diff options
| -rw-r--r-- | drivers/net/e1000/e1000.h | 10 | ||||
| -rw-r--r-- | drivers/net/e1000/e1000_ethtool.c | 141 | ||||
| -rw-r--r-- | drivers/net/e1000/e1000_hw.c | 1772 | ||||
| -rw-r--r-- | drivers/net/e1000/e1000_hw.h | 398 | ||||
| -rw-r--r-- | drivers/net/e1000/e1000_main.c | 378 | ||||
| -rw-r--r-- | drivers/net/e1000/e1000_osdep.h | 13 | ||||
| -rw-r--r-- | drivers/net/e1000/e1000_param.c | 199 |
7 files changed, 2520 insertions, 391 deletions
diff --git a/drivers/net/e1000/e1000.h b/drivers/net/e1000/e1000.h index 3042d33e2d4d..f411bbb44f86 100644 --- a/drivers/net/e1000/e1000.h +++ b/drivers/net/e1000/e1000.h | |||
| @@ -68,7 +68,6 @@ | |||
| 68 | #ifdef NETIF_F_TSO | 68 | #ifdef NETIF_F_TSO |
| 69 | #include <net/checksum.h> | 69 | #include <net/checksum.h> |
| 70 | #endif | 70 | #endif |
| 71 | #include <linux/workqueue.h> | ||
| 72 | #include <linux/mii.h> | 71 | #include <linux/mii.h> |
| 73 | #include <linux/ethtool.h> | 72 | #include <linux/ethtool.h> |
| 74 | #include <linux/if_vlan.h> | 73 | #include <linux/if_vlan.h> |
| @@ -143,6 +142,7 @@ struct e1000_adapter; | |||
| 143 | 142 | ||
| 144 | #define AUTO_ALL_MODES 0 | 143 | #define AUTO_ALL_MODES 0 |
| 145 | #define E1000_EEPROM_82544_APM 0x0004 | 144 | #define E1000_EEPROM_82544_APM 0x0004 |
| 145 | #define E1000_EEPROM_ICH8_APME 0x0004 | ||
| 146 | #define E1000_EEPROM_APME 0x0400 | 146 | #define E1000_EEPROM_APME 0x0400 |
| 147 | 147 | ||
| 148 | #ifndef E1000_MASTER_SLAVE | 148 | #ifndef E1000_MASTER_SLAVE |
| @@ -254,7 +254,6 @@ struct e1000_adapter { | |||
| 254 | spinlock_t tx_queue_lock; | 254 | spinlock_t tx_queue_lock; |
| 255 | #endif | 255 | #endif |
| 256 | atomic_t irq_sem; | 256 | atomic_t irq_sem; |
| 257 | struct work_struct watchdog_task; | ||
| 258 | struct work_struct reset_task; | 257 | struct work_struct reset_task; |
| 259 | uint8_t fc_autoneg; | 258 | uint8_t fc_autoneg; |
| 260 | 259 | ||
| @@ -339,8 +338,14 @@ struct e1000_adapter { | |||
| 339 | #ifdef NETIF_F_TSO | 338 | #ifdef NETIF_F_TSO |
| 340 | boolean_t tso_force; | 339 | boolean_t tso_force; |
| 341 | #endif | 340 | #endif |
| 341 | boolean_t smart_power_down; /* phy smart power down */ | ||
| 342 | unsigned long flags; | ||
| 342 | }; | 343 | }; |
| 343 | 344 | ||
| 345 | enum e1000_state_t { | ||
| 346 | __E1000_DRIVER_TESTING, | ||
| 347 | __E1000_RESETTING, | ||
| 348 | }; | ||
| 344 | 349 | ||
| 345 | /* e1000_main.c */ | 350 | /* e1000_main.c */ |
| 346 | extern char e1000_driver_name[]; | 351 | extern char e1000_driver_name[]; |
| @@ -348,6 +353,7 @@ extern char e1000_driver_version[]; | |||
| 348 | int e1000_up(struct e1000_adapter *adapter); | 353 | int e1000_up(struct e1000_adapter *adapter); |
| 349 | void e1000_down(struct e1000_adapter *adapter); | 354 | void e1000_down(struct e1000_adapter *adapter); |
| 350 | void e1000_reset(struct e1000_adapter *adapter); | 355 | void e1000_reset(struct e1000_adapter *adapter); |
| 356 | void e1000_reinit_locked(struct e1000_adapter *adapter); | ||
| 351 | int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); | 357 | int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); |
| 352 | void e1000_free_all_tx_resources(struct e1000_adapter *adapter); | 358 | void e1000_free_all_tx_resources(struct e1000_adapter *adapter); |
| 353 | int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); | 359 | int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); |
diff --git a/drivers/net/e1000/e1000_ethtool.c b/drivers/net/e1000/e1000_ethtool.c index d19664891768..88a82ba88f57 100644 --- a/drivers/net/e1000/e1000_ethtool.c +++ b/drivers/net/e1000/e1000_ethtool.c | |||
| @@ -109,7 +109,8 @@ e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) | |||
| 109 | SUPPORTED_1000baseT_Full| | 109 | SUPPORTED_1000baseT_Full| |
| 110 | SUPPORTED_Autoneg | | 110 | SUPPORTED_Autoneg | |
| 111 | SUPPORTED_TP); | 111 | SUPPORTED_TP); |
| 112 | 112 | if (hw->phy_type == e1000_phy_ife) | |
| 113 | ecmd->supported &= ~SUPPORTED_1000baseT_Full; | ||
| 113 | ecmd->advertising = ADVERTISED_TP; | 114 | ecmd->advertising = ADVERTISED_TP; |
| 114 | 115 | ||
| 115 | if (hw->autoneg == 1) { | 116 | if (hw->autoneg == 1) { |
| @@ -203,11 +204,9 @@ e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) | |||
| 203 | 204 | ||
| 204 | /* reset the link */ | 205 | /* reset the link */ |
| 205 | 206 | ||
| 206 | if (netif_running(adapter->netdev)) { | 207 | if (netif_running(adapter->netdev)) |
| 207 | e1000_down(adapter); | 208 | e1000_reinit_locked(adapter); |
| 208 | e1000_reset(adapter); | 209 | else |
| 209 | e1000_up(adapter); | ||
| 210 | } else | ||
| 211 | e1000_reset(adapter); | 210 | e1000_reset(adapter); |
| 212 | 211 | ||
| 213 | return 0; | 212 | return 0; |
| @@ -254,10 +253,9 @@ e1000_set_pauseparam(struct net_device *netdev, | |||
| 254 | hw->original_fc = hw->fc; | 253 | hw->original_fc = hw->fc; |
| 255 | 254 | ||
| 256 | if (adapter->fc_autoneg == AUTONEG_ENABLE) { | 255 | if (adapter->fc_autoneg == AUTONEG_ENABLE) { |
| 257 | if (netif_running(adapter->netdev)) { | 256 | if (netif_running(adapter->netdev)) |
| 258 | e1000_down(adapter); | 257 | e1000_reinit_locked(adapter); |
| 259 | e1000_up(adapter); | 258 | else |
| 260 | } else | ||
| 261 | e1000_reset(adapter); | 259 | e1000_reset(adapter); |
| 262 | } else | 260 | } else |
| 263 | return ((hw->media_type == e1000_media_type_fiber) ? | 261 | return ((hw->media_type == e1000_media_type_fiber) ? |
| @@ -279,10 +277,9 @@ e1000_set_rx_csum(struct net_device *netdev, uint32_t data) | |||
| 279 | struct e1000_adapter *adapter = netdev_priv(netdev); | 277 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 280 | adapter->rx_csum = data; | 278 | adapter->rx_csum = data; |
| 281 | 279 | ||
| 282 | if (netif_running(netdev)) { | 280 | if (netif_running(netdev)) |
| 283 | e1000_down(adapter); | 281 | e1000_reinit_locked(adapter); |
| 284 | e1000_up(adapter); | 282 | else |
| 285 | } else | ||
| 286 | e1000_reset(adapter); | 283 | e1000_reset(adapter); |
| 287 | return 0; | 284 | return 0; |
| 288 | } | 285 | } |
| @@ -577,6 +574,7 @@ e1000_get_drvinfo(struct net_device *netdev, | |||
| 577 | case e1000_82572: | 574 | case e1000_82572: |
| 578 | case e1000_82573: | 575 | case e1000_82573: |
| 579 | case e1000_80003es2lan: | 576 | case e1000_80003es2lan: |
| 577 | case e1000_ich8lan: | ||
| 580 | sprintf(firmware_version, "%d.%d-%d", | 578 | sprintf(firmware_version, "%d.%d-%d", |
| 581 | (eeprom_data & 0xF000) >> 12, | 579 | (eeprom_data & 0xF000) >> 12, |
| 582 | (eeprom_data & 0x0FF0) >> 4, | 580 | (eeprom_data & 0x0FF0) >> 4, |
| @@ -631,6 +629,9 @@ e1000_set_ringparam(struct net_device *netdev, | |||
| 631 | tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues; | 629 | tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues; |
| 632 | rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues; | 630 | rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues; |
| 633 | 631 | ||
| 632 | while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) | ||
| 633 | msleep(1); | ||
| 634 | |||
| 634 | if (netif_running(adapter->netdev)) | 635 | if (netif_running(adapter->netdev)) |
| 635 | e1000_down(adapter); | 636 | e1000_down(adapter); |
| 636 | 637 | ||
| @@ -691,9 +692,11 @@ e1000_set_ringparam(struct net_device *netdev, | |||
| 691 | adapter->rx_ring = rx_new; | 692 | adapter->rx_ring = rx_new; |
| 692 | adapter->tx_ring = tx_new; | 693 | adapter->tx_ring = tx_new; |
| 693 | if ((err = e1000_up(adapter))) | 694 | if ((err = e1000_up(adapter))) |
| 694 | return err; | 695 | goto err_setup; |
| 695 | } | 696 | } |
| 696 | 697 | ||
| 698 | clear_bit(__E1000_RESETTING, &adapter->flags); | ||
| 699 | |||
| 697 | return 0; | 700 | return 0; |
| 698 | err_setup_tx: | 701 | err_setup_tx: |
| 699 | e1000_free_all_rx_resources(adapter); | 702 | e1000_free_all_rx_resources(adapter); |
| @@ -701,6 +704,8 @@ err_setup_rx: | |||
| 701 | adapter->rx_ring = rx_old; | 704 | adapter->rx_ring = rx_old; |
| 702 | adapter->tx_ring = tx_old; | 705 | adapter->tx_ring = tx_old; |
| 703 | e1000_up(adapter); | 706 | e1000_up(adapter); |
| 707 | err_setup: | ||
| 708 | clear_bit(__E1000_RESETTING, &adapter->flags); | ||
| 704 | return err; | 709 | return err; |
| 705 | } | 710 | } |
| 706 | 711 | ||
| @@ -754,6 +759,7 @@ e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data) | |||
| 754 | toggle = 0x7FFFF3FF; | 759 | toggle = 0x7FFFF3FF; |
| 755 | break; | 760 | break; |
| 756 | case e1000_82573: | 761 | case e1000_82573: |
| 762 | case e1000_ich8lan: | ||
| 757 | toggle = 0x7FFFF033; | 763 | toggle = 0x7FFFF033; |
| 758 | break; | 764 | break; |
| 759 | default: | 765 | default: |
| @@ -773,11 +779,12 @@ e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data) | |||
| 773 | } | 779 | } |
| 774 | /* restore previous status */ | 780 | /* restore previous status */ |
| 775 | E1000_WRITE_REG(&adapter->hw, STATUS, before); | 781 | E1000_WRITE_REG(&adapter->hw, STATUS, before); |
| 776 | 782 | if (adapter->hw.mac_type != e1000_ich8lan) { | |
| 777 | REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF); | 783 | REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF); |
| 778 | REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF); | 784 | REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF); |
| 779 | REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF); | 785 | REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF); |
| 780 | REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF); | 786 | REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF); |
| 787 | } | ||
| 781 | REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF); | 788 | REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF); |
| 782 | REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF); | 789 | REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF); |
| 783 | REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF); | 790 | REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF); |
| @@ -790,20 +797,22 @@ e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data) | |||
| 790 | REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF); | 797 | REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF); |
| 791 | 798 | ||
| 792 | REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000); | 799 | REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000); |
| 793 | REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB); | 800 | before = (adapter->hw.mac_type == e1000_ich8lan ? |
| 801 | 0x06C3B33E : 0x06DFB3FE); | ||
| 802 | REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB); | ||
| 794 | REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000); | 803 | REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000); |
| 795 | 804 | ||
| 796 | if (adapter->hw.mac_type >= e1000_82543) { | 805 | if (adapter->hw.mac_type >= e1000_82543) { |
| 797 | 806 | ||
| 798 | REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF); | 807 | REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF); |
| 799 | REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF); | 808 | REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF); |
| 800 | REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF); | 809 | if (adapter->hw.mac_type != e1000_ich8lan) |
| 810 | REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF); | ||
| 801 | REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF); | 811 | REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF); |
| 802 | REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF); | 812 | REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF); |
| 803 | 813 | value = (adapter->hw.mac_type == e1000_ich8lan ? | |
| 804 | for (i = 0; i < E1000_RAR_ENTRIES; i++) { | 814 | E1000_RAR_ENTRIES_ICH8LAN : E1000_RAR_ENTRIES); |
| 805 | REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF, | 815 | for (i = 0; i < value; i++) { |
| 806 | 0xFFFFFFFF); | ||
| 807 | REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF, | 816 | REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF, |
| 808 | 0xFFFFFFFF); | 817 | 0xFFFFFFFF); |
| 809 | } | 818 | } |
| @@ -817,7 +826,9 @@ e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data) | |||
| 817 | 826 | ||
| 818 | } | 827 | } |
| 819 | 828 | ||
| 820 | for (i = 0; i < E1000_MC_TBL_SIZE; i++) | 829 | value = (adapter->hw.mac_type == e1000_ich8lan ? |
| 830 | E1000_MC_TBL_SIZE_ICH8LAN : E1000_MC_TBL_SIZE); | ||
| 831 | for (i = 0; i < value; i++) | ||
| 821 | REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF); | 832 | REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF); |
| 822 | 833 | ||
| 823 | *data = 0; | 834 | *data = 0; |
| @@ -889,6 +900,8 @@ e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data) | |||
| 889 | /* Test each interrupt */ | 900 | /* Test each interrupt */ |
| 890 | for (; i < 10; i++) { | 901 | for (; i < 10; i++) { |
| 891 | 902 | ||
| 903 | if (adapter->hw.mac_type == e1000_ich8lan && i == 8) | ||
| 904 | continue; | ||
| 892 | /* Interrupt to test */ | 905 | /* Interrupt to test */ |
| 893 | mask = 1 << i; | 906 | mask = 1 << i; |
| 894 | 907 | ||
| @@ -1246,18 +1259,33 @@ e1000_integrated_phy_loopback(struct e1000_adapter *adapter) | |||
| 1246 | } else if (adapter->hw.phy_type == e1000_phy_gg82563) { | 1259 | } else if (adapter->hw.phy_type == e1000_phy_gg82563) { |
| 1247 | e1000_write_phy_reg(&adapter->hw, | 1260 | e1000_write_phy_reg(&adapter->hw, |
| 1248 | GG82563_PHY_KMRN_MODE_CTRL, | 1261 | GG82563_PHY_KMRN_MODE_CTRL, |
| 1249 | 0x1CE); | 1262 | 0x1CC); |
| 1250 | } | 1263 | } |
| 1251 | /* force 1000, set loopback */ | ||
| 1252 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140); | ||
| 1253 | 1264 | ||
| 1254 | /* Now set up the MAC to the same speed/duplex as the PHY. */ | ||
| 1255 | ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL); | 1265 | ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL); |
| 1256 | ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ | 1266 | |
| 1257 | ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ | 1267 | if (adapter->hw.phy_type == e1000_phy_ife) { |
| 1258 | E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ | 1268 | /* force 100, set loopback */ |
| 1259 | E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ | 1269 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x6100); |
| 1260 | E1000_CTRL_FD); /* Force Duplex to FULL */ | 1270 | |
| 1271 | /* Now set up the MAC to the same speed/duplex as the PHY. */ | ||
| 1272 | ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ | ||
| 1273 | ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ | ||
| 1274 | E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ | ||
| 1275 | E1000_CTRL_SPD_100 |/* Force Speed to 100 */ | ||
| 1276 | E1000_CTRL_FD); /* Force Duplex to FULL */ | ||
| 1277 | } else { | ||
| 1278 | /* force 1000, set loopback */ | ||
| 1279 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140); | ||
| 1280 | |||
| 1281 | /* Now set up the MAC to the same speed/duplex as the PHY. */ | ||
| 1282 | ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL); | ||
| 1283 | ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ | ||
| 1284 | ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ | ||
| 1285 | E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ | ||
| 1286 | E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ | ||
| 1287 | E1000_CTRL_FD); /* Force Duplex to FULL */ | ||
| 1288 | } | ||
| 1261 | 1289 | ||
| 1262 | if (adapter->hw.media_type == e1000_media_type_copper && | 1290 | if (adapter->hw.media_type == e1000_media_type_copper && |
| 1263 | adapter->hw.phy_type == e1000_phy_m88) { | 1291 | adapter->hw.phy_type == e1000_phy_m88) { |
| @@ -1317,6 +1345,7 @@ e1000_set_phy_loopback(struct e1000_adapter *adapter) | |||
| 1317 | case e1000_82572: | 1345 | case e1000_82572: |
| 1318 | case e1000_82573: | 1346 | case e1000_82573: |
| 1319 | case e1000_80003es2lan: | 1347 | case e1000_80003es2lan: |
| 1348 | case e1000_ich8lan: | ||
| 1320 | return e1000_integrated_phy_loopback(adapter); | 1349 | return e1000_integrated_phy_loopback(adapter); |
| 1321 | break; | 1350 | break; |
| 1322 | 1351 | ||
| @@ -1568,6 +1597,7 @@ e1000_diag_test(struct net_device *netdev, | |||
| 1568 | struct e1000_adapter *adapter = netdev_priv(netdev); | 1597 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 1569 | boolean_t if_running = netif_running(netdev); | 1598 | boolean_t if_running = netif_running(netdev); |
| 1570 | 1599 | ||
| 1600 | set_bit(__E1000_DRIVER_TESTING, &adapter->flags); | ||
| 1571 | if (eth_test->flags == ETH_TEST_FL_OFFLINE) { | 1601 | if (eth_test->flags == ETH_TEST_FL_OFFLINE) { |
| 1572 | /* Offline tests */ | 1602 | /* Offline tests */ |
| 1573 | 1603 | ||
| @@ -1582,7 +1612,8 @@ e1000_diag_test(struct net_device *netdev, | |||
| 1582 | eth_test->flags |= ETH_TEST_FL_FAILED; | 1612 | eth_test->flags |= ETH_TEST_FL_FAILED; |
| 1583 | 1613 | ||
| 1584 | if (if_running) | 1614 | if (if_running) |
| 1585 | e1000_down(adapter); | 1615 | /* indicate we're in test mode */ |
| 1616 | dev_close(netdev); | ||
| 1586 | else | 1617 | else |
| 1587 | e1000_reset(adapter); | 1618 | e1000_reset(adapter); |
| 1588 | 1619 | ||
| @@ -1607,8 +1638,9 @@ e1000_diag_test(struct net_device *netdev, | |||
| 1607 | adapter->hw.autoneg = autoneg; | 1638 | adapter->hw.autoneg = autoneg; |
| 1608 | 1639 | ||
| 1609 | e1000_reset(adapter); | 1640 | e1000_reset(adapter); |
| 1641 | clear_bit(__E1000_DRIVER_TESTING, &adapter->flags); | ||
| 1610 | if (if_running) | 1642 | if (if_running) |
| 1611 | e1000_up(adapter); | 1643 | dev_open(netdev); |
| 1612 | } else { | 1644 | } else { |
| 1613 | /* Online tests */ | 1645 | /* Online tests */ |
| 1614 | if (e1000_link_test(adapter, &data[4])) | 1646 | if (e1000_link_test(adapter, &data[4])) |
| @@ -1619,6 +1651,8 @@ e1000_diag_test(struct net_device *netdev, | |||
| 1619 | data[1] = 0; | 1651 | data[1] = 0; |
| 1620 | data[2] = 0; | 1652 | data[2] = 0; |
| 1621 | data[3] = 0; | 1653 | data[3] = 0; |
| 1654 | |||
| 1655 | clear_bit(__E1000_DRIVER_TESTING, &adapter->flags); | ||
| 1622 | } | 1656 | } |
| 1623 | msleep_interruptible(4 * 1000); | 1657 | msleep_interruptible(4 * 1000); |
| 1624 | } | 1658 | } |
| @@ -1778,21 +1812,18 @@ e1000_phys_id(struct net_device *netdev, uint32_t data) | |||
| 1778 | mod_timer(&adapter->blink_timer, jiffies); | 1812 | mod_timer(&adapter->blink_timer, jiffies); |
| 1779 | msleep_interruptible(data * 1000); | 1813 | msleep_interruptible(data * 1000); |
| 1780 | del_timer_sync(&adapter->blink_timer); | 1814 | del_timer_sync(&adapter->blink_timer); |
| 1781 | } else if (adapter->hw.mac_type < e1000_82573) { | 1815 | } else if (adapter->hw.phy_type == e1000_phy_ife) { |
| 1782 | E1000_WRITE_REG(&adapter->hw, LEDCTL, | 1816 | if (!adapter->blink_timer.function) { |
| 1783 | (E1000_LEDCTL_LED2_BLINK_RATE | | 1817 | init_timer(&adapter->blink_timer); |
| 1784 | E1000_LEDCTL_LED0_BLINK | E1000_LEDCTL_LED2_BLINK | | 1818 | adapter->blink_timer.function = e1000_led_blink_callback; |
| 1785 | (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) | | 1819 | adapter->blink_timer.data = (unsigned long) adapter; |
| 1786 | (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED0_MODE_SHIFT) | | 1820 | } |
| 1787 | (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED1_MODE_SHIFT))); | 1821 | mod_timer(&adapter->blink_timer, jiffies); |
| 1788 | msleep_interruptible(data * 1000); | 1822 | msleep_interruptible(data * 1000); |
| 1823 | del_timer_sync(&adapter->blink_timer); | ||
| 1824 | e1000_write_phy_reg(&(adapter->hw), IFE_PHY_SPECIAL_CONTROL_LED, 0); | ||
| 1789 | } else { | 1825 | } else { |
| 1790 | E1000_WRITE_REG(&adapter->hw, LEDCTL, | 1826 | e1000_blink_led_start(&adapter->hw); |
| 1791 | (E1000_LEDCTL_LED2_BLINK_RATE | | ||
| 1792 | E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK | | ||
| 1793 | (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) | | ||
| 1794 | (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) | | ||
| 1795 | (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT))); | ||
| 1796 | msleep_interruptible(data * 1000); | 1827 | msleep_interruptible(data * 1000); |
| 1797 | } | 1828 | } |
| 1798 | 1829 | ||
| @@ -1807,10 +1838,8 @@ static int | |||
| 1807 | e1000_nway_reset(struct net_device *netdev) | 1838 | e1000_nway_reset(struct net_device *netdev) |
| 1808 | { | 1839 | { |
| 1809 | struct e1000_adapter *adapter = netdev_priv(netdev); | 1840 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 1810 | if (netif_running(netdev)) { | 1841 | if (netif_running(netdev)) |
| 1811 | e1000_down(adapter); | 1842 | e1000_reinit_locked(adapter); |
| 1812 | e1000_up(adapter); | ||
| 1813 | } | ||
| 1814 | return 0; | 1843 | return 0; |
| 1815 | } | 1844 | } |
| 1816 | 1845 | ||
diff --git a/drivers/net/e1000/e1000_hw.c b/drivers/net/e1000/e1000_hw.c index 3959039b16ec..583518ae49ce 100644 --- a/drivers/net/e1000/e1000_hw.c +++ b/drivers/net/e1000/e1000_hw.c | |||
| @@ -101,7 +101,8 @@ static void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset, | |||
| 101 | 101 | ||
| 102 | #define E1000_WRITE_REG_IO(a, reg, val) \ | 102 | #define E1000_WRITE_REG_IO(a, reg, val) \ |
| 103 | e1000_write_reg_io((a), E1000_##reg, val) | 103 | e1000_write_reg_io((a), E1000_##reg, val) |
| 104 | static int32_t e1000_configure_kmrn_for_10_100(struct e1000_hw *hw); | 104 | static int32_t e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, |
| 105 | uint16_t duplex); | ||
| 105 | static int32_t e1000_configure_kmrn_for_1000(struct e1000_hw *hw); | 106 | static int32_t e1000_configure_kmrn_for_1000(struct e1000_hw *hw); |
| 106 | 107 | ||
| 107 | /* IGP cable length table */ | 108 | /* IGP cable length table */ |
| @@ -156,6 +157,14 @@ e1000_set_phy_type(struct e1000_hw *hw) | |||
| 156 | hw->phy_type = e1000_phy_igp; | 157 | hw->phy_type = e1000_phy_igp; |
| 157 | break; | 158 | break; |
| 158 | } | 159 | } |
| 160 | case IGP03E1000_E_PHY_ID: | ||
| 161 | hw->phy_type = e1000_phy_igp_3; | ||
| 162 | break; | ||
| 163 | case IFE_E_PHY_ID: | ||
| 164 | case IFE_PLUS_E_PHY_ID: | ||
| 165 | case IFE_C_E_PHY_ID: | ||
| 166 | hw->phy_type = e1000_phy_ife; | ||
| 167 | break; | ||
| 159 | case GG82563_E_PHY_ID: | 168 | case GG82563_E_PHY_ID: |
| 160 | if (hw->mac_type == e1000_80003es2lan) { | 169 | if (hw->mac_type == e1000_80003es2lan) { |
| 161 | hw->phy_type = e1000_phy_gg82563; | 170 | hw->phy_type = e1000_phy_gg82563; |
| @@ -332,6 +341,7 @@ e1000_set_mac_type(struct e1000_hw *hw) | |||
| 332 | break; | 341 | break; |
| 333 | case E1000_DEV_ID_82541EI: | 342 | case E1000_DEV_ID_82541EI: |
| 334 | case E1000_DEV_ID_82541EI_MOBILE: | 343 | case E1000_DEV_ID_82541EI_MOBILE: |
| 344 | case E1000_DEV_ID_82541ER_LOM: | ||
| 335 | hw->mac_type = e1000_82541; | 345 | hw->mac_type = e1000_82541; |
| 336 | break; | 346 | break; |
| 337 | case E1000_DEV_ID_82541ER: | 347 | case E1000_DEV_ID_82541ER: |
| @@ -341,6 +351,7 @@ e1000_set_mac_type(struct e1000_hw *hw) | |||
| 341 | hw->mac_type = e1000_82541_rev_2; | 351 | hw->mac_type = e1000_82541_rev_2; |
| 342 | break; | 352 | break; |
| 343 | case E1000_DEV_ID_82547EI: | 353 | case E1000_DEV_ID_82547EI: |
| 354 | case E1000_DEV_ID_82547EI_MOBILE: | ||
| 344 | hw->mac_type = e1000_82547; | 355 | hw->mac_type = e1000_82547; |
| 345 | break; | 356 | break; |
| 346 | case E1000_DEV_ID_82547GI: | 357 | case E1000_DEV_ID_82547GI: |
| @@ -354,6 +365,7 @@ e1000_set_mac_type(struct e1000_hw *hw) | |||
| 354 | case E1000_DEV_ID_82572EI_COPPER: | 365 | case E1000_DEV_ID_82572EI_COPPER: |
| 355 | case E1000_DEV_ID_82572EI_FIBER: | 366 | case E1000_DEV_ID_82572EI_FIBER: |
| 356 | case E1000_DEV_ID_82572EI_SERDES: | 367 | case E1000_DEV_ID_82572EI_SERDES: |
| 368 | case E1000_DEV_ID_82572EI: | ||
| 357 | hw->mac_type = e1000_82572; | 369 | hw->mac_type = e1000_82572; |
| 358 | break; | 370 | break; |
| 359 | case E1000_DEV_ID_82573E: | 371 | case E1000_DEV_ID_82573E: |
| @@ -361,16 +373,29 @@ e1000_set_mac_type(struct e1000_hw *hw) | |||
| 361 | case E1000_DEV_ID_82573L: | 373 | case E1000_DEV_ID_82573L: |
| 362 | hw->mac_type = e1000_82573; | 374 | hw->mac_type = e1000_82573; |
| 363 | break; | 375 | break; |
| 376 | case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: | ||
| 377 | case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: | ||
| 364 | case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: | 378 | case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: |
| 365 | case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: | 379 | case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: |
| 366 | hw->mac_type = e1000_80003es2lan; | 380 | hw->mac_type = e1000_80003es2lan; |
| 367 | break; | 381 | break; |
| 382 | case E1000_DEV_ID_ICH8_IGP_M_AMT: | ||
| 383 | case E1000_DEV_ID_ICH8_IGP_AMT: | ||
| 384 | case E1000_DEV_ID_ICH8_IGP_C: | ||
| 385 | case E1000_DEV_ID_ICH8_IFE: | ||
| 386 | case E1000_DEV_ID_ICH8_IGP_M: | ||
| 387 | hw->mac_type = e1000_ich8lan; | ||
| 388 | break; | ||
| 368 | default: | 389 | default: |
| 369 | /* Should never have loaded on this device */ | 390 | /* Should never have loaded on this device */ |
| 370 | return -E1000_ERR_MAC_TYPE; | 391 | return -E1000_ERR_MAC_TYPE; |
| 371 | } | 392 | } |
| 372 | 393 | ||
| 373 | switch(hw->mac_type) { | 394 | switch(hw->mac_type) { |
| 395 | case e1000_ich8lan: | ||
| 396 | hw->swfwhw_semaphore_present = TRUE; | ||
| 397 | hw->asf_firmware_present = TRUE; | ||
| 398 | break; | ||
| 374 | case e1000_80003es2lan: | 399 | case e1000_80003es2lan: |
| 375 | hw->swfw_sync_present = TRUE; | 400 | hw->swfw_sync_present = TRUE; |
| 376 | /* fall through */ | 401 | /* fall through */ |
| @@ -423,6 +448,7 @@ e1000_set_media_type(struct e1000_hw *hw) | |||
| 423 | case e1000_82542_rev2_1: | 448 | case e1000_82542_rev2_1: |
| 424 | hw->media_type = e1000_media_type_fiber; | 449 | hw->media_type = e1000_media_type_fiber; |
| 425 | break; | 450 | break; |
| 451 | case e1000_ich8lan: | ||
| 426 | case e1000_82573: | 452 | case e1000_82573: |
| 427 | /* The STATUS_TBIMODE bit is reserved or reused for the this | 453 | /* The STATUS_TBIMODE bit is reserved or reused for the this |
| 428 | * device. | 454 | * device. |
| @@ -527,6 +553,14 @@ e1000_reset_hw(struct e1000_hw *hw) | |||
| 527 | } while(timeout); | 553 | } while(timeout); |
| 528 | } | 554 | } |
| 529 | 555 | ||
| 556 | /* Workaround for ICH8 bit corruption issue in FIFO memory */ | ||
| 557 | if (hw->mac_type == e1000_ich8lan) { | ||
| 558 | /* Set Tx and Rx buffer allocation to 8k apiece. */ | ||
| 559 | E1000_WRITE_REG(hw, PBA, E1000_PBA_8K); | ||
| 560 | /* Set Packet Buffer Size to 16k. */ | ||
| 561 | E1000_WRITE_REG(hw, PBS, E1000_PBS_16K); | ||
| 562 | } | ||
| 563 | |||
| 530 | /* Issue a global reset to the MAC. This will reset the chip's | 564 | /* Issue a global reset to the MAC. This will reset the chip's |
| 531 | * transmit, receive, DMA, and link units. It will not effect | 565 | * transmit, receive, DMA, and link units. It will not effect |
| 532 | * the current PCI configuration. The global reset bit is self- | 566 | * the current PCI configuration. The global reset bit is self- |
| @@ -550,6 +584,20 @@ e1000_reset_hw(struct e1000_hw *hw) | |||
| 550 | /* Reset is performed on a shadow of the control register */ | 584 | /* Reset is performed on a shadow of the control register */ |
| 551 | E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST)); | 585 | E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST)); |
| 552 | break; | 586 | break; |
| 587 | case e1000_ich8lan: | ||
| 588 | if (!hw->phy_reset_disable && | ||
| 589 | e1000_check_phy_reset_block(hw) == E1000_SUCCESS) { | ||
| 590 | /* e1000_ich8lan PHY HW reset requires MAC CORE reset | ||
| 591 | * at the same time to make sure the interface between | ||
| 592 | * MAC and the external PHY is reset. | ||
| 593 | */ | ||
| 594 | ctrl |= E1000_CTRL_PHY_RST; | ||
| 595 | } | ||
| 596 | |||
| 597 | e1000_get_software_flag(hw); | ||
| 598 | E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); | ||
| 599 | msec_delay(5); | ||
| 600 | break; | ||
| 553 | default: | 601 | default: |
| 554 | E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); | 602 | E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); |
| 555 | break; | 603 | break; |
| @@ -591,6 +639,7 @@ e1000_reset_hw(struct e1000_hw *hw) | |||
| 591 | /* fall through */ | 639 | /* fall through */ |
| 592 | case e1000_82571: | 640 | case e1000_82571: |
| 593 | case e1000_82572: | 641 | case e1000_82572: |
| 642 | case e1000_ich8lan: | ||
| 594 | case e1000_80003es2lan: | 643 | case e1000_80003es2lan: |
| 595 | ret_val = e1000_get_auto_rd_done(hw); | 644 | ret_val = e1000_get_auto_rd_done(hw); |
| 596 | if(ret_val) | 645 | if(ret_val) |
| @@ -633,6 +682,12 @@ e1000_reset_hw(struct e1000_hw *hw) | |||
| 633 | e1000_pci_set_mwi(hw); | 682 | e1000_pci_set_mwi(hw); |
| 634 | } | 683 | } |
| 635 | 684 | ||
| 685 | if (hw->mac_type == e1000_ich8lan) { | ||
| 686 | uint32_t kab = E1000_READ_REG(hw, KABGTXD); | ||
| 687 | kab |= E1000_KABGTXD_BGSQLBIAS; | ||
| 688 | E1000_WRITE_REG(hw, KABGTXD, kab); | ||
| 689 | } | ||
| 690 | |||
| 636 | return E1000_SUCCESS; | 691 | return E1000_SUCCESS; |
| 637 | } | 692 | } |
| 638 | 693 | ||
| @@ -675,9 +730,12 @@ e1000_init_hw(struct e1000_hw *hw) | |||
| 675 | 730 | ||
| 676 | /* Disabling VLAN filtering. */ | 731 | /* Disabling VLAN filtering. */ |
| 677 | DEBUGOUT("Initializing the IEEE VLAN\n"); | 732 | DEBUGOUT("Initializing the IEEE VLAN\n"); |
| 678 | if (hw->mac_type < e1000_82545_rev_3) | 733 | /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */ |
| 679 | E1000_WRITE_REG(hw, VET, 0); | 734 | if (hw->mac_type != e1000_ich8lan) { |
| 680 | e1000_clear_vfta(hw); | 735 | if (hw->mac_type < e1000_82545_rev_3) |
| 736 | E1000_WRITE_REG(hw, VET, 0); | ||
| 737 | e1000_clear_vfta(hw); | ||
| 738 | } | ||
| 681 | 739 | ||
| 682 | /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ | 740 | /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ |
| 683 | if(hw->mac_type == e1000_82542_rev2_0) { | 741 | if(hw->mac_type == e1000_82542_rev2_0) { |
| @@ -705,8 +763,14 @@ e1000_init_hw(struct e1000_hw *hw) | |||
| 705 | /* Zero out the Multicast HASH table */ | 763 | /* Zero out the Multicast HASH table */ |
| 706 | DEBUGOUT("Zeroing the MTA\n"); | 764 | DEBUGOUT("Zeroing the MTA\n"); |
| 707 | mta_size = E1000_MC_TBL_SIZE; | 765 | mta_size = E1000_MC_TBL_SIZE; |
| 708 | for(i = 0; i < mta_size; i++) | 766 | if (hw->mac_type == e1000_ich8lan) |
| 767 | mta_size = E1000_MC_TBL_SIZE_ICH8LAN; | ||
| 768 | for(i = 0; i < mta_size; i++) { | ||
| 709 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); | 769 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); |
| 770 | /* use write flush to prevent Memory Write Block (MWB) from | ||
| 771 | * occuring when accessing our register space */ | ||
| 772 | E1000_WRITE_FLUSH(hw); | ||
| 773 | } | ||
| 710 | 774 | ||
| 711 | /* Set the PCI priority bit correctly in the CTRL register. This | 775 | /* Set the PCI priority bit correctly in the CTRL register. This |
| 712 | * determines if the adapter gives priority to receives, or if it | 776 | * determines if the adapter gives priority to receives, or if it |
| @@ -744,6 +808,10 @@ e1000_init_hw(struct e1000_hw *hw) | |||
| 744 | break; | 808 | break; |
| 745 | } | 809 | } |
| 746 | 810 | ||
| 811 | /* More time needed for PHY to initialize */ | ||
| 812 | if (hw->mac_type == e1000_ich8lan) | ||
| 813 | msec_delay(15); | ||
| 814 | |||
| 747 | /* Call a subroutine to configure the link and setup flow control. */ | 815 | /* Call a subroutine to configure the link and setup flow control. */ |
| 748 | ret_val = e1000_setup_link(hw); | 816 | ret_val = e1000_setup_link(hw); |
| 749 | 817 | ||
| @@ -757,6 +825,7 @@ e1000_init_hw(struct e1000_hw *hw) | |||
| 757 | case e1000_82571: | 825 | case e1000_82571: |
| 758 | case e1000_82572: | 826 | case e1000_82572: |
| 759 | case e1000_82573: | 827 | case e1000_82573: |
| 828 | case e1000_ich8lan: | ||
| 760 | case e1000_80003es2lan: | 829 | case e1000_80003es2lan: |
| 761 | ctrl |= E1000_TXDCTL_COUNT_DESC; | 830 | ctrl |= E1000_TXDCTL_COUNT_DESC; |
| 762 | break; | 831 | break; |
| @@ -795,6 +864,7 @@ e1000_init_hw(struct e1000_hw *hw) | |||
| 795 | /* Fall through */ | 864 | /* Fall through */ |
| 796 | case e1000_82571: | 865 | case e1000_82571: |
| 797 | case e1000_82572: | 866 | case e1000_82572: |
| 867 | case e1000_ich8lan: | ||
| 798 | ctrl = E1000_READ_REG(hw, TXDCTL1); | 868 | ctrl = E1000_READ_REG(hw, TXDCTL1); |
| 799 | ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; | 869 | ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; |
| 800 | if(hw->mac_type >= e1000_82571) | 870 | if(hw->mac_type >= e1000_82571) |
| @@ -818,6 +888,11 @@ e1000_init_hw(struct e1000_hw *hw) | |||
| 818 | */ | 888 | */ |
| 819 | e1000_clear_hw_cntrs(hw); | 889 | e1000_clear_hw_cntrs(hw); |
| 820 | 890 | ||
| 891 | /* ICH8 No-snoop bits are opposite polarity. | ||
| 892 | * Set to snoop by default after reset. */ | ||
| 893 | if (hw->mac_type == e1000_ich8lan) | ||
| 894 | e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL); | ||
| 895 | |||
| 821 | if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || | 896 | if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || |
| 822 | hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { | 897 | hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { |
| 823 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); | 898 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); |
| @@ -905,6 +980,7 @@ e1000_setup_link(struct e1000_hw *hw) | |||
| 905 | */ | 980 | */ |
| 906 | if (hw->fc == e1000_fc_default) { | 981 | if (hw->fc == e1000_fc_default) { |
| 907 | switch (hw->mac_type) { | 982 | switch (hw->mac_type) { |
| 983 | case e1000_ich8lan: | ||
| 908 | case e1000_82573: | 984 | case e1000_82573: |
| 909 | hw->fc = e1000_fc_full; | 985 | hw->fc = e1000_fc_full; |
| 910 | break; | 986 | break; |
| @@ -971,9 +1047,12 @@ e1000_setup_link(struct e1000_hw *hw) | |||
| 971 | */ | 1047 | */ |
| 972 | DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"); | 1048 | DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"); |
| 973 | 1049 | ||
| 974 | E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); | 1050 | /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */ |
| 975 | E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); | 1051 | if (hw->mac_type != e1000_ich8lan) { |
| 976 | E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); | 1052 | E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); |
| 1053 | E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); | ||
| 1054 | E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); | ||
| 1055 | } | ||
| 977 | 1056 | ||
| 978 | E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); | 1057 | E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); |
| 979 | 1058 | ||
| @@ -1237,12 +1316,13 @@ e1000_copper_link_igp_setup(struct e1000_hw *hw) | |||
| 1237 | 1316 | ||
| 1238 | /* Wait 10ms for MAC to configure PHY from eeprom settings */ | 1317 | /* Wait 10ms for MAC to configure PHY from eeprom settings */ |
| 1239 | msec_delay(15); | 1318 | msec_delay(15); |
| 1240 | 1319 | if (hw->mac_type != e1000_ich8lan) { | |
| 1241 | /* Configure activity LED after PHY reset */ | 1320 | /* Configure activity LED after PHY reset */ |
| 1242 | led_ctrl = E1000_READ_REG(hw, LEDCTL); | 1321 | led_ctrl = E1000_READ_REG(hw, LEDCTL); |
| 1243 | led_ctrl &= IGP_ACTIVITY_LED_MASK; | 1322 | led_ctrl &= IGP_ACTIVITY_LED_MASK; |
