diff options
-rw-r--r-- | Documentation/drivers/edac/edac.txt | 673 | ||||
-rw-r--r-- | MAINTAINERS | 9 | ||||
-rw-r--r-- | arch/i386/kernel/quirks.c | 9 | ||||
-rw-r--r-- | drivers/Kconfig | 2 | ||||
-rw-r--r-- | drivers/Makefile | 1 | ||||
-rw-r--r-- | drivers/edac/Kconfig | 102 | ||||
-rw-r--r-- | drivers/edac/Makefile | 18 | ||||
-rw-r--r-- | drivers/edac/amd76x_edac.c | 2 | ||||
-rw-r--r-- | drivers/edac/e752x_edac.c | 14 | ||||
-rw-r--r-- | drivers/edac/e7xxx_edac.c | 2 | ||||
-rw-r--r-- | drivers/edac/edac_mc.c | 2209 | ||||
-rw-r--r-- | drivers/edac/edac_mc.h | 448 | ||||
-rw-r--r-- | drivers/edac/i82860_edac.c | 2 | ||||
-rw-r--r-- | drivers/edac/i82875p_edac.c | 2 | ||||
-rw-r--r-- | drivers/edac/r82600_edac.c | 2 | ||||
-rw-r--r-- | include/asm-i386/atomic.h | 12 | ||||
-rw-r--r-- | include/asm-i386/edac.h | 18 | ||||
-rw-r--r-- | include/asm-x86_64/atomic.h | 12 | ||||
-rw-r--r-- | include/asm-x86_64/edac.h | 18 |
19 files changed, 3515 insertions, 40 deletions
diff --git a/Documentation/drivers/edac/edac.txt b/Documentation/drivers/edac/edac.txt new file mode 100644 index 000000000000..d37191fe5681 --- /dev/null +++ b/Documentation/drivers/edac/edac.txt | |||
@@ -0,0 +1,673 @@ | |||
1 | |||
2 | |||
3 | EDAC - Error Detection And Correction | ||
4 | |||
5 | Written by Doug Thompson <norsk5@xmission.com> | ||
6 | 7 Dec 2005 | ||
7 | |||
8 | |||
9 | EDAC was written by: | ||
10 | Thayne Harbaugh, | ||
11 | modified by Dave Peterson, Doug Thompson, et al, | ||
12 | from the bluesmoke.sourceforge.net project. | ||
13 | |||
14 | |||
15 | ============================================================================ | ||
16 | EDAC PURPOSE | ||
17 | |||
18 | The 'edac' kernel module goal is to detect and report errors that occur | ||
19 | within the computer system. In the initial release, memory Correctable Errors | ||
20 | (CE) and Uncorrectable Errors (UE) are the primary errors being harvested. | ||
21 | |||
22 | Detecting CE events, then harvesting those events and reporting them, | ||
23 | CAN be a predictor of future UE events. With CE events, the system can | ||
24 | continue to operate, but with less safety. Preventive maintainence and | ||
25 | proactive part replacement of memory DIMMs exhibiting CEs can reduce | ||
26 | the likelihood of the dreaded UE events and system 'panics'. | ||
27 | |||
28 | |||
29 | In addition, PCI Bus Parity and SERR Errors are scanned for on PCI devices | ||
30 | in order to determine if errors are occurring on data transfers. | ||
31 | The presence of PCI Parity errors must be examined with a grain of salt. | ||
32 | There are several addin adapters that do NOT follow the PCI specification | ||
33 | with regards to Parity generation and reporting. The specification says | ||
34 | the vendor should tie the parity status bits to 0 if they do not intend | ||
35 | to generate parity. Some vendors do not do this, and thus the parity bit | ||
36 | can "float" giving false positives. | ||
37 | |||
38 | The PCI Parity EDAC device has the ability to "skip" known flakey | ||
39 | cards during the parity scan. These are set by the parity "blacklist" | ||
40 | interface in the sysfs for PCI Parity. (See the PCI section in the sysfs | ||
41 | section below.) There is also a parity "whitelist" which is used as | ||
42 | an explicit list of devices to scan, while the blacklist is a list | ||
43 | of devices to skip. | ||
44 | |||
45 | EDAC will have future error detectors that will be added or integrated | ||
46 | into EDAC in the following list: | ||
47 | |||
48 | MCE Machine Check Exception | ||
49 | MCA Machine Check Architecture | ||
50 | NMI NMI notification of ECC errors | ||
51 | MSRs Machine Specific Register error cases | ||
52 | and other mechanisms. | ||
53 | |||
54 | These errors are usually bus errors, ECC errors, thermal throttling | ||
55 | and the like. | ||
56 | |||
57 | |||
58 | ============================================================================ | ||
59 | EDAC VERSIONING | ||
60 | |||
61 | EDAC is composed of a "core" module (edac_mc.ko) and several Memory | ||
62 | Controller (MC) driver modules. On a given system, the CORE | ||
63 | is loaded and one MC driver will be loaded. Both the CORE and | ||
64 | the MC driver have individual versions that reflect current release | ||
65 | level of their respective modules. Thus, to "report" on what version | ||
66 | a system is running, one must report both the CORE's and the | ||
67 | MC driver's versions. | ||
68 | |||
69 | |||
70 | LOADING | ||
71 | |||
72 | If 'edac' was statically linked with the kernel then no loading is | ||
73 | necessary. If 'edac' was built as modules then simply modprobe the | ||
74 | 'edac' pieces that you need. You should be able to modprobe | ||
75 | hardware-specific modules and have the dependencies load the necessary core | ||
76 | modules. | ||
77 | |||
78 | Example: | ||
79 | |||
80 | $> modprobe amd76x_edac | ||
81 | |||
82 | loads both the amd76x_edac.ko memory controller module and the edac_mc.ko | ||
83 | core module. | ||
84 | |||
85 | |||
86 | ============================================================================ | ||
87 | EDAC sysfs INTERFACE | ||
88 | |||
89 | EDAC presents a 'sysfs' interface for control, reporting and attribute | ||
90 | reporting purposes. | ||
91 | |||
92 | EDAC lives in the /sys/devices/system/edac directory. Within this directory | ||
93 | there currently reside 2 'edac' components: | ||
94 | |||
95 | mc memory controller(s) system | ||
96 | pci PCI status system | ||
97 | |||
98 | |||
99 | ============================================================================ | ||
100 | Memory Controller (mc) Model | ||
101 | |||
102 | First a background on the memory controller's model abstracted in EDAC. | ||
103 | Each mc device controls a set of DIMM memory modules. These modules are | ||
104 | layed out in a Chip-Select Row (csrowX) and Channel table (chX). There can | ||
105 | be multiple csrows and two channels. | ||
106 | |||
107 | Memory controllers allow for several csrows, with 8 csrows being a typical value. | ||
108 | Yet, the actual number of csrows depends on the electrical "loading" | ||
109 | of a given motherboard, memory controller and DIMM characteristics. | ||
110 | |||
111 | Dual channels allows for 128 bit data transfers to the CPU from memory. | ||
112 | |||
113 | |||
114 | Channel 0 Channel 1 | ||
115 | =================================== | ||
116 | csrow0 | DIMM_A0 | DIMM_B0 | | ||
117 | csrow1 | DIMM_A0 | DIMM_B0 | | ||
118 | =================================== | ||
119 | |||
120 | =================================== | ||
121 | csrow2 | DIMM_A1 | DIMM_B1 | | ||
122 | csrow3 | DIMM_A1 | DIMM_B1 | | ||
123 | =================================== | ||
124 | |||
125 | In the above example table there are 4 physical slots on the motherboard | ||
126 | for memory DIMMs: | ||
127 | |||
128 | DIMM_A0 | ||
129 | DIMM_B0 | ||
130 | DIMM_A1 | ||
131 | DIMM_B1 | ||
132 | |||
133 | Labels for these slots are usually silk screened on the motherboard. Slots | ||
134 | labeled 'A' are channel 0 in this example. Slots labled 'B' | ||
135 | are channel 1. Notice that there are two csrows possible on a | ||
136 | physical DIMM. These csrows are allocated their csrow assignment | ||
137 | based on the slot into which the memory DIMM is placed. Thus, when 1 DIMM | ||
138 | is placed in each Channel, the csrows cross both DIMMs. | ||
139 | |||
140 | Memory DIMMs come single or dual "ranked". A rank is a populated csrow. | ||
141 | Thus, 2 single ranked DIMMs, placed in slots DIMM_A0 and DIMM_B0 above | ||
142 | will have 1 csrow, csrow0. csrow1 will be empty. On the other hand, | ||
143 | when 2 dual ranked DIMMs are similiaryly placed, then both csrow0 and | ||
144 | csrow1 will be populated. The pattern repeats itself for csrow2 and | ||
145 | csrow3. | ||
146 | |||
147 | The representation of the above is reflected in the directory tree | ||
148 | in EDAC's sysfs interface. Starting in directory | ||
149 | /sys/devices/system/edac/mc each memory controller will be represented | ||
150 | by its own 'mcX' directory, where 'X" is the index of the MC. | ||
151 | |||
152 | |||
153 | ..../edac/mc/ | ||
154 | | | ||
155 | |->mc0 | ||
156 | |->mc1 | ||
157 | |->mc2 | ||
158 | .... | ||
159 | |||
160 | Under each 'mcX' directory each 'csrowX' is again represented by a | ||
161 | 'csrowX', where 'X" is the csrow index: | ||
162 | |||
163 | |||
164 | .../mc/mc0/ | ||
165 | | | ||
166 | |->csrow0 | ||
167 | |->csrow2 | ||
168 | |->csrow3 | ||
169 | .... | ||
170 | |||
171 | Notice that there is no csrow1, which indicates that csrow0 is | ||
172 | composed of a single ranked DIMMs. This should also apply in both | ||
173 | Channels, in order to have dual-channel mode be operational. Since | ||
174 | both csrow2 and csrow3 are populated, this indicates a dual ranked | ||
175 | set of DIMMs for channels 0 and 1. | ||
176 | |||
177 | |||
178 | Within each of the 'mc','mcX' and 'csrowX' directories are several | ||
179 | EDAC control and attribute files. | ||
180 | |||
181 | |||
182 | ============================================================================ | ||
183 | DIRECTORY 'mc' | ||
184 | |||
185 | In directory 'mc' are EDAC system overall control and attribute files: | ||
186 | |||
187 | |||
188 | Panic on UE control file: | ||
189 | |||
190 | 'panic_on_ue' | ||
191 | |||
192 | An uncorrectable error will cause a machine panic. This is usually | ||
193 | desirable. It is a bad idea to continue when an uncorrectable error | ||
194 | occurs - it is indeterminate what was uncorrected and the operating | ||
195 | system context might be so mangled that continuing will lead to further | ||
196 | corruption. If the kernel has MCE configured, then EDAC will never | ||
197 | notice the UE. | ||
198 | |||
199 | LOAD TIME: module/kernel parameter: panic_on_ue=[0|1] | ||
200 | |||
201 | RUN TIME: echo "1" >/sys/devices/system/edac/mc/panic_on_ue | ||
