diff options
| -rw-r--r-- | litmus/Kconfig | 10 | ||||
| -rw-r--r-- | litmus/Makefile | 2 | ||||
| -rw-r--r-- | litmus/sched_cedf.c | 890 |
3 files changed, 901 insertions, 1 deletions
diff --git a/litmus/Kconfig b/litmus/Kconfig index fdf31f3dd6c2..38d9e433b345 100644 --- a/litmus/Kconfig +++ b/litmus/Kconfig | |||
| @@ -2,6 +2,16 @@ menu "LITMUS^RT" | |||
| 2 | 2 | ||
| 3 | menu "Scheduling" | 3 | menu "Scheduling" |
| 4 | 4 | ||
| 5 | config PLUGIN_CEDF | ||
| 6 | bool "Clustered-EDF" | ||
| 7 | depends on X86 && SYSFS | ||
| 8 | default y | ||
| 9 | help | ||
| 10 | Include the Clustered EDF (C-EDF) plugin in the kernel. | ||
| 11 | This is appropriate for large platforms with shared caches. | ||
| 12 | On smaller platforms (e.g., ARM PB11MPCore), using C-EDF | ||
| 13 | makes little sense since there aren't any shared caches. | ||
| 14 | |||
| 5 | config RELEASE_MASTER | 15 | config RELEASE_MASTER |
| 6 | bool "Release-master Support" | 16 | bool "Release-master Support" |
| 7 | depends on ARCH_HAS_SEND_PULL_TIMERS && SMP | 17 | depends on ARCH_HAS_SEND_PULL_TIMERS && SMP |
diff --git a/litmus/Makefile b/litmus/Makefile index fb12398c4b92..7d637197d736 100644 --- a/litmus/Makefile +++ b/litmus/Makefile | |||
| @@ -23,7 +23,7 @@ obj-y = sched_plugin.o litmus.o \ | |||
| 23 | sched_psn_edf.o \ | 23 | sched_psn_edf.o \ |
| 24 | sched_pfp.o | 24 | sched_pfp.o |
| 25 | 25 | ||
| 26 | 26 | obj-$(CONFIG_PLUGIN_CEDF) += sched_cedf.o | |
| 27 | 27 | ||
| 28 | obj-$(CONFIG_FEATHER_TRACE) += ft_event.o ftdev.o | 28 | obj-$(CONFIG_FEATHER_TRACE) += ft_event.o ftdev.o |
| 29 | obj-$(CONFIG_SCHED_TASK_TRACE) += sched_task_trace.o | 29 | obj-$(CONFIG_SCHED_TASK_TRACE) += sched_task_trace.o |
diff --git a/litmus/sched_cedf.c b/litmus/sched_cedf.c new file mode 100644 index 000000000000..528efb611fdb --- /dev/null +++ b/litmus/sched_cedf.c | |||
| @@ -0,0 +1,890 @@ | |||
| 1 | /* | ||
| 2 | * litmus/sched_cedf.c | ||
| 3 | * | ||
| 4 | * Implementation of the C-EDF scheduling algorithm. | ||
| 5 | * | ||
| 6 | * This implementation is based on G-EDF: | ||
| 7 | * - CPUs are clustered around L2 or L3 caches. | ||
| 8 | * - Clusters topology is automatically detected (this is arch dependent | ||
| 9 | * and is working only on x86 at the moment --- and only with modern | ||
| 10 | * cpus that exports cpuid4 information) | ||
| 11 | * - The plugins _does not_ attempt to put tasks in the right cluster i.e. | ||
| 12 | * the programmer needs to be aware of the topology to place tasks | ||
| 13 | * in the desired cluster | ||
| 14 | * - default clustering is around L2 cache (cache index = 2) | ||
| 15 | * supported clusters are: L1 (private cache: pedf), L2, L3, ALL (all | ||
| 16 | * online_cpus are placed in a single cluster). | ||
| 17 | * | ||
| 18 | * For details on functions, take a look at sched_gsn_edf.c | ||
| 19 | * | ||
| 20 | * Currently, we do not support changes in the number of online cpus. | ||
| 21 | * If the num_online_cpus() dynamically changes, the plugin is broken. | ||
| 22 | * | ||
| 23 | * This version uses the simple approach and serializes all scheduling | ||
| 24 | * decisions by the use of a queue lock. This is probably not the | ||
| 25 | * best way to do it, but it should suffice for now. | ||
| 26 | */ | ||
| 27 | |||
| 28 | #include <linux/spinlock.h> | ||
| 29 | #include <linux/percpu.h> | ||
| 30 | #include <linux/sched.h> | ||
| 31 | #include <linux/slab.h> | ||
| 32 | |||
| 33 | #include <linux/module.h> | ||
| 34 | |||
| 35 | #include <litmus/litmus.h> | ||
| 36 | #include <litmus/jobs.h> | ||
| 37 | #include <litmus/preempt.h> | ||
| 38 | #include <litmus/budget.h> | ||
| 39 | #include <litmus/sched_plugin.h> | ||
| 40 | #include <litmus/edf_common.h> | ||
| 41 | #include <litmus/sched_trace.h> | ||
| 42 | |||
| 43 | #include <litmus/clustered.h> | ||
| 44 | |||
| 45 | #include <litmus/bheap.h> | ||
| 46 | |||
| 47 | #ifdef CONFIG_SCHED_CPU_AFFINITY | ||
| 48 | #include <litmus/affinity.h> | ||
| 49 | #endif | ||
| 50 | |||
| 51 | /* to configure the cluster size */ | ||
| 52 | #include <litmus/litmus_proc.h> | ||
| 53 | #include <linux/uaccess.h> | ||
| 54 | |||
| 55 | /* Reference configuration variable. Determines which cache level is used to | ||
| 56 | * group CPUs into clusters. GLOBAL_CLUSTER, which is the default, means that | ||
| 57 | * all CPUs form a single cluster (just like GSN-EDF). | ||
| 58 | */ | ||
| 59 | static enum cache_level cluster_config = GLOBAL_CLUSTER; | ||
| 60 | |||
| 61 | struct clusterdomain; | ||
| 62 | |||
