diff options
| -rw-r--r-- | fs/squashfs/cache.c | 412 |
1 files changed, 412 insertions, 0 deletions
diff --git a/fs/squashfs/cache.c b/fs/squashfs/cache.c new file mode 100644 index 000000000000..f29eda16d25e --- /dev/null +++ b/fs/squashfs/cache.c | |||
| @@ -0,0 +1,412 @@ | |||
| 1 | /* | ||
| 2 | * Squashfs - a compressed read only filesystem for Linux | ||
| 3 | * | ||
| 4 | * Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007, 2008 | ||
| 5 | * Phillip Lougher <phillip@lougher.demon.co.uk> | ||
| 6 | * | ||
| 7 | * This program is free software; you can redistribute it and/or | ||
| 8 | * modify it under the terms of the GNU General Public License | ||
| 9 | * as published by the Free Software Foundation; either version 2, | ||
| 10 | * or (at your option) any later version. | ||
| 11 | * | ||
| 12 | * This program is distributed in the hope that it will be useful, | ||
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
| 15 | * GNU General Public License for more details. | ||
| 16 | * | ||
| 17 | * You should have received a copy of the GNU General Public License | ||
| 18 | * along with this program; if not, write to the Free Software | ||
| 19 | * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. | ||
| 20 | * | ||
| 21 | * cache.c | ||
| 22 | */ | ||
| 23 | |||
| 24 | /* | ||
| 25 | * Blocks in Squashfs are compressed. To avoid repeatedly decompressing | ||
| 26 | * recently accessed data Squashfs uses two small metadata and fragment caches. | ||
| 27 | * | ||
| 28 | * This file implements a generic cache implementation used for both caches, | ||
| 29 | * plus functions layered ontop of the generic cache implementation to | ||
| 30 | * access the metadata and fragment caches. | ||
| 31 | * | ||
| 32 | * To avoid out of memory and fragmentation isssues with vmalloc the cache | ||
| 33 | * uses sequences of kmalloced PAGE_CACHE_SIZE buffers. | ||
| 34 | * | ||
| 35 | * It should be noted that the cache is not used for file datablocks, these | ||
| 36 | * are decompressed and cached in the page-cache in the normal way. The | ||
| 37 | * cache is only used to temporarily cache fragment and metadata blocks | ||
| 38 | * which have been read as as a result of a metadata (i.e. inode or | ||
| 39 | * directory) or fragment access. Because metadata and fragments are packed | ||
| 40 | * together into blocks (to gain greater compression) the read of a particular | ||
| 41 | * piece of metadata or fragment will retrieve other metadata/fragments which | ||
| 42 | * have been packed with it, these because of locality-of-reference may be read | ||
| 43 | * in the near future. Temporarily caching them ensures they are available for | ||
| 44 | * near future access without requiring an additional read and decompress. | ||
| 45 | */ | ||
| 46 | |||
| 47 | #include <linux/fs.h> | ||
| 48 | #include <linux/vfs.h> | ||
| 49 | #include <linux/slab.h> | ||
| 50 | #include <linux/vmalloc.h> | ||
| 51 | #include <linux/sched.h> | ||
| 52 | #include <linux/spinlock.h> | ||
| 53 | #include <linux/wait.h> | ||
| 54 | #include <linux/zlib.h> | ||
| 55 | #include <linux/pagemap.h> | ||
| 56 | |||