202 | |||
203 | |||
204 | Log UE control file: | ||
205 | |||
206 | 'log_ue' | ||
207 | |||
208 | Generate kernel messages describing uncorrectable errors. These errors | ||
209 | are reported through the system message log system. UE statistics | ||
210 | will be accumulated even when UE logging is disabled. | ||
211 | |||
212 | LOAD TIME: module/kernel parameter: log_ue=[0|1] | ||
213 | |||
214 | RUN TIME: echo "1" >/sys/devices/system/edac/mc/log_ue | ||
215 | |||
216 | |||
217 | Log CE control file: | ||
218 | |||
219 | 'log_ce' | ||
220 | |||
221 | Generate kernel messages describing correctable errors. These | ||
222 | errors are reported through the system message log system. | ||
223 | CE statistics will be accumulated even when CE logging is disabled. | ||
224 | |||
225 | LOAD TIME: module/kernel parameter: log_ce=[0|1] | ||
226 | |||
227 | RUN TIME: echo "1" >/sys/devices/system/edac/mc/log_ce | ||
228 | |||
229 | |||
230 | Polling period control file: | ||
231 | |||
232 | 'poll_msec' | ||
233 | |||
234 | The time period, in milliseconds, for polling for error information. | ||
235 | Too small a value wastes resources. Too large a value might delay | ||
236 | necessary handling of errors and might loose valuable information for | ||
237 | locating the error. 1000 milliseconds (once each second) is about | ||
238 | right for most uses. | ||
239 | |||
240 | LOAD TIME: module/kernel parameter: poll_msec=[0|1] | ||
241 | |||
242 | RUN TIME: echo "1000" >/sys/devices/system/edac/mc/poll_msec | ||
243 | |||
244 | |||
245 | Module Version read-only attribute file: | ||
246 | |||
247 | 'mc_version' | ||
248 | |||
249 | The EDAC CORE modules's version and compile date are shown here to | ||
250 | indicate what EDAC is running. | ||
251 | |||
252 | |||
253 | |||
254 | ============================================================================ | ||
255 | 'mcX' DIRECTORIES | ||
256 | |||
257 | |||
258 | In 'mcX' directories are EDAC control and attribute files for | ||
259 | this 'X" instance of the memory controllers: | ||
260 | |||
261 | |||
262 | Counter reset control file: | ||
263 | |||
264 | 'reset_counters' | ||
265 | |||
266 | This write-only control file will zero all the statistical counters | ||
267 | for UE and CE errors. Zeroing the counters will also reset the timer | ||
268 | indicating how long since the last counter zero. This is useful | ||
269 | for computing errors/time. Since the counters are always reset at | ||
270 | driver initialization time, no module/kernel parameter is available. | ||
271 | |||
272 | RUN TIME: echo "anything" >/sys/devices/system/edac/mc/mc0/counter_reset | ||
273 | |||
274 | This resets the counters on memory controller 0 | ||
275 | |||
276 | |||
277 | Seconds since last counter reset control file: | ||
278 | |||
279 | 'seconds_since_reset' | ||
280 | |||
281 | This attribute file displays how many seconds have elapsed since the | ||
282 | last counter reset. This can be used with the error counters to | ||
283 | measure error rates. | ||
284 | |||
285 | |||
286 | |||
287 | DIMM capability attribute file: | ||
288 | |||
289 | 'edac_capability' | ||
290 | |||
291 | The EDAC (Error Detection and Correction) capabilities/modes of | ||
292 | the memory controller hardware. | ||
293 | |||
294 | |||
295 | DIMM Current Capability attribute file: | ||
296 | |||
297 | 'edac_current_capability' | ||
298 | |||
299 | The EDAC capabilities available with the hardware | ||
300 | configuration. This may not be the same as "EDAC capability" | ||
301 | if the correct memory is not used. If a memory controller is | ||
302 | capable of EDAC, but DIMMs without check bits are in use, then | ||
303 | Parity, SECDED, S4ECD4ED capabilities will not be available | ||
304 | even though the memory controller might be capable of those | ||
305 | modes with the proper memory loaded. | ||
306 | |||
307 | |||
308 | Memory Type supported on this controller attribute file: | ||
309 | |||
310 | 'supported_mem_type' | ||
311 | |||
312 | This attribute file displays the memory type, usually | ||
313 | buffered and unbuffered DIMMs. | ||
314 | |||
315 | |||
316 | Memory Controller name attribute file: | ||
317 | |||
318 | 'mc_name' | ||
319 | |||
320 | This attribute file displays the type of memory controller | ||
321 | that is being utilized. | ||
322 | |||
323 | |||
324 | Memory Controller Module name attribute file: | ||
325 | |||
326 | 'module_name' | ||
327 | |||
328 | This attribute file displays the memory controller module name, | ||
329 | version and date built. The name of the memory controller | ||
330 | hardware - some drivers work with multiple controllers and | ||
331 | this field shows which hardware is present. | ||
332 | |||
333 | |||
334 | Total memory managed by this memory controller attribute file: | ||
335 | |||
336 | 'size_mb' | ||
337 | |||
338 | This attribute file displays, in count of megabytes, of memory | ||
339 | that this instance of memory controller manages. | ||
340 | |||
341 | |||
342 | Total Uncorrectable Errors count attribute file: | ||
343 | |||
344 | 'ue_count' | ||
345 | |||
346 | This attribute file displays the total count of uncorrectable | ||
347 | errors that have occurred on this memory controller. If panic_on_ue | ||
348 | is set this counter will not have a chance to increment, | ||
349 | since EDAC will panic the system. | ||
350 | |||
351 | |||
352 | Total UE count that had no information attribute fileY: | ||
353 | |||
354 | 'ue_noinfo_count' | ||
355 | |||
356 | This attribute file displays the number of UEs that | ||
357 | have occurred have occurred with no informations as to which DIMM | ||
358 | slot is having errors. | ||
359 | |||
360 | |||
361 | Total Correctable Errors count attribute file: | ||
362 | |||
363 | 'ce_count' | ||
364 | |||
365 | This attribute file displays the total count of correctable | ||
366 | errors that have occurred on this memory controller. This | ||
367 | count is very important to examine. CEs provide early | ||
368 | indications that a DIMM is beginning to fail. This count | ||
369 | field should be monitored for non-zero values and report | ||
370 | such information to the system administrator. | ||
371 | |||
372 | |||
373 | Total Correctable Errors count attribute file: | ||
374 | |||
375 | 'ce_noinfo_count' | ||
376 | |||
377 | This attribute file displays the number of CEs that | ||
378 | have occurred wherewith no informations as to which DIMM slot | ||
379 | is having errors. Memory is handicapped, but operational, | ||
380 | yet no information is available to indicate which slot | ||
381 | the failing memory is in. This count field should be also | ||
382 | be monitored for non-zero values. | ||
383 | |||
384 | Device Symlink: | ||
385 | |||
386 | 'device' | ||
387 | |||
388 | Symlink to the memory controller device | ||
389 | |||
390 | |||
391 | |||
392 | ============================================================================ | ||
393 | 'csrowX' DIRECTORIES | ||
394 | |||
395 | In the 'csrowX' directories are EDAC control and attribute files for | ||
396 | this 'X" instance of csrow: | ||
397 | |||
398 | |||
399 | Total Uncorrectable Errors count attribute file: | ||
400 | |||
401 | 'ue_count' | ||
402 | |||
403 | This attribute file displays the total count of uncorrectable | ||
404 | errors that have occurred on this csrow. If panic_on_ue is set | ||
405 | this counter will not have a chance to increment, since EDAC | ||
406 | will panic the system. | ||
407 | |||
408 | |||
409 | Total Correctable Errors count attribute file: | ||
410 | |||
411 | 'ce_count' | ||
412 | |||
413 | This attribute file displays the total count of correctable | ||
414 | errors that have occurred on this csrow. This | ||
415 | count is very important to examine. CEs provide early | ||
416 | indications that a DIMM is beginning to fail. This count | ||
417 | field should be monitored for non-zero values and report | ||
418 | such information to the system administrator. | ||
419 | |||
420 | |||
421 | Total memory managed by this csrow attribute file: | ||
422 | |||
423 | 'size_mb' | ||
424 | |||
425 | This attribute file displays, in count of megabytes, of memory | ||
426 | that this csrow contatins. | ||
427 | |||
428 | |||
429 | Memory Type attribute file: | ||
430 | |||
431 | 'mem_type' | ||
432 | |||
433 | This attribute file will display what type of memory is currently | ||
434 | on this csrow. Normally, either buffered or unbuffered memory. | ||
435 | |||
436 | |||
437 | EDAC Mode of operation attribute file: | ||
438 | |||
439 | 'edac_mode' | ||
440 | |||
441 | This attribute file will display what type of Error detection | ||
442 | and correction is being utilized. | ||
443 | |||
444 | |||
445 | Device type attribute file: | ||
446 | |||
447 | 'dev_type' | ||
448 | |||
449 | This attribute file will display what type of DIMM device is | ||
450 | being utilized. Example: x4 | ||
451 | |||
452 | |||
453 | Channel 0 CE Count attribute file: | ||
454 | |||
455 | 'ch0_ce_count' | ||
456 | |||
457 | This attribute file will display the count of CEs on this | ||
458 | DIMM located in channel 0. | ||
459 | |||
460 | |||
461 | Channel 0 UE Count attribute file: | ||
462 | |||
463 | 'ch0_ue_count' | ||
464 | |||
465 | This attribute file will display the count of UEs on this | ||
466 | DIMM located in channel 0. | ||
467 | |||
468 | |||
469 | Channel 0 DIMM Label control file: | ||
470 | |||
471 | 'ch0_dimm_label' | ||
472 | |||
473 | This control file allows this DIMM to have a label assigned | ||
474 | to it. With this label in the module, when errors occur | ||
475 | the output can provide the DIMM label in the system log. | ||
476 | This becomes vital for panic events to isolate the | ||
477 | cause of the UE event. | ||
478 | |||
479 | DIMM Labels must be assigned after booting, with information | ||
480 | that correctly identifies the physical slot with its | ||
