aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--drivers/net/cassini.c12
-rw-r--r--include/linux/pagemap.h111
-rw-r--r--mm/filemap.c32
-rw-r--r--mm/migrate.c20
-rw-r--r--mm/shmem.c6
-rw-r--r--mm/swap_state.c17
-rw-r--r--mm/vmscan.c74
7 files changed, 227 insertions, 45 deletions
diff --git a/drivers/net/cassini.c b/drivers/net/cassini.c
index 83768df27806..f1936d51b458 100644
--- a/drivers/net/cassini.c
+++ b/drivers/net/cassini.c
@@ -576,6 +576,18 @@ static void cas_spare_recover(struct cas *cp, const gfp_t flags)
576 list_for_each_safe(elem, tmp, &list) { 576 list_for_each_safe(elem, tmp, &list) {
577 cas_page_t *page = list_entry(elem, cas_page_t, list); 577 cas_page_t *page = list_entry(elem, cas_page_t, list);
578 578
579 /*
580 * With the lockless pagecache, cassini buffering scheme gets
581 * slightly less accurate: we might find that a page has an
582 * elevated reference count here, due to a speculative ref,
583 * and skip it as in-use. Ideally we would be able to reclaim
584 * it. However this would be such a rare case, it doesn't
585 * matter too much as we should pick it up the next time round.
586 *
587 * Importantly, if we find that the page has a refcount of 1
588 * here (our refcount), then we know it is definitely not inuse
589 * so we can reuse it.
590 */
579 if (page_count(page->buffer) > 1) 591 if (page_count(page->buffer) > 1)
580 continue; 592 continue;
581 593
diff --git a/include/linux/pagemap.h b/include/linux/pagemap.h
index ee1ec2c7723c..a81d81890422 100644
--- a/include/linux/pagemap.h
+++ b/include/linux/pagemap.h
@@ -12,6 +12,7 @@
12#include <asm/uaccess.h> 12#include <asm/uaccess.h>
13#include <linux/gfp.h> 13#include <linux/gfp.h>
14#include <linux/bitops.h> 14#include <linux/bitops.h>
15#include <linux/hardirq.h> /* for in_interrupt() */
15 16
16/* 17/*
17 * Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page 18 * Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page
@@ -62,6 +63,98 @@ static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
62#define page_cache_release(page) put_page(page) 63#define page_cache_release(page) put_page(page)
63void release_pages(struct page **pages, int nr, int cold); 64void release_pages(struct page **pages, int nr, int cold);
64 65
66/*
67 * speculatively take a reference to a page.
68 * If the page is free (_count == 0), then _count is untouched, and 0
69 * is returned. Otherwise, _count is incremented by 1 and 1 is returned.
70 *
71 * This function must be called inside the same rcu_read_lock() section as has
72 * been used to lookup the page in the pagecache radix-tree (or page table):
73 * this allows allocators to use a synchronize_rcu() to stabilize _count.
74 *
75 * Unless an RCU grace period has passed, the count of all pages coming out
76 * of the allocator must be considered unstable. page_count may return higher
77 * than expected, and put_page must be able to do the right thing when the
78 * page has been finished with, no matter what it is subsequently allocated
79 * for (because put_page is what is used here to drop an invalid speculative
80 * reference).
81 *
82 * This is the interesting part of the lockless pagecache (and lockless
83 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
84 * has the following pattern:
85 * 1. find page in radix tree
86 * 2. conditionally increment refcount
87 * 3. check the page is still in pagecache (if no, goto 1)
88 *
89 * Remove-side that cares about stability of _count (eg. reclaim) has the
90 * following (with tree_lock held for write):
91 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
92 * B. remove page from pagecache
93 * C. free the page
94 *
95 * There are 2 critical interleavings that matter:
96 * - 2 runs before A: in this case, A sees elevated refcount and bails out
97 * - A runs before 2: in this case, 2 sees zero refcount and retries;
98 * subsequently, B will complete and 1 will find no page, causing the
99 * lookup to return NULL.