| 1244 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | 1323 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
| 1245 | E1000_WRITE_REG(hw, LEDCTL, led_ctrl); | 1324 | E1000_WRITE_REG(hw, LEDCTL, led_ctrl); |
| 1325 | } | ||
| 1246 | 1326 | ||
| 1247 | /* disable lplu d3 during driver init */ | 1327 | /* disable lplu d3 during driver init */ |
| 1248 | ret_val = e1000_set_d3_lplu_state(hw, FALSE); | 1328 | ret_val = e1000_set_d3_lplu_state(hw, FALSE); |
| @@ -1478,8 +1558,7 @@ e1000_copper_link_ggp_setup(struct e1000_hw *hw) | |||
| 1478 | if (ret_val) | 1558 | if (ret_val) |
| 1479 | return ret_val; | 1559 | return ret_val; |
| 1480 | 1560 | ||
| 1481 | /* Enable Pass False Carrier on the PHY */ | 1561 | phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; |
| 1482 | phy_data |= GG82563_KMCR_PASS_FALSE_CARRIER; | ||
| 1483 | 1562 | ||
| 1484 | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, | 1563 | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, |
| 1485 | phy_data); | 1564 | phy_data); |
| @@ -1561,28 +1640,40 @@ e1000_copper_link_mgp_setup(struct e1000_hw *hw) | |||
| 1561 | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; | 1640 | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; |
| 1562 | if(hw->disable_polarity_correction == 1) | 1641 | if(hw->disable_polarity_correction == 1) |
| 1563 | phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; | 1642 | phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; |
| 1564 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | 1643 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
| 1565 | if(ret_val) | 1644 | if (ret_val) |
| 1566 | return ret_val; | ||
| 1567 | |||
| 1568 | /* Force TX_CLK in the Extended PHY Specific Control Register | ||
| 1569 | * to 25MHz clock. | ||
| 1570 | */ | ||
| 1571 | ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); | ||
| 1572 | if(ret_val) | ||
| 1573 | return ret_val; | 1645 | return ret_val; |
| 1574 | 1646 | ||
| 1575 | phy_data |= M88E1000_EPSCR_TX_CLK_25; | ||
| 1576 | |||
| 1577 | if (hw->phy_revision < M88E1011_I_REV_4) { | 1647 | if (hw->phy_revision < M88E1011_I_REV_4) { |
| 1578 | /* Configure Master and Slave downshift values */ | 1648 | /* Force TX_CLK in the Extended PHY Specific Control Register |
| 1579 | phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | | 1649 | * to 25MHz clock. |
| 1650 | */ | ||
| 1651 | ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); | ||
| 1652 | if (ret_val) | ||
| 1653 | return ret_val; | ||
| 1654 | |||
| 1655 | phy_data |= M88E1000_EPSCR_TX_CLK_25; | ||
| 1656 | |||
| 1657 | if ((hw->phy_revision == E1000_REVISION_2) && | ||
| 1658 | (hw->phy_id == M88E1111_I_PHY_ID)) { | ||
| 1659 | /* Vidalia Phy, set the downshift counter to 5x */ | ||
| 1660 | phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK); | ||
| 1661 | phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; | ||
| 1662 | ret_val = e1000_write_phy_reg(hw, | ||
| 1663 | M88E1000_EXT_PHY_SPEC_CTRL, phy_data); | ||
| 1664 | if (ret_val) | ||
| 1665 | return ret_val; | ||
| 1666 | } else { | ||
| 1667 | /* Configure Master and Slave downshift values */ | ||
| 1668 | phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | | ||
| 1580 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); | 1669 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); |
| 1581 | phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | | 1670 | phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | |
| 1582 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); | 1671 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); |
| 1583 | ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); | 1672 | ret_val = e1000_write_phy_reg(hw, |
| 1584 | if(ret_val) | 1673 | M88E1000_EXT_PHY_SPEC_CTRL, phy_data); |
| 1585 | return ret_val; | 1674 | if (ret_val) |
| 1675 | return ret_val; | ||
| 1676 | } | ||
| 1586 | } | 1677 | } |
| 1587 | 1678 | ||
| 1588 | /* SW Reset the PHY so all changes take effect */ | 1679 | /* SW Reset the PHY so all changes take effect */ |
| @@ -1620,6 +1711,10 @@ e1000_copper_link_autoneg(struct e1000_hw *hw) | |||
| 1620 | if(hw->autoneg_advertised == 0) | 1711 | if(hw->autoneg_advertised == 0) |
| 1621 | hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; | 1712 | hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
| 1622 | 1713 | ||
| 1714 | /* IFE phy only supports 10/100 */ | ||
| 1715 | if (hw->phy_type == e1000_phy_ife) | ||
| 1716 | hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL; | ||
| 1717 | |||
| 1623 | DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); | 1718 | DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); |
| 1624 | ret_val = e1000_phy_setup_autoneg(hw); | 1719 | ret_val = e1000_phy_setup_autoneg(hw); |
| 1625 | if(ret_val) { | 1720 | if(ret_val) { |
| @@ -1717,6 +1812,26 @@ e1000_setup_copper_link(struct e1000_hw *hw) | |||
| 1717 | 1812 | ||
| 1718 | DEBUGFUNC("e1000_setup_copper_link"); | 1813 | DEBUGFUNC("e1000_setup_copper_link"); |
| 1719 | 1814 | ||
| 1815 | switch (hw->mac_type) { | ||
| 1816 | case e1000_80003es2lan: | ||
| 1817 | case e1000_ich8lan: | ||
| 1818 | /* Set the mac to wait the maximum time between each | ||
| 1819 | * iteration and increase the max iterations when | ||
| 1820 | * polling the phy; this fixes erroneous timeouts at 10Mbps. */ | ||
| 1821 | ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF); | ||
| 1822 | if (ret_val) | ||
| 1823 | return ret_val; | ||
| 1824 | ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), ®_data); | ||
| 1825 | if (ret_val) | ||
| 1826 | return ret_val; | ||
| 1827 | reg_data |= 0x3F; | ||
| 1828 | ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data); | ||
| 1829 | if (ret_val) | ||
| 1830 | return ret_val; | ||
| 1831 | default: | ||
| 1832 | break; | ||
| 1833 | } | ||
| 1834 | |||
| 1720 | /* Check if it is a valid PHY and set PHY mode if necessary. */ | 1835 | /* Check if it is a valid PHY and set PHY mode if necessary. */ |
| 1721 | ret_val = e1000_copper_link_preconfig(hw); | 1836 | ret_val = e1000_copper_link_preconfig(hw); |
| 1722 | if(ret_val) | 1837 | if(ret_val) |
| @@ -1724,10 +1839,8 @@ e1000_setup_copper_link(struct e1000_hw *hw) | |||
| 1724 | 1839 | ||
| 1725 | switch (hw->mac_type) { | 1840 | switch (hw->mac_type) { |
| 1726 | case e1000_80003es2lan: | 1841 | case e1000_80003es2lan: |
| 1727 | ret_val = e1000_read_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL, | 1842 | /* Kumeran registers are written-only */ |
| 1728 | ®_data); | 1843 | reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT; |
| 1729 | if (ret_val) | ||
| 1730 | return ret_val; | ||
| 1731 | reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING; | 1844 | reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING; |
| 1732 | ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL, | 1845 | ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL, |
| 1733 | reg_data); | 1846 | reg_data); |
| @@ -1739,6 +1852,7 @@ e1000_setup_copper_link(struct e1000_hw *hw) | |||
| 1739 | } | 1852 | } |
| 1740 | 1853 | ||
| 1741 | if (hw->phy_type == e1000_phy_igp || | 1854 | if (hw->phy_type == e1000_phy_igp || |
| 1855 | hw->phy_type == e1000_phy_igp_3 || | ||
| 1742 | hw->phy_type == e1000_phy_igp_2) { | 1856 | hw->phy_type == e1000_phy_igp_2) { |
| 1743 | ret_val = e1000_copper_link_igp_setup(hw); | 1857 | ret_val = e1000_copper_link_igp_setup(hw); |
| 1744 | if(ret_val) | 1858 | if(ret_val) |
| @@ -1803,7 +1917,7 @@ e1000_setup_copper_link(struct e1000_hw *hw) | |||
| 1803 | * hw - Struct containing variables accessed by shared code | 1917 | * hw - Struct containing variables accessed by shared code |
| 1804 | ******************************************************************************/ | 1918 | ******************************************************************************/ |
| 1805 | static int32_t | 1919 | static int32_t |
| 1806 | e1000_configure_kmrn_for_10_100(struct e1000_hw *hw) | 1920 | e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex) |
| 1807 | { | 1921 | { |
| 1808 | int32_t ret_val = E1000_SUCCESS; | 1922 | int32_t ret_val = E1000_SUCCESS; |
| 1809 | uint32_t tipg; | 1923 | uint32_t tipg; |
| @@ -1823,6 +1937,18 @@ e1000_configure_kmrn_for_10_100(struct e1000_hw *hw) | |||
| 1823 | tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100; | 1937 | tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100; |
| 1824 | E1000_WRITE_REG(hw, TIPG, tipg); | 1938 | E1000_WRITE_REG(hw, TIPG, tipg); |
| 1825 | 1939 | ||
| 1940 | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); | ||
| 1941 | |||
| 1942 | if (ret_val) | ||
| 1943 | return ret_val; | ||
| 1944 | |||
| 1945 | if (duplex == HALF_DUPLEX) | ||
| 1946 | reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER; | ||
| 1947 | else | ||
| 1948 | reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; | ||
| 1949 | |||
| 1950 | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); | ||
| 1951 | |||
| 1826 | return ret_val; | 1952 | return ret_val; |
| 1827 | } | 1953 | } |
| 1828 | 1954 | ||
| @@ -1847,6 +1973,14 @@ e1000_configure_kmrn_for_1000(struct e1000_hw *hw) | |||
| 1847 | tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; | 1973 | tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; |
| 1848 | E1000_WRITE_REG(hw, TIPG, tipg); | 1974 | E1000_WRITE_REG(hw, TIPG, tipg); |
| 1849 | 1975 | ||
| 1976 | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); | ||
| 1977 | |||
| 1978 | if (ret_val) | ||
| 1979 | return ret_val; | ||
| 1980 | |||
| 1981 | reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; | ||
| 1982 | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); | ||
| 1983 | |||
| 1850 | return ret_val; | 1984 | return ret_val; |
| 1851 | } | 1985 | } |
| 1852 | 1986 | ||
| @@ -1869,10 +2003,13 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw) | |||
| 1869 | if(ret_val) | 2003 | if(ret_val) |
| 1870 | return ret_val; | 2004 | return ret_val; |
| 1871 | 2005 | ||
| 1872 | /* Read the MII 1000Base-T Control Register (Address 9). */ | 2006 | if (hw->phy_type != e1000_phy_ife) { |
| 1873 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); | 2007 | /* Read the MII 1000Base-T Control Register (Address 9). */ |
| 1874 | if(ret_val) | 2008 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); |
| 1875 | return ret_val; | 2009 | if (ret_val) |
| 2010 | return ret_val; | ||
| 2011 | } else | ||
| 2012 | mii_1000t_ctrl_reg=0; | ||
| 1876 | 2013 | ||
| 1877 | /* Need to parse both autoneg_advertised and fc and set up | 2014 | /* Need to parse both autoneg_advertised and fc and set up |
| 1878 | * the appropriate PHY registers. First we will parse for | 2015 | * the appropriate PHY registers. First we will parse for |
| @@ -1923,6 +2060,9 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw) | |||
| 1923 | if(hw->autoneg_advertised & ADVERTISE_1000_FULL) { | 2060 | if(hw->autoneg_advertised & ADVERTISE_1000_FULL) { |
| 1924 | DEBUGOUT("Advertise 1000mb Full duplex\n"); | 2061 | DEBUGOUT("Advertise 1000mb Full duplex\n"); |
| 1925 | mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; | 2062 | mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; |
| 2063 | if (hw->phy_type == e1000_phy_ife) { | ||
| 2064 | DEBUGOUT("e1000_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n"); | ||
| 2065 | } | ||
| 1926 | } | 2066 | } |
| 1927 | 2067 | ||
| 1928 | /* Check for a software override of the flow control settings, and | 2068 | /* Check for a software override of the flow control settings, and |
| @@ -1984,9 +2124,11 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw) | |||
| 1984 | 2124 | ||
| 1985 | DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); | 2125 | DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); |
| 1986 | 2126 | ||
| 1987 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); | 2127 | if (hw->phy_type != e1000_phy_ife) { |
| 1988 | if(ret_val) | 2128 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); |
| 1989 | return ret_val; | 2129 | if (ret_val) |
| 2130 | return ret_val; | ||
| 2131 | } | ||
| 1990 | 2132 | ||
| 1991 | return E1000_SUCCESS; | 2133 | return E1000_SUCCESS; |
| 1992 | } | 2134 | } |
| @@ -2089,6 +2231,18 @@ e1000_phy_force_speed_duplex(struct e1000_hw *hw) | |||
| 2089 | 2231 | ||
| 2090 | /* Need to reset the PHY or these changes will be ignored */ | 2232 | /* Need to reset the PHY or these changes will be ignored */ |
| 2091 | mii_ctrl_reg |= MII_CR_RESET; | 2233 | mii_ctrl_reg |= MII_CR_RESET; |
| 2234 | /* Disable MDI-X support for 10/100 */ | ||
| 2235 | } else if (hw->phy_type == e1000_phy_ife) { | ||
| 2236 | ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data); | ||
| 2237 | if (ret_val) | ||
| 2238 | return ret_val; | ||
| 2239 | |||
| 2240 | phy_data &= ~IFE_PMC_AUTO_MDIX; | ||
| 2241 | phy_data &= ~IFE_PMC_FORCE_MDIX; | ||
| 2242 | |||
| 2243 | ret_val = e1000_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data); | ||
| 2244 | if (ret_val) | ||
| 2245 | return ret_val; | ||
| 2092 | } else { | 2246 | } else { |
| 2093 | /* Clear Auto-Crossover to force MDI manually. IGP requires MDI | 2247 | /* Clear Auto-Crossover to force MDI manually. IGP requires MDI |
| 2094 | * forced whenever speed or duplex are forced. | 2248 | * forced whenever speed or duplex are forced. |
| @@ -2721,8 +2875,12 @@ e1000_check_for_link(struct e1000_hw *hw) | |||
| 2721 | */ | 2875 | */ |
| 2722 | if(hw->tbi_compatibility_en) { | 2876 | if(hw->tbi_compatibility_en) { |
| 2723 | uint16_t speed, duplex; | 2877 | uint16_t speed, duplex; |
| 2724 | e1000_get_speed_and_duplex(hw, &speed, &duplex); | 2878 | ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); |
| 2725 | if(speed != SPEED_1000) { | 2879 | if (ret_val) { |
| 2880 | DEBUGOUT("Error getting link speed and duplex\n"); | ||
| 2881 | return ret_val; | ||
| 2882 | } | ||
| 2883 | if (speed != SPEED_1000) { | ||
| 2726 | /* If link speed is not set to gigabit speed, we do not need | 2884 | /* If link speed is not set to gigabit speed, we do not need |
| 2727 | * to enable TBI compatibility. | 2885 | * to enable TBI compatibility. |
| 2728 | */ | 2886 | */ |
| @@ -2889,7 +3047,13 @@ e1000_get_speed_and_duplex(struct e1000_hw *hw, | |||
| 2889 | if (*speed == SPEED_1000) | 3047 | if (*speed == SPEED_1000) |
| 2890 | ret_val = e1000_configure_kmrn_for_1000(hw); | 3048 | ret_val = e1000_configure_kmrn_for_1000(hw); |
| 2891 | else | 3049 | else |
| 2892 | ret_val = e1000_configure_kmrn_for_10_100(hw); | 3050 | ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex); |
| 3051 | if (ret_val) | ||
| 3052 | return ret_val; | ||
| 3053 | } | ||
| 3054 | |||
| 3055 | if ((hw->phy_type == e1000_phy_igp_3) && (*speed == SPEED_1000)) { | ||
| 3056 | ret_val = e1000_kumeran_lock_loss_workaround(hw); | ||
| 2893 | if (ret_val) | 3057 | if (ret_val) |
| 2894 | return ret_val; | 3058 | return ret_val; |
| 2895 | } | 3059 | } |
| @@ -3079,6 +3243,9 @@ e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask) | |||
| 3079 | 3243 | ||
| 3080 | DEBUGFUNC("e1000_swfw_sync_acquire"); | 3244 | DEBUGFUNC("e1000_swfw_sync_acquire"); |
| 3081 | 3245 | ||
| 3246 | if (hw->swfwhw_semaphore_present) | ||
| 3247 | return e1000_get_software_flag(hw); | ||
| 3248 | |||
| 3082 | if (!hw->swfw_sync_present) | 3249 | if (!hw->swfw_sync_present) |
| 3083 | return e1000_get_hw_eeprom_semaphore(hw); | 3250 | return e1000_get_hw_eeprom_semaphore(hw); |
| 3084 | 3251 | ||
| @@ -3118,6 +3285,11 @@ e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask) | |||
| 3118 | 3285 | ||
| 3119 | DEBUGFUNC("e1000_swfw_sync_release"); | 3286 | DEBUGFUNC("e1000_swfw_sync_release"); |
| 3120 | 3287 | ||
| 3288 | if (hw->swfwhw_semaphore_present) { | ||
| 3289 | e1000_release_software_flag(hw); | ||
| 3290 | return; | ||
| 3291 | } | ||
| 3292 | |||
| 3121 | if (!hw->swfw_sync_present) { | 3293 | if (!hw->swfw_sync_present) { |
| 3122 | e1000_put_hw_eeprom_semaphore(hw); | 3294 | e1000_put_hw_eeprom_semaphore(hw); |
| 3123 | return; | 3295 | return; |
| @@ -3160,7 +3332,8 @@ e1000_read_phy_reg(struct e1000_hw *hw, | |||
| 3160 | if (e1000_swfw_sync_acquire(hw, swfw)) | 3332 | if (e1000_swfw_sync_acquire(hw, swfw)) |
| 3161 | return -E1000_ERR_SWFW_SYNC; | 3333 | return -E1000_ERR_SWFW_SYNC; |
| 3162 | 3334 | ||
| 3163 | if((hw->phy_type == e1000_phy_igp || | 3335 | if ((hw->phy_type == e1000_phy_igp || |
| 3336 | hw->phy_type == e1000_phy_igp_3 || | ||
| 3164 | hw->phy_type == e1000_phy_igp_2) && | 3337 | hw->phy_type == e1000_phy_igp_2) && |
| 3165 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { | 3338 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { |
| 3166 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, | 3339 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, |
| @@ -3299,7 +3472,8 @@ e1000_write_phy_reg(struct e1000_hw *hw, | |||
| 3299 | if (e1000_swfw_sync_acquire(hw, swfw)) | 3472 | if (e1000_swfw_sync_acquire(hw, swfw)) |
| 3300 | return -E1000_ERR_SWFW_SYNC; | 3473 | return -E1000_ERR_SWFW_SYNC; |
| 3301 | 3474 | ||
| 3302 | if((hw->phy_type == e1000_phy_igp || | 3475 | if ((hw->phy_type == e1000_phy_igp || |
| 3476 | hw->phy_type == e1000_phy_igp_3 || | ||
| 3303 | hw->phy_type == e1000_phy_igp_2) && | 3477 | hw->phy_type == e1000_phy_igp_2) && |
| 3304 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { | 3478 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { |
| 3305 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, | 3479 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, |
| @@ -3514,7 +3688,7 @@ e1000_phy_hw_reset(struct e1000_hw *hw) | |||
| 3514 | E1000_WRITE_FLUSH(hw); | 3688 | E1000_WRITE_FLUSH(hw); |
| 3515 | 3689 | ||
| 3516 | if (hw->mac_type >= e1000_82571) | 3690 | if (hw->mac_type >= e1000_82571) |
| 3517 | msec_delay(10); | 3691 | msec_delay_irq(10); |
| 3518 | e1000_swfw_sync_release(hw, swfw); | 3692 | e1000_swfw_sync_release(hw, swfw); |
| 3519 | } else { | 3693 | } else { |
| 3520 | /* Read the Extended Device Control Register, assert the PHY_RESET_DIR | 3694 | /* Read the Extended Device Control Register, assert the PHY_RESET_DIR |
| @@ -3544,6 +3718,12 @@ e1000_phy_hw_reset(struct e1000_hw *hw) | |||
| 3544 | ret_val = e1000_get_phy_cfg_done(hw); | 3718 | ret_val = e1000_get_phy_cfg_done(hw); |
| 3545 | e1000_release_software_semaphore(hw); | 3719 | e1000_release_software_semaphore(hw); |
| 3546 | 3720 | ||
| 3721 | if ((hw->mac_type == e1000_ich8lan) && | ||
| 3722 | (hw->phy_type == e1000_phy_igp_3)) { | ||
| 3723 | ret_val = e1000_init_lcd_from_nvm(hw); | ||
| 3724 | if (ret_val) | ||
| 3725 | return ret_val; | ||
| 3726 | } | ||
| 3547 | return ret_val; | 3727 | return ret_val; |
| 3548 | } | 3728 | } |
| 3549 | 3729 | ||
| @@ -3572,9 +3752,11 @@ e1000_phy_reset(struct e1000_hw *hw) | |||
| 3572 | case e1000_82541_rev_2: | 3752 | case e1000_82541_rev_2: |
| 3573 | case e1000_82571: | 3753 | case e1000_82571: |
| 3574 | case e1000_82572: | 3754 | case e1000_82572: |
| 3755 | case e1000_ich8lan: | ||
| 3575 | ret_val = e1000_phy_hw_reset(hw); | 3756 | ret_val = e1000_phy_hw_reset(hw); |
| 3576 | if(ret_val) | 3757 | if(ret_val) |
| 3577 | return ret_val; | 3758 | return ret_val; |
| 3759 | |||
| 3578 | break; | 3760 | break; |
| 3579 | default: | 3761 | default: |
| 3580 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); | 3762 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); |
| @@ -3597,11 +3779,120 @@ e1000_phy_reset(struct e1000_hw *hw) | |||
| 3597 | } | 3779 | } |
| 3598 | 3780 | ||
| 3599 | /****************************************************************************** | 3781 | /****************************************************************************** |
| 3782 | * Work-around for 82566 power-down: on D3 entry- | ||
| 3783 | * 1) disable gigabit link | ||
| 3784 | * 2) write VR power-down enable | ||
| 3785 | * 3) read it back | ||
| 3786 | * if successful continue, else issue LCD reset and repeat | ||
| 3787 | * | ||
| 3788 | * hw - struct containing variables accessed by shared code | ||
| 3789 | ******************************************************************************/ | ||
| 3790 | void | ||
| 3791 | e1000_phy_powerdown_workaround(struct e1000_hw *hw) | ||
| 3792 | { | ||
| 3793 | int32_t reg; | ||
| 3794 | uint16_t phy_data; | ||
| 3795 | int32_t retry = 0; | ||
| 3796 | |||
| 3797 | DEBUGFUNC("e1000_phy_powerdown_workaround"); | ||
| 3798 | |||
| 3799 | if (hw->phy_type != e1000_phy_igp_3) | ||
| 3800 | return; | ||
| 3801 | |||
| 3802 | do { | ||
| 3803 | /* Disable link */ | ||
| 3804 | reg = E1000_READ_REG(hw, PHY_CTRL); | ||
| 3805 | E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE | | ||
| 3806 | E1000_PHY_CTRL_NOND0A_GBE_DISABLE); | ||
| 3807 | |||
| 3808 | /* Write VR power-down enable */ | ||
| 3809 | e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data); | ||
| 3810 | e1000_write_phy_reg(hw, IGP3_VR_CTRL, phy_data | | ||
| 3811 | IGP3_VR_CTRL_MODE_SHUT); | ||
| 3812 | |||
| 3813 | /* Read it back and test */ | ||
| 3814 | e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data); | ||
| 3815 | if ((phy_data & IGP3_VR_CTRL_MODE_SHUT) || retry) | ||
| 3816 | break; | ||
| 3817 | |||
| 3818 | /* Issue PHY reset and repeat at most one more time */ | ||
| 3819 | reg = E1000_READ_REG(hw, CTRL); | ||
| 3820 | E1000_WRITE_REG(hw, CTRL, reg | E1000_CTRL_PHY_RST); | ||
| 3821 | retry++; | ||
| 3822 | } while (retry); | ||
| 3823 | |||
| 3824 | return; | ||
| 3825 | |||
| 3826 | } | ||
| 3827 | |||
| 3828 | /****************************************************************************** | ||
| 3829 | * Work-around for 82566 Kumeran PCS lock loss: | ||
| 3830 | * On link status change (i.e. PCI reset, speed change) and link is up and | ||
| 3831 | * speed is gigabit- | ||
| 3832 | * 0) if workaround is optionally disabled do nothing | ||
| 3833 | * 1) wait 1ms for Kumeran link to come up | ||
| 3834 | * 2) check Kumeran Diagnostic register PCS lock loss bit | ||
| 3835 | * 3) if not set the link is locked (all is good), otherwise... | ||
| 3836 | * 4) reset the PHY | ||
| 3837 | * 5) repeat up to 10 times | ||
| 3838 | * Note: this is only called for IGP3 copper when speed is 1gb. | ||
| 3839 | * | ||
| 3840 | * hw - struct containing variables accessed by shared code | ||
| 3841 | ******************************************************************************/ | ||
| 3842 | int32_t | ||
| 3843 | e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw) | ||
| 3844 | { | ||
| 3845 | int32_t ret_val; | ||
| 3846 | int32_t reg; | ||
| 3847 | int32_t cnt; | ||
| 3848 | uint16_t phy_data; | ||
| 3849 | |||
| 3850 | if (hw->kmrn_lock_loss_workaround_disabled) | ||
| 3851 | return E1000_SUCCESS; | ||
| 3852 | |||
| 3853 | /* Make sure link is up before proceeding. If not just return. | ||
| 3854 | * Attempting this while link is negotiating fouls up link | ||
| 3855 | * stability */ | ||
| 3856 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | ||
| 3857 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | ||
| 3858 | |||
| 3859 | if (phy_data & MII_SR_LINK_STATUS) { | ||
| 3860 | for (cnt = 0; cnt < 10; cnt++) { | ||
| 3861 | /* read once to clear */ | ||
| 3862 | ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data); | ||
| 3863 | if (ret_val) | ||
| 3864 | return ret_val; | ||
| 3865 | /* and again to get new status */ | ||
| 3866 | ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data); | ||
| 3867 | if (ret_val) | ||
| 3868 | return ret_val; | ||
| 3869 | |||
| 3870 | /* check for PCS lock */ | ||
| 3871 | if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) | ||
| 3872 | return E1000_SUCCESS; | ||
| 3873 | |||
| 3874 | /* Issue PHY reset */ | ||
| 3875 | e1000_phy_hw_reset(hw); | ||
| 3876 | msec_delay_irq(5); | ||
| 3877 | } | ||
| 3878 | /* Disable GigE link negotiation */ | ||
| 3879 | reg = E1000_READ_REG(hw, PHY_CTRL); | ||
| 3880 | E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE | | ||
| 3881 | E1000_PHY_CTRL_NOND0A_GBE_DISABLE); | ||
| 3882 | |||
| 3883 | /* unable to acquire PCS lock */ | ||
| 3884 | return E1000_ERR_PHY; | ||
| 3885 | } | ||
| 3886 | |||
| 3887 | return E1000_SUCCESS; | ||
| 3888 | } | ||
| 3889 | |||
| 3890 | /****************************************************************************** | ||
| 3600 | * Probes the expected PHY address for known PHY IDs | 3891 | * Probes the expected PHY address for known PHY IDs |
| 3601 | * | 3892 | * |
| 3602 | * hw - Struct containing variables accessed by shared code | 3893 | * hw - Struct containing variables accessed by shared code |
| 3603 | ******************************************************************************/ | 3894 | ******************************************************************************/ |
| 3604 | static int32_t | 3895 | int32_t |
| 3605 | e1000_detect_gig_phy(struct e1000_hw *hw) | 3896 | e1000_detect_gig_phy(struct e1000_hw *hw) |
| 3606 | { | 3897 | { |
| 3607 | int32_t phy_init_status, ret_val; | 3898 | int32_t phy_init_status, ret_val; |
| @@ -3613,8 +3904,8 @@ e1000_detect_gig_phy(struct e1000_hw *hw) | |||
| 3613 | /* The 82571 firmware may still be configuring the PHY. In this | 3904 | /* The 82571 firmware may still be configuring the PHY. In this |
| 3614 | * case, we cannot access the PHY until the configuration is done. So | 3905 | * case, we cannot access the PHY until the configuration is done. So |
| 3615 | * we explicitly set the PHY values. */ | 3906 | * we explicitly set the PHY values. */ |
| 3616 | if(hw->mac_type == e1000_82571 || | 3907 | if (hw->mac_type == e1000_82571 || |
| 3617 | hw->mac_type == e1000_82572) { | 3908 | hw->mac_type == e1000_82572) { |
| 3618 | hw->phy_id = IGP01E1000_I_PHY_ID; | 3909 | hw->phy_id = IGP01E1000_I_PHY_ID; |
| 3619 | hw->phy_type = e1000_phy_igp_2; | 3910 | hw->phy_type = e1000_phy_igp_2; |
| 3620 | return E1000_SUCCESS; | 3911 | return E1000_SUCCESS; |
| @@ -3631,7 +3922,7 @@ e1000_detect_gig_phy(struct e1000_hw *hw) | |||
| 3631 | 3922 | ||
| 3632 | /* Read the PHY ID Registers to identify which PHY is onboard. */ | 3923 | /* Read the PHY ID Registers to identify which PHY is onboard. */ |
| 3633 | ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); | 3924 | ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); |
| 3634 | if(ret_val) | 3925 | if (ret_val) |
| 3635 | return ret_val; | 3926 | return ret_val; |
| 3636 | 3927 | ||
| 3637 | hw->phy_id = (uint32_t) (phy_id_high << 16); | 3928 | hw->phy_id = (uint32_t) (phy_id_high << 16); |
| @@ -3669,6 +3960,12 @@ e1000_detect_gig_phy(struct e1000_hw *hw) | |||
| 3669 | case e1000_80003es2lan: | 3960 | case e1000_80003es2lan: |
| 3670 | if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE; | 3961 | if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE; |
| 3671 | break; | 3962 | break; |
| 3963 | case e1000_ich8lan: | ||
| 3964 | if (hw->phy_id == IGP03E1000_E_PHY_ID) match = TRUE; | ||
| 3965 | if (hw->phy_id == IFE_E_PHY_ID) match = TRUE; | ||
| 3966 | if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = TRUE; | ||
| 3967 | if (hw->phy_id == IFE_C_E_PHY_ID) match = TRUE; | ||
| 3968 | break; | ||
| 3672 | default: | 3969 | default: |
| 3673 | DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); | 3970 | DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); |
| 3674 | return -E1000_ERR_CONFIG; | 3971 | return -E1000_ERR_CONFIG; |
| @@ -3784,6 +4081,53 @@ e1000_phy_igp_get_info(struct e1000_hw *hw, | |||
| 3784 | } | 4081 | } |
| 3785 | 4082 | ||
| 3786 | /****************************************************************************** | 4083 | /****************************************************************************** |
| 4084 | * Get PHY information from various PHY registers for ife PHY only. | ||
| 4085 | * | ||
| 4086 | * hw - Struct containing variables accessed by shared code | ||
| 4087 | * phy_info - PHY information structure | ||
| 4088 | ******************************************************************************/ | ||
| 4089 | int32_t | ||
| 4090 | e1000_phy_ife_get_info(struct e1000_hw *hw, | ||
| 4091 | struct e1000_phy_info *phy_info) | ||
| 4092 | { | ||
| 4093 | int32_t ret_val; | ||
| 4094 | uint16_t phy_data, polarity; | ||
| 4095 | |||
| 4096 | DEBUGFUNC("e1000_phy_ife_get_info"); | ||
| 4097 | |||
| 4098 | phy_info->downshift = (e1000_downshift)hw->speed_downgraded; | ||
| 4099 | phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; | ||
| 4100 | |||
| 4101 | ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data); | ||
| 4102 | if (ret_val) | ||
| 4103 | return ret_val; | ||
| 4104 | phy_info->polarity_correction = | ||
| 4105 | (phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >> | ||
| 4106 | IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT; | ||
| 4107 | |||
| 4108 | if (phy_info->polarity_correction == e1000_polarity_reversal_enabled) { | ||
| 4109 | ret_val = e1000_check_polarity(hw, &polarity); | ||
| 4110 | if (ret_val) | ||
| 4111 | return ret_val; | ||
| 4112 | } else { | ||
| 4113 | /* Polarity is forced. */ | ||
| 4114 | polarity = (phy_data & IFE_PSC_FORCE_POLARITY) >> | ||
| 4115 | IFE_PSC_FORCE_POLARITY_SHIFT; | ||
| 4116 | } | ||
| 4117 | phy_info->cable_polarity = polarity; | ||
| 4118 | |||
| 4119 | ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data); | ||
| 4120 | if (ret_val) | ||
| 4121 | return ret_val; | ||
| 4122 | |||
| 4123 | phy_info->mdix_mode = | ||
| 4124 | (phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >> | ||
| 4125 | IFE_PMC_MDIX_MODE_SHIFT; | ||
| 4126 | |||
| 4127 | return E1000_SUCCESS; | ||
| 4128 | } | ||
| 4129 | |||
| 4130 | /****************************************************************************** | ||
| 3787 | * Get PHY information from various PHY registers fot m88 PHY only. | 4131 | * Get PHY information from various PHY registers fot m88 PHY only. |
| 3788 | * | 4132 | * |
| 3789 | * hw - Struct containing variables accessed by shared code | 4133 | * hw - Struct containing variables accessed by shared code |
| @@ -3898,9 +4242,12 @@ e1000_phy_get_info(struct e1000_hw *hw, | |||
| 3898 | return -E1000_ERR_CONFIG; | 4242 | return -E1000_ERR_CONFIG; |
| 3899 | } | 4243 | } |
| 3900 | 4244 | ||
| 3901 | if(hw->phy_type == e1000_phy_igp || | 4245 | if (hw->phy_type == e1000_phy_igp || |
| 4246 | hw->phy_type == e1000_phy_igp_3 || | ||
| 3902 | hw->phy_type == e1000_phy_igp_2) | 4247 | hw->phy_type == e1000_phy_igp_2) |
| 3903 | return e1000_phy_igp_get_info(hw, phy_info); | 4248 | return e1000_phy_igp_get_info(hw, phy_info); |
| 4249 | else if (hw->phy_type == e1000_phy_ife) | ||
| 4250 | return e1000_phy_ife_get_info(hw, phy_info); | ||
| 3904 | else | 4251 | else |
| 3905 | return e1000_phy_m88_get_info(hw, phy_info); | 4252 | return e1000_phy_m88_get_info(hw, phy_info); |
| 3906 | } | 4253 | } |
| @@ -4049,6 +4396,35 @@ e1000_init_eeprom_params(struct e1000_hw *hw) | |||
| 4049 | eeprom->use_eerd = TRUE; | 4396 | eeprom->use_eerd = TRUE; |
| 4050 | eeprom->use_eewr = FALSE; | 4397 | eeprom->use_eewr = FALSE; |
| 4051 | break; | 4398 | break; |
| 4399 | case e1000_ich8lan: | ||
| 4400 | { | ||
| 4401 | int32_t i = 0; | ||
| 4402 | uint32_t flash_size = E1000_READ_ICH8_REG(hw, ICH8_FLASH_GFPREG); | ||
| 4403 | |||
| 4404 | eeprom->type = e1000_eeprom_ich8; | ||
| 4405 | eeprom->use_eerd = FALSE; | ||
| 4406 | eeprom->use_eewr = FALSE; | ||
| 4407 | eeprom->word_size = E1000_SHADOW_RAM_WORDS; | ||
| 4408 | |||
| 4409 | /* Zero the shadow RAM structure. But don't load it from NVM | ||
| 4410 | * so as to save time for driver init */ | ||
| 4411 | if (hw->eeprom_shadow_ram != NULL) { | ||
| 4412 | for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { | ||
| 4413 | hw->eeprom_shadow_ram[i].modified = FALSE; | ||
| 4414 | hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF; | ||
| 4415 | } | ||
| 4416 | } | ||
| 4417 | |||
| 4418 | hw->flash_base_addr = (flash_size & ICH8_GFPREG_BASE_MASK) * | ||
| 4419 | ICH8_FLASH_SECTOR_SIZE; | ||
| 4420 | |||
| 4421 | hw->flash_bank_size = ((flash_size >> 16) & ICH8_GFPREG_BASE_MASK) + 1; | ||
| 4422 | hw->flash_bank_size -= (flash_size & ICH8_GFPREG_BASE_MASK); | ||
| 4423 | hw->flash_bank_size *= ICH8_FLASH_SECTOR_SIZE; | ||
| 4424 | hw->flash_bank_size /= 2 * sizeof(uint16_t); | ||
| 4425 | |||
| 4426 | break; | ||
| 4427 | } | ||
| 4052 | default: | 4428 | default: |
| 4053 | break; | 4429 | break; |
| 4054 | } | 4430 | } |
| @@ -4469,7 +4845,10 @@ e1000_read_eeprom(struct e1000_hw *hw, | |||
| 4469 | return ret_val; | 4845 | return ret_val; |
| 4470 | } | 4846 | } |
| 4471 | 4847 | ||
| 4472 | if(eeprom->type == e1000_eeprom_spi) { | 4848 | if (eeprom->type == e1000_eeprom_ich8) |
| 4849 | return e1000_read_eeprom_ich8(hw, offset, words, data); | ||
| 4850 | |||
| 4851 | if (eeprom->type == e1000_eeprom_spi) { | ||
| 4473 | uint16_t word_in; | 4852 | uint16_t word_in; |
| 4474 | uint8_t read_opcode = EEPROM_READ_OPCODE_SPI; | 4853 | uint8_t read_opcode = EEPROM_READ_OPCODE_SPI; |
| 4475 | 4854 | ||
| @@ -4636,7 +5015,10 @@ e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw) | |||
| 4636 | 5015 | ||
| 4637 | DEBUGFUNC("e1000_is_onboard_nvm_eeprom"); | 5016 | DEBUGFUNC("e1000_is_onboard_nvm_eeprom"); |
| 4638 | 5017 | ||
| 4639 | if(hw->mac_type == e1000_82573) { | 5018 | if (hw->mac_type == e1000_ich8lan) |
| 5019 | return FALSE; | ||
| 5020 | |||
| 5021 | if (hw->mac_type == e1000_82573) { | ||
| 4640 | eecd = E1000_READ_REG(hw, EECD); | 5022 | eecd = E1000_READ_REG(hw, EECD); |
| 4641 | 5023 | ||
| 4642 | /* Isolate bits 15 & 16 */ | 5024 | /* Isolate bits 15 & 16 */ |
| @@ -4686,8 +5068,22 @@ e1000_validate_eeprom_checksum(struct e1000_hw *hw) | |||
| 4686 | } | 5068 | } |
| 4687 | } | 5069 | } |
| 4688 | 5070 | ||
| 4689 | for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { | 5071 | if (hw->mac_type == e1000_ich8lan) { |
| 4690 | if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { | 5072 | /* Drivers must allocate the shadow ram structure for the |
| 5073 | * EEPROM checksum to be updated. Otherwise, this bit as well | ||
| 5074 | * as the checksum must both be set correctly for this | ||
| 5075 | * validation to pass. | ||
| 5076 | */ | ||
| 5077 | e1000_read_eeprom(hw, 0x19, 1, &eeprom_data); | ||
| 5078 | if ((eeprom_data & 0x40) == 0) { | ||
| 5079 | eeprom_data |= 0x40; | ||
| 5080 | e1000_write_eeprom(hw, 0x19, 1, &eeprom_data); | ||
| 5081 | e1000_update_eeprom_checksum(hw); | ||
| 5082 | } | ||
| 5083 | } | ||
| 5084 | |||
| 5085 | for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { | ||
| 5086 | if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { | ||
| 4691 | DEBUGOUT("EEPROM Read Error\n"); | 5087 | DEBUGOUT("EEPROM Read Error\n"); |
| 4692 | return -E1000_ERR_EEPROM; | 5088 | return -E1000_ERR_EEPROM; |
| 4693 | } | 5089 | } |
| @@ -4713,6 +5109,7 @@ e1000_validate_eeprom_checksum(struct e1000_hw *hw) | |||
| 4713 | int32_t | 5109 | int32_t |
| 4714 | e1000_update_eeprom_checksum(struct e1000_hw *hw) | 5110 | e1000_update_eeprom_checksum(struct e1000_hw *hw) |
| 4715 | { | 5111 | { |
| 5112 | uint32_t ctrl_ext; | ||
| 4716 | uint16_t checksum = 0; | 5113 | uint16_t checksum = 0; |
| 4717 | uint16_t i, eeprom_data; | 5114 | uint16_t i, eeprom_data; |
| 4718 | 5115 | ||
| @@ -4731,6 +5128,14 @@ e1000_update_eeprom_checksum(struct e1000_hw *hw) | |||
| 4731 | return -E1000_ERR_EEPROM; | 5128 | return -E1000_ERR_EEPROM; |
| 4732 | } else if (hw->eeprom.type == e1000_eeprom_flash) { | 5129 | } else if (hw->eeprom.type == e1000_eeprom_flash) { |
| 4733 | e1000_commit_shadow_ram(hw); | 5130 | e1000_commit_shadow_ram(hw); |
| 5131 | } else if (hw->eeprom.type == e1000_eeprom_ich8) { | ||
| 5132 | e1000_commit_shadow_ram(hw); | ||
