 1819 | const struct iovec *iov, unsigned long nr_segs, | ||
| 1820 | loff_t pos, loff_t *ppos, size_t count) | ||
| 1821 | { | ||
| 1822 | struct file *file = iocb->ki_filp; | ||
| 1823 | struct address_space *mapping = file->f_mapping; | ||
| 1824 | struct inode *vi = mapping->host; | ||
| 1825 | ntfs_inode *ni = NTFS_I(vi); | ||
| 1826 | ntfs_volume *vol = ni->vol; | ||
| 1827 | struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER]; | ||
| 1828 | struct page *cached_page = NULL; | ||
| 1829 | char __user *buf = NULL; | ||
| 1830 | s64 end, ll; | ||
| 1831 | VCN last_vcn; | ||
| 1832 | LCN lcn; | ||
| 1833 | unsigned long flags; | ||
| 1834 | size_t bytes, iov_ofs = 0; /* Offset in the current iovec. */ | ||
| 1835 | ssize_t status, written; | ||
| 1836 | unsigned nr_pages; | ||
| 1837 | int err; | ||
| 1838 | struct pagevec lru_pvec; | ||
| 1839 | |||
| 1840 | ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, " | ||
| 1841 | "pos 0x%llx, count 0x%lx.", | ||
| 1842 | vi->i_ino, (unsigned)le32_to_cpu(ni->type), | ||
| 1843 | (unsigned long long)pos, (unsigned long)count); | ||
| 1844 | if (unlikely(!count)) | ||
| 1845 | return 0; | ||
| 1846 | BUG_ON(NInoMstProtected(ni)); | ||
| 1847 | /* | ||
| 1848 | * If the attribute is not an index root and it is encrypted or | ||
| 1849 | * compressed, we cannot write to it yet. Note we need to check for | ||
| 1850 | * AT_INDEX_ALLOCATION since this is the type of both directory and | ||
| 1851 | * index inodes. | ||
| 1852 | */ | ||
| 1853 | if (ni->type != AT_INDEX_ALLOCATION) { | ||
| 1854 | /* If file is encrypted, deny access, just like NT4. */ | ||
| 1855 | if (NInoEncrypted(ni)) { | ||
| 1856 | /* | ||
| 1857 | * Reminder for later: Encrypted files are _always_ | ||
| 1858 | * non-resident so that the content can always be | ||
| 1859 | * encrypted. | ||
| 1860 | */ | ||
| 1861 | ntfs_debug("Denying write access to encrypted file."); | ||
| 1862 | return -EACCES; | ||
| 1863 | } | ||
| 1864 | if (NInoCompressed(ni)) { | ||
| 1865 | /* Only unnamed $DATA attribute can be compressed. */ | ||
| 1866 | BUG_ON(ni->type != AT_DATA); | ||
| 1867 | BUG_ON(ni->name_len); | ||
| 1868 | /* | ||
| 1869 | * Reminder for later: If resident, the data is not | ||
| 1870 | * actually compressed. Only on the switch to non- | ||
| 1871 | * resident does compression kick in. This is in | ||
| 1872 | * contrast to encrypted files (see above). | ||
| 1873 | */ | ||
| 1874 | ntfs_error(vi->i_sb, "Writing to compressed files is " | ||
| 1875 | "not implemented yet. Sorry."); | ||
| 1876 | return -EOPNOTSUPP; | ||
| 1877 | } | ||
| 1878 | } | ||
| 1879 | /* | ||
| 1880 | * If a previous ntfs_truncate() failed, repeat it and abort if it | ||
| 1881 | * fails again. | ||
| 1882 | */ | ||
| 1883 | if (unlikely(NInoTruncateFailed(ni))) { | ||
| 1884 | down_write(&vi->i_alloc_sem); | ||
| 1885 | err = ntfs_truncate(vi); | ||
| 1886 | up_write(&vi->i_alloc_sem); | ||
| 1887 | if (err || NInoTruncateFailed(ni)) { | ||
| 1888 | if (!err) | ||
| 1889 | err = -EIO; | ||
| 1890 | ntfs_error(vol->sb, "Cannot perform write to inode " | ||
| 1891 | "0x%lx, attribute type 0x%x, because " | ||
| 1892 | "ntfs_truncate() failed (error code " | ||
| 1893 | "%i).", vi->i_ino, | ||
| 1894 | (unsigned)le32_to_cpu(ni->type), err); | ||
| 1895 | return err; | ||
| 1896 | } | ||
| 1897 | } | ||
| 1898 | /* The first byte after the write. */ | ||
| 1899 | end = pos + count; | ||
| 1900 | /* | ||
| 1901 | * If the write goes beyond the allocated size, extend the allocation | ||
| 1902 | * to cover the whole of the write, rounded up to the nearest cluster. | ||
| 1903 | */ | ||
| 1904 | read_lock_irqsave(&ni->size_lock, flags); | ||
| 1905 | ll = ni->allocated_size; | ||
| 1906 | read_unlock_irqrestore(&ni->size_lock, flags); | ||
| 1907 | if (end > ll) { | ||
| 1908 | /* Extend the allocation without changing the data size. */ | ||
| 1909 | ll = ntfs_attr_extend_allocation(ni, end, -1, pos); | ||
| 1910 | if (likely(ll >= 0)) { | ||
| 1911 | BUG_ON(pos >= ll); | ||
| 1912 | /* If the extension was partial truncate the write. */ | ||
| 1913 | if (end > ll) { | ||
| 1914 | ntfs_debug("Truncating write to inode 0x%lx, " | ||
| 1915 | "attribute type 0x%x, because " | ||
| 1916 | "the allocation was only " | ||
| 1917 | "partially extended.", | ||
| 1918 | vi->i_ino, (unsigned) | ||
| 1919 | le32_to_cpu(ni->type)); | ||
| 1920 | end = ll; | ||
| 1921 | count = ll - pos; | ||
| 1922 | } | ||
| 1923 | } else { | ||
| 1924 | err = ll; | ||
| 1925 | read_lock_irqsave(&ni->size_lock, flags); | ||
| 1926 | ll = ni->allocated_size; | ||
| 1927 | read_unlock_irqrestore(&ni->size_lock, flags); | ||
| 1928 | /* Perform a partial write if possible or fail. */ | ||
| 1929 | if (pos < ll) { | ||
| 1930 | ntfs_debug("Truncating write to inode 0x%lx, " | ||
| 1931 | "attribute type 0x%x, because " | ||
| 1932 | "extending the allocation " | ||
| 1933 | "failed (error code %i).", | ||
| 1934 | vi->i_ino, (unsigned) | ||
| 1935 | le32_to_cpu(ni->type), err); | ||
| 1936 | end = ll; | ||
| 1937 | count = ll - pos; | ||
| 1938 | } else { | ||
| 1939 | ntfs_error(vol->sb, "Cannot perform write to " | ||
| 1940 | "inode 0x%lx, attribute type " | ||
| 1941 | "0x%x, because extending the " | ||
| 1942 | "allocation failed (error " | ||
| 1943 | "code %i).", vi->i_ino, | ||
| 1944 | (unsigned) | ||
| 1945 | le32_to_cpu(ni->type), err); | ||
| 1946 | return err; | ||
| 1947 | } | ||
| 1948 | } | ||
| 1949 | } | ||
| 1950 | pagevec_init(&lru_pvec, 0); | ||
| 1951 | written = 0; | ||
| 1952 | /* | ||
| 1953 | * If the write starts beyond the initialized size, extend it up to the | ||
| 1954 | * beginning of the write and initialize all non-sparse space between | ||
| 1955 | * the old initialized size and the new one. This automatically also | ||
| 1956 | * increments the vfs inode->i_size to keep it above or equal to the | ||
| 1957 | * initialized_size. | ||
| 1958 | */ | ||
| 1959 | read_lock_irqsave(&ni->size_lock, flags); | ||
| 1960 | ll = ni->initialized_size; | ||
| 1961 | read_unlock_irqrestore(&ni->size_lock, flags); | ||
| 1962 | if (pos > ll) { | ||
| 1963 | err = ntfs_attr_extend_initialized(ni, pos, &cached_page, | ||
| 1964 | &lru_pvec); | ||
| 1965 | if (err < 0) { | ||
| 1966 | ntfs_error(vol->sb, "Cannot perform write to inode " | ||
| 1967 | "0x%lx, attribute type 0x%x, because " | ||
| 1968 | "extending the initialized size " | ||
| 1969 | "failed (error code %i).", vi->i_ino, | ||
| 1970 | (unsigned)le32_to_cpu(ni->type), err); | ||
| 1971 | status = err; | ||
| 1972 | goto err_out; | ||
| 1973 | } | ||
| 1974 | } | ||
| 1975 | /* | ||
| 1976 | * Determine the number of pages per cluster for non-resident | ||
| 1977 | * attributes. | ||
| 1978 | */ | ||
| 1979 | nr_pages = 1; | ||
| 1980 | if (vol->cluster_size > PAGE_CACHE_SIZE && NInoNonResident(ni)) | ||
| 1981 | nr_pages = vol->cluster_size >> PAGE_CACHE_SHIFT; | ||
| 1982 | /* Finally, perform the actual write. */ | ||
| 1983 | last_vcn = -1; | ||
| 1984 | if (likely(nr_segs == 1)) | ||
| 1985 | buf = iov->iov_base; | ||
| 1986 | do { | ||
| 1987 | VCN vcn; | ||
| 1988 | pgoff_t idx, start_idx; | ||
| 1989 | unsigned ofs, do_pages, u; | ||
| 1990 | size_t copied; | ||
| 1991 | |||
| 1992 | start_idx = idx = pos >> PAGE_CACHE_SHIFT; | ||
| 1993 | ofs = pos & ~PAGE_CACHE_MASK; | ||
| 1994 | bytes = PAGE_CACHE_SIZE - ofs; | ||
| 1995 | do_pages = 1; | ||
| 1996 | if (nr_pages > 1) { | ||
| 1997 | vcn = pos >> vol->cluster_size_bits; | ||
| 1998 | if (vcn != last_vcn) { | ||
| 1999 | last_vcn = vcn; | ||
| 2000 | /* | ||
| 2001 | * Get the lcn of the vcn the write is in. If | ||
| 2002 | * it is a hole, need to lock down all pages in | ||
| 2003 | * the cluster. | ||
| 2004 | */ | ||
| 2005 | down_read(&ni->runlist.lock); | ||
| 2006 | lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >> | ||
| 2007 | vol->cluster_size_bits, FALSE); | ||
| 2008 | up_read(&ni->runlist.lock); | ||
| 2009 | if (unlikely(lcn < LCN_HOLE)) { | ||
| 2010 | status = -EIO; | ||
| 2011 | if (lcn == LCN_ENOMEM) | ||
| 2012 | status = -ENOMEM; | ||
| 2013 | else | ||
| 2014 | ntfs_error(vol->sb, "Cannot " | ||
| 2015 | "perform write to " | ||
| 2016 | "inode 0x%lx, " | ||
| 2017 | "attribute type 0x%x, " | ||
| 2018 | "because the attribute " | ||
| 2019 | "is corrupt.", | ||
| 2020 | vi->i_ino, (unsigned) | ||
| 2021 | le32_to_cpu(ni->type)); | ||
| 2022 | break; | ||
| 2023 | } | ||
| 2024 | if (lcn == LCN_HOLE) { | ||
| 2025 | start_idx = (pos & ~(s64) | ||
| 2026 | vol->cluster_size_mask) | ||
| 2027 | >> PAGE_CACHE_SHIFT; | ||
| 2028 | bytes = vol->cluster_size - (pos & | ||
| 2029 | vol->cluster_size_mask); | ||
| 2030 | do_pages = nr_pages; | ||
| 2031 | } | ||
| 2032 | } | ||
| 2033 | } | ||
| 2034 | if (bytes > count) | ||
| 2035 | bytes = count; | ||
| 2036 | /* | ||
| 2037 | * Bring in the user page(s) that we will copy from _first_. | ||
| 2038 | * Otherwise there is a nasty deadlock on copying from the same | ||
| 2039 | * page(s) as we are writing to, without it/them being marked | ||
| 2040 | * up-to-date. Note, at present there is nothing to stop the | ||
| 2041 | * pages being swapped out between us bringing them into memory | ||
| 2042 | * and doing the actual copying. | ||
| 2043 | */ | ||
| 2044 | if (likely(nr_segs == 1)) | ||
| 2045 | ntfs_fault_in_pages_readable(buf, bytes); | ||
| 2046 | else | ||
| 2047 | ntfs_fault_in_pages_readable_iovec(iov, iov_ofs, bytes); | ||
| 2048 | /* Get and lock @do_pages starting at index @start_idx. */ | ||
| 2049 | status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages, | ||
| 2050 | pages, &cached_page, &lru_pvec); | ||
| 2051 | if (unlikely(status)) | ||
| 2052 | break; | ||
| 2053 | /* | ||
| 2054 | * For non-resident attributes, we need to fill any holes with | ||
| 2055 | * actual clusters and ensure all bufferes are mapped. We also | ||
| 2056 | * need to bring uptodate any buffers that are only partially | ||
| 2057 | * being written to. | ||
| 2058 | */ | ||
| 2059 | if (NInoNonResident(ni)) { | ||