100 *
101 * It is possible that between 1 and 2, the page is removed then the exact same
102 * page is inserted into the same position in pagecache. That's OK: the
103 * old find_get_page using tree_lock could equally have run before or after
104 * such a re-insertion, depending on order that locks are granted.
105 *
106 * Lookups racing against pagecache insertion isn't a big problem: either 1
107 * will find the page or it will not. Likewise, the old find_get_page could run
108 * either before the insertion or afterwards, depending on timing.
109 */
110static inline int page_cache_get_speculative(struct page *page)
111{
112 VM_BUG_ON(in_interrupt());
113
114#if !defined(CONFIG_SMP) && defined(CONFIG_CLASSIC_RCU)
115# ifdef CONFIG_PREEMPT
116 VM_BUG_ON(!in_atomic());
117# endif
118 /*
119 * Preempt must be disabled here - we rely on rcu_read_lock doing
120 * this for us.
121 *
122 * Pagecache won't be truncated from interrupt context, so if we have
123 * found a page in the radix tree here, we have pinned its refcount by
124 * disabling preempt, and hence no need for the "speculative get" that
125 * SMP requires.
126 */
127 VM_BUG_ON(page_count(page) == 0);
128 atomic_inc(&page->_count);
129
130#else
131 if (unlikely(!get_page_unless_zero(page))) {
132 /*
133 * Either the page has been freed, or will be freed.
134 * In either case, retry here and the caller should
135 * do the right thing (see comments above).
136 */
137 return 0;
138 }
139#endif
140 VM_BUG_ON(PageTail(page));
141
142 return 1;
143}
144
145static inline int page_freeze_refs(struct page *page, int count)
146{
147 return likely(atomic_cmpxchg(&page->_count, count, 0) == count);
148}
149
150static inline void page_unfreeze_refs(struct page *page, int count)
151{
152 VM_BUG_ON(page_count(page) != 0);
153 VM_BUG_ON(count == 0);
154
155 atomic_set(&page->_count, count);
156}
157
65#ifdef CONFIG_NUMA 158#ifdef CONFIG_NUMA
66extern struct page *__page_cache_alloc(gfp_t gfp); 159extern struct page *__page_cache_alloc(gfp_t gfp);
67#else 160#else
@@ -133,7 +226,7 @@ static inline struct page *read_mapping_page(struct address_space *mapping,
133 return read_cache_page(mapping, index, filler, data); 226 return read_cache_page(mapping, index, filler, data);
134} 227}
135 228
136int add_to_page_cache(struct page *page, struct address_space *mapping, 229int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
137 pgoff_t index, gfp_t gfp_mask); 230 pgoff_t index, gfp_t gfp_mask);
138int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 231int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
139 pgoff_t index, gfp_t gfp_mask); 232 pgoff_t index, gfp_t gfp_mask);
@@ -141,6 +234,22 @@ extern void remove_from_page_cache(struct page *page);
141extern void __remove_from_page_cache(struct page *page); 234extern void __remove_from_page_cache(struct page *page);
142 235
143/* 236/*
237 * Like add_to_page_cache_locked, but used to add newly allocated pages:
238 * the page is new, so we can just run SetPageLocked() against it.
239 */
240static inline int add_to_page_cache(struct page *page,
241 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
242{
243 int error;
244
245 SetPageLocked(page);
246 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
247 if (unlikely(error))
248 ClearPageLocked(page);
249 return error;
250}
251
252/*
144 * Return byte-offset into filesystem object for page. 253 * Return byte-offset into filesystem object for page.