481 | silk screen label. This information is currently very | ||
482 | motherboard specific and determination of this information | ||
483 | must occur in userland at this time. | ||
484 | |||
485 | |||
486 | Channel 1 CE Count attribute file: | ||
487 | |||
488 | 'ch1_ce_count' | ||
489 | |||
490 | This attribute file will display the count of CEs on this | ||
491 | DIMM located in channel 1. | ||
492 | |||
493 | |||
494 | Channel 1 UE Count attribute file: | ||
495 | |||
496 | 'ch1_ue_count' | ||
497 | |||
498 | This attribute file will display the count of UEs on this | ||
499 | DIMM located in channel 0. | ||
500 | |||
501 | |||
502 | Channel 1 DIMM Label control file: | ||
503 | |||
504 | 'ch1_dimm_label' | ||
505 | |||
506 | This control file allows this DIMM to have a label assigned | ||
507 | to it. With this label in the module, when errors occur | ||
508 | the output can provide the DIMM label in the system log. | ||
509 | This becomes vital for panic events to isolate the | ||
510 | cause of the UE event. | ||
511 | |||
512 | DIMM Labels must be assigned after booting, with information | ||
513 | that correctly identifies the physical slot with its | ||
514 | silk screen label. This information is currently very | ||
515 | motherboard specific and determination of this information | ||
516 | must occur in userland at this time. | ||
517 | |||
518 | |||
519 | ============================================================================ | ||
520 | SYSTEM LOGGING | ||
521 | |||
522 | If logging for UEs and CEs are enabled then system logs will have | ||
523 | error notices indicating errors that have been detected: | ||
524 | |||
525 | MC0: CE page 0x283, offset 0xce0, grain 8, syndrome 0x6ec3, row 0, | ||
526 | channel 1 "DIMM_B1": amd76x_edac | ||
527 | |||
528 | MC0: CE page 0x1e5, offset 0xfb0, grain 8, syndrome 0xb741, row 0, | ||
529 | channel 1 "DIMM_B1": amd76x_edac | ||
530 | |||
531 | |||
532 | The structure of the message is: | ||
533 | the memory controller (MC0) | ||
534 | Error type (CE) | ||
535 | memory page (0x283) | ||
536 | offset in the page (0xce0) | ||
537 | the byte granularity (grain 8) | ||
538 | or resolution of the error | ||
539 | the error syndrome (0xb741) | ||
540 | memory row (row 0) | ||
541 | memory channel (channel 1) | ||
542 | DIMM label, if set prior (DIMM B1 | ||
543 | and then an optional, driver-specific message that may | ||
544 | have additional information. | ||
545 | |||
546 | Both UEs and CEs with no info will lack all but memory controller, | ||
547 | error type, a notice of "no info" and then an optional, | ||
548 | driver-specific error message. | ||
549 | |||
550 | |||
551 | |||
552 | ============================================================================ | ||
553 | PCI Bus Parity Detection | ||
554 | |||
555 | |||
556 | On Header Type 00 devices the primary status is looked at | ||
557 | for any parity error regardless of whether Parity is enabled on the | ||
558 | device. (The spec indicates parity is generated in some cases). | ||
559 | On Header Type 01 bridges, the secondary status register is also | ||
560 | looked at to see if parity ocurred on the bus on the other side of | ||
561 | the bridge. | ||
562 | |||
563 | |||
564 | SYSFS CONFIGURATION | ||
565 | |||
566 | Under /sys/devices/system/edac/pci are control and attribute files as follows: | ||
567 | |||
568 | |||
569 | Enable/Disable PCI Parity checking control file: | ||
570 | |||
571 | 'check_pci_parity' | ||
572 | |||
573 | |||
574 | This control file enables or disables the PCI Bus Parity scanning | ||
575 | operation. Writing a 1 to this file enables the scanning. Writing | ||
576 | a 0 to this file disables the scanning. | ||
577 | |||
578 | Enable: | ||
579 | echo "1" >/sys/devices/system/edac/pci/check_pci_parity | ||
580 | |||
581 | Disable: | ||
582 | echo "0" >/sys/devices/system/edac/pci/check_pci_parity | ||
583 | |||
584 | |||
585 | |||
586 | Panic on PCI PARITY Error: | ||
587 | |||
588 | 'panic_on_pci_parity' | ||
589 | |||
590 | |||
591 | This control files enables or disables panic'ing when a parity | ||
592 | error has been detected. | ||
593 | |||
594 | |||
595 | module/kernel parameter: panic_on_pci_parity=[0|1] | ||
596 | |||
597 | Enable: | ||
598 | echo "1" >/sys/devices/system/edac/pci/panic_on_pci_parity | ||
599 | |||
600 | Disable: | ||
601 | echo "0" >/sys/devices/system/edac/pci/panic_on_pci_parity | ||
602 | |||
603 | |||
604 | Parity Count: | ||
605 | |||
606 | 'pci_parity_count' | ||
607 | |||
608 | This attribute file will display the number of parity errors that | ||
609 | have been detected. | ||
610 | |||
611 | |||
612 | |||
613 | PCI Device Whitelist: | ||
614 | |||
615 | 'pci_parity_whitelist' | ||
616 | |||
617 | This control file allows for an explicit list of PCI devices to be | ||
618 | scanned for parity errors. Only devices found on this list will | ||
619 | be examined. The list is a line of hexadecimel VENDOR and DEVICE | ||
620 | ID tuples: | ||
621 | |||
622 | 1022:7450,1434:16a6 | ||
623 | |||
624 | One or more can be inserted, seperated by a comma. | ||
625 | |||
626 | To write the above list doing the following as one command line: | ||
627 | |||
628 | echo "1022:7450,1434:16a6" | ||
629 | > /sys/devices/system/edac/pci/pci_parity_whitelist | ||
630 | |||
631 | |||
632 | |||
633 | To display what the whitelist is, simply 'cat' the same file. | ||
634 | |||
635 | |||
636 | PCI Device Blacklist: | ||
637 | |||
638 | 'pci_parity_blacklist' | ||
639 | |||
640 | This control file allows for a list of PCI devices to be | ||
641 | skipped for scanning. | ||
642 | The list is a line of hexadecimel VENDOR and DEVICE ID tuples: | ||
643 | |||
644 | 1022:7450,1434:16a6 | ||
645 | |||
646 | One or more can be inserted, seperated by a comma. | ||
647 | |||
648 | To write the above list doing the following as one command line: | ||
649 | |||
650 | echo "1022:7450,1434:16a6" | ||
651 | > /sys/devices/system/edac/pci/pci_parity_blacklist | ||
652 | |||
653 | |||
654 | To display what the whitelist current contatins, | ||
655 | simply 'cat' the same file. | ||
656 | |||
657 | ======================================================================= | ||
658 | |||
659 | PCI Vendor and Devices IDs can be obtained with the lspci command. Using | ||
660 | the -n option lspci will display the vendor and device IDs. The system | ||
661 | adminstrator will have to determine which devices should be scanned or | ||
662 | skipped. | ||
663 | |||
664 | |||
665 | |||
666 | The two lists (white and black) are prioritized. blacklist is the lower | ||
667 | priority and will NOT be utilized when a whitelist has been set. | ||
668 | Turn OFF a whitelist by an empty echo command: | ||
669 | |||
670 | echo > /sys/devices/system/edac/pci/pci_parity_whitelist | ||
671 | |||
672 | and any previous blacklist will be utililzed. | ||
673 | |||
diff --git a/MAINTAINERS b/MAINTAINERS index e6dbb21a8e5b..3f8a90ac47d7 100644 --- a/MAINTAINERS +++ b/MAINTAINERS | |||
@@ -867,6 +867,15 @@ L: ebtables-devel@lists.sourceforge.net | |||
867 | W: http://ebtables.sourceforge.net/ | 867 | W: http://ebtables.sourceforge.net/ |
868 | S: Maintained | 868 | S: Maintained |
869 | 869 | ||
870 | EDAC-CORE | ||
871 | P: Doug Thompson | ||
872 | M: norsk5@xmission.com, dthompson@linuxnetworx.com | ||
873 | P: Dave Peterson | ||
874 | M: dsp@llnl.gov, dave_peterson@pobox.com | ||
875 | L: bluesmoke-devel@lists.sourceforge.net | ||
876 | W: bluesmoke.sourceforge.net | ||
877 | S: Maintained | ||
878 | |||
870 | EEPRO100 NETWORK DRIVER | 879 | EEPRO100 NETWORK DRIVER |
871 | P: Andrey V. Savochkin | 880 | P: Andrey V. Savochkin |
872 | M: saw@saw.sw.com.sg | 881 | M: saw@saw.sw.com.sg |
diff --git a/arch/i386/kernel/quirks.c b/arch/i386/kernel/quirks.c index aaf89cb2bc51..87ccdac84928 100644 --- a/arch/i386/kernel/quirks.c +++ b/arch/i386/kernel/quirks.c | |||
@@ -25,8 +25,7 @@ static void __devinit quirk_intel_irqbalance(struct pci_dev *dev) | |||
25 | 25 | ||
26 | /* enable access to config space*/ | 26 | /* enable access to config space*/ |
27 | pci_read_config_byte(dev, 0xf4, &config); | 27 | pci_read_config_byte(dev, 0xf4, &config); |
28 | config |= 0x2; | 28 | pci_write_config_byte(dev, 0xf4, config|0x2); |
29 | pci_write_config_byte(dev, 0xf4, config); | ||
30 | 29 | ||
31 | /* read xTPR register */ | 30 | /* read xTPR register */ |
32 | raw_pci_ops->read(0, 0, 0x40, 0x4c, 2, &word); | 31 | raw_pci_ops->read(0, 0, 0x40, 0x4c, 2, &word); |
@@ -42,9 +41,9 @@ static void __devinit quirk_intel_irqbalance(struct pci_dev *dev) | |||
42 | #endif | 41 | #endif |
43 | } | 42 | } |
44 | 43 | ||
45 | config &= ~0x2; | 44 | /* put back the original value for config space*/ |
46 | /* disable access to config space*/ | 45 | if (!(config & 0x2)) |
47 | pci_write_config_byte(dev, 0xf4, config); | 46 | pci_write_config_byte(dev, 0xf4, config); |
48 | } | 47 | } |
49 | DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_E7320_MCH, quirk_intel_irqbalance); | 48 | DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_E7320_MCH, quirk_intel_irqbalance); |
50 | DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_E7525_MCH, quirk_intel_irqbalance); | 49 | DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_E7525_MCH, quirk_intel_irqbalance); |
diff --git a/drivers/Kconfig b/drivers/Kconfig index 283c089537bc..bddf431bbb72 100644 --- a/drivers/Kconfig +++ b/drivers/Kconfig | |||
@@ -68,4 +68,6 @@ source "drivers/infiniband/Kconfig" | |||
68 | 68 | ||
69 | source "drivers/sn/Kconfig" | 69 | source "drivers/sn/Kconfig" |
70 | 70 | ||
71 | source "drivers/edac/Kconfig" | ||
72 | |||
71 | endmenu | 73 | endmenu |
diff --git a/drivers/Makefile b/drivers/Makefile index 7c45050ecd03..619dd964c51c 100644 --- a/drivers/Makefile +++ b/drivers/Makefile | |||
@@ -63,6 +63,7 @@ obj-$(CONFIG_PHONE) += telephony/ | |||
63 | obj-$(CONFIG_MD) += md/ | 63 | obj-$(CONFIG_MD) += md/ |