| 5133 | /* Reload the EEPROM, or else modifications will not appear | ||
| 5134 | * until after next adapter reset. */ | ||
| 5135 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); | ||
| 5136 | ctrl_ext |= E1000_CTRL_EXT_EE_RST; | ||
| 5137 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); | ||
| 5138 | msec_delay(10); | ||
| 4734 | } | 5139 | } |
| 4735 | return E1000_SUCCESS; | 5140 | return E1000_SUCCESS; |
| 4736 | } | 5141 | } |
| @@ -4770,6 +5175,9 @@ e1000_write_eeprom(struct e1000_hw *hw, | |||
| 4770 | if(eeprom->use_eewr == TRUE) | 5175 | if(eeprom->use_eewr == TRUE) |
| 4771 | return e1000_write_eeprom_eewr(hw, offset, words, data); | 5176 | return e1000_write_eeprom_eewr(hw, offset, words, data); |
| 4772 | 5177 | ||
| 5178 | if (eeprom->type == e1000_eeprom_ich8) | ||
| 5179 | return e1000_write_eeprom_ich8(hw, offset, words, data); | ||
| 5180 | |||
| 4773 | /* Prepare the EEPROM for writing */ | 5181 | /* Prepare the EEPROM for writing */ |
| 4774 | if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) | 5182 | if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) |
| 4775 | return -E1000_ERR_EEPROM; | 5183 | return -E1000_ERR_EEPROM; |
| @@ -4957,11 +5365,17 @@ e1000_commit_shadow_ram(struct e1000_hw *hw) | |||
| 4957 | uint32_t flop = 0; | 5365 | uint32_t flop = 0; |
| 4958 | uint32_t i = 0; | 5366 | uint32_t i = 0; |
| 4959 | int32_t error = E1000_SUCCESS; | 5367 | int32_t error = E1000_SUCCESS; |
| 4960 | 5368 | uint32_t old_bank_offset = 0; | |
| 4961 | /* The flop register will be used to determine if flash type is STM */ | 5369 | uint32_t new_bank_offset = 0; |
| 4962 | flop = E1000_READ_REG(hw, FLOP); | 5370 | uint32_t sector_retries = 0; |
| 5371 | uint8_t low_byte = 0; | ||
| 5372 | uint8_t high_byte = 0; | ||
| 5373 | uint8_t temp_byte = 0; | ||
| 5374 | boolean_t sector_write_failed = FALSE; | ||
| 4963 | 5375 | ||
| 4964 | if (hw->mac_type == e1000_82573) { | 5376 | if (hw->mac_type == e1000_82573) { |
| 5377 | /* The flop register will be used to determine if flash type is STM */ | ||
| 5378 | flop = E1000_READ_REG(hw, FLOP); | ||
| 4965 | for (i=0; i < attempts; i++) { | 5379 | for (i=0; i < attempts; i++) { |
| 4966 | eecd = E1000_READ_REG(hw, EECD); | 5380 | eecd = E1000_READ_REG(hw, EECD); |
| 4967 | if ((eecd & E1000_EECD_FLUPD) == 0) { | 5381 | if ((eecd & E1000_EECD_FLUPD) == 0) { |
| @@ -4995,6 +5409,106 @@ e1000_commit_shadow_ram(struct e1000_hw *hw) | |||
| 4995 | } | 5409 | } |
| 4996 | } | 5410 | } |
| 4997 | 5411 | ||
| 5412 | if (hw->mac_type == e1000_ich8lan && hw->eeprom_shadow_ram != NULL) { | ||
| 5413 | /* We're writing to the opposite bank so if we're on bank 1, | ||
| 5414 | * write to bank 0 etc. We also need to erase the segment that | ||
| 5415 | * is going to be written */ | ||
| 5416 | if (!(E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL)) { | ||
| 5417 | new_bank_offset = hw->flash_bank_size * 2; | ||
| 5418 | old_bank_offset = 0; | ||
| 5419 | e1000_erase_ich8_4k_segment(hw, 1); | ||
| 5420 | } else { | ||
| 5421 | old_bank_offset = hw->flash_bank_size * 2; | ||
| 5422 | new_bank_offset = 0; | ||
| 5423 | e1000_erase_ich8_4k_segment(hw, 0); | ||
| 5424 | } | ||
| 5425 | |||
| 5426 | do { | ||
| 5427 | sector_write_failed = FALSE; | ||
| 5428 | /* Loop for every byte in the shadow RAM, | ||
| 5429 | * which is in units of words. */ | ||
| 5430 | for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { | ||
| 5431 | /* Determine whether to write the value stored | ||
| 5432 | * in the other NVM bank or a modified value stored | ||
| 5433 | * in the shadow RAM */ | ||
| 5434 | if (hw->eeprom_shadow_ram[i].modified == TRUE) { | ||
| 5435 | low_byte = (uint8_t)hw->eeprom_shadow_ram[i].eeprom_word; | ||
| 5436 | e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset, | ||
| 5437 | &temp_byte); | ||
| 5438 | udelay(100); | ||
| 5439 | error = e1000_verify_write_ich8_byte(hw, | ||
| 5440 | (i << 1) + new_bank_offset, | ||
| 5441 | low_byte); | ||
| 5442 | if (error != E1000_SUCCESS) | ||
| 5443 | sector_write_failed = TRUE; | ||
| 5444 | high_byte = | ||
| 5445 | (uint8_t)(hw->eeprom_shadow_ram[i].eeprom_word >> 8); | ||
| 5446 | e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1, | ||
| 5447 | &temp_byte); | ||
| 5448 | udelay(100); | ||
| 5449 | } else { | ||
| 5450 | e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset, | ||
| 5451 | &low_byte); | ||
| 5452 | udelay(100); | ||
| 5453 | error = e1000_verify_write_ich8_byte(hw, | ||
| 5454 | (i << 1) + new_bank_offset, low_byte); | ||
| 5455 | if (error != E1000_SUCCESS) | ||
| 5456 | sector_write_failed = TRUE; | ||
| 5457 | e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1, | ||
| 5458 | &high_byte); | ||
| 5459 | } | ||
| 5460 | |||
| 5461 | /* If the word is 0x13, then make sure the signature bits | ||
| 5462 | * (15:14) are 11b until the commit has completed. | ||
| 5463 | * This will allow us to write 10b which indicates the | ||
| 5464 | * signature is valid. We want to do this after the write | ||
| 5465 | * has completed so that we don't mark the segment valid | ||
| 5466 | * while the write is still in progress */ | ||
| 5467 | if (i == E1000_ICH8_NVM_SIG_WORD) | ||
| 5468 | high_byte = E1000_ICH8_NVM_SIG_MASK | high_byte; | ||
| 5469 | |||
| 5470 | error = e1000_verify_write_ich8_byte(hw, | ||
| 5471 | (i << 1) + new_bank_offset + 1, high_byte); | ||
| 5472 | if (error != E1000_SUCCESS) | ||
| 5473 | sector_write_failed = TRUE; | ||
| 5474 | |||
| 5475 | if (sector_write_failed == FALSE) { | ||
| 5476 | /* Clear the now not used entry in the cache */ | ||
| 5477 | hw->eeprom_shadow_ram[i].modified = FALSE; | ||
| 5478 | hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF; | ||
| 5479 | } | ||
| 5480 | } | ||
| 5481 | |||
| 5482 | /* Don't bother writing the segment valid bits if sector | ||
| 5483 | * programming failed. */ | ||
| 5484 | if (sector_write_failed == FALSE) { | ||
| 5485 | /* Finally validate the new segment by setting bit 15:14 | ||
| 5486 | * to 10b in word 0x13 , this can be done without an | ||
| 5487 | * erase as well since these bits are 11 to start with | ||
| 5488 | * and we need to change bit 14 to 0b */ | ||
| 5489 | e1000_read_ich8_byte(hw, | ||
| 5490 | E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset, | ||
| 5491 | &high_byte); | ||
| 5492 | high_byte &= 0xBF; | ||
| 5493 | error = e1000_verify_write_ich8_byte(hw, | ||
| 5494 | E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset, | ||
| 5495 | high_byte); | ||
| 5496 | if (error != E1000_SUCCESS) | ||
| 5497 | sector_write_failed = TRUE; | ||
| 5498 | |||
| 5499 | /* And invalidate the previously valid segment by setting | ||
| 5500 | * its signature word (0x13) high_byte to 0b. This can be | ||
| 5501 | * done without an erase because flash erase sets all bits | ||
| 5502 | * to 1's. We can write 1's to 0's without an erase */ | ||
| 5503 | error = e1000_verify_write_ich8_byte(hw, | ||
| 5504 | E1000_ICH8_NVM_SIG_WORD * 2 + 1 + old_bank_offset, | ||
| 5505 | 0); | ||
| 5506 | if (error != E1000_SUCCESS) | ||
| 5507 | sector_write_failed = TRUE; | ||
| 5508 | } | ||
| 5509 | } while (++sector_retries < 10 && sector_write_failed == TRUE); | ||
| 5510 | } | ||
| 5511 | |||
| 4998 | return error; | 5512 | return error; |
| 4999 | } | 5513 | } |
| 5000 | 5514 | ||
| @@ -5102,15 +5616,19 @@ e1000_init_rx_addrs(struct e1000_hw *hw) | |||
| 5102 | * the other port. */ | 5616 | * the other port. */ |
| 5103 | if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE)) | 5617 | if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE)) |
| 5104 | rar_num -= 1; | 5618 | rar_num -= 1; |
| 5619 | if (hw->mac_type == e1000_ich8lan) | ||
| 5620 | rar_num = E1000_RAR_ENTRIES_ICH8LAN; | ||
| 5621 | |||
| 5105 | /* Zero out the other 15 receive addresses. */ | 5622 | /* Zero out the other 15 receive addresses. */ |
| 5106 | DEBUGOUT("Clearing RAR[1-15]\n"); | 5623 | DEBUGOUT("Clearing RAR[1-15]\n"); |
| 5107 | for(i = 1; i < rar_num; i++) { | 5624 | for(i = 1; i < rar_num; i++) { |
| 5108 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); | 5625 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); |
| 5626 | E1000_WRITE_FLUSH(hw); | ||
| 5109 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); | 5627 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); |
| 5628 | E1000_WRITE_FLUSH(hw); | ||
| 5110 | } | 5629 | } |
| 5111 | } | 5630 | } |
| 5112 | 5631 | ||
| 5113 | #if 0 | ||
| 5114 | /****************************************************************************** | 5632 | /****************************************************************************** |
| 5115 | * Updates the MAC's list of multicast addresses. | 5633 | * Updates the MAC's list of multicast addresses. |
| 5116 | * | 5634 | * |
| @@ -5145,6 +5663,8 @@ e1000_mc_addr_list_update(struct e1000_hw *hw, | |||
| 5145 | /* Clear RAR[1-15] */ | 5663 | /* Clear RAR[1-15] */ |
| 5146 | DEBUGOUT(" Clearing RAR[1-15]\n"); | 5664 | DEBUGOUT(" Clearing RAR[1-15]\n"); |
| 5147 | num_rar_entry = E1000_RAR_ENTRIES; | 5665 | num_rar_entry = E1000_RAR_ENTRIES; |
| 5666 | if (hw->mac_type == e1000_ich8lan) | ||
| 5667 | num_rar_entry = E1000_RAR_ENTRIES_ICH8LAN; | ||
| 5148 | /* Reserve a spot for the Locally Administered Address to work around | 5668 | /* Reserve a spot for the Locally Administered Address to work around |
| 5149 | * an 82571 issue in which a reset on one port will reload the MAC on | 5669 | * an 82571 issue in which a reset on one port will reload the MAC on |
| 5150 | * the other port. */ | 5670 | * the other port. */ |
| @@ -5153,14 +5673,19 @@ e1000_mc_addr_list_update(struct e1000_hw *hw, | |||
| 5153 | 5673 | ||
| 5154 | for(i = rar_used_count; i < num_rar_entry; i++) { | 5674 | for(i = rar_used_count; i < num_rar_entry; i++) { |
| 5155 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); | 5675 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); |
| 5676 | E1000_WRITE_FLUSH(hw); | ||
| 5156 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); | 5677 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); |
| 5678 | E1000_WRITE_FLUSH(hw); | ||
| 5157 | } | 5679 | } |
| 5158 | 5680 | ||
| 5159 | /* Clear the MTA */ | 5681 | /* Clear the MTA */ |
| 5160 | DEBUGOUT(" Clearing MTA\n"); | 5682 | DEBUGOUT(" Clearing MTA\n"); |
| 5161 | num_mta_entry = E1000_NUM_MTA_REGISTERS; | 5683 | num_mta_entry = E1000_NUM_MTA_REGISTERS; |
| 5684 | if (hw->mac_type == e1000_ich8lan) | ||
| 5685 | num_mta_entry = E1000_NUM_MTA_REGISTERS_ICH8LAN; | ||
| 5162 | for(i = 0; i < num_mta_entry; i++) { | 5686 | for(i = 0; i < num_mta_entry; i++) { |
| 5163 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); | 5687 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); |
| 5688 | E1000_WRITE_FLUSH(hw); | ||
| 5164 | } | 5689 | } |
| 5165 | 5690 | ||
| 5166 | /* Add the new addresses */ | 5691 | /* Add the new addresses */ |
| @@ -5194,7 +5719,6 @@ e1000_mc_addr_list_update(struct e1000_hw *hw, | |||
| 5194 | } | 5719 | } |
| 5195 | DEBUGOUT("MC Update Complete\n"); | 5720 | DEBUGOUT("MC Update Complete\n"); |
| 5196 | } | 5721 | } |
| 5197 | #endif /* 0 */ | ||
| 5198 | 5722 | ||
| 5199 | /****************************************************************************** | 5723 | /****************************************************************************** |
| 5200 | * Hashes an address to determine its location in the multicast table | 5724 | * Hashes an address to determine its location in the multicast table |
| @@ -5217,24 +5741,46 @@ e1000_hash_mc_addr(struct e1000_hw *hw, | |||
| 5217 | * LSB MSB | 5741 | * LSB MSB |
| 5218 | */ | 5742 | */ |
| 5219 | case 0: | 5743 | case 0: |
| 5220 | /* [47:36] i.e. 0x563 for above example address */ | 5744 | if (hw->mac_type == e1000_ich8lan) { |
| 5221 | hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4)); | 5745 | /* [47:38] i.e. 0x158 for above example address */ |
| 5746 | hash_value = ((mc_addr[4] >> 6) | (((uint16_t) mc_addr[5]) << 2)); | ||
| 5747 | } else { | ||
| 5748 | /* [47:36] i.e. 0x563 for above example address */ | ||
| 5749 | hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4)); | ||
| 5750 | } | ||
| 5222 | break; | 5751 | break; |
| 5223 | case 1: | 5752 | case 1: |
| 5224 | /* [46:35] i.e. 0xAC6 for above example address */ | 5753 | if (hw->mac_type == e1000_ich8lan) { |
| 5225 | hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5)); | 5754 | /* [46:37] i.e. 0x2B1 for above example address */ |
| 5755 | hash_value = ((mc_addr[4] >> 5) | (((uint16_t) mc_addr[5]) << 3)); | ||
| 5756 | } else { | ||
| 5757 | /* [46:35] i.e. 0xAC6 for above example address */ | ||
| 5758 | hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5)); | ||
| 5759 | } | ||
| 5226 | break; | 5760 | break; |
| 5227 | case 2: | 5761 | case 2: |
| 5228 | /* [45:34] i.e. 0x5D8 for above example address */ | 5762 | if (hw->mac_type == e1000_ich8lan) { |
| 5229 | hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6)); | 5763 | /*[45:36] i.e. 0x163 for above example address */ |
| 5764 | hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4)); | ||
| 5765 | } else { | ||
| 5766 | /* [45:34] i.e. 0x5D8 for above example address */ | ||
| 5767 | hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6)); | ||
| 5768 | } | ||
| 5230 | break; | 5769 | break; |
| 5231 | case 3: | 5770 | case 3: |
| 5232 | /* [43:32] i.e. 0x634 for above example address */ | 5771 | if (hw->mac_type == e1000_ich8lan) { |
| 5233 | hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8)); | 5772 | /* [43:34] i.e. 0x18D for above example address */ |
| 5773 | hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6)); | ||
| 5774 | } else { | ||
| 5775 | /* [43:32] i.e. 0x634 for above example address */ | ||
| 5776 | hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8)); | ||
| 5777 | } | ||
| 5234 | break; | 5778 | break; |
| 5235 | } | 5779 | } |
| 5236 | 5780 | ||
| 5237 | hash_value &= 0xFFF; | 5781 | hash_value &= 0xFFF; |
| 5782 | if (hw->mac_type == e1000_ich8lan) | ||
| 5783 | hash_value &= 0x3FF; | ||
| 5238 | 5784 | ||
| 5239 | return hash_value; | 5785 | return hash_value; |
| 5240 | } | 5786 | } |
| @@ -5262,6 +5808,8 @@ e1000_mta_set(struct e1000_hw *hw, | |||
| 5262 | * register are determined by the lower 5 bits of the value. | 5808 | * register are determined by the lower 5 bits of the value. |
| 5263 | */ | 5809 | */ |
| 5264 | hash_reg = (hash_value >> 5) & 0x7F; | 5810 | hash_reg = (hash_value >> 5) & 0x7F; |
| 5811 | if (hw->mac_type == e1000_ich8lan) | ||
| 5812 | hash_reg &= 0x1F; | ||
| 5265 | hash_bit = hash_value & 0x1F; | 5813 | hash_bit = hash_value & 0x1F; |
| 5266 | 5814 | ||
| 5267 | mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg); | 5815 | mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg); |
| @@ -5275,9 +5823,12 @@ e1000_mta_set(struct e1000_hw *hw, | |||
| 5275 | if((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) { | 5823 | if((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) { |
| 5276 | temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1)); | 5824 | temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1)); |
| 5277 | E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); | 5825 | E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); |
| 5826 | E1000_WRITE_FLUSH(hw); | ||
| 5278 | E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp); | 5827 | E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp); |
| 5828 | E1000_WRITE_FLUSH(hw); | ||
| 5279 | } else { | 5829 | } else { |
| 5280 | E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); | 5830 | E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); |
| 5831 | E1000_WRITE_FLUSH(hw); | ||
| 5281 | } | 5832 | } |
| 5282 | } | 5833 | } |
| 5283 | 5834 | ||
| @@ -5334,7 +5885,9 @@ e1000_rar_set(struct e1000_hw *hw, | |||
| 5334 | } | 5885 | } |
| 5335 | 5886 | ||
| 5336 | E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); | 5887 | E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); |
| 5888 | E1000_WRITE_FLUSH(hw); | ||
| 5337 | E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); | 5889 | E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); |
| 5890 | E1000_WRITE_FLUSH(hw); | ||
| 5338 | } | 5891 | } |
| 5339 | 5892 | ||
| 5340 | /****************************************************************************** | 5893 | /****************************************************************************** |
| @@ -5351,12 +5904,18 @@ e1000_write_vfta(struct e1000_hw *hw, | |||
| 5351 | { | 5904 | { |
| 5352 | uint32_t temp; | 5905 | uint32_t temp; |
| 5353 | 5906 | ||
| 5354 | if((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) { | 5907 | if (hw->mac_type == e1000_ich8lan) |
| 5908 | return; | ||
| 5909 | |||
| 5910 | if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) { | ||
| 5355 | temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); | 5911 | temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); |
| 5356 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); | 5912 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); |
| 5913 | E1000_WRITE_FLUSH(hw); | ||
| 5357 | E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp); | 5914 | E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp); |
| 5915 | E1000_WRITE_FLUSH(hw); | ||
| 5358 | } else { | 5916 | } else { |
| 5359 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); | 5917 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); |
| 5918 | E1000_WRITE_FLUSH(hw); | ||
| 5360 | } | 5919 | } |
| 5361 | } | 5920 | } |
| 5362 | 5921 | ||
| @@ -5373,6 +5932,9 @@ e1000_clear_vfta(struct e1000_hw *hw) | |||
| 5373 | uint32_t vfta_offset = 0; | 5932 | uint32_t vfta_offset = 0; |
| 5374 | uint32_t vfta_bit_in_reg = 0; | 5933 | uint32_t vfta_bit_in_reg = 0; |
| 5375 | 5934 | ||
| 5935 | if (hw->mac_type == e1000_ich8lan) | ||
| 5936 | return; | ||
| 5937 | |||
| 5376 | if (hw->mac_type == e1000_82573) { | 5938 | if (hw->mac_type == e1000_82573) { |
| 5377 | if (hw->mng_cookie.vlan_id != 0) { | 5939 | if (hw->mng_cookie.vlan_id != 0) { |
| 5378 | /* The VFTA is a 4096b bit-field, each identifying a single VLAN | 5940 | /* The VFTA is a 4096b bit-field, each identifying a single VLAN |
| @@ -5392,6 +5954,7 @@ e1000_clear_vfta(struct e1000_hw *hw) | |||
| 5392 | * manageability unit */ | 5954 | * manageability unit */ |
| 5393 | vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; | 5955 | vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; |
| 5394 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value); | 5956 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value); |
| 5957 | E1000_WRITE_FLUSH(hw); | ||
| 5395 | } | 5958 | } |
| 5396 | } | 5959 | } |
| 5397 | 5960 | ||
| @@ -5421,9 +5984,18 @@ e1000_id_led_init(struct e1000_hw * hw) | |||
| 5421 | DEBUGOUT("EEPROM Read Error\n"); | 5984 | DEBUGOUT("EEPROM Read Error\n"); |
| 5422 | return -E1000_ERR_EEPROM; | 5985 | return -E1000_ERR_EEPROM; |
| 5423 | } | 5986 | } |
| 5424 | if((eeprom_data== ID_LED_RESERVED_0000) || | 5987 | |
| 5425 | (eeprom_data == ID_LED_RESERVED_FFFF)) eeprom_data = ID_LED_DEFAULT; | 5988 | if ((hw->mac_type == e1000_82573) && |
| 5426 | for(i = 0; i < 4; i++) { | 5989 | (eeprom_data == ID_LED_RESERVED_82573)) |
| 5990 | eeprom_data = ID_LED_DEFAULT_82573; | ||
| 5991 | else if ((eeprom_data == ID_LED_RESERVED_0000) || | ||
| 5992 | (eeprom_data == ID_LED_RESERVED_FFFF)) { | ||
| 5993 | if (hw->mac_type == e1000_ich8lan) | ||
| 5994 | eeprom_data = ID_LED_DEFAULT_ICH8LAN; | ||
| 5995 | else | ||
| 5996 | eeprom_data = ID_LED_DEFAULT; | ||
| 5997 | } | ||
| 5998 | for (i = 0; i < 4; i++) { | ||
| 5427 | temp = (eeprom_data >> (i << 2)) & led_mask; | 5999 | temp = (eeprom_data >> (i << 2)) & led_mask; |
| 5428 | switch(temp) { | 6000 | switch(temp) { |
| 5429 | case ID_LED_ON1_DEF2: | 6001 | case ID_LED_ON1_DEF2: |
| @@ -5519,6 +6091,44 @@ e1000_setup_led(struct e1000_hw *hw) | |||
| 5519 | } | 6091 | } |
| 5520 | 6092 | ||
| 5521 | /****************************************************************************** | 6093 | /****************************************************************************** |
| 6094 | * Used on 82571 and later Si that has LED blink bits. | ||
| 6095 | * Callers must use their own timer and should have already called | ||
| 6096 | * e1000_id_led_init() | ||
| 6097 | * Call e1000_cleanup led() to stop blinking | ||
| 6098 | * | ||
| 6099 | * hw - Struct containing variables accessed by shared code | ||
| 6100 | *****************************************************************************/ | ||
| 6101 | int32_t | ||
| 6102 | e1000_blink_led_start(struct e1000_hw *hw) | ||
| 6103 | { | ||
| 6104 | int16_t i; | ||
| 6105 | uint32_t ledctl_blink = 0; | ||
| 6106 | |||
| 6107 | DEBUGFUNC("e1000_id_led_blink_on"); | ||
| 6108 | |||
| 6109 | if (hw->mac_type < e1000_82571) { | ||
| 6110 | /* Nothing to do */ | ||
| 6111 | return E1000_SUCCESS; | ||
| 6112 | } | ||
| 6113 | if (hw->media_type == e1000_media_type_fiber) { | ||
| 6114 | /* always blink LED0 for PCI-E fiber */ | ||
| 6115 | ledctl_blink = E1000_LEDCTL_LED0_BLINK | | ||
| 6116 | (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); | ||
| 6117 | } else { | ||
| 6118 | /* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */ | ||
| 6119 | ledctl_blink = hw->ledctl_mode2; | ||
| 6120 | for (i=0; i < 4; i++) | ||
| 6121 | if (((hw->ledctl_mode2 >> (i * 8)) & 0xFF) == | ||
| 6122 | E1000_LEDCTL_MODE_LED_ON) | ||
| 6123 | ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8)); | ||
| 6124 | } | ||
| 6125 | |||
| 6126 | E1000_WRITE_REG(hw, LEDCTL, ledctl_blink); | ||
| 6127 | |||
| 6128 | return E1000_SUCCESS; | ||
| 6129 | } | ||
| 6130 | |||
| 6131 | /****************************************************************************** | ||
| 5522 | * Restores the saved state of the SW controlable LED. | 6132 | * Restores the saved state of the SW controlable LED. |
| 5523 | * | 6133 | * |
| 5524 | * hw - Struct containing variables accessed by shared code | 6134 | * hw - Struct containing variables accessed by shared code |
| @@ -5548,6 +6158,10 @@ e1000_cleanup_led(struct e1000_hw *hw) | |||
| 5548 | return ret_val; | 6158 | return ret_val; |
| 5549 | /* Fall Through */ | 6159 | /* Fall Through */ |
| 5550 | default: | 6160 | default: |
| 6161 | if (hw->phy_type == e1000_phy_ife) { | ||
| 6162 | e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); | ||
| 6163 | break; | ||
| 6164 | } | ||
| 5551 | /* Restore LEDCTL settings */ | 6165 | /* Restore LEDCTL settings */ |
| 5552 | E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default); | 6166 | E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default); |
| 5553 | break; | 6167 | break; |
| @@ -5592,7 +6206,10 @@ e1000_led_on(struct e1000_hw *hw) | |||
| 5592 | /* Clear SW Defineable Pin 0 to turn on the LED */ | 6206 | /* Clear SW Defineable Pin 0 to turn on the LED */ |
| 5593 | ctrl &= ~E1000_CTRL_SWDPIN0; | 6207 | ctrl &= ~E1000_CTRL_SWDPIN0; |
| 5594 | ctrl |= E1000_CTRL_SWDPIO0; | 6208 | ctrl |= E1000_CTRL_SWDPIO0; |
| 5595 | } else if(hw->media_type == e1000_media_type_copper) { | 6209 | } else if (hw->phy_type == e1000_phy_ife) { |
| 6210 | e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, | ||
| 6211 | (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); | ||
| 6212 | } else if (hw->media_type == e1000_media_type_copper) { | ||
| 5596 | E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2); | 6213 | E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2); |
| 5597 | return E1000_SUCCESS; | 6214 | return E1000_SUCCESS; |
| 5598 | } | 6215 | } |
| @@ -5640,7 +6257,10 @@ e1000_led_off(struct e1000_hw *hw) | |||
| 5640 | /* Set SW Defineable Pin 0 to turn off the LED */ | 6257 | /* Set SW Defineable Pin 0 to turn off the LED */ |
| 5641 | ctrl |= E1000_CTRL_SWDPIN0; | 6258 | ctrl |= E1000_CTRL_SWDPIN0; |
| 5642 | ctrl |= E1000_CTRL_SWDPIO0; | 6259 | ctrl |= E1000_CTRL_SWDPIO0; |
| 5643 | } else if(hw->media_type == e1000_media_type_copper) { | 6260 | } else if (hw->phy_type == e1000_phy_ife) { |
| 6261 | e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, | ||
| 6262 | (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF)); | ||
| 6263 | } else if (hw->media_type == e1000_media_type_copper) { | ||
| 5644 | E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1); | 6264 | E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1); |
| 5645 | return E1000_SUCCESS; | 6265 | return E1000_SUCCESS; |
| 5646 | } | 6266 | } |
| @@ -5678,12 +6298,16 @@ e1000_clear_hw_cntrs(struct e1000_hw *hw) | |||
| 5678 | temp = E1000_READ_REG(hw, XOFFRXC); | 6298 | temp = E1000_READ_REG(hw, XOFFRXC); |
| 5679 | temp = E1000_READ_REG(hw, XOFFTXC); | 6299 | temp = E1000_READ_REG(hw, XOFFTXC); |
| 5680 | temp = E1000_READ_REG(hw, FCRUC); | 6300 | temp = E1000_READ_REG(hw, FCRUC); |
| 6301 | |||
| 6302 | if (hw->mac_type != e1000_ich8lan) { | ||
| 5681 | temp = E1000_READ_REG(hw, PRC64); | 6303 | temp = E1000_READ_REG(hw, PRC64); |
| 5682 | temp = E1000_READ_REG(hw, PRC127); | 6304 | temp = E1000_READ_REG(hw, PRC127); |
| 5683 | temp = E1000_READ_REG(hw, PRC255); | 6305 | temp = E1000_READ_REG(hw, PRC255); |
| 5684 | temp = E1000_READ_REG(hw, PRC511); | 6306 | temp = E1000_READ_REG(hw, PRC511); |
| 5685 | temp = E1000_READ_REG(hw, PRC1023); | 6307 | temp = E1000_READ_REG(hw, PRC1023); |
| 5686 | temp = E1000_READ_REG(hw, PRC1522); | 6308 | temp = E1000_READ_REG(hw, PRC1522); |
| 6309 | } | ||
| 6310 | |||
| 5687 | temp = E1000_READ_REG(hw, GPRC); | 6311 | temp = E1000_READ_REG(hw, GPRC); |
| 5688 | temp = E1000_READ_REG(hw, BPRC); | 6312 | temp = E1000_READ_REG(hw, BPRC); |
| 5689 | temp = E1000_READ_REG(hw, MPRC); | 6313 | temp = E1000_READ_REG(hw, MPRC); |
| @@ -5703,12 +6327,16 @@ e1000_clear_hw_cntrs(struct e1000_hw *hw) | |||
| 5703 | temp = E1000_READ_REG(hw, TOTH); | 6327 | temp = E1000_READ_REG(hw, TOTH); |
| 5704 | temp = E1000_READ_REG(hw, TPR); | 6328 | temp = E1000_READ_REG(hw, TPR); |
| 5705 | temp = E1000_READ_REG(hw, TPT); | 6329 | temp = E1000_READ_REG(hw, TPT); |
| 6330 | |||
| 6331 | if (hw->mac_type != e1000_ich8lan) { | ||
| 5706 | temp = E1000_READ_REG(hw, PTC64); | 6332 | temp = E1000_READ_REG(hw, PTC64); |
| 5707 | temp = E1000_READ_REG(hw, PTC127); | 6333 | temp = E1000_READ_REG(hw, PTC127); |
| 5708 | temp = E1000_READ_REG(hw, PTC255); | 6334 | temp = E1000_READ_REG(hw, PTC255); |
| 5709 | temp = E1000_READ_REG(hw, PTC511); | 6335 | temp = E1000_READ_REG(hw, PTC511); |
| 5710 | temp = E1000_READ_REG(hw, PTC1023); | 6336 | temp = E1000_READ_REG(hw, PTC1023); |
| 5711 | temp = E1000_READ_REG(hw, PTC1522); | 6337 | temp = E1000_READ_REG(hw, PTC1522); |
| 6338 | } | ||
| 6339 | |||
| 5712 | temp = E1000_READ_REG(hw, MPTC); | 6340 | temp = E1000_READ_REG(hw, MPTC); |
| 5713 | temp = E1000_READ_REG(hw, BPTC); | 6341 | temp = E1000_READ_REG(hw, BPTC); |
| 5714 | 6342 | ||
| @@ -5731,6 +6359,9 @@ e1000_clear_hw_cntrs(struct e1000_hw *hw) | |||
| 5731 | 6359 | ||
| 5732 | temp = E1000_READ_REG(hw, IAC); | 6360 | temp = E1000_READ_REG(hw, IAC); |
| 5733 | temp = E1000_READ_REG(hw, ICRXOC); | 6361 | temp = E1000_READ_REG(hw, ICRXOC); |
| 6362 | |||
| 6363 | if (hw->mac_type == e1000_ich8lan) return; | ||
| 6364 | |||
| 5734 | temp = E1000_READ_REG(hw, ICRXPTC); | 6365 | temp = E1000_READ_REG(hw, ICRXPTC); |
| 5735 | temp = E1000_READ_REG(hw, ICRXATC); | 6366 | temp = E1000_READ_REG(hw, ICRXATC); |
| 5736 | temp = E1000_READ_REG(hw, ICTXPTC); | 6367 | temp = E1000_READ_REG(hw, ICTXPTC); |
| @@ -5911,6 +6542,7 @@ e1000_get_bus_info(struct e1000_hw *hw) | |||
| 5911 | hw->bus_width = e1000_bus_width_pciex_1; | 6542 | hw->bus_width = e1000_bus_width_pciex_1; |
| 5912 | break; | 6543 | break; |
| 5913 | case e1000_82571: | 6544 | case e1000_82571: |
| 6545 | case e1000_ich8lan: | ||
| 5914 | case e1000_80003es2lan: | 6546 | case e1000_80003es2lan: |
| 5915 | hw->bus_type = e1000_bus_type_pci_express; | 6547 | hw->bus_type = e1000_bus_type_pci_express; |
| 5916 | hw->bus_speed = e1000_bus_speed_2500; | 6548 | hw->bus_speed = e1000_bus_speed_2500; |
| @@ -5948,8 +6580,6 @@ e1000_get_bus_info(struct e1000_hw *hw) | |||
| 5948 | break; | 6580 | break; |
| 5949 | } | 6581 | } |
| 5950 | } | 6582 | } |
| 5951 | |||
| 5952 | #if 0 | ||
| 5953 | /****************************************************************************** | 6583 | /****************************************************************************** |
| 5954 | * Reads a value from one of the devices registers using port I/O (as opposed | 6584 | * Reads a value from one of the devices registers using port I/O (as opposed |
| 5955 | * memory mapped I/O). Only 82544 and newer devices support port I/O. | 6585 | * memory mapped I/O). Only 82544 and newer devices support port I/O. |
| @@ -5967,7 +6597,6 @@ e1000_read_reg_io(struct e1000_hw *hw, | |||
| 5967 | e1000_io_write(hw, io_addr, offset); | 6597 | e1000_io_write(hw, io_addr, offset); |
| 5968 | return e1000_io_read(hw, io_data); | 6598 | return e1000_io_read(hw, io_data); |
| 5969 | } | 6599 | } |
| 5970 | #endif /* 0 */ | ||
| 5971 | 6600 | ||
| 5972 | /****************************************************************************** | 6601 | /****************************************************************************** |
| 5973 | * Writes a value to one of the devices registers using port I/O (as opposed to | 6602 | * Writes a value to one of the devices registers using port I/O (as opposed to |
| @@ -6012,8 +6641,6 @@ e1000_get_cable_length(struct e1000_hw *hw, | |||
| 6012 | { | 6641 | { |
| 6013 | int32_t ret_val; | 6642 | int32_t ret_val; |
| 6014 | uint16_t agc_value = 0; | 6643 | uint16_t agc_value = 0; |
| 6015 | uint16_t cur_agc, min_agc = IGP01E1000_AGC_LENGTH_TABLE_SIZE; | ||
| 6016 | uint16_t max_agc = 0; | ||
| 6017 | uint16_t i, phy_data; | 6644 | uint16_t i, phy_data; |
| 6018 | uint16_t cable_length; | 6645 | uint16_t cable_length; |
| 6019 | 6646 | ||
| @@ -6086,6 +6713,8 @@ e1000_get_cable_length(struct e1000_hw *hw, | |||
| 6086 | break; | 6713 | break; |
| 6087 | } | 6714 | } |
| 6088 | } else if(hw->phy_type == e1000_phy_igp) { /* For IGP PHY */ | 6715 | } else if(hw->phy_type == e1000_phy_igp) { /* For IGP PHY */ |
| 6716 | uint16_t cur_agc_value; | ||
| 6717 | uint16_t min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE; | ||
| 6089 | uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = | 6718 | uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = |
| 6090 | {IGP01E1000_PHY_AGC_A, | 6719 | {IGP01E1000_PHY_AGC_A, |
| 6091 | IGP01E1000_PHY_AGC_B, | 6720 | IGP01E1000_PHY_AGC_B, |
| @@ -6098,23 +6727,23 @@ e1000_get_cable_length(struct e1000_hw *hw, | |||
| 6098 | if(ret_val) | 6727 | if(ret_val) |
| 6099 | return ret_val; | 6728 | return ret_val; |
| 6100 | 6729 | ||
| 6101 | cur_agc = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; | 6730 | cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; |
| 6102 | 6731 | ||
| 6103 | /* Array bound check. */ | 6732 | /* Value bound check. */ |
| 6104 | if((cur_agc >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) || | 6733 | if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) || |
| 6105 | (cur_agc == 0)) | 6734 | (cur_agc_value == 0)) |
| 6106 | return -E1000_ERR_PHY; | 6735 | return -E1000_ERR_PHY; |
| 6107 | 6736 | ||
| 6108 | agc_value += cur_agc; | 6737 | agc_value += cur_agc_value; |
| 6109 | 6738 | ||
| 6110 | /* Update minimal AGC value. */ | 6739 | /* Update minimal AGC value. */ |
| 6111 | if(min_agc > cur_agc) | 6740 | if (min_agc_value > cur_agc_value) |
| 6112 | min_agc = cur_agc; | 6741 | min_agc_value = cur_agc_value; |
| 6113 | } | 6742 | } |
| 6114 | 6743 | ||
| 6115 | /* Remove the minimal AGC result for length < 50m */ | 6744 | /* Remove the minimal AGC result for length < 50m */ |
| 6116 | if(agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) { | 6745 | if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) { |
| 6117 | agc_value -= min_agc; | 6746 | agc_value -= min_agc_value; |
| 6118 | 6747 | ||
| 6119 | /* Get the average length of the remaining 3 channels */ | 6748 | /* Get the average length of the remaining 3 channels */ |
| 6120 | agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); | 6749 | agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); |
| @@ -6130,7 +6759,10 @@ e1000_get_cable_length(struct e1000_hw *hw, | |||
| 6130 | IGP01E1000_AGC_RANGE) : 0; | 6759 | IGP01E1000_AGC_RANGE) : 0; |
| 6131 | *max_length = e1000_igp_cable_length_table[agc_value] + | 6760 | *max_length = e1000_igp_cable_length_table[agc_value] + |
| 6132 | IGP01E1000_AGC_RANGE; | 6761 | IGP01E1000_AGC_RANGE; |
| 6133 | } else if (hw->phy_type == e1000_phy_igp_2) { | 6762 | } else if (hw->phy_type == e1000_phy_igp_2 || |
| 6763 | hw->phy_type == e1000_phy_igp_3) { | ||
| 6764 | uint16_t cur_agc_index, max_agc_index = 0; | ||
| 6765 | uint16_t min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1; | ||
| 6134 | uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = | 6766 | uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = |
| 6135 | {IGP02E1000_PHY_AGC_A, | 6767 | {IGP02E1000_PHY_AGC_A, |
| 6136 | IGP02E1000_PHY_AGC_B, | 6768 | IGP02E1000_PHY_AGC_B, |
| @@ -6145,19 +6777,27 @@ e1000_get_cable_length(struct e1000_hw *hw, | |||
| 6145 | /* Getting bits 15:9, which represent the combination of course and | 6777 | /* Getting bits 15:9, which represent the combination of course and |
| 6146 | * fine gain values. The result is a number that can be put into | 6778 | * fine gain values. The result is a number that can be put into |
| 6147 | * the lookup table to obtain the approximate cable length. */ | 6779 | * the lookup table to obtain the approximate cable length. */ |
| 6148 | cur_agc = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & | 6780 | cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & |
| 6149 | IGP02E1000_AGC_LENGTH_MASK; | 6781 | IGP02E1000_AGC_LENGTH_MASK; |
| 6150 | 6782 | ||
| 6151 | /* Remove min & max AGC values from calculation. */ | 6783 | /* Array index bound check. */ |
| 6152 | if (e1000_igp_2_cable_length_table[min_agc] > e1000_igp_2_cable_length_table[cur_agc]) | 6784 | if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) || |
| 6153 | min_agc = cur_agc; | 6785 | (cur_agc_index == 0)) |
| 6154 | if (e1000_igp_2_cable_length_table[max_agc] < e1000_igp_2_cable_length_table[cur_agc]) | 6786 | return -E1000_ERR_PHY; |
| 6155 | max_agc = cur_agc; | ||
| 6156 | 6787 | ||
| 6157 | agc_value += e1000_igp_2_cable_length_table[cur_agc]; | 6788 | /* Remove min & max AGC values from calculation. */ |
| 6789 | if (e1000_igp_2_cable_length_table[min_agc_index] > | ||
| 6790 | e1000_igp_2_cable_length_table[cur_agc_index]) | ||
| 6791 | min_agc_index = cur_agc_index; | ||
| 6792 | if (e1000_igp_2_cable_length_table[max_agc_index] < | ||
| 6793 | e1000_igp_2_cable_length_table[cur_agc_index]) | ||
| 6794 | max_agc_index = cur_agc_index; | ||
| 6795 | |||
| 6796 | agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; | ||
| 6158 | } | 6797 | } |
| 6159 | 6798 | ||
| 6160 | agc_value -= (e1000_igp_2_cable_length_table[min_agc] + e1000_igp_2_cable_length_table[max_agc]); | 6799 | agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + |
| 6800 | e1000_igp_2_cable_length_table[max_agc_index]); | ||
| 6161 | agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); | 6801 | agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); |
| 6162 | 6802 | ||
| 6163 | /* Calculate cable length with the error range of +/- 10 meters. */ | 6803 | /* Calculate cable length with the error range of +/- 10 meters. */ |