145 */ 254 */
146static inline loff_t page_offset(struct page *page) 255static inline loff_t page_offset(struct page *page)
diff --git a/mm/filemap.c b/mm/filemap.c
index 2d3ec1ffc66e..4e182a9a14c0 100644
--- a/mm/filemap.c
+++ b/mm/filemap.c
@@ -442,39 +442,43 @@ int filemap_write_and_wait_range(struct address_space *mapping,
442} 442}
443 443
444/** 444/**
445 * add_to_page_cache - add newly allocated pagecache pages 445 * add_to_page_cache_locked - add a locked page to the pagecache
446 * @page: page to add 446 * @page: page to add
447 * @mapping: the page's address_space 447 * @mapping: the page's address_space
448 * @offset: page index 448 * @offset: page index
449 * @gfp_mask: page allocation mode 449 * @gfp_mask: page allocation mode
450 * 450 *
451 * This function is used to add newly allocated pagecache pages; 451 * This function is used to add a page to the pagecache. It must be locked.
452 * the page is new, so we can just run SetPageLocked() against it.
453 * The other page state flags were set by rmqueue().
454 *
455 * This function does not add the page to the LRU. The caller must do that. 452 * This function does not add the page to the LRU. The caller must do that.
456 */ 453 */
457int add_to_page_cache(struct page *page, struct address_space *mapping, 454int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
458 pgoff_t offset, gfp_t gfp_mask) 455 pgoff_t offset, gfp_t gfp_mask)
459{ 456{
460 int error = mem_cgroup_cache_charge(page, current->mm, 457 int error;
458
459 VM_BUG_ON(!PageLocked(page));
460
461 error = mem_cgroup_cache_charge(page, current->mm,
461 gfp_mask & ~__GFP_HIGHMEM); 462 gfp_mask & ~__GFP_HIGHMEM);
462 if (error) 463 if (error)
463 goto out; 464 goto out;
464 465
465 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 466 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
466 if (error == 0) { 467 if (error == 0) {
468 page_cache_get(page);
469 page->mapping = mapping;
470 page->index = offset;
471
467 write_lock_irq(&mapping->tree_lock); 472 write_lock_irq(&mapping->tree_lock);
468 error = radix_tree_insert(&mapping->page_tree, offset, page); 473 error = radix_tree_insert(&mapping->page_tree, offset, page);
469 if (!error) { 474 if (likely(!error)) {
470 page_cache_get(page);
471 SetPageLocked(page);
472 page->mapping = mapping;
473 page->index = offset;
474 mapping->nrpages++; 475 mapping->nrpages++;
475 __inc_zone_page_state(page, NR_FILE_PAGES); 476 __inc_zone_page_state(page, NR_FILE_PAGES);
476 } else 477 } else {
478 page->mapping = NULL;
477 mem_cgroup_uncharge_cache_page(page); 479 mem_cgroup_uncharge_cache_page(page);
480 page_cache_release(page);
481 }
478 482
479 write_unlock_irq(&mapping->tree_lock); 483 write_unlock_irq(&mapping->tree_lock);
480 radix_tree_preload_end(); 484 radix_tree_preload_end();
@@ -483,7 +487,7 @@ int add_to_page_cache(struct page *page, struct address_space *mapping,
483out: 487out:
484 return error; 488 return error;
485} 489}
486EXPORT_SYMBOL(add_to_page_cache); 490EXPORT_SYMBOL(add_to_page_cache_locked);
487 491
488int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 492int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
489 pgoff_t offset, gfp_t gfp_mask) 493 pgoff_t offset, gfp_t gfp_mask)
diff --git a/mm/migrate.c b/mm/migrate.c
index d8c65a65c61d..3ca6392e82cc 100644
--- a/mm/migrate.c
+++ b/mm/migrate.c
@@ -285,7 +285,15 @@ void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
285 285
286 page = migration_entry_to_page(entry); 286 page = migration_entry_to_page(entry);
287 287
288 get_page(page); 288 /*
289 * Once radix-tree replacement of page migration started, page_count
290 * *must* be zero. And, we don't want to call wait_on_page_locked()
291 * against a page without get_page().
292 * So, we use get_page_unless_zero(), here. Even failed, page fault
293 * will occur again.