| 2060 | status = ntfs_prepare_pages_for_non_resident_write( | ||
| 2061 | pages, do_pages, pos, bytes); | ||
| 2062 | if (unlikely(status)) { | ||
| 2063 | loff_t i_size; | ||
| 2064 | |||
| 2065 | do { | ||
| 2066 | unlock_page(pages[--do_pages]); | ||
| 2067 | page_cache_release(pages[do_pages]); | ||
| 2068 | } while (do_pages); | ||
| 2069 | /* | ||
| 2070 | * The write preparation may have instantiated | ||
| 2071 | * allocated space outside i_size. Trim this | ||
| 2072 | * off again. We can ignore any errors in this | ||
| 2073 | * case as we will just be waisting a bit of | ||
| 2074 | * allocated space, which is not a disaster. | ||
| 2075 | */ | ||
| 2076 | i_size = i_size_read(vi); | ||
| 2077 | if (pos + bytes > i_size) | ||
| 2078 | vmtruncate(vi, i_size); | ||
| 2079 | break; | ||
| 2080 | } | ||
| 2081 | } | ||
| 2082 | u = (pos >> PAGE_CACHE_SHIFT) - pages[0]->index; | ||
| 2083 | if (likely(nr_segs == 1)) { | ||
| 2084 | copied = ntfs_copy_from_user(pages + u, do_pages - u, | ||
| 2085 | ofs, buf, bytes); | ||
| 2086 | buf += copied; | ||
| 2087 | } else | ||
| 2088 | copied = ntfs_copy_from_user_iovec(pages + u, | ||
| 2089 | do_pages - u, ofs, &iov, &iov_ofs, | ||
| 2090 | bytes); | ||
| 2091 | ntfs_flush_dcache_pages(pages + u, do_pages - u); | ||
| 2092 | status = ntfs_commit_pages_after_write(pages, do_pages, pos, | ||
| 2093 | bytes); | ||
| 2094 | if (likely(!status)) { | ||
| 2095 | written += copied; | ||
| 2096 | count -= copied; | ||
| 2097 | pos += copied; | ||
| 2098 | if (unlikely(copied != bytes)) | ||
| 2099 | status = -EFAULT; | ||
| 2100 | } | ||
| 2101 | do { | ||
| 2102 | unlock_page(pages[--do_pages]); | ||
| 2103 | mark_page_accessed(pages[do_pages]); | ||
| 2104 | page_cache_release(pages[do_pages]); | ||
| 2105 | } while (do_pages); | ||
| 2106 | if (unlikely(status)) | ||
| 2107 | break; | ||
| 2108 | balance_dirty_pages_ratelimited(mapping); | ||
| 2109 | cond_resched(); | ||
| 2110 | } while (count); | ||
| 2111 | err_out: | ||
| 2112 | *ppos = pos; | ||
| 2113 | if (cached_page) | ||
| 2114 | page_cache_release(cached_page); | ||
| 2115 | /* For now, when the user asks for O_SYNC, we actually give O_DSYNC. */ | ||
| 2116 | if (likely(!status)) { | ||
| 2117 | if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(vi))) { | ||
| 2118 | if (!mapping->a_ops->writepage || !is_sync_kiocb(iocb)) | ||
| 2119 | status = generic_osync_inode(vi, mapping, | ||
| 2120 | OSYNC_METADATA|OSYNC_DATA); | ||
| 2121 | } | ||
| 2122 | } | ||
| 2123 | pagevec_lru_add(&lru_pvec); | ||
| 2124 | ntfs_debug("Done. Returning %s (written 0x%lx, status %li).", | ||
| 2125 | written ? "written" : "status", (unsigned long)written, | ||
| 2126 | (long)status); | ||
| 2127 | return written ? written : status; | ||
| 2128 | } | ||
| 2129 | |||
| 2130 | /** | ||
| 2131 | * ntfs_file_aio_write_nolock - | ||
| 2132 | */ | ||
| 2133 | static ssize_t ntfs_file_aio_write_nolock(struct kiocb *iocb, | ||
| 2134 | const struct iovec *iov, unsigned long nr_segs, loff_t *ppos) | ||
| 2135 | { | ||
| 2136 | struct file *file = iocb->ki_filp; | ||
| 2137 | struct address_space *mapping = file->f_mapping; | ||
| 2138 | struct inode *inode = mapping->host; | ||
| 2139 | loff_t pos; | ||
| 2140 | unsigned long seg; | ||
| 2141 | size_t count; /* after file limit checks */ | ||
| 2142 | ssize_t written, err; | ||
| 2143 | |||
| 2144 | count = 0; | ||
| 2145 | for (seg = 0; seg < nr_segs; seg++) { | ||
| 2146 | const struct iovec *iv = &iov[seg]; | ||
| 2147 | /* | ||
| 2148 | * If any segment has a negative length, or the cumulative | ||
| 2149 | * length ever wraps negative then return -EINVAL. | ||
| 2150 | */ | ||
| 2151 | count += iv->iov_len; | ||
| 2152 | if (unlikely((ssize_t)(count|iv->iov_len) < 0)) | ||
| 2153 | return -EINVAL; | ||
| 2154 | if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len)) | ||
| 2155 | continue; | ||
| 2156 | if (!seg) | ||
| 2157 | return -EFAULT; | ||
| 2158 | nr_segs = seg; | ||
| 2159 | count -= iv->iov_len; /* This segment is no good */ | ||
| 2160 | break; | ||
| 2161 | } | ||
| 2162 | pos = *ppos; | ||
| 2163 | vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); | ||
| 2164 | /* We can write back this queue in page reclaim. */ | ||
| 2165 | current->backing_dev_info = mapping->backing_dev_info; | ||
| 2166 | written = 0; | ||
| 2167 | err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); | ||
| 2168 | if (err) | ||
| 2169 | goto out; | ||
| 2170 | if (!count) | ||
| 2171 | goto out; | ||
| 2172 | err = remove_suid(file->f_dentry); | ||
| 2173 | if (err) | ||
| 2174 | goto out; | ||
| 2175 | inode_update_time(inode, 1); | ||
| 2176 | written = ntfs_file_buffered_write(iocb, iov, nr_segs, pos, ppos, | ||
| 2177 | count); | ||
| 2178 | out: | ||
| 2179 | current->backing_dev_info = NULL; | ||
| 2180 | return written ? written : err; | ||
| 2181 | } | ||
| 2182 | |||
| 2183 | /** | ||
| 2184 | * ntfs_file_aio_write - | ||
| 2185 | */ | ||
| 2186 | static ssize_t ntfs_file_aio_write(struct kiocb *iocb, const char __user *buf, | ||
| 2187 | size_t count, loff_t pos) | ||
| 2188 | { | ||
| 2189 | struct file *file = iocb->ki_filp; | ||
| 2190 | struct address_space *mapping = file->f_mapping; | ||
| 2191 | struct inode *inode = mapping->host; | ||
| 2192 | ssize_t ret; | ||
| 2193 | struct iovec local_iov = { .iov_base = (void __user *)buf, | ||
| 2194 | .iov_len = count }; | ||
| 2195 | |||
| 2196 | BUG_ON(iocb->ki_pos != pos); | ||
| 2197 | |||
| 2198 | down(&inode->i_sem); | ||
| 2199 | ret = ntfs_file_aio_write_nolock(iocb, &local_iov, 1, &iocb->ki_pos); | ||
| 2200 | up(&inode->i_sem); | ||
| 2201 | if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { | ||
| 2202 | int err = sync_page_range(inode, mapping, pos, ret); | ||
| 2203 | if (err < 0) | ||
| 2204 | ret = err; | ||
| 2205 | } | ||
| 2206 | return ret; | ||
| 2207 | } | ||
| 2208 | |||
| 2209 | /** | ||
| 2210 | * ntfs_file_writev - | ||
| 2211 | * | ||
| 2212 | * Basically the same as generic_file_writev() except that it ends up calling | ||
| 2213 | * ntfs_file_aio_write_nolock() instead of __generic_file_aio_write_nolock(). | ||
| 2214 | */ | ||
| 2215 | static ssize_t ntfs_file_writev(struct file *file, const struct iovec *iov, | ||
| 2216 | unsigned long nr_segs, loff_t *ppos) | ||
| 2217 | { | ||
| 2218 | struct address_space *mapping = file->f_mapping; | ||
| 2219 | struct inode *inode = mapping->host; | ||
| 2220 | struct kiocb kiocb; | ||
| 2221 | ssize_t ret; | ||
| 2222 | |||
| 2223 | down(&inode->i_sem); | ||
| 2224 | init_sync_kiocb(&kiocb, file); | ||
| 2225 | ret = ntfs_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos); | ||
| 2226 | if (ret == -EIOCBQUEUED) | ||
| 2227 | ret = wait_on_sync_kiocb(&kiocb); | ||
| 2228 | up(&inode->i_sem); | ||
| 2229 | if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { | ||
| 2230 | int err = sync_page_range(inode, mapping, *ppos - ret, ret); | ||
| 2231 | if (err < 0) | ||
| 2232 | ret = err; | ||
| 2233 | } | ||
| 2234 | return ret; | ||
| 2235 | } | ||
| 2236 | |||
| 2237 | /** | ||
| 2238 | * ntfs_file_write - simple wrapper for ntfs_file_writev() | ||
| 2239 | */ | ||
| 2240 | static ssize_t ntfs_file_write(struct file *file, const char __user *buf, | ||
| 2241 | size_t count, loff_t *ppos) | ||
| 2242 | { | ||
| 2243 | struct iovec local_iov = { .iov_base = (void __user *)buf, | ||
| 2244 | .iov_len = count }; | ||
| 2245 | |||
| 2246 | return ntfs_file_writev(file, &local_iov, 1, ppos); | ||
| 2247 | } | ||
| 2248 | |||
| 2249 | /** | ||
| 59 | * ntfs_file_fsync - sync a file to disk | 2250 | * ntfs_file_fsync - sync a file to disk |
| 60 | * @filp: file to be synced | 2251 | * @filp: file to be synced |
| 61 | * @dentry: dentry describing the file to sync | 2252 | * @dentry: dentry describing the file to sync |
| @@ -113,39 +2304,39 @@ static int ntfs_file_fsync(struct file *filp, struct dentry *dentry, | |||
| 113 | #endif /* NTFS_RW */ | 2304 | #endif /* NTFS_RW */ |
| 114 | 2305 | ||
| 115 | struct file_operations ntfs_file_ops = { | 2306 | struct file_operations ntfs_file_ops = { |
| 116 | .llseek = generic_file_llseek, /* Seek inside file. */ | 2307 | .llseek = generic_file_llseek, /* Seek inside file. */ |
| 117 | .read = generic_file_read, /* Read from file. */ | 2308 | .read = generic_file_read, /* Read from file. */ |
| 118 | .aio_read = generic_file_aio_read, /* Async read from file. */ | 2309 | .aio_read = generic_file_aio_read, /* Async read from file. */ |
| 119 | .readv = generic_file_readv, /* Read from file. */ | 2310 | .readv = generic_file_readv, /* Read from file. */ |
| 120 | #ifdef NTFS_RW | 2311 | #ifdef NTFS_RW |
| 121 | .write = generic_file_write, /* Write to file. */ | 2312 | .write = ntfs_file_write, /* Write to file. */ |
| 122 | .aio_write = generic_file_aio_write, /* Async write to file. */ | 2313 | .aio_write = ntfs_file_aio_write, /* Async write to file. */ |
| 123 | .writev = generic_file_writev, /* Write to file. */ | 2314 | .writev = ntfs_file_writev, /* Write to file. */ |
| 124 | /*.release = ,*/ /* Last file is closed. See | 2315 | /*.release = ,*/ /* Last file is closed. See |
| 125 | fs/ext2/file.c:: | 2316 | fs/ext2/file.c:: |
| 126 | ext2_release_file() for | 2317 | ext2_release_file() for |
| 127 | how to use this to discard | 2318 | how to use this to discard |
| 128 | preallocated space for | 2319 | preallocated space for |
| 129 | write opened files. */ | 2320 | write opened files. */ |
| 130 | .fsync = ntfs_file_fsync, /* Sync a file to disk. */ | 2321 | .fsync = ntfs_file_fsync, /* Sync a file to disk. */ |
| 131 | /*.aio_fsync = ,*/ /* Sync all outstanding async | 2322 | /*.aio_fsync = ,*/ /* Sync all outstanding async |
| 132 | i/o operations on a | 2323 | i/o operations on a |
| 133 | kiocb. */ | 2324 | kiocb. */ |
| 134 | #endif /* NTFS_RW */ | 2325 | #endif /* NTFS_RW */ |
| 135 | /*.ioctl = ,*/ /* Perform function on the | 2326 | /*.ioctl = ,*/ /* Perform function on the |
| 136 | mounted filesystem. */ | 2327 | mounted filesystem. */ |