| @@ -6203,7 +6843,8 @@ e1000_check_polarity(struct e1000_hw *hw, | |||
| 6203 | return ret_val; | 6843 | return ret_val; |
| 6204 | *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >> | 6844 | *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >> |
| 6205 | M88E1000_PSSR_REV_POLARITY_SHIFT; | 6845 | M88E1000_PSSR_REV_POLARITY_SHIFT; |
| 6206 | } else if(hw->phy_type == e1000_phy_igp || | 6846 | } else if (hw->phy_type == e1000_phy_igp || |
| 6847 | hw->phy_type == e1000_phy_igp_3 || | ||
| 6207 | hw->phy_type == e1000_phy_igp_2) { | 6848 | hw->phy_type == e1000_phy_igp_2) { |
| 6208 | /* Read the Status register to check the speed */ | 6849 | /* Read the Status register to check the speed */ |
| 6209 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, | 6850 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, |
| @@ -6229,6 +6870,13 @@ e1000_check_polarity(struct e1000_hw *hw, | |||
| 6229 | * 100 Mbps this bit is always 0) */ | 6870 | * 100 Mbps this bit is always 0) */ |
| 6230 | *polarity = phy_data & IGP01E1000_PSSR_POLARITY_REVERSED; | 6871 | *polarity = phy_data & IGP01E1000_PSSR_POLARITY_REVERSED; |
| 6231 | } | 6872 | } |
| 6873 | } else if (hw->phy_type == e1000_phy_ife) { | ||
| 6874 | ret_val = e1000_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL, | ||
| 6875 | &phy_data); | ||
| 6876 | if (ret_val) | ||
| 6877 | return ret_val; | ||
| 6878 | *polarity = (phy_data & IFE_PESC_POLARITY_REVERSED) >> | ||
| 6879 | IFE_PESC_POLARITY_REVERSED_SHIFT; | ||
| 6232 | } | 6880 | } |
| 6233 | return E1000_SUCCESS; | 6881 | return E1000_SUCCESS; |
| 6234 | } | 6882 | } |
| @@ -6256,7 +6904,8 @@ e1000_check_downshift(struct e1000_hw *hw) | |||
| 6256 | 6904 | ||
| 6257 | DEBUGFUNC("e1000_check_downshift"); | 6905 | DEBUGFUNC("e1000_check_downshift"); |
| 6258 | 6906 | ||
| 6259 | if(hw->phy_type == e1000_phy_igp || | 6907 | if (hw->phy_type == e1000_phy_igp || |
| 6908 | hw->phy_type == e1000_phy_igp_3 || | ||
| 6260 | hw->phy_type == e1000_phy_igp_2) { | 6909 | hw->phy_type == e1000_phy_igp_2) { |
| 6261 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, | 6910 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, |
| 6262 | &phy_data); | 6911 | &phy_data); |
| @@ -6273,6 +6922,9 @@ e1000_check_downshift(struct e1000_hw *hw) | |||
| 6273 | 6922 | ||
| 6274 | hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> | 6923 | hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> |
| 6275 | M88E1000_PSSR_DOWNSHIFT_SHIFT; | 6924 | M88E1000_PSSR_DOWNSHIFT_SHIFT; |
| 6925 | } else if (hw->phy_type == e1000_phy_ife) { | ||
| 6926 | /* e1000_phy_ife supports 10/100 speed only */ | ||
| 6927 | hw->speed_downgraded = FALSE; | ||
| 6276 | } | 6928 | } |
| 6277 | 6929 | ||
| 6278 | return E1000_SUCCESS; | 6930 | return E1000_SUCCESS; |
| @@ -6317,7 +6969,9 @@ e1000_config_dsp_after_link_change(struct e1000_hw *hw, | |||
| 6317 | 6969 | ||
| 6318 | if(speed == SPEED_1000) { | 6970 | if(speed == SPEED_1000) { |
| 6319 | 6971 | ||
| 6320 | e1000_get_cable_length(hw, &min_length, &max_length); | 6972 | ret_val = e1000_get_cable_length(hw, &min_length, &max_length); |
| 6973 | if (ret_val) | ||
| 6974 | return ret_val; | ||
| 6321 | 6975 | ||
| 6322 | if((hw->dsp_config_state == e1000_dsp_config_enabled) && | 6976 | if((hw->dsp_config_state == e1000_dsp_config_enabled) && |
| 6323 | min_length >= e1000_igp_cable_length_50) { | 6977 | min_length >= e1000_igp_cable_length_50) { |
| @@ -6525,20 +7179,27 @@ static int32_t | |||
| 6525 | e1000_set_d3_lplu_state(struct e1000_hw *hw, | 7179 | e1000_set_d3_lplu_state(struct e1000_hw *hw, |
| 6526 | boolean_t active) | 7180 | boolean_t active) |
| 6527 | { | 7181 | { |
| 7182 | uint32_t phy_ctrl = 0; | ||
| 6528 | int32_t ret_val; | 7183 | int32_t ret_val; |
| 6529 | uint16_t phy_data; | 7184 | uint16_t phy_data; |
| 6530 | DEBUGFUNC("e1000_set_d3_lplu_state"); | 7185 | DEBUGFUNC("e1000_set_d3_lplu_state"); |
| 6531 | 7186 | ||
| 6532 | if(hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2) | 7187 | if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2 |
| 7188 | && hw->phy_type != e1000_phy_igp_3) | ||
| 6533 | return E1000_SUCCESS; | 7189 | return E1000_SUCCESS; |
| 6534 | 7190 | ||
| 6535 | /* During driver activity LPLU should not be used or it will attain link | 7191 | /* During driver activity LPLU should not be used or it will attain link |
| 6536 | * from the lowest speeds starting from 10Mbps. The capability is used for | 7192 | * from the lowest speeds starting from 10Mbps. The capability is used for |
| 6537 | * Dx transitions and states */ | 7193 | * Dx transitions and states */ |
| 6538 | if(hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) { | 7194 | if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) { |
| 6539 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); | 7195 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); |
| 6540 | if(ret_val) | 7196 | if (ret_val) |
| 6541 | return ret_val; | 7197 | return ret_val; |
| 7198 | } else if (hw->mac_type == e1000_ich8lan) { | ||
| 7199 | /* MAC writes into PHY register based on the state transition | ||
| 7200 | * and start auto-negotiation. SW driver can overwrite the settings | ||
| 7201 | * in CSR PHY power control E1000_PHY_CTRL register. */ | ||
| 7202 | phy_ctrl = E1000_READ_REG(hw, PHY_CTRL); | ||
| 6542 | } else { | 7203 | } else { |
| 6543 | ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); | 7204 | ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); |
| 6544 | if(ret_val) | 7205 | if(ret_val) |
| @@ -6553,11 +7214,16 @@ e1000_set_d3_lplu_state(struct e1000_hw *hw, | |||
| 6553 | if(ret_val) | 7214 | if(ret_val) |
| 6554 | return ret_val; | 7215 | return ret_val; |
| 6555 | } else { | 7216 | } else { |
| 7217 | if (hw->mac_type == e1000_ich8lan) { | ||
| 7218 | phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; | ||
| 7219 | E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); | ||
| 7220 | } else { | ||
| 6556 | phy_data &= ~IGP02E1000_PM_D3_LPLU; | 7221 | phy_data &= ~IGP02E1000_PM_D3_LPLU; |
| 6557 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, | 7222 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, |
| 6558 | phy_data); | 7223 | phy_data); |
| 6559 | if (ret_val) | 7224 | if (ret_val) |
| 6560 | return ret_val; | 7225 | return ret_val; |
| 7226 | } | ||
| 6561 | } | 7227 | } |
| 6562 | 7228 | ||
| 6563 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during | 7229 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during |
| @@ -6593,17 +7259,22 @@ e1000_set_d3_lplu_state(struct e1000_hw *hw, | |||
| 6593 | (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { | 7259 | (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { |
| 6594 | 7260 | ||
| 6595 | if(hw->mac_type == e1000_82541_rev_2 || | 7261 | if(hw->mac_type == e1000_82541_rev_2 || |
| 6596 | hw->mac_type == e1000_82547_rev_2) { | 7262 | hw->mac_type == e1000_82547_rev_2) { |
| 6597 | phy_data |= IGP01E1000_GMII_FLEX_SPD; | 7263 | phy_data |= IGP01E1000_GMII_FLEX_SPD; |
| 6598 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); | 7264 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); |
| 6599 | if(ret_val) | 7265 | if(ret_val) |
| 6600 | return ret_val; | 7266 | return ret_val; |
| 6601 | } else { | 7267 | } else { |
| 7268 | if (hw->mac_type == e1000_ich8lan) { | ||
| 7269 | phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; | ||
| 7270 | E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); | ||
| 7271 | } else { | ||
| 6602 | phy_data |= IGP02E1000_PM_D3_LPLU; | 7272 | phy_data |= IGP02E1000_PM_D3_LPLU; |
| 6603 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, | 7273 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, |
| 6604 | phy_data); | 7274 | phy_data); |
| 6605 | if (ret_val) | 7275 | if (ret_val) |
| 6606 | return ret_val; | 7276 | return ret_val; |
| 7277 | } | ||
| 6607 | } | 7278 | } |
| 6608 | 7279 | ||
| 6609 | /* When LPLU is enabled we should disable SmartSpeed */ | 7280 | /* When LPLU is enabled we should disable SmartSpeed */ |
| @@ -6638,6 +7309,7 @@ static int32_t | |||
| 6638 | e1000_set_d0_lplu_state(struct e1000_hw *hw, | 7309 | e1000_set_d0_lplu_state(struct e1000_hw *hw, |
| 6639 | boolean_t active) | 7310 | boolean_t active) |
| 6640 | { | 7311 | { |
| 7312 | uint32_t phy_ctrl = 0; | ||
| 6641 | int32_t ret_val; | 7313 | int32_t ret_val; |
| 6642 | uint16_t phy_data; | 7314 | uint16_t phy_data; |
| 6643 | DEBUGFUNC("e1000_set_d0_lplu_state"); | 7315 | DEBUGFUNC("e1000_set_d0_lplu_state"); |
| @@ -6645,15 +7317,24 @@ e1000_set_d0_lplu_state(struct e1000_hw *hw, | |||
| 6645 | if(hw->mac_type <= e1000_82547_rev_2) | 7317 | if(hw->mac_type <= e1000_82547_rev_2) |
| 6646 | return E1000_SUCCESS; | 7318 | return E1000_SUCCESS; |
| 6647 | 7319 | ||
| 7320 | if (hw->mac_type == e1000_ich8lan) { | ||
| 7321 | phy_ctrl = E1000_READ_REG(hw, PHY_CTRL); | ||
| 7322 | } else { | ||
| 6648 | ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); | 7323 | ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); |
| 6649 | if(ret_val) | 7324 | if(ret_val) |
| 6650 | return ret_val; | 7325 | return ret_val; |
| 7326 | } | ||
| 6651 | 7327 | ||
| 6652 | if (!active) { | 7328 | if (!active) { |
| 7329 | if (hw->mac_type == e1000_ich8lan) { | ||
| 7330 | phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; | ||
| 7331 | E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); | ||
| 7332 | } else { | ||
| 6653 | phy_data &= ~IGP02E1000_PM_D0_LPLU; | 7333 | phy_data &= ~IGP02E1000_PM_D0_LPLU; |
| 6654 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); | 7334 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); |
| 6655 | if (ret_val) | 7335 | if (ret_val) |
| 6656 | return ret_val; | 7336 | return ret_val; |
| 7337 | } | ||
| 6657 | 7338 | ||
| 6658 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during | 7339 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during |
| 6659 | * Dx states where the power conservation is most important. During | 7340 | * Dx states where the power conservation is most important. During |
| @@ -6686,10 +7367,15 @@ e1000_set_d0_lplu_state(struct e1000_hw *hw, | |||
| 6686 | 7367 | ||
| 6687 | } else { | 7368 | } else { |
| 6688 | 7369 | ||
| 7370 | if (hw->mac_type == e1000_ich8lan) { | ||
| 7371 | phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; | ||
| 7372 | E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); | ||
| 7373 | } else { | ||
| 6689 | phy_data |= IGP02E1000_PM_D0_LPLU; | 7374 | phy_data |= IGP02E1000_PM_D0_LPLU; |
| 6690 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); | 7375 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); |
| 6691 | if (ret_val) | 7376 | if (ret_val) |
| 6692 | return ret_val; | 7377 | return ret_val; |
| 7378 | } | ||
| 6693 | 7379 | ||
| 6694 | /* When LPLU is enabled we should disable SmartSpeed */ | 7380 | /* When LPLU is enabled we should disable SmartSpeed */ |
| 6695 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); | 7381 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); |
| @@ -6928,8 +7614,10 @@ e1000_mng_write_cmd_header(struct e1000_hw * hw, | |||
| 6928 | 7614 | ||
| 6929 | length >>= 2; | 7615 | length >>= 2; |
| 6930 | /* The device driver writes the relevant command block into the ram area. */ | 7616 | /* The device driver writes the relevant command block into the ram area. */ |
| 6931 | for (i = 0; i < length; i++) | 7617 | for (i = 0; i < length; i++) { |
| 6932 | E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i)); | 7618 | E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i)); |
| 7619 | E1000_WRITE_FLUSH(hw); | ||
| 7620 | } | ||
| 6933 | 7621 | ||
| 6934 | return E1000_SUCCESS; | 7622 | return E1000_SUCCESS; |
| 6935 | } | 7623 | } |
| @@ -6961,15 +7649,18 @@ e1000_mng_write_commit( | |||
| 6961 | * returns - TRUE when the mode is IAMT or FALSE. | 7649 | * returns - TRUE when the mode is IAMT or FALSE. |
| 6962 | ****************************************************************************/ | 7650 | ****************************************************************************/ |
| 6963 | boolean_t | 7651 | boolean_t |
| 6964 | e1000_check_mng_mode( | 7652 | e1000_check_mng_mode(struct e1000_hw *hw) |
| 6965 | struct e1000_hw *hw) | ||
| 6966 | { | 7653 | { |
| 6967 | uint32_t fwsm; | 7654 | uint32_t fwsm; |
| 6968 | 7655 | ||
| 6969 | fwsm = E1000_READ_REG(hw, FWSM); | 7656 | fwsm = E1000_READ_REG(hw, FWSM); |
| 6970 | 7657 | ||
| 6971 | if((fwsm & E1000_FWSM_MODE_MASK) == | 7658 | if (hw->mac_type == e1000_ich8lan) { |
| 6972 | (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) | 7659 | if ((fwsm & E1000_FWSM_MODE_MASK) == |
| 7660 | (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) | ||
| 7661 | return TRUE; | ||
| 7662 | } else if ((fwsm & E1000_FWSM_MODE_MASK) == | ||
| 7663 | (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) | ||
| 6973 | return TRUE; | 7664 | return TRUE; |
| 6974 | 7665 | ||
| 6975 | return FALSE; | 7666 | return FALSE; |
| @@ -7209,7 +7900,6 @@ e1000_set_pci_express_master_disable(struct e1000_hw *hw) | |||
| 7209 | E1000_WRITE_REG(hw, CTRL, ctrl); | 7900 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 7210 | } | 7901 | } |
| 7211 | 7902 | ||
| 7212 | #if 0 | ||
| 7213 | /*************************************************************************** | 7903 | /*************************************************************************** |
| 7214 | * | 7904 | * |
| 7215 | * Enables PCI-Express master access. | 7905 | * Enables PCI-Express master access. |
| @@ -7233,7 +7923,6 @@ e1000_enable_pciex_master(struct e1000_hw *hw) | |||
| 7233 | ctrl &= ~E1000_CTRL_GIO_MASTER_DISABLE; | 7923 | ctrl &= ~E1000_CTRL_GIO_MASTER_DISABLE; |
| 7234 | E1000_WRITE_REG(hw, CTRL, ctrl); | 7924 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 7235 | } | 7925 | } |
| 7236 | #endif /* 0 */ | ||
| 7237 | 7926 | ||
| 7238 | /******************************************************************************* | 7927 | /******************************************************************************* |
| 7239 | * | 7928 | * |
| @@ -7299,8 +7988,10 @@ e1000_get_auto_rd_done(struct e1000_hw *hw) | |||
| 7299 | case e1000_82572: | 7988 | case e1000_82572: |
| 7300 | case e1000_82573: | 7989 | case e1000_82573: |
| 7301 | case e1000_80003es2lan: | 7990 | case e1000_80003es2lan: |
| 7302 | while(timeout) { | 7991 | case e1000_ich8lan: |
| 7303 | if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD) break; | 7992 | while (timeout) { |
| 7993 | if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD) | ||
| 7994 | break; | ||
| 7304 | else msec_delay(1); | 7995 | else msec_delay(1); |
| 7305 | timeout--; | 7996 | timeout--; |
| 7306 | } | 7997 | } |
| @@ -7340,7 +8031,7 @@ e1000_get_phy_cfg_done(struct e1000_hw *hw) | |||
| 7340 | 8031 | ||
| 7341 | switch (hw->mac_type) { | 8032 | switch (hw->mac_type) { |
| 7342 | default: | 8033 | default: |
| 7343 | msec_delay(10); | 8034 | msec_delay_irq(10); |
| 7344 | break; | 8035 | break; |
| 7345 | case e1000_80003es2lan: | 8036 | case e1000_80003es2lan: |
| 7346 | /* Separate *_CFG_DONE_* bit for each port */ | 8037 | /* Separate *_CFG_DONE_* bit for each port */ |
| @@ -7523,6 +8214,13 @@ int32_t | |||
| 7523 | e1000_check_phy_reset_block(struct e1000_hw *hw) | 8214 | e1000_check_phy_reset_block(struct e1000_hw *hw) |
| 7524 | { | 8215 | { |
| 7525 | uint32_t manc = 0; | 8216 | uint32_t manc = 0; |
| 8217 | uint32_t fwsm = 0; | ||
| 8218 | |||
| 8219 | if (hw->mac_type == e1000_ich8lan) { | ||
| 8220 | fwsm = E1000_READ_REG(hw, FWSM); | ||
| 8221 | return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS | ||
| 8222 | : E1000_BLK_PHY_RESET; | ||
| 8223 | } | ||
| 7526 | 8224 | ||
| 7527 | if (hw->mac_type > e1000_82547_rev_2) | 8225 | if (hw->mac_type > e1000_82547_rev_2) |
| 7528 | manc = E1000_READ_REG(hw, MANC); | 8226 | manc = E1000_READ_REG(hw, MANC); |
| @@ -7549,6 +8247,8 @@ e1000_arc_subsystem_valid(struct e1000_hw *hw) | |||
| 7549 | if((fwsm & E1000_FWSM_MODE_MASK) != 0) | 8247 | if((fwsm & E1000_FWSM_MODE_MASK) != 0) |
| 7550 | return TRUE; | 8248 | return TRUE; |
| 7551 | break; | 8249 | break; |
| 8250 | case e1000_ich8lan: | ||
| 8251 | return TRUE; | ||
| 7552 | default: | 8252 | default: |
| 7553 | break; | 8253 | break; |
| 7554 | } | 8254 | } |
| @@ -7556,4 +8256,846 @@ e1000_arc_subsystem_valid(struct e1000_hw *hw) | |||
| 7556 | } | 8256 | } |
| 7557 | 8257 | ||
| 7558 | 8258 | ||
| 8259 | /****************************************************************************** | ||
| 8260 | * Configure PCI-Ex no-snoop | ||
| 8261 | * | ||
| 8262 | * hw - Struct containing variables accessed by shared code. | ||
| 8263 | * no_snoop - Bitmap of no-snoop events. | ||
| 8264 | * | ||
| 8265 | * returns: E1000_SUCCESS | ||
| 8266 | * | ||
| 8267 | *****************************************************************************/ | ||
| 8268 | int32_t | ||
| 8269 | e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop) | ||
| 8270 | { | ||
| 8271 | uint32_t gcr_reg = 0; | ||
| 8272 | |||
| 8273 | DEBUGFUNC("e1000_set_pci_ex_no_snoop"); | ||
| 8274 | |||
| 8275 | if (hw->bus_type == e1000_bus_type_unknown) | ||
| 8276 | e1000_get_bus_info(hw); | ||
| 8277 | |||
| 8278 | if (hw->bus_type != e1000_bus_type_pci_express) | ||
| 8279 | return E1000_SUCCESS; | ||
| 8280 | |||
| 8281 | if (no_snoop) { | ||
| 8282 | gcr_reg = E1000_READ_REG(hw, GCR); | ||
| 8283 | gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL); | ||
| 8284 | gcr_reg |= no_snoop; | ||
| 8285 | E1000_WRITE_REG(hw, GCR, gcr_reg); | ||
| 8286 | } | ||
| 8287 | if (hw->mac_type == e1000_ich8lan) { | ||
| 8288 | uint32_t ctrl_ext; | ||
| 8289 | |||
| 8290 | E1000_WRITE_REG(hw, GCR, PCI_EX_82566_SNOOP_ALL); | ||
| 8291 | |||
| 8292 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); | ||
| 8293 | ctrl_ext |= E1000_CTRL_EXT_RO_DIS; | ||
| 8294 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); | ||
| 8295 | } | ||
| 8296 | |||
| 8297 | return E1000_SUCCESS; | ||
| 8298 | } | ||
| 8299 | |||
| 8300 | /*************************************************************************** | ||
| 8301 | * | ||
| 8302 | * Get software semaphore FLAG bit (SWFLAG). | ||
| 8303 | * SWFLAG is used to synchronize the access to all shared resource between | ||
| 8304 | * SW, FW and HW. | ||
| 8305 | * | ||
| 8306 | * hw: Struct containing variables accessed by shared code | ||
| 8307 | * | ||
| 8308 | ***************************************************************************/ | ||
| 8309 | int32_t | ||
| 8310 | e1000_get_software_flag(struct e1000_hw *hw) | ||
| 8311 | { | ||
| 8312 | int32_t timeout = PHY_CFG_TIMEOUT; | ||
| 8313 | uint32_t extcnf_ctrl; | ||
| 8314 | |||
| 8315 | DEBUGFUNC("e1000_get_software_flag"); | ||
| 8316 | |||
| 8317 | if (hw->mac_type == e1000_ich8lan) { | ||
| 8318 | while (timeout) { | ||
| 8319 | extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); | ||
| 8320 | extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; | ||
| 8321 | E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); | ||
| 8322 | |||
| 8323 | extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); | ||
| 8324 | if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) | ||
| 8325 | break; | ||
| 8326 | msec_delay_irq(1); | ||
| 8327 | timeout--; | ||
| 8328 | } | ||
| 8329 | |||
| 8330 | if (!timeout) { | ||
| 8331 | DEBUGOUT("FW or HW locks the resource too long.\n"); | ||
| 8332 | return -E1000_ERR_CONFIG; | ||
| 8333 | } | ||
| 8334 | } | ||
| 8335 | |||
| 8336 | return E1000_SUCCESS; | ||
| 8337 | } | ||
| 8338 | |||
| 8339 | /*************************************************************************** | ||
| 8340 | * | ||
| 8341 | * Release software semaphore FLAG bit (SWFLAG). | ||
| 8342 | * SWFLAG is used to synchronize the access to all shared resource between | ||
| 8343 | * SW, FW and HW. | ||
| 8344 | * | ||
| 8345 | * hw: Struct containing variables accessed by shared code | ||
| 8346 | * | ||
| 8347 | ***************************************************************************/ | ||
| 8348 | void | ||
| 8349 | e1000_release_software_flag(struct e1000_hw *hw) | ||
| 8350 | { | ||
| 8351 | uint32_t extcnf_ctrl; | ||
| 8352 | |||
| 8353 | DEBUGFUNC("e1000_release_software_flag"); | ||
| 8354 | |||
| 8355 | if (hw->mac_type == e1000_ich8lan) { | ||
| 8356 | extcnf_ctrl= E1000_READ_REG(hw, EXTCNF_CTRL); | ||
| 8357 | extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; | ||
| 8358 | E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); | ||
| 8359 | } | ||
| 8360 | |||
| 8361 | return; | ||
| 8362 | } | ||
| 8363 | |||
| 8364 | /*************************************************************************** | ||
| 8365 | * | ||
| 8366 | * Disable dynamic power down mode in ife PHY. | ||
| 8367 | * It can be used to workaround band-gap problem. | ||
| 8368 | * | ||
| 8369 | * hw: Struct containing variables accessed by shared code | ||
| 8370 | * | ||
| 8371 | ***************************************************************************/ | ||
| 8372 | int32_t | ||
| 8373 | e1000_ife_disable_dynamic_power_down(struct e1000_hw *hw) | ||
| 8374 | { | ||
| 8375 | uint16_t phy_data; | ||
| 8376 | int32_t ret_val = E1000_SUCCESS; | ||
| 8377 | |||
| 8378 | DEBUGFUNC("e1000_ife_disable_dynamic_power_down"); | ||
| 8379 | |||
| 8380 | if (hw->phy_type == e1000_phy_ife) { | ||
| 8381 | ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data); | ||
| 8382 | if (ret_val) | ||
| 8383 | return ret_val; | ||
| 8384 | |||
| 8385 | phy_data |= IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN; | ||
| 8386 | ret_val = e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data); | ||
| 8387 | } | ||
| 8388 | |||
| 8389 | return ret_val; | ||
| 8390 | } | ||
| 8391 | |||
| 8392 | /*************************************************************************** | ||
| 8393 | * | ||
| 8394 | * Enable dynamic power down mode in ife PHY. | ||
| 8395 | * It can be used to workaround band-gap problem. | ||
| 8396 | * | ||
| 8397 | * hw: Struct containing variables accessed by shared code | ||
| 8398 | * | ||
| 8399 | ***************************************************************************/ | ||
| 8400 | int32_t | ||
| 8401 | e1000_ife_enable_dynamic_power_down(struct e1000_hw *hw) | ||
| 8402 | { | ||
| 8403 | uint16_t phy_data; | ||
| 8404 | int32_t ret_val = E1000_SUCCESS; | ||
| 8405 | |||
| 8406 | DEBUGFUNC("e1000_ife_enable_dynamic_power_down"); | ||
| 8407 | |||
| 8408 | if (hw->phy_type == e1000_phy_ife) { | ||
| 8409 | ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data); | ||
| 8410 | if (ret_val) | ||
| 8411 | return ret_val; | ||
| 8412 | |||
| 8413 | phy_data &= ~IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN; | ||
| 8414 | ret_val = e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data); | ||
| 8415 | } | ||
| 8416 | |||
| 8417 | return ret_val; | ||
| 8418 | } | ||
| 8419 | |||
| 8420 | /****************************************************************************** | ||
| 8421 | * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access | ||
| 8422 | * register. | ||
| 8423 | * | ||
| 8424 | * hw - Struct containing variables accessed by shared code | ||
| 8425 | * offset - offset of word in the EEPROM to read | ||
| 8426 | * data - word read from the EEPROM | ||
| 8427 | * words - number of words to read | ||
| 8428 | *****************************************************************************/ | ||
| 8429 | int32_t | ||
| 8430 | e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words, | ||
| 8431 | uint16_t *data) | ||
| 8432 | { | ||
| 8433 | int32_t error = E1000_SUCCESS; | ||
| 8434 | uint32_t flash_bank = 0; | ||
| 8435 | uint32_t act_offset = 0; | ||
| 8436 | uint32_t bank_offset = 0; | ||
| 8437 | uint16_t word = 0; | ||
| 8438 | uint16_t i = 0; | ||
| 8439 | |||
| 8440 | /* We need to know which is the valid flash bank. In the event | ||
| 8441 | * that we didn't allocate eeprom_shadow_ram, we may not be | ||
| 8442 | * managing flash_bank. So it cannot be trusted and needs | ||
| 8443 | * to be updated with each read. | ||
| 8444 | */ | ||
| 8445 | /* Value of bit 22 corresponds to the flash bank we're on. */ | ||
| 8446 | flash_bank = (E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL) ? 1 : 0; | ||
| 8447 | |||
| 8448 | /* Adjust offset appropriately if we're on bank 1 - adjust for word size */ | ||
| 8449 | bank_offset = flash_bank * (hw->flash_bank_size * 2); | ||
| 8450 | |||
| 8451 | error = e1000_get_software_flag(hw); | ||
| 8452 | if (error != E1000_SUCCESS) | ||
| 8453 | return error; | ||
| 8454 | |||
| 8455 | for (i = 0; i < words; i++) { | ||
| 8456 | if (hw->eeprom_shadow_ram != NULL && | ||
| 8457 | hw->eeprom_shadow_ram[offset+i].modified == TRUE) { | ||
| 8458 | data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word; | ||
| 8459 | } else { | ||
| 8460 | /* The NVM part needs a byte offset, hence * 2 */ | ||
| 8461 | act_offset = bank_offset + ((offset + i) * 2); | ||
| 8462 | error = e1000_read_ich8_word(hw, act_offset, &word); | ||
| 8463 | if (error != E1000_SUCCESS) | ||
| 8464 | break; | ||
| 8465 | data[i] = word; | ||
| 8466 | } | ||
| 8467 | } | ||
| 8468 | |||
| 8469 | e1000_release_software_flag(hw); | ||
| 8470 | |||
| 8471 | return error; | ||
| 8472 | } | ||
| 8473 | |||
| 8474 | /****************************************************************************** | ||
| 8475 | * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access | ||
| 8476 | * register. Actually, writes are written to the shadow ram cache in the hw | ||
| 8477 | * structure hw->e1000_shadow_ram. e1000_commit_shadow_ram flushes this to | ||
| 8478 | * the NVM, which occurs when the NVM checksum is updated. | ||
| 8479 | * | ||
| 8480 | * hw - Struct containing variables accessed by shared code | ||
| 8481 | * offset - offset of word in the EEPROM to write | ||
| 8482 | * words - number of words to write | ||
| 8483 | * data - words to write to the EEPROM | ||
| 8484 | *****************************************************************************/ | ||
| 8485 | int32_t | ||
| 8486 | e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words, | ||
| 8487 | uint16_t *data) | ||
| 8488 | { | ||
| 8489 | uint32_t i = 0; | ||
| 8490 | int32_t error = E1000_SUCCESS; | ||
| 8491 | |||
| 8492 | error = e1000_get_software_flag(hw); | ||
| 8493 | if (error != E1000_SUCCESS) | ||
| 8494 | return error; | ||
| 8495 | |||
| 8496 | /* A driver can write to the NVM only if it has eeprom_shadow_ram | ||
| 8497 | * allocated. Subsequent reads to the modified words are read from | ||
| 8498 | * this cached structure as well. Writes will only go into this | ||
| 8499 | * cached structure unless it's followed by a call to | ||
| 8500 | * e1000_update_eeprom_checksum() where it will commit the changes | ||
| 8501 | * and clear the "modified" field. | ||
| 8502 | */ | ||
| 8503 | if (hw->eeprom_shadow_ram != NULL) { | ||
| 8504 | for (i = 0; i < words; i++) { | ||
| 8505 | if ((offset + i) < E1000_SHADOW_RAM_WORDS) { | ||
| 8506 | hw->eeprom_shadow_ram[offset+i].modified = TRUE; | ||
| 8507 | hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i]; | ||
| 8508 | } else { | ||
| 8509 | error = -E1000_ERR_EEPROM; | ||
| 8510 | break; | ||
| 8511 | } | ||
| 8512 | } | ||
| 8513 | } else { | ||
| 8514 | /* Drivers have the option to not allocate eeprom_shadow_ram as long | ||
| 8515 | * as they don't perform any NVM writes. An attempt in doing so | ||
| 8516 | * will result in this error. | ||
| 8517 | */ | ||
| 8518 | error = -E1000_ERR_EEPROM; | ||
| 8519 | } | ||
| 8520 | |||
| 8521 | e1000_release_software_flag(hw); | ||
| 8522 | |||
| 8523 | return error; | ||
| 8524 | } | ||
| 8525 | |||
| 8526 | /****************************************************************************** | ||
| 8527 | * This function does initial flash setup so that a new read/write/erase cycle | ||
| 8528 | * can be started. | ||
| 8529 | * | ||
| 8530 | * hw - The pointer to the hw structure | ||
| 8531 | ****************************************************************************/ | ||
| 8532 | int32_t | ||
| 8533 | e1000_ich8_cycle_init(struct e1000_hw *hw) | ||
| 8534 | { | ||
| 8535 | union ich8_hws_flash_status hsfsts; | ||
| 8536 | int32_t error = E1000_ERR_EEPROM; | ||
| 8537 | int32_t i = 0; | ||
| 8538 | |||
| 8539 | DEBUGFUNC("e1000_ich8_cycle_init"); | ||
| 8540 | |||
| 8541 | hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); | ||
| 8542 | |||
| 8543 | /* May be check the Flash Des Valid bit in Hw status */ | ||
| 8544 | if (hsfsts.hsf_status.fldesvalid == 0) { | ||
| 8545 | DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used."); | ||
| 8546 | return error; | ||
| 8547 | } | ||
| 8548 | |||
| 8549 | /* Clear FCERR in Hw status by writing 1 */ | ||
| 8550 | /* Clear DAEL in Hw status by writing a 1 */ | ||
| 8551 | hsfsts.hsf_status.flcerr = 1; | ||
| 8552 | hsfsts.hsf_status.dael = 1; | ||
| 8553 | |||
| 8554 | E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval); | ||
| 8555 | |||
| 8556 | /* Either we should have a hardware SPI cycle in progress bit to check | ||
| 8557 | * against, in order to start a new cycle or FDONE bit should be changed | ||
| 8558 | * in the hardware so that it is 1 after harware reset, which can then be | ||
| 8559 | * used as an indication whether a cycle is in progress or has been | ||
| 8560 | * completed .. we should also have some software semaphore mechanism to | ||
| 8561 | * guard FDONE or the cycle in progress bit so that two threads access to | ||
| 8562 | * those bits can be sequentiallized or a way so that 2 threads dont | ||
| 8563 | * start the cycle at the same time */ | ||
| 8564 | |||
| 8565 | if (hsfsts.hsf_status.flcinprog == 0) { | ||
| 8566 | /* There is no cycle running at present, so we can start a cycle */ | ||
| 8567 | /* Begin by setting Flash Cycle Done. */ | ||
| 8568 | hsfsts.hsf_status.flcdone = 1; | ||
| 8569 | E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval); | ||
| 8570 | error = E1000_SUCCESS; | ||
| 8571 | } else { | ||
| 8572 | /* otherwise poll for sometime so the current cycle has a chance | ||
| 8573 | * to end before giving up. */ | ||
| 8574 | for (i = 0; i < ICH8_FLASH_COMMAND_TIMEOUT; i++) { | ||
| 8575 | hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); | ||
| 8576 | if (hsfsts.hsf_status.flcinprog == 0) { | ||
| 8577 | error = E1000_SUCCESS; | ||
| 8578 | break; | ||
| 8579 | } | ||
| 8580 | udelay(1); | ||
| 8581 | } | ||
| 8582 | if (error == E1000_SUCCESS) { | ||
| 8583 | /* Successful in waiting for previous cycle to timeout, | ||
| 8584 | * now set the Flash Cycle Done. */ | ||
| 8585 | hsfsts.hsf_status.flcdone = 1; | ||
| 8586 | E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval); | ||
| 8587 | } else { | ||
| 8588 | DEBUGOUT("Flash controller busy, cannot get access"); | ||
| 8589 | } | ||
| 8590 | } | ||
| 8591 | return error; | ||
| 8592 | } | ||
| 8593 | |||
| 8594 | /****************************************************************************** | ||
| 8595 | * This function starts a flash cycle and waits for its completion | ||
| 8596 | * | ||
| 8597 | * hw - The pointer to the hw structure | ||
| 8598 | ****************************************************************************/ | ||
| 8599 | int32_t | ||
| 8600 | e1000_ich8_flash_cycle(struct e1000_hw *hw, uint32_t timeout) | ||
| 8601 | { | ||
| 8602 | union ich8_hws_flash_ctrl hsflctl; | ||
| 8603 | union ich8_hws_flash_status hsfsts; | ||
| 8604 | int32_t error = E1000_ERR_EEPROM; | ||
| 8605 | uint32_t i = 0; | ||
| 8606 | |||
| 8607 | /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ | ||
| 8608 | hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL); | ||
| 8609 | hsflctl.hsf_ctrl.flcgo = 1; | ||
| 8610 | E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval); | ||
| 8611 | |||
| 8612 | /* wait till FDONE bit is set to 1 */ | ||
| 8613 | do { | ||
| 8614 | hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); | ||
| 8615 | if (hsfsts.hsf_status.flcdone == 1) | ||
| 8616 | break; | ||
| 8617 | udelay(1); | ||
| 8618 | i++; | ||
| 8619 | } while (i < timeout); | ||
| 8620 | if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) { | ||
| 8621 | error = E1000_SUCCESS; | ||
| 8622 | } | ||
| 8623 | return error; | ||
| 8624 | } | ||
| 8625 | |||
| 8626 | /****************************************************************************** | ||
| 8627 | * Reads a byte or word from the NVM using the ICH8 flash access registers. | ||
| 8628 | * | ||
| 8629 | * hw - The pointer to the hw structure | ||
| 8630 | * index - The index of the byte or word to read. | ||
| 8631 | * size - Size of data to read, 1=byte 2=word | ||
| 8632 | * data - Pointer to the word to store the value read. | ||
| 8633 | *****************************************************************************/ | ||
| 8634 | int32_t | ||
| 8635 | e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index, | ||
| 8636 | uint32_t size, uint16_t* data) | ||
| 8637 | { | ||
| 8638 | union ich8_hws_flash_status hsfsts; | ||
| 8639 | union ich8_hws_flash_ctrl hsflctl; | ||
| 8640 | uint32_t flash_linear_address; | ||
| 8641 | uint32_t flash_data = 0; | ||
| 8642 | int32_t error = -E1000_ERR_EEPROM; | ||
| 8643 | int32_t count = 0; | ||
| 8644 | |||
| 8645 | DEBUGFUNC("e1000_read_ich8_data"); | ||
| 8646 | |||
| 8647 | if (size < 1 || size > 2 || data == 0x0 || | ||
| 8648 | index > ICH8_FLASH_LINEAR_ADDR_MASK) | ||
| 8649 | return error; | ||
| 8650 | |||
| 8651 | flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) + | ||
| 8652 | hw->flash_base_addr; | ||
| 8653 | |||
| 8654 | do { | ||
| 8655 | udelay(1); | ||
| 8656 | /* Steps */ | ||
| 8657 | error = e1000_ich8_cycle_init(hw); | ||
| 8658 | if (error != E1000_SUCCESS) | ||
| 8659 | break; | ||
| 8660 | |||
| 8661 | hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL); | ||
| 8662 | /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ | ||
| 8663 | hsflctl.hsf_ctrl.fldbcount = size - 1; | ||
| 8664 | hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_READ; | ||
| 8665 | E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval); | ||
| 8666 | |||
| 8667 | /* Write the last 24 bits of index into Flash Linear address field in | ||
| 8668 | * Flash Address */ | ||
| 8669 | /* TODO: TBD maybe check the index against the size of flash */ | ||
| 8670 | |||
| 8671 | E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address); | ||
| 8672 | |||
| 8673 | error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT); | ||
| 8674 | |||
| 8675 | /* Check if FCERR is set to 1, if set to 1, clear it and try the whole | ||
| 8676 | * sequence a few more times, else read in (shift in) the Flash Data0, | ||
| 8677 | * the order is least significant byte first msb to lsb */ | ||
| 8678 | if (error == E1000_SUCCESS) { | ||
| 8679 | flash_data = E1000_READ_ICH8_REG(hw, ICH8_FLASH_FDATA0); | ||
| 8680 | if (size == 1) { | ||
| 8681 | *data = (uint8_t)(flash_data & 0x000000FF); | ||
| 8682 | } else if (size == 2) { | ||
| 8683 | *data = (uint16_t)(flash_data & 0x0000FFFF); | ||
| 8684 | } | ||
| 8685 | break; | ||
| 8686 | } else { | ||
| 8687 | /* If we've gotten here, then things are probably completely hosed, | ||
| 8688 | * but if the error condition is detected, it won't hurt to give | ||
| 8689 | * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times. | ||
| 8690 | */ | ||
| 8691 | hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); | ||
| 8692 | if (hsfsts.hsf_status.flcerr == 1) { | ||
| 8693 | /* Repeat for some time before giving up. */ | ||
| 8694 | continue; | ||
| 8695 | } else if (hsfsts.hsf_status.flcdone == 0) { | ||