| 57 | #include "squashfs_fs.h" | ||
| 58 | #include "squashfs_fs_sb.h" | ||
| 59 | #include "squashfs_fs_i.h" | ||
| 60 | #include "squashfs.h" | ||
| 61 | |||
| 62 | /* | ||
| 63 | * Look-up block in cache, and increment usage count. If not in cache, read | ||
| 64 | * and decompress it from disk. | ||
| 65 | */ | ||
| 66 | struct squashfs_cache_entry *squashfs_cache_get(struct super_block *sb, | ||
| 67 | struct squashfs_cache *cache, u64 block, int length) | ||
| 68 | { | ||
| 69 | int i, n; | ||
| 70 | struct squashfs_cache_entry *entry; | ||
| 71 | |||
| 72 | spin_lock(&cache->lock); | ||
| 73 | |||
| 74 | while (1) { | ||
| 75 | for (i = 0; i < cache->entries; i++) | ||
| 76 | if (cache->entry[i].block == block) | ||
| 77 | break; | ||
| 78 | |||
| 79 | if (i == cache->entries) { | ||
| 80 | /* | ||
| 81 | * Block not in cache, if all cache entries are used | ||
| 82 | * go to sleep waiting for one to become available. | ||
| 83 | */ | ||
| 84 | if (cache->unused == 0) { | ||
| 85 | cache->num_waiters++; | ||
| 86 | spin_unlock(&cache->lock); | ||
| 87 | wait_event(cache->wait_queue, cache->unused); | ||
| 88 | spin_lock(&cache->lock); | ||
| 89 | cache->num_waiters--; | ||
| 90 | continue; | ||
| 91 | } | ||
| 92 | |||
| 93 | /* | ||
| 94 | * At least one unused cache entry. A simple | ||
| 95 | * round-robin strategy is used to choose the entry to | ||
| 96 | * be evicted from the cache. | ||
| 97 | */ | ||
| 98 | i = cache->next_blk; | ||
| 99 | for (n = 0; n < cache->entries; n++) { | ||
| 100 | if (cache->entry[i].refcount == 0) | ||
| 101 | break; | ||
| 102 | i = (i + 1) % cache->entries; | ||
| 103 | } | ||
| 104 | |||
| 105 | cache->next_blk = (i + 1) % cache->entries; | ||
| 106 | entry = &cache->entry[i]; | ||
| 107 | |||
| 108 | /* | ||
| 109 | * Initialise choosen cache entry, and fill it in from | ||
| 110 | * disk. | ||
| 111 | */ | ||
| 112 | cache->unused--; | ||
| 113 | entry->block = block; | ||
| 114 | entry->refcount = 1; | ||
| 115 | entry->pending = 1; | ||
| 116 | entry->num_waiters = 0; | ||
| 117 | entry->error = 0; | ||
| 118 | spin_unlock(&cache->lock); | ||
| 119 | |||
| 120 | entry->length = squashfs_read_data(sb, entry->data, | ||
| 121 | block, length, &entry->next_index, | ||
| 122 | cache->block_size); | ||
| 123 | |||
| 124 | spin_lock(&cache->lock); | ||
| 125 | |||
| 126 | if (entry->length < 0) | ||
| 127 | entry->error = entry->length; | ||
| 128 | |||
| 129 | entry->pending = 0; | ||
| 130 | |||
| 131 | /* | ||
| 132 | * While filling this entry one or more other processes | ||
| 133 | * have looked it up in the cache, and have slept | ||
| 134 | * waiting for it to become available. | ||
| 135 | */ | ||
| 136 | if (entry->num_waiters) { | ||
| 137 | spin_unlock(&cache->lock); | ||
| 138 | wake_up_all(&entry->wait_queue); | ||
| 139 | } else | ||
| 140 | spin_unlock(&cache->lock); | ||
| 141 | |||
| 142 | goto out; | ||
| 143 | } | ||
| 144 | |||
| 145 | /* | ||
| 146 | * Block already in cache. Increment refcount so it doesn't | ||
| 147 | * get reused until we're finished with it, if it was | ||
| 148 | * previously unused there's one less cache entry available | ||