| 137 | .mmap = generic_file_mmap, /* Mmap file. */ | 2328 | .mmap = generic_file_mmap, /* Mmap file. */ |
| 138 | .open = ntfs_file_open, /* Open file. */ | 2329 | .open = ntfs_file_open, /* Open file. */ |
| 139 | .sendfile = generic_file_sendfile, /* Zero-copy data send with | 2330 | .sendfile = generic_file_sendfile, /* Zero-copy data send with |
| 140 | the data source being on | 2331 | the data source being on |
| 141 | the ntfs partition. We | 2332 | the ntfs partition. We do |
| 142 | do not need to care about | 2333 | not need to care about the |
| 143 | the data destination. */ | 2334 | data destination. */ |
| 144 | /*.sendpage = ,*/ /* Zero-copy data send with | 2335 | /*.sendpage = ,*/ /* Zero-copy data send with |
| 145 | the data destination being | 2336 | the data destination being |
| 146 | on the ntfs partition. We | 2337 | on the ntfs partition. We |
| 147 | do not need to care about | 2338 | do not need to care about |
| 148 | the data source. */ | 2339 | the data source. */ |
| 149 | }; | 2340 | }; |
| 150 | 2341 | ||
| 151 | struct inode_operations ntfs_file_inode_ops = { | 2342 | struct inode_operations ntfs_file_inode_ops = { |
diff --git a/fs/ntfs/inode.c b/fs/ntfs/inode.c index 7ec045131808..b24f4c4b2c5c 100644 --- a/fs/ntfs/inode.c +++ b/fs/ntfs/inode.c | |||
| @@ -30,6 +30,7 @@ | |||
| 30 | #include "debug.h" | 30 | #include "debug.h" |
| 31 | #include "inode.h" | 31 | #include "inode.h" |
| 32 | #include "attrib.h" | 32 | #include "attrib.h" |
| 33 | #include "lcnalloc.h" | ||
| 33 | #include "malloc.h" | 34 | #include "malloc.h" |
| 34 | #include "mft.h" | 35 | #include "mft.h" |
| 35 | #include "time.h" | 36 | #include "time.h" |
| @@ -2291,11 +2292,16 @@ int ntfs_show_options(struct seq_file *sf, struct vfsmount *mnt) | |||
| 2291 | 2292 | ||
| 2292 | #ifdef NTFS_RW | 2293 | #ifdef NTFS_RW |
| 2293 | 2294 | ||
| 2295 | static const char *es = " Leaving inconsistent metadata. Unmount and run " | ||
| 2296 | "chkdsk."; | ||
| 2297 | |||
| 2294 | /** | 2298 | /** |
| 2295 | * ntfs_truncate - called when the i_size of an ntfs inode is changed | 2299 | * ntfs_truncate - called when the i_size of an ntfs inode is changed |
| 2296 | * @vi: inode for which the i_size was changed | 2300 | * @vi: inode for which the i_size was changed |
| 2297 | * | 2301 | * |
| 2298 | * We do not support i_size changes yet. | 2302 | * We only support i_size changes for normal files at present, i.e. not |
| 2303 | * compressed and not encrypted. This is enforced in ntfs_setattr(), see | ||
| 2304 | * below. | ||
| 2299 | * | 2305 | * |
| 2300 | * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and | 2306 | * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and |
| 2301 | * that the change is allowed. | 2307 | * that the change is allowed. |
| @@ -2306,80 +2312,499 @@ int ntfs_show_options(struct seq_file *sf, struct vfsmount *mnt) | |||
| 2306 | * Returns 0 on success or -errno on error. | 2312 | * Returns 0 on success or -errno on error. |
| 2307 | * | 2313 | * |
| 2308 | * Called with ->i_sem held. In all but one case ->i_alloc_sem is held for | 2314 | * Called with ->i_sem held. In all but one case ->i_alloc_sem is held for |
| 2309 | * writing. The only case where ->i_alloc_sem is not held is | 2315 | * writing. The only case in the kernel where ->i_alloc_sem is not held is |
| 2310 | * mm/filemap.c::generic_file_buffered_write() where vmtruncate() is called | 2316 | * mm/filemap.c::generic_file_buffered_write() where vmtruncate() is called |
| 2311 | * with the current i_size as the offset which means that it is a noop as far | 2317 | * with the current i_size as the offset. The analogous place in NTFS is in |
| 2312 | * as ntfs_truncate() is concerned. | 2318 | * fs/ntfs/file.c::ntfs_file_buffered_write() where we call vmtruncate() again |
| 2319 | * without holding ->i_alloc_sem. | ||
| 2313 | */ | 2320 | */ |
| 2314 | int ntfs_truncate(struct inode *vi) | 2321 | int ntfs_truncate(struct inode *vi) |
| 2315 | { | 2322 | { |
| 2316 | ntfs_inode *ni = NTFS_I(vi); | 2323 | s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size; |
| 2324 | VCN highest_vcn; | ||
| 2325 | unsigned long flags; | ||
| 2326 | ntfs_inode *base_ni, *ni = NTFS_I(vi); | ||
| 2317 | ntfs_volume *vol = ni->vol; | 2327 | ntfs_volume *vol = ni->vol; |
| 2318 | ntfs_attr_search_ctx *ctx; | 2328 | ntfs_attr_search_ctx *ctx; |
| 2319 | MFT_RECORD *m; | 2329 | MFT_RECORD *m; |
| 2320 | ATTR_RECORD *a; | 2330 | ATTR_RECORD *a; |
| 2321 | const char *te = " Leaving file length out of sync with i_size."; | 2331 | const char *te = " Leaving file length out of sync with i_size."; |
| 2322 | int err; | 2332 | int err, mp_size, size_change, alloc_change; |
| 2333 | u32 attr_len; | ||
| 2323 | 2334 | ||
| 2324 | ntfs_debug("Entering for inode 0x%lx.", vi->i_ino); | 2335 | ntfs_debug("Entering for inode 0x%lx.", vi->i_ino); |
| 2325 | BUG_ON(NInoAttr(ni)); | 2336 | BUG_ON(NInoAttr(ni)); |
| 2337 | BUG_ON(S_ISDIR(vi->i_mode)); | ||
| 2338 | BUG_ON(NInoMstProtected(ni)); | ||
| 2326 | BUG_ON(ni->nr_extents < 0); | 2339 | BUG_ON(ni->nr_extents < 0); |
| 2327 | m = map_mft_record(ni); | 2340 | retry_truncate: |
| 2341 | /* | ||
| 2342 | * Lock the runlist for writing and map the mft record to ensure it is | ||
| 2343 | * safe to mess with the attribute runlist and sizes. | ||
| 2344 | */ | ||
| 2345 | down_write(&ni->runlist.lock); | ||
| 2346 | if (!NInoAttr(ni)) | ||
| 2347 | base_ni = ni; | ||
| 2348 | else | ||
| 2349 | base_ni = ni->ext.base_ntfs_ino; | ||
| 2350 | m = map_mft_record(base_ni); | ||
| 2328 | if (IS_ERR(m)) { | 2351 | if (IS_ERR(m)) { |
| 2329 | err = PTR_ERR(m); | 2352 | err = PTR_ERR(m); |
| 2330 | ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx " | 2353 | ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx " |
| 2331 | "(error code %d).%s", vi->i_ino, err, te); | 2354 | "(error code %d).%s", vi->i_ino, err, te); |
| 2332 | ctx = NULL; | 2355 | ctx = NULL; |
| 2333 | m = NULL; | 2356 | m = NULL; |
| 2334 | goto err_out; | 2357 | goto old_bad_out; |
| 2335 | } | 2358 | } |
| 2336 | ctx = ntfs_attr_get_search_ctx(ni, m); | 2359 | ctx = ntfs_attr_get_search_ctx(base_ni, m); |
| 2337 | if (unlikely(!ctx)) { | 2360 | if (unlikely(!ctx)) { |
| 2338 | ntfs_error(vi->i_sb, "Failed to allocate a search context for " | 2361 | ntfs_error(vi->i_sb, "Failed to allocate a search context for " |
| 2339 | "inode 0x%lx (not enough memory).%s", | 2362 | "inode 0x%lx (not enough memory).%s", |
| 2340 | vi->i_ino, te); | 2363 | vi->i_ino, te); |
| 2341 | err = -ENOMEM; | 2364 | err = -ENOMEM; |
| 2342 | goto err_out; | 2365 | goto old_bad_out; |
| 2343 | } | 2366 | } |
| 2344 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | 2367 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, |
| 2345 | CASE_SENSITIVE, 0, NULL, 0, ctx); | 2368 | CASE_SENSITIVE, 0, NULL, 0, ctx); |
| 2346 | if (unlikely(err)) { | 2369 | if (unlikely(err)) { |
| 2347 | if (err == -ENOENT) | 2370 | if (err == -ENOENT) { |
| 2348 | ntfs_error(vi->i_sb, "Open attribute is missing from " | 2371 | ntfs_error(vi->i_sb, "Open attribute is missing from " |
| 2349 | "mft record. Inode 0x%lx is corrupt. " | 2372 | "mft record. Inode 0x%lx is corrupt. " |
| 2350 | "Run chkdsk.", vi->i_ino); | 2373 | "Run chkdsk.%s", vi->i_ino, te); |
| 2351 | else | 2374 | err = -EIO; |
| 2375 | } else | ||
| 2352 | ntfs_error(vi->i_sb, "Failed to lookup attribute in " | 2376 | ntfs_error(vi->i_sb, "Failed to lookup attribute in " |
| 2353 | "inode 0x%lx (error code %d).", | 2377 | "inode 0x%lx (error code %d).%s", |
| 2354 | vi->i_ino, err); | 2378 | vi->i_ino, err, te); |
| 2355 | goto err_out; | 2379 | goto old_bad_out; |
| 2356 | } | 2380 | } |
| 2381 | m = ctx->mrec; | ||
| 2357 | a = ctx->attr; | 2382 | a = ctx->attr; |
| 2358 | /* If the size has not changed there is nothing to do. */ | 2383 | /* |
| 2359 | if (ntfs_attr_size(a) == i_size_read(vi)) | 2384 | * The i_size of the vfs inode is the new size for the attribute value. |
| 2360 | goto done; | 2385 | */ |
| 2361 | // TODO: Implement the truncate... | 2386 | new_size = i_size_read(vi); |
| 2362 | ntfs_error(vi->i_sb, "Inode size has changed but this is not " | 2387 | /* The current size of the attribute value is the old size. */ |
| 2363 | "implemented yet. Resetting inode size to old value. " | 2388 | old_size = ntfs_attr_size(a); |
| 2364 | " This is most likely a bug in the ntfs driver!"); | 2389 | /* Calculate the new allocated size. */ |
| 2365 | i_size_write(vi, ntfs_attr_size(a)); | 2390 | if (NInoNonResident(ni)) |
| 2366 | done: | 2391 | new_alloc_size = (new_size + vol->cluster_size - 1) & |
| 2392 | ~(s64)vol->cluster_size_mask; | ||
| 2393 | else | ||
| 2394 | new_alloc_size = (new_size + 7) & ~7; | ||
| 2395 | /* The current allocated size is the old allocated size. */ | ||
| 2396 | read_lock_irqsave(&ni->size_lock, flags); | ||
| 2397 | old_alloc_size = ni->allocated_size; | ||
| 2398 | read_unlock_irqrestore(&ni->size_lock, flags); | ||
| 2399 | /* | ||
| 2400 | * The change in the file size. This will be 0 if no change, >0 if the | ||
| 2401 | * size is growing, and <0 if the size is shrinking. | ||
| 2402 | */ | ||
| 2403 | size_change = -1; | ||
| 2404 | if (new_size - old_size >= 0) { | ||
| 2405 | size_change = 1; | ||
| 2406 | if (new_size == old_size) | ||
| 2407 | size_change = 0; | ||
| 2408 | } | ||
| 2409 | /* As above for the allocated size. */ | ||
| 2410 | alloc_change = -1; | ||
| 2411 | if (new_alloc_size - old_alloc_size >= 0) { | ||
| 2412 | alloc_change = 1; | ||
| 2413 | if (new_alloc_size == old_alloc_size) | ||
| 2414 | alloc_change = 0; | ||
| 2415 | } | ||
| 2416 | /* | ||
| 2417 | * If neither the size nor the allocation are being changed there is | ||
| 2418 | * nothing to do. | ||
| 2419 | */ | ||
| 2420 | if (!size_change && !alloc_change) | ||
| 2421 | goto unm_done; | ||
| 2422 | /* If the size is changing, check if new size is allowed in $AttrDef. */ | ||
| 2423 | if (size_change) { | ||
| 2424 | err = ntfs_attr_size_bounds_check(vol, ni->type, new_size); | ||
| 2425 | if (unlikely(err)) { | ||