| 63 | /* cpu_entry_t - maintain the linked and scheduled state | ||
| 64 | * | ||
| 65 | * A cpu also contains a pointer to the cedf_domain_t cluster | ||
| 66 | * that owns it (struct clusterdomain*) | ||
| 67 | */ | ||
| 68 | typedef struct { | ||
| 69 | int cpu; | ||
| 70 | struct clusterdomain* cluster; /* owning cluster */ | ||
| 71 | struct task_struct* linked; /* only RT tasks */ | ||
| 72 | struct task_struct* scheduled; /* only RT tasks */ | ||
| 73 | atomic_t will_schedule; /* prevent unneeded IPIs */ | ||
| 74 | struct bheap_node* hn; | ||
| 75 | } cpu_entry_t; | ||
| 76 | |||
| 77 | /* one cpu_entry_t per CPU */ | ||
| 78 | DEFINE_PER_CPU(cpu_entry_t, cedf_cpu_entries); | ||
| 79 | |||
| 80 | /* | ||
| 81 | * In C-EDF there is a cedf domain _per_ cluster | ||
| 82 | * The number of clusters is dynamically determined accordingly to the | ||
| 83 | * total cpu number and the cluster size | ||
| 84 | */ | ||
| 85 | typedef struct clusterdomain { | ||
| 86 | /* rt_domain for this cluster */ | ||
| 87 | rt_domain_t domain; | ||
| 88 | /* cpus in this cluster */ | ||
| 89 | cpu_entry_t* *cpus; | ||
| 90 | /* map of this cluster cpus */ | ||
| 91 | cpumask_var_t cpu_map; | ||
| 92 | /* the cpus queue themselves according to priority in here */ | ||
| 93 | struct bheap_node *heap_node; | ||
| 94 | struct bheap cpu_heap; | ||
| 95 | /* lock for this cluster */ | ||
| 96 | #define cluster_lock domain.ready_lock | ||
| 97 | } cedf_domain_t; | ||
| 98 | |||
| 99 | /* a cedf_domain per cluster; allocation is done at init/activation time */ | ||
| 100 | cedf_domain_t *cedf; | ||
| 101 | |||
| 102 | #define remote_cluster(cpu) ((cedf_domain_t *) per_cpu(cedf_cpu_entries, cpu).cluster) | ||
| 103 | #define task_cpu_cluster(task) remote_cluster(get_partition(task)) | ||
| 104 | |||
| 105 | /* Uncomment WANT_ALL_SCHED_EVENTS if you want to see all scheduling | ||
| 106 | * decisions in the TRACE() log; uncomment VERBOSE_INIT for verbose | ||
| 107 | * information during the initialization of the plugin (e.g., topology) | ||
| 108 | #define WANT_ALL_SCHED_EVENTS | ||
| 109 | */ | ||
| 110 | #define VERBOSE_INIT | ||
| 111 | |||
| 112 | static int cpu_lower_prio(struct bheap_node *_a, struct bheap_node *_b) | ||
| 113 | { | ||
| 114 | cpu_entry_t *a, *b; | ||
| 115 | a = _a->value; | ||
| 116 | b = _b->value; | ||
| 117 | /* Note that a and b are inverted: we want the lowest-priority CPU at | ||
| 118 | * the top of the heap. | ||
| 119 | */ | ||
| 120 | return edf_higher_prio(b->linked, a->linked); | ||
| 121 | } | ||
| 122 | |||
| 123 | /* update_cpu_position - Move the cpu entry to the correct place to maintain | ||
| 124 | * order in the cpu queue. Caller must hold cedf lock. | ||
| 125 | */ | ||
| 126 | static void update_cpu_position(cpu_entry_t *entry) | ||
| 127 | { | ||
| 128 | cedf_domain_t *cluster = entry->cluster; | ||
| 129 | |||
| 130 | if (likely(bheap_node_in_heap(entry->hn))) | ||
| 131 | bheap_delete(cpu_lower_prio, | ||
| 132 | &cluster->cpu_heap, | ||
| 133 | entry->hn); | ||
| 134 | |||
| 135 | bheap_insert(cpu_lower_prio, &cluster->cpu_heap, entry->hn); | ||
| 136 | } | ||
| 137 | |||
| 138 | /* caller must hold cedf lock */ | ||
| 139 | static cpu_entry_t* lowest_prio_cpu(cedf_domain_t *cluster) | ||
| 140 | { | ||
| 141 | struct bheap_node* hn; | ||
| 142 | hn = bheap_peek(cpu_lower_prio, &cluster->cpu_heap); | ||
| 143 | return hn->value; | ||
| 144 | } | ||
| 145 | |||
| 146 | |||
| 147 | /* link_task_to_cpu - Update the link of a CPU. | ||
| 148 | * Handles the case where the to-be-linked task is already | ||
| 149 | * scheduled on a different CPU. | ||
| 150 | */ | ||
| 151 | static noinline void link_task_to_cpu(struct task_struct* linked, | ||
| 152 | cpu_entry_t *entry) | ||
| 153 | { | ||
| 154 | cpu_entry_t *sched; | ||
| 155 | struct task_struct* tmp; | ||
| 156 | int on_cpu; | ||
| 157 | |||
| 158 | BUG_ON(linked && !is_realtime(linked)); | ||
| 159 | |||
| 160 | /* Currently linked task is set to be unlinked. */ | ||
| 161 | if (entry->linked) { | ||
| 162 | entry->linked->rt_param.linked_on = NO_CPU; | ||
| 163 | } | ||
| 164 | |||
| 165 | /* Link new task to CPU. */ | ||
| 166 | if (linked) { | ||
| 167 | /* handle task is already scheduled somewhere! */ | ||
| 168 | on_cpu = linked->rt_param.scheduled_on; | ||
| 169 | if (on_cpu != NO_CPU) { | ||
| 170 | sched = &per_cpu(cedf_cpu_entries, on_cpu); | ||
| 171 | /* this should only happen if not linked already */ | ||
| 172 | BUG_ON(sched->linked == linked); | ||
| 173 | |||
| 174 | /* If we are already scheduled on the CPU to which we | ||