| 8696 | DEBUGOUT("Timeout error - flash cycle did not complete."); | ||
| 8697 | break; | ||
| 8698 | } | ||
| 8699 | } | ||
| 8700 | } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT); | ||
| 8701 | |||
| 8702 | return error; | ||
| 8703 | } | ||
| 8704 | |||
| 8705 | /****************************************************************************** | ||
| 8706 | * Writes One /two bytes to the NVM using the ICH8 flash access registers. | ||
| 8707 | * | ||
| 8708 | * hw - The pointer to the hw structure | ||
| 8709 | * index - The index of the byte/word to read. | ||
| 8710 | * size - Size of data to read, 1=byte 2=word | ||
| 8711 | * data - The byte(s) to write to the NVM. | ||
| 8712 | *****************************************************************************/ | ||
| 8713 | int32_t | ||
| 8714 | e1000_write_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size, | ||
| 8715 | uint16_t data) | ||
| 8716 | { | ||
| 8717 | union ich8_hws_flash_status hsfsts; | ||
| 8718 | union ich8_hws_flash_ctrl hsflctl; | ||
| 8719 | uint32_t flash_linear_address; | ||
| 8720 | uint32_t flash_data = 0; | ||
| 8721 | int32_t error = -E1000_ERR_EEPROM; | ||
| 8722 | int32_t count = 0; | ||
| 8723 | |||
| 8724 | DEBUGFUNC("e1000_write_ich8_data"); | ||
| 8725 | |||
| 8726 | if (size < 1 || size > 2 || data > size * 0xff || | ||
| 8727 | index > ICH8_FLASH_LINEAR_ADDR_MASK) | ||
| 8728 | return error; | ||
| 8729 | |||
| 8730 | flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) + | ||
| 8731 | hw->flash_base_addr; | ||
| 8732 | |||
| 8733 | do { | ||
| 8734 | udelay(1); | ||
| 8735 | /* Steps */ | ||
| 8736 | error = e1000_ich8_cycle_init(hw); | ||
| 8737 | if (error != E1000_SUCCESS) | ||
| 8738 | break; | ||
| 8739 | |||
| 8740 | hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL); | ||
| 8741 | /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ | ||
| 8742 | hsflctl.hsf_ctrl.fldbcount = size -1; | ||
| 8743 | hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_WRITE; | ||
| 8744 | E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval); | ||
| 8745 | |||
| 8746 | /* Write the last 24 bits of index into Flash Linear address field in | ||
| 8747 | * Flash Address */ | ||
| 8748 | E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address); | ||
| 8749 | |||
| 8750 | if (size == 1) | ||
| 8751 | flash_data = (uint32_t)data & 0x00FF; | ||
| 8752 | else | ||
| 8753 | flash_data = (uint32_t)data; | ||
| 8754 | |||
| 8755 | E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FDATA0, flash_data); | ||
| 8756 | |||
| 8757 | /* check if FCERR is set to 1 , if set to 1, clear it and try the whole | ||
| 8758 | * sequence a few more times else done */ | ||
| 8759 | error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT); | ||
| 8760 | if (error == E1000_SUCCESS) { | ||
| 8761 | break; | ||
| 8762 | } else { | ||
| 8763 | /* If we're here, then things are most likely completely hosed, | ||
| 8764 | * but if the error condition is detected, it won't hurt to give | ||
| 8765 | * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times. | ||
| 8766 | */ | ||
| 8767 | hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); | ||
| 8768 | if (hsfsts.hsf_status.flcerr == 1) { | ||
| 8769 | /* Repeat for some time before giving up. */ | ||
| 8770 | continue; | ||
| 8771 | } else if (hsfsts.hsf_status.flcdone == 0) { | ||
| 8772 | DEBUGOUT("Timeout error - flash cycle did not complete."); | ||
| 8773 | break; | ||
| 8774 | } | ||
| 8775 | } | ||
| 8776 | } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT); | ||
| 8777 | |||
| 8778 | return error; | ||
| 8779 | } | ||
| 8780 | |||
| 8781 | /****************************************************************************** | ||
| 8782 | * Reads a single byte from the NVM using the ICH8 flash access registers. | ||
| 8783 | * | ||
| 8784 | * hw - pointer to e1000_hw structure | ||
| 8785 | * index - The index of the byte to read. | ||
| 8786 | * data - Pointer to a byte to store the value read. | ||
| 8787 | *****************************************************************************/ | ||
| 8788 | int32_t | ||
| 8789 | e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t* data) | ||
| 8790 | { | ||
| 8791 | int32_t status = E1000_SUCCESS; | ||
| 8792 | uint16_t word = 0; | ||
| 8793 | |||
| 8794 | status = e1000_read_ich8_data(hw, index, 1, &word); | ||
| 8795 | if (status == E1000_SUCCESS) { | ||
| 8796 | *data = (uint8_t)word; | ||
| 8797 | } | ||
| 8798 | |||
| 8799 | return status; | ||
| 8800 | } | ||
| 8801 | |||
| 8802 | /****************************************************************************** | ||
| 8803 | * Writes a single byte to the NVM using the ICH8 flash access registers. | ||
| 8804 | * Performs verification by reading back the value and then going through | ||
| 8805 | * a retry algorithm before giving up. | ||
| 8806 | * | ||
| 8807 | * hw - pointer to e1000_hw structure | ||
| 8808 | * index - The index of the byte to write. | ||
| 8809 | * byte - The byte to write to the NVM. | ||
| 8810 | *****************************************************************************/ | ||
| 8811 | int32_t | ||
| 8812 | e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte) | ||
| 8813 | { | ||
| 8814 | int32_t error = E1000_SUCCESS; | ||
| 8815 | int32_t program_retries; | ||
| 8816 | uint8_t temp_byte; | ||
| 8817 | |||
| 8818 | e1000_write_ich8_byte(hw, index, byte); | ||
| 8819 | udelay(100); | ||
| 8820 | |||
| 8821 | for (program_retries = 0; program_retries < 100; program_retries++) { | ||
| 8822 | e1000_read_ich8_byte(hw, index, &temp_byte); | ||
| 8823 | if (temp_byte == byte) | ||
| 8824 | break; | ||
| 8825 | udelay(10); | ||
| 8826 | e1000_write_ich8_byte(hw, index, byte); | ||
| 8827 | udelay(100); | ||
| 8828 | } | ||
| 8829 | if (program_retries == 100) | ||
| 8830 | error = E1000_ERR_EEPROM; | ||
| 8831 | |||
| 8832 | return error; | ||
| 8833 | } | ||
| 8834 | |||
| 8835 | /****************************************************************************** | ||
| 8836 | * Writes a single byte to the NVM using the ICH8 flash access registers. | ||
| 8837 | * | ||
| 8838 | * hw - pointer to e1000_hw structure | ||
| 8839 | * index - The index of the byte to read. | ||
| 8840 | * data - The byte to write to the NVM. | ||
| 8841 | *****************************************************************************/ | ||
| 8842 | int32_t | ||
| 8843 | e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t data) | ||
| 8844 | { | ||
| 8845 | int32_t status = E1000_SUCCESS; | ||
| 8846 | uint16_t word = (uint16_t)data; | ||
| 8847 | |||
| 8848 | status = e1000_write_ich8_data(hw, index, 1, word); | ||
| 8849 | |||
| 8850 | return status; | ||
| 8851 | } | ||
| 8852 | |||
| 8853 | /****************************************************************************** | ||
| 8854 | * Reads a word from the NVM using the ICH8 flash access registers. | ||
| 8855 | * | ||
| 8856 | * hw - pointer to e1000_hw structure | ||
| 8857 | * index - The starting byte index of the word to read. | ||
| 8858 | * data - Pointer to a word to store the value read. | ||
| 8859 | *****************************************************************************/ | ||
| 8860 | int32_t | ||
| 8861 | e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t *data) | ||
| 8862 | { | ||
| 8863 | int32_t status = E1000_SUCCESS; | ||
| 8864 | status = e1000_read_ich8_data(hw, index, 2, data); | ||
| 8865 | return status; | ||
| 8866 | } | ||
| 8867 | |||
| 8868 | /****************************************************************************** | ||
| 8869 | * Writes a word to the NVM using the ICH8 flash access registers. | ||
| 8870 | * | ||
| 8871 | * hw - pointer to e1000_hw structure | ||
| 8872 | * index - The starting byte index of the word to read. | ||
| 8873 | * data - The word to write to the NVM. | ||
| 8874 | *****************************************************************************/ | ||
| 8875 | int32_t | ||
| 8876 | e1000_write_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t data) | ||
| 8877 | { | ||
| 8878 | int32_t status = E1000_SUCCESS; | ||
| 8879 | status = e1000_write_ich8_data(hw, index, 2, data); | ||
| 8880 | return status; | ||
| 8881 | } | ||
| 8882 | |||
| 8883 | /****************************************************************************** | ||
| 8884 | * Erases the bank specified. Each bank is a 4k block. Segments are 0 based. | ||
| 8885 | * segment N is 4096 * N + flash_reg_addr. | ||
| 8886 | * | ||
| 8887 | * hw - pointer to e1000_hw structure | ||
| 8888 | * segment - 0 for first segment, 1 for second segment, etc. | ||
| 8889 | *****************************************************************************/ | ||
| 8890 | int32_t | ||
| 8891 | e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t segment) | ||
| 8892 | { | ||
| 8893 | union ich8_hws_flash_status hsfsts; | ||
| 8894 | union ich8_hws_flash_ctrl hsflctl; | ||
| 8895 | uint32_t flash_linear_address; | ||
| 8896 | int32_t count = 0; | ||
| 8897 | int32_t error = E1000_ERR_EEPROM; | ||
| 8898 | int32_t iteration, seg_size; | ||
| 8899 | int32_t sector_size; | ||
| 8900 | int32_t j = 0; | ||
| 8901 | int32_t error_flag = 0; | ||
| 8902 | |||
| 8903 | hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); | ||
| 8904 | |||
| 8905 | /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */ | ||
| 8906 | /* 00: The Hw sector is 256 bytes, hence we need to erase 16 | ||
| 8907 | * consecutive sectors. The start index for the nth Hw sector can be | ||
| 8908 | * calculated as = segment * 4096 + n * 256 | ||
| 8909 | * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. | ||
| 8910 | * The start index for the nth Hw sector can be calculated | ||
| 8911 | * as = segment * 4096 | ||
| 8912 | * 10: Error condition | ||
| 8913 | * 11: The Hw sector size is much bigger than the size asked to | ||
| 8914 | * erase...error condition */ | ||
| 8915 | if (hsfsts.hsf_status.berasesz == 0x0) { | ||
| 8916 | /* Hw sector size 256 */ | ||
| 8917 | sector_size = seg_size = ICH8_FLASH_SEG_SIZE_256; | ||
| 8918 | iteration = ICH8_FLASH_SECTOR_SIZE / ICH8_FLASH_SEG_SIZE_256; | ||
| 8919 | } else if (hsfsts.hsf_status.berasesz == 0x1) { | ||
| 8920 | sector_size = seg_size = ICH8_FLASH_SEG_SIZE_4K; | ||
| 8921 | iteration = 1; | ||
| 8922 | } else if (hsfsts.hsf_status.berasesz == 0x3) { | ||
| 8923 | sector_size = seg_size = ICH8_FLASH_SEG_SIZE_64K; | ||
| 8924 | iteration = 1; | ||
| 8925 | } else { | ||
| 8926 | return error; | ||
| 8927 | } | ||
| 8928 | |||
| 8929 | for (j = 0; j < iteration ; j++) { | ||
| 8930 | do { | ||
| 8931 | count++; | ||
| 8932 | /* Steps */ | ||
| 8933 | error = e1000_ich8_cycle_init(hw); | ||
| 8934 | if (error != E1000_SUCCESS) { | ||
| 8935 | error_flag = 1; | ||
| 8936 | break; | ||
| 8937 | } | ||
| 8938 | |||
| 8939 | /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash | ||
| 8940 | * Control */ | ||
| 8941 | hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL); | ||
| 8942 | hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_ERASE; | ||
| 8943 | E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval); | ||
| 8944 | |||
| 8945 | /* Write the last 24 bits of an index within the block into Flash | ||
| 8946 | * Linear address field in Flash Address. This probably needs to | ||
| 8947 | * be calculated here based off the on-chip segment size and the | ||
| 8948 | * software segment size assumed (4K) */ | ||
| 8949 | /* TBD */ | ||
| 8950 | flash_linear_address = segment * sector_size + j * seg_size; | ||
| 8951 | flash_linear_address &= ICH8_FLASH_LINEAR_ADDR_MASK; | ||
| 8952 | flash_linear_address += hw->flash_base_addr; | ||
| 8953 | |||
| 8954 | E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address); | ||
| 8955 | |||
| 8956 | error = e1000_ich8_flash_cycle(hw, 1000000); | ||
| 8957 | /* Check if FCERR is set to 1. If 1, clear it and try the whole | ||
| 8958 | * sequence a few more times else Done */ | ||
| 8959 | if (error == E1000_SUCCESS) { | ||
| 8960 | break; | ||
| 8961 | } else { | ||
| 8962 | hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); | ||
| 8963 | if (hsfsts.hsf_status.flcerr == 1) { | ||
| 8964 | /* repeat for some time before giving up */ | ||
| 8965 | continue; | ||
| 8966 | } else if (hsfsts.hsf_status.flcdone == 0) { | ||
| 8967 | error_flag = 1; | ||
| 8968 | break; | ||
| 8969 | } | ||
| 8970 | } | ||
| 8971 | } while ((count < ICH8_FLASH_CYCLE_REPEAT_COUNT) && !error_flag); | ||
| 8972 | if (error_flag == 1) | ||
| 8973 | break; | ||
| 8974 | } | ||
| 8975 | if (error_flag != 1) | ||
| 8976 | error = E1000_SUCCESS; | ||
| 8977 | return error; | ||
| 8978 | } | ||
| 8979 | |||
| 8980 | /****************************************************************************** | ||
| 8981 | * | ||
| 8982 | * Reverse duplex setting without breaking the link. | ||
| 8983 | * | ||
| 8984 | * hw: Struct containing variables accessed by shared code | ||
| 8985 | * | ||
| 8986 | *****************************************************************************/ | ||
| 8987 | int32_t | ||
| 8988 | e1000_duplex_reversal(struct e1000_hw *hw) | ||
| 8989 | { | ||
| 8990 | int32_t ret_val; | ||
| 8991 | uint16_t phy_data; | ||
| 8992 | |||
| 8993 | if (hw->phy_type != e1000_phy_igp_3) | ||
| 8994 | return E1000_SUCCESS; | ||
| 8995 | |||
| 8996 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); | ||
| 8997 | if (ret_val) | ||
| 8998 | return ret_val; | ||
| 8999 | |||
| 9000 | phy_data ^= MII_CR_FULL_DUPLEX; | ||
| 9001 | |||
| 9002 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); | ||
| 9003 | if (ret_val) | ||
| 9004 | return ret_val; | ||
| 9005 | |||
| 9006 | ret_val = e1000_read_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, &phy_data); | ||
| 9007 | if (ret_val) | ||
| 9008 | return ret_val; | ||
| 9009 | |||
| 9010 | phy_data |= IGP3_PHY_MISC_DUPLEX_MANUAL_SET; | ||
| 9011 | ret_val = e1000_write_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, phy_data); | ||
| 9012 | |||
| 9013 | return ret_val; | ||
| 9014 | } | ||
| 9015 | |||
| 9016 | int32_t | ||
| 9017 | e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw, | ||
| 9018 | uint32_t cnf_base_addr, uint32_t cnf_size) | ||
| 9019 | { | ||
| 9020 | uint32_t ret_val = E1000_SUCCESS; | ||
| 9021 | uint16_t word_addr, reg_data, reg_addr; | ||
| 9022 | uint16_t i; | ||
| 9023 | |||
| 9024 | /* cnf_base_addr is in DWORD */ | ||
| 9025 | word_addr = (uint16_t)(cnf_base_addr << 1); | ||
| 9026 | |||
| 9027 | /* cnf_size is returned in size of dwords */ | ||
| 9028 | for (i = 0; i < cnf_size; i++) { | ||
| 9029 | ret_val = e1000_read_eeprom(hw, (word_addr + i*2), 1, ®_data); | ||
| 9030 | if (ret_val) | ||
| 9031 | return ret_val; | ||
| 9032 | |||
| 9033 | ret_val = e1000_read_eeprom(hw, (word_addr + i*2 + 1), 1, ®_addr); | ||
| 9034 | if (ret_val) | ||
| 9035 | return ret_val; | ||
| 9036 | |||
| 9037 | ret_val = e1000_get_software_flag(hw); | ||
| 9038 | if (ret_val != E1000_SUCCESS) | ||
| 9039 | return ret_val; | ||
| 9040 | |||
| 9041 | ret_val = e1000_write_phy_reg_ex(hw, (uint32_t)reg_addr, reg_data); | ||
| 9042 | |||
| 9043 | e1000_release_software_flag(hw); | ||
| 9044 | } | ||
| 9045 | |||
| 9046 | return ret_val; | ||
| 9047 | } | ||
| 9048 | |||
| 9049 | |||
| 9050 | int32_t | ||
| 9051 | e1000_init_lcd_from_nvm(struct e1000_hw *hw) | ||
| 9052 | { | ||
| 9053 | uint32_t reg_data, cnf_base_addr, cnf_size, ret_val, loop; | ||
| 9054 | |||
| 9055 | if (hw->phy_type != e1000_phy_igp_3) | ||
| 9056 | return E1000_SUCCESS; | ||
| 9057 | |||
| 9058 | /* Check if SW needs configure the PHY */ | ||
| 9059 | reg_data = E1000_READ_REG(hw, FEXTNVM); | ||
| 9060 | if (!(reg_data & FEXTNVM_SW_CONFIG)) | ||
| 9061 | return E1000_SUCCESS; | ||
| 9062 | |||
| 9063 | /* Wait for basic configuration completes before proceeding*/ | ||
| 9064 | loop = 0; | ||
| 9065 | do { | ||
| 9066 | reg_data = E1000_READ_REG(hw, STATUS) & E1000_STATUS_LAN_INIT_DONE; | ||
| 9067 | udelay(100); | ||
| 9068 | loop++; | ||
| 9069 | } while ((!reg_data) && (loop < 50)); | ||
| 9070 | |||
| 9071 | /* Clear the Init Done bit for the next init event */ | ||
| 9072 | reg_data = E1000_READ_REG(hw, STATUS); | ||
| 9073 | reg_data &= ~E1000_STATUS_LAN_INIT_DONE; | ||
| 9074 | E1000_WRITE_REG(hw, STATUS, reg_data); | ||
| 9075 | |||
| 9076 | /* Make sure HW does not configure LCD from PHY extended configuration | ||
| 9077 | before SW configuration */ | ||
| 9078 | reg_data = E1000_READ_REG(hw, EXTCNF_CTRL); | ||
| 9079 | if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) { | ||
| 9080 | reg_data = E1000_READ_REG(hw, EXTCNF_SIZE); | ||
| 9081 | cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH; | ||
| 9082 | cnf_size >>= 16; | ||
| 9083 | if (cnf_size) { | ||
| 9084 | reg_data = E1000_READ_REG(hw, EXTCNF_CTRL); | ||
| 9085 | cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER; | ||
| 9086 | /* cnf_base_addr is in DWORD */ | ||
| 9087 | cnf_base_addr >>= 16; | ||
| 9088 | |||
| 9089 | /* Configure LCD from extended configuration region. */ | ||
| 9090 | ret_val = e1000_init_lcd_from_nvm_config_region(hw, cnf_base_addr, | ||
| 9091 | cnf_size); | ||
| 9092 | if (ret_val) | ||
| 9093 | return ret_val; | ||
| 9094 | } | ||
| 9095 | } | ||
| 9096 | |||
| 9097 | return E1000_SUCCESS; | ||
| 9098 | } | ||
| 9099 | |||
| 9100 | |||
| 7559 | 9101 | ||
diff --git a/drivers/net/e1000/e1000_hw.h b/drivers/net/e1000/e1000_hw.h index 467c9ed944f8..f9341e3276b3 100644 --- a/drivers/net/e1000/e1000_hw.h +++ b/drivers/net/e1000/e1000_hw.h | |||
| @@ -62,6 +62,7 @@ typedef enum { | |||
| 62 | e1000_82572, | 62 | e1000_82572, |
| 63 | e1000_82573, | 63 | e1000_82573, |
| 64 | e1000_80003es2lan, | 64 | e1000_80003es2lan, |
| 65 | e1000_ich8lan, | ||
| 65 | e1000_num_macs | 66 | e1000_num_macs |
| 66 | } e1000_mac_type; | 67 | } e1000_mac_type; |
| 67 | 68 | ||
| @@ -70,6 +71,7 @@ typedef enum { | |||
| 70 | e1000_eeprom_spi, | 71 | e1000_eeprom_spi, |
| 71 | e1000_eeprom_microwire, | 72 | e1000_eeprom_microwire, |
| 72 | e1000_eeprom_flash, | 73 | e1000_eeprom_flash, |
| 74 | e1000_eeprom_ich8, | ||
| 73 | e1000_eeprom_none, /* No NVM support */ | 75 | e1000_eeprom_none, /* No NVM support */ |
| 74 | e1000_num_eeprom_types | 76 | e1000_num_eeprom_types |
| 75 | } e1000_eeprom_type; | 77 | } e1000_eeprom_type; |
| @@ -98,6 +100,11 @@ typedef enum { | |||
| 98 | e1000_fc_default = 0xFF | 100 | e1000_fc_default = 0xFF |
| 99 | } e1000_fc_type; | 101 | } e1000_fc_type; |
| 100 | 102 | ||
| 103 | struct e1000_shadow_ram { | ||
| 104 | uint16_t eeprom_word; | ||
| 105 | boolean_t modified; | ||
| 106 | }; | ||
| 107 | |||
| 101 | /* PCI bus types */ | 108 | /* PCI bus types */ |
| 102 | typedef enum { | 109 | typedef enum { |
| 103 | e1000_bus_type_unknown = 0, | 110 | e1000_bus_type_unknown = 0, |
| @@ -218,6 +225,8 @@ typedef enum { | |||
| 218 | e1000_phy_igp, | 225 | e1000_phy_igp, |
| 219 | e1000_phy_igp_2, | 226 | e1000_phy_igp_2, |
| 220 | e1000_phy_gg82563, | 227 | e1000_phy_gg82563, |
| 228 | e1000_phy_igp_3, | ||
| 229 | e1000_phy_ife, | ||
| 221 | e1000_phy_undefined = 0xFF | 230 | e1000_phy_undefined = 0xFF |
| 222 | } e1000_phy_type; | 231 | } e1000_phy_type; |
| 223 | 232 | ||
| @@ -313,6 +322,10 @@ int32_t e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *phy | |||
| 313 | int32_t e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data); | 322 | int32_t e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data); |
| 314 | int32_t e1000_phy_hw_reset(struct e1000_hw *hw); | 323 | int32_t e1000_phy_hw_reset(struct e1000_hw *hw); |
| 315 | int32_t e1000_phy_reset(struct e1000_hw *hw); | 324 | int32_t e1000_phy_reset(struct e1000_hw *hw); |
| 325 | void e1000_phy_powerdown_workaround(struct e1000_hw *hw); | ||
| 326 | int32_t e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw); | ||
| 327 | int32_t e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw, uint32_t cnf_base_addr, uint32_t cnf_size); | ||
| 328 | int32_t e1000_init_lcd_from_nvm(struct e1000_hw *hw); | ||
| 316 | int32_t e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info); | 329 | int32_t e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info); |
| 317 | int32_t e1000_validate_mdi_setting(struct e1000_hw *hw); | 330 | int32_t e1000_validate_mdi_setting(struct e1000_hw *hw); |
| 318 | int32_t e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data); | 331 | int32_t e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data); |
| @@ -331,6 +344,7 @@ uint32_t e1000_enable_mng_pass_thru(struct e1000_hw *hw); | |||
| 331 | #define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0 /* Cookie offset */ | 344 | #define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0 /* Cookie offset */ |
| 332 | #define E1000_MNG_DHCP_COOKIE_LENGTH 0x10 /* Cookie length */ | 345 | #define E1000_MNG_DHCP_COOKIE_LENGTH 0x10 /* Cookie length */ |
| 333 | #define E1000_MNG_IAMT_MODE 0x3 | 346 | #define E1000_MNG_IAMT_MODE 0x3 |
| 347 | #define E1000_MNG_ICH_IAMT_MODE 0x2 | ||
| 334 | #define E1000_IAMT_SIGNATURE 0x544D4149 /* Intel(R) Active Management Technology signature */ | 348 | #define E1000_IAMT_SIGNATURE 0x544D4149 /* Intel(R) Active Management Technology signature */ |
| 335 | 349 | ||
| 336 | #define E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT 0x1 /* DHCP parsing enabled */ | 350 | #define E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT 0x1 /* DHCP parsing enabled */ |
| @@ -388,6 +402,8 @@ int32_t e1000_read_part_num(struct e1000_hw *hw, uint32_t * part_num); | |||
| 388 | int32_t e1000_read_mac_addr(struct e1000_hw * hw); | 402 | int32_t e1000_read_mac_addr(struct e1000_hw * hw); |
| 389 | int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask); | 403 | int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask); |
| 390 | void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask); | 404 | void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask); |
| 405 | void e1000_release_software_flag(struct e1000_hw *hw); | ||
| 406 | int32_t e1000_get_software_flag(struct e1000_hw *hw); | ||
| 391 | 407 | ||
| 392 | /* Filters (multicast, vlan, receive) */ | 408 | /* Filters (multicast, vlan, receive) */ |
| 393 | void e1000_mc_addr_list_update(struct e1000_hw *hw, uint8_t * mc_addr_list, uint32_t mc_addr_count, uint32_t pad, uint32_t rar_used_count); | 409 | void e1000_mc_addr_list_update(struct e1000_hw *hw, uint8_t * mc_addr_list, uint32_t mc_addr_count, uint32_t pad, uint32_t rar_used_count); |
| @@ -401,6 +417,7 @@ int32_t e1000_setup_led(struct e1000_hw *hw); | |||
| 401 | int32_t e1000_cleanup_led(struct e1000_hw *hw); | 417 | int32_t e1000_cleanup_led(struct e1000_hw *hw); |
| 402 | int32_t e1000_led_on(struct e1000_hw *hw); | 418 | int32_t e1000_led_on(struct e1000_hw *hw); |
| 403 | int32_t e1000_led_off(struct e1000_hw *hw); | 419 | int32_t e1000_led_off(struct e1000_hw *hw); |
| 420 | int32_t e1000_blink_led_start(struct e1000_hw *hw); | ||
| 404 | 421 | ||
| 405 | /* Adaptive IFS Functions */ | 422 | /* Adaptive IFS Functions */ |
| 406 | 423 | ||
| @@ -422,6 +439,29 @@ int32_t e1000_disable_pciex_master(struct e1000_hw *hw); | |||
| 422 | int32_t e1000_get_software_semaphore(struct e1000_hw *hw); | 439 | int32_t e1000_get_software_semaphore(struct e1000_hw *hw); |
| 423 | void e1000_release_software_semaphore(struct e1000_hw *hw); | 440 | void e1000_release_software_semaphore(struct e1000_hw *hw); |
| 424 | int32_t e1000_check_phy_reset_block(struct e1000_hw *hw); | 441 | int32_t e1000_check_phy_reset_block(struct e1000_hw *hw); |
| 442 | int32_t e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop); | ||
| 443 | |||
| 444 | int32_t e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index, | ||
| 445 | uint8_t *data); | ||
| 446 | int32_t e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index, | ||
| 447 | uint8_t byte); | ||
| 448 | int32_t e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index, | ||
| 449 | uint8_t byte); | ||
| 450 | int32_t e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, | ||
| 451 | uint16_t *data); | ||
| 452 | int32_t e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index, | ||
| 453 | uint32_t size, uint16_t *data); | ||
| 454 | int32_t e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, | ||
| 455 | uint16_t words, uint16_t *data); | ||
| 456 | int32_t e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, | ||
| 457 | uint16_t words, uint16_t *data); | ||
| 458 | int32_t e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t segment); | ||
| 459 | |||
| 460 | |||
| 461 | #define E1000_READ_REG_IO(a, reg) \ | ||
| 462 | e1000_read_reg_io((a), E1000_##reg) | ||
| 463 | #define E1000_WRITE_REG_IO(a, reg, val) \ | ||
| 464 | e1000_write_reg_io((a), E1000_##reg, val) | ||
| 425 | 465 | ||
| 426 | /* PCI Device IDs */ | 466 | /* PCI Device IDs */ |
| 427 | #define E1000_DEV_ID_82542 0x1000 | 467 | #define E1000_DEV_ID_82542 0x1000 |
| @@ -446,6 +486,7 @@ int32_t e1000_check_phy_reset_block(struct e1000_hw *hw); | |||
| 446 | #define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D | 486 | #define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D |
| 447 | #define E1000_DEV_ID_82541EI 0x1013 | 487 | #define E1000_DEV_ID_82541EI 0x1013 |
| 448 | #define E1000_DEV_ID_82541EI_MOBILE 0x1018 | 488 | #define E1000_DEV_ID_82541EI_MOBILE 0x1018 |
| 489 | #define E1000_DEV_ID_82541ER_LOM 0x1014 | ||
| 449 | #define E1000_DEV_ID_82541ER 0x1078 | 490 | #define E1000_DEV_ID_82541ER 0x1078 |
| 450 | #define E1000_DEV_ID_82547GI 0x1075 | 491 | #define E1000_DEV_ID_82547GI 0x1075 |
| 451 | #define E1000_DEV_ID_82541GI 0x1076 | 492 | #define E1000_DEV_ID_82541GI 0x1076 |
| @@ -457,18 +498,28 @@ int32_t e1000_check_phy_reset_block(struct e1000_hw *hw); | |||
| 457 | #define E1000_DEV_ID_82546GB_PCIE 0x108A | 498 | #define E1000_DEV_ID_82546GB_PCIE 0x108A |
| 458 | #define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099 | 499 | #define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099 |
| 459 | #define E1000_DEV_ID_82547EI 0x1019 | 500 | #define E1000_DEV_ID_82547EI 0x1019 |
| 501 | #define E1000_DEV_ID_82547EI_MOBILE 0x101A | ||
| 460 | #define E1000_DEV_ID_82571EB_COPPER 0x105E | 502 | #define E1000_DEV_ID_82571EB_COPPER 0x105E |
| 461 | #define E1000_DEV_ID_82571EB_FIBER 0x105F | 503 | #define E1000_DEV_ID_82571EB_FIBER 0x105F |
| 462 | #define E1000_DEV_ID_82571EB_SERDES 0x1060 | 504 | #define E1000_DEV_ID_82571EB_SERDES 0x1060 |
| 463 | #define E1000_DEV_ID_82572EI_COPPER 0x107D | 505 | #define E1000_DEV_ID_82572EI_COPPER 0x107D |
| 464 | #define E1000_DEV_ID_82572EI_FIBER 0x107E | 506 | #define E1000_DEV_ID_82572EI_FIBER 0x107E |
| 465 | #define E1000_DEV_ID_82572EI_SERDES 0x107F | 507 | #define E1000_DEV_ID_82572EI_SERDES 0x107F |
| 508 | #define E1000_DEV_ID_82572EI 0x10B9 | ||
| 466 | #define E1000_DEV_ID_82573E 0x108B | 509 | #define E1000_DEV_ID_82573E 0x108B |
| 467 | #define E1000_DEV_ID_82573E_IAMT 0x108C | 510 | #define E1000_DEV_ID_82573E_IAMT 0x108C |
| 468 | #define E1000_DEV_ID_82573L 0x109A | 511 | #define E1000_DEV_ID_82573L 0x109A |
| 469 | #define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5 | 512 | #define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5 |
| 470 | #define E1000_DEV_ID_80003ES2LAN_COPPER_DPT 0x1096 | 513 | #define E1000_DEV_ID_80003ES2LAN_COPPER_DPT 0x1096 |
| 471 | #define E1000_DEV_ID_80003ES2LAN_SERDES_DPT 0x1098 | 514 | #define E1000_DEV_ID_80003ES2LAN_SERDES_DPT 0x1098 |
| 515 | #define E1000_DEV_ID_80003ES2LAN_COPPER_SPT 0x10BA | ||
| 516 | #define E1000_DEV_ID_80003ES2LAN_SERDES_SPT 0x10BB | ||
| 517 | |||
| 518 | #define E1000_DEV_ID_ICH8_IGP_M_AMT 0x1049 | ||
| 519 | #define E1000_DEV_ID_ICH8_IGP_AMT 0x104A | ||
| 520 | #define E1000_DEV_ID_ICH8_IGP_C 0x104B | ||
| 521 | #define E1000_DEV_ID_ICH8_IFE 0x104C | ||
| 522 | #define E1000_DEV_ID_ICH8_IGP_M 0x104D | ||
| 472 | 523 | ||
| 473 | 524 | ||
| 474 | #define NODE_ADDRESS_SIZE 6 | 525 | #define NODE_ADDRESS_SIZE 6 |
| @@ -539,6 +590,14 @@ int32_t e1000_check_phy_reset_block(struct e1000_hw *hw); | |||
| 539 | E1000_IMS_RXSEQ | \ | 590 | E1000_IMS_RXSEQ | \ |
| 540 | E1000_IMS_LSC) | 591 | E1000_IMS_LSC) |
| 541 | 592 | ||
| 593 | /* Additional interrupts need to be handled for e1000_ich8lan: | ||
| 594 | DSW = The FW changed the status of the DISSW bit in FWSM | ||
| 595 | PHYINT = The LAN connected device generates an interrupt | ||
| 596 | EPRST = Manageability reset event */ | ||
| 597 | #define IMS_ICH8LAN_ENABLE_MASK (\ | ||
| 598 | E1000_IMS_DSW | \ | ||
| 599 | E1000_IMS_PHYINT | \ | ||
| 600 | E1000_IMS_EPRST) | ||
| 542 | 601 | ||
| 543 | /* Number of high/low register pairs in the RAR. The RAR (Receive Address | 602 | /* Number of high/low register pairs in the RAR. The RAR (Receive Address |
| 544 | * Registers) holds the directed and multicast addresses that we monitor. We | 603 | * Registers) holds the directed and multicast addresses that we monitor. We |
| @@ -546,6 +605,7 @@ int32_t e1000_check_phy_reset_block(struct e1000_hw *hw); | |||
| 546 | * E1000_RAR_ENTRIES - 1 multicast addresses. | 605 | * E1000_RAR_ENTRIES - 1 multicast addresses. |
| 547 | */ | 606 | */ |
| 548 | #define E1000_RAR_ENTRIES 15 | 607 | #define E1000_RAR_ENTRIES 15 |
| 608 | #define E1000_RAR_ENTRIES_ICH8LAN 7 | ||
| 549 | 609 | ||
| 550 | #define MIN_NUMBER_OF_DESCRIPTORS 8 | 610 | #define MIN_NUMBER_OF_DESCRIPTORS 8 |
| 551 | #define MAX_NUMBER_OF_DESCRIPTORS 0xFFF8 | 611 | #define MAX_NUMBER_OF_DESCRIPTORS 0xFFF8 |
| @@ -767,6 +827,9 @@ struct e1000_data_desc { | |||
| 767 | #define E1000_MC_TBL_SIZE 128 /* Multicast Filter Table (4096 bits) */ | 827 | #define E1000_MC_TBL_SIZE 128 /* Multicast Filter Table (4096 bits) */ |
| 768 | #define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */ | 828 | #define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */ |
| 769 | 829 | ||
| 830 | #define E1000_NUM_UNICAST_ICH8LAN 7 | ||
| 831 | #define E1000_MC_TBL_SIZE_ICH8LAN 32 | ||
| 832 | |||
| 770 | 833 | ||
| 771 | /* Receive Address Register */ | 834 | /* Receive Address Register */ |
| 772 | struct e1000_rar { | 835 | struct e1000_rar { |
| @@ -776,6 +839,7 @@ struct e1000_rar { | |||
| 776 | 839 | ||
| 777 | /* Number of entries in the Multicast Table Array (MTA). */ | 840 | /* Number of entries in the Multicast Table Array (MTA). */ |
| 778 | #define E1000_NUM_MTA_REGISTERS 128 | 841 | #define E1000_NUM_MTA_REGISTERS 128 |
| 842 | #define E1000_NUM_MTA_REGISTERS_ICH8LAN 32 | ||
| 779 | 843 | ||
| 780 | /* IPv4 Address Table Entry */ | 844 | /* IPv4 Address Table Entry */ |
| 781 | struct e1000_ipv4_at_entry { | 845 | struct e1000_ipv4_at_entry { |
| @@ -786,6 +850,7 @@ struct e1000_ipv4_at_entry { | |||
| 786 | /* Four wakeup IP addresses are supported */ | 850 | /* Four wakeup IP addresses are supported */ |
| 787 | #define E1000_WAKEUP_IP_ADDRESS_COUNT_MAX 4 | 851 | #define E1000_WAKEUP_IP_ADDRESS_COUNT_MAX 4 |
| 788 | #define E1000_IP4AT_SIZE E1000_WAKEUP_IP_ADDRESS_COUNT_MAX | 852 | #define E1000_IP4AT_SIZE E1000_WAKEUP_IP_ADDRESS_COUNT_MAX |
| 853 | #define E1000_IP4AT_SIZE_ICH8LAN 3 | ||
| 789 | #define E1000_IP6AT_SIZE 1 | 854 | #define E1000_IP6AT_SIZE 1 |
| 790 | 855 | ||
| 791 | /* IPv6 Address Table Entry */ | 856 | /* IPv6 Address Table Entry */ |
| @@ -844,6 +909,7 @@ struct e1000_ffvt_entry { | |||
| 844 | #define E1000_FLA 0x0001C /* Flash Access - RW */ | 909 | #define E1000_FLA 0x0001C /* Flash Access - RW */ |
| 845 | #define E1000_MDIC 0x00020 /* MDI Control - RW */ | 910 | #define E1000_MDIC 0x00020 /* MDI Control - RW */ |
| 846 | #define E1000_SCTL 0x00024 /* SerDes Control - RW */ | 911 | #define E1000_SCTL 0x00024 /* SerDes Control - RW */ |
| 912 | #define E1000_FEXTNVM 0x00028 /* Future Extended NVM register */ | ||
| 847 | #define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */ | 913 | #define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */ |
| 848 | #define E1000_FCAH 0x0002C /* Flow Control Address High -RW */ | 914 | #define E1000_FCAH 0x0002C /* Flow Control Address High -RW */ |
| 849 | #define E1000_FCT 0x00030 /* Flow Control Type - RW */ | 915 | #define E1000_FCT 0x00030 /* Flow Control Type - RW */ |
| @@ -872,6 +938,8 @@ struct e1000_ffvt_entry { | |||
| 872 | #define E1000_LEDCTL 0x00E00 /* LED Control - RW */ | 938 | #define E1000_LEDCTL 0x00E00 /* LED Control - RW */ |
| 873 | #define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */ | 939 | #define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */ |
| 874 | #define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */ | 940 | #define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */ |
| 941 | #define E1000_PHY_CTRL 0x00F10 /* PHY Control Register in CSR */ | ||
| 942 | #define FEXTNVM_SW_CONFIG 0x0001 | ||
| 875 | #define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */ | 943 | #define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */ |
| 876 | #define E1000_PBS 0x01008 /* Packet Buffer Size */ | 944 | #define E1000_PBS 0x01008 /* Packet Buffer Size */ |
| 877 | #define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */ | 945 | #define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */ |
| @@ -899,11 +967,13 @@ struct e1000_ffvt_entry { | |||
| 899 | #define E1000_RDH0 E1000_RDH /* RX Desc Head (0) - RW */ | 967 | #define E1000_RDH0 E1000_RDH /* RX Desc Head (0) - RW */ |
| 900 | #define E1000_RDT0 E1000_RDT /* RX Desc Tail (0) - RW */ | 968 | #define E1000_RDT0 E1000_RDT /* RX Desc Tail (0) - RW */ |
| 901 | #define E1000_RDTR0 E1000_RDTR /* RX Delay Timer (0) - RW */ | 969 | #define E1000_RDTR0 E1000_RDTR /* RX Delay Timer (0) - RW */ |
| 902 | #define E1000_RXDCTL 0x02828 /* RX Descriptor Control - RW */ | 970 | #define E1000_RXDCTL 0x02828 /* RX Descriptor Control queue 0 - RW */ |
| 971 | #define E1000_RXDCTL1 0x02928 /* RX Descriptor Control queue 1 - RW */ | ||
| 903 | #define E1000_RADV 0x0282C /* RX Interrupt Absolute Delay Timer - RW */ | 972 | #define E1000_RADV 0x0282C /* RX Interrupt Absolute Delay Timer - RW */ |
| 904 | #define E1000_RSRPD 0x02C00 /* RX Small Packet Detect - RW */ | 973 | #define E1000_RSRPD 0x02C00 /* RX Small Packet Detect - RW */ |
| 905 | #define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */ | 974 | #define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */ |
| 906 | #define E1000_TXDMAC 0x03000 /* TX DMA Control - RW */ | 975 | #define E1000_TXDMAC 0x03000 /* TX DMA Control - RW */ |
| 976 | #define E1000_KABGTXD 0x03004 /* AFE Band Gap Transmit Ref Data */ | ||
| 907 | #define E1000_TDFH 0x03410 /* TX Data FIFO Head - RW */ | 977 | #define E1000_TDFH 0x03410 /* TX Data FIFO Head - RW */ |
| 908 | #define E1000_TDFT 0x03418 /* TX Data FIFO Tail - RW */ | 978 | #define E1000_TDFT 0x03418 /* TX Data FIFO Tail - RW */ |
| 909 | #define E1000_TDFHS 0x03420 /* TX Data FIFO Head Saved - RW */ | 979 | #define E1000_TDFHS 0x03420 /* TX Data FIFO Head Saved - RW */ |
| @@ -1050,6 +1120,7 @@ struct e1000_ffvt_entry { | |||
| 1050 | #define E1000_82542_FLA E1000_FLA | 1120 | #define E1000_82542_FLA E1000_FLA |
| 1051 | #define E1000_82542_MDIC E1000_MDIC | 1121 | #define E1000_82542_MDIC E1000_MDIC |
| 1052 | #define E1000_82542_SCTL E1000_SCTL | 1122 | #define E1000_82542_SCTL E1000_SCTL |
| 1123 | #define E1000_82542_FEXTNVM E1000_FEXTNVM | ||
| 1053 | #define E1000_82542_FCAL E1000_FCAL | 1124 | #define E1000_82542_FCAL E1000_FCAL |
| 1054 | #define E1000_82542_FCAH E1000_FCAH | 1125 | #define E1000_82542_FCAH E1000_FCAH |
| 1055 | #define E1000_82542_FCT E1000_FCT | 1126 | #define E1000_82542_FCT E1000_FCT |
| @@ -1073,6 +1144,19 @@ struct e1000_ffvt_entry { | |||