| 2426 | if (err == -ERANGE) { | ||
| 2427 | ntfs_error(vol->sb, "Truncate would cause the " | ||
| 2428 | "inode 0x%lx to %simum size " | ||
| 2429 | "for its attribute type " | ||
| 2430 | "(0x%x). Aborting truncate.", | ||
| 2431 | vi->i_ino, | ||
| 2432 | new_size > old_size ? "exceed " | ||
| 2433 | "the max" : "go under the min", | ||
| 2434 | le32_to_cpu(ni->type)); | ||
| 2435 | err = -EFBIG; | ||
| 2436 | } else { | ||
| 2437 | ntfs_error(vol->sb, "Inode 0x%lx has unknown " | ||
| 2438 | "attribute type 0x%x. " | ||
| 2439 | "Aborting truncate.", | ||
| 2440 | vi->i_ino, | ||
| 2441 | le32_to_cpu(ni->type)); | ||
| 2442 | err = -EIO; | ||
| 2443 | } | ||
| 2444 | /* Reset the vfs inode size to the old size. */ | ||
| 2445 | i_size_write(vi, old_size); | ||
| 2446 | goto err_out; | ||
| 2447 | } | ||
| 2448 | } | ||
| 2449 | if (NInoCompressed(ni) || NInoEncrypted(ni)) { | ||
| 2450 | ntfs_warning(vi->i_sb, "Changes in inode size are not " | ||
| 2451 | "supported yet for %s files, ignoring.", | ||
| 2452 | NInoCompressed(ni) ? "compressed" : | ||
| 2453 | "encrypted"); | ||
| 2454 | err = -EOPNOTSUPP; | ||
| 2455 | goto bad_out; | ||
| 2456 | } | ||
| 2457 | if (a->non_resident) | ||
| 2458 | goto do_non_resident_truncate; | ||
| 2459 | BUG_ON(NInoNonResident(ni)); | ||
| 2460 | /* Resize the attribute record to best fit the new attribute size. */ | ||
| 2461 | if (new_size < vol->mft_record_size && | ||
| 2462 | !ntfs_resident_attr_value_resize(m, a, new_size)) { | ||
| 2463 | unsigned long flags; | ||
| 2464 | |||
| 2465 | /* The resize succeeded! */ | ||
| 2466 | flush_dcache_mft_record_page(ctx->ntfs_ino); | ||
| 2467 | mark_mft_record_dirty(ctx->ntfs_ino); | ||
| 2468 | write_lock_irqsave(&ni->size_lock, flags); | ||
| 2469 | /* Update the sizes in the ntfs inode and all is done. */ | ||
| 2470 | ni->allocated_size = le32_to_cpu(a->length) - | ||
| 2471 | le16_to_cpu(a->data.resident.value_offset); | ||
| 2472 | /* | ||
| 2473 | * Note ntfs_resident_attr_value_resize() has already done any | ||
| 2474 | * necessary data clearing in the attribute record. When the | ||
| 2475 | * file is being shrunk vmtruncate() will already have cleared | ||
| 2476 | * the top part of the last partial page, i.e. since this is | ||
| 2477 | * the resident case this is the page with index 0. However, | ||
| 2478 | * when the file is being expanded, the page cache page data | ||
| 2479 | * between the old data_size, i.e. old_size, and the new_size | ||
| 2480 | * has not been zeroed. Fortunately, we do not need to zero it | ||
| 2481 | * either since on one hand it will either already be zero due | ||
| 2482 | * to both readpage and writepage clearing partial page data | ||
| 2483 | * beyond i_size in which case there is nothing to do or in the | ||
| 2484 | * case of the file being mmap()ped at the same time, POSIX | ||
| 2485 | * specifies that the behaviour is unspecified thus we do not | ||
| 2486 | * have to do anything. This means that in our implementation | ||
| 2487 | * in the rare case that the file is mmap()ped and a write | ||
| 2488 | * occured into the mmap()ped region just beyond the file size | ||
| 2489 | * and writepage has not yet been called to write out the page | ||
| 2490 | * (which would clear the area beyond the file size) and we now | ||
| 2491 | * extend the file size to incorporate this dirty region | ||
| 2492 | * outside the file size, a write of the page would result in | ||
| 2493 | * this data being written to disk instead of being cleared. | ||
| 2494 | * Given both POSIX and the Linux mmap(2) man page specify that | ||
| 2495 | * this corner case is undefined, we choose to leave it like | ||
| 2496 | * that as this is much simpler for us as we cannot lock the | ||
| 2497 | * relevant page now since we are holding too many ntfs locks | ||
| 2498 | * which would result in a lock reversal deadlock. | ||
| 2499 | */ | ||
| 2500 | ni->initialized_size = new_size; | ||
| 2501 | write_unlock_irqrestore(&ni->size_lock, flags); | ||
| 2502 | goto unm_done; | ||
| 2503 | } | ||
| 2504 | /* If the above resize failed, this must be an attribute extension. */ | ||
| 2505 | BUG_ON(size_change < 0); | ||
| 2506 | /* | ||
| 2507 | * We have to drop all the locks so we can call | ||
| 2508 | * ntfs_attr_make_non_resident(). This could be optimised by try- | ||
| 2509 | * locking the first page cache page and only if that fails dropping | ||
| 2510 | * the locks, locking the page, and redoing all the locking and | ||
| 2511 | * lookups. While this would be a huge optimisation, it is not worth | ||
| 2512 | * it as this is definitely a slow code path as it only ever can happen | ||
| 2513 | * once for any given file. | ||
| 2514 | */ | ||
| 2367 | ntfs_attr_put_search_ctx(ctx); | 2515 | ntfs_attr_put_search_ctx(ctx); |
| 2368 | unmap_mft_record(ni); | 2516 | unmap_mft_record(base_ni); |
| 2369 | NInoClearTruncateFailed(ni); | 2517 | up_write(&ni->runlist.lock); |
| 2370 | ntfs_debug("Done."); | 2518 | /* |
| 2371 | return 0; | 2519 | * Not enough space in the mft record, try to make the attribute |
| 2372 | err_out: | 2520 | * non-resident and if successful restart the truncation process. |
| 2373 | if (err != -ENOMEM) { | 2521 | */ |
| 2522 | err = ntfs_attr_make_non_resident(ni, old_size); | ||
| 2523 | if (likely(!err)) | ||
| 2524 | goto retry_truncate; | ||
| 2525 | /* | ||
| 2526 | * Could not make non-resident. If this is due to this not being | ||
| 2527 | * permitted for this attribute type or there not being enough space, | ||
| 2528 | * try to make other attributes non-resident. Otherwise fail. | ||
| 2529 | */ | ||
| 2530 | if (unlikely(err != -EPERM && err != -ENOSPC)) { | ||
| 2531 | ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute " | ||
| 2532 | "type 0x%x, because the conversion from " | ||
| 2533 | "resident to non-resident attribute failed " | ||
| 2534 | "with error code %i.", vi->i_ino, | ||
| 2535 | (unsigned)le32_to_cpu(ni->type), err); | ||
| 2536 | if (err != -ENOMEM) | ||
| 2537 | err = -EIO; | ||
| 2538 | goto conv_err_out; | ||
| 2539 | } | ||
| 2540 | /* TODO: Not implemented from here, abort. */ | ||
| 2541 | if (err == -ENOSPC) | ||
| 2542 | ntfs_error(vol->sb, "Not enough space in the mft record/on " | ||
| 2543 | "disk for the non-resident attribute value. " | ||
| 2544 | "This case is not implemented yet."); | ||
| 2545 | else /* if (err == -EPERM) */ | ||
| 2546 | ntfs_error(vol->sb, "This attribute type may not be " | ||
| 2547 | "non-resident. This case is not implemented " | ||
| 2548 | "yet."); | ||
| 2549 | err = -EOPNOTSUPP; | ||
| 2550 | goto conv_err_out; | ||
| 2551 | #if 0 | ||
| 2552 | // TODO: Attempt to make other attributes non-resident. | ||
| 2553 | if (!err) | ||
| 2554 | goto do_resident_extend; | ||
| 2555 | /* | ||
| 2556 | * Both the attribute list attribute and the standard information | ||
| 2557 | * attribute must remain in the base inode. Thus, if this is one of | ||
| 2558 | * these attributes, we have to try to move other attributes out into | ||
| 2559 | * extent mft records instead. | ||
| 2560 | */ | ||
| 2561 | if (ni->type == AT_ATTRIBUTE_LIST || | ||
| 2562 | ni->type == AT_STANDARD_INFORMATION) { | ||
| 2563 | // TODO: Attempt to move other attributes into extent mft | ||
| 2564 | // records. | ||
| 2565 | err = -EOPNOTSUPP; | ||
| 2566 | if (!err) | ||
| 2567 | goto do_resident_extend; | ||
| 2568 | goto err_out; | ||
| 2569 | } | ||
| 2570 | // TODO: Attempt to move this attribute to an extent mft record, but | ||
| 2571 | // only if it is not already the only attribute in an mft record in | ||
| 2572 | // which case there would be nothing to gain. | ||
| 2573 | err = -EOPNOTSUPP; | ||
| 2574 | if (!err) | ||
| 2575 | goto do_resident_extend; | ||
| 2576 | /* There is nothing we can do to make enough space. )-: */ | ||
| 2577 | goto err_out; | ||
| 2578 | #endif | ||
| 2579 | do_non_resident_truncate: | ||
| 2580 | BUG_ON(!NInoNonResident(ni)); | ||
| 2581 | if (alloc_change < 0) { | ||
| 2582 | highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); | ||
| 2583 | if (highest_vcn > 0 && | ||
| 2584 | old_alloc_size >> vol->cluster_size_bits > | ||
| 2585 | highest_vcn + 1) { | ||
| 2586 | /* | ||
| 2587 | * This attribute has multiple extents. Not yet | ||
| 2588 | * supported. | ||
| 2589 | */ | ||
| 2590 | ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, " | ||
| 2591 | "attribute type 0x%x, because the " | ||
| 2592 | "attribute is highly fragmented (it " | ||
| 2593 | "consists of multiple extents) and " | ||
| 2594 | "this case is not implemented yet.", | ||
| 2595 | vi->i_ino, | ||
| 2596 | (unsigned)le32_to_cpu(ni->type)); | ||
| 2597 | err = -EOPNOTSUPP; | ||
| 2598 | goto bad_out; | ||
| 2599 | } | ||
| 2600 | } | ||
| 2601 | /* | ||
| 2602 | * If the size is shrinking, need to reduce the initialized_size and | ||
| 2603 | * the data_size before reducing the allocation. | ||
| 2604 | */ | ||
| 2605 | if (size_change < 0) { | ||
| 2606 | /* | ||
| 2607 | * Make the valid size smaller (i_size is already up-to-date). | ||
| 2608 | */ | ||
| 2609 | write_lock_irqsave(&ni->size_lock, flags); | ||
| 2610 | if (new_size < ni->initialized_size) { | ||
| 2611 | ni->initialized_size = new_size; | ||
| 2612 | a->data.non_resident.initialized_size = | ||
| 2613 | cpu_to_sle64(new_size); | ||
| 2614 | } | ||
| 2615 | a->data.non_resident.data_size = cpu_to_sle64(new_size); | ||
| 2616 | write_unlock_irqrestore(&ni->size_lock, flags); | ||
| 2617 | flush_dcache_mft_record_page(ctx->ntfs_ino); | ||
| 2618 | mark_mft_record_dirty(ctx->ntfs_ino); | ||
| 2619 | /* If the allocated size is not changing, we are done. */ | ||
| 2620 | if (!alloc_change) | ||
| 2621 | goto unm_done; | ||
| 2622 | /* | ||
| 2623 | * If the size is shrinking it makes no sense for the | ||
| 2624 | * allocation to be growing. | ||
| 2625 | */ | ||
| 2626 | BUG_ON(alloc_change > 0); | ||
| 2627 | } else /* if (size_change >= 0) */ { | ||
| 2628 | /* | ||
| 2629 | * The file size is growing or staying the same but the | ||