| 175 | * wanted to link, we don't need to do the swap -- | ||
| 176 | * we just link ourselves to the CPU and depend on | ||
| 177 | * the caller to get things right. | ||
| 178 | */ | ||
| 179 | if (entry != sched) { | ||
| 180 | TRACE_TASK(linked, | ||
| 181 | "already scheduled on %d, updating link.\n", | ||
| 182 | sched->cpu); | ||
| 183 | tmp = sched->linked; | ||
| 184 | linked->rt_param.linked_on = sched->cpu; | ||
| 185 | sched->linked = linked; | ||
| 186 | update_cpu_position(sched); | ||
| 187 | linked = tmp; | ||
| 188 | } | ||
| 189 | } | ||
| 190 | if (linked) /* might be NULL due to swap */ | ||
| 191 | linked->rt_param.linked_on = entry->cpu; | ||
| 192 | } | ||
| 193 | entry->linked = linked; | ||
| 194 | #ifdef WANT_ALL_SCHED_EVENTS | ||
| 195 | if (linked) | ||
| 196 | TRACE_TASK(linked, "linked to %d.\n", entry->cpu); | ||
| 197 | else | ||
| 198 | TRACE("NULL linked to %d.\n", entry->cpu); | ||
| 199 | #endif | ||
| 200 | update_cpu_position(entry); | ||
| 201 | } | ||
| 202 | |||
| 203 | /* unlink - Make sure a task is not linked any longer to an entry | ||
| 204 | * where it was linked before. Must hold cedf_lock. | ||
| 205 | */ | ||
| 206 | static noinline void unlink(struct task_struct* t) | ||
| 207 | { | ||
| 208 | cpu_entry_t *entry; | ||
| 209 | |||
| 210 | if (t->rt_param.linked_on != NO_CPU) { | ||
| 211 | /* unlink */ | ||
| 212 | entry = &per_cpu(cedf_cpu_entries, t->rt_param.linked_on); | ||
| 213 | t->rt_param.linked_on = NO_CPU; | ||
| 214 | link_task_to_cpu(NULL, entry); | ||
| 215 | } else if (is_queued(t)) { | ||
| 216 | /* This is an interesting situation: t is scheduled, | ||
| 217 | * but was just recently unlinked. It cannot be | ||
| 218 | * linked anywhere else (because then it would have | ||
| 219 | * been relinked to this CPU), thus it must be in some | ||
| 220 | * queue. We must remove it from the list in this | ||
| 221 | * case. | ||
| 222 | * | ||
| 223 | * in C-EDF case is should be somewhere in the queue for | ||
| 224 | * its domain, therefore and we can get the domain using | ||
| 225 | * task_cpu_cluster | ||
| 226 | */ | ||
| 227 | remove(&(task_cpu_cluster(t))->domain, t); | ||
| 228 | } | ||
| 229 | } | ||
| 230 | |||
| 231 | |||
| 232 | /* preempt - force a CPU to reschedule | ||
| 233 | */ | ||
| 234 | static void preempt(cpu_entry_t *entry) | ||
| 235 | { | ||
| 236 | preempt_if_preemptable(entry->scheduled, entry->cpu); | ||
| 237 | } | ||
| 238 | |||
| 239 | /* requeue - Put an unlinked task into gsn-edf domain. | ||
| 240 | * Caller must hold cedf_lock. | ||
| 241 | */ | ||
| 242 | static noinline void requeue(struct task_struct* task) | ||
| 243 | { | ||
| 244 | cedf_domain_t *cluster = task_cpu_cluster(task); | ||
| 245 | BUG_ON(!task); | ||
| 246 | /* sanity check before insertion */ | ||
| 247 | BUG_ON(is_queued(task)); | ||
| 248 | |||
| 249 | if (is_early_releasing(task) || is_released(task, litmus_clock())) | ||
| 250 | __add_ready(&cluster->domain, task); | ||
| 251 | else { | ||
| 252 | /* it has got to wait */ | ||
| 253 | add_release(&cluster->domain, task); | ||
| 254 | } | ||
| 255 | } | ||
| 256 | |||
| 257 | #ifdef CONFIG_SCHED_CPU_AFFINITY | ||
| 258 | static cpu_entry_t* cedf_get_nearest_available_cpu( | ||
| 259 | cedf_domain_t *cluster, cpu_entry_t *start) | ||
| 260 | { | ||
| 261 | cpu_entry_t *affinity; | ||
| 262 | |||
| 263 | get_nearest_available_cpu(affinity, start, cedf_cpu_entries, | ||
| 264 | #ifdef CONFIG_RELEASE_MASTER | ||
| 265 | cluster->domain.release_master, | ||
| 266 | #else | ||
| 267 | NO_CPU, | ||
| 268 | #endif | ||
| 269 | cluster->cpu_map); | ||
| 270 | |||
| 271 | /* make sure CPU is in our cluster */ | ||
| 272 | if (affinity && cpumask_test_cpu(affinity->cpu, cluster->cpu_map)) | ||
| 273 | return(affinity); | ||
| 274 | else | ||
| 275 | return(NULL); | ||
| 276 | } | ||
| 277 | #endif | ||
| 278 | |||
| 279 | |||
| 280 | /* check for any necessary preemptions */ | ||
| 281 | static void check_for_preemptions(cedf_domain_t *cluster) | ||
| 282 | { | ||
| 283 | struct task_struct *task; | ||
| 284 | cpu_entry_t *last; | ||
| 285 | |||
| 286 | #ifdef CONFIG_PREFER_LOCAL_LINKING | ||
| 287 | cpu_entry_t *local; | ||
| 288 | |||
| 289 | /* Before linking to other CPUs, check first whether the local CPU is | ||
| 290 | * idle. */ | ||
| 291 | local = this_cpu_ptr(&cedf_cpu_entries); | ||
| 292 | task = __peek_ready(&cluster->domain); | ||
| 293 | |||
| 294 | if (task && !local->linked | ||
| 295 | #ifdef CONFIG_RELEASE_MASTER | ||
| 296 | && likely(local->cpu != cluster->domain.release_master) | ||