64 | obj-$(CONFIG_BT) += bluetooth/ | 64 | obj-$(CONFIG_BT) += bluetooth/ |
65 | obj-$(CONFIG_ISDN) += isdn/ | 65 | obj-$(CONFIG_ISDN) += isdn/ |
66 | obj-$(CONFIG_EDAC) += edac/ | ||
66 | obj-$(CONFIG_MCA) += mca/ | 67 | obj-$(CONFIG_MCA) += mca/ |
67 | obj-$(CONFIG_EISA) += eisa/ | 68 | obj-$(CONFIG_EISA) += eisa/ |
68 | obj-$(CONFIG_CPU_FREQ) += cpufreq/ | 69 | obj-$(CONFIG_CPU_FREQ) += cpufreq/ |
diff --git a/drivers/edac/Kconfig b/drivers/edac/Kconfig new file mode 100644 index 000000000000..4819e7fc00dd --- /dev/null +++ b/drivers/edac/Kconfig | |||
@@ -0,0 +1,102 @@ | |||
1 | # | ||
2 | # EDAC Kconfig | ||
3 | # Copyright (c) 2003 Linux Networx | ||
4 | # Licensed and distributed under the GPL | ||
5 | # | ||
6 | # $Id: Kconfig,v 1.4.2.7 2005/07/08 22:05:38 dsp_llnl Exp $ | ||
7 | # | ||
8 | |||
9 | menu 'EDAC - error detection and reporting (RAS)' | ||
10 | |||
11 | config EDAC | ||
12 | tristate "EDAC core system error reporting" | ||
13 | depends on X86 | ||
14 | default y | ||
15 | help | ||
16 | EDAC is designed to report errors in the core system. | ||
17 | These are low-level errors that are reported in the CPU or | ||
18 | supporting chipset: memory errors, cache errors, PCI errors, | ||
19 | thermal throttling, etc.. If unsure, select 'Y'. | ||
20 | |||
21 | |||
22 | comment "Reporting subsystems" | ||
23 | depends on EDAC | ||
24 | |||
25 | config EDAC_DEBUG | ||
26 | bool "Debugging" | ||
27 | depends on EDAC | ||
28 | help | ||
29 | This turns on debugging information for the entire EDAC | ||
30 | sub-system. You can insert module with "debug_level=x", current | ||
31 | there're four debug levels (x=0,1,2,3 from low to high). | ||
32 | Usually you should select 'N'. | ||
33 | |||
34 | config EDAC_MM_EDAC | ||
35 | tristate "Main Memory EDAC (Error Detection And Correction) reporting" | ||
36 | depends on EDAC | ||
37 | default y | ||
38 | help | ||
39 | Some systems are able to detect and correct errors in main | ||
40 | memory. EDAC can report statistics on memory error | ||
41 | detection and correction (EDAC - or commonly referred to ECC | ||
42 | errors). EDAC will also try to decode where these errors | ||
43 | occurred so that a particular failing memory module can be | ||
44 | replaced. If unsure, select 'Y'. | ||
45 | |||
46 | |||
47 | config EDAC_AMD76X | ||
48 | tristate "AMD 76x (760, 762, 768)" | ||
49 | depends on EDAC_MM_EDAC && PCI | ||
50 | help | ||
51 | Support for error detection and correction on the AMD 76x | ||
52 | series of chipsets used with the Athlon processor. | ||
53 | |||
54 | config EDAC_E7XXX | ||
55 | tristate "Intel e7xxx (e7205, e7500, e7501, e7505)" | ||
56 | depends on EDAC_MM_EDAC && PCI | ||
57 | help | ||
58 | Support for error detection and correction on the Intel | ||
59 | E7205, E7500, E7501 and E7505 server chipsets. | ||
60 | |||
61 | config EDAC_E752X | ||
62 | tristate "Intel e752x (e7520, e7525, e7320)" | ||
63 | depends on EDAC_MM_EDAC && PCI | ||
64 | help | ||
65 | Support for error detection and correction on the Intel | ||
66 | E7520, E7525, E7320 server chipsets. | ||
67 | |||
68 | config EDAC_I82875P | ||
69 | tristate "Intel 82875p (D82875P, E7210)" | ||
70 | depends on EDAC_MM_EDAC && PCI | ||
71 | help | ||
72 | Support for error detection and correction on the Intel | ||
73 | DP82785P and E7210 server chipsets. | ||
74 | |||
75 | config EDAC_I82860 | ||
76 | tristate "Intel 82860" | ||
77 | depends on EDAC_MM_EDAC && PCI | ||
78 | help | ||
79 | Support for error detection and correction on the Intel | ||
80 | 82860 chipset. | ||
81 | |||
82 | config EDAC_R82600 | ||
83 | tristate "Radisys 82600 embedded chipset" | ||
84 | depends on EDAC_MM_EDAC | ||
85 | help | ||
86 | Support for error detection and correction on the Radisys | ||
87 | 82600 embedded chipset. | ||
88 | |||
89 | choice | ||
90 | prompt "Error detecting method" | ||
91 | depends on EDAC | ||
92 | default EDAC_POLL | ||
93 | |||
94 | config EDAC_POLL | ||
95 | bool "Poll for errors" | ||
96 | depends on EDAC | ||
97 | help | ||
98 | Poll the chipset periodically to detect errors. | ||
99 | |||
100 | endchoice | ||
101 | |||
102 | endmenu | ||
diff --git a/drivers/edac/Makefile b/drivers/edac/Makefile new file mode 100644 index 000000000000..93137fdab4b3 --- /dev/null +++ b/drivers/edac/Makefile | |||
@@ -0,0 +1,18 @@ | |||
1 | # | ||
2 | # Makefile for the Linux kernel EDAC drivers. | ||
3 | # | ||
4 | # Copyright 02 Jul 2003, Linux Networx (http://lnxi.com) | ||
5 | # This file may be distributed under the terms of the | ||
6 | # GNU General Public License. | ||
7 | # | ||
8 | # $Id: Makefile,v 1.4.2.3 2005/07/08 22:05:38 dsp_llnl Exp $ | ||
9 | |||
10 | |||
11 | obj-$(CONFIG_EDAC_MM_EDAC) += edac_mc.o | ||
12 | obj-$(CONFIG_EDAC_AMD76X) += amd76x_edac.o | ||
13 | obj-$(CONFIG_EDAC_E7XXX) += e7xxx_edac.o | ||
14 | obj-$(CONFIG_EDAC_E752X) += e752x_edac.o | ||
15 | obj-$(CONFIG_EDAC_I82875P) += i82875p_edac.o | ||
16 | obj-$(CONFIG_EDAC_I82860) += i82860_edac.o | ||
17 | obj-$(CONFIG_EDAC_R82600) += r82600_edac.o | ||
18 | |||
diff --git a/drivers/edac/amd76x_edac.c b/drivers/edac/amd76x_edac.c index 8e2b1295e70c..2fcc8120b53c 100644 --- a/drivers/edac/amd76x_edac.c +++ b/drivers/edac/amd76x_edac.c | |||
@@ -338,7 +338,7 @@ static struct pci_driver amd76x_driver = { | |||
338 | .id_table = amd76x_pci_tbl, | 338 | .id_table = amd76x_pci_tbl, |
339 | }; | 339 | }; |
340 | 340 | ||
341 | int __init amd76x_init(void) | 341 | static int __init amd76x_init(void) |
342 | { | 342 | { |
343 | return pci_register_driver(&amd76x_driver); | 343 | return pci_register_driver(&amd76x_driver); |
344 | } | 344 | } |
diff --git a/drivers/edac/e752x_edac.c b/drivers/edac/e752x_edac.c index 959f584f5687..770a5a633079 100644 --- a/drivers/edac/e752x_edac.c +++ b/drivers/edac/e752x_edac.c | |||
@@ -13,7 +13,7 @@ | |||
13 | * Wang Zhenyu at intel.com | 13 | * Wang Zhenyu at intel.com |
14 | * Dave Jiang at mvista.com | 14 | * Dave Jiang at mvista.com |
15 | * | 15 | * |
16 | * $Id: bluesmoke_e752x.c,v 1.5.2.11 2005/10/05 00:43:44 dsp_llnl Exp $ | 16 | * $Id: edac_e752x.c,v 1.5.2.11 2005/10/05 00:43:44 dsp_llnl Exp $ |
17 | * | 17 | * |
18 | */ | 18 | */ |
19 | 19 | ||
@@ -376,14 +376,14 @@ static inline void process_threshold_ce(struct mem_ctl_info *mci, u16 error, | |||
376 | mci->mc_idx); | 376 | mci->mc_idx); |
377 | } | 377 | } |
378 | 378 | ||
379 | char *global_message[11] = { | 379 | static char *global_message[11] = { |
380 | "PCI Express C1", "PCI Express C", "PCI Express B1", | 380 | "PCI Express C1", "PCI Express C", "PCI Express B1", |
381 | "PCI Express B", "PCI Express A1", "PCI Express A", | 381 | "PCI Express B", "PCI Express A1", "PCI Express A", |
382 | "DMA Controler", "HUB Interface", "System Bus", | 382 | "DMA Controler", "HUB Interface", "System Bus", |
383 | "DRAM Controler", "Internal Buffer" | 383 | "DRAM Controler", "Internal Buffer" |
384 | }; | 384 | }; |
385 | 385 | ||
386 | char *fatal_message[2] = { "Non-Fatal ", "Fatal " }; | 386 | static char *fatal_message[2] = { "Non-Fatal ", "Fatal " }; |
387 | 387 | ||
388 | static void do_global_error(int fatal, u32 errors) | 388 | static void do_global_error(int fatal, u32 errors) |
389 | { | 389 | { |
@@ -405,7 +405,7 @@ static inline void global_error(int fatal, u32 errors, int *error_found, | |||
405 | do_global_error(fatal, errors); | 405 | do_global_error(fatal, errors); |
406 | } | 406 | } |
407 | 407 | ||
408 | char *hub_message[7] = { | 408 | static char *hub_message[7] = { |
409 | "HI Address or Command Parity", "HI Illegal Access", | 409 | "HI Address or Command Parity", "HI Illegal Access", |
410 | "HI Internal Parity", "Out of Range Access", | 410 | "HI Internal Parity", "Out of Range Access", |
411 | "HI Data Parity", "Enhanced Config Access", | 411 | "HI Data Parity", "Enhanced Config Access", |
@@ -432,7 +432,7 @@ static inline void hub_error(int fatal, u8 errors, int *error_found, | |||
432 | do_hub_error(fatal, errors); | 432 | do_hub_error(fatal, errors); |
433 | } | 433 | } |
434 | 434 | ||
435 | char *membuf_message[4] = { | 435 | static char *membuf_message[4] = { |
436 | "Internal PMWB to DRAM parity", | 436 | "Internal PMWB to DRAM parity", |
437 | "Internal PMWB to System Bus Parity", | 437 | "Internal PMWB to System Bus Parity", |
438 | "Internal System Bus or IO to PMWB Parity", | 438 | "Internal System Bus or IO to PMWB Parity", |
@@ -458,6 +458,7 @@ static inline void membuf_error(u8 errors, int *error_found, int handle_error) | |||
458 | do_membuf_error(errors); | 458 | do_membuf_error(errors); |
459 | } | 459 | } |
460 | 460 | ||
461 | #if 0 | ||
461 | char *sysbus_message[10] = { | 462 | char *sysbus_message[10] = { |
462 | "Addr or Request Parity", | 463 | "Addr or Request Parity", |
463 | "Data Strobe Glitch", | 464 | "Data Strobe Glitch", |
@@ -469,6 +470,7 @@ char *sysbus_message[10] = { | |||
469 | "Memory Parity", | 470 | "Memory Parity", |
470 | "IO Subsystem Parity" | 471 | "IO Subsystem Parity" |
471 | }; | 472 | }; |
473 | #endif /* 0 */ | ||
472 | 474 | ||
473 | static void do_sysbus_error(int fatal, u32 errors) | 475 | static void do_sysbus_error(int fatal, u32 errors) |
474 | { | 476 | { |
@@ -1044,7 +1046,7 @@ static struct pci_driver e752x_driver = { | |||
1044 | }; | 1046 | }; |
1045 | 1047 | ||
1046 | 1048 | ||
1047 | int __init e752x_init(void) | 1049 | static int __init e752x_init(void) |
1048 | { | 1050 | { |
1049 | int pci_rc; | 1051 | int pci_rc; |
1050 | 1052 | ||
diff --git a/drivers/edac/e7xxx_edac.c b/drivers/edac/e7xxx_edac.c index 066be43f5ece..d5e320dfc66f 100644 --- a/drivers/edac/e7xxx_edac.c +++ b/drivers/edac/e7xxx_edac.c | |||
@@ -537,7 +537,7 @@ static struct pci_driver e7xxx_driver = { | |||
537 | }; | 537 | }; |
538 | 538 | ||
539 | 539 | ||
540 | int __init e7xxx_init(void) | 540 | static int __init e7xxx_init(void) |
541 | { | 541 | { |
542 | return pci_register_driver(&e7xxx_driver); | 542 | return pci_register_driver(&e7xxx_driver); |