294 */
295 if (!get_page_unless_zero(page))
296 goto out;
289 pte_unmap_unlock(ptep, ptl); 297 pte_unmap_unlock(ptep, ptl);
290 wait_on_page_locked(page); 298 wait_on_page_locked(page);
291 put_page(page); 299 put_page(page);
@@ -305,6 +313,7 @@ out:
305static int migrate_page_move_mapping(struct address_space *mapping, 313static int migrate_page_move_mapping(struct address_space *mapping,
306 struct page *newpage, struct page *page) 314 struct page *newpage, struct page *page)
307{ 315{
316 int expected_count;
308 void **pslot; 317 void **pslot;
309 318
310 if (!mapping) { 319 if (!mapping) {
@@ -319,12 +328,18 @@ static int migrate_page_move_mapping(struct address_space *mapping,
319 pslot = radix_tree_lookup_slot(&mapping->page_tree, 328 pslot = radix_tree_lookup_slot(&mapping->page_tree,
320 page_index(page)); 329 page_index(page));
321 330
322 if (page_count(page) != 2 + !!PagePrivate(page) || 331 expected_count = 2 + !!PagePrivate(page);
332 if (page_count(page) != expected_count ||
323 (struct page *)radix_tree_deref_slot(pslot) != page) { 333 (struct page *)radix_tree_deref_slot(pslot) != page) {
324 write_unlock_irq(&mapping->tree_lock); 334 write_unlock_irq(&mapping->tree_lock);
325 return -EAGAIN; 335 return -EAGAIN;
326 } 336 }
327 337
338 if (!page_freeze_refs(page, expected_count)) {
339 write_unlock_irq(&mapping->tree_lock);
340 return -EAGAIN;
341 }
342
328 /* 343 /*
329 * Now we know that no one else is looking at the page. 344 * Now we know that no one else is looking at the page.
330 */ 345 */
@@ -338,6 +353,7 @@ static int migrate_page_move_mapping(struct address_space *mapping,
338 353
339 radix_tree_replace_slot(pslot, newpage); 354 radix_tree_replace_slot(pslot, newpage);
340 355
356 page_unfreeze_refs(page, expected_count);
341 /* 357 /*
342 * Drop cache reference from old page. 358 * Drop cache reference from old page.
343 * We know this isn't the last reference. 359 * We know this isn't the last reference.
diff --git a/mm/shmem.c b/mm/shmem.c
index f92fea94d037..1089092aecaf 100644
--- a/mm/shmem.c
+++ b/mm/shmem.c
@@ -936,7 +936,7 @@ found:
936 spin_lock(&info->lock); 936 spin_lock(&info->lock);
937 ptr = shmem_swp_entry(info, idx, NULL); 937 ptr = shmem_swp_entry(info, idx, NULL);
938 if (ptr && ptr->val == entry.val) { 938 if (ptr && ptr->val == entry.val) {
939 error = add_to_page_cache(page, inode->i_mapping, 939 error = add_to_page_cache_locked(page, inode->i_mapping,
940 idx, GFP_NOWAIT); 940 idx, GFP_NOWAIT);
941 /* does mem_cgroup_uncharge_cache_page on error */ 941 /* does mem_cgroup_uncharge_cache_page on error */
942 } else /* we must compensate for our precharge above */ 942 } else /* we must compensate for our precharge above */
@@ -1301,8 +1301,8 @@ repeat:
1301 SetPageUptodate(filepage); 1301 SetPageUptodate(filepage);
1302 set_page_dirty(filepage); 1302 set_page_dirty(filepage);
1303 swap_free(swap); 1303 swap_free(swap);
1304 } else if (!(error = add_to_page_cache( 1304 } else if (!(error = add_to_page_cache_locked(swappage, mapping,
1305 swappage, mapping, idx, GFP_NOWAIT))) { 1305 idx, GFP_NOWAIT))) {
1306 info->flags |= SHMEM_PAGEIN; 1306 info->flags |= SHMEM_PAGEIN;
1307 shmem_swp_set(info, entry, 0); 1307 shmem_swp_set(info, entry, 0);
1308 shmem_swp_unmap(entry); 1308 shmem_swp_unmap(entry);
diff --git a/mm/swap_state.c b/mm/swap_state.c
index d8aadaf2a0ba..3e3381d6c7ee 100644
--- a/mm/swap_state.c
+++ b/mm/swap_state.c
@@ -64,7 +64,7 @@ void show_swap_cache_info(void)
64} 64}
65 65
66/* 66/*
67 * add_to_swap_cache resembles add_to_page_cache on swapper_space, 67 * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
68 * but sets SwapCache flag and private instead of mapping and index. 68 * but sets SwapCache flag and private instead of mapping and index.