| 2630 | * allocation can be shrinking, growing or staying the same. | ||
| 2631 | */ | ||
| 2632 | if (alloc_change > 0) { | ||
| 2633 | /* | ||
| 2634 | * We need to extend the allocation and possibly update | ||
| 2635 | * the data size. If we are updating the data size, | ||
| 2636 | * since we are not touching the initialized_size we do | ||
| 2637 | * not need to worry about the actual data on disk. | ||
| 2638 | * And as far as the page cache is concerned, there | ||
| 2639 | * will be no pages beyond the old data size and any | ||
| 2640 | * partial region in the last page between the old and | ||
| 2641 | * new data size (or the end of the page if the new | ||
| 2642 | * data size is outside the page) does not need to be | ||
| 2643 | * modified as explained above for the resident | ||
| 2644 | * attribute truncate case. To do this, we simply drop | ||
| 2645 | * the locks we hold and leave all the work to our | ||
| 2646 | * friendly helper ntfs_attr_extend_allocation(). | ||
| 2647 | */ | ||
| 2648 | ntfs_attr_put_search_ctx(ctx); | ||
| 2649 | unmap_mft_record(base_ni); | ||
| 2650 | up_write(&ni->runlist.lock); | ||
| 2651 | err = ntfs_attr_extend_allocation(ni, new_size, | ||
| 2652 | size_change > 0 ? new_size : -1, -1); | ||
| 2653 | /* | ||
| 2654 | * ntfs_attr_extend_allocation() will have done error | ||
| 2655 | * output already. | ||
| 2656 | */ | ||
| 2657 | goto done; | ||
| 2658 | } | ||
| 2659 | if (!alloc_change) | ||
| 2660 | goto alloc_done; | ||
| 2661 | } | ||
| 2662 | /* alloc_change < 0 */ | ||
| 2663 | /* Free the clusters. */ | ||
| 2664 | nr_freed = ntfs_cluster_free(ni, new_alloc_size >> | ||
| 2665 | vol->cluster_size_bits, -1, ctx); | ||
| 2666 | m = ctx->mrec; | ||
| 2667 | a = ctx->attr; | ||
| 2668 | if (unlikely(nr_freed < 0)) { | ||
| 2669 | ntfs_error(vol->sb, "Failed to release cluster(s) (error code " | ||
| 2670 | "%lli). Unmount and run chkdsk to recover " | ||
| 2671 | "the lost cluster(s).", (long long)nr_freed); | ||
| 2374 | NVolSetErrors(vol); | 2672 | NVolSetErrors(vol); |
| 2673 | nr_freed = 0; | ||
| 2674 | } | ||
| 2675 | /* Truncate the runlist. */ | ||
| 2676 | err = ntfs_rl_truncate_nolock(vol, &ni->runlist, | ||
| 2677 | new_alloc_size >> vol->cluster_size_bits); | ||
| 2678 | /* | ||
| 2679 | * If the runlist truncation failed and/or the search context is no | ||
| 2680 | * longer valid, we cannot resize the attribute record or build the | ||
| 2681 | * mapping pairs array thus we mark the inode bad so that no access to | ||
| 2682 | * the freed clusters can happen. | ||
| 2683 | */ | ||
| 2684 | if (unlikely(err || IS_ERR(m))) { | ||
| 2685 | ntfs_error(vol->sb, "Failed to %s (error code %li).%s", | ||
| 2686 | IS_ERR(m) ? | ||
| 2687 | "restore attribute search context" : | ||
| 2688 | "truncate attribute runlist", | ||
| 2689 | IS_ERR(m) ? PTR_ERR(m) : err, es); | ||
| 2690 | err = -EIO; | ||
| 2691 | goto bad_out; | ||
| 2692 | } | ||
| 2693 | /* Get the size for the shrunk mapping pairs array for the runlist. */ | ||
| 2694 | mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1); | ||
| 2695 | if (unlikely(mp_size <= 0)) { | ||
| 2696 | ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, " | ||
| 2697 | "attribute type 0x%x, because determining the " | ||
| 2698 | "size for the mapping pairs failed with error " | ||
| 2699 | "code %i.%s", vi->i_ino, | ||
| 2700 | (unsigned)le32_to_cpu(ni->type), mp_size, es); | ||
| 2701 | err = -EIO; | ||
| 2702 | goto bad_out; | ||
| 2703 | } | ||
| 2704 | /* | ||
| 2705 | * Shrink the attribute record for the new mapping pairs array. Note, | ||
| 2706 | * this cannot fail since we are making the attribute smaller thus by | ||
| 2707 | * definition there is enough space to do so. | ||
| 2708 | */ | ||
| 2709 | attr_len = le32_to_cpu(a->length); | ||
| 2710 | err = ntfs_attr_record_resize(m, a, mp_size + | ||
| 2711 | le16_to_cpu(a->data.non_resident.mapping_pairs_offset)); | ||
| 2712 | BUG_ON(err); | ||
| 2713 | /* | ||
| 2714 | * Generate the mapping pairs array directly into the attribute record. | ||
| 2715 | */ | ||
| 2716 | err = ntfs_mapping_pairs_build(vol, (u8*)a + | ||
| 2717 | le16_to_cpu(a->data.non_resident.mapping_pairs_offset), | ||
| 2718 | mp_size, ni->runlist.rl, 0, -1, NULL); | ||
| 2719 | if (unlikely(err)) { | ||
| 2720 | ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, " | ||
| 2721 | "attribute type 0x%x, because building the " | ||
| 2722 | "mapping pairs failed with error code %i.%s", | ||
| 2723 | vi->i_ino, (unsigned)le32_to_cpu(ni->type), | ||
| 2724 | err, es); | ||
| 2725 | err = -EIO; | ||
| 2726 | goto bad_out; | ||
| 2727 | } | ||
| 2728 | /* Update the allocated/compressed size as well as the highest vcn. */ | ||
| 2729 | a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >> | ||
| 2730 | vol->cluster_size_bits) - 1); | ||
| 2731 | write_lock_irqsave(&ni->size_lock, flags); | ||
| 2732 | ni->allocated_size = new_alloc_size; | ||
| 2733 | a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size); | ||
| 2734 | if (NInoSparse(ni) || NInoCompressed(ni)) { | ||
| 2735 | if (nr_freed) { | ||
| 2736 | ni->itype.compressed.size -= nr_freed << | ||
| 2737 | vol->cluster_size_bits; | ||
| 2738 | BUG_ON(ni->itype.compressed.size < 0); | ||
| 2739 | a->data.non_resident.compressed_size = cpu_to_sle64( | ||
| 2740 | ni->itype.compressed.size); | ||
| 2741 | vi->i_blocks = ni->itype.compressed.size >> 9; | ||
| 2742 | } | ||
| 2743 | } else | ||
| 2744 | vi->i_blocks = new_alloc_size >> 9; | ||
| 2745 | write_unlock_irqrestore(&ni->size_lock, flags); | ||
| 2746 | /* | ||
| 2747 | * We have shrunk the allocation. If this is a shrinking truncate we | ||
| 2748 | * have already dealt with the initialized_size and the data_size above | ||
| 2749 | * and we are done. If the truncate is only changing the allocation | ||
| 2750 | * and not the data_size, we are also done. If this is an extending | ||
| 2751 | * truncate, need to extend the data_size now which is ensured by the | ||
| 2752 | * fact that @size_change is positive. | ||
| 2753 | */ | ||
| 2754 | alloc_done: | ||
| 2755 | /* | ||
| 2756 | * If the size is growing, need to update it now. If it is shrinking, | ||
| 2757 | * we have already updated it above (before the allocation change). | ||
| 2758 | */ | ||
| 2759 | if (size_change > 0) | ||
| 2760 | a->data.non_resident.data_size = cpu_to_sle64(new_size); | ||
| 2761 | /* Ensure the modified mft record is written out. */ | ||
| 2762 | flush_dcache_mft_record_page(ctx->ntfs_ino); | ||
| 2763 | mark_mft_record_dirty(ctx->ntfs_ino); | ||
| 2764 | unm_done: | ||
| 2765 | ntfs_attr_put_search_ctx(ctx); | ||
| 2766 | unmap_mft_record(base_ni); | ||
| 2767 | up_write(&ni->runlist.lock); | ||
| 2768 | done: | ||
| 2769 | /* Update the mtime and ctime on the base inode. */ | ||
| 2770 | inode_update_time(VFS_I(base_ni), 1); | ||
| 2771 | if (likely(!err)) { | ||
| 2772 | NInoClearTruncateFailed(ni); | ||
| 2773 | ntfs_debug("Done."); | ||
| 2774 | } | ||
| 2775 | return err; | ||
| 2776 | old_bad_out: | ||
| 2777 | old_size = -1; | ||
| 2778 | bad_out: | ||
| 2779 | if (err != -ENOMEM && err != -EOPNOTSUPP) { | ||
| 2375 | make_bad_inode(vi); | 2780 | make_bad_inode(vi); |
| 2781 | make_bad_inode(VFS_I(base_ni)); | ||
| 2782 | NVolSetErrors(vol); | ||
| 2376 | } | 2783 | } |
| 2784 | if (err != -EOPNOTSUPP) | ||
| 2785 | NInoSetTruncateFailed(ni); | ||
| 2786 | else if (old_size >= 0) | ||
| 2787 | i_size_write(vi, old_size); | ||
| 2788 | err_out: | ||
| 2377 | if (ctx) | 2789 | if (ctx) |
| 2378 | ntfs_attr_put_search_ctx(ctx); | 2790 | ntfs_attr_put_search_ctx(ctx); |
| 2379 | if (m) | 2791 | if (m) |
| 2380 | unmap_mft_record(ni); | 2792 | unmap_mft_record(base_ni); |
| 2381 | NInoSetTruncateFailed(ni); | 2793 | up_write(&ni->runlist.lock); |
| 2794 | out: | ||
| 2795 | ntfs_debug("Failed. Returning error code %i.", err); | ||
| 2382 | return err; | 2796 | return err; |
| 2797 | conv_err_out: | ||
| 2798 | if (err != -ENOMEM && err != -EOPNOTSUPP) { | ||
| 2799 | make_bad_inode(vi); | ||
| 2800 | make_bad_inode(VFS_I(base_ni)); | ||
| 2801 | NVolSetErrors(vol); | ||
| 2802 | } | ||
| 2803 | if (err != -EOPNOTSUPP) | ||
| 2804 | NInoSetTruncateFailed(ni); | ||
| 2805 | else | ||
| 2806 | i_size_write(vi, old_size); | ||
| 2807 | goto out; | ||
| 2383 | } | 2808 | } |
| 2384 | 2809 | ||
| 2385 | /** | 2810 | /** |
| @@ -2420,8 +2845,7 @@ int ntfs_setattr(struct dentry *dentry, struct iattr *attr) | |||
| 2420 | 2845 | ||
| 2421 | err = inode_change_ok(vi, attr); | 2846 | err = inode_change_ok(vi, attr); |
| 2422 | if (err) | 2847 | if (err) |
| 2423 | return err; | 2848 | goto out; |
| 2424 | |||
| 2425 | /* We do not support NTFS ACLs yet. */ | 2849 | /* We do not support NTFS ACLs yet. */ |
| 2426 | if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) { | 2850 | if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) { |
| 2427 | ntfs_warning(vi->i_sb, "Changes in user/group/mode are not " | 2851 | ntfs_warning(vi->i_sb, "Changes in user/group/mode are not " |
| @@ -2429,14 +2853,22 @@ int ntfs_setattr(struct dentry *dentry, struct iattr *attr) | |||
| 2429 | err = -EOPNOTSUPP; | 2853 | err = -EOPNOTSUPP; |
| 2430 | goto out; | 2854 | goto out; |
| 2431 | } | 2855 | } |
| 2432 | |||
| 2433 | if (ia_valid & ATTR_SIZE) { | 2856 | if (ia_valid & ATTR_SIZE) { |
| 2434 | if (attr->ia_size != i_size_read(vi)) { | 2857 | if (attr->ia_size != i_size_read(vi)) { |
| 2435 | ntfs_warning(vi->i_sb, "Changes in inode size are not " | 2858 | ntfs_inode *ni = NTFS_I(vi); |
| 2436 | "supported yet, ignoring."); | 2859 | /* |
| 2437 | err = -EOPNOTSUPP; | 2860 | * FIXME: For now we do not support resizing of |
| 2438 | // TODO: Implement... | 2861 | * compressed or encrypted files yet. |
| 2439 | // err = vmtruncate(vi, attr->ia_size); | 2862 | */ |
| 2863 | if (NInoCompressed(ni) || NInoEncrypted(ni)) { | ||
| 2864 | ntfs_warning(vi->i_sb, "Changes in inode size " | ||
| 2865 | "are not supported yet for " | ||
| 2866 | "%s files, ignoring.", | ||
| 2867 | NInoCompressed(ni) ? | ||
| 2868 | "compressed" : "encrypted"); | ||