543 | } | 543 | } |
diff --git a/drivers/edac/edac_mc.c b/drivers/edac/edac_mc.c new file mode 100644 index 000000000000..4be9bd0a1267 --- /dev/null +++ b/drivers/edac/edac_mc.c | |||
@@ -0,0 +1,2209 @@ | |||
1 | /* | ||
2 | * edac_mc kernel module | ||
3 | * (C) 2005 Linux Networx (http://lnxi.com) | ||
4 | * This file may be distributed under the terms of the | ||
5 | * GNU General Public License. | ||
6 | * | ||
7 | * Written by Thayne Harbaugh | ||
8 | * Based on work by Dan Hollis <goemon at anime dot net> and others. | ||
9 | * http://www.anime.net/~goemon/linux-ecc/ | ||
10 | * | ||
11 | * Modified by Dave Peterson and Doug Thompson | ||
12 | * | ||
13 | */ | ||
14 | |||
15 | |||
16 | #include <linux/config.h> | ||
17 | #include <linux/version.h> | ||
18 | #include <linux/module.h> | ||
19 | #include <linux/proc_fs.h> | ||
20 | #include <linux/kernel.h> | ||
21 | #include <linux/types.h> | ||
22 | #include <linux/smp.h> | ||
23 | #include <linux/init.h> | ||
24 | #include <linux/sysctl.h> | ||
25 | #include <linux/highmem.h> | ||
26 | #include <linux/timer.h> | ||
27 | #include <linux/slab.h> | ||
28 | #include <linux/jiffies.h> | ||
29 | #include <linux/spinlock.h> | ||
30 | #include <linux/list.h> | ||
31 | #include <linux/sysdev.h> | ||
32 | #include <linux/ctype.h> | ||
33 | |||
34 | #include <asm/uaccess.h> | ||
35 | #include <asm/page.h> | ||
36 | #include <asm/edac.h> | ||
37 | |||
38 | #include "edac_mc.h" | ||
39 | |||
40 | #define EDAC_MC_VERSION "edac_mc Ver: 2.0.0 " __DATE__ | ||
41 | |||
42 | #ifdef CONFIG_EDAC_DEBUG | ||
43 | /* Values of 0 to 4 will generate output */ | ||
44 | int edac_debug_level = 1; | ||
45 | EXPORT_SYMBOL(edac_debug_level); | ||
46 | #endif | ||
47 | |||
48 | /* EDAC Controls, setable by module parameter, and sysfs */ | ||
49 | static int log_ue = 1; | ||
50 | static int log_ce = 1; | ||
51 | static int panic_on_ue = 1; | ||
52 | static int poll_msec = 1000; | ||
53 | |||
54 | static int check_pci_parity = 0; /* default YES check PCI parity */ | ||
55 | static int panic_on_pci_parity; /* default no panic on PCI Parity */ | ||
56 | static atomic_t pci_parity_count = ATOMIC_INIT(0); | ||
57 | |||
58 | /* lock to memory controller's control array */ | ||
59 | static DECLARE_MUTEX(mem_ctls_mutex); | ||
60 | static struct list_head mc_devices = LIST_HEAD_INIT(mc_devices); | ||
61 | |||
62 | /* Structure of the whitelist and blacklist arrays */ | ||
63 | struct edac_pci_device_list { | ||
64 | unsigned int vendor; /* Vendor ID */ | ||
65 | unsigned int device; /* Deviice ID */ | ||
66 | }; | ||
67 | |||
68 | |||
69 | #define MAX_LISTED_PCI_DEVICES 32 | ||
70 | |||
71 | /* List of PCI devices (vendor-id:device-id) that should be skipped */ | ||
72 | static struct edac_pci_device_list pci_blacklist[MAX_LISTED_PCI_DEVICES]; | ||
73 | static int pci_blacklist_count; | ||
74 | |||
75 | /* List of PCI devices (vendor-id:device-id) that should be scanned */ | ||
76 | static struct edac_pci_device_list pci_whitelist[MAX_LISTED_PCI_DEVICES]; | ||
77 | static int pci_whitelist_count ; | ||
78 | |||
79 | /* START sysfs data and methods */ | ||
80 | |||
81 | static const char *mem_types[] = { | ||
82 | [MEM_EMPTY] = "Empty", | ||
83 | [MEM_RESERVED] = "Reserved", | ||
84 | [MEM_UNKNOWN] = "Unknown", | ||
85 | [MEM_FPM] = "FPM", | ||
86 | [MEM_EDO] = "EDO", | ||
87 | [MEM_BEDO] = "BEDO", | ||
88 | [MEM_SDR] = "Unbuffered-SDR", | ||
89 | [MEM_RDR] = "Registered-SDR", | ||
90 | [MEM_DDR] = "Unbuffered-DDR", | ||
91 | [MEM_RDDR] = "Registered-DDR", | ||
92 | [MEM_RMBS] = "RMBS" | ||
93 | }; | ||
94 | |||
95 | static const char *dev_types[] = { | ||
96 | [DEV_UNKNOWN] = "Unknown", | ||
97 | [DEV_X1] = "x1", | ||
98 | [DEV_X2] = "x2", | ||
99 | [DEV_X4] = "x4", | ||
100 | [DEV_X8] = "x8", | ||
101 | [DEV_X16] = "x16", | ||
102 | [DEV_X32] = "x32", | ||
103 | [DEV_X64] = "x64" | ||
104 | }; | ||
105 | |||
106 | static const char *edac_caps[] = { | ||
107 | [EDAC_UNKNOWN] = "Unknown", | ||
108 | [EDAC_NONE] = "None", | ||
109 | [EDAC_RESERVED] = "Reserved", | ||
110 | [EDAC_PARITY] = "PARITY", | ||
111 | [EDAC_EC] = "EC", | ||
112 | [EDAC_SECDED] = "SECDED", | ||
113 | [EDAC_S2ECD2ED] = "S2ECD2ED", | ||
114 | [EDAC_S4ECD4ED] = "S4ECD4ED", | ||
115 | [EDAC_S8ECD8ED] = "S8ECD8ED", | ||
116 | [EDAC_S16ECD16ED] = "S16ECD16ED" | ||
117 | }; | ||
118 | |||
119 | |||
120 | /* sysfs object: /sys/devices/system/edac */ | ||
121 | static struct sysdev_class edac_class = { | ||
122 | set_kset_name("edac"), | ||
123 | }; | ||
124 | |||
125 | /* sysfs objects: | ||
126 | * /sys/devices/system/edac/mc | ||
127 | * /sys/devices/system/edac/pci | ||
128 | */ | ||
129 | static struct kobject edac_memctrl_kobj; | ||
130 | static struct kobject edac_pci_kobj; | ||
131 | |||
132 | /* | ||
133 | * /sys/devices/system/edac/mc; | ||
134 | * data structures and methods | ||
135 | */ | ||
136 | static ssize_t memctrl_string_show(void *ptr, char *buffer) | ||
137 | { | ||
138 | char *value = (char*) ptr; | ||
139 | return sprintf(buffer, "%s\n", value); | ||
140 | } | ||
141 | |||
142 | static ssize_t memctrl_int_show(void *ptr, char *buffer) | ||
143 | { | ||
144 | int *value = (int*) ptr; | ||
145 | return sprintf(buffer, "%d\n", *value); | ||
146 | } | ||
147 | |||
148 | static ssize_t memctrl_int_store(void *ptr, const char *buffer, size_t count) | ||
149 | { | ||
150 | int *value = (int*) ptr; | ||
151 | |||
152 | if (isdigit(*buffer)) | ||
153 | *value = simple_strtoul(buffer, NULL, 0); | ||
154 | |||
155 | return count; | ||
156 | } | ||
157 | |||
158 | struct memctrl_dev_attribute { | ||
159 | struct attribute attr; | ||
160 | void *value; | ||
161 | ssize_t (*show)(void *,char *); | ||
162 | ssize_t (*store)(void *, const char *, size_t); | ||
163 | }; | ||
164 | |||
165 | /* Set of show/store abstract level functions for memory control object */ | ||
166 | static ssize_t | ||
167 | memctrl_dev_show(struct kobject *kobj, struct attribute *attr, char *buffer) | ||
168 | { | ||
169 | struct memctrl_dev_attribute *memctrl_dev; | ||
170 | memctrl_dev = (struct memctrl_dev_attribute*)attr; | ||
171 | |||
172 | if (memctrl_dev->show) | ||
173 | return memctrl_dev->show(memctrl_dev->value, buffer); | ||
174 | return -EIO; | ||
175 | } | ||
176 | |||
177 | static ssize_t | ||
178 | memctrl_dev_store(struct kobject *kobj, struct attribute *attr, | ||
179 | const char *buffer, size_t count) | ||
180 | { | ||
181 | struct memctrl_dev_attribute *memctrl_dev; | ||
182 | memctrl_dev = (struct memctrl_dev_attribute*)attr; | ||
183 | |||
184 | if (memctrl_dev->store) | ||
185 | return memctrl_dev->store(memctrl_dev->value, buffer, count); | ||
186 | return -EIO; | ||
187 | } | ||
188 | |||
189 | static struct sysfs_ops memctrlfs_ops = { | ||
190 | .show = memctrl_dev_show, | ||
191 | .store = memctrl_dev_store | ||
192 | }; | ||
193 | |||
194 | #define MEMCTRL_ATTR(_name,_mode,_show,_store) \ | ||
195 | struct memctrl_dev_attribute attr_##_name = { \ | ||
196 | .attr = {.name = __stringify(_name), .mode = _mode }, \ | ||
197 | .value = &_name, \ | ||
198 | .show = _show, \ | ||
199 | .store = _store, \ | ||
200 | }; | ||
201 | |||
202 | #define MEMCTRL_STRING_ATTR(_name,_data,_mode,_show,_store) \ | ||
203 | struct memctrl_dev_attribute attr_##_name = { \ | ||
204 | .attr = {.name = __stringify(_name), .mode = _mode }, \ | ||
205 | .value = _data, \ | ||
206 | .show = _show, \ | ||
207 | .store = _store, \ | ||
208 | }; | ||
209 | |||
210 | /* cwrow<id> attribute f*/ | ||
211 | MEMCTRL_STRING_ATTR(mc_version,EDAC_MC_VERSION,S_IRUGO,memctrl_string_show,NULL); | ||
212 | |||
213 | /* csrow<id> control files */ | ||
214 | MEMCTRL_ATTR(panic_on_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store); | ||
215 | MEMCTRL_ATTR(log_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store); | ||
216 | MEMCTRL_ATTR(log_ce,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store); | ||
217 | MEMCTRL_ATTR(poll_msec,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store); | ||
218 | |||
219 | |||
220 | /* Base Attributes of the memory ECC object */ | ||
221 | static struct memctrl_dev_attribute *memctrl_attr[] = { | ||
222 | &attr_panic_on_ue, | ||
223 | &attr_log_ue, | ||
224 | &attr_log_ce, | ||
225 | &attr_poll_msec, | ||
226 | &attr_mc_version, | ||
227 | NULL, | ||
228 | }; | ||
229 | |||
230 | /* Main MC kobject release() function */ | ||
231 | static void edac_memctrl_master_release(struct kobject *kobj) | ||
232 | { | ||
233 | debugf1("EDAC MC: " __FILE__ ": %s()\n", __func__); | ||
234 | } | ||
235 | |||
236 | static struct kobj_type ktype_memctrl = { | ||
237 | .release = edac_memctrl_master_release, | ||
238 | .sysfs_ops = &memctrlfs_ops, | ||
239 | .default_attrs = (struct attribute **) memctrl_attr, | ||
240 | }; | ||
241 | |||
242 | |||
243 | /* Initialize the main sysfs entries for edac: | ||
244 | * /sys/devices/system/edac | ||
245 | * | ||
246 | * and children | ||
247 | * | ||
248 | * Return: 0 SUCCESS | ||
249 | * !0 FAILURE | ||
250 | */ | ||
251 | static int edac_sysfs_memctrl_setup(void) | ||
252 | { | ||
253 | int err=0; | ||
254 | |||
255 | debugf1("MC: " __FILE__ ": %s()\n", __func__); | ||
256 | |||
257 | /* create the /sys/devices/system/edac directory */ | ||
258 | err = sysdev_class_register(&edac_class); | ||
259 | if (!err) { | ||
260 | /* Init the MC's kobject */ | ||
261 | memset(&edac_memctrl_kobj, 0, sizeof (edac_memctrl_kobj)); | ||
262 | kobject_init(&edac_memctrl_kobj); | ||
263 | |||
264 | edac_memctrl_kobj.parent = &edac_class.kset.kobj; | ||
265 | edac_memctrl_kobj.ktype = &ktype_memctrl; | ||
266 | |||
267 | /* generate sysfs "..../edac/mc" */ | ||
268 | err = kobject_set_name(&edac_memctrl_kobj,"mc"); | ||
269 | if (!err) { | ||
270 | /* FIXME: maybe new sysdev_create_subdir() */ | ||
271 | err = kobject_register(&edac_memctrl_kobj); | ||
272 | if (err) { | ||
273 | debugf1("Failed to register '.../edac/mc'\n"); | ||
274 | } else { | ||