| 1073 | #define E1000_82542_RDLEN0 E1000_82542_RDLEN | 1144 | #define E1000_82542_RDLEN0 E1000_82542_RDLEN |
| 1074 | #define E1000_82542_RDH0 E1000_82542_RDH | 1145 | #define E1000_82542_RDH0 E1000_82542_RDH |
| 1075 | #define E1000_82542_RDT0 E1000_82542_RDT | 1146 | #define E1000_82542_RDT0 E1000_82542_RDT |
| 1147 | #define E1000_82542_SRRCTL(_n) (0x280C + ((_n) << 8)) /* Split and Replication | ||
| 1148 | * RX Control - RW */ | ||
| 1149 | #define E1000_82542_DCA_RXCTRL(_n) (0x02814 + ((_n) << 8)) | ||
| 1150 | #define E1000_82542_RDBAH3 0x02B04 /* RX Desc Base High Queue 3 - RW */ | ||
| 1151 | #define E1000_82542_RDBAL3 0x02B00 /* RX Desc Low Queue 3 - RW */ | ||
| 1152 | #define E1000_82542_RDLEN3 0x02B08 /* RX Desc Length Queue 3 - RW */ | ||
| 1153 | #define E1000_82542_RDH3 0x02B10 /* RX Desc Head Queue 3 - RW */ | ||
| 1154 | #define E1000_82542_RDT3 0x02B18 /* RX Desc Tail Queue 3 - RW */ | ||
| 1155 | #define E1000_82542_RDBAL2 0x02A00 /* RX Desc Base Low Queue 2 - RW */ | ||
| 1156 | #define E1000_82542_RDBAH2 0x02A04 /* RX Desc Base High Queue 2 - RW */ | ||
| 1157 | #define E1000_82542_RDLEN2 0x02A08 /* RX Desc Length Queue 2 - RW */ | ||
| 1158 | #define E1000_82542_RDH2 0x02A10 /* RX Desc Head Queue 2 - RW */ | ||
| 1159 | #define E1000_82542_RDT2 0x02A18 /* RX Desc Tail Queue 2 - RW */ | ||
| 1076 | #define E1000_82542_RDTR1 0x00130 | 1160 | #define E1000_82542_RDTR1 0x00130 |
| 1077 | #define E1000_82542_RDBAL1 0x00138 | 1161 | #define E1000_82542_RDBAL1 0x00138 |
| 1078 | #define E1000_82542_RDBAH1 0x0013C | 1162 | #define E1000_82542_RDBAH1 0x0013C |
| @@ -1110,11 +1194,14 @@ struct e1000_ffvt_entry { | |||
| 1110 | #define E1000_82542_FLOP E1000_FLOP | 1194 | #define E1000_82542_FLOP E1000_FLOP |
| 1111 | #define E1000_82542_EXTCNF_CTRL E1000_EXTCNF_CTRL | 1195 | #define E1000_82542_EXTCNF_CTRL E1000_EXTCNF_CTRL |
| 1112 | #define E1000_82542_EXTCNF_SIZE E1000_EXTCNF_SIZE | 1196 | #define E1000_82542_EXTCNF_SIZE E1000_EXTCNF_SIZE |
| 1197 | #define E1000_82542_PHY_CTRL E1000_PHY_CTRL | ||
| 1113 | #define E1000_82542_ERT E1000_ERT | 1198 | #define E1000_82542_ERT E1000_ERT |
| 1114 | #define E1000_82542_RXDCTL E1000_RXDCTL | 1199 | #define E1000_82542_RXDCTL E1000_RXDCTL |
| 1200 | #define E1000_82542_RXDCTL1 E1000_RXDCTL1 | ||
| 1115 | #define E1000_82542_RADV E1000_RADV | 1201 | #define E1000_82542_RADV E1000_RADV |
| 1116 | #define E1000_82542_RSRPD E1000_RSRPD | 1202 | #define E1000_82542_RSRPD E1000_RSRPD |
| 1117 | #define E1000_82542_TXDMAC E1000_TXDMAC | 1203 | #define E1000_82542_TXDMAC E1000_TXDMAC |
| 1204 | #define E1000_82542_KABGTXD E1000_KABGTXD | ||
| 1118 | #define E1000_82542_TDFHS E1000_TDFHS | 1205 | #define E1000_82542_TDFHS E1000_TDFHS |
| 1119 | #define E1000_82542_TDFTS E1000_TDFTS | 1206 | #define E1000_82542_TDFTS E1000_TDFTS |
| 1120 | #define E1000_82542_TDFPC E1000_TDFPC | 1207 | #define E1000_82542_TDFPC E1000_TDFPC |
| @@ -1310,13 +1397,16 @@ struct e1000_hw_stats { | |||
| 1310 | 1397 | ||
| 1311 | /* Structure containing variables used by the shared code (e1000_hw.c) */ | 1398 | /* Structure containing variables used by the shared code (e1000_hw.c) */ |
| 1312 | struct e1000_hw { | 1399 | struct e1000_hw { |
| 1313 | uint8_t __iomem *hw_addr; | 1400 | uint8_t *hw_addr; |
| 1314 | uint8_t *flash_address; | 1401 | uint8_t *flash_address; |
| 1315 | e1000_mac_type mac_type; | 1402 | e1000_mac_type mac_type; |
| 1316 | e1000_phy_type phy_type; | 1403 | e1000_phy_type phy_type; |
| 1317 | uint32_t phy_init_script; | 1404 | uint32_t phy_init_script; |
| 1318 | e1000_media_type media_type; | 1405 | e1000_media_type media_type; |
| 1319 | void *back; | 1406 | void *back; |
| 1407 | struct e1000_shadow_ram *eeprom_shadow_ram; | ||
| 1408 | uint32_t flash_bank_size; | ||
| 1409 | uint32_t flash_base_addr; | ||
| 1320 | e1000_fc_type fc; | 1410 | e1000_fc_type fc; |
| 1321 | e1000_bus_speed bus_speed; | 1411 | e1000_bus_speed bus_speed; |
| 1322 | e1000_bus_width bus_width; | 1412 | e1000_bus_width bus_width; |
| @@ -1328,6 +1418,7 @@ struct e1000_hw { | |||
| 1328 | uint32_t asf_firmware_present; | 1418 | uint32_t asf_firmware_present; |
| 1329 | uint32_t eeprom_semaphore_present; | 1419 | uint32_t eeprom_semaphore_present; |
| 1330 | uint32_t swfw_sync_present; | 1420 | uint32_t swfw_sync_present; |
| 1421 | uint32_t swfwhw_semaphore_present; | ||
| 1331 | unsigned long io_base; | 1422 | unsigned long io_base; |
| 1332 | uint32_t phy_id; | 1423 | uint32_t phy_id; |
| 1333 | uint32_t phy_revision; | 1424 | uint32_t phy_revision; |
| @@ -1387,6 +1478,7 @@ struct e1000_hw { | |||
| 1387 | boolean_t in_ifs_mode; | 1478 | boolean_t in_ifs_mode; |
| 1388 | boolean_t mng_reg_access_disabled; | 1479 | boolean_t mng_reg_access_disabled; |
| 1389 | boolean_t leave_av_bit_off; | 1480 | boolean_t leave_av_bit_off; |
| 1481 | boolean_t kmrn_lock_loss_workaround_disabled; | ||
| 1390 | }; | 1482 | }; |
| 1391 | 1483 | ||
| 1392 | 1484 | ||
| @@ -1435,6 +1527,7 @@ struct e1000_hw { | |||
| 1435 | #define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */ | 1527 | #define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */ |
| 1436 | #define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */ | 1528 | #define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */ |
| 1437 | #define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */ | 1529 | #define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */ |
| 1530 | #define E1000_CTRL_SW2FW_INT 0x02000000 /* Initiate an interrupt to manageability engine */ | ||
| 1438 | 1531 | ||
| 1439 | /* Device Status */ | 1532 | /* Device Status */ |
| 1440 | #define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */ | 1533 | #define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */ |
| @@ -1449,6 +1542,8 @@ struct e1000_hw { | |||
| 1449 | #define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */ | 1542 | #define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */ |
| 1450 | #define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */ | 1543 | #define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */ |
| 1451 | #define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */ | 1544 | #define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */ |
| 1545 | #define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Completion | ||
| 1546 | by EEPROM/Flash */ | ||
| 1452 | #define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */ | 1547 | #define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */ |
| 1453 | #define E1000_STATUS_DOCK_CI 0x00000800 /* Change in Dock/Undock state. Clear on write '0'. */ | 1548 | #define E1000_STATUS_DOCK_CI 0x00000800 /* Change in Dock/Undock state. Clear on write '0'. */ |
| 1454 | #define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */ | 1549 | #define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */ |
| @@ -1506,6 +1601,10 @@ struct e1000_hw { | |||
| 1506 | #define E1000_STM_OPCODE 0xDB00 | 1601 | #define E1000_STM_OPCODE 0xDB00 |
| 1507 | #define E1000_HICR_FW_RESET 0xC0 | 1602 | #define E1000_HICR_FW_RESET 0xC0 |
| 1508 | 1603 | ||
| 1604 | #define E1000_SHADOW_RAM_WORDS 2048 | ||
| 1605 | #define E1000_ICH8_NVM_SIG_WORD 0x13 | ||
| 1606 | #define E1000_ICH8_NVM_SIG_MASK 0xC0 | ||
| 1607 | |||
| 1509 | /* EEPROM Read */ | 1608 | /* EEPROM Read */ |
| 1510 | #define E1000_EERD_START 0x00000001 /* Start Read */ | 1609 | #define E1000_EERD_START 0x00000001 /* Start Read */ |
| 1511 | #define E1000_EERD_DONE 0x00000010 /* Read Done */ | 1610 | #define E1000_EERD_DONE 0x00000010 /* Read Done */ |
| @@ -1551,7 +1650,6 @@ struct e1000_hw { | |||
| 1551 | #define E1000_CTRL_EXT_WR_WMARK_320 0x01000000 | 1650 | #define E1000_CTRL_EXT_WR_WMARK_320 0x01000000 |
| 1552 | #define E1000_CTRL_EXT_WR_WMARK_384 0x02000000 | 1651 | #define E1000_CTRL_EXT_WR_WMARK_384 0x02000000 |
| 1553 | #define E1000_CTRL_EXT_WR_WMARK_448 0x03000000 | 1652 | #define E1000_CTRL_EXT_WR_WMARK_448 0x03000000 |
| 1554 | #define E1000_CTRL_EXT_CANC 0x04000000 /* Interrupt delay cancellation */ | ||
| 1555 | #define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Driver loaded bit for FW */ | 1653 | #define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Driver loaded bit for FW */ |
| 1556 | #define E1000_CTRL_EXT_IAME 0x08000000 /* Interrupt acknowledge Auto-mask */ | 1654 | #define E1000_CTRL_EXT_IAME 0x08000000 /* Interrupt acknowledge Auto-mask */ |
| 1557 | #define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000 /* Clear Interrupt timers after IMS clear */ | 1655 | #define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000 /* Clear Interrupt timers after IMS clear */ |
| @@ -1591,12 +1689,31 @@ struct e1000_hw { | |||
| 1591 | #define E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS 0x00000800 | 1689 | #define E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS 0x00000800 |
| 1592 | 1690 | ||
| 1593 | /* In-Band Control */ | 1691 | /* In-Band Control */ |
| 1692 | #define E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT 0x00000500 | ||
| 1594 | #define E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING 0x00000010 | 1693 | #define E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING 0x00000010 |
| 1595 | 1694 | ||
| 1596 | /* Half-Duplex Control */ | 1695 | /* Half-Duplex Control */ |
| 1597 | #define E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT 0x00000004 | 1696 | #define E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT 0x00000004 |
| 1598 | #define E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT 0x00000000 | 1697 | #define E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT 0x00000000 |
| 1599 | 1698 | ||
| 1699 | #define E1000_KUMCTRLSTA_OFFSET_K0S_CTRL 0x0000001E | ||
| 1700 | |||
| 1701 | #define E1000_KUMCTRLSTA_DIAG_FELPBK 0x2000 | ||
| 1702 | #define E1000_KUMCTRLSTA_DIAG_NELPBK 0x1000 | ||
| 1703 | |||
| 1704 | #define E1000_KUMCTRLSTA_K0S_100_EN 0x2000 | ||
| 1705 | #define E1000_KUMCTRLSTA_K0S_GBE_EN 0x1000 | ||
| 1706 | #define E1000_KUMCTRLSTA_K0S_ENTRY_LATENCY_MASK 0x0003 | ||
| 1707 | |||
| 1708 | #define E1000_KABGTXD_BGSQLBIAS 0x00050000 | ||
| 1709 | |||
| 1710 | #define E1000_PHY_CTRL_SPD_EN 0x00000001 | ||
| 1711 | #define E1000_PHY_CTRL_D0A_LPLU 0x00000002 | ||
| 1712 | #define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004 | ||
| 1713 | #define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008 | ||
| 1714 | #define E1000_PHY_CTRL_GBE_DISABLE 0x00000040 | ||
| 1715 | #define E1000_PHY_CTRL_B2B_EN 0x00000080 | ||
| 1716 | |||
| 1600 | /* LED Control */ | 1717 | /* LED Control */ |
| 1601 | #define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F | 1718 | #define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F |
| 1602 | #define E1000_LEDCTL_LED0_MODE_SHIFT 0 | 1719 | #define E1000_LEDCTL_LED0_MODE_SHIFT 0 |
| @@ -1666,6 +1783,9 @@ struct e1000_hw { | |||
| 1666 | #define E1000_ICR_RXD_FIFO_PAR1 0x01000000 /* queue 1 Rx descriptor FIFO parity error */ | 1783 | #define E1000_ICR_RXD_FIFO_PAR1 0x01000000 /* queue 1 Rx descriptor FIFO parity error */ |
| 1667 | #define E1000_ICR_TXD_FIFO_PAR1 0x02000000 /* queue 1 Tx descriptor FIFO parity error */ | 1784 | #define E1000_ICR_TXD_FIFO_PAR1 0x02000000 /* queue 1 Tx descriptor FIFO parity error */ |
| 1668 | #define E1000_ICR_ALL_PARITY 0x03F00000 /* all parity error bits */ | 1785 | #define E1000_ICR_ALL_PARITY 0x03F00000 /* all parity error bits */ |
| 1786 | #define E1000_ICR_DSW 0x00000020 /* FW changed the status of DISSW bit in the FWSM */ | ||
| 1787 | #define E1000_ICR_PHYINT 0x00001000 /* LAN connected device generates an interrupt */ | ||
| 1788 | #define E1000_ICR_EPRST 0x00100000 /* ME handware reset occurs */ | ||
| 1669 | 1789 | ||
| 1670 | /* Interrupt Cause Set */ | 1790 | /* Interrupt Cause Set */ |
| 1671 | #define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ | 1791 | #define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ |
| @@ -1692,6 +1812,9 @@ struct e1000_hw { | |||
| 1692 | #define E1000_ICS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */ | 1812 | #define E1000_ICS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */ |
| 1693 | #define E1000_ICS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */ | 1813 | #define E1000_ICS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */ |
| 1694 | #define E1000_ICS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */ | 1814 | #define E1000_ICS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */ |
| 1815 | #define E1000_ICS_DSW E1000_ICR_DSW | ||
| 1816 | #define E1000_ICS_PHYINT E1000_ICR_PHYINT | ||
| 1817 | #define E1000_ICS_EPRST E1000_ICR_EPRST | ||
| 1695 | 1818 | ||
| 1696 | /* Interrupt Mask Set */ | 1819 | /* Interrupt Mask Set */ |
| 1697 | #define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ | 1820 | #define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ |
| @@ -1718,6 +1841,9 @@ struct e1000_hw { | |||
| 1718 | #define E1000_IMS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */ | 1841 | #define E1000_IMS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */ |
| 1719 | #define E1000_IMS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */ | 1842 | #define E1000_IMS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */ |
| 1720 | #define E1000_IMS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */ | 1843 | #define E1000_IMS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */ |
| 1844 | #define E1000_IMS_DSW E1000_ICR_DSW | ||
| 1845 | #define E1000_IMS_PHYINT E1000_ICR_PHYINT | ||
| 1846 | #define E1000_IMS_EPRST E1000_ICR_EPRST | ||
| 1721 | 1847 | ||
| 1722 | /* Interrupt Mask Clear */ | 1848 | /* Interrupt Mask Clear */ |
| 1723 | #define E1000_IMC_TXDW E1000_ICR_TXDW /* Transmit desc written back */ | 1849 | #define E1000_IMC_TXDW E1000_ICR_TXDW /* Transmit desc written back */ |
| @@ -1744,6 +1870,9 @@ struct e1000_hw { | |||
| 1744 | #define E1000_IMC_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */ | 1870 | #define E1000_IMC_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */ |
| 1745 | #define E1000_IMC_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */ | 1871 | #define E1000_IMC_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */ |
| 1746 | #define E1000_IMC_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */ | 1872 | #define E1000_IMC_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */ |
| 1873 | #define E1000_IMC_DSW E1000_ICR_DSW | ||
| 1874 | #define E1000_IMC_PHYINT E1000_ICR_PHYINT | ||
| 1875 | #define E1000_IMC_EPRST E1000_ICR_EPRST | ||
| 1747 | 1876 | ||
| 1748 | /* Receive Control */ | 1877 | /* Receive Control */ |
| 1749 | #define E1000_RCTL_RST 0x00000001 /* Software reset */ | 1878 | #define E1000_RCTL_RST 0x00000001 /* Software reset */ |
| @@ -1918,9 +2047,10 @@ struct e1000_hw { | |||
| 1918 | #define E1000_MRQC_RSS_FIELD_MASK 0xFFFF0000 | 2047 | #define E1000_MRQC_RSS_FIELD_MASK 0xFFFF0000 |
| 1919 | #define E1000_MRQC_RSS_FIELD_IPV4_TCP 0x00010000 | 2048 | #define E1000_MRQC_RSS_FIELD_IPV4_TCP 0x00010000 |
| 1920 | #define E1000_MRQC_RSS_FIELD_IPV4 0x00020000 | 2049 | #define E1000_MRQC_RSS_FIELD_IPV4 0x00020000 |
| 1921 | #define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00040000 | 2050 | #define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX 0x00040000 |
| 1922 | #define E1000_MRQC_RSS_FIELD_IPV6_EX 0x00080000 | 2051 | #define E1000_MRQC_RSS_FIELD_IPV6_EX 0x00080000 |
| 1923 | #define E1000_MRQC_RSS_FIELD_IPV6 0x00100000 | 2052 | #define E1000_MRQC_RSS_FIELD_IPV6 0x00100000 |
| 2053 | #define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00200000 | ||
| 1924 | 2054 | ||
| 1925 | /* Definitions for power management and wakeup registers */ | 2055 | /* Definitions for power management and wakeup registers */ |
| 1926 | /* Wake Up Control */ | 2056 | /* Wake Up Control */ |
| @@ -2010,6 +2140,15 @@ struct e1000_hw { | |||
| 2010 | #define E1000_FWSM_MODE_SHIFT 1 | 2140 | #define E1000_FWSM_MODE_SHIFT 1 |
| 2011 | #define E1000_FWSM_FW_VALID 0x00008000 /* FW established a valid mode */ | 2141 | #define E1000_FWSM_FW_VALID 0x00008000 /* FW established a valid mode */ |
| 2012 | 2142 | ||
| 2143 | #define E1000_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI reset */ | ||
| 2144 | #define E1000_FWSM_DISSW 0x10000000 /* FW disable SW Write Access */ | ||
| 2145 | #define E1000_FWSM_SKUSEL_MASK 0x60000000 /* LAN SKU select */ | ||
| 2146 | #define E1000_FWSM_SKUEL_SHIFT 29 | ||
| 2147 | #define E1000_FWSM_SKUSEL_EMB 0x0 /* Embedded SKU */ | ||
| 2148 | #define E1000_FWSM_SKUSEL_CONS 0x1 /* Consumer SKU */ | ||
| 2149 | #define E1000_FWSM_SKUSEL_PERF_100 0x2 /* Perf & Corp 10/100 SKU */ | ||
| 2150 | #define E1000_FWSM_SKUSEL_PERF_GBE 0x3 /* Perf & Copr GbE SKU */ | ||
| 2151 | |||
| 2013 | /* FFLT Debug Register */ | 2152 | /* FFLT Debug Register */ |
| 2014 | #define E1000_FFLT_DBG_INVC 0x00100000 /* Invalid /C/ code handling */ | 2153 | #define E1000_FFLT_DBG_INVC 0x00100000 /* Invalid /C/ code handling */ |
| 2015 | 2154 | ||
| @@ -2082,6 +2221,8 @@ struct e1000_host_command_info { | |||
| 2082 | E1000_GCR_TXDSCW_NO_SNOOP | \ | 2221 | E1000_GCR_TXDSCW_NO_SNOOP | \ |
| 2083 | E1000_GCR_TXDSCR_NO_SNOOP) | 2222 | E1000_GCR_TXDSCR_NO_SNOOP) |
| 2084 | 2223 | ||
| 2224 | #define PCI_EX_82566_SNOOP_ALL PCI_EX_NO_SNOOP_ALL | ||
| 2225 | |||
| 2085 | #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000 | 2226 | #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000 |
| 2086 | /* Function Active and Power State to MNG */ | 2227 | /* Function Active and Power State to MNG */ |
| 2087 | #define E1000_FACTPS_FUNC0_POWER_STATE_MASK 0x00000003 | 2228 | #define E1000_FACTPS_FUNC0_POWER_STATE_MASK 0x00000003 |
| @@ -2140,8 +2281,10 @@ struct e1000_host_command_info { | |||
| 2140 | #define EEPROM_PHY_CLASS_WORD 0x0007 | 2281 | #define EEPROM_PHY_CLASS_WORD 0x0007 |
| 2141 | #define EEPROM_INIT_CONTROL1_REG 0x000A | 2282 | #define EEPROM_INIT_CONTROL1_REG 0x000A |
| 2142 | #define EEPROM_INIT_CONTROL2_REG 0x000F | 2283 | #define EEPROM_INIT_CONTROL2_REG 0x000F |
| 2284 | #define EEPROM_SWDEF_PINS_CTRL_PORT_1 0x0010 | ||
| 2143 | #define EEPROM_INIT_CONTROL3_PORT_B 0x0014 | 2285 | #define EEPROM_INIT_CONTROL3_PORT_B 0x0014 |
| 2144 | #define EEPROM_INIT_3GIO_3 0x001A | 2286 | #define EEPROM_INIT_3GIO_3 0x001A |
| 2287 | #define EEPROM_SWDEF_PINS_CTRL_PORT_0 0x0020 | ||
| 2145 | #define EEPROM_INIT_CONTROL3_PORT_A 0x0024 | 2288 | #define EEPROM_INIT_CONTROL3_PORT_A 0x0024 |
| 2146 | #define EEPROM_CFG 0x0012 | 2289 | #define EEPROM_CFG 0x0012 |
| 2147 | #define EEPROM_FLASH_VERSION 0x0032 | 2290 | #define EEPROM_FLASH_VERSION 0x0032 |
| @@ -2153,10 +2296,16 @@ struct e1000_host_command_info { | |||
| 2153 | /* Word definitions for ID LED Settings */ | 2296 | /* Word definitions for ID LED Settings */ |
| 2154 | #define ID_LED_RESERVED_0000 0x0000 | 2297 | #define ID_LED_RESERVED_0000 0x0000 |
| 2155 | #define ID_LED_RESERVED_FFFF 0xFFFF | 2298 | #define ID_LED_RESERVED_FFFF 0xFFFF |
| 2299 | #define ID_LED_RESERVED_82573 0xF746 | ||
| 2300 | #define ID_LED_DEFAULT_82573 0x1811 | ||
| 2156 | #define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \ | 2301 | #define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \ |
| 2157 | (ID_LED_OFF1_OFF2 << 8) | \ | 2302 | (ID_LED_OFF1_OFF2 << 8) | \ |
| 2158 | (ID_LED_DEF1_DEF2 << 4) | \ | 2303 | (ID_LED_DEF1_DEF2 << 4) | \ |
| 2159 | (ID_LED_DEF1_DEF2)) | 2304 | (ID_LED_DEF1_DEF2)) |
| 2305 | #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \ | ||
| 2306 | (ID_LED_DEF1_OFF2 << 8) | \ | ||
| 2307 | (ID_LED_DEF1_ON2 << 4) | \ | ||
| 2308 | (ID_LED_DEF1_DEF2)) | ||
| 2160 | #define ID_LED_DEF1_DEF2 0x1 | 2309 | #define ID_LED_DEF1_DEF2 0x1 |
| 2161 | #define ID_LED_DEF1_ON2 0x2 | 2310 | #define ID_LED_DEF1_ON2 0x2 |
| 2162 | #define ID_LED_DEF1_OFF2 0x3 | 2311 | #define ID_LED_DEF1_OFF2 0x3 |
| @@ -2191,6 +2340,11 @@ struct e1000_host_command_info { | |||
| 2191 | #define EEPROM_WORD0F_ASM_DIR 0x2000 | 2340 | #define EEPROM_WORD0F_ASM_DIR 0x2000 |
| 2192 | #define EEPROM_WORD0F_ANE 0x0800 | 2341 | #define EEPROM_WORD0F_ANE 0x0800 |
| 2193 | #define EEPROM_WORD0F_SWPDIO_EXT 0x00F0 | 2342 | #define EEPROM_WORD0F_SWPDIO_EXT 0x00F0 |
| 2343 | #define EEPROM_WORD0F_LPLU 0x0001 | ||
| 2344 | |||
| 2345 | /* Mask bits for fields in Word 0x10/0x20 of the EEPROM */ | ||
| 2346 | #define EEPROM_WORD1020_GIGA_DISABLE 0x0010 | ||
| 2347 | #define EEPROM_WORD1020_GIGA_DISABLE_NON_D0A 0x0008 | ||
| 2194 | 2348 | ||
| 2195 | /* Mask bits for fields in Word 0x1a of the EEPROM */ | 2349 | /* Mask bits for fields in Word 0x1a of the EEPROM */ |
| 2196 | #define EEPROM_WORD1A_ASPM_MASK 0x000C | 2350 | #define EEPROM_WORD1A_ASPM_MASK 0x000C |
| @@ -2265,23 +2419,29 @@ struct e1000_host_command_info { | |||
| 2265 | #define E1000_EXTCNF_CTRL_D_UD_OWNER 0x00000010 | 2419 | #define E1000_EXTCNF_CTRL_D_UD_OWNER 0x00000010 |
| 2266 | #define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020 | 2420 | #define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020 |
| 2267 | #define E1000_EXTCNF_CTRL_MDIO_HW_OWNERSHIP 0x00000040 | 2421 | #define E1000_EXTCNF_CTRL_MDIO_HW_OWNERSHIP 0x00000040 |
| 2268 | #define E1000_EXTCNF_CTRL_EXT_CNF_POINTER 0x1FFF0000 | 2422 | #define E1000_EXTCNF_CTRL_EXT_CNF_POINTER 0x0FFF0000 |
| 2269 | 2423 | ||
| 2270 | #define E1000_EXTCNF_SIZE_EXT_PHY_LENGTH 0x000000FF | 2424 | #define E1000_EXTCNF_SIZE_EXT_PHY_LENGTH 0x000000FF |
| 2271 | #define E1000_EXTCNF_SIZE_EXT_DOCK_LENGTH 0x0000FF00 | 2425 | #define E1000_EXTCNF_SIZE_EXT_DOCK_LENGTH 0x0000FF00 |
| 2272 | #define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH 0x00FF0000 | 2426 | #define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH 0x00FF0000 |
| 2427 | #define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE 0x00000001 | ||
| 2428 | #define E1000_EXTCNF_CTRL_SWFLAG 0x00000020 | ||
| 2273 | 2429 | ||
| 2274 | /* PBA constants */ | 2430 | /* PBA constants */ |
| 2431 | #define E1000_PBA_8K 0x0008 /* 8KB, default Rx allocation */ | ||
| 2275 | #define E1000_PBA_12K 0x000C /* 12KB, default Rx allocation */ | 2432 | #define E1000_PBA_12K 0x000C /* 12KB, default Rx allocation */ |
| 2276 | #define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */ | 2433 | #define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */ |
| 2277 | #define E1000_PBA_22K 0x0016 | 2434 | #define E1000_PBA_22K 0x0016 |
| 2278 | #define E1000_PBA_24K 0x0018 | 2435 | #define E1000_PBA_24K 0x0018 |
| 2279 | #define E1000_PBA_30K 0x001E | 2436 | #define E1000_PBA_30K 0x001E |
| 2280 | #define E1000_PBA_32K 0x0020 | 2437 | #define E1000_PBA_32K 0x0020 |
| 2438 | #define E1000_PBA_34K 0x0022 | ||
| 2281 | #define E1000_PBA_38K 0x0026 | 2439 | #define E1000_PBA_38K 0x0026 |
| 2282 | #define E1000_PBA_40K 0x0028 | 2440 | #define E1000_PBA_40K 0x0028 |
| 2283 | #define E1000_PBA_48K 0x0030 /* 48KB, default RX allocation */ | 2441 | #define E1000_PBA_48K 0x0030 /* 48KB, default RX allocation */ |
| 2284 | 2442 | ||
| 2443 | #define E1000_PBS_16K E1000_PBA_16K | ||
| 2444 | |||
| 2285 | /* Flow Control Constants */ | 2445 | /* Flow Control Constants */ |
| 2286 | #define FLOW_CONTROL_ADDRESS_LOW 0x00C28001 | 2446 | #define FLOW_CONTROL_ADDRESS_LOW 0x00C28001 |
| 2287 | #define FLOW_CONTROL_ADDRESS_HIGH 0x00000100 | 2447 | #define FLOW_CONTROL_ADDRESS_HIGH 0x00000100 |
| @@ -2336,7 +2496,7 @@ struct e1000_host_command_info { | |||
| 2336 | /* Number of milliseconds we wait for Eeprom auto read bit done after MAC reset */ | 2496 | /* Number of milliseconds we wait for Eeprom auto read bit done after MAC reset */ |
| 2337 | #define AUTO_READ_DONE_TIMEOUT 10 | 2497 | #define AUTO_READ_DONE_TIMEOUT 10 |
| 2338 | /* Number of milliseconds we wait for PHY configuration done after MAC reset */ | 2498 | /* Number of milliseconds we wait for PHY configuration done after MAC reset */ |
| 2339 | #define PHY_CFG_TIMEOUT 40 | 2499 | #define PHY_CFG_TIMEOUT 100 |
| 2340 | 2500 | ||
| 2341 | #define E1000_TX_BUFFER_SIZE ((uint32_t)1514) | 2501 | #define E1000_TX_BUFFER_SIZE ((uint32_t)1514) |
| 2342 | 2502 | ||
| @@ -2764,6 +2924,17 @@ struct e1000_host_command_info { | |||
| 2764 | #define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */ | 2924 | #define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */ |
| 2765 | #define M88E1000_EPSCR_TX_CLK_0 0x0000 /* NO TX_CLK */ | 2925 | #define M88E1000_EPSCR_TX_CLK_0 0x0000 /* NO TX_CLK */ |
| 2766 | 2926 | ||
| 2927 | /* M88EC018 Rev 2 specific DownShift settings */ | ||
| 2928 | #define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00 | ||
| 2929 | #define M88EC018_EPSCR_DOWNSHIFT_COUNTER_1X 0x0000 | ||
| 2930 | #define M88EC018_EPSCR_DOWNSHIFT_COUNTER_2X 0x0200 | ||
| 2931 | #define M88EC018_EPSCR_DOWNSHIFT_COUNTER_3X 0x0400 | ||
| 2932 | #define M88EC018_EPSCR_DOWNSHIFT_COUNTER_4X 0x0600 | ||
| 2933 | #define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800 | ||
| 2934 | #define M88EC018_EPSCR_DOWNSHIFT_COUNTER_6X 0x0A00 | ||
| 2935 | #define M88EC018_EPSCR_DOWNSHIFT_COUNTER_7X 0x0C00 | ||
| 2936 | #define M88EC018_EPSCR_DOWNSHIFT_COUNTER_8X 0x0E00 | ||
| 2937 | |||
| 2767 | /* IGP01E1000 Specific Port Config Register - R/W */ | 2938 | /* IGP01E1000 Specific Port Config Register - R/W */ |
| 2768 | #define IGP01E1000_PSCFR_AUTO_MDIX_PAR_DETECT 0x0010 | 2939 | #define IGP01E1000_PSCFR_AUTO_MDIX_PAR_DETECT 0x0010 |
| 2769 | #define IGP01E1000_PSCFR_PRE_EN 0x0020 | 2940 | #define IGP01E1000_PSCFR_PRE_EN 0x0020 |
| @@ -2990,6 +3161,221 @@ struct e1000_host_command_info { | |||
| 2990 | #define L1LXT971A_PHY_ID 0x001378E0 | 3161 | #define L1LXT971A_PHY_ID 0x001378E0 |
| 2991 | #define GG82563_E_PHY_ID 0x01410CA0 | 3162 | #define GG82563_E_PHY_ID 0x01410CA0 |
| 2992 | 3163 | ||
| 3164 | |||
| 3165 | /* Bits... | ||
| 3166 | * 15-5: page | ||
| 3167 | * 4-0: register offset | ||
| 3168 | */ | ||
| 3169 | #define PHY_PAGE_SHIFT 5 | ||
| 3170 | #define PHY_REG(page, reg) \ | ||
| 3171 | (((page) << PHY_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS)) | ||
| 3172 | |||
| 3173 | #define IGP3_PHY_PORT_CTRL \ | ||
| 3174 | PHY_REG(769, 17) /* Port General Configuration */ | ||
| 3175 | #define IGP3_PHY_RATE_ADAPT_CTRL \ | ||
| 3176 | PHY_REG(769, 25) /* Rate Adapter Control Register */ | ||
| 3177 | |||
| 3178 | #define IGP3_KMRN_FIFO_CTRL_STATS \ | ||
| 3179 | PHY_REG(770, 16) /* KMRN FIFO's control/status register */ | ||
| 3180 | #define IGP3_KMRN_POWER_MNG_CTRL \ | ||
| 3181 | PHY_REG(770, 17) /* KMRN Power Management Control Register */ | ||
| 3182 | #define IGP3_KMRN_INBAND_CTRL \ | ||
| 3183 | PHY_REG(770, 18) /* KMRN Inband Control Register */ | ||
| 3184 | #define IGP3_KMRN_DIAG \ | ||
| 3185 | PHY_REG(770, 19) /* KMRN Diagnostic register */ | ||
| 3186 | #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002 /* RX PCS is not synced */ | ||
| 3187 | #define IGP3_KMRN_ACK_TIMEOUT \ | ||
| 3188 | PHY_REG(770, 20) /* KMRN Acknowledge Timeouts register */ | ||
| 3189 | |||
| 3190 | #define IGP3_VR_CTRL \ | ||
| 3191 | PHY_REG(776, 18) /* Voltage regulator control register */ | ||
| 3192 | #define IGP3_VR_CTRL_MODE_SHUT 0x0200 /* Enter powerdown, shutdown VRs */ | ||
| 3193 | |||
| 3194 | #define IGP3_CAPABILITY \ | ||
| 3195 | PHY_REG(776, 19) /* IGP3 Capability Register */ | ||
| 3196 | |||
| 3197 | /* Capabilities for SKU Control */ | ||
| 3198 | #define IGP3_CAP_INITIATE_TEAM 0x0001 /* Able to initiate a team */ | ||
| 3199 | #define IGP3_CAP_WFM 0x0002 /* Support WoL and PXE */ | ||
| 3200 | #define IGP3_CAP_ASF 0x0004 /* Support ASF */ | ||
| 3201 | #define IGP3_CAP_LPLU 0x0008 /* Support Low Power Link Up */ | ||
| 3202 | #define IGP3_CAP_DC_AUTO_SPEED 0x0010 /* Support AC/DC Auto Link Speed */ | ||
| 3203 | #define IGP3_CAP_SPD 0x0020 /* Support Smart Power Down */ | ||
| 3204 | #define IGP3_CAP_MULT_QUEUE 0x0040 /* Support 2 tx & 2 rx queues */ | ||
| 3205 | #define IGP3_CAP_RSS 0x0080 /* Support RSS */ | ||
| 3206 | #define IGP3_CAP_8021PQ 0x0100 /* Support 802.1Q & 802.1p */ | ||
| 3207 | #define IGP3_CAP_AMT_CB 0x0200 /* Support active manageability and circuit breaker */ | ||
| 3208 | |||
| 3209 | #define IGP3_PPC_JORDAN_EN 0x0001 | ||
| 3210 | #define IGP3_PPC_JORDAN_GIGA_SPEED 0x0002 | ||
| 3211 | |||
| 3212 | #define IGP3_KMRN_PMC_EE_IDLE_LINK_DIS 0x0001 | ||
| 3213 | #define IGP3_KMRN_PMC_K0S_ENTRY_LATENCY_MASK 0x001E | ||
| 3214 | #define IGP3_KMRN_PMC_K0S_MODE1_EN_GIGA 0x0020 | ||
| 3215 | #define IGP3_KMRN_PMC_K0S_MODE1_EN_100 0x0040 | ||
| 3216 | |||
| 3217 | #define IGP3E1000_PHY_MISC_CTRL 0x1B /* Misc. Ctrl register */ | ||
| 3218 | #define IGP3_PHY_MISC_DUPLEX_MANUAL_SET 0x1000 /* Duplex Manual Set */ | ||
| 3219 | |||
| 3220 | #define IGP3_KMRN_EXT_CTRL PHY_REG(770, 18) | ||
| 3221 | #define IGP3_KMRN_EC_DIS_INBAND 0x0080 | ||
| 3222 | |||
| 3223 | #define IGP03E1000_E_PHY_ID 0x02A80390 | ||
| 3224 | #define IFE_E_PHY_ID 0x02A80330 /* 10/100 PHY */ | ||
| 3225 | #define IFE_PLUS_E_PHY_ID 0x02A80320 | ||
| 3226 | #define IFE_C_E_PHY_ID 0x02A80310 | ||
| 3227 | |||
| 3228 | #define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10 /* 100BaseTx Extended Status, Control and Address */ | ||
| 3229 | #define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY special control register */ | ||
| 3230 | #define IFE_PHY_RCV_FALSE_CARRIER 0x13 /* 100BaseTx Receive False Carrier Counter */ | ||
| 3231 | #define IFE_PHY_RCV_DISCONNECT 0x14 /* 100BaseTx Receive Disconnet Counter */ | ||
| 3232 | #define IFE_PHY_RCV_ERROT_FRAME 0x15 /* 100BaseTx Receive Error Frame Counter */ | ||
| 3233 | #define IFE_PHY_RCV_SYMBOL_ERR 0x16 /* Receive Symbol Error Counter */ | ||
| 3234 | #define IFE_PHY_PREM_EOF_ERR 0x17 /* 100BaseTx Receive Premature End Of Frame Error Counter */ | ||
| 3235 | #define IFE_PHY_RCV_EOF_ERR 0x18 /* 10BaseT Receive End Of Frame Error Counter */ | ||
| 3236 | #define IFE_PHY_TX_JABBER_DETECT 0x19 /* 10BaseT Transmit Jabber Detect Counter */ | ||
| 3237 | #define IFE_PHY_EQUALIZER 0x1A /* PHY Equalizer Control and Status */ | ||
| 3238 | #define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY special control and LED configuration */ | ||
| 3239 | #define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control register */ | ||
| 3240 | #define IFE_PHY_HWI_CONTROL 0x1D /* Hardware Integrity Control (HWI) */ | ||
| 3241 | |||
| 3242 | #define IFE_PESC_REDUCED_POWER_DOWN_DISABLE 0x2000 /* Defaut 1 = Disable auto reduced power down */ | ||
| 3243 | #define IFE_PESC_100BTX_POWER_DOWN 0x0400 /* Indicates the power state of 100BASE-TX */ | ||
| 3244 | #define IFE_PESC_10BTX_POWER_DOWN 0x0200 /* Indicates the power state of 10BASE-T */ | ||
| 3245 | #define IFE_PESC_POLARITY_REVERSED 0x0100 /* Indicates 10BASE-T polarity */ | ||
| 3246 | #define IFE_PESC_PHY_ADDR_MASK 0x007C /* Bit 6:2 for sampled PHY address */ | ||
| 3247 | #define IFE_PESC_SPEED 0x0002 /* Auto-negotiation speed result 1=100Mbs, 0=10Mbs */ | ||
| 3248 | #define IFE_PESC_DUPLEX 0x0001 /* Auto-negotiation duplex result 1=Full, 0=Half */ | ||
| 3249 | #define IFE_PESC_POLARITY_REVERSED_SHIFT 8 | ||
| 3250 | |||
| 3251 | #define IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN 0x0100 /* 1 = Dyanmic Power Down disabled */ | ||
| 3252 | #define IFE_PSC_FORCE_POLARITY 0x0020 /* 1=Reversed Polarity, 0=Normal */ | ||
| 3253 | #define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010 /* 1=Auto Polarity Disabled, 0=Enabled */ | ||
| 3254 | #define IFE_PSC_JABBER_FUNC_DISABLE 0x0001 /* 1=Jabber Disabled, 0=Normal Jabber Operation */ | ||
| 3255 | #define IFE_PSC_FORCE_POLARITY_SHIFT 5 | ||
| 3256 | #define IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT 4 | ||
| 3257 | |||
| 3258 | #define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable MDI/MDI-X feature, default 0=disabled */ | ||
| 3259 | #define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDIX-X, 0=force MDI */ | ||
| 3260 | #define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */ | ||
| 3261 | #define IFE_PMC_AUTO_MDIX_COMPLETE 0x0010 /* Resolution algorthm is completed */ | ||
| 3262 | #define IFE_PMC_MDIX_MODE_SHIFT 6 | ||
| 3263 | #define IFE_PHC_MDIX_RESET_ALL_MASK 0x0000 /* Disable auto MDI-X */ | ||
| 3264 | |||
| 3265 | #define IFE_PHC_HWI_ENABLE 0x8000 /* Enable the HWI feature */ | ||
| 3266 | #define IFE_PHC_ABILITY_CHECK 0x4000 /* 1= Test Passed, 0=failed */ | ||
| 3267 | #define IFE_PHC_TEST_EXEC 0x2000 /* PHY launch test pulses on the wire */ | ||
| 3268 | #define IFE_PHC_HIGHZ 0x0200 /* 1 = Open Circuit */ | ||
| 3269 | #define IFE_PHC_LOWZ 0x0400 /* 1 = Short Circuit */ | ||
| 3270 | #define IFE_PHC_LOW_HIGH_Z_MASK 0x0600 /* Mask for indication type of problem on the line */ | ||
| 3271 | #define IFE_PHC_DISTANCE_MASK 0x01FF /* Mask for distance to the cable problem, in 80cm granularity */ | ||
| 3272 | #define IFE_PHC_RESET_ALL_MASK 0x0000 /* Disable HWI */ | ||
| 3273 | #define IFE_PSCL_PROBE_MODE 0x0020 /* LED Probe mode */ | ||
| 3274 | #define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 off */ | ||
| 3275 | #define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */ | ||
| 3276 | |||
| 3277 | #define ICH8_FLASH_COMMAND_TIMEOUT 500 /* 500 ms , should be adjusted */ | ||
| 3278 | #define ICH8_FLASH_CYCLE_REPEAT_COUNT 10 /* 10 cycles , should be adjusted */ | ||
| 3279 | #define ICH8_FLASH_SEG_SIZE_256 256 | ||
| 3280 | #define ICH8_FLASH_SEG_SIZE_4K 4096 | ||
| 3281 | #define ICH8_FLASH_SEG_SIZE_64K 65536 | ||
| 3282 | |||
| 3283 | #define ICH8_CYCLE_READ 0x0 | ||
| 3284 | #define ICH8_CYCLE_RESERVED 0x1 | ||
| 3285 | #define ICH8_CYCLE_WRITE 0x2 | ||
| 3286 | #define ICH8_CYCLE_ERASE 0x3 | ||
| 3287 | |||
| 3288 | #define ICH8_FLASH_GFPREG 0x0000 | ||
| 3289 | #define ICH8_FLASH_HSFSTS 0x0004 | ||
| 3290 | #define ICH8_FLASH_HSFCTL 0x0006 | ||
| 3291 | #define ICH8_FLASH_FADDR 0x0008 | ||
| 3292 | #define ICH8_FLASH_FDATA0 0x0010 | ||
| 3293 | #define ICH8_FLASH_FRACC 0x0050 | ||
| 3294 | #define ICH8_FLASH_FREG0 0x0054 | ||
| 3295 | #define ICH8_FLASH_FREG1 0x0058 | ||
| 3296 | #define ICH8_FLASH_FREG2 0x005C | ||
| 3297 | #define ICH8_FLASH_FREG3 0x0060 | ||
| 3298 | #define ICH8_FLASH_FPR0 0x0074 | ||
| 3299 | #define ICH8_FLASH_FPR1 0x0078 | ||
| 3300 | #define ICH8_FLASH_SSFSTS 0x0090 | ||
| 3301 | #define ICH8_FLASH_SSFCTL 0x0092 | ||
| 3302 | #define ICH8_FLASH_PREOP 0x0094 | ||
| 3303 | #define ICH8_FLASH_OPTYPE 0x0096 | ||
| 3304 | #define ICH8_FLASH_OPMENU 0x0098 | ||
| 3305 | |||
| 3306 | #define ICH8_FLASH_REG_MAPSIZE 0x00A0 | ||
| 3307 | #define ICH8_FLASH_SECTOR_SIZE 4096 | ||
| 3308 | #define ICH8_GFPREG_BASE_MASK 0x1FFF | ||
| 3309 | #define ICH8_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF | ||
| 3310 | |||
| 3311 | /* ICH8 GbE Flash Hardware Sequencing Flash Status Register bit breakdown */ | ||
| 3312 | /* Offset 04h HSFSTS */ | ||
| 3313 | union ich8_hws_flash_status { | ||
| 3314 | struct ich8_hsfsts { | ||
| 3315 | #ifdef E1000_BIG_ENDIAN | ||
| 3316 | uint16_t reserved2 :6; | ||
| 3317 | uint16_t fldesvalid :1; | ||
| 3318 | uint16_t flockdn :1; | ||
| 3319 | uint16_t flcdone :1; | ||
| 3320 | uint16_t flcerr :1; | ||
| 3321 | uint16_t dael :1; | ||
| 3322 | uint16_t berasesz :2; | ||
| 3323 | uint16_t flcinprog :1; | ||
| 3324 | uint16_t reserved1 :2; | ||
| 3325 | #else | ||
| 3326 | uint16_t flcdone :1; /* bit 0 Flash Cycle Done */ | ||
| 3327 | uint16_t flcerr :1; /* bit 1 Flash Cycle Error */ | ||
| 3328 | uint16_t dael :1; /* bit 2 Direct Access error Log */ | ||
| 3329 | uint16_t berasesz :2; /* bit 4:3 Block/Sector Erase Size */ | ||
| 3330 | uint16_t flcinprog :1; /* bit 5 flash SPI cycle in Progress */ | ||