| 297 | #endif | ||
| 298 | ) { | ||
| 299 | task = __take_ready(&cluster->domain); | ||
| 300 | TRACE_TASK(task, "linking to local CPU %d to avoid IPI\n", local->cpu); | ||
| 301 | link_task_to_cpu(task, local); | ||
| 302 | preempt(local); | ||
| 303 | } | ||
| 304 | #endif | ||
| 305 | |||
| 306 | |||
| 307 | for(last = lowest_prio_cpu(cluster); | ||
| 308 | edf_preemption_needed(&cluster->domain, last->linked); | ||
| 309 | last = lowest_prio_cpu(cluster)) { | ||
| 310 | /* preemption necessary */ | ||
| 311 | task = __take_ready(&cluster->domain); | ||
| 312 | TRACE("check_for_preemptions: attempting to link task %d to %d\n", | ||
| 313 | task->pid, last->cpu); | ||
| 314 | #ifdef CONFIG_SCHED_CPU_AFFINITY | ||
| 315 | { | ||
| 316 | cpu_entry_t *affinity = | ||
| 317 | cedf_get_nearest_available_cpu(cluster, | ||
| 318 | &per_cpu(cedf_cpu_entries, task_cpu(task))); | ||
| 319 | if(affinity) | ||
| 320 | last = affinity; | ||
| 321 | else if(requeue_preempted_job(last->linked)) | ||
| 322 | requeue(last->linked); | ||
| 323 | } | ||
| 324 | #else | ||
| 325 | if (requeue_preempted_job(last->linked)) | ||
| 326 | requeue(last->linked); | ||
| 327 | #endif | ||
| 328 | link_task_to_cpu(task, last); | ||
| 329 | preempt(last); | ||
| 330 | } | ||
| 331 | } | ||
| 332 | |||
| 333 | /* cedf_job_arrival: task is either resumed or released */ | ||
| 334 | static noinline void cedf_job_arrival(struct task_struct* task) | ||
| 335 | { | ||
| 336 | cedf_domain_t *cluster = task_cpu_cluster(task); | ||
| 337 | BUG_ON(!task); | ||
| 338 | |||
| 339 | requeue(task); | ||
| 340 | check_for_preemptions(cluster); | ||
| 341 | } | ||
| 342 | |||
| 343 | static void cedf_release_jobs(rt_domain_t* rt, struct bheap* tasks) | ||
| 344 | { | ||
| 345 | cedf_domain_t* cluster = container_of(rt, cedf_domain_t, domain); | ||
| 346 | unsigned long flags; | ||
| 347 | |||
| 348 | raw_spin_lock_irqsave(&cluster->cluster_lock, flags); | ||
| 349 | |||
| 350 | __merge_ready(&cluster->domain, tasks); | ||
| 351 | check_for_preemptions(cluster); | ||
| 352 | |||
| 353 | raw_spin_unlock_irqrestore(&cluster->cluster_lock, flags); | ||
| 354 | } | ||
| 355 | |||
| 356 | /* caller holds cedf_lock */ | ||
| 357 | static noinline void current_job_completion(int forced) | ||
| 358 | { | ||
| 359 | struct task_struct *t = current; | ||
| 360 | |||
| 361 | sched_trace_task_completion(t, forced); | ||
| 362 | |||
| 363 | TRACE_TASK(t, "job_completion(forced=%d).\n", forced); | ||
| 364 | |||
| 365 | /* set flags */ | ||
| 366 | tsk_rt(t)->completed = 0; | ||
| 367 | /* prepare for next period */ | ||
| 368 | prepare_for_next_period(t); | ||
| 369 | if (is_early_releasing(t) || is_released(t, litmus_clock())) | ||
| 370 | sched_trace_task_release(t); | ||
| 371 | /* unlink */ | ||
| 372 | unlink(t); | ||
| 373 | /* requeue | ||
| 374 | * But don't requeue a blocking task. */ | ||
| 375 | if (is_current_running()) | ||
| 376 | cedf_job_arrival(t); | ||
| 377 | } | ||
| 378 | |||
| 379 | /* Getting schedule() right is a bit tricky. schedule() may not make any | ||
| 380 | * assumptions on the state of the current task since it may be called for a | ||
| 381 | * number of reasons. The reasons include a scheduler_tick() determined that it | ||
| 382 | * was necessary, because sys_exit_np() was called, because some Linux | ||
| 383 | * subsystem determined so, or even (in the worst case) because there is a bug | ||
| 384 | * hidden somewhere. Thus, we must take extreme care to determine what the | ||
| 385 | * current state is. | ||
| 386 | * | ||
| 387 | * The CPU could currently be scheduling a task (or not), be linked (or not). | ||
| 388 | * | ||
| 389 | * The following assertions for the scheduled task could hold: | ||
| 390 | * | ||
| 391 | * - !is_running(scheduled) // the job blocks | ||
| 392 | * - scheduled->timeslice == 0 // the job completed (forcefully) | ||
| 393 | * - is_completed() // the job completed (by syscall) | ||
| 394 | * - linked != scheduled // we need to reschedule (for any reason) | ||
| 395 | * - is_np(scheduled) // rescheduling must be delayed, | ||
| 396 | * sys_exit_np must be requested | ||
| 397 | * | ||
| 398 | * Any of these can occur together. | ||
| 399 | */ | ||
| 400 | static struct task_struct* cedf_schedule(struct task_struct * prev) | ||
| 401 | { | ||
| 402 | cpu_entry_t* entry = this_cpu_ptr(&cedf_cpu_entries); | ||
| 403 | cedf_domain_t *cluster = entry->cluster; | ||
| 404 | int out_of_time, sleep, preempt, np, exists, blocks; | ||