275 | debugf1("Registered '.../edac/mc' kobject\n"); | ||
276 | } | ||
277 | } | ||
278 | } else { | ||
279 | debugf1(KERN_WARNING "__FILE__ %s() error=%d\n", __func__,err); | ||
280 | } | ||
281 | |||
282 | return err; | ||
283 | } | ||
284 | |||
285 | /* | ||
286 | * MC teardown: | ||
287 | * the '..../edac/mc' kobject followed by '..../edac' itself | ||
288 | */ | ||
289 | static void edac_sysfs_memctrl_teardown(void) | ||
290 | { | ||
291 | debugf0("MC: " __FILE__ ": %s()\n", __func__); | ||
292 | |||
293 | /* Unregister the MC's kobject */ | ||
294 | kobject_unregister(&edac_memctrl_kobj); | ||
295 | |||
296 | /* release the master edac mc kobject */ | ||
297 | kobject_put(&edac_memctrl_kobj); | ||
298 | |||
299 | /* Unregister the 'edac' object */ | ||
300 | sysdev_class_unregister(&edac_class); | ||
301 | } | ||
302 | |||
303 | /* | ||
304 | * /sys/devices/system/edac/pci; | ||
305 | * data structures and methods | ||
306 | */ | ||
307 | |||
308 | struct list_control { | ||
309 | struct edac_pci_device_list *list; | ||
310 | int *count; | ||
311 | }; | ||
312 | |||
313 | /* Output the list as: vendor_id:device:id<,vendor_id:device_id> */ | ||
314 | static ssize_t edac_pci_list_string_show(void *ptr, char *buffer) | ||
315 | { | ||
316 | struct list_control *listctl; | ||
317 | struct edac_pci_device_list *list; | ||
318 | char *p = buffer; | ||
319 | int len=0; | ||
320 | int i; | ||
321 | |||
322 | listctl = ptr; | ||
323 | list = listctl->list; | ||
324 | |||
325 | for (i = 0; i < *(listctl->count); i++, list++ ) { | ||
326 | if (len > 0) | ||
327 | len += snprintf(p + len, (PAGE_SIZE-len), ","); | ||
328 | |||
329 | len += snprintf(p + len, | ||
330 | (PAGE_SIZE-len), | ||
331 | "%x:%x", | ||
332 | list->vendor,list->device); | ||
333 | } | ||
334 | |||
335 | len += snprintf(p + len,(PAGE_SIZE-len), "\n"); | ||
336 | |||
337 | return (ssize_t) len; | ||
338 | } | ||
339 | |||
340 | /** | ||
341 | * | ||
342 | * Scan string from **s to **e looking for one 'vendor:device' tuple | ||
343 | * where each field is a hex value | ||
344 | * | ||
345 | * return 0 if an entry is NOT found | ||
346 | * return 1 if an entry is found | ||
347 | * fill in *vendor_id and *device_id with values found | ||
348 | * | ||
349 | * In both cases, make sure *s has been moved forward toward *e | ||
350 | */ | ||
351 | static int parse_one_device(const char **s,const char **e, | ||
352 | unsigned int *vendor_id, unsigned int *device_id) | ||
353 | { | ||
354 | const char *runner, *p; | ||
355 | |||
356 | /* if null byte, we are done */ | ||
357 | if (!**s) { | ||
358 | (*s)++; /* keep *s moving */ | ||
359 | return 0; | ||
360 | } | ||
361 | |||
362 | /* skip over newlines & whitespace */ | ||
363 | if ((**s == '\n') || isspace(**s)) { | ||
364 | (*s)++; | ||
365 | return 0; | ||
366 | } | ||
367 | |||
368 | if (!isxdigit(**s)) { | ||
369 | (*s)++; | ||
370 | return 0; | ||
371 | } | ||
372 | |||
373 | /* parse vendor_id */ | ||
374 | runner = *s; | ||
375 | while (runner < *e) { | ||
376 | /* scan for vendor:device delimiter */ | ||
377 | if (*runner == ':') { | ||
378 | *vendor_id = simple_strtol((char*) *s, (char**) &p, 16); | ||
379 | runner = p + 1; | ||
380 | break; | ||
381 | } | ||
382 | runner++; | ||
383 | } | ||
384 | |||
385 | if (!isxdigit(*runner)) { | ||
386 | *s = ++runner; | ||
387 | return 0; | ||
388 | } | ||
389 | |||
390 | /* parse device_id */ | ||
391 | if (runner < *e) { | ||
392 | *device_id = simple_strtol((char*)runner, (char**)&p, 16); | ||
393 | runner = p; | ||
394 | } | ||
395 | |||
396 | *s = runner; | ||
397 | |||
398 | return 1; | ||
399 | } | ||
400 | |||
401 | static ssize_t edac_pci_list_string_store(void *ptr, const char *buffer, | ||
402 | size_t count) | ||
403 | { | ||
404 | struct list_control *listctl; | ||
405 | struct edac_pci_device_list *list; | ||
406 | unsigned int vendor_id, device_id; | ||
407 | const char *s, *e; | ||
408 | int *index; | ||
409 | |||
410 | s = (char*)buffer; | ||
411 | e = s + count; | ||
412 | |||
413 | listctl = ptr; | ||
414 | list = listctl->list; | ||
415 | index = listctl->count; | ||
416 | |||
417 | *index = 0; | ||
418 | while (*index < MAX_LISTED_PCI_DEVICES) { | ||
419 | |||
420 | if (parse_one_device(&s,&e,&vendor_id,&device_id)) { | ||
421 | list[ *index ].vendor = vendor_id; | ||
422 | list[ *index ].device = device_id; | ||
423 | (*index)++; | ||
424 | } | ||
425 | |||
426 | /* check for all data consume */ | ||
427 | if (s >= e) | ||
428 | break; | ||
429 | } | ||
430 | |||
431 | return count; | ||
432 | } | ||
433 | |||
434 | static ssize_t edac_pci_int_show(void *ptr, char *buffer) | ||
435 | { | ||
436 | int *value = ptr; | ||
437 | return sprintf(buffer,"%d\n",*value); | ||
438 | } | ||
439 | |||
440 | static ssize_t edac_pci_int_store(void *ptr, const char *buffer, size_t count) | ||
441 | { | ||
442 | int *value = ptr; | ||
443 | |||
444 | if (isdigit(*buffer)) | ||
445 | *value = simple_strtoul(buffer,NULL,0); | ||
446 | |||
447 | return count; | ||
448 | } | ||
449 | |||
450 | struct edac_pci_dev_attribute { | ||
451 | struct attribute attr; | ||
452 | void *value; | ||
453 | ssize_t (*show)(void *,char *); | ||
454 | ssize_t (*store)(void *, const char *,size_t); | ||
455 | }; | ||
456 | |||
457 | /* Set of show/store abstract level functions for PCI Parity object */ | ||
458 | static ssize_t edac_pci_dev_show(struct kobject *kobj, struct attribute *attr, | ||
459 | char *buffer) | ||
460 | { | ||
461 | struct edac_pci_dev_attribute *edac_pci_dev; | ||
462 | edac_pci_dev= (struct edac_pci_dev_attribute*)attr; | ||
463 | |||
464 | if (edac_pci_dev->show) | ||
465 | return edac_pci_dev->show(edac_pci_dev->value, buffer); | ||
466 | return -EIO; | ||
467 | } | ||
468 | |||
469 | static ssize_t edac_pci_dev_store(struct kobject *kobj, struct attribute *attr, | ||
470 | const char *buffer, size_t count) | ||
471 | { | ||
472 | struct edac_pci_dev_attribute *edac_pci_dev; | ||
473 | edac_pci_dev= (struct edac_pci_dev_attribute*)attr; | ||
474 | |||
475 | if (edac_pci_dev->show) | ||
476 | return edac_pci_dev->store(edac_pci_dev->value, buffer, count); | ||
477 | return -EIO; | ||
478 | } | ||
479 | |||
480 | static struct sysfs_ops edac_pci_sysfs_ops = { | ||
481 | .show = edac_pci_dev_show, | ||
482 | .store = edac_pci_dev_store | ||
483 | }; | ||
484 | |||
485 | |||
486 | #define EDAC_PCI_ATTR(_name,_mode,_show,_store) \ | ||
487 | struct edac_pci_dev_attribute edac_pci_attr_##_name = { \ | ||
488 | .attr = {.name = __stringify(_name), .mode = _mode }, \ | ||
489 | .value = &_name, \ | ||
490 | .show = _show, \ | ||
491 | .store = _store, \ | ||
492 | }; | ||
493 | |||
494 | #define EDAC_PCI_STRING_ATTR(_name,_data,_mode,_show,_store) \ | ||
495 | struct edac_pci_dev_attribute edac_pci_attr_##_name = { \ | ||
496 | .attr = {.name = __stringify(_name), .mode = _mode }, \ | ||
497 | .value = _data, \ | ||
498 | .show = _show, \ | ||
499 | .store = _store, \ | ||
500 | }; | ||
501 | |||
502 | static struct list_control pci_whitelist_control = { | ||
503 | .list = pci_whitelist, | ||
504 | .count = &pci_whitelist_count | ||
505 | }; | ||
506 | |||
507 | static struct list_control pci_blacklist_control = { | ||
508 | .list = pci_blacklist, | ||
509 | .count = &pci_blacklist_count | ||
510 | }; | ||
511 | |||
512 | /* whitelist attribute */ | ||
513 | EDAC_PCI_STRING_ATTR(pci_parity_whitelist, | ||
514 | &pci_whitelist_control, | ||
515 | S_IRUGO|S_IWUSR, | ||
516 | edac_pci_list_string_show, | ||
517 | edac_pci_list_string_store); | ||
518 | |||
519 | EDAC_PCI_STRING_ATTR(pci_parity_blacklist, | ||
520 | &pci_blacklist_control, | ||
521 | S_IRUGO|S_IWUSR, | ||
522 | edac_pci_list_string_show, | ||
523 | edac_pci_list_string_store); | ||
524 | |||
525 | /* PCI Parity control files */ | ||
526 | EDAC_PCI_ATTR(check_pci_parity,S_IRUGO|S_IWUSR,edac_pci_int_show,edac_pci_int_store); | ||
527 | EDAC_PCI_ATTR(panic_on_pci_parity,S_IRUGO|S_IWUSR,edac_pci_int_show,edac_pci_int_store); | ||
528 | EDAC_PCI_ATTR(pci_parity_count,S_IRUGO,edac_pci_int_show,NULL); | ||
529 | |||
530 | /* Base Attributes of the memory ECC object */ | ||
531 | static struct edac_pci_dev_attribute *edac_pci_attr[] = { | ||
532 | &edac_pci_attr_check_pci_parity, | ||
533 | &edac_pci_attr_panic_on_pci_parity, | ||
534 | &edac_pci_attr_pci_parity_count, | ||
535 | &edac_pci_attr_pci_parity_whitelist, | ||
536 | &edac_pci_attr_pci_parity_blacklist, | ||
537 | NULL, | ||
538 | }; | ||
539 | |||
540 | /* No memory to release */ | ||
541 | static void edac_pci_release(struct kobject *kobj) | ||
542 | { | ||
543 | debugf1("EDAC PCI: " __FILE__ ": %s()\n", __func__); | ||
544 | } | ||
545 | |||
546 | static struct kobj_type ktype_edac_pci = { | ||
547 | .release = edac_pci_release, | ||
548 | .sysfs_ops = &edac_pci_sysfs_ops, | ||
549 | .default_attrs = (struct attribute **) edac_pci_attr, | ||
550 | }; | ||
551 | |||
552 | /** | ||
553 | * edac_sysfs_pci_setup() | ||
554 | * | ||
555 | */ | ||
556 | static int edac_sysfs_pci_setup(void) | ||
557 | { | ||
558 | int err; | ||
559 | |||
560 | debugf1("MC: " __FILE__ ": %s()\n", __func__); | ||
561 | |||
562 | memset(&edac_pci_kobj, 0, sizeof(edac_pci_kobj)); | ||
563 | |||
564 | kobject_init(&edac_pci_kobj); | ||
565 | edac_pci_kobj.parent = &edac_class.kset.kobj; | ||
566 | edac_pci_kobj.ktype = &ktype_edac_pci; | ||
567 | |||
568 | err = kobject_set_name(&edac_pci_kobj, "pci"); | ||
569 | if (!err) { | ||
570 | /* Instanstiate the csrow object */ | ||
571 | /* FIXME: maybe new sysdev_create_subdir() */ | ||
572 | err = kobject_register(&edac_pci_kobj); | ||
573 | if (err) | ||
574 | debugf1("Failed to register '.../edac/pci'\n"); | ||
575 | else | ||
576 | debugf1("Registered '.../edac/pci' kobject\n"); | ||
577 | } | ||
578 | return err; | ||
579 | } | ||
580 | |||
581 | |||
582 | static void edac_sysfs_pci_teardown(void) | ||
583 | { | ||
584 | debugf0("MC: " __FILE__ ": %s()\n", __func__); | ||
585 | |||