| 2869 | err = -EOPNOTSUPP; | ||
| 2870 | } else | ||
| 2871 | err = vmtruncate(vi, attr->ia_size); | ||
| 2440 | if (err || ia_valid == ATTR_SIZE) | 2872 | if (err || ia_valid == ATTR_SIZE) |
| 2441 | goto out; | 2873 | goto out; |
| 2442 | } else { | 2874 | } else { |
diff --git a/fs/ntfs/layout.h b/fs/ntfs/layout.h index 5c248d404f05..f5678d5d7919 100644 --- a/fs/ntfs/layout.h +++ b/fs/ntfs/layout.h | |||
| @@ -1021,10 +1021,17 @@ enum { | |||
| 1021 | FILE_NAME_POSIX = 0x00, | 1021 | FILE_NAME_POSIX = 0x00, |
| 1022 | /* This is the largest namespace. It is case sensitive and allows all | 1022 | /* This is the largest namespace. It is case sensitive and allows all |
| 1023 | Unicode characters except for: '\0' and '/'. Beware that in | 1023 | Unicode characters except for: '\0' and '/'. Beware that in |
| 1024 | WinNT/2k files which eg have the same name except for their case | 1024 | WinNT/2k/2003 by default files which eg have the same name except |
| 1025 | will not be distinguished by the standard utilities and thus a "del | 1025 | for their case will not be distinguished by the standard utilities |
| 1026 | filename" will delete both "filename" and "fileName" without | 1026 | and thus a "del filename" will delete both "filename" and "fileName" |
| 1027 | warning. */ | 1027 | without warning. However if for example Services For Unix (SFU) are |
| 1028 | installed and the case sensitive option was enabled at installation | ||
| 1029 | time, then you can create/access/delete such files. | ||
| 1030 | Note that even SFU places restrictions on the filenames beyond the | ||
| 1031 | '\0' and '/' and in particular the following set of characters is | ||
| 1032 | not allowed: '"', '/', '<', '>', '\'. All other characters, | ||
| 1033 | including the ones no allowed in WIN32 namespace are allowed. | ||
| 1034 | Tested with SFU 3.5 (this is now free) running on Windows XP. */ | ||
| 1028 | FILE_NAME_WIN32 = 0x01, | 1035 | FILE_NAME_WIN32 = 0x01, |
| 1029 | /* The standard WinNT/2k NTFS long filenames. Case insensitive. All | 1036 | /* The standard WinNT/2k NTFS long filenames. Case insensitive. All |
| 1030 | Unicode chars except: '\0', '"', '*', '/', ':', '<', '>', '?', '\', | 1037 | Unicode chars except: '\0', '"', '*', '/', ':', '<', '>', '?', '\', |
| @@ -2367,7 +2374,9 @@ typedef struct { | |||
| 2367 | * Extended attribute flags (8-bit). | 2374 | * Extended attribute flags (8-bit). |
| 2368 | */ | 2375 | */ |
| 2369 | enum { | 2376 | enum { |
| 2370 | NEED_EA = 0x80 | 2377 | NEED_EA = 0x80 /* If set the file to which the EA belongs |
| 2378 | cannot be interpreted without understanding | ||
| 2379 | the associates extended attributes. */ | ||
| 2371 | } __attribute__ ((__packed__)); | 2380 | } __attribute__ ((__packed__)); |
| 2372 | 2381 | ||
| 2373 | typedef u8 EA_FLAGS; | 2382 | typedef u8 EA_FLAGS; |
| @@ -2375,20 +2384,20 @@ typedef u8 EA_FLAGS; | |||
| 2375 | /* | 2384 | /* |
| 2376 | * Attribute: Extended attribute (EA) (0xe0). | 2385 | * Attribute: Extended attribute (EA) (0xe0). |
| 2377 | * | 2386 | * |
| 2378 | * NOTE: Always non-resident. (Is this true?) | 2387 | * NOTE: Can be resident or non-resident. |
| 2379 | * | 2388 | * |
| 2380 | * Like the attribute list and the index buffer list, the EA attribute value is | 2389 | * Like the attribute list and the index buffer list, the EA attribute value is |
| 2381 | * a sequence of EA_ATTR variable length records. | 2390 | * a sequence of EA_ATTR variable length records. |
| 2382 | * | ||
| 2383 | * FIXME: It appears weird that the EA name is not unicode. Is it true? | ||
| 2384 | */ | 2391 | */ |
| 2385 | typedef struct { | 2392 | typedef struct { |
| 2386 | le32 next_entry_offset; /* Offset to the next EA_ATTR. */ | 2393 | le32 next_entry_offset; /* Offset to the next EA_ATTR. */ |
| 2387 | EA_FLAGS flags; /* Flags describing the EA. */ | 2394 | EA_FLAGS flags; /* Flags describing the EA. */ |
| 2388 | u8 ea_name_length; /* Length of the name of the EA in bytes. */ | 2395 | u8 ea_name_length; /* Length of the name of the EA in bytes |
| 2396 | excluding the '\0' byte terminator. */ | ||
| 2389 | le16 ea_value_length; /* Byte size of the EA's value. */ | 2397 | le16 ea_value_length; /* Byte size of the EA's value. */ |
| 2390 | u8 ea_name[0]; /* Name of the EA. */ | 2398 | u8 ea_name[0]; /* Name of the EA. Note this is ASCII, not |
| 2391 | u8 ea_value[0]; /* The value of the EA. Immediately follows | 2399 | Unicode and it is zero terminated. */ |
| 2400 | u8 ea_value[0]; /* The value of the EA. Immediately follows | ||
| 2392 | the name. */ | 2401 | the name. */ |
| 2393 | } __attribute__ ((__packed__)) EA_ATTR; | 2402 | } __attribute__ ((__packed__)) EA_ATTR; |
| 2394 | 2403 | ||
diff --git a/fs/ntfs/lcnalloc.c b/fs/ntfs/lcnalloc.c index 5af3bf0b7eee..29cabf93d2d2 100644 --- a/fs/ntfs/lcnalloc.c +++ b/fs/ntfs/lcnalloc.c | |||
| @@ -76,6 +76,7 @@ int ntfs_cluster_free_from_rl_nolock(ntfs_volume *vol, | |||
| 76 | * @count: number of clusters to allocate | 76 | * @count: number of clusters to allocate |
| 77 | * @start_lcn: starting lcn at which to allocate the clusters (or -1 if none) | 77 | * @start_lcn: starting lcn at which to allocate the clusters (or -1 if none) |
| 78 | * @zone: zone from which to allocate the clusters | 78 | * @zone: zone from which to allocate the clusters |
| 79 | * @is_extension: if TRUE, this is an attribute extension | ||
| 79 | * | 80 | * |
| 80 | * Allocate @count clusters preferably starting at cluster @start_lcn or at the | 81 | * Allocate @count clusters preferably starting at cluster @start_lcn or at the |
| 81 | * current allocator position if @start_lcn is -1, on the mounted ntfs volume | 82 | * current allocator position if @start_lcn is -1, on the mounted ntfs volume |
| @@ -86,6 +87,13 @@ int ntfs_cluster_free_from_rl_nolock(ntfs_volume *vol, | |||
| 86 | * @start_vcn specifies the vcn of the first allocated cluster. This makes | 87 | * @start_vcn specifies the vcn of the first allocated cluster. This makes |
| 87 | * merging the resulting runlist with the old runlist easier. | 88 | * merging the resulting runlist with the old runlist easier. |
| 88 | * | 89 | * |
| 90 | * If @is_extension is TRUE, the caller is allocating clusters to extend an | ||
| 91 | * attribute and if it is FALSE, the caller is allocating clusters to fill a | ||
| 92 | * hole in an attribute. Practically the difference is that if @is_extension | ||
| 93 | * is TRUE the returned runlist will be terminated with LCN_ENOENT and if | ||
| 94 | * @is_extension is FALSE the runlist will be terminated with | ||
| 95 | * LCN_RL_NOT_MAPPED. | ||
| 96 | * | ||
| 89 | * You need to check the return value with IS_ERR(). If this is false, the | 97 | * You need to check the return value with IS_ERR(). If this is false, the |
| 90 | * function was successful and the return value is a runlist describing the | 98 | * function was successful and the return value is a runlist describing the |
| 91 | * allocated cluster(s). If IS_ERR() is true, the function failed and | 99 | * allocated cluster(s). If IS_ERR() is true, the function failed and |
| @@ -137,7 +145,8 @@ int ntfs_cluster_free_from_rl_nolock(ntfs_volume *vol, | |||
| 137 | */ | 145 | */ |
| 138 | runlist_element *ntfs_cluster_alloc(ntfs_volume *vol, const VCN start_vcn, | 146 | runlist_element *ntfs_cluster_alloc(ntfs_volume *vol, const VCN start_vcn, |
| 139 | const s64 count, const LCN start_lcn, | 147 | const s64 count, const LCN start_lcn, |
| 140 | const NTFS_CLUSTER_ALLOCATION_ZONES zone) | 148 | const NTFS_CLUSTER_ALLOCATION_ZONES zone, |
| 149 | const BOOL is_extension) | ||
| 141 | { | 150 | { |
| 142 | LCN zone_start, zone_end, bmp_pos, bmp_initial_pos, last_read_pos, lcn; | 151 | LCN zone_start, zone_end, bmp_pos, bmp_initial_pos, last_read_pos, lcn; |
| 143 | LCN prev_lcn = 0, prev_run_len = 0, mft_zone_size; | 152 | LCN prev_lcn = 0, prev_run_len = 0, mft_zone_size; |
| @@ -310,7 +319,7 @@ runlist_element *ntfs_cluster_alloc(ntfs_volume *vol, const VCN start_vcn, | |||
| 310 | continue; | 319 | continue; |
| 311 | } | 320 | } |
| 312 | bit = 1 << (lcn & 7); | 321 | bit = 1 << (lcn & 7); |
| 313 | ntfs_debug("bit %i.", bit); | 322 | ntfs_debug("bit 0x%x.", bit); |
| 314 | /* If the bit is already set, go onto the next one. */ | 323 | /* If the bit is already set, go onto the next one. */ |
| 315 | if (*byte & bit) { | 324 | if (*byte & bit) { |
| 316 | lcn++; | 325 | lcn++; |
| @@ -729,7 +738,7 @@ out: | |||
| 729 | /* Add runlist terminator element. */ | 738 | /* Add runlist terminator element. */ |
| 730 | if (likely(rl)) { | 739 | if (likely(rl)) { |
| 731 | rl[rlpos].vcn = rl[rlpos - 1].vcn + rl[rlpos - 1].length; | 740 | rl[rlpos].vcn = rl[rlpos - 1].vcn + rl[rlpos - 1].length; |
| 732 | rl[rlpos].lcn = LCN_RL_NOT_MAPPED; | 741 | rl[rlpos].lcn = is_extension ? LCN_ENOENT : LCN_RL_NOT_MAPPED; |
| 733 | rl[rlpos].length = 0; | 742 | rl[rlpos].length = 0; |
| 734 | } | 743 | } |
| 735 | if (likely(page && !IS_ERR(page))) { | 744 | if (likely(page && !IS_ERR(page))) { |
| @@ -782,6 +791,7 @@ out: | |||
| 782 | * @ni: ntfs inode whose runlist describes the clusters to free | 791 | * @ni: ntfs inode whose runlist describes the clusters to free |
| 783 | * @start_vcn: vcn in the runlist of @ni at which to start freeing clusters | 792 | * @start_vcn: vcn in the runlist of @ni at which to start freeing clusters |
| 784 | * @count: number of clusters to free or -1 for all clusters | 793 | * @count: number of clusters to free or -1 for all clusters |
| 794 | * @ctx: active attribute search context if present or NULL if not | ||
| 785 | * @is_rollback: true if this is a rollback operation | 795 | * @is_rollback: true if this is a rollback operation |
| 786 | * | 796 | * |
| 787 | * Free @count clusters starting at the cluster @start_vcn in the runlist | 797 | * Free @count clusters starting at the cluster @start_vcn in the runlist |
| @@ -791,15 +801,39 @@ out: | |||
| 791 | * deallocated. Thus, to completely free all clusters in a runlist, use | 801 | * deallocated. Thus, to completely free all clusters in a runlist, use |