| 405 | struct task_struct* next = NULL; | ||
| 406 | |||
| 407 | #ifdef CONFIG_RELEASE_MASTER | ||
| 408 | /* Bail out early if we are the release master. | ||
| 409 | * The release master never schedules any real-time tasks. | ||
| 410 | */ | ||
| 411 | if (unlikely(cluster->domain.release_master == entry->cpu)) { | ||
| 412 | sched_state_task_picked(); | ||
| 413 | return NULL; | ||
| 414 | } | ||
| 415 | #endif | ||
| 416 | |||
| 417 | raw_spin_lock(&cluster->cluster_lock); | ||
| 418 | |||
| 419 | /* sanity checking */ | ||
| 420 | BUG_ON(entry->scheduled && entry->scheduled != prev); | ||
| 421 | BUG_ON(entry->scheduled && !is_realtime(prev)); | ||
| 422 | BUG_ON(is_realtime(prev) && !entry->scheduled); | ||
| 423 | |||
| 424 | /* (0) Determine state */ | ||
| 425 | exists = entry->scheduled != NULL; | ||
| 426 | blocks = exists && !is_current_running(); | ||
| 427 | out_of_time = exists && budget_enforced(entry->scheduled) | ||
| 428 | && budget_exhausted(entry->scheduled); | ||
| 429 | np = exists && is_np(entry->scheduled); | ||
| 430 | sleep = exists && is_completed(entry->scheduled); | ||
| 431 | preempt = entry->scheduled != entry->linked; | ||
| 432 | |||
| 433 | #ifdef WANT_ALL_SCHED_EVENTS | ||
| 434 | TRACE_TASK(prev, "invoked cedf_schedule.\n"); | ||
| 435 | #endif | ||
| 436 | |||
| 437 | if (exists) | ||
| 438 | TRACE_TASK(prev, | ||
| 439 | "blocks:%d out_of_time:%d np:%d sleep:%d preempt:%d " | ||
| 440 | "state:%d sig:%d\n", | ||
| 441 | blocks, out_of_time, np, sleep, preempt, | ||
| 442 | prev->state, signal_pending(prev)); | ||
| 443 | if (entry->linked && preempt) | ||
| 444 | TRACE_TASK(prev, "will be preempted by %s/%d\n", | ||
| 445 | entry->linked->comm, entry->linked->pid); | ||
| 446 | |||
| 447 | |||
| 448 | /* If a task blocks we have no choice but to reschedule. | ||
| 449 | */ | ||
| 450 | if (blocks) | ||
| 451 | unlink(entry->scheduled); | ||
| 452 | |||
| 453 | /* Request a sys_exit_np() call if we would like to preempt but cannot. | ||
| 454 | * We need to make sure to update the link structure anyway in case | ||
| 455 | * that we are still linked. Multiple calls to request_exit_np() don't | ||
| 456 | * hurt. | ||
| 457 | */ | ||
| 458 | if (np && (out_of_time || preempt || sleep)) { | ||
| 459 | unlink(entry->scheduled); | ||
| 460 | request_exit_np(entry->scheduled); | ||
| 461 | } | ||
| 462 | |||
| 463 | /* Any task that is preemptable and either exhausts its execution | ||
| 464 | * budget or wants to sleep completes. We may have to reschedule after | ||
| 465 | * this. Don't do a job completion if we block (can't have timers running | ||
| 466 | * for blocked jobs). | ||
| 467 | */ | ||
| 468 | if (!np && (out_of_time || sleep)) | ||
| 469 | current_job_completion(!sleep); | ||
| 470 | |||
| 471 | /* Link pending task if we became unlinked. | ||
| 472 | */ | ||
| 473 | if (!entry->linked) | ||
| 474 | link_task_to_cpu(__take_ready(&cluster->domain), entry); | ||
| 475 | |||
| 476 | /* The final scheduling decision. Do we need to switch for some reason? | ||
| 477 | * If linked is different from scheduled, then select linked as next. | ||
| 478 | */ | ||
| 479 | if ((!np || blocks) && | ||
| 480 | entry->linked != entry->scheduled) { | ||
| 481 | /* Schedule a linked job? */ | ||
| 482 | if (entry->linked) { | ||
| 483 | entry->linked->rt_param.scheduled_on = entry->cpu; | ||
| 484 | next = entry->linked; | ||
| 485 | } | ||
| 486 | if (entry->scheduled) { | ||
| 487 | /* not gonna be scheduled soon */ | ||
| 488 | entry->scheduled->rt_param.scheduled_on = NO_CPU; | ||
| 489 | TRACE_TASK(entry->scheduled, "scheduled_on = NO_CPU\n"); | ||
| 490 | } | ||
| 491 | } else | ||
| 492 | /* Only override Linux scheduler if we have a real-time task | ||
| 493 | * scheduled that needs to continue. | ||
| 494 | */ | ||
| 495 | if (exists) | ||
| 496 | next = prev; | ||
| 497 | |||
| 498 | sched_state_task_picked(); | ||
| 499 | raw_spin_unlock(&cluster->cluster_lock); | ||
| 500 | |||
| 501 | #ifdef WANT_ALL_SCHED_EVENTS | ||
| 502 | TRACE("cedf_lock released, next=0x%p\n", next); | ||
| 503 | |||
| 504 | if (next) | ||
| 505 | TRACE_TASK(next, "scheduled at %llu\n", litmus_clock()); | ||
| 506 | else if (exists && !next) | ||
| 507 | TRACE("becomes idle at %llu.\n", litmus_clock()); | ||
| 508 | #endif | ||
| 509 | |||
| 510 | |||
| 511 | return next; | ||
| 512 | } | ||
| 513 | |||
| 514 | |||
| 515 | /* _finish_switch - we just finished the switch away from prev | ||
| 516 | */ | ||
| 517 | static void cedf_finish_switch(struct task_struct *prev) | ||
| 518 | { | ||