69 */ 69 */
70int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask) 70int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
@@ -76,19 +76,26 @@ int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
76 BUG_ON(PagePrivate(page)); 76 BUG_ON(PagePrivate(page));
77 error = radix_tree_preload(gfp_mask); 77 error = radix_tree_preload(gfp_mask);
78 if (!error) { 78 if (!error) {
79 page_cache_get(page);
80 SetPageSwapCache(page);
81 set_page_private(page, entry.val);
82
79 write_lock_irq(&swapper_space.tree_lock); 83 write_lock_irq(&swapper_space.tree_lock);
80 error = radix_tree_insert(&swapper_space.page_tree, 84 error = radix_tree_insert(&swapper_space.page_tree,
81 entry.val, page); 85 entry.val, page);
82 if (!error) { 86 if (likely(!error)) {
83 page_cache_get(page);
84 SetPageSwapCache(page);
85 set_page_private(page, entry.val);
86 total_swapcache_pages++; 87 total_swapcache_pages++;
87 __inc_zone_page_state(page, NR_FILE_PAGES); 88 __inc_zone_page_state(page, NR_FILE_PAGES);
88 INC_CACHE_INFO(add_total); 89 INC_CACHE_INFO(add_total);
89 } 90 }
90 write_unlock_irq(&swapper_space.tree_lock); 91 write_unlock_irq(&swapper_space.tree_lock);
91 radix_tree_preload_end(); 92 radix_tree_preload_end();
93
94 if (unlikely(error)) {
95 set_page_private(page, 0UL);
96 ClearPageSwapCache(page);
97 page_cache_release(page);
98 }
92 } 99 }
93 return error; 100 return error;
94} 101}
diff --git a/mm/vmscan.c b/mm/vmscan.c
index 26672c6cd3ce..0075eac1cd04 100644
--- a/mm/vmscan.c
+++ b/mm/vmscan.c
@@ -391,12 +391,10 @@ static pageout_t pageout(struct page *page, struct address_space *mapping,
391} 391}
392 392
393/* 393/*
394 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 394 * Same as remove_mapping, but if the page is removed from the mapping, it
395 * someone else has a ref on the page, abort and return 0. If it was 395 * gets returned with a refcount of 0.
396 * successfully detached, return 1. Assumes the caller has a single ref on
397 * this page.
398 */ 396 */
399int remove_mapping(struct address_space *mapping, struct page *page) 397static int __remove_mapping(struct address_space *mapping, struct page *page)
400{ 398{
401 BUG_ON(!PageLocked(page)); 399 BUG_ON(!PageLocked(page));
402 BUG_ON(mapping != page_mapping(page)); 400 BUG_ON(mapping != page_mapping(page));
@@ -427,24 +425,24 @@ int remove_mapping(struct address_space *mapping, struct page *page)
427 * Note that if SetPageDirty is always performed via set_page_dirty, 425 * Note that if SetPageDirty is always performed via set_page_dirty,
428 * and thus under tree_lock, then this ordering is not required. 426 * and thus under tree_lock, then this ordering is not required.