| 792 | * @start_vcn = 0 and @count = -1. | 802 | * @start_vcn = 0 and @count = -1. |
| 793 | * | 803 | * |
| 804 | * If @ctx is specified, it is an active search context of @ni and its base mft | ||
| 805 | * record. This is needed when __ntfs_cluster_free() encounters unmapped | ||
| 806 | * runlist fragments and allows their mapping. If you do not have the mft | ||
| 807 | * record mapped, you can specify @ctx as NULL and __ntfs_cluster_free() will | ||
| 808 | * perform the necessary mapping and unmapping. | ||
| 809 | * | ||
| 810 | * Note, __ntfs_cluster_free() saves the state of @ctx on entry and restores it | ||
| 811 | * before returning. Thus, @ctx will be left pointing to the same attribute on | ||
| 812 | * return as on entry. However, the actual pointers in @ctx may point to | ||
| 813 | * different memory locations on return, so you must remember to reset any | ||
| 814 | * cached pointers from the @ctx, i.e. after the call to __ntfs_cluster_free(), | ||
| 815 | * you will probably want to do: | ||
| 816 | * m = ctx->mrec; | ||
| 817 | * a = ctx->attr; | ||
| 818 | * Assuming you cache ctx->attr in a variable @a of type ATTR_RECORD * and that | ||
| 819 | * you cache ctx->mrec in a variable @m of type MFT_RECORD *. | ||
| 820 | * | ||
| 794 | * @is_rollback should always be FALSE, it is for internal use to rollback | 821 | * @is_rollback should always be FALSE, it is for internal use to rollback |
| 795 | * errors. You probably want to use ntfs_cluster_free() instead. | 822 | * errors. You probably want to use ntfs_cluster_free() instead. |
| 796 | * | 823 | * |
| 797 | * Note, ntfs_cluster_free() does not modify the runlist at all, so the caller | 824 | * Note, __ntfs_cluster_free() does not modify the runlist, so you have to |
| 798 | * has to deal with it later. | 825 | * remove from the runlist or mark sparse the freed runs later. |
| 799 | * | 826 | * |
| 800 | * Return the number of deallocated clusters (not counting sparse ones) on | 827 | * Return the number of deallocated clusters (not counting sparse ones) on |
| 801 | * success and -errno on error. | 828 | * success and -errno on error. |
| 802 | * | 829 | * |
| 830 | * WARNING: If @ctx is supplied, regardless of whether success or failure is | ||
| 831 | * returned, you need to check IS_ERR(@ctx->mrec) and if TRUE the @ctx | ||
| 832 | * is no longer valid, i.e. you need to either call | ||
| 833 | * ntfs_attr_reinit_search_ctx() or ntfs_attr_put_search_ctx() on it. | ||
| 834 | * In that case PTR_ERR(@ctx->mrec) will give you the error code for | ||
| 835 | * why the mapping of the old inode failed. | ||
| 836 | * | ||
| 803 | * Locking: - The runlist described by @ni must be locked for writing on entry | 837 | * Locking: - The runlist described by @ni must be locked for writing on entry |
| 804 | * and is locked on return. Note the runlist may be modified when | 838 | * and is locked on return. Note the runlist may be modified when |
| 805 | * needed runlist fragments need to be mapped. | 839 | * needed runlist fragments need to be mapped. |
| @@ -807,9 +841,13 @@ out: | |||
| 807 | * on return. | 841 | * on return. |
| 808 | * - This function takes the volume lcn bitmap lock for writing and | 842 | * - This function takes the volume lcn bitmap lock for writing and |
| 809 | * modifies the bitmap contents. | 843 | * modifies the bitmap contents. |
| 844 | * - If @ctx is NULL, the base mft record of @ni must not be mapped on | ||
| 845 | * entry and it will be left unmapped on return. | ||
| 846 | * - If @ctx is not NULL, the base mft record must be mapped on entry | ||
| 847 | * and it will be left mapped on return. | ||
| 810 | */ | 848 | */ |
| 811 | s64 __ntfs_cluster_free(ntfs_inode *ni, const VCN start_vcn, s64 count, | 849 | s64 __ntfs_cluster_free(ntfs_inode *ni, const VCN start_vcn, s64 count, |
| 812 | const BOOL is_rollback) | 850 | ntfs_attr_search_ctx *ctx, const BOOL is_rollback) |
| 813 | { | 851 | { |
| 814 | s64 delta, to_free, total_freed, real_freed; | 852 | s64 delta, to_free, total_freed, real_freed; |
| 815 | ntfs_volume *vol; | 853 | ntfs_volume *vol; |
| @@ -839,7 +877,7 @@ s64 __ntfs_cluster_free(ntfs_inode *ni, const VCN start_vcn, s64 count, | |||
| 839 | 877 | ||
| 840 | total_freed = real_freed = 0; | 878 | total_freed = real_freed = 0; |
| 841 | 879 | ||
| 842 | rl = ntfs_attr_find_vcn_nolock(ni, start_vcn, TRUE); | 880 | rl = ntfs_attr_find_vcn_nolock(ni, start_vcn, ctx); |
| 843 | if (IS_ERR(rl)) { | 881 | if (IS_ERR(rl)) { |
| 844 | if (!is_rollback) | 882 | if (!is_rollback) |
| 845 | ntfs_error(vol->sb, "Failed to find first runlist " | 883 | ntfs_error(vol->sb, "Failed to find first runlist " |
| @@ -893,7 +931,7 @@ s64 __ntfs_cluster_free(ntfs_inode *ni, const VCN start_vcn, s64 count, | |||
| 893 | 931 | ||
| 894 | /* Attempt to map runlist. */ | 932 | /* Attempt to map runlist. */ |
| 895 | vcn = rl->vcn; | 933 | vcn = rl->vcn; |
| 896 | rl = ntfs_attr_find_vcn_nolock(ni, vcn, TRUE); | 934 | rl = ntfs_attr_find_vcn_nolock(ni, vcn, ctx); |
| 897 | if (IS_ERR(rl)) { | 935 | if (IS_ERR(rl)) { |
| 898 | err = PTR_ERR(rl); | 936 | err = PTR_ERR(rl); |
| 899 | if (!is_rollback) | 937 | if (!is_rollback) |
| @@ -961,7 +999,7 @@ err_out: | |||
| 961 | * If rollback fails, set the volume errors flag, emit an error | 999 | * If rollback fails, set the volume errors flag, emit an error |
| 962 | * message, and return the error code. | 1000 | * message, and return the error code. |
| 963 | */ | 1001 | */ |
| 964 | delta = __ntfs_cluster_free(ni, start_vcn, total_freed, TRUE); | 1002 | delta = __ntfs_cluster_free(ni, start_vcn, total_freed, ctx, TRUE); |
| 965 | if (delta < 0) { | 1003 | if (delta < 0) { |
| 966 | ntfs_error(vol->sb, "Failed to rollback (error %i). Leaving " | 1004 | ntfs_error(vol->sb, "Failed to rollback (error %i). Leaving " |
| 967 | "inconsistent metadata! Unmount and run " | 1005 | "inconsistent metadata! Unmount and run " |
diff --git a/fs/ntfs/lcnalloc.h b/fs/ntfs/lcnalloc.h index a6a8827882e7..72cbca7003b2 100644 --- a/fs/ntfs/lcnalloc.h +++ b/fs/ntfs/lcnalloc.h | |||
| @@ -27,6 +27,7 @@ | |||
| 27 | 27 | ||
| 28 | #include <linux/fs.h> | 28 | #include <linux/fs.h> |
| 29 | 29 | ||
| 30 | #include "attrib.h" | ||
| 30 | #include "types.h" | 31 | #include "types.h" |
| 31 | #include "inode.h" | 32 | #include "inode.h" |
| 32 | #include "runlist.h" | 33 | #include "runlist.h" |
| @@ -41,16 +42,18 @@ typedef enum { | |||
| 41 | 42 | ||
| 42 | extern runlist_element *ntfs_cluster_alloc(ntfs_volume *vol, | 43 | extern runlist_element *ntfs_cluster_alloc(ntfs_volume *vol, |
| 43 | const VCN start_vcn, const s64 count, const LCN start_lcn, | 44 | const VCN start_vcn, const s64 count, const LCN start_lcn, |
| 44 | const NTFS_CLUSTER_ALLOCATION_ZONES zone); | 45 | const NTFS_CLUSTER_ALLOCATION_ZONES zone, |
| 46 | const BOOL is_extension); | ||
| 45 | 47 | ||
| 46 | extern s64 __ntfs_cluster_free(ntfs_inode *ni, const VCN start_vcn, | 48 | extern s64 __ntfs_cluster_free(ntfs_inode *ni, const VCN start_vcn, |
| 47 | s64 count, const BOOL is_rollback); | 49 | s64 count, ntfs_attr_search_ctx *ctx, const BOOL is_rollback); |
| 48 | 50 | ||
| 49 | /** | 51 | /** |
| 50 | * ntfs_cluster_free - free clusters on an ntfs volume | 52 | * ntfs_cluster_free - free clusters on an ntfs volume |
| 51 | * @ni: ntfs inode whose runlist describes the clusters to free | 53 | * @ni: ntfs inode whose runlist describes the clusters to free |
| 52 | * @start_vcn: vcn in the runlist of @ni at which to start freeing clusters | 54 | * @start_vcn: vcn in the runlist of @ni at which to start freeing clusters |
| 53 | * @count: number of clusters to free or -1 for all clusters | 55 | * @count: number of clusters to free or -1 for all clusters |
| 56 | * @ctx: active attribute search context if present or NULL if not | ||
| 54 | * | 57 | * |
| 55 | * Free @count clusters starting at the cluster @start_vcn in the runlist | 58 | * Free @count clusters starting at the cluster @start_vcn in the runlist |
| 56 | * described by the ntfs inode @ni. | 59 | * described by the ntfs inode @ni. |
| @@ -59,12 +62,36 @@ extern s64 __ntfs_cluster_free(ntfs_inode *ni, const VCN start_vcn, | |||
| 59 | * deallocated. Thus, to completely free all clusters in a runlist, use | 62 | * deallocated. Thus, to completely free all clusters in a runlist, use |
| 60 | * @start_vcn = 0 and @count = -1. | 63 | * @start_vcn = 0 and @count = -1. |
| 61 | * | 64 | * |
| 62 | * Note, ntfs_cluster_free() does not modify the runlist at all, so the caller | 65 | * If @ctx is specified, it is an active search context of @ni and its base mft |
| 63 | * has to deal with it later. | 66 | * record. This is needed when ntfs_cluster_free() encounters unmapped runlist |
| 67 | * fragments and allows their mapping. If you do not have the mft record | ||
| 68 | * mapped, you can specify @ctx as NULL and ntfs_cluster_free() will perform | ||
| 69 | * the necessary mapping and unmapping. | ||
| 70 | * | ||
| 71 | * Note, ntfs_cluster_free() saves the state of @ctx on entry and restores it | ||
| 72 | * before returning. Thus, @ctx will be left pointing to the same attribute on | ||
| 73 | * return as on entry. However, the actual pointers in @ctx may point to | ||
| 74 | * different memory locations on return, so you must remember to reset any | ||
| 75 | * cached pointers from the @ctx, i.e. after the call to ntfs_cluster_free(), | ||
| 76 | * you will probably want to do: | ||
| 77 | * m = ctx->mrec; | ||
| 78 | * a = ctx->attr; | ||
| 79 | * Assuming you cache ctx->attr in a variable @a of type ATTR_RECORD * and that | ||
| 80 | * you cache ctx->mrec in a variable @m of type MFT_RECORD *. | ||
| 81 | * | ||
| 82 | * Note, ntfs_cluster_free() does not modify the runlist, so you have to remove | ||
| 83 | * from the runlist or mark sparse the freed runs later. | ||
| 64 | * | 84 | * |
| 65 | * Return the number of deallocated clusters (not counting sparse ones) on | 85 | * Return the number of deallocated clusters (not counting sparse ones) on |