| 519 | cpu_entry_t* entry = this_cpu_ptr(&cedf_cpu_entries); | ||
| 520 | |||
| 521 | entry->scheduled = is_realtime(current) ? current : NULL; | ||
| 522 | #ifdef WANT_ALL_SCHED_EVENTS | ||
| 523 | TRACE_TASK(prev, "switched away from\n"); | ||
| 524 | #endif | ||
| 525 | } | ||
| 526 | |||
| 527 | |||
| 528 | /* Prepare a task for running in RT mode | ||
| 529 | */ | ||
| 530 | static void cedf_task_new(struct task_struct * t, int on_rq, int is_scheduled) | ||
| 531 | { | ||
| 532 | unsigned long flags; | ||
| 533 | cpu_entry_t* entry; | ||
| 534 | cedf_domain_t* cluster; | ||
| 535 | |||
| 536 | TRACE("gsn edf: task new %d\n", t->pid); | ||
| 537 | |||
| 538 | /* the cluster doesn't change even if t is scheduled */ | ||
| 539 | cluster = task_cpu_cluster(t); | ||
| 540 | |||
| 541 | raw_spin_lock_irqsave(&cluster->cluster_lock, flags); | ||
| 542 | |||
| 543 | /* setup job params */ | ||
| 544 | release_at(t, litmus_clock()); | ||
| 545 | |||
| 546 | if (is_scheduled) { | ||
| 547 | entry = &per_cpu(cedf_cpu_entries, task_cpu(t)); | ||
| 548 | BUG_ON(entry->scheduled); | ||
| 549 | |||
| 550 | #ifdef CONFIG_RELEASE_MASTER | ||
| 551 | if (entry->cpu != cluster->domain.release_master) { | ||
| 552 | #endif | ||
| 553 | entry->scheduled = t; | ||
| 554 | tsk_rt(t)->scheduled_on = task_cpu(t); | ||
| 555 | #ifdef CONFIG_RELEASE_MASTER | ||
| 556 | } else { | ||
| 557 | /* do not schedule on release master */ | ||
| 558 | preempt(entry); /* force resched */ | ||
| 559 | tsk_rt(t)->scheduled_on = NO_CPU; | ||
| 560 | } | ||
| 561 | #endif | ||
| 562 | } else { | ||
| 563 | t->rt_param.scheduled_on = NO_CPU; | ||
| 564 | } | ||
| 565 | t->rt_param.linked_on = NO_CPU; | ||
| 566 | |||
| 567 | if (on_rq || is_scheduled) | ||
| 568 | cedf_job_arrival(t); | ||
| 569 | raw_spin_unlock_irqrestore(&(cluster->cluster_lock), flags); | ||
| 570 | } | ||
| 571 | |||
| 572 | static void cedf_task_wake_up(struct task_struct *task) | ||
| 573 | { | ||
| 574 | unsigned long flags; | ||
| 575 | lt_t now; | ||
| 576 | cedf_domain_t *cluster; | ||
| 577 | |||
| 578 | TRACE_TASK(task, "wake_up at %llu\n", litmus_clock()); | ||
| 579 | |||
| 580 | cluster = task_cpu_cluster(task); | ||
| 581 | |||
| 582 | raw_spin_lock_irqsave(&cluster->cluster_lock, flags); | ||
| 583 | now = litmus_clock(); | ||
| 584 | if (is_sporadic(task) && is_tardy(task, now)) { | ||
| 585 | /* new sporadic release */ | ||
| 586 | release_at(task, now); | ||
| 587 | sched_trace_task_release(task); | ||
| 588 | } | ||
| 589 | cedf_job_arrival(task); | ||
| 590 | raw_spin_unlock_irqrestore(&cluster->cluster_lock, flags); | ||
| 591 | } | ||
| 592 | |||
| 593 | static void cedf_task_block(struct task_struct *t) | ||
| 594 | { | ||
| 595 | unsigned long flags; | ||
| 596 | cedf_domain_t *cluster; | ||
| 597 | |||
| 598 | TRACE_TASK(t, "block at %llu\n", litmus_clock()); | ||
| 599 | |||
| 600 | cluster = task_cpu_cluster(t); | ||
| 601 | |||
| 602 | /* unlink if necessary */ | ||
| 603 | raw_spin_lock_irqsave(&cluster->cluster_lock, flags); | ||
| 604 | unlink(t); | ||
| 605 | raw_spin_unlock_irqrestore(&cluster->cluster_lock, flags); | ||
| 606 | |||
| 607 | BUG_ON(!is_realtime(t)); | ||
| 608 | } | ||
| 609 | |||
| 610 | |||
| 611 | static void cedf_task_exit(struct task_struct * t) | ||
| 612 | { | ||
| 613 | unsigned long flags; | ||
| 614 | cedf_domain_t *cluster = task_cpu_cluster(t); | ||
| 615 | |||
| 616 | /* unlink if necessary */ | ||
| 617 | raw_spin_lock_irqsave(&cluster->cluster_lock, flags); | ||
| 618 | unlink(t); | ||
| 619 | if (tsk_rt(t)->scheduled_on != NO_CPU) { | ||
| 620 | cpu_entry_t *cpu; | ||
| 621 | cpu = &per_cpu(cedf_cpu_entries, tsk_rt(t)->scheduled_on); | ||
| 622 | cpu->scheduled = NULL; | ||
| 623 | tsk_rt(t)->scheduled_on = NO_CPU; | ||
| 624 | } | ||
| 625 | raw_spin_unlock_irqrestore(&cluster->cluster_lock, flags); | ||
| 626 | |||
| 627 | BUG_ON(!is_realtime(t)); | ||
| 628 | TRACE_TASK(t, "RIP\n"); | ||
| 629 | } | ||
| 630 | |||
| 631 | static long cedf_admit_task(struct task_struct* tsk) | ||
| 632 | { | ||
| 633 | return (remote_cluster(task_cpu(tsk)) == task_cpu_cluster(tsk)) ? | ||
| 634 | 0 : -EINVAL; | ||
| 635 | } | ||
| 636 | |||
| 637 | /* total number of cluster */ | ||
| 638 | static int num_clusters; | ||
| 639 | /* we do not support cluster of different sizes */ | ||
| 640 | static unsigned int cluster_size; | ||
| 641 | |||
| 642 | #ifdef VERBOSE_INIT | ||
| 643 | static void print_cluster_topology(cpumask_var_t mask, int cpu) | ||
| 644 | { | ||
| 645 | printk(KERN_INFO "CPU = %d, shared cpu(s) = %*pbl\n", cpu, | ||