| 3331 | uint16_t reserved1 :2; /* bit 13:6 Reserved */ | ||
| 3332 | uint16_t reserved2 :6; /* bit 13:6 Reserved */ | ||
| 3333 | uint16_t fldesvalid :1; /* bit 14 Flash Descriptor Valid */ | ||
| 3334 | uint16_t flockdn :1; /* bit 15 Flash Configuration Lock-Down */ | ||
| 3335 | #endif | ||
| 3336 | } hsf_status; | ||
| 3337 | uint16_t regval; | ||
| 3338 | }; | ||
| 3339 | |||
| 3340 | /* ICH8 GbE Flash Hardware Sequencing Flash control Register bit breakdown */ | ||
| 3341 | /* Offset 06h FLCTL */ | ||
| 3342 | union ich8_hws_flash_ctrl { | ||
| 3343 | struct ich8_hsflctl { | ||
| 3344 | #ifdef E1000_BIG_ENDIAN | ||
| 3345 | uint16_t fldbcount :2; | ||
| 3346 | uint16_t flockdn :6; | ||
| 3347 | uint16_t flcgo :1; | ||
| 3348 | uint16_t flcycle :2; | ||
| 3349 | uint16_t reserved :5; | ||
| 3350 | #else | ||
| 3351 | uint16_t flcgo :1; /* 0 Flash Cycle Go */ | ||
| 3352 | uint16_t flcycle :2; /* 2:1 Flash Cycle */ | ||
| 3353 | uint16_t reserved :5; /* 7:3 Reserved */ | ||
| 3354 | uint16_t fldbcount :2; /* 9:8 Flash Data Byte Count */ | ||
| 3355 | uint16_t flockdn :6; /* 15:10 Reserved */ | ||
| 3356 | #endif | ||
| 3357 | } hsf_ctrl; | ||
| 3358 | uint16_t regval; | ||
| 3359 | }; | ||
| 3360 | |||
| 3361 | /* ICH8 Flash Region Access Permissions */ | ||
| 3362 | union ich8_hws_flash_regacc { | ||
| 3363 | struct ich8_flracc { | ||
| 3364 | #ifdef E1000_BIG_ENDIAN | ||
| 3365 | uint32_t gmwag :8; | ||
| 3366 | uint32_t gmrag :8; | ||
| 3367 | uint32_t grwa :8; | ||
| 3368 | uint32_t grra :8; | ||
| 3369 | #else | ||
| 3370 | uint32_t grra :8; /* 0:7 GbE region Read Access */ | ||
| 3371 | uint32_t grwa :8; /* 8:15 GbE region Write Access */ | ||
| 3372 | uint32_t gmrag :8; /* 23:16 GbE Master Read Access Grant */ | ||
| 3373 | uint32_t gmwag :8; /* 31:24 GbE Master Write Access Grant */ | ||
| 3374 | #endif | ||
| 3375 | } hsf_flregacc; | ||
| 3376 | uint16_t regval; | ||
| 3377 | }; | ||
| 3378 | |||
| 2993 | /* Miscellaneous PHY bit definitions. */ | 3379 | /* Miscellaneous PHY bit definitions. */ |
| 2994 | #define PHY_PREAMBLE 0xFFFFFFFF | 3380 | #define PHY_PREAMBLE 0xFFFFFFFF |
| 2995 | #define PHY_SOF 0x01 | 3381 | #define PHY_SOF 0x01 |
diff --git a/drivers/net/e1000/e1000_main.c b/drivers/net/e1000/e1000_main.c index f77624f5f17b..f06b281c8f6e 100644 --- a/drivers/net/e1000/e1000_main.c +++ b/drivers/net/e1000/e1000_main.c | |||
| @@ -36,7 +36,7 @@ static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; | |||
| 36 | #else | 36 | #else |
| 37 | #define DRIVERNAPI "-NAPI" | 37 | #define DRIVERNAPI "-NAPI" |
| 38 | #endif | 38 | #endif |
| 39 | #define DRV_VERSION "7.0.38-k4"DRIVERNAPI | 39 | #define DRV_VERSION "7.1.9-k2"DRIVERNAPI |
| 40 | char e1000_driver_version[] = DRV_VERSION; | 40 | char e1000_driver_version[] = DRV_VERSION; |
| 41 | static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation."; | 41 | static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation."; |
| 42 | 42 | ||
| @@ -73,6 +73,11 @@ static struct pci_device_id e1000_pci_tbl[] = { | |||
| 73 | INTEL_E1000_ETHERNET_DEVICE(0x1026), | 73 | INTEL_E1000_ETHERNET_DEVICE(0x1026), |
| 74 | INTEL_E1000_ETHERNET_DEVICE(0x1027), | 74 | INTEL_E1000_ETHERNET_DEVICE(0x1027), |
| 75 | INTEL_E1000_ETHERNET_DEVICE(0x1028), | 75 | INTEL_E1000_ETHERNET_DEVICE(0x1028), |
| 76 | INTEL_E1000_ETHERNET_DEVICE(0x1049), | ||
| 77 | INTEL_E1000_ETHERNET_DEVICE(0x104A), | ||
| 78 | INTEL_E1000_ETHERNET_DEVICE(0x104B), | ||
| 79 | INTEL_E1000_ETHERNET_DEVICE(0x104C), | ||
| 80 | INTEL_E1000_ETHERNET_DEVICE(0x104D), | ||
| 76 | INTEL_E1000_ETHERNET_DEVICE(0x105E), | 81 | INTEL_E1000_ETHERNET_DEVICE(0x105E), |
| 77 | INTEL_E1000_ETHERNET_DEVICE(0x105F), | 82 | INTEL_E1000_ETHERNET_DEVICE(0x105F), |
| 78 | INTEL_E1000_ETHERNET_DEVICE(0x1060), | 83 | INTEL_E1000_ETHERNET_DEVICE(0x1060), |
| @@ -96,6 +101,8 @@ static struct pci_device_id e1000_pci_tbl[] = { | |||
| 96 | INTEL_E1000_ETHERNET_DEVICE(0x109A), | 101 | INTEL_E1000_ETHERNET_DEVICE(0x109A), |
| 97 | INTEL_E1000_ETHERNET_DEVICE(0x10B5), | 102 | INTEL_E1000_ETHERNET_DEVICE(0x10B5), |
| 98 | INTEL_E1000_ETHERNET_DEVICE(0x10B9), | 103 | INTEL_E1000_ETHERNET_DEVICE(0x10B9), |
| 104 | INTEL_E1000_ETHERNET_DEVICE(0x10BA), | ||
| 105 | INTEL_E1000_ETHERNET_DEVICE(0x10BB), | ||
| 99 | /* required last entry */ | 106 | /* required last entry */ |
| 100 | {0,} | 107 | {0,} |
| 101 | }; | 108 | }; |
| @@ -133,7 +140,6 @@ static void e1000_clean_rx_ring(struct e1000_adapter *adapter, | |||
| 133 | static void e1000_set_multi(struct net_device *netdev); | 140 | static void e1000_set_multi(struct net_device *netdev); |
| 134 | static void e1000_update_phy_info(unsigned long data); | 141 | static void e1000_update_phy_info(unsigned long data); |
| 135 | static void e1000_watchdog(unsigned long data); | 142 | static void e1000_watchdog(unsigned long data); |
| 136 | static void e1000_watchdog_task(struct e1000_adapter *adapter); | ||
| 137 | static void e1000_82547_tx_fifo_stall(unsigned long data); | 143 | static void e1000_82547_tx_fifo_stall(unsigned long data); |
| 138 | static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev); | 144 | static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev); |
| 139 | static struct net_device_stats * e1000_get_stats(struct net_device *netdev); | 145 | static struct net_device_stats * e1000_get_stats(struct net_device *netdev); |
| @@ -178,8 +184,8 @@ static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid); | |||
| 178 | static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid); | 184 | static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid); |
| 179 | static void e1000_restore_vlan(struct e1000_adapter *adapter); | 185 | static void e1000_restore_vlan(struct e1000_adapter *adapter); |
| 180 | 186 | ||
| 181 | #ifdef CONFIG_PM | ||
| 182 | static int e1000_suspend(struct pci_dev *pdev, pm_message_t state); | 187 | static int e1000_suspend(struct pci_dev *pdev, pm_message_t state); |
| 188 | #ifdef CONFIG_PM | ||
| 183 | static int e1000_resume(struct pci_dev *pdev); | 189 | static int e1000_resume(struct pci_dev *pdev); |
| 184 | #endif | 190 | #endif |
| 185 | static void e1000_shutdown(struct pci_dev *pdev); | 191 | static void e1000_shutdown(struct pci_dev *pdev); |
| @@ -206,8 +212,8 @@ static struct pci_driver e1000_driver = { | |||
| 206 | .probe = e1000_probe, | 212 | .probe = e1000_probe, |
| 207 | .remove = __devexit_p(e1000_remove), | 213 | .remove = __devexit_p(e1000_remove), |
| 208 | /* Power Managment Hooks */ | 214 | /* Power Managment Hooks */ |
| 209 | #ifdef CONFIG_PM | ||
| 210 | .suspend = e1000_suspend, | 215 | .suspend = e1000_suspend, |
| 216 | #ifdef CONFIG_PM | ||
| 211 | .resume = e1000_resume, | 217 | .resume = e1000_resume, |
| 212 | #endif | 218 | #endif |
| 213 | .shutdown = e1000_shutdown, | 219 | .shutdown = e1000_shutdown, |
| @@ -261,6 +267,44 @@ e1000_exit_module(void) | |||
| 261 | 267 | ||
| 262 | module_exit(e1000_exit_module); | 268 | module_exit(e1000_exit_module); |
| 263 | 269 | ||
| 270 | static int e1000_request_irq(struct e1000_adapter *adapter) | ||
| 271 | { | ||
| 272 | struct net_device *netdev = adapter->netdev; | ||
| 273 | int flags, err = 0; | ||
| 274 | |||
| 275 | flags = IRQF_SHARED; | ||
| 276 | #ifdef CONFIG_PCI_MSI | ||
| 277 | if (adapter->hw.mac_type > e1000_82547_rev_2) { | ||
| 278 | adapter->have_msi = TRUE; | ||
| 279 | if ((err = pci_enable_msi(adapter->pdev))) { | ||
| 280 | DPRINTK(PROBE, ERR, | ||
| 281 | "Unable to allocate MSI interrupt Error: %d\n", err); | ||
| 282 | adapter->have_msi = FALSE; | ||
| 283 | } | ||
| 284 | } | ||
| 285 | if (adapter->have_msi) | ||
| 286 | flags &= ~SA_SHIRQ; | ||
| 287 | #endif | ||
| 288 | if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags, | ||
| 289 | netdev->name, netdev))) | ||
| 290 | DPRINTK(PROBE, ERR, | ||
| 291 | "Unable to allocate interrupt Error: %d\n", err); | ||
| 292 | |||
| 293 | return err; | ||
| 294 | } | ||
| 295 | |||
| 296 | static void e1000_free_irq(struct e1000_adapter *adapter) | ||
| 297 | { | ||
| 298 | struct net_device *netdev = adapter->netdev; | ||
| 299 | |||
| 300 | free_irq(adapter->pdev->irq, netdev); | ||
| 301 | |||
| 302 | #ifdef CONFIG_PCI_MSI | ||
| 303 | if (adapter->have_msi) | ||
| 304 | pci_disable_msi(adapter->pdev); | ||
| 305 | #endif | ||
| 306 | } | ||
| 307 | |||
| 264 | /** | 308 | /** |
| 265 | * e1000_irq_disable - Mask off interrupt generation on the NIC | 309 | * e1000_irq_disable - Mask off interrupt generation on the NIC |
| 266 | * @adapter: board private structure | 310 | * @adapter: board private structure |
| @@ -329,6 +373,7 @@ e1000_release_hw_control(struct e1000_adapter *adapter) | |||
| 329 | { | 373 | { |
| 330 | uint32_t ctrl_ext; | 374 | uint32_t ctrl_ext; |
| 331 | uint32_t swsm; | 375 | uint32_t swsm; |
| 376 | uint32_t extcnf; | ||
| 332 | 377 | ||
| 333 | /* Let firmware taken over control of h/w */ | 378 | /* Let firmware taken over control of h/w */ |
| 334 | switch (adapter->hw.mac_type) { | 379 | switch (adapter->hw.mac_type) { |
| @@ -343,6 +388,11 @@ e1000_release_hw_control(struct e1000_adapter *adapter) | |||
| 343 | swsm = E1000_READ_REG(&adapter->hw, SWSM); | 388 | swsm = E1000_READ_REG(&adapter->hw, SWSM); |
| 344 | E1000_WRITE_REG(&adapter->hw, SWSM, | 389 | E1000_WRITE_REG(&adapter->hw, SWSM, |
| 345 | swsm & ~E1000_SWSM_DRV_LOAD); | 390 | swsm & ~E1000_SWSM_DRV_LOAD); |
| 391 | case e1000_ich8lan: | ||
| 392 | extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT); | ||
| 393 | E1000_WRITE_REG(&adapter->hw, CTRL_EXT, | ||
| 394 | extcnf & ~E1000_CTRL_EXT_DRV_LOAD); | ||
| 395 | break; | ||
| 346 | default: | 396 | default: |
| 347 | break; | 397 | break; |
| 348 | } | 398 | } |
| @@ -364,6 +414,7 @@ e1000_get_hw_control(struct e1000_adapter *adapter) | |||
| 364 | { | 414 | { |
| 365 | uint32_t ctrl_ext; | 415 | uint32_t ctrl_ext; |
| 366 | uint32_t swsm; | 416 | uint32_t swsm; |
| 417 | uint32_t extcnf; | ||
| 367 | /* Let firmware know the driver has taken over */ | 418 | /* Let firmware know the driver has taken over */ |
| 368 | switch (adapter->hw.mac_type) { | 419 | switch (adapter->hw.mac_type) { |
| 369 | case e1000_82571: | 420 | case e1000_82571: |
| @@ -378,6 +429,11 @@ e1000_get_hw_control(struct e1000_adapter *adapter) | |||
| 378 | E1000_WRITE_REG(&adapter->hw, SWSM, | 429 | E1000_WRITE_REG(&adapter->hw, SWSM, |
| 379 | swsm | E1000_SWSM_DRV_LOAD); | 430 | swsm | E1000_SWSM_DRV_LOAD); |
| 380 | break; | 431 | break; |
| 432 | case e1000_ich8lan: | ||
| 433 | extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL); | ||
| 434 | E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL, | ||
| 435 | extcnf | E1000_EXTCNF_CTRL_SWFLAG); | ||
| 436 | break; | ||
| 381 | default: | 437 | default: |
| 382 | break; | 438 | break; |
| 383 | } | 439 | } |
| @@ -387,18 +443,10 @@ int | |||
| 387 | e1000_up(struct e1000_adapter *adapter) | 443 | e1000_up(struct e1000_adapter *adapter) |
| 388 | { | 444 | { |
| 389 | struct net_device *netdev = adapter->netdev; | 445 | struct net_device *netdev = adapter->netdev; |
| 390 | int i, err; | 446 | int i; |
| 391 | 447 | ||
| 392 | /* hardware has been reset, we need to reload some things */ | 448 | /* hardware has been reset, we need to reload some things */ |
| 393 | 449 | ||
| 394 | /* Reset the PHY if it was previously powered down */ | ||
| 395 | if (adapter->hw.media_type == e1000_media_type_copper) { | ||
| 396 | uint16_t mii_reg; | ||
| 397 | e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg); | ||
| 398 | if (mii_reg & MII_CR_POWER_DOWN) | ||
| 399 | e1000_phy_hw_reset(&adapter->hw); | ||
| 400 | } | ||
| 401 | |||
| 402 | e1000_set_multi(netdev); | 450 | e1000_set_multi(netdev); |
| 403 | 451 | ||
| 404 | e1000_restore_vlan(adapter); | 452 | e1000_restore_vlan(adapter); |
| @@ -415,24 +463,6 @@ e1000_up(struct e1000_adapter *adapter) | |||
| 415 | E1000_DESC_UNUSED(ring)); | 463 | E1000_DESC_UNUSED(ring)); |
| 416 | } | 464 | } |
| 417 | 465 | ||
| 418 | #ifdef CONFIG_PCI_MSI | ||
| 419 | if (adapter->hw.mac_type > e1000_82547_rev_2) { | ||
| 420 | adapter->have_msi = TRUE; | ||
| 421 | if ((err = pci_enable_msi(adapter->pdev))) { | ||
| 422 | DPRINTK(PROBE, ERR, | ||
| 423 | "Unable to allocate MSI interrupt Error: %d\n", err); | ||
| 424 | adapter->have_msi = FALSE; | ||
| 425 | } | ||
| 426 | } | ||
| 427 | #endif | ||
| 428 | if ((err = request_irq(adapter->pdev->irq, &e1000_intr, | ||
| 429 | IRQF_SHARED | IRQF_SAMPLE_RANDOM, | ||
| 430 | netdev->name, netdev))) { | ||
| 431 | DPRINTK(PROBE, ERR, | ||
| 432 | "Unable to allocate interrupt Error: %d\n", err); | ||
| 433 | return err; | ||
| 434 | } | ||
| 435 | |||
| 436 | adapter->tx_queue_len = netdev->tx_queue_len; | 466 | adapter->tx_queue_len = netdev->tx_queue_len; |
| 437 | 467 | ||
| 438 | mod_timer(&adapter->watchdog_timer, jiffies); | 468 | mod_timer(&adapter->watchdog_timer, jiffies); |
| @@ -445,21 +475,60 @@ e1000_up(struct e1000_adapter *adapter) | |||
| 445 | return 0; | 475 | return 0; |
| 446 | } | 476 | } |
| 447 | 477 | ||
| 478 | /** | ||
| 479 | * e1000_power_up_phy - restore link in case the phy was powered down | ||
| 480 | * @adapter: address of board private structure | ||
| 481 | * | ||
| 482 | * The phy may be powered down to save power and turn off link when the | ||
| 483 | * driver is unloaded and wake on lan is not enabled (among others) | ||
| 484 | * *** this routine MUST be followed by a call to e1000_reset *** | ||
| 485 | * | ||
| 486 | **/ | ||
| 487 | |||
| 488 | static void e1000_power_up_phy(struct e1000_adapter *adapter) | ||
| 489 | { | ||
| 490 | uint16_t mii_reg = 0; | ||
| 491 | |||
| 492 | /* Just clear the power down bit to wake the phy back up */ | ||
| 493 | if (adapter->hw.media_type == e1000_media_type_copper) { | ||
| 494 | /* according to the manual, the phy will retain its | ||
| 495 | * settings across a power-down/up cycle */ | ||
| 496 | e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg); | ||
| 497 | mii_reg &= ~MII_CR_POWER_DOWN; | ||
| 498 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg); | ||
| 499 | } | ||
| 500 | } | ||
| 501 | |||
| 502 | static void e1000_power_down_phy(struct e1000_adapter *adapter) | ||
| 503 | { | ||
| 504 | boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) && | ||
| 505 | e1000_check_mng_mode(&adapter->hw); | ||
| 506 | /* Power down the PHY so no link is implied when interface is down | ||
| 507 | * The PHY cannot be powered down if any of the following is TRUE | ||
| 508 | * (a) WoL is enabled | ||
| 509 | * (b) AMT is active | ||
| 510 | * (c) SoL/IDER session is active */ | ||
| 511 | if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 && | ||
| 512 | adapter->hw.mac_type != e1000_ich8lan && | ||
| 513 | adapter->hw.media_type == e1000_media_type_copper && | ||
| 514 | !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) && | ||
| 515 | !mng_mode_enabled && | ||
| 516 | !e1000_check_phy_reset_block(&adapter->hw)) { | ||
| 517 | uint16_t mii_reg = 0; | ||
| 518 | e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg); | ||
| 519 | mii_reg |= MII_CR_POWER_DOWN; | ||
| 520 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg); | ||
| 521 | mdelay(1); | ||
| 522 | } | ||
| 523 | } | ||
| 524 | |||
| 448 | void | 525 | void |
| 449 | e1000_down(struct e1000_adapter *adapter) | 526 | e1000_down(struct e1000_adapter *adapter) |
| 450 | { | 527 | { |
| 451 | struct net_device *netdev = adapter->netdev; | 528 | struct net_device *netdev = adapter->netdev; |
| 452 | boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) && | ||
| 453 | e1000_check_mng_mode(&adapter->hw); | ||
| 454 | 529 | ||
| 455 | e1000_irq_disable(adapter); | 530 | e1000_irq_disable(adapter); |
| 456 | 531 | ||
| 457 | free_irq(adapter->pdev->irq, netdev); | ||
| 458 | #ifdef CONFIG_PCI_MSI | ||
| 459 | if (adapter->hw.mac_type > e1000_82547_rev_2 && | ||
| 460 | adapter->have_msi == TRUE) | ||
| 461 | pci_disable_msi(adapter->pdev); | ||
| 462 | #endif | ||
| 463 | del_timer_sync(&adapter->tx_fifo_stall_timer); | 532 | del_timer_sync(&adapter->tx_fifo_stall_timer); |
| 464 | del_timer_sync(&adapter->watchdog_timer); | 533 | del_timer_sync(&adapter->watchdog_timer); |
| 465 | del_timer_sync(&adapter->phy_info_timer); | 534 | del_timer_sync(&adapter->phy_info_timer); |
| @@ -476,23 +545,17 @@ e1000_down(struct e1000_adapter *adapter) | |||
| 476 | e1000_reset(adapter); | 545 | e1000_reset(adapter); |
| 477 | e1000_clean_all_tx_rings(adapter); | 546 | e1000_clean_all_tx_rings(adapter); |
| 478 | e1000_clean_all_rx_rings(adapter); | 547 | e1000_clean_all_rx_rings(adapter); |
| 548 | } | ||
| 479 | 549 | ||
| 480 | /* Power down the PHY so no link is implied when interface is down * | 550 | void |
| 481 | * The PHY cannot be powered down if any of the following is TRUE * | 551 | e1000_reinit_locked(struct e1000_adapter *adapter) |
| 482 | * (a) WoL is enabled | 552 | { |
| 483 | * (b) AMT is active | 553 | WARN_ON(in_interrupt()); |
| 484 | * (c) SoL/IDER session is active */ | 554 | while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) |
| 485 | if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 && | 555 | msleep(1); |
| 486 | adapter->hw.media_type == e1000_media_type_copper && | 556 | e1000_down(adapter); |
| 487 | !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) && | 557 | e1000_up(adapter); |
| 488 | !mng_mode_enabled && | 558 | clear_bit(__E1000_RESETTING, &adapter->flags); |
| 489 | !e1000_check_phy_reset_block(&adapter->hw)) { | ||
| 490 | uint16_t mii_reg; | ||
| 491 | e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg); | ||
| 492 | mii_reg |= MII_CR_POWER_DOWN; | ||
| 493 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg); | ||
| 494 | mdelay(1); | ||
| 495 | } | ||
| 496 | } | 559 | } |
| 497 | 560 | ||
| 498 | void | 561 | void |
| @@ -518,6 +581,9 @@ e1000_reset(struct e1000_adapter *adapter) | |||
| 518 | case e1000_82573: | 581 | case e1000_82573: |
| 519 | pba = E1000_PBA_12K; | 582 | pba = E1000_PBA_12K; |
| 520 | break; | 583 | break; |
| 584 | case e1000_ich8lan: | ||
| 585 | pba = E1000_PBA_8K; | ||
| 586 | break; | ||
| 521 | default: | 587 | default: |
| 522 | pba = E1000_PBA_48K; | 588 | pba = E1000_PBA_48K; |
| 523 | break; | 589 | break; |
| @@ -542,6 +608,12 @@ e1000_reset(struct e1000_adapter *adapter) | |||
| 542 | /* Set the FC high water mark to 90% of the FIFO size. | 608 | /* Set the FC high water mark to 90% of the FIFO size. |
| 543 | * Required to clear last 3 LSB */ | 609 | * Required to clear last 3 LSB */ |
| 544 | fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8; | 610 | fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8; |
| 611 | /* We can't use 90% on small FIFOs because the remainder | ||
| 612 | * would be less than 1 full frame. In this case, we size | ||
| 613 | * it to allow at least a full frame above the high water | ||
| 614 | * mark. */ | ||
| 615 | if (pba < E1000_PBA_16K) | ||
| 616 | fc_high_water_mark = (pba * 1024) - 1600; | ||
| 545 | 617 | ||
| 546 | adapter->hw.fc_high_water = fc_high_water_mark; | 618 | adapter->hw.fc_high_water = fc_high_water_mark; |
| 547 | adapter->hw.fc_low_water = fc_high_water_mark - 8; | 619 | adapter->hw.fc_low_water = fc_high_water_mark - 8; |
| @@ -564,6 +636,23 @@ e1000_reset(struct e1000_adapter *adapter) | |||
| 564 | 636 | ||
| 565 | e1000_reset_adaptive(&adapter->hw); | 637 | e1000_reset_adaptive(&adapter->hw); |
| 566 | e1000_phy_get_info(&adapter->hw, &adapter->phy_info); | 638 | e1000_phy_get_info(&adapter->hw, &adapter->phy_info); |
| 639 | |||
| 640 | if (!adapter->smart_power_down && | ||
| 641 | (adapter->hw.mac_type == e1000_82571 || | ||
| 642 | adapter->hw.mac_type == e1000_82572)) { | ||
| 643 | uint16_t phy_data = 0; | ||
| 644 | /* speed up time to link by disabling smart power down, ignore | ||
| 645 | * the return value of this function because there is nothing | ||
| 646 | * different we would do if it failed */ | ||
| 647 | e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT, | ||
| 648 | &phy_data); | ||
| 649 | phy_data &= ~IGP02E1000_PM_SPD; | ||
| 650 | e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT, | ||
| 651 | phy_data); | ||
| 652 | } | ||
| 653 | |||
| 654 | if (adapter->hw.mac_type < e1000_ich8lan) | ||
| 655 | /* FIXME: this code is duplicate and wrong for PCI Express */ | ||
| 567 | if (adapter->en_mng_pt) { | 656 | if (adapter->en_mng_pt) { |
| 568 | manc = E1000_READ_REG(&adapter->hw, MANC); | 657 | manc = E1000_READ_REG(&adapter->hw, MANC); |
| 569 | manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST); | 658 | manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST); |
| @@ -590,6 +679,7 @@ e1000_probe(struct pci_dev *pdev, | |||
| 590 | struct net_device *netdev; | 679 | struct net_device *netdev; |
| 591 | struct e1000_adapter *adapter; | 680 | struct e1000_adapter *adapter; |
| 592 | unsigned long mmio_start, mmio_len; | 681 | unsigned long mmio_start, mmio_len; |
| 682 | unsigned long flash_start, flash_len; | ||
| 593 | 683 | ||
| 594 | static int cards_found = 0; | 684 | static int cards_found = 0; |
| 595 | static int e1000_ksp3_port_a = 0; /* global ksp3 port a indication */ | 685 | static int e1000_ksp3_port_a = 0; /* global ksp3 port a indication */ |
| @@ -599,10 +689,12 @@ e1000_probe(struct pci_dev *pdev, | |||
| 599 | if ((err = pci_enable_device(pdev))) | 689 | if ((err = pci_enable_device(pdev))) |
| 600 | return err; | 690 | return err; |
| 601 | 691 | ||
| 602 | if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) { | 692 | if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) && |
| 693 | !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) { | ||
| 603 | pci_using_dac = 1; | 694 | pci_using_dac = 1; |
| 604 | } else { | 695 | } else { |
| 605 | if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) { | 696 | if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) && |
| 697 | (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) { | ||
| 606 | E1000_ERR("No usable DMA configuration, aborting\n"); | 698 | E1000_ERR("No usable DMA configuration, aborting\n"); |
| 607 | return err; | 699 | return err; |
| 608 | } | 700 | } |
| @@ -682,6 +774,19 @@ e1000_probe(struct pci_dev *pdev, | |||
| 682 | if ((err = e1000_sw_init(adapter))) | 774 | if ((err = e1000_sw_init(adapter))) |
| 683 | goto err_sw_init; | 775 | goto err_sw_init; |
| 684 | 776 | ||
| 777 | /* Flash BAR mapping must happen after e1000_sw_init | ||
| 778 | * because it depends on mac_type */ | ||
| 779 | if ((adapter->hw.mac_type == e1000_ich8lan) && | ||
| 780 | (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) { | ||
| 781 | flash_start = pci_resource_start(pdev, 1); | ||
| 782 | flash_len = pci_resource_len(pdev, 1); | ||
| 783 | adapter->hw.flash_address = ioremap(flash_start, flash_len); | ||
| 784 | if (!adapter->hw.flash_address) { | ||
| 785 | err = -EIO; | ||
| 786 | goto err_flashmap; | ||
| 787 | } | ||
| 788 | } | ||
| 789 | |||
| 685 | if ((err = e1000_check_phy_reset_block(&adapter->hw))) | 790 | if ((err = e1000_check_phy_reset_block(&adapter->hw))) |
| 686 | DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n"); | 791 | DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n"); |
| 687 | 792 | ||
| @@ -700,6 +805,8 @@ e1000_probe(struct pci_dev *pdev, | |||
| 700 | NETIF_F_HW_VLAN_TX | | 805 | NETIF_F_HW_VLAN_TX | |
| 701 | NETIF_F_HW_VLAN_RX | | 806 | NETIF_F_HW_VLAN_RX | |
| 702 | NETIF_F_HW_VLAN_FILTER; | 807 | NETIF_F_HW_VLAN_FILTER; |
| 808 | if (adapter->hw.mac_type == e1000_ich8lan) | ||
| 809 | netdev->features &= ~NETIF_F_HW_VLAN_FILTER; | ||
| 703 | } | 810 | } |
| 704 | 811 | ||
| 705 | #ifdef NETIF_F_TSO | 812 | #ifdef NETIF_F_TSO |
| @@ -715,11 +822,17 @@ e1000_probe(struct pci_dev *pdev, | |||
| 715 | if (pci_using_dac) | 822 | if (pci_using_dac) |
| 716 | netdev->features |= NETIF_F_HIGHDMA; | 823 | netdev->features |= NETIF_F_HIGHDMA; |
| 717 | 824 | ||
| 718 | /* hard_start_xmit is safe against parallel locking */ | ||
| 719 | netdev->features |= NETIF_F_LLTX; | 825 | netdev->features |= NETIF_F_LLTX; |
| 720 | 826 | ||
| 721 | adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw); | 827 | adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw); |
| 722 | 828 | ||
| 829 | /* initialize eeprom parameters */ | ||
| 830 | |||
| 831 | if (e1000_init_eeprom_params(&adapter->hw)) { | ||
| 832 | E1000_ERR("EEPROM initialization failed\n"); | ||
| 833 | return -EIO; | ||
| 834 | } | ||
| 835 | |||
| 723 | /* before reading the EEPROM, reset the controller to | 836 | /* before reading the EEPROM, reset the controller to |
| 724 | * put the device in a known good starting state */ | 837 | * put the device in a known good starting state */ |
| 725 | 838 | ||
| @@ -758,9 +871,6 @@ e1000_probe(struct pci_dev *pdev, | |||
| 758 | adapter->watchdog_timer.function = &e1000_watchdog; | 871 | adapter->watchdog_timer.function = &e1000_watchdog; |
| 759 | adapter->watchdog_timer.data = (unsigned long) adapter; | 872 | adapter->watchdog_timer.data = (unsigned long) adapter; |
| 760 | 873 | ||
| 761 | INIT_WORK(&adapter->watchdog_task, | ||
| 762 | (void (*)(void *))e1000_watchdog_task, adapter); | ||
| 763 | |||
| 764 | init_timer(&adapter->phy_info_timer); | 874 | init_timer(&adapter->phy_info_timer); |
| 765 | adapter->phy_info_timer.function = &e1000_update_phy_info; | 875 | adapter->phy_info_timer.function = &e1000_update_phy_info; |
| 766 | adapter->phy_info_timer.data = (unsigned long) adapter; | 876 | adapter->phy_info_timer.data = (unsigned long) adapter; |
| @@ -790,6 +900,11 @@ e1000_probe(struct pci_dev *pdev, | |||
| 790 | EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); | 900 | EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); |
| 791 | eeprom_apme_mask = E1000_EEPROM_82544_APM; | 901 | eeprom_apme_mask = E1000_EEPROM_82544_APM; |
| 792 | break; | 902 | break; |
| 903 | case e1000_ich8lan: | ||
| 904 | e1000_read_eeprom(&adapter->hw, | ||
| 905 | EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data); | ||
| 906 | eeprom_apme_mask = E1000_EEPROM_ICH8_APME; | ||
| 907 | break; | ||
| 793 | case e1000_82546: | 908 | case e1000_82546: |
| 794 | case e1000_82546_rev_3: | 909 | case e1000_82546_rev_3: |
| 795 | case e1000_82571: | 910 | case e1000_82571: |
| @@ -849,6 +964,9 @@ e1000_probe(struct pci_dev *pdev, | |||
| 849 | return 0; | 964 | return 0; |
| 850 | 965 | ||
| 851 | err_register: | 966 | err_register: |
| 967 | if (adapter->hw.flash_address) | ||
| 968 | iounmap(adapter->hw.flash_address); | ||
| 969 | err_flashmap: | ||
| 852 | err_sw_init: | 970 | err_sw_init: |
| 853 | err_eeprom: | 971 | err_eeprom: |
| 854 | iounmap(adapter->hw.hw_addr); | 972 | iounmap(adapter->hw.hw_addr); |
| @@ -882,6 +1000,7 @@ e1000_remove(struct pci_dev *pdev) | |||
| 882 | flush_scheduled_work(); | 1000 | flush_scheduled_work(); |
| 883 | 1001 | ||
| 884 | if (adapter->hw.mac_type >= e1000_82540 && | 1002 | if (adapter->hw.mac_type >= e1000_82540 && |
| 1003 | adapter->hw.mac_type != e1000_ich8lan && | ||
| 885 | adapter->hw.media_type == e1000_media_type_copper) { | 1004 | adapter->hw.media_type == e1000_media_type_copper) { |
| 886 | manc = E1000_READ_REG(&adapter->hw, MANC); | 1005 | manc = E1000_READ_REG(&adapter->hw, MANC); |
| 887 | if (manc & E1000_MANC_SMBUS_EN) { | 1006 | if (manc & E1000_MANC_SMBUS_EN) { |
| @@ -910,6 +1029,8 @@ e1000_remove(struct pci_dev *pdev) | |||
| 910 | #endif | 1029 | #endif |
| 911 | 1030 | ||
| 912 | iounmap(adapter->hw.hw_addr); | 1031 | iounmap(adapter->hw.hw_addr); |
| 1032 | if (adapter->hw.flash_address) | ||
| 1033 | iounmap(adapter->hw.flash_address); | ||
| 913 | pci_release_regions(pdev); | 1034 | pci_release_regions(pdev); |
| 914 | 1035 | ||
| 915 | free_netdev(netdev); | 1036 | free_netdev(netdev); |
| @@ -960,13 +1081,6 @@ e1000_sw_init(struct e1000_adapter *adapter) | |||
| 960 | return -EIO; | 1081 | return -EIO; |
| 961 | } | 1082 | } |
| 962 | 1083 | ||
| 963 | /* initialize eeprom parameters */ | ||
| 964 | |||
| 965 | if (e1000_init_eeprom_params(hw)) { | ||
| 966 | E1000_ERR("EEPROM initialization failed\n"); | ||
| 967 | return -EIO; | ||
| 968 | } | ||
| 969 | |||
| 970 | switch (hw->mac_type) { | 1084 | switch (hw->mac_type) { |
| 971 | default: | 1085 | default: |
| 972 | break; | 1086 | break; |
| @@ -1078,6 +1192,10 @@ e1000_open(struct net_device *netdev) | |||
| 1078 | struct e1000_adapter *adapter = netdev_priv(netdev); | 1192 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 1079 | int err; | 1193 | int err; |
| 1080 | 1194 | ||
| 1195 | /* disallow open during test */ | ||
| 1196 | if (test_bit(__E1000_DRIVER_TESTING, &adapter->flags)) | ||
| 1197 | return -EBUSY; | ||
| 1198 | |||
| 1081 | /* allocate transmit descriptors */ | 1199 | /* allocate transmit descriptors */ |
| 1082 | 1200 | ||
| 1083 | if ((err = e1000_setup_all_tx_resources(adapter))) | 1201 | if ((err = e1000_setup_all_tx_resources(adapter))) |
| @@ -1088,6 +1206,12 @@ e1000_open(struct net_device *netdev) | |||
| 1088 | if ((err = e1000_setup_all_rx_resources(adapter))) | 1206 | if ((err = e1000_setup_all_rx_resources(adapter))) |
| 1089 | goto err_setup_rx; | 1207 | goto err_setup_rx; |
| 1090 | 1208 | ||
| 1209 | err = e1000_request_irq(adapter); | ||
| 1210 | if (err) | ||
| 1211 | goto err_up; | ||
| 1212 | |||
| 1213 | e1000_power_up_phy(adapter); | ||
| 1214 | |||
| 1091 | if ((err = e1000_up(adapter))) | 1215 | if ((err = e1000_up(adapter))) |
| 1092 | goto err_up; | 1216 | goto err_up; |
| 1093 | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | 1217 | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
| @@ -1131,7 +1255,10 @@ e1000_close(struct net_device *netdev) | |||
| 1131 | { | 1255 | { |
| 1132 | struct e1000_adapter *adapter = netdev_priv(netdev); | 1256 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 1133 | 1257 | ||
| 1258 | WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); | ||
| 1134 | e1000_down(adapter); | 1259 | e1000_down(adapter); |
| 1260 | e1000_power_down_phy(adapter); | ||
| 1261 | e1000_free_irq(adapter); | ||
| 1135 | 1262 | ||
| 1136 | e1000_free_all_tx_resources(adapter); | 1263 | e1000_free_all_tx_resources(adapter); |
| 1137 | e1000_free_all_rx_resources(adapter); | 1264 | e1000_free_all_rx_resources(adapter); |
| @@ -1189,8 +1316,7 @@ e1000_setup_tx_resources(struct e1000_adapter *adapter, | |||
| 1189 | int size; | 1316 | int size; |
| 1190 | 1317 | ||
| 1191 | size = sizeof(struct e1000_buffer) * txdr->count; | 1318 | size = sizeof(struct e1000_buffer) * txdr->count; |
| 1192 | 1319 | txdr->buffer_info = vmalloc(size); | |
| 1193 | txdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus)); | ||
| 1194 | if (!txdr->buffer_info) { | 1320 | if (!txdr->buffer_info) { |
| 1195 | DPRINTK(PROBE, ERR, | 1321 | DPRINTK(PROBE, ERR, |
| 1196 | "Unable to allocate memory for the transmit descriptor ring\n"); | 1322 | "Unable to allocate memory for the transmit descriptor ring\n"); |
| @@ -1302,11 +1428,11 @@ e1000_configure_tx(struct e1000_adapter *adapter) | |||
| 1302 | tdba = adapter->tx_ring[0].dma; | 1428 | tdba = adapter->tx_ring[0].dma; |
| 1303 | tdlen = adapter->tx_ring[0].count * | 1429 | tdlen = adapter->tx_ring[0].count * |
| 1304 | sizeof(struct e1000_tx_desc); | 1430 | sizeof(struct e1000_tx_desc); |
| 1305 | E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL)); | ||
| 1306 | E1000_WRITE_REG(hw, TDBAH, (tdba >> 32)); | ||
| 1307 | E1000_WRITE_REG(hw, TDLEN, tdlen); | 1431 | E1000_WRITE_REG(hw, TDLEN, tdlen); |
| 1308 | E1000_WRITE_REG(hw, TDH, 0); | 1432 | E1000_WRITE_REG(hw, TDBAH, (tdba >> 32)); |
| 1433 | E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL)); | ||
| 1309 | E1000_WRITE_REG(hw, TDT, 0); | 1434 | E1000_WRITE_REG(hw, TDT, 0); |
| 1435 | E1000_WRITE_REG(hw, TDH, 0); | ||
| 1310 | adapter->tx_ring[0].tdh = E1000_TDH; | 1436 | adapter->tx_ring[0].tdh = E1000_TDH; |
| 1311 | adapter->tx_ring[0].tdt = E1000_TDT; | 1437 | adapter->tx_ring[0].tdt = E1000_TDT; |
| 1312 | break; | 1438 | break; |
| @@ -1418,7 +1544,7 @@ e1000_setup_rx_resources(struct e1000_adapter *adapter, | |||
| 1418 | int size, desc_len; | 1544 | int size, desc_len; |
| 1419 | 1545 | ||
| 1420 | size = sizeof(struct e1000_buffer) * rxdr->count; | 1546 | size = sizeof(struct e1000_buffer) * rxdr->count; |
| 1421 | rxdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus)); | 1547 | rxdr->buffer_info = vmalloc(size); |
| 1422 | if (!rxdr->buffer_info) { | 1548 | if (!rxdr->buffer_info) { |
| 1423 | DPRINTK(PROBE, ERR, | 1549 | DPRINTK(PROBE, ERR, |
| 1424 | "Unable to allocate memory for the receive descriptor ring\n"); | 1550 | "Unable to allocate memory for the receive descriptor ring\n"); |
| @@ -1560,9 +1686,6 @@ e1000_setup_rctl(struct e1000_adapter *adapter) | |||
| 1560 | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | | 1686 | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | |
| 1561 | (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT); | 1687 | (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT); |
| 1562 | 1688 | ||
| 1563 | if (adapter->hw.mac_type > e1000_82543) | ||
| 1564 | rctl |= E1000_RCTL_SECRC; | ||
| 1565 | |||
| 1566 | if (adapter->hw.tbi_compatibility_on == 1) | 1689 | if (adapter->hw.tbi_compatibility_on == 1) |
| 1567 | rctl |= E1000_RCTL_SBP; | 1690 | rctl |= E1000_RCTL_SBP; |
| 1568 | else | 1691 | else |
| @@ -1628,7 +1751,7 @@ e1000_setup_rctl(struct e1000_adapter *adapter) | |||
| 1628 | rfctl |= E1000_RFCTL_IPV6_DIS; | 1751 | rfctl |= E1000_RFCTL_IPV6_DIS; |
| 1629 | E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl); | 1752 | E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl); |
| 1630 | 1753 | ||
| 1631 | rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC; | 1754 | rctl |= E1000_RCTL_DTYP_PS; |
| 1632 | 1755 | ||
| 1633 | psrctl |= adapter->rx_ps_bsize0 >> | 1756 | psrctl |= adapter->rx_ps_bsize0 >> |
| 1634 | E1000_PSRCTL_BSIZE0_SHIFT; | 1757 | E1000_PSRCTL_BSIZE0_SHIFT; |
| @@ -1712,11 +1835,11 @@ e1000_configure_rx(struct e1000_adapter *adapter) | |||
| 1712 | case 1: | 1835 | case 1: |
| 1713 | default: | 1836 | default: |
| 1714 | rdba = adapter->rx_ring[0].dma; | 1837 | rdba = adapter->rx_ring[0].dma; |
| 1715 | E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL)); | ||
| 1716 | E1000_WRITE_REG(hw, RDBAH, (rdba >> 32)); | ||
| 1717 | E1000_WRITE_REG(hw, RDLEN, rdlen); | 1838 | E1000_WRITE_REG(hw, RDLEN, rdlen); |
| 1718 | E1000_WRITE_REG(hw, RDH, 0); | 1839 | E1000_WRITE_REG(hw, RDBAH, (rdba >> 32)); |
| 1840 | E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL)); | ||
| 1719 | E1000_WRITE_REG(hw, RDT, 0); | 1841 | E1000_WRITE_REG(hw, RDT, 0); |
| 1842 | E1000_WRITE_REG(hw, RDH, 0); | ||
| 1720 | adapter->rx_ring[0].rdh = E1000_RDH; | 1843 | adapter->rx_ring[0].rdh = E1000_RDH; |
| 1721 | adapter->rx_ring[0].rdt = E1000_RDT; | 1844 | adapter->rx_ring[0].rdt = E1000_RDT; |
| 1722 | break; | 1845 | break; |
| @@ -1741,9 +1864,6 @@ e1000_configure_rx(struct e1000_adapter *adapter) | |||
| 1741 | E1000_WRITE_REG(hw, RXCSUM, rxcsum); | 1864 | E1000_WRITE_REG(hw, RXCSUM, rxcsum); |
| 1742 | } | 1865 | } |
| 1743 | 1866 | ||
| 1744 | if (hw->mac_type == e1000_82573) | ||
| 1745 | E1000_WRITE_REG(hw, ERT, 0x0100); | ||
| 1746 | |||
| 1747 | /* Enable Receives */ | 1867 | /* Enable Receives */ |
| 1748 | E1000_WRITE_REG(hw, RCTL, rctl); | 1868 | E1000_WRITE_REG(hw, RCTL, rctl); |
| 1749 | } | 1869 | } |
| @@ -2083,6 +2203,12 @@ e1000_set_multi(struct net_device *netdev) | |||
| 2083 | uint32_t rctl; | 2203 | uint32_t rctl; |
| 2084 | uint32_t hash_value; | 2204 | uint32_t hash_value; |