| 66 | * success and -errno on error. | 86 | * success and -errno on error. |
| 67 | * | 87 | * |
| 88 | * WARNING: If @ctx is supplied, regardless of whether success or failure is | ||
| 89 | * returned, you need to check IS_ERR(@ctx->mrec) and if TRUE the @ctx | ||
| 90 | * is no longer valid, i.e. you need to either call | ||
| 91 | * ntfs_attr_reinit_search_ctx() or ntfs_attr_put_search_ctx() on it. | ||
| 92 | * In that case PTR_ERR(@ctx->mrec) will give you the error code for | ||
| 93 | * why the mapping of the old inode failed. | ||
| 94 | * | ||
| 68 | * Locking: - The runlist described by @ni must be locked for writing on entry | 95 | * Locking: - The runlist described by @ni must be locked for writing on entry |
| 69 | * and is locked on return. Note the runlist may be modified when | 96 | * and is locked on return. Note the runlist may be modified when |
| 70 | * needed runlist fragments need to be mapped. | 97 | * needed runlist fragments need to be mapped. |
| @@ -72,11 +99,15 @@ extern s64 __ntfs_cluster_free(ntfs_inode *ni, const VCN start_vcn, | |||
| 72 | * on return. | 99 | * on return. |
| 73 | * - This function takes the volume lcn bitmap lock for writing and | 100 | * - This function takes the volume lcn bitmap lock for writing and |
| 74 | * modifies the bitmap contents. | 101 | * modifies the bitmap contents. |
| 102 | * - If @ctx is NULL, the base mft record of @ni must not be mapped on | ||
| 103 | * entry and it will be left unmapped on return. | ||
| 104 | * - If @ctx is not NULL, the base mft record must be mapped on entry | ||
| 105 | * and it will be left mapped on return. | ||
| 75 | */ | 106 | */ |
| 76 | static inline s64 ntfs_cluster_free(ntfs_inode *ni, const VCN start_vcn, | 107 | static inline s64 ntfs_cluster_free(ntfs_inode *ni, const VCN start_vcn, |
| 77 | s64 count) | 108 | s64 count, ntfs_attr_search_ctx *ctx) |
| 78 | { | 109 | { |
| 79 | return __ntfs_cluster_free(ni, start_vcn, count, FALSE); | 110 | return __ntfs_cluster_free(ni, start_vcn, count, ctx, FALSE); |
| 80 | } | 111 | } |
| 81 | 112 | ||
| 82 | extern int ntfs_cluster_free_from_rl_nolock(ntfs_volume *vol, | 113 | extern int ntfs_cluster_free_from_rl_nolock(ntfs_volume *vol, |
diff --git a/fs/ntfs/malloc.h b/fs/ntfs/malloc.h index 590887b943f5..e38e402e4103 100644 --- a/fs/ntfs/malloc.h +++ b/fs/ntfs/malloc.h | |||
| @@ -39,8 +39,7 @@ | |||
| 39 | * If there was insufficient memory to complete the request, return NULL. | 39 | * If there was insufficient memory to complete the request, return NULL. |
| 40 | * Depending on @gfp_mask the allocation may be guaranteed to succeed. | 40 | * Depending on @gfp_mask the allocation may be guaranteed to succeed. |
| 41 | */ | 41 | */ |
| 42 | static inline void *__ntfs_malloc(unsigned long size, | 42 | static inline void *__ntfs_malloc(unsigned long size, gfp_t gfp_mask) |
| 43 | gfp_t gfp_mask) | ||
| 44 | { | 43 | { |
| 45 | if (likely(size <= PAGE_SIZE)) { | 44 | if (likely(size <= PAGE_SIZE)) { |
| 46 | BUG_ON(!size); | 45 | BUG_ON(!size); |
diff --git a/fs/ntfs/mft.c b/fs/ntfs/mft.c index b011369b5956..0c65cbb8c5cf 100644 --- a/fs/ntfs/mft.c +++ b/fs/ntfs/mft.c | |||
| @@ -49,7 +49,8 @@ static inline MFT_RECORD *map_mft_record_page(ntfs_inode *ni) | |||
| 49 | ntfs_volume *vol = ni->vol; | 49 | ntfs_volume *vol = ni->vol; |
| 50 | struct inode *mft_vi = vol->mft_ino; | 50 | struct inode *mft_vi = vol->mft_ino; |
| 51 | struct page *page; | 51 | struct page *page; |
| 52 | unsigned long index, ofs, end_index; | 52 | unsigned long index, end_index; |
| 53 | unsigned ofs; | ||
| 53 | 54 | ||
| 54 | BUG_ON(ni->page); | 55 | BUG_ON(ni->page); |
| 55 | /* | 56 | /* |
| @@ -1308,7 +1309,7 @@ static int ntfs_mft_bitmap_extend_allocation_nolock(ntfs_volume *vol) | |||
| 1308 | ll = mftbmp_ni->allocated_size; | 1309 | ll = mftbmp_ni->allocated_size; |
| 1309 | read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); | 1310 | read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); |
| 1310 | rl = ntfs_attr_find_vcn_nolock(mftbmp_ni, | 1311 | rl = ntfs_attr_find_vcn_nolock(mftbmp_ni, |
| 1311 | (ll - 1) >> vol->cluster_size_bits, TRUE); | 1312 | (ll - 1) >> vol->cluster_size_bits, NULL); |
| 1312 | if (unlikely(IS_ERR(rl) || !rl->length || rl->lcn < 0)) { | 1313 | if (unlikely(IS_ERR(rl) || !rl->length || rl->lcn < 0)) { |
| 1313 | up_write(&mftbmp_ni->runlist.lock); | 1314 | up_write(&mftbmp_ni->runlist.lock); |
| 1314 | ntfs_error(vol->sb, "Failed to determine last allocated " | 1315 | ntfs_error(vol->sb, "Failed to determine last allocated " |
| @@ -1354,7 +1355,8 @@ static int ntfs_mft_bitmap_extend_allocation_nolock(ntfs_volume *vol) | |||
| 1354 | up_write(&vol->lcnbmp_lock); | 1355 | up_write(&vol->lcnbmp_lock); |
| 1355 | ntfs_unmap_page(page); | 1356 | ntfs_unmap_page(page); |
| 1356 | /* Allocate a cluster from the DATA_ZONE. */ | 1357 | /* Allocate a cluster from the DATA_ZONE. */ |
| 1357 | rl2 = ntfs_cluster_alloc(vol, rl[1].vcn, 1, lcn, DATA_ZONE); | 1358 | rl2 = ntfs_cluster_alloc(vol, rl[1].vcn, 1, lcn, DATA_ZONE, |
| 1359 | TRUE); | ||
| 1358 | if (IS_ERR(rl2)) { | 1360 | if (IS_ERR(rl2)) { |
| 1359 | up_write(&mftbmp_ni->runlist.lock); | 1361 | up_write(&mftbmp_ni->runlist.lock); |
| 1360 | ntfs_error(vol->sb, "Failed to allocate a cluster for " | 1362 | ntfs_error(vol->sb, "Failed to allocate a cluster for " |
| @@ -1738,7 +1740,7 @@ static int ntfs_mft_data_extend_allocation_nolock(ntfs_volume *vol) | |||
| 1738 | ll = mft_ni->allocated_size; | 1740 | ll = mft_ni->allocated_size; |
| 1739 | read_unlock_irqrestore(&mft_ni->size_lock, flags); | 1741 | read_unlock_irqrestore(&mft_ni->size_lock, flags); |
| 1740 | rl = ntfs_attr_find_vcn_nolock(mft_ni, | 1742 | rl = ntfs_attr_find_vcn_nolock(mft_ni, |
| 1741 | (ll - 1) >> vol->cluster_size_bits, TRUE); | 1743 | (ll - 1) >> vol->cluster_size_bits, NULL); |
| 1742 | if (unlikely(IS_ERR(rl) || !rl->length || rl->lcn < 0)) { | 1744 | if (unlikely(IS_ERR(rl) || !rl->length || rl->lcn < 0)) { |
| 1743 | up_write(&mft_ni->runlist.lock); | 1745 | up_write(&mft_ni->runlist.lock); |
| 1744 | ntfs_error(vol->sb, "Failed to determine last allocated " | 1746 | ntfs_error(vol->sb, "Failed to determine last allocated " |
| @@ -1779,7 +1781,8 @@ static int ntfs_mft_data_extend_allocation_nolock(ntfs_volume *vol) | |||
| 1779 | nr > min_nr ? "default" : "minimal", (long long)nr); | 1781 | nr > min_nr ? "default" : "minimal", (long long)nr); |
| 1780 | old_last_vcn = rl[1].vcn; | 1782 | old_last_vcn = rl[1].vcn; |
| 1781 | do { | 1783 | do { |
| 1782 | rl2 = ntfs_cluster_alloc(vol, old_last_vcn, nr, lcn, MFT_ZONE); | 1784 | rl2 = ntfs_cluster_alloc(vol, old_last_vcn, nr, lcn, MFT_ZONE, |
| 1785 | TRUE); | ||
| 1783 | if (likely(!IS_ERR(rl2))) | 1786 | if (likely(!IS_ERR(rl2))) |
| 1784 | break; | 1787 | break; |
| 1785 | if (PTR_ERR(rl2) != -ENOSPC || nr == min_nr) { | 1788 | if (PTR_ERR(rl2) != -ENOSPC || nr == min_nr) { |
| @@ -1951,20 +1954,21 @@ restore_undo_alloc: | |||
| 1951 | NVolSetErrors(vol); | 1954 | NVolSetErrors(vol); |
| 1952 | return ret; | 1955 | return ret; |
| 1953 | } | 1956 | } |
| 1954 | a = ctx->attr; | 1957 | ctx->attr->data.non_resident.highest_vcn = |
| 1955 | a->data.non_resident.highest_vcn = cpu_to_sle64(old_last_vcn - 1); | 1958 | cpu_to_sle64(old_last_vcn - 1); |
| 1956 | undo_alloc: | 1959 | undo_alloc: |
| 1957 | if (ntfs_cluster_free(mft_ni, old_last_vcn, -1) < 0) { | 1960 | if (ntfs_cluster_free(mft_ni, old_last_vcn, -1, ctx) < 0) { |
| 1958 | ntfs_error(vol->sb, "Failed to free clusters from mft data " | 1961 | ntfs_error(vol->sb, "Failed to free clusters from mft data " |
| 1959 | "attribute.%s", es); | 1962 | "attribute.%s", es); |
| 1960 | NVolSetErrors(vol); | 1963 | NVolSetErrors(vol); |
| 1961 | } | 1964 | } |
| 1965 | a = ctx->attr; | ||
| 1962 | if (ntfs_rl_truncate_nolock(vol, &mft_ni->runlist, old_last_vcn)) { | 1966 | if (ntfs_rl_truncate_nolock(vol, &mft_ni->runlist, old_last_vcn)) { |
| 1963 | ntfs_error(vol->sb, "Failed to truncate mft data attribute " | 1967 | ntfs_error(vol->sb, "Failed to truncate mft data attribute " |
| 1964 | "runlist.%s", es); | 1968 | "runlist.%s", es); |
| 1965 | NVolSetErrors(vol); | 1969 | NVolSetErrors(vol); |
| 1966 | } | 1970 | } |
| 1967 | if (mp_rebuilt) { | 1971 | if (mp_rebuilt && !IS_ERR(ctx->mrec)) { |
| 1968 | if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu( | 1972 | if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu( |
| 1969 | a->data.non_resident.mapping_pairs_offset), | 1973 | a->data.non_resident.mapping_pairs_offset), |
| 1970 | old_alen - le16_to_cpu( | 1974 | old_alen - le16_to_cpu( |
| @@ -1981,6 +1985,10 @@ undo_alloc: | |||
| 1981 | } | 1985 | } |
| 1982 | flush_dcache_mft_record_page(ctx->ntfs_ino); | 1986 | flush_dcache_mft_record_page(ctx->ntfs_ino); |
| 1983 | mark_mft_record_dirty(ctx->ntfs_ino); | 1987 | mark_mft_record_dirty(ctx->ntfs_ino); |
| 1988 | } else if (IS_ERR(ctx->mrec)) { | ||
| 1989 | ntfs_error(vol->sb, "Failed to restore attribute search " | ||
| 1990 | "context.%s", es); | ||
| 1991 | NVolSetErrors(vol); | ||
| 1984 | } | 1992 | } |
| 1985 | if (ctx) | 1993 | if (ctx) |
| 1986 | ntfs_attr_put_search_ctx(ctx); | 1994 | ntfs_attr_put_search_ctx(ctx); |
diff --git a/fs/ntfs/super.c b/fs/ntfs/super.c index 453d0d51ea4b..6c16db9e1a8a 100644 --- a/fs/ntfs/super.c +++ b/fs/ntfs/super.c | |||
| @@ -1447,7 +1447,7 @@ not_enabled: | |||
| 1447 | if (unlikely(i_size_read(tmp_ino) < sizeof(USN_HEADER))) { | 1447 | if (unlikely(i_size_read(tmp_ino) < sizeof(USN_HEADER))) { |
| 1448 | ntfs_error(vol->sb, "Found corrupt $UsnJrnl/$DATA/$Max " | 1448 | ntfs_error(vol->sb, "Found corrupt $UsnJrnl/$DATA/$Max " |
| 1449 | "attribute (size is 0x%llx but should be at " | 1449 | "attribute (size is 0x%llx but should be at " |
| 1450 | "least 0x%x bytes).", i_size_read(tmp_ino), | 1450 | "least 0x%zx bytes).", i_size_read(tmp_ino), |
| 1451 | sizeof(USN_HEADER)); | 1451 | sizeof(USN_HEADER)); |
| 1452 | return FALSE; | 1452 | return FALSE; |
| 1453 | } | 1453 | } |