| 646 | cpumask_pr_args(mask)); | ||
| 647 | |||
| 648 | } | ||
| 649 | #endif | ||
| 650 | |||
| 651 | static int clusters_allocated = 0; | ||
| 652 | |||
| 653 | static void cleanup_cedf(void) | ||
| 654 | { | ||
| 655 | int i; | ||
| 656 | |||
| 657 | if (clusters_allocated) { | ||
| 658 | for (i = 0; i < num_clusters; i++) { | ||
| 659 | kfree(cedf[i].cpus); | ||
| 660 | kfree(cedf[i].heap_node); | ||
| 661 | free_cpumask_var(cedf[i].cpu_map); | ||
| 662 | } | ||
| 663 | |||
| 664 | kfree(cedf); | ||
| 665 | } | ||
| 666 | } | ||
| 667 | |||
| 668 | static struct domain_proc_info cedf_domain_proc_info; | ||
| 669 | static long cedf_get_domain_proc_info(struct domain_proc_info **ret) | ||
| 670 | { | ||
| 671 | *ret = &cedf_domain_proc_info; | ||
| 672 | return 0; | ||
| 673 | } | ||
| 674 | |||
| 675 | static void cedf_setup_domain_proc(void) | ||
| 676 | { | ||
| 677 | int i, cpu, domain; | ||
| 678 | #ifdef CONFIG_RELEASE_MASTER | ||
| 679 | int release_master = atomic_read(&release_master_cpu); | ||
| 680 | /* skip over the domain with the release master if cluster size is 1 */ | ||
| 681 | int skip_domain = (1 == cluster_size && release_master != NO_CPU) ? | ||
| 682 | release_master : NO_CPU; | ||
| 683 | #else | ||
| 684 | int release_master = NO_CPU; | ||
| 685 | int skip_domain = NO_CPU; | ||
| 686 | #endif | ||
| 687 | int num_rt_cpus = num_online_cpus() - (release_master != NO_CPU); | ||
| 688 | int num_rt_domains = num_clusters - (skip_domain != NO_CPU); | ||
| 689 | struct cd_mapping *map; | ||
| 690 | |||
| 691 | memset(&cedf_domain_proc_info, sizeof(cedf_domain_proc_info), 0); | ||
| 692 | init_domain_proc_info(&cedf_domain_proc_info, num_rt_cpus, num_rt_domains); | ||
| 693 | cedf_domain_proc_info.num_cpus = num_rt_cpus; | ||
| 694 | cedf_domain_proc_info.num_domains = num_rt_domains; | ||
| 695 | |||
| 696 | for (cpu = 0, i = 0; cpu < num_online_cpus(); ++cpu) { | ||
| 697 | if (cpu == release_master) | ||
| 698 | continue; | ||
| 699 | map = &cedf_domain_proc_info.cpu_to_domains[i]; | ||
| 700 | /* pointer math to figure out the domain index */ | ||
| 701 | domain = remote_cluster(cpu) - cedf; | ||
| 702 | map->id = cpu; | ||
| 703 | cpumask_set_cpu(domain, map->mask); | ||
| 704 | ++i; | ||
| 705 | } | ||
| 706 | |||
| 707 | for (domain = 0, i = 0; domain < num_clusters; ++domain) { | ||
| 708 | if (domain == skip_domain) | ||
| 709 | continue; | ||
| 710 | map = &cedf_domain_proc_info.domain_to_cpus[i]; | ||
| 711 | map->id = i; | ||
| 712 | cpumask_copy(map->mask, cedf[domain].cpu_map); | ||
| 713 | ++i; | ||
| 714 | } | ||
| 715 | } | ||
| 716 | |||
| 717 | static long cedf_activate_plugin(void) | ||
| 718 | { | ||
| 719 | int i, j, cpu, ccpu, cpu_count; | ||
| 720 | cpu_entry_t *entry; | ||
| 721 | |||
| 722 | cpumask_var_t mask; | ||
| 723 | int chk = 0; | ||
| 724 | |||
| 725 | /* de-allocate old clusters, if any */ | ||
| 726 | cleanup_cedf(); | ||
| 727 | |||
| 728 | printk(KERN_INFO "C-EDF: Activate Plugin, cluster configuration = %d\n", | ||
| 729 | cluster_config); | ||
| 730 | |||
| 731 | /* need to get cluster_size first */ | ||
| 732 | if(!zalloc_cpumask_var(&mask, GFP_ATOMIC)) | ||
| 733 | return -ENOMEM; | ||
| 734 | |||
| 735 | if (cluster_config == GLOBAL_CLUSTER) { | ||
| 736 | cluster_size = num_online_cpus(); | ||
| 737 | } else { | ||
| 738 | chk = get_shared_cpu_map(mask, 0, cluster_config); | ||
| 739 | if (chk) { | ||
| 740 | /* if chk != 0 then it is the max allowed index */ | ||
| 741 | printk(KERN_INFO "C-EDF: Cluster configuration = %d " | ||
| 742 | "is not supported on this hardware.\n", | ||
| 743 | cluster_config); | ||
| 744 | /* User should notice that the configuration failed, so | ||
| 745 | * let's bail out. */ | ||
| 746 | return -EINVAL; | ||
| 747 | } | ||
| 748 | |||
| 749 | cluster_size = cpumask_weight(mask); | ||
| 750 | } | ||
| 751 | |||
| 752 | if ((num_online_cpus() % cluster_size) != 0) { | ||
| 753 | /* this can't be right, some cpus are left out */ | ||
| 754 | printk(KERN_ERR "C-EDF: Trying to group %d cpus in %d!\n", | ||
| 755 | num_online_cpus(), cluster_size); | ||
| 756 | return -1; | ||
| 757 | } | ||
| 758 | |||
| 759 | num_clusters = num_online_cpus() / cluster_size; | ||
| 760 | printk(KERN_INFO "C-EDF: %d cluster(s) of size = %d\n", | ||
| 761 | num_clusters, cluster_size); | ||
| 762 | |||
| 763 | /* initialize clusters */ | ||
| 764 | cedf = kmalloc(num_clusters * sizeof(cedf_domain_t), GFP_ATOMIC); | ||
| 765 | for (i = 0; i < num_clusters; i++) { | ||
| 766 | |||