586 | kobject_unregister(&edac_pci_kobj); | ||
587 | kobject_put(&edac_pci_kobj); | ||
588 | } | ||
589 | |||
590 | /* EDAC sysfs CSROW data structures and methods */ | ||
591 | |||
592 | /* Set of more detailed csrow<id> attribute show/store functions */ | ||
593 | static ssize_t csrow_ch0_dimm_label_show(struct csrow_info *csrow, char *data) | ||
594 | { | ||
595 | ssize_t size = 0; | ||
596 | |||
597 | if (csrow->nr_channels > 0) { | ||
598 | size = snprintf(data, EDAC_MC_LABEL_LEN,"%s\n", | ||
599 | csrow->channels[0].label); | ||
600 | } | ||
601 | return size; | ||
602 | } | ||
603 | |||
604 | static ssize_t csrow_ch1_dimm_label_show(struct csrow_info *csrow, char *data) | ||
605 | { | ||
606 | ssize_t size = 0; | ||
607 | |||
608 | if (csrow->nr_channels > 0) { | ||
609 | size = snprintf(data, EDAC_MC_LABEL_LEN, "%s\n", | ||
610 | csrow->channels[1].label); | ||
611 | } | ||
612 | return size; | ||
613 | } | ||
614 | |||
615 | static ssize_t csrow_ch0_dimm_label_store(struct csrow_info *csrow, | ||
616 | const char *data, size_t size) | ||
617 | { | ||
618 | ssize_t max_size = 0; | ||
619 | |||
620 | if (csrow->nr_channels > 0) { | ||
621 | max_size = min((ssize_t)size,(ssize_t)EDAC_MC_LABEL_LEN-1); | ||
622 | strncpy(csrow->channels[0].label, data, max_size); | ||
623 | csrow->channels[0].label[max_size] = '\0'; | ||
624 | } | ||
625 | return size; | ||
626 | } | ||
627 | |||
628 | static ssize_t csrow_ch1_dimm_label_store(struct csrow_info *csrow, | ||
629 | const char *data, size_t size) | ||
630 | { | ||
631 | ssize_t max_size = 0; | ||
632 | |||
633 | if (csrow->nr_channels > 1) { | ||
634 | max_size = min((ssize_t)size,(ssize_t)EDAC_MC_LABEL_LEN-1); | ||
635 | strncpy(csrow->channels[1].label, data, max_size); | ||
636 | csrow->channels[1].label[max_size] = '\0'; | ||
637 | } | ||
638 | return max_size; | ||
639 | } | ||
640 | |||
641 | static ssize_t csrow_ue_count_show(struct csrow_info *csrow, char *data) | ||
642 | { | ||
643 | return sprintf(data,"%u\n", csrow->ue_count); | ||
644 | } | ||
645 | |||
646 | static ssize_t csrow_ce_count_show(struct csrow_info *csrow, char *data) | ||
647 | { | ||
648 | return sprintf(data,"%u\n", csrow->ce_count); | ||
649 | } | ||
650 | |||
651 | static ssize_t csrow_ch0_ce_count_show(struct csrow_info *csrow, char *data) | ||
652 | { | ||
653 | ssize_t size = 0; | ||
654 | |||
655 | if (csrow->nr_channels > 0) { | ||
656 | size = sprintf(data,"%u\n", csrow->channels[0].ce_count); | ||
657 | } | ||
658 | return size; | ||
659 | } | ||
660 | |||
661 | static ssize_t csrow_ch1_ce_count_show(struct csrow_info *csrow, char *data) | ||
662 | { | ||
663 | ssize_t size = 0; | ||
664 | |||
665 | if (csrow->nr_channels > 1) { | ||
666 | size = sprintf(data,"%u\n", csrow->channels[1].ce_count); | ||
667 | } | ||
668 | return size; | ||
669 | } | ||
670 | |||
671 | static ssize_t csrow_size_show(struct csrow_info *csrow, char *data) | ||
672 | { | ||
673 | return sprintf(data,"%u\n", PAGES_TO_MiB(csrow->nr_pages)); | ||
674 | } | ||
675 | |||
676 | static ssize_t csrow_mem_type_show(struct csrow_info *csrow, char *data) | ||
677 | { | ||
678 | return sprintf(data,"%s\n", mem_types[csrow->mtype]); | ||
679 | } | ||
680 | |||
681 | static ssize_t csrow_dev_type_show(struct csrow_info *csrow, char *data) | ||
682 | { | ||
683 | return sprintf(data,"%s\n", dev_types[csrow->dtype]); | ||
684 | } | ||
685 | |||
686 | static ssize_t csrow_edac_mode_show(struct csrow_info *csrow, char *data) | ||
687 | { | ||
688 | return sprintf(data,"%s\n", edac_caps[csrow->edac_mode]); | ||
689 | } | ||
690 | |||
691 | struct csrowdev_attribute { | ||
692 | struct attribute attr; | ||
693 | ssize_t (*show)(struct csrow_info *,char *); | ||
694 | ssize_t (*store)(struct csrow_info *, const char *,size_t); | ||
695 | }; | ||
696 | |||
697 | #define to_csrow(k) container_of(k, struct csrow_info, kobj) | ||
698 | #define to_csrowdev_attr(a) container_of(a, struct csrowdev_attribute, attr) | ||
699 | |||
700 | /* Set of show/store higher level functions for csrow objects */ | ||
701 | static ssize_t csrowdev_show(struct kobject *kobj, struct attribute *attr, | ||
702 | char *buffer) | ||
703 | { | ||
704 | struct csrow_info *csrow = to_csrow(kobj); | ||
705 | struct csrowdev_attribute *csrowdev_attr = to_csrowdev_attr(attr); | ||
706 | |||
707 | if (csrowdev_attr->show) | ||
708 | return csrowdev_attr->show(csrow, buffer); | ||
709 | return -EIO; | ||
710 | } | ||
711 | |||
712 | static ssize_t csrowdev_store(struct kobject *kobj, struct attribute *attr, | ||
713 | const char *buffer, size_t count) | ||
714 | { | ||
715 | struct csrow_info *csrow = to_csrow(kobj); | ||
716 | struct csrowdev_attribute * csrowdev_attr = to_csrowdev_attr(attr); | ||
717 | |||
718 | if (csrowdev_attr->store) | ||
719 | return csrowdev_attr->store(csrow, buffer, count); | ||
720 | return -EIO; | ||
721 | } | ||
722 | |||
723 | static struct sysfs_ops csrowfs_ops = { | ||
724 | .show = csrowdev_show, | ||
725 | .store = csrowdev_store | ||
726 | }; | ||
727 | |||
728 | #define CSROWDEV_ATTR(_name,_mode,_show,_store) \ | ||
729 | struct csrowdev_attribute attr_##_name = { \ | ||
730 | .attr = {.name = __stringify(_name), .mode = _mode }, \ | ||
731 | .show = _show, \ | ||
732 | .store = _store, \ | ||
733 | }; | ||
734 | |||
735 | /* cwrow<id>/attribute files */ | ||
736 | CSROWDEV_ATTR(size_mb,S_IRUGO,csrow_size_show,NULL); | ||
737 | CSROWDEV_ATTR(dev_type,S_IRUGO,csrow_dev_type_show,NULL); | ||
738 | CSROWDEV_ATTR(mem_type,S_IRUGO,csrow_mem_type_show,NULL); | ||
739 | CSROWDEV_ATTR(edac_mode,S_IRUGO,csrow_edac_mode_show,NULL); | ||
740 | CSROWDEV_ATTR(ue_count,S_IRUGO,csrow_ue_count_show,NULL); | ||
741 | CSROWDEV_ATTR(ce_count,S_IRUGO,csrow_ce_count_show,NULL); | ||
742 | CSROWDEV_ATTR(ch0_ce_count,S_IRUGO,csrow_ch0_ce_count_show,NULL); | ||
743 | CSROWDEV_ATTR(ch1_ce_count,S_IRUGO,csrow_ch1_ce_count_show,NULL); | ||
744 | |||
745 | /* control/attribute files */ | ||
746 | CSROWDEV_ATTR(ch0_dimm_label,S_IRUGO|S_IWUSR, | ||
747 | csrow_ch0_dimm_label_show, | ||
748 | csrow_ch0_dimm_label_store); | ||
749 | CSROWDEV_ATTR(ch1_dimm_label,S_IRUGO|S_IWUSR, | ||
750 | csrow_ch1_dimm_label_show, | ||
751 | csrow_ch1_dimm_label_store); | ||
752 | |||
753 | |||
754 | /* Attributes of the CSROW<id> object */ | ||
755 | static struct csrowdev_attribute *csrow_attr[] = { | ||
756 | &attr_dev_type, | ||
757 | &attr_mem_type, | ||
758 | &attr_edac_mode, | ||
759 | &attr_size_mb, | ||
760 | &attr_ue_count, | ||
761 | &attr_ce_count, | ||
762 | &attr_ch0_ce_count, | ||
763 | &attr_ch1_ce_count, | ||
764 | &attr_ch0_dimm_label, | ||
765 | &attr_ch1_dimm_label, | ||
766 | NULL, | ||
767 | }; | ||
768 | |||
769 | |||
770 | /* No memory to release */ | ||
771 | static void edac_csrow_instance_release(struct kobject *kobj) | ||
772 | { | ||
773 | debugf1("EDAC MC: " __FILE__ ": %s()\n", __func__); | ||
774 | } | ||
775 | |||
776 | static struct kobj_type ktype_csrow = { | ||
777 | .release = edac_csrow_instance_release, | ||
778 | .sysfs_ops = &csrowfs_ops, | ||
779 | .default_attrs = (struct attribute **) csrow_attr, | ||
780 | }; | ||
781 | |||
782 | /* Create a CSROW object under specifed edac_mc_device */ | ||
783 | static int edac_create_csrow_object(struct kobject *edac_mci_kobj, | ||
784 | struct csrow_info *csrow, int index ) | ||
785 | { | ||
786 | int err = 0; | ||
787 | |||
788 | debugf0("MC: " __FILE__ ": %s()\n", __func__); | ||
789 | |||
790 | memset(&csrow->kobj, 0, sizeof(csrow->kobj)); | ||
791 | |||
792 | /* generate ..../edac/mc/mc<id>/csrow<index> */ | ||
793 | |||
794 | kobject_init(&csrow->kobj); | ||
795 | csrow->kobj.parent = edac_mci_kobj; | ||
796 | csrow->kobj.ktype = &ktype_csrow; | ||
797 | |||
798 | /* name this instance of csrow<id> */ | ||
799 | err = kobject_set_name(&csrow->kobj,"csrow%d",index); | ||
800 | if (!err) { | ||
801 | /* Instanstiate the csrow object */ | ||
802 | err = kobject_register(&csrow->kobj); | ||
803 | if (err) | ||
804 | debugf0("Failed to register CSROW%d\n",index); | ||
805 | else | ||
806 | debugf0("Registered CSROW%d\n",index); | ||
807 | } | ||
808 | |||
809 | return err; | ||
810 | } | ||
811 | |||
812 | /* sysfs data structures and methods for the MCI kobjects */ | ||
813 | |||
814 | static ssize_t mci_reset_counters_store(struct mem_ctl_info *mci, | ||
815 | const char *data, size_t count ) | ||
816 | { | ||
817 | int row, chan; | ||
818 | |||
819 | mci->ue_noinfo_count = 0; | ||
820 | mci->ce_noinfo_count = 0; | ||
821 | mci->ue_count = 0; | ||
822 | mci->ce_count = 0; | ||
823 | for (row = 0; row < mci->nr_csrows; row++) { | ||
824 | struct csrow_info *ri = &mci->csrows[row]; | ||
825 | |||
826 | ri->ue_count = 0; | ||
827 | ri->ce_count = 0; | ||
828 | for (chan = 0; chan < ri->nr_channels; chan++) | ||
829 | ri->channels[chan].ce_count = 0; | ||
830 | } | ||
831 | mci->start_time = jiffies; | ||
832 | |||
833 | return count; | ||
834 | } | ||
835 | |||
836 | static ssize_t mci_ue_count_show(struct mem_ctl_info *mci, char *data) | ||
837 | { | ||
838 | return sprintf(data,"%d\n", mci->ue_count); | ||
839 | } | ||
840 | |||
841 | static ssize_t mci_ce_count_show(struct mem_ctl_info *mci, char *data) | ||
842 | { | ||
843 | return sprintf(data,"%d\n", mci->ce_count); | ||
844 | } | ||
845 | |||
846 | static ssize_t mci_ce_noinfo_show(struct mem_ctl_info *mci, char *data) | ||
847 | { | ||
848 | return sprintf(data,"%d\n", mci->ce_noinfo_count); | ||
849 | } | ||
850 | |||
851 | static ssize_t mci_ue_noinfo_show(struct mem_ctl_info *mci, char *data) | ||
852 | { | ||
853 | return sprintf(data,"%d\n", mci->ue_noinfo_count); | ||
854 | } | ||
855 | |||
856 | static ssize_t mci_seconds_show(struct mem_ctl_info *mci, char *data) | ||
857 | { | ||
858 | return sprintf(data,"%ld\n", (jiffies - mci->start_time) / HZ); | ||
859 | } | ||
860 | |||
861 | static ssize_t mci_mod_name_show(struct mem_ctl_info *mci, char *data) | ||
862 | { | ||