429 */ 427 */
430 if (unlikely(page_count(page) != 2)) 428 if (!page_freeze_refs(page, 2))
431 goto cannot_free; 429 goto cannot_free;
432 smp_rmb(); 430 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
433 if (unlikely(PageDirty(page))) 431 if (unlikely(PageDirty(page))) {
432 page_unfreeze_refs(page, 2);
434 goto cannot_free; 433 goto cannot_free;
434 }
435 435
436 if (PageSwapCache(page)) { 436 if (PageSwapCache(page)) {
437 swp_entry_t swap = { .val = page_private(page) }; 437 swp_entry_t swap = { .val = page_private(page) };
438 __delete_from_swap_cache(page); 438 __delete_from_swap_cache(page);
439 write_unlock_irq(&mapping->tree_lock); 439 write_unlock_irq(&mapping->tree_lock);
440 swap_free(swap); 440 swap_free(swap);
441 __put_page(page); /* The pagecache ref */ 441 } else {
442 return 1; 442 __remove_from_page_cache(page);
443 write_unlock_irq(&mapping->tree_lock);
443 } 444 }
444 445
445 __remove_from_page_cache(page);
446 write_unlock_irq(&mapping->tree_lock);
447 __put_page(page);
448 return 1; 446 return 1;
449 447
450cannot_free: 448cannot_free:
@@ -453,6 +451,26 @@ cannot_free:
453} 451}
454 452
455/* 453/*
454 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
455 * someone else has a ref on the page, abort and return 0. If it was
456 * successfully detached, return 1. Assumes the caller has a single ref on
457 * this page.
458 */
459int remove_mapping(struct address_space *mapping, struct page *page)
460{
461 if (__remove_mapping(mapping, page)) {
462 /*
463 * Unfreezing the refcount with 1 rather than 2 effectively
464 * drops the pagecache ref for us without requiring another
465 * atomic operation.
466 */
467 page_unfreeze_refs(page, 1);
468 return 1;
469 }
470 return 0;
471}
472
473/*
456 * shrink_page_list() returns the number of reclaimed pages 474 * shrink_page_list() returns the number of reclaimed pages
457 */ 475 */
458static unsigned long shrink_page_list(struct list_head *page_list, 476static unsigned long shrink_page_list(struct list_head *page_list,
@@ -598,18 +616,34 @@ static unsigned long shrink_page_list(struct list_head *page_list,
598 if (PagePrivate(page)) { 616 if (PagePrivate(page)) {
599 if (!try_to_release_page(page, sc->gfp_mask)) 617 if (!try_to_release_page(page, sc->gfp_mask))
600 goto activate_locked; 618 goto activate_locked;
601 if (!mapping && page_count(page) == 1) 619 if (!mapping && page_count(page) == 1) {
602 goto free_it; 620 unlock_page(page);
621 if (put_page_testzero(page))
622 goto free_it;
623 else {
624 /*
625 * rare race with speculative reference.
626 * the speculative reference will free
627 * this page shortly, so we may
628 * increment nr_reclaimed here (and
629 * leave it off the LRU).
630 */
631 nr_reclaimed++;
632 continue;
633 }
634 }
603 } 635 }
604 636
605 if (!mapping || !remove_mapping(mapping, page)) 637 if (!mapping || !__remove_mapping(mapping, page))
606 goto keep_locked; 638 goto keep_locked;
607 639
608free_it:
609 unlock_page(page); 640 unlock_page(page);
641free_it:
610 nr_reclaimed++; 642 nr_reclaimed++;
611 if (!pagevec_add(&freed_pvec, page)) 643 if (!pagevec_add(&freed_pvec, page)) {
612 __pagevec_release_nonlru(&freed_pvec); 644 __pagevec_free(&freed_pvec);
645 pagevec_reinit(&freed_pvec);
646 }
613 continue; 647 continue;
614 648
615activate_locked: 649activate_locked:
@@ -623,7 +657,7 @@ keep:
623 } 657 }
624 list_splice(&ret_pages, page_list); 658 list_splice(&ret_pages, page_list);
625 if (pagevec_count(&freed_pvec)) 659 if (pagevec_count(&freed_pvec))
626 __pagevec_release_nonlru(&freed_pvec); 660 __pagevec_free(&freed_pvec);
627 count_vm_events(PGACTIVATE, pgactivate); 661 count_vm_events(PGACTIVATE, pgactivate);
628 return nr_reclaimed; 662 return nr_reclaimed;
629} 663}