| 149 | * for reuse. | ||
| 150 | */ | ||
| 151 | entry = &cache->entry[i]; | ||
| 152 | if (entry->refcount == 0) | ||
| 153 | cache->unused--; | ||
| 154 | entry->refcount++; | ||
| 155 | |||
| 156 | /* | ||
| 157 | * If the entry is currently being filled in by another process | ||
| 158 | * go to sleep waiting for it to become available. | ||
| 159 | */ | ||
| 160 | if (entry->pending) { | ||
| 161 | entry->num_waiters++; | ||
| 162 | spin_unlock(&cache->lock); | ||
| 163 | wait_event(entry->wait_queue, !entry->pending); | ||
| 164 | } else | ||
| 165 | spin_unlock(&cache->lock); | ||
| 166 | |||
| 167 | goto out; | ||
| 168 | } | ||
| 169 | |||
| 170 | out: | ||
| 171 | TRACE("Got %s %d, start block %lld, refcount %d, error %d\n", | ||
| 172 | cache->name, i, entry->block, entry->refcount, entry->error); | ||
| 173 | |||
| 174 | if (entry->error) | ||
| 175 | ERROR("Unable to read %s cache entry [%llx]\n", cache->name, | ||
| 176 | block); | ||
| 177 | return entry; | ||
| 178 | } | ||
| 179 | |||
| 180 | |||
| 181 | /* | ||
| 182 | * Release cache entry, once usage count is zero it can be reused. | ||
| 183 | */ | ||
| 184 | void squashfs_cache_put(struct squashfs_cache_entry *entry) | ||
| 185 | { | ||
| 186 | struct squashfs_cache *cache = entry->cache; | ||
| 187 | |||
| 188 | spin_lock(&cache->lock); | ||
| 189 | entry->refcount--; | ||
| 190 | if (entry->refcount == 0) { | ||
| 191 | cache->unused++; | ||
| 192 | /* | ||
| 193 | * If there's any processes waiting for a block to become | ||
| 194 | * available, wake one up. | ||
| 195 | */ | ||
| 196 | if (cache->num_waiters) { | ||
| 197 | spin_unlock(&cache->lock); | ||
| 198 | wake_up(&cache->wait_queue); | ||
| 199 | return; | ||
| 200 | } | ||
| 201 | } | ||
| 202 | spin_unlock(&cache->lock); | ||
| 203 | } | ||
| 204 | |||
| 205 | /* | ||
| 206 | * Delete cache reclaiming all kmalloced buffers. | ||
| 207 | */ | ||
| 208 | void squashfs_cache_delete(struct squashfs_cache *cache) | ||
| 209 | { | ||
| 210 | int i, j; | ||
| 211 | |||
| 212 | if (cache == NULL) | ||
| 213 | return; | ||
| 214 | |||
| 215 | for (i = 0; i < cache->entries; i++) { | ||
| 216 | if (cache->entry[i].data) { | ||
| 217 | for (j = 0; j < cache->pages; j++) | ||
| 218 | kfree(cache->entry[i].data[j]); | ||
| 219 | kfree(cache->entry[i].data); | ||
| 220 | } | ||
| 221 | } | ||
| 222 | |||
| 223 | kfree(cache->entry); | ||
| 224 | kfree(cache); | ||
| 225 | } | ||
| 226 | |||
| 227 | |||
| 228 | /* | ||
| 229 | * Initialise cache allocating the specified number of entries, each of | ||
| 230 | * size block_size. To avoid vmalloc fragmentation issues each entry | ||
| 231 | * is allocated as a sequence of kmalloced PAGE_CACHE_SIZE buffers. | ||
| 232 | */ | ||
| 233 | struct squashfs_cache *squashfs_cache_init(char *name, int entries, | ||
| 234 | int block_size) | ||
| 235 | { | ||
| 236 | int i, j; | ||
| 237 | struct squashfs_cache *cache = kzalloc(sizeof(*cache), GFP_KERNEL); | ||
| 238 | |||
| 239 | if (cache == NULL) { | ||
| 240 | ERROR("Failed to allocate %s cache\n", name); | ||
| 241 | return NULL; | ||
| 242 | } | ||
| 243 | |||