| 767 | cedf[i].cpus = kmalloc(cluster_size * sizeof(cpu_entry_t), | ||
| 768 | GFP_ATOMIC); | ||
| 769 | cedf[i].heap_node = kmalloc( | ||
| 770 | cluster_size * sizeof(struct bheap_node), | ||
| 771 | GFP_ATOMIC); | ||
| 772 | bheap_init(&(cedf[i].cpu_heap)); | ||
| 773 | edf_domain_init(&(cedf[i].domain), NULL, cedf_release_jobs); | ||
| 774 | |||
| 775 | if(!zalloc_cpumask_var(&cedf[i].cpu_map, GFP_ATOMIC)) | ||
| 776 | return -ENOMEM; | ||
| 777 | #ifdef CONFIG_RELEASE_MASTER | ||
| 778 | cedf[i].domain.release_master = atomic_read(&release_master_cpu); | ||
| 779 | #endif | ||
| 780 | } | ||
| 781 | |||
| 782 | /* cycle through cluster and add cpus to them */ | ||
| 783 | for (i = 0; i < num_clusters; i++) { | ||
| 784 | |||
| 785 | for_each_online_cpu(cpu) { | ||
| 786 | /* check if the cpu is already in a cluster */ | ||
| 787 | for (j = 0; j < num_clusters; j++) | ||
| 788 | if (cpumask_test_cpu(cpu, cedf[j].cpu_map)) | ||
| 789 | break; | ||
| 790 | /* if it is in a cluster go to next cpu */ | ||
| 791 | if (j < num_clusters && | ||
| 792 | cpumask_test_cpu(cpu, cedf[j].cpu_map)) | ||
| 793 | continue; | ||
| 794 | |||
| 795 | /* this cpu isn't in any cluster */ | ||
| 796 | /* get the shared cpus */ | ||
| 797 | if (unlikely(cluster_config == GLOBAL_CLUSTER)) | ||
| 798 | cpumask_copy(mask, cpu_online_mask); | ||
| 799 | else | ||
| 800 | get_shared_cpu_map(mask, cpu, cluster_config); | ||
| 801 | |||
| 802 | cpumask_copy(cedf[i].cpu_map, mask); | ||
| 803 | #ifdef VERBOSE_INIT | ||
| 804 | print_cluster_topology(mask, cpu); | ||
| 805 | #endif | ||
| 806 | /* add cpus to current cluster and init cpu_entry_t */ | ||
| 807 | cpu_count = 0; | ||
| 808 | for_each_cpu(ccpu, cedf[i].cpu_map) { | ||
| 809 | |||
| 810 | entry = &per_cpu(cedf_cpu_entries, ccpu); | ||
| 811 | cedf[i].cpus[cpu_count] = entry; | ||
| 812 | atomic_set(&entry->will_schedule, 0); | ||
| 813 | entry->cpu = ccpu; | ||
| 814 | entry->cluster = &cedf[i]; | ||
| 815 | entry->hn = &(cedf[i].heap_node[cpu_count]); | ||
| 816 | bheap_node_init(&entry->hn, entry); | ||
| 817 | |||
| 818 | cpu_count++; | ||
| 819 | |||
| 820 | entry->linked = NULL; | ||
| 821 | entry->scheduled = NULL; | ||
| 822 | #ifdef CONFIG_RELEASE_MASTER | ||
| 823 | /* only add CPUs that should schedule jobs */ | ||
| 824 | if (entry->cpu != entry->cluster->domain.release_master) | ||
| 825 | #endif | ||
| 826 | update_cpu_position(entry); | ||
| 827 | } | ||
| 828 | /* done with this cluster */ | ||
| 829 | break; | ||
| 830 | } | ||
| 831 | } | ||
| 832 | |||
| 833 | clusters_allocated = 1; | ||
| 834 | free_cpumask_var(mask); | ||
| 835 | |||
| 836 | cedf_setup_domain_proc(); | ||
| 837 | |||
| 838 | return 0; | ||
| 839 | } | ||
| 840 | |||
| 841 | static long cedf_deactivate_plugin(void) | ||
| 842 | { | ||
| 843 | destroy_domain_proc_info(&cedf_domain_proc_info); | ||
| 844 | return 0; | ||
| 845 | } | ||
| 846 | |||
| 847 | /* Plugin object */ | ||
| 848 | static struct sched_plugin cedf_plugin __cacheline_aligned_in_smp = { | ||
| 849 | .plugin_name = "C-EDF", | ||
| 850 | .finish_switch = cedf_finish_switch, | ||
| 851 | .task_new = cedf_task_new, | ||
| 852 | .complete_job = complete_job, | ||
| 853 | .task_exit = cedf_task_exit, | ||
| 854 | .schedule = cedf_schedule, | ||
| 855 | .task_wake_up = cedf_task_wake_up, | ||
| 856 | .task_block = cedf_task_block, | ||
| 857 | .admit_task = cedf_admit_task, | ||
| 858 | .activate_plugin = cedf_activate_plugin, | ||
| 859 | .deactivate_plugin = cedf_deactivate_plugin, | ||
| 860 | .get_domain_proc_info = cedf_get_domain_proc_info, | ||
| 861 | }; | ||
| 862 | |||
| 863 | static struct proc_dir_entry *cluster_file = NULL, *cedf_dir = NULL; | ||
| 864 | |||
| 865 | static int __init init_cedf(void) | ||
| 866 | { | ||
| 867 | int err, fs; | ||
| 868 | |||
| 869 | err = register_sched_plugin(&cedf_plugin); | ||
| 870 | if (!err) { | ||
| 871 | fs = make_plugin_proc_dir(&cedf_plugin, &cedf_dir); | ||
| 872 | if (!fs) | ||
| 873 | cluster_file = create_cluster_file(cedf_dir, &cluster_config); | ||
| 874 | else | ||
| 875 | printk(KERN_ERR "Could not allocate C-EDF procfs dir.\n"); | ||
| 876 | } | ||
| 877 | return err; | ||
| 878 | } | ||
| 879 | |||
| 880 | static void clean_cedf(void) | ||
| 881 | { | ||
| 882 | cleanup_cedf(); | ||
| 883 | if (cluster_file) | ||
| 884 | remove_proc_entry("cluster", cedf_dir); | ||
| 885 | if (cedf_dir) | ||
| 886 | remove_plugin_proc_dir(&cedf_plugin); | ||
| 887 | } | ||
| 888 | |||
| 889 | module_init(init_cedf); | ||
| 890 | module_exit(clean_cedf); | ||