| 2085 | int i, rar_entries = E1000_RAR_ENTRIES; | 2205 | int i, rar_entries = E1000_RAR_ENTRIES; |
| 2206 | int mta_reg_count = (hw->mac_type == e1000_ich8lan) ? | ||
| 2207 | E1000_NUM_MTA_REGISTERS_ICH8LAN : | ||
| 2208 | E1000_NUM_MTA_REGISTERS; | ||
| 2209 | |||
| 2210 | if (adapter->hw.mac_type == e1000_ich8lan) | ||
| 2211 | rar_entries = E1000_RAR_ENTRIES_ICH8LAN; | ||
| 2086 | 2212 | ||
| 2087 | /* reserve RAR[14] for LAA over-write work-around */ | 2213 | /* reserve RAR[14] for LAA over-write work-around */ |
| 2088 | if (adapter->hw.mac_type == e1000_82571) | 2214 | if (adapter->hw.mac_type == e1000_82571) |
| @@ -2121,14 +2247,18 @@ e1000_set_multi(struct net_device *netdev) | |||
| 2121 | mc_ptr = mc_ptr->next; | 2247 | mc_ptr = mc_ptr->next; |
| 2122 | } else { | 2248 | } else { |
| 2123 | E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); | 2249 | E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); |
| 2250 | E1000_WRITE_FLUSH(hw); | ||
| 2124 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); | 2251 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); |
| 2252 | E1000_WRITE_FLUSH(hw); | ||
| 2125 | } | 2253 | } |
| 2126 | } | 2254 | } |
| 2127 | 2255 | ||
| 2128 | /* clear the old settings from the multicast hash table */ | 2256 | /* clear the old settings from the multicast hash table */ |
| 2129 | 2257 | ||
| 2130 | for (i = 0; i < E1000_NUM_MTA_REGISTERS; i++) | 2258 | for (i = 0; i < mta_reg_count; i++) { |
| 2131 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); | 2259 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); |
| 2260 | E1000_WRITE_FLUSH(hw); | ||
| 2261 | } | ||
| 2132 | 2262 | ||
| 2133 | /* load any remaining addresses into the hash table */ | 2263 | /* load any remaining addresses into the hash table */ |
| 2134 | 2264 | ||
| @@ -2201,19 +2331,19 @@ static void | |||
| 2201 | e1000_watchdog(unsigned long data) | 2331 | e1000_watchdog(unsigned long data) |
| 2202 | { | 2332 | { |
| 2203 | struct e1000_adapter *adapter = (struct e1000_adapter *) data; | 2333 | struct e1000_adapter *adapter = (struct e1000_adapter *) data; |
| 2204 | |||
| 2205 | /* Do the rest outside of interrupt context */ | ||
| 2206 | schedule_work(&adapter->watchdog_task); | ||
| 2207 | } | ||
| 2208 | |||
| 2209 | static void | ||
| 2210 | e1000_watchdog_task(struct e1000_adapter *adapter) | ||
| 2211 | { | ||
| 2212 | struct net_device *netdev = adapter->netdev; | 2334 | struct net_device *netdev = adapter->netdev; |
| 2213 | struct e1000_tx_ring *txdr = adapter->tx_ring; | 2335 | struct e1000_tx_ring *txdr = adapter->tx_ring; |
| 2214 | uint32_t link, tctl; | 2336 | uint32_t link, tctl; |
| 2215 | 2337 | int32_t ret_val; | |
| 2216 | e1000_check_for_link(&adapter->hw); | 2338 | |
| 2339 | ret_val = e1000_check_for_link(&adapter->hw); | ||
| 2340 | if ((ret_val == E1000_ERR_PHY) && | ||
| 2341 | (adapter->hw.phy_type == e1000_phy_igp_3) && | ||
| 2342 | (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) { | ||
| 2343 | /* See e1000_kumeran_lock_loss_workaround() */ | ||
| 2344 | DPRINTK(LINK, INFO, | ||
| 2345 | "Gigabit has been disabled, downgrading speed\n"); | ||
| 2346 | } | ||
| 2217 | if (adapter->hw.mac_type == e1000_82573) { | 2347 | if (adapter->hw.mac_type == e1000_82573) { |
| 2218 | e1000_enable_tx_pkt_filtering(&adapter->hw); | 2348 | e1000_enable_tx_pkt_filtering(&adapter->hw); |
| 2219 | if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id) | 2349 | if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id) |
| @@ -2779,9 +2909,10 @@ e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) | |||
| 2779 | case e1000_82571: | 2909 | case e1000_82571: |
| 2780 | case e1000_82572: | 2910 | case e1000_82572: |
| 2781 | case e1000_82573: | 2911 | case e1000_82573: |
| 2912 | case e1000_ich8lan: | ||
| 2782 | pull_size = min((unsigned int)4, skb->data_len); | 2913 | pull_size = min((unsigned int)4, skb->data_len); |
| 2783 | if (!__pskb_pull_tail(skb, pull_size)) { | 2914 | if (!__pskb_pull_tail(skb, pull_size)) { |
| 2784 | printk(KERN_ERR | 2915 | DPRINTK(DRV, ERR, |
| 2785 | "__pskb_pull_tail failed.\n"); | 2916 | "__pskb_pull_tail failed.\n"); |
| 2786 | dev_kfree_skb_any(skb); | 2917 | dev_kfree_skb_any(skb); |
| 2787 | return NETDEV_TX_OK; | 2918 | return NETDEV_TX_OK; |
| @@ -2919,8 +3050,7 @@ e1000_reset_task(struct net_device *netdev) | |||
| 2919 | { | 3050 | { |
| 2920 | struct e1000_adapter *adapter = netdev_priv(netdev); | 3051 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 2921 | 3052 | ||
| 2922 | e1000_down(adapter); | 3053 | e1000_reinit_locked(adapter); |
| 2923 | e1000_up(adapter); | ||
| 2924 | } | 3054 | } |
| 2925 | 3055 | ||
| 2926 | /** | 3056 | /** |
| @@ -2964,6 +3094,7 @@ e1000_change_mtu(struct net_device *netdev, int new_mtu) | |||
| 2964 | /* Adapter-specific max frame size limits. */ | 3094 | /* Adapter-specific max frame size limits. */ |
| 2965 | switch (adapter->hw.mac_type) { | 3095 | switch (adapter->hw.mac_type) { |
| 2966 | case e1000_undefined ... e1000_82542_rev2_1: | 3096 | case e1000_undefined ... e1000_82542_rev2_1: |
| 3097 | case e1000_ich8lan: | ||
| 2967 | if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) { | 3098 | if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) { |
| 2968 | DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n"); | 3099 | DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n"); |
| 2969 | return -EINVAL; | 3100 | return -EINVAL; |
| @@ -3026,10 +3157,8 @@ e1000_change_mtu(struct net_device *netdev, int new_mtu) | |||
| 3026 | 3157 | ||
| 3027 | netdev->mtu = new_mtu; | 3158 | netdev->mtu = new_mtu; |
| 3028 | 3159 | ||
| 3029 | if (netif_running(netdev)) { | 3160 | if (netif_running(netdev)) |
| 3030 | e1000_down(adapter); | 3161 | e1000_reinit_locked(adapter); |
| 3031 | e1000_up(adapter); | ||
| 3032 | } | ||
| 3033 | 3162 | ||
| 3034 | adapter->hw.max_frame_size = max_frame; | 3163 | adapter->hw.max_frame_size = max_frame; |
| 3035 | 3164 | ||
| @@ -3074,12 +3203,15 @@ e1000_update_stats(struct e1000_adapter *adapter) | |||
| 3074 | adapter->stats.bprc += E1000_READ_REG(hw, BPRC); | 3203 | adapter->stats.bprc += E1000_READ_REG(hw, BPRC); |
| 3075 | adapter->stats.mprc += E1000_READ_REG(hw, MPRC); | 3204 | adapter->stats.mprc += E1000_READ_REG(hw, MPRC); |
| 3076 | adapter->stats.roc += E1000_READ_REG(hw, ROC); | 3205 | adapter->stats.roc += E1000_READ_REG(hw, ROC); |
| 3206 | |||
| 3207 | if (adapter->hw.mac_type != e1000_ich8lan) { | ||
| 3077 | adapter->stats.prc64 += E1000_READ_REG(hw, PRC64); | 3208 | adapter->stats.prc64 += E1000_READ_REG(hw, PRC64); |
| 3078 | adapter->stats.prc127 += E1000_READ_REG(hw, PRC127); | 3209 | adapter->stats.prc127 += E1000_READ_REG(hw, PRC127); |
| 3079 | adapter->stats.prc255 += E1000_READ_REG(hw, PRC255); | 3210 | adapter->stats.prc255 += E1000_READ_REG(hw, PRC255); |
| 3080 | adapter->stats.prc511 += E1000_READ_REG(hw, PRC511); | 3211 | adapter->stats.prc511 += E1000_READ_REG(hw, PRC511); |
| 3081 | adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023); | 3212 | adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023); |
| 3082 | adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522); | 3213 | adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522); |
| 3214 | } | ||
| 3083 | 3215 | ||
| 3084 | adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS); | 3216 | adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS); |
| 3085 | adapter->stats.mpc += E1000_READ_REG(hw, MPC); | 3217 | adapter->stats.mpc += E1000_READ_REG(hw, MPC); |
| @@ -3107,12 +3239,16 @@ e1000_update_stats(struct e1000_adapter *adapter) | |||
| 3107 | adapter->stats.totl += E1000_READ_REG(hw, TOTL); | 3239 | adapter->stats.totl += E1000_READ_REG(hw, TOTL); |
| 3108 | adapter->stats.toth += E1000_READ_REG(hw, TOTH); | 3240 | adapter->stats.toth += E1000_READ_REG(hw, TOTH); |
| 3109 | adapter->stats.tpr += E1000_READ_REG(hw, TPR); | 3241 | adapter->stats.tpr += E1000_READ_REG(hw, TPR); |
| 3242 | |||
| 3243 | if (adapter->hw.mac_type != e1000_ich8lan) { | ||
| 3110 | adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64); | 3244 | adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64); |
| 3111 | adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127); | 3245 | adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127); |
| 3112 | adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255); | 3246 | adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255); |
| 3113 | adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511); | 3247 | adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511); |
| 3114 | adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023); | 3248 | adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023); |
| 3115 | adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522); | 3249 | adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522); |
| 3250 | } | ||
| 3251 | |||
| 3116 | adapter->stats.mptc += E1000_READ_REG(hw, MPTC); | 3252 | adapter->stats.mptc += E1000_READ_REG(hw, MPTC); |
| 3117 | adapter->stats.bptc += E1000_READ_REG(hw, BPTC); | 3253 | adapter->stats.bptc += E1000_READ_REG(hw, BPTC); |
| 3118 | 3254 | ||
| @@ -3134,6 +3270,8 @@ e1000_update_stats(struct e1000_adapter *adapter) | |||
| 3134 | if (hw->mac_type > e1000_82547_rev_2) { | 3270 | if (hw->mac_type > e1000_82547_rev_2) { |
| 3135 | adapter->stats.iac += E1000_READ_REG(hw, IAC); | 3271 | adapter->stats.iac += E1000_READ_REG(hw, IAC); |
| 3136 | adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC); | 3272 | adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC); |
| 3273 | |||
| 3274 | if (adapter->hw.mac_type != e1000_ich8lan) { | ||
| 3137 | adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC); | 3275 | adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC); |
| 3138 | adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC); | 3276 | adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC); |
| 3139 | adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC); | 3277 | adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC); |
| @@ -3141,6 +3279,7 @@ e1000_update_stats(struct e1000_adapter *adapter) | |||
| 3141 | adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC); | 3279 | adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC); |
| 3142 | adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC); | 3280 | adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC); |
| 3143 | adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC); | 3281 | adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC); |
| 3282 | } | ||
| 3144 | } | 3283 | } |
| 3145 | 3284 | ||
| 3146 | /* Fill out the OS statistics structure */ | 3285 | /* Fill out the OS statistics structure */ |
| @@ -3547,7 +3686,8 @@ e1000_clean_rx_irq(struct e1000_adapter *adapter, | |||
| 3547 | /* All receives must fit into a single buffer */ | 3686 | /* All receives must fit into a single buffer */ |
| 3548 | E1000_DBG("%s: Receive packet consumed multiple" | 3687 | E1000_DBG("%s: Receive packet consumed multiple" |
| 3549 | " buffers\n", netdev->name); | 3688 | " buffers\n", netdev->name); |
| 3550 | dev_kfree_skb_irq(skb); | 3689 | /* recycle */ |
| 3690 | buffer_info-> skb = skb; | ||
| 3551 | goto next_desc; | 3691 | goto next_desc; |
| 3552 | } | 3692 | } |
| 3553 | 3693 | ||
| @@ -3675,7 +3815,6 @@ e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, | |||
| 3675 | buffer_info = &rx_ring->buffer_info[i]; | 3815 | buffer_info = &rx_ring->buffer_info[i]; |
| 3676 | 3816 | ||
| 3677 | while (staterr & E1000_RXD_STAT_DD) { | 3817 | while (staterr & E1000_RXD_STAT_DD) { |
| 3678 | buffer_info = &rx_ring->buffer_info[i]; | ||
| 3679 | ps_page = &rx_ring->ps_page[i]; | 3818 | ps_page = &rx_ring->ps_page[i]; |
| 3680 | ps_page_dma = &rx_ring->ps_page_dma[i]; | 3819 | ps_page_dma = &rx_ring->ps_page_dma[i]; |
| 3681 | #ifdef CONFIG_E1000_NAPI | 3820 | #ifdef CONFIG_E1000_NAPI |
| @@ -4180,10 +4319,9 @@ e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) | |||
| 4180 | return retval; | 4319 | return retval; |
| 4181 | } | 4320 | } |
| 4182 | } | 4321 | } |
| 4183 | if (netif_running(adapter->netdev)) { | 4322 | if (netif_running(adapter->netdev)) |
| 4184 | e1000_down(adapter); | 4323 | e1000_reinit_locked(adapter); |
| 4185 | e1000_up(adapter); | 4324 | else |
| 4186 | } else | ||
| 4187 | e1000_reset(adapter); | 4325 | e1000_reset(adapter); |
| 4188 | break; | 4326 | break; |
| 4189 | case M88E1000_PHY_SPEC_CTRL: | 4327 | case M88E1000_PHY_SPEC_CTRL: |
| @@ -4200,10 +4338,9 @@ e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) | |||
| 4200 | case PHY_CTRL: | 4338 | case PHY_CTRL: |
| 4201 | if (mii_reg & MII_CR_POWER_DOWN) | 4339 | if (mii_reg & MII_CR_POWER_DOWN) |
| 4202 | break; | 4340 | break; |
| 4203 | if (netif_running(adapter->netdev)) { | 4341 | if (netif_running(adapter->netdev)) |
| 4204 | e1000_down(adapter); | 4342 | e1000_reinit_locked(adapter); |
| 4205 | e1000_up(adapter); | 4343 | else |
| 4206 | } else | ||
| 4207 | e1000_reset(adapter); | 4344 | e1000_reset(adapter); |
| 4208 | break; | 4345 | break; |
| 4209 | } | 4346 | } |
| @@ -4277,18 +4414,21 @@ e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp) | |||
| 4277 | ctrl |= E1000_CTRL_VME; | 4414 | ctrl |= E1000_CTRL_VME; |
| 4278 | E1000_WRITE_REG(&adapter->hw, CTRL, ctrl); | 4415 | E1000_WRITE_REG(&adapter->hw, CTRL, ctrl); |
| 4279 | 4416 | ||
| 4417 | if (adapter->hw.mac_type != e1000_ich8lan) { | ||
| 4280 | /* enable VLAN receive filtering */ | 4418 | /* enable VLAN receive filtering */ |
| 4281 | rctl = E1000_READ_REG(&adapter->hw, RCTL); | 4419 | rctl = E1000_READ_REG(&adapter->hw, RCTL); |
| 4282 | rctl |= E1000_RCTL_VFE; | 4420 | rctl |= E1000_RCTL_VFE; |
| 4283 | rctl &= ~E1000_RCTL_CFIEN; | 4421 | rctl &= ~E1000_RCTL_CFIEN; |
| 4284 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); | 4422 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); |
| 4285 | e1000_update_mng_vlan(adapter); | 4423 | e1000_update_mng_vlan(adapter); |
| 4424 | } | ||
| 4286 | } else { | 4425 | } else { |
| 4287 | /* disable VLAN tag insert/strip */ | 4426 | /* disable VLAN tag insert/strip */ |
| 4288 | ctrl = E1000_READ_REG(&adapter->hw, CTRL); | 4427 | ctrl = E1000_READ_REG(&adapter->hw, CTRL); |
| 4289 | ctrl &= ~E1000_CTRL_VME; | 4428 | ctrl &= ~E1000_CTRL_VME; |
| 4290 | E1000_WRITE_REG(&adapter->hw, CTRL, ctrl); | 4429 | E1000_WRITE_REG(&adapter->hw, CTRL, ctrl); |
| 4291 | 4430 | ||
| 4431 | if (adapter->hw.mac_type != e1000_ich8lan) { | ||
| 4292 | /* disable VLAN filtering */ | 4432 | /* disable VLAN filtering */ |
| 4293 | rctl = E1000_READ_REG(&adapter->hw, RCTL); | 4433 | rctl = E1000_READ_REG(&adapter->hw, RCTL); |
| 4294 | rctl &= ~E1000_RCTL_VFE; | 4434 | rctl &= ~E1000_RCTL_VFE; |
| @@ -4297,6 +4437,7 @@ e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp) | |||
| 4297 | e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); | 4437 | e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); |
| 4298 | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | 4438 | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
| 4299 | } | 4439 | } |
| 4440 | } | ||
| 4300 | } | 4441 | } |
| 4301 | 4442 | ||
| 4302 | e1000_irq_enable(adapter); | 4443 | e1000_irq_enable(adapter); |
| @@ -4458,12 +4599,16 @@ e1000_suspend(struct pci_dev *pdev, pm_message_t state) | |||
| 4458 | struct e1000_adapter *adapter = netdev_priv(netdev); | 4599 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 4459 | uint32_t ctrl, ctrl_ext, rctl, manc, status; | 4600 | uint32_t ctrl, ctrl_ext, rctl, manc, status; |
| 4460 | uint32_t wufc = adapter->wol; | 4601 | uint32_t wufc = adapter->wol; |
| 4602 | #ifdef CONFIG_PM | ||
| 4461 | int retval = 0; | 4603 | int retval = 0; |
| 4604 | #endif | ||
| 4462 | 4605 | ||
| 4463 | netif_device_detach(netdev); | 4606 | netif_device_detach(netdev); |
| 4464 | 4607 | ||
| 4465 | if (netif_running(netdev)) | 4608 | if (netif_running(netdev)) { |
| 4609 | WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); | ||
| 4466 | e1000_down(adapter); | 4610 | e1000_down(adapter); |
| 4611 | } | ||
| 4467 | 4612 | ||
| 4468 | #ifdef CONFIG_PM | 4613 | #ifdef CONFIG_PM |
| 4469 | /* Implement our own version of pci_save_state(pdev) because pci- | 4614 | /* Implement our own version of pci_save_state(pdev) because pci- |
| @@ -4521,7 +4666,9 @@ e1000_suspend(struct pci_dev *pdev, pm_message_t state) | |||
| 4521 | pci_enable_wake(pdev, PCI_D3cold, 0); | 4666 | pci_enable_wake(pdev, PCI_D3cold, 0); |
| 4522 | } | 4667 | } |
| 4523 | 4668 | ||
| 4669 | /* FIXME: this code is incorrect for PCI Express */ | ||
| 4524 | if (adapter->hw.mac_type >= e1000_82540 && | 4670 | if (adapter->hw.mac_type >= e1000_82540 && |
| 4671 | adapter->hw.mac_type != e1000_ich8lan && | ||
| 4525 | adapter->hw.media_type == e1000_media_type_copper) { | 4672 | adapter->hw.media_type == e1000_media_type_copper) { |
| 4526 | manc = E1000_READ_REG(&adapter->hw, MANC); | 4673 | manc = E1000_READ_REG(&adapter->hw, MANC); |
| 4527 | if (manc & E1000_MANC_SMBUS_EN) { | 4674 | if (manc & E1000_MANC_SMBUS_EN) { |
| @@ -4532,6 +4679,9 @@ e1000_suspend(struct pci_dev *pdev, pm_message_t state) | |||
| 4532 | } | 4679 | } |
| 4533 | } | 4680 | } |
| 4534 | 4681 | ||
| 4682 | if (adapter->hw.phy_type == e1000_phy_igp_3) | ||
| 4683 | e1000_phy_powerdown_workaround(&adapter->hw); | ||
| 4684 | |||
| 4535 | /* Release control of h/w to f/w. If f/w is AMT enabled, this | 4685 | /* Release control of h/w to f/w. If f/w is AMT enabled, this |
| 4536 | * would have already happened in close and is redundant. */ | 4686 | * would have already happened in close and is redundant. */ |
| 4537 | e1000_release_hw_control(adapter); | 4687 | e1000_release_hw_control(adapter); |
| @@ -4567,7 +4717,9 @@ e1000_resume(struct pci_dev *pdev) | |||
| 4567 | 4717 | ||
| 4568 | netif_device_attach(netdev); | 4718 | netif_device_attach(netdev); |
| 4569 | 4719 | ||
| 4720 | /* FIXME: this code is incorrect for PCI Express */ | ||
| 4570 | if (adapter->hw.mac_type >= e1000_82540 && | 4721 | if (adapter->hw.mac_type >= e1000_82540 && |
| 4722 | adapter->hw.mac_type != e1000_ich8lan && | ||
| 4571 | adapter->hw.media_type == e1000_media_type_copper) { | 4723 | adapter->hw.media_type == e1000_media_type_copper) { |
| 4572 | manc = E1000_READ_REG(&adapter->hw, MANC); | 4724 | manc = E1000_READ_REG(&adapter->hw, MANC); |
| 4573 | manc &= ~(E1000_MANC_ARP_EN); | 4725 | manc &= ~(E1000_MANC_ARP_EN); |
diff --git a/drivers/net/e1000/e1000_osdep.h b/drivers/net/e1000/e1000_osdep.h index 048d052be29d..2d3e8b06cab0 100644 --- a/drivers/net/e1000/e1000_osdep.h +++ b/drivers/net/e1000/e1000_osdep.h | |||
| @@ -127,4 +127,17 @@ typedef enum { | |||
| 127 | 127 | ||
| 128 | #define E1000_WRITE_FLUSH(a) E1000_READ_REG(a, STATUS) | 128 | #define E1000_WRITE_FLUSH(a) E1000_READ_REG(a, STATUS) |
| 129 | 129 | ||
| 130 | #define E1000_WRITE_ICH8_REG(a, reg, value) ( \ | ||
| 131 | writel((value), ((a)->flash_address + reg))) | ||
| 132 | |||
| 133 | #define E1000_READ_ICH8_REG(a, reg) ( \ | ||
| 134 | readl((a)->flash_address + reg)) | ||
| 135 | |||
| 136 | #define E1000_WRITE_ICH8_REG16(a, reg, value) ( \ | ||
| 137 | writew((value), ((a)->flash_address + reg))) | ||
| 138 | |||
| 139 | #define E1000_READ_ICH8_REG16(a, reg) ( \ | ||
| 140 | readw((a)->flash_address + reg)) | ||
| 141 | |||
| 142 | |||
| 130 | #endif /* _E1000_OSDEP_H_ */ | 143 | #endif /* _E1000_OSDEP_H_ */ |
diff --git a/drivers/net/e1000/e1000_param.c b/drivers/net/e1000/e1000_param.c index e55f8969a0fb..0ef413172c68 100644 --- a/drivers/net/e1000/e1000_param.c +++ b/drivers/net/e1000/e1000_param.c | |||
| @@ -45,6 +45,16 @@ | |||
| 45 | */ | 45 | */ |
| 46 | 46 | ||
| 47 | #define E1000_PARAM_INIT { [0 ... E1000_MAX_NIC] = OPTION_UNSET } | 47 | #define E1000_PARAM_INIT { [0 ... E1000_MAX_NIC] = OPTION_UNSET } |
| 48 | /* Module Parameters are always initialized to -1, so that the driver | ||
| 49 | * can tell the difference between no user specified value or the | ||
| 50 | * user asking for the default value. | ||
| 51 | * The true default values are loaded in when e1000_check_options is called. | ||
| 52 | * | ||
| 53 | * This is a GCC extension to ANSI C. | ||
| 54 | * See the item "Labeled Elements in Initializers" in the section | ||
| 55 | * "Extensions to the C Language Family" of the GCC documentation. | ||
| 56 | */ | ||
| 57 | |||
| 48 | #define E1000_PARAM(X, desc) \ | 58 | #define E1000_PARAM(X, desc) \ |
| 49 | static int __devinitdata X[E1000_MAX_NIC+1] = E1000_PARAM_INIT; \ | 59 | static int __devinitdata X[E1000_MAX_NIC+1] = E1000_PARAM_INIT; \ |
| 50 | static int num_##X = 0; \ | 60 | static int num_##X = 0; \ |
| @@ -183,6 +193,24 @@ E1000_PARAM(RxAbsIntDelay, "Receive Absolute Interrupt Delay"); | |||
| 183 | 193 | ||
| 184 | E1000_PARAM(InterruptThrottleRate, "Interrupt Throttling Rate"); | 194 | E1000_PARAM(InterruptThrottleRate, "Interrupt Throttling Rate"); |
| 185 | 195 | ||
| 196 | /* Enable Smart Power Down of the PHY | ||
| 197 | * | ||
| 198 | * Valid Range: 0, 1 | ||
| 199 | * | ||
| 200 | * Default Value: 0 (disabled) | ||
| 201 | */ | ||
| 202 | |||
| 203 | E1000_PARAM(SmartPowerDownEnable, "Enable PHY smart power down"); | ||
| 204 | |||
| 205 | /* Enable Kumeran Lock Loss workaround | ||
| 206 | * | ||
| 207 | * Valid Range: 0, 1 | ||
| 208 | * | ||
| 209 | * Default Value: 1 (enabled) | ||
| 210 | */ | ||
| 211 | |||
| 212 | E1000_PARAM(KumeranLockLoss, "Enable Kumeran lock loss workaround"); | ||
| 213 | |||
| 186 | #define AUTONEG_ADV_DEFAULT 0x2F | 214 | #define AUTONEG_ADV_DEFAULT 0x2F |
| 187 | #define AUTONEG_ADV_MASK 0x2F | 215 | #define AUTONEG_ADV_MASK 0x2F |
| 188 | #define FLOW_CONTROL_DEFAULT FLOW_CONTROL_FULL | 216 | #define FLOW_CONTROL_DEFAULT FLOW_CONTROL_FULL |
| @@ -296,6 +324,7 @@ e1000_check_options(struct e1000_adapter *adapter) | |||
| 296 | DPRINTK(PROBE, NOTICE, | 324 | DPRINTK(PROBE, NOTICE, |
| 297 | "Warning: no configuration for board #%i\n", bd); | 325 | "Warning: no configuration for board #%i\n", bd); |
| 298 | DPRINTK(PROBE, NOTICE, "Using defaults for all values\n"); | 326 | DPRINTK(PROBE, NOTICE, "Using defaults for all values\n"); |
| 327 | bd = E1000_MAX_NIC; | ||
| 299 | } | 328 | } |
| 300 | 329 | ||
| 301 | { /* Transmit Descriptor Count */ | 330 | { /* Transmit Descriptor Count */ |
| @@ -313,14 +342,9 @@ e1000_check_options(struct e1000_adapter *adapter) | |||
| 313 | opt.arg.r.max = mac_type < e1000_82544 ? | 342 | opt.arg.r.max = mac_type < e1000_82544 ? |
| 314 | E1000_MAX_TXD : E1000_MAX_82544_TXD; | 343 | E1000_MAX_TXD : E1000_MAX_82544_TXD; |
| 315 | 344 | ||
| 316 | if (num_TxDescriptors > bd) { | 345 | tx_ring->count = TxDescriptors[bd]; |
| 317 | tx_ring->count = TxDescriptors[bd]; | 346 | e1000_validate_option(&tx_ring->count, &opt, adapter); |
| 318 | e1000_validate_option(&tx_ring->count, &opt, adapter); | 347 | E1000_ROUNDUP(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE); |
| 319 | E1000_ROUNDUP(tx_ring->count, | ||
| 320 | REQ_TX_DESCRIPTOR_MULTIPLE); | ||
| 321 | } else { | ||
| 322 | tx_ring->count = opt.def; | ||
| 323 | } | ||
| 324 | for (i = 0; i < adapter->num_tx_queues; i++) | 348 | for (i = 0; i < adapter->num_tx_queues; i++) |
| 325 | tx_ring[i].count = tx_ring->count; | 349 | tx_ring[i].count = tx_ring->count; |
| 326 | } | 350 | } |
| @@ -339,14 +363,9 @@ e1000_check_options(struct e1000_adapter *adapter) | |||
| 339 | opt.arg.r.max = mac_type < e1000_82544 ? E1000_MAX_RXD : | 363 | opt.arg.r.max = mac_type < e1000_82544 ? E1000_MAX_RXD : |
| 340 | E1000_MAX_82544_RXD; | 364 | E1000_MAX_82544_RXD; |
| 341 | 365 | ||
| 342 | if (num_RxDescriptors > bd) { | 366 | rx_ring->count = RxDescriptors[bd]; |
| 343 | rx_ring->count = RxDescriptors[bd]; | 367 | e1000_validate_option(&rx_ring->count, &opt, adapter); |
| 344 | e1000_validate_option(&rx_ring->count, &opt, adapter); | 368 | E1000_ROUNDUP(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE); |
| 345 | E1000_ROUNDUP(rx_ring->count, | ||
| 346 | REQ_RX_DESCRIPTOR_MULTIPLE); | ||
| 347 | } else { | ||
| 348 | rx_ring->count = opt.def; | ||
| 349 | } | ||
| 350 | for (i = 0; i < adapter->num_rx_queues; i++) | 369 | for (i = 0; i < adapter->num_rx_queues; i++) |
| 351 | rx_ring[i].count = rx_ring->count; | 370 | rx_ring[i].count = rx_ring->count; |
| 352 | } | 371 | } |
| @@ -358,13 +377,9 @@ e1000_check_options(struct e1000_adapter *adapter) | |||
| 358 | .def = OPTION_ENABLED | 377 | .def = OPTION_ENABLED |
| 359 | }; | 378 | }; |
| 360 | 379 | ||
| 361 | if (num_XsumRX > bd) { | 380 | int rx_csum = XsumRX[bd]; |
| 362 | int rx_csum = XsumRX[bd]; | 381 | e1000_validate_option(&rx_csum, &opt, adapter); |
| 363 | e1000_validate_option(&rx_csum, &opt, adapter); | 382 | adapter->rx_csum = rx_csum; |
| 364 | adapter->rx_csum = rx_csum; | ||
| 365 | } else { | ||
| 366 | adapter->rx_csum = opt.def; | ||
| 367 | } | ||
| 368 | } | 383 | } |
| 369 | { /* Flow Control */ | 384 | { /* Flow Control */ |
| 370 | 385 | ||
| @@ -384,13 +399,9 @@ e1000_check_options(struct e1000_adapter *adapter) | |||
| 384 | .p = fc_list }} | 399 | .p = fc_list }} |
| 385 | }; | 400 | }; |
| 386 | 401 | ||
| 387 | if (num_FlowControl > bd) { | 402 | int fc = FlowControl[bd]; |
| 388 | int fc = FlowControl[bd]; | 403 | e1000_validate_option(&fc, &opt, adapter); |
| 389 | e1000_validate_option(&fc, &opt, adapter); | 404 | adapter->hw.fc = adapter->hw.original_fc = fc; |
| 390 | adapter->hw.fc = adapter->hw.original_fc = fc; | ||
| 391 | } else { | ||
| 392 | adapter->hw.fc = adapter->hw.original_fc = opt.def; | ||
| 393 | } | ||
| 394 | } | 405 | } |
| 395 | { /* Transmit Interrupt Delay */ | 406 | { /* Transmit Interrupt Delay */ |
| 396 | struct e1000_option opt = { | 407 | struct e1000_option opt = { |
| @@ -402,13 +413,8 @@ e1000_check_options(struct e1000_adapter *adapter) | |||
| 402 | .max = MAX_TXDELAY }} | 413 | .max = MAX_TXDELAY }} |
| 403 | }; | 414 | }; |
| 404 | 415 | ||
| 405 | if (num_TxIntDelay > bd) { | 416 | adapter->tx_int_delay = TxIntDelay[bd]; |
| 406 | adapter->tx_int_delay = TxIntDelay[bd]; | 417 | e1000_validate_option(&adapter->tx_int_delay, &opt, adapter); |
| 407 | e1000_validate_option(&adapter->tx_int_delay, &opt, | ||
| 408 | adapter); | ||
| 409 | } else { | ||
| 410 | adapter->tx_int_delay = opt.def; | ||
| 411 | } | ||
| 412 | } | 418 | } |
| 413 | { /* Transmit Absolute Interrupt Delay */ | 419 | { /* Transmit Absolute Interrupt Delay */ |
| 414 | struct e1000_option opt = { | 420 | struct e1000_option opt = { |
| @@ -420,13 +426,9 @@ e1000_check_options(struct e1000_adapter *adapter) | |||
| 420 | .max = MAX_TXABSDELAY }} | 426 | .max = MAX_TXABSDELAY }} |
| 421 | }; | 427 | }; |
| 422 | 428 | ||
| 423 | if (num_TxAbsIntDelay > bd) { | 429 | adapter->tx_abs_int_delay = TxAbsIntDelay[bd]; |
| 424 | adapter->tx_abs_int_delay = TxAbsIntDelay[bd]; | 430 | e1000_validate_option(&adapter->tx_abs_int_delay, &opt, |
| 425 | e1000_validate_option(&adapter->tx_abs_int_delay, &opt, | 431 | adapter); |
| 426 | adapter); | ||
| 427 | } else { | ||
| 428 | adapter->tx_abs_int_delay = opt.def; | ||
| 429 | } | ||
| 430 | } | 432 | } |
| 431 | { /* Receive Interrupt Delay */ | 433 | { /* Receive Interrupt Delay */ |
| 432 | struct e1000_option opt = { | 434 | struct e1000_option opt = { |
| @@ -438,13 +440,8 @@ e1000_check_options(struct e1000_adapter *adapter) | |||
| 438 | .max = MAX_RXDELAY }} | 440 | .max = MAX_RXDELAY }} |
| 439 | }; | 441 | }; |
| 440 | 442 | ||
| 441 | if (num_RxIntDelay > bd) { | 443 | adapter->rx_int_delay = RxIntDelay[bd]; |
| 442 | adapter->rx_int_delay = RxIntDelay[bd]; | 444 | e1000_validate_option(&adapter->rx_int_delay, &opt, adapter); |
| 443 | e1000_validate_option(&adapter->rx_int_delay, &opt, | ||
| 444 | adapter); | ||
| 445 | } else { | ||
| 446 | adapter->rx_int_delay = opt.def; | ||
| 447 | } | ||
| 448 | } | 445 | } |
| 449 | { /* Receive Absolute Interrupt Delay */ | 446 | { /* Receive Absolute Interrupt Delay */ |
| 450 | struct e1000_option opt = { | 447 | struct e1000_option opt = { |
| @@ -456,13 +453,9 @@ e1000_check_options(struct e1000_adapter *adapter) | |||
| 456 | .max = MAX_RXABSDELAY }} | 453 | .max = MAX_RXABSDELAY }} |
| 457 | }; | 454 | }; |
| 458 | 455 | ||
| 459 | if (num_RxAbsIntDelay > bd) { | 456 | adapter->rx_abs_int_delay = RxAbsIntDelay[bd]; |
| 460 | adapter->rx_abs_int_delay = RxAbsIntDelay[bd]; | 457 | e1000_validate_option(&adapter->rx_abs_int_delay, &opt, |
| 461 | e1000_validate_option(&adapter->rx_abs_int_delay, &opt, | 458 | adapter); |
| 462 | adapter); | ||
| 463 | } else { | ||
| 464 | adapter->rx_abs_int_delay = opt.def; | ||
| 465 | } | ||
| 466 | } | 459 | } |
| 467 | { /* Interrupt Throttling Rate */ | 460 | { /* Interrupt Throttling Rate */ |
| 468 | struct e1000_option opt = { | 461 | struct e1000_option opt = { |
| @@ -474,26 +467,44 @@ e1000_check_options(struct e1000_adapter *adapter) | |||
| 474 | .max = MAX_ITR }} | 467 | .max = MAX_ITR }} |
| 475 | }; | 468 | }; |
| 476 | 469 | ||
| 477 | if (num_InterruptThrottleRate > bd) { | 470 | adapter->itr = InterruptThrottleRate[bd]; |
| 478 | adapter->itr = InterruptThrottleRate[bd]; | 471 | switch (adapter->itr) { |
| 479 | switch (adapter->itr) { | 472 | case 0: |
| 480 | case 0: | 473 | DPRINTK(PROBE, INFO, "%s turned off\n", opt.name); |
| 481 | DPRINTK(PROBE, INFO, "%s turned off\n", | 474 | break; |
| 482 | opt.name); | 475 | case 1: |
| 483 | break; | 476 | DPRINTK(PROBE, INFO, "%s set to dynamic mode\n", |
| 484 | case 1: | 477 | opt.name); |
| 485 | DPRINTK(PROBE, INFO, "%s set to dynamic mode\n", | 478 | break; |
| 486 | opt.name); | 479 | default: |
| 487 | break; | 480 | e1000_validate_option(&adapter->itr, &opt, adapter); |
| 488 | default: | 481 | break; |
| 489 | e1000_validate_option(&adapter->itr, &opt, | ||
| 490 | adapter); | ||
| 491 | break; | ||
| 492 | } | ||
| 493 | } else { | ||
| 494 | adapter->itr = opt.def; | ||
| 495 | } | 482 | } |
| 496 | } | 483 | } |
| 484 | { /* Smart Power Down */ | ||
| 485 | struct e1000_option opt = { | ||
| 486 | .type = enable_option, | ||
| 487 | .name = "PHY Smart Power Down", | ||
| 488 | .err = "defaulting to Disabled", | ||
| 489 | .def = OPTION_DISABLED | ||
| 490 | }; | ||
| 491 | |||
| 492 | int spd = SmartPowerDownEnable[bd]; | ||
| 493 | e1000_validate_option(&spd, &opt, adapter); | ||
| 494 | adapter->smart_power_down = spd; | ||
| 495 | } | ||
| 496 | { /* Kumeran Lock Loss Workaround */ | ||
| 497 | struct e1000_option opt = { | ||
| 498 | .type = enable_option, | ||
| 499 | .name = "Kumeran Lock Loss Workaround", | ||
| 500 | .err = "defaulting to Enabled", | ||
| 501 | .def = OPTION_ENABLED | ||
| 502 | }; | ||
| 503 | |||
| 504 | int kmrn_lock_loss = KumeranLockLoss[bd]; | ||
| 505 | e1000_validate_option(&kmrn_lock_loss, &opt, adapter); | ||
| 506 | adapter->hw.kmrn_lock_loss_workaround_disabled = !kmrn_lock_loss; | ||
| 507 | } | ||
| 497 | 508 | ||
| 498 | switch (adapter->hw.media_type) { | 509 | switch (adapter->hw.media_type) { |
| 499 | case e1000_media_type_fiber: | 510 | case e1000_media_type_fiber: |
| @@ -519,17 +530,18 @@ static void __devinit | |||
| 519 | e1000_check_fiber_options(struct e1000_adapter *adapter) | 530 | e1000_check_fiber_options(struct e1000_adapter *adapter) |
| 520 | { | 531 | { |
| 521 | int bd = adapter->bd_number; | 532 | int bd = adapter->bd_number; |
| 522 | if (num_Speed > bd) { | 533 | bd = bd > E1000_MAX_NIC ? E1000_MAX_NIC : bd; |
| 534 | if ((Speed[bd] != OPTION_UNSET)) { | ||
| 523 | DPRINTK(PROBE, INFO, "Speed not valid for fiber adapters, " | 535 | DPRINTK(PROBE, INFO, "Speed not valid for fiber adapters, " |
| 524 | "parameter ignored\n"); | 536 | "parameter ignored\n"); |
| 525 | } | 537 | } |
| 526 | 538 | ||
| 527 | if (num_Duplex > bd) { | 539 | if ((Duplex[bd] != OPTION_UNSET)) { |
| 528 | DPRINTK(PROBE, INFO, "Duplex not valid for fiber adapters, " | 540 | DPRINTK(PROBE, INFO, "Duplex not valid for fiber adapters, " |
| 529 | "parameter ignored\n"); | 541 | "parameter ignored\n"); |
| 530 | } | 542 | } |
| 531 | 543 | ||
| 532 | if ((num_AutoNeg > bd) && (AutoNeg[bd] != 0x20)) { | 544 | if ((AutoNeg[bd] != OPTION_UNSET) && (AutoNeg[bd] != 0x20)) { |
| 533 | DPRINTK(PROBE, INFO, "AutoNeg other than 1000/Full is " | 545 | DPRINTK(PROBE, INFO, "AutoNeg other than 1000/Full is " |
| 534 | "not valid for fiber adapters, " | 546 | "not valid for fiber adapters, " |
| 535 | "parameter ignored\n"); | 547 | "parameter ignored\n"); |
| @@ -548,6 +560,7 @@ e1000_check_copper_options(struct e1000_adapter *adapter) | |||
| 548 | { | 560 | { |
| 549 | int speed, dplx, an; | 561 | int speed, dplx, an; |
| 550 | int bd = adapter->bd_number; | 562 | int bd = adapter->bd_number; |
| 563 | bd = bd > E1000_MAX_NIC ? E1000_MAX_NIC : bd; | ||
| 551 | 564 | ||
| 552 | { /* Speed */ | 565 | { /* Speed */ |
| 553 | struct e1000_opt_list speed_list[] = {{ 0, "" }, | 566 | struct e1000_opt_list speed_list[] = {{ 0, "" }, |
| @@ -564,12 +577,8 @@ e1000_check_copper_options(struct e1000_adapter *adapter) | |||
| 564 | .p = speed_list }} | 577 | .p = speed_list }} |
| 565 | }; | 578 | }; |
| 566 | 579 | ||
| 567 | if (num_Speed > bd) { | 580 | speed = Speed[bd]; |
| 568 | speed = Speed[bd]; | 581 | e1000_validate_option(&speed, &opt, adapter); |
| 569 | e1000_validate_option(&speed, &opt, adapter); | ||
| 570 | } else { | ||
| 571 | speed = opt.def; | ||
| 572 | } | ||
| 573 | } | 582 | } |
| 574 | { /* Duplex */ | 583 | { /* Duplex */ |
| 575 | struct e1000_opt_list dplx_list[] = {{ 0, "" }, | 584 | struct e1000_opt_list dplx_list[] = {{ 0, "" }, |
| @@ -591,15 +600,11 @@ e1000_check_copper_options(struct e1000_adapter *adapter) | |||
| 591 | "Speed/Duplex/AutoNeg parameter ignored.\n"); | 600 | "Speed/Duplex/AutoNeg parameter ignored.\n"); |
| 592 | return; | 601 | return; |
| 593 | } | 602 | } |
| 594 | if (num_Duplex > bd) { | 603 | dplx = Duplex[bd]; |
| 595 | dplx = Duplex[bd]; | 604 | e1000_validate_option(&dplx, &opt, adapter); |
| 596 | e1000_validate_option(&dplx, &opt, adapter); | ||
| 597 | } else { | ||
| 598 | dplx = opt.def; | ||
| 599 | } | ||
| 600 | } | 605 | } |
| 601 | 606 | ||
| 602 | if ((num_AutoNeg > bd) && (speed != 0 || dplx != 0)) { | 607 | if (AutoNeg[bd] != OPTION_UNSET && (speed != 0 || dplx != 0)) { |
| 603 | DPRINTK(PROBE, INFO, | 608 | DPRINTK(PROBE, INFO, |
| 604 | "AutoNeg specified along with Speed or Duplex, " | 609 | "AutoNeg specified along with Speed or Duplex, " |
| 605 | "parameter ignored\n"); | 610 | "parameter ignored\n"); |
| @@ -648,19 +653,15 @@ e1000_check_copper_options(struct e1000_adapter *adapter) | |||
| 648 | .p = an_list }} | 653 | .p = an_list }} |
| 649 | }; | 654 | }; |
| 650 | 655 | ||
| 651 | if (num_AutoNeg > bd) { | 656 | an = AutoNeg[bd]; |
| 652 | an = AutoNeg[bd]; | 657 | e1000_validate_option(&an, &opt, adapter); |
| 653 | e1000_validate_option(&an, &opt, adapter); | ||
| 654 | } else { | ||
| 655 | an = opt.def; | ||
| 656 | } | ||
| 657 | adapter->hw.autoneg_advertised = an; | 658 | adapter->hw.autoneg_advertised = an; |
| 658 | } | 659 | } |
| 659 | 660 | ||
| 660 | switch (speed + dplx) { | 661 | switch (speed + dplx) { |
| 661 | case 0: | 662 | case 0: |
| 662 | adapter->hw.autoneg = adapter->fc_autoneg = 1; | 663 | adapter->hw.autoneg = adapter->fc_autoneg = 1; |
| 663 | if ((num_Speed > bd) && (speed != 0 || dplx != 0)) | 664 | if (Speed[bd] != OPTION_UNSET || Duplex[bd] != OPTION_UNSET) |
| 664 | DPRINTK(PROBE, INFO, | 665 | DPRINTK(PROBE, INFO, |
| 665 | "Speed and duplex autonegotiation enabled\n"); | 666 | "Speed and duplex autonegotiation enabled\n"); |
| 666 | break; | 667 | break; |