| 244 | cache->entry = kcalloc(entries, sizeof(*(cache->entry)), GFP_KERNEL); | ||
| 245 | if (cache->entry == NULL) { | ||
| 246 | ERROR("Failed to allocate %s cache\n", name); | ||
| 247 | goto cleanup; | ||
| 248 | } | ||
| 249 | |||
| 250 | cache->next_blk = 0; | ||
| 251 | cache->unused = entries; | ||
| 252 | cache->entries = entries; | ||
| 253 | cache->block_size = block_size; | ||
| 254 | cache->pages = block_size >> PAGE_CACHE_SHIFT; | ||
| 255 | cache->name = name; | ||
| 256 | cache->num_waiters = 0; | ||
| 257 | spin_lock_init(&cache->lock); | ||
| 258 | init_waitqueue_head(&cache->wait_queue); | ||
| 259 | |||
| 260 | for (i = 0; i < entries; i++) { | ||
| 261 | struct squashfs_cache_entry *entry = &cache->entry[i]; | ||
| 262 | |||
| 263 | init_waitqueue_head(&cache->entry[i].wait_queue); | ||
| 264 | entry->cache = cache; | ||
| 265 | entry->block = SQUASHFS_INVALID_BLK; | ||
| 266 | entry->data = kcalloc(cache->pages, sizeof(void *), GFP_KERNEL); | ||
| 267 | if (entry->data == NULL) { | ||
| 268 | ERROR("Failed to allocate %s cache entry\n", name); | ||
| 269 | goto cleanup; | ||
| 270 | } | ||
| 271 | |||
| 272 | for (j = 0; j < cache->pages; j++) { | ||
| 273 | entry->data[j] = kmalloc(PAGE_CACHE_SIZE, GFP_KERNEL); | ||
| 274 | if (entry->data[j] == NULL) { | ||
| 275 | ERROR("Failed to allocate %s buffer\n", name); | ||
| 276 | goto cleanup; | ||
| 277 | } | ||
| 278 | } | ||
| 279 | } | ||
| 280 | |||
| 281 | return cache; | ||
| 282 | |||
| 283 | cleanup: | ||
| 284 | squashfs_cache_delete(cache); | ||
| 285 | return NULL; | ||
| 286 | } | ||
| 287 | |||
| 288 | |||
| 289 | /* | ||
| 290 | * Copy upto length bytes from cache entry to buffer starting at offset bytes | ||
| 291 | * into the cache entry. If there's not length bytes then copy the number of | ||
| 292 | * bytes available. In all cases return the number of bytes copied. | ||
| 293 | */ | ||
| 294 | int squashfs_copy_data(void *buffer, struct squashfs_cache_entry *entry, | ||
| 295 | int offset, int length) | ||
| 296 | { | ||
| 297 | int remaining = length; | ||
| 298 | |||
| 299 | if (length == 0) | ||
| 300 | return 0; | ||
| 301 | else if (buffer == NULL) | ||
| 302 | return min(length, entry->length - offset); | ||
| 303 | |||
| 304 | while (offset < entry->length) { | ||
| 305 | void *buff = entry->data[offset / PAGE_CACHE_SIZE] | ||
| 306 | + (offset % PAGE_CACHE_SIZE); | ||
| 307 | int bytes = min_t(int, entry->length - offset, | ||
| 308 | PAGE_CACHE_SIZE - (offset % PAGE_CACHE_SIZE)); | ||
| 309 | |||
| 310 | if (bytes >= remaining) { | ||
| 311 | memcpy(buffer, buff, remaining); | ||
| 312 | remaining = 0; | ||
| 313 | break; | ||
| 314 | } | ||
| 315 | |||
| 316 | memcpy(buffer, buff, bytes); | ||
| 317 | buffer += bytes; | ||
| 318 | remaining -= bytes; | ||
| 319 | offset += bytes; | ||
| 320 | } | ||
| 321 | |||
| 322 | return length - remaining; | ||
| 323 | } | ||
| 324 | |||
| 325 | |||
| 326 | /* | ||
| 327 | * Read length bytes from metadata position <block, offset> (block is the | ||
| 328 | * start of the compressed block on disk, and offset is the offset into | ||
| 329 | * the block once decompressed). Data is packed into consecutive blocks, | ||
| 330 | * and length bytes may require reading more than one block. | ||
| 331 | */ | ||
| 332 | int squashfs_read_metadata(struct super_block *sb, void *buffer, | ||
| 333 | u64 *block, int *offset, int length) | ||
| 334 | { | ||
| 335 | struct squashfs_sb_info *msblk = sb->s_fs_info; | ||
| 336 | int bytes, copied = length; | ||
| 337 | struct squashfs_cache_entry *entry; | ||
| 338 | |||
| 339 | TRACE("Entered squashfs_read_metadata [%llx:%x]\n", *block, *offset); | ||
| 340 | |||
| 341 | while (length) { | ||
| 342 | entry = squashfs_cache_get(sb, msblk->block_cache, *block, 0); | ||
| 343 | if (entry->error) | ||
| 344 | return entry->error; | ||
| 345 | else if (*offset >= entry->length) | ||
| 346 | return -EIO; | ||
| 347 | |||
| 348 | bytes = squashfs_copy_data(buffer, entry, *offset, length); | ||
| 349 | if (buffer) | ||
| 350 | buffer += bytes; | ||
| 351 | length -= bytes; | ||
| 352 | *offset += bytes; | ||
| 353 | |||
| 354 | if (*offset == entry->length) { | ||
| 355 | *block = entry->next_index; | ||
| 356 | *offset = 0; | ||
| 357 | } | ||
| 358 | |||
| 359 | squashfs_cache_put(entry); | ||
| 360 | } | ||
| 361 | |||
| 362 | return copied; | ||
| 363 | } | ||
| 364 | |||
| 365 | |||
| 366 | /* | ||
| 367 | * Look-up in the fragmment cache the fragment located at <start_block> in the | ||
| 368 | * filesystem. If necessary read and decompress it from disk. | ||
| 369 | */ | ||
| 370 | struct squashfs_cache_entry *squashfs_get_fragment(struct super_block *sb, | ||
| 371 | u64 start_block, int length) | ||
| 372 | { | ||
| 373 | struct squashfs_sb_info *msblk = sb->s_fs_info; | ||
| 374 | |||
| 375 | return squashfs_cache_get(sb, msblk->fragment_cache, start_block, | ||
| 376 | length); | ||
| 377 | } | ||
| 378 | |||
| 379 | |||
| 380 | /* | ||
| 381 | * Read and decompress the datablock located at <start_block> in the | ||
| 382 | * filesystem. The cache is used here to avoid duplicating locking and | ||
| 383 | * read/decompress code. | ||
| 384 | */ | ||
| 385 | struct squashfs_cache_entry *squashfs_get_datablock(struct super_block *sb, | ||
| 386 | u64 start_block, int length) | ||
| 387 | { | ||
| 388 | struct squashfs_sb_info *msblk = sb->s_fs_info; | ||
| 389 | |||
| 390 | return squashfs_cache_get(sb, msblk->read_page, start_block, length); | ||
| 391 | } | ||
| 392 | |||
| 393 | |||
| 394 | /* | ||
| 395 | * Read a filesystem table (uncompressed sequence of bytes) from disk | ||
| 396 | */ | ||
| 397 | int squashfs_read_table(struct super_block *sb, void *buffer, u64 block, | ||
| 398 | int length) | ||
| 399 | { | ||
| 400 | int pages = (length + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; | ||
| 401 | int i, res; | ||
| 402 | void **data = kcalloc(pages, sizeof(void *), GFP_KERNEL); | ||
| 403 | if (data == NULL) | ||
| 404 | return -ENOMEM; | ||
| 405 | |||
| 406 | for (i = 0; i < pages; i++, buffer += PAGE_CACHE_SIZE) | ||
| 407 | data[i] = buffer; | ||
| 408 | res = squashfs_read_data(sb, data, block, length | | ||
| 409 | SQUASHFS_COMPRESSED_BIT_BLOCK, NULL, length); | ||
| 410 | kfree(data); | ||
| 411 | return res; | ||
| 412 | } | ||