863 | return sprintf(data,"%s %s\n", mci->mod_name, mci->mod_ver); | ||
864 | } | ||
865 | |||
866 | static ssize_t mci_ctl_name_show(struct mem_ctl_info *mci, char *data) | ||
867 | { | ||
868 | return sprintf(data,"%s\n", mci->ctl_name); | ||
869 | } | ||
870 | |||
871 | static int mci_output_edac_cap(char *buf, unsigned long edac_cap) | ||
872 | { | ||
873 | char *p = buf; | ||
874 | int bit_idx; | ||
875 | |||
876 | for (bit_idx = 0; bit_idx < 8 * sizeof(edac_cap); bit_idx++) { | ||
877 | if ((edac_cap >> bit_idx) & 0x1) | ||
878 | p += sprintf(p, "%s ", edac_caps[bit_idx]); | ||
879 | } | ||
880 | |||
881 | return p - buf; | ||
882 | } | ||
883 | |||
884 | static ssize_t mci_edac_capability_show(struct mem_ctl_info *mci, char *data) | ||
885 | { | ||
886 | char *p = data; | ||
887 | |||
888 | p += mci_output_edac_cap(p,mci->edac_ctl_cap); | ||
889 | p += sprintf(p, "\n"); | ||
890 | |||
891 | return p - data; | ||
892 | } | ||
893 | |||
894 | static ssize_t mci_edac_current_capability_show(struct mem_ctl_info *mci, | ||
895 | char *data) | ||
896 | { | ||
897 | char *p = data; | ||
898 | |||
899 | p += mci_output_edac_cap(p,mci->edac_cap); | ||
900 | p += sprintf(p, "\n"); | ||
901 | |||
902 | return p - data; | ||
903 | } | ||
904 | |||
905 | static int mci_output_mtype_cap(char *buf, unsigned long mtype_cap) | ||
906 | { | ||
907 | char *p = buf; | ||
908 | int bit_idx; | ||
909 | |||
910 | for (bit_idx = 0; bit_idx < 8 * sizeof(mtype_cap); bit_idx++) { | ||
911 | if ((mtype_cap >> bit_idx) & 0x1) | ||
912 | p += sprintf(p, "%s ", mem_types[bit_idx]); | ||
913 | } | ||
914 | |||
915 | return p - buf; | ||
916 | } | ||
917 | |||
918 | static ssize_t mci_supported_mem_type_show(struct mem_ctl_info *mci, char *data) | ||
919 | { | ||
920 | char *p = data; | ||
921 | |||
922 | p += mci_output_mtype_cap(p,mci->mtype_cap); | ||
923 | p += sprintf(p, "\n"); | ||
924 | |||
925 | return p - data; | ||
926 | } | ||
927 | |||
928 | static ssize_t mci_size_mb_show(struct mem_ctl_info *mci, char *data) | ||
929 | { | ||
930 | int total_pages, csrow_idx; | ||
931 | |||
932 | for (total_pages = csrow_idx = 0; csrow_idx < mci->nr_csrows; | ||
933 | csrow_idx++) { | ||
934 | struct csrow_info *csrow = &mci->csrows[csrow_idx]; | ||
935 | |||
936 | if (!csrow->nr_pages) | ||
937 | continue; | ||
938 | total_pages += csrow->nr_pages; | ||
939 | } | ||
940 | |||
941 | return sprintf(data,"%u\n", PAGES_TO_MiB(total_pages)); | ||
942 | } | ||
943 | |||
944 | struct mcidev_attribute { | ||
945 | struct attribute attr; | ||
946 | ssize_t (*show)(struct mem_ctl_info *,char *); | ||
947 | ssize_t (*store)(struct mem_ctl_info *, const char *,size_t); | ||
948 | }; | ||
949 | |||
950 | #define to_mci(k) container_of(k, struct mem_ctl_info, edac_mci_kobj) | ||
951 | #define to_mcidev_attr(a) container_of(a, struct mcidev_attribute, attr) | ||
952 | |||
953 | static ssize_t mcidev_show(struct kobject *kobj, struct attribute *attr, | ||
954 | char *buffer) | ||
955 | { | ||
956 | struct mem_ctl_info *mem_ctl_info = to_mci(kobj); | ||
957 | struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr); | ||
958 | |||
959 | if (mcidev_attr->show) | ||
960 | return mcidev_attr->show(mem_ctl_info, buffer); | ||
961 | return -EIO; | ||
962 | } | ||
963 | |||
964 | static ssize_t mcidev_store(struct kobject *kobj, struct attribute *attr, | ||
965 | const char *buffer, size_t count) | ||
966 | { | ||
967 | struct mem_ctl_info *mem_ctl_info = to_mci(kobj); | ||
968 | struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr); | ||
969 | |||
970 | if (mcidev_attr->store) | ||
971 | return mcidev_attr->store(mem_ctl_info, buffer, count); | ||
972 | return -EIO; | ||
973 | } | ||
974 | |||
975 | static struct sysfs_ops mci_ops = { | ||
976 | .show = mcidev_show, | ||
977 | .store = mcidev_store | ||
978 | }; | ||
979 | |||
980 | #define MCIDEV_ATTR(_name,_mode,_show,_store) \ | ||
981 | struct mcidev_attribute mci_attr_##_name = { \ | ||
982 | .attr = {.name = __stringify(_name), .mode = _mode }, \ | ||
983 | .show = _show, \ | ||
984 | .store = _store, \ | ||
985 | }; | ||
986 | |||
987 | /* Control file */ | ||
988 | MCIDEV_ATTR(reset_counters,S_IWUSR,NULL,mci_reset_counters_store); | ||
989 | |||
990 | /* Attribute files */ | ||
991 | MCIDEV_ATTR(mc_name,S_IRUGO,mci_ctl_name_show,NULL); | ||
992 | MCIDEV_ATTR(module_name,S_IRUGO,mci_mod_name_show,NULL); | ||
993 | MCIDEV_ATTR(edac_capability,S_IRUGO,mci_edac_capability_show,NULL); | ||
994 | MCIDEV_ATTR(size_mb,S_IRUGO,mci_size_mb_show,NULL); | ||
995 | MCIDEV_ATTR(seconds_since_reset,S_IRUGO,mci_seconds_show,NULL); | ||
996 | MCIDEV_ATTR(ue_noinfo_count,S_IRUGO,mci_ue_noinfo_show,NULL); | ||
997 | MCIDEV_ATTR(ce_noinfo_count,S_IRUGO,mci_ce_noinfo_show,NULL); | ||
998 | MCIDEV_ATTR(ue_count,S_IRUGO,mci_ue_count_show,NULL); | ||
999 | MCIDEV_ATTR(ce_count,S_IRUGO,mci_ce_count_show,NULL); | ||
1000 | MCIDEV_ATTR(edac_current_capability,S_IRUGO, | ||
1001 | mci_edac_current_capability_show,NULL); | ||
1002 | MCIDEV_ATTR(supported_mem_type,S_IRUGO, | ||
1003 | mci_supported_mem_type_show,NULL); | ||
1004 | |||
1005 | |||
1006 | static struct mcidev_attribute *mci_attr[] = { | ||
1007 | &mci_attr_reset_counters, | ||
1008 | &mci_attr_module_name, | ||
1009 | &mci_attr_mc_name, | ||
1010 | &mci_attr_edac_capability, | ||
1011 | &mci_attr_edac_current_capability, | ||
1012 | &mci_attr_supported_mem_type, | ||
1013 | &mci_attr_size_mb, | ||
1014 | &mci_attr_seconds_since_reset, | ||
1015 | &mci_attr_ue_noinfo_count, | ||
1016 | &mci_attr_ce_noinfo_count, | ||
1017 | &mci_attr_ue_count, | ||
1018 | &mci_attr_ce_count, | ||
1019 | NULL | ||
1020 | }; | ||
1021 | |||
1022 | |||
1023 | /* | ||
1024 | * Release of a MC controlling instance | ||
1025 | */ | ||
1026 | static void edac_mci_instance_release(struct kobject *kobj) | ||
1027 | { | ||
1028 | struct mem_ctl_info *mci; | ||
1029 | mci = container_of(kobj,struct mem_ctl_info,edac_mci_kobj); | ||
1030 | |||
1031 | debugf0("MC: " __FILE__ ": %s() idx=%d calling kfree\n", | ||
1032 | __func__, mci->mc_idx); | ||
1033 | |||
1034 | kfree(mci); | ||
1035 | } | ||
1036 | |||
1037 | static struct kobj_type ktype_mci = { | ||
1038 | .release = edac_mci_instance_release, | ||
1039 | .sysfs_ops = &mci_ops, | ||
1040 | .default_attrs = (struct attribute **) mci_attr, | ||
1041 | }; | ||
1042 | |||
1043 | #define EDAC_DEVICE_SYMLINK "device" | ||
1044 | |||
1045 | /* | ||
1046 | * Create a new Memory Controller kobject instance, | ||
1047 | * mc<id> under the 'mc' directory | ||
1048 | * | ||
1049 | * Return: | ||
1050 | * 0 Success | ||
1051 | * !0 Failure | ||
1052 | */ | ||
1053 | static int edac_create_sysfs_mci_device(struct mem_ctl_info *mci) | ||
1054 | { | ||
1055 | int i; | ||
1056 | int err; | ||
1057 | struct csrow_info *csrow; | ||
1058 | struct kobject *edac_mci_kobj=&mci->edac_mci_kobj; | ||
1059 | |||
1060 | debugf0("MC: " __FILE__ ": %s() idx=%d\n", __func__, mci->mc_idx); | ||
1061 | |||
1062 | memset(edac_mci_kobj, 0, sizeof(*edac_mci_kobj)); | ||
1063 | kobject_init(edac_mci_kobj); | ||
1064 | |||
1065 | /* set the name of the mc<id> object */ | ||
1066 | err = kobject_set_name(edac_mci_kobj,"mc%d",mci->mc_idx); | ||
1067 | if (err) | ||
1068 | return err; | ||
1069 | |||
1070 | /* link to our parent the '..../edac/mc' object */ | ||
1071 | edac_mci_kobj->parent = &edac_memctrl_kobj; | ||
1072 | edac_mci_kobj->ktype = &ktype_mci; | ||
1073 | |||
1074 | /* register the mc<id> kobject */ | ||
1075 | err = kobject_register(edac_mci_kobj); | ||
1076 | if (err) | ||
1077 | return err; | ||
1078 | |||
1079 | /* create a symlink for the device */ | ||
1080 | err = sysfs_create_link(edac_mci_kobj, &mci->pdev->dev.kobj, | ||
1081 | EDAC_DEVICE_SYMLINK); | ||
1082 | if (err) { | ||
1083 | kobject_unregister(edac_mci_kobj); | ||
1084 | return err; | ||
1085 | } | ||
1086 | |||
1087 | /* Make directories for each CSROW object | ||
1088 | * under the mc<id> kobject | ||
1089 | */ | ||
1090 | for (i = 0; i < mci->nr_csrows; i++) { | ||
1091 | |||
1092 | csrow = &mci->csrows[i]; | ||
1093 | |||
1094 | /* Only expose populated CSROWs */ | ||
1095 | if (csrow->nr_pages > 0) { | ||
1096 | err = edac_create_csrow_object(edac_mci_kobj,csrow,i); | ||
1097 | if (err) | ||
1098 | goto fail; | ||
1099 | } | ||
1100 | } | ||
1101 | |||
1102 | /* Mark this MCI instance as having sysfs entries */ | ||
1103 | mci->sysfs_active = MCI_SYSFS_ACTIVE; | ||
1104 | |||
1105 | return 0; | ||
1106 | |||
1107 | |||
1108 | /* CSROW error: backout what has already been registered, */ | ||
1109 | fail: | ||
1110 | for ( i--; i >= 0; i--) { | ||
1111 | if (csrow->nr_pages > 0) { | ||
1112 | kobject_unregister(&mci->csrows[i].kobj); | ||
1113 | kobject_put(&mci->csrows[i].kobj); | ||
1114 | } | ||
1115 | } | ||
1116 | |||
1117 | kobject_unregister(edac_mci_kobj); | ||
1118 | kobject_put(edac_mci_kobj); | ||
1119 | |||
1120 | return err; | ||
1121 | } | ||
1122 | |||
1123 | /* | ||
1124 | * remove a Memory Controller instance | ||
1125 | */ | ||
1126 | static void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci) | ||
1127 | { | ||
1128 | int i; | ||
1129 | |||
1130 | debugf0("MC: " __FILE__ ": %s()\n", __func__); | ||
1131 | |||
1132 | /* remove all csrow kobjects */ | ||
1133 | for (i = 0; i < mci->nr_csrows; i++) { | ||
1134 | if (mci->csrows[i].nr_pages > 0) { | ||
1135 | kobject_unregister(&mci->csrows[i].kobj); | ||
1136 | kobject_put(&mci->csrows[i].kobj); | ||
1137 | } | ||
1138 | } | ||
1139 | |||
1140 | sysfs_remove_link(&mci->edac_mci_kobj, EDAC_DEVICE_SYMLINK); | ||
1141 | |||
1142 | kobject_unregister(&mci->edac_mci_kobj); | ||
1143 | kobject_put(&mci->edac_mci_kobj); | ||
1144 | } | ||
1145 | |||
1146 | /* END OF sysfs data and methods */ | ||
1147 | |||
1148 | #ifdef CONFIG_EDAC_DEBUG | ||
1149 | |||
1150 | EXPORT_SYMBOL(edac_mc_dump_channel); | ||
1151 | |||
1152 | void edac_mc_dump_channel(struct channel_info *chan) | ||
1153 | { | ||
1154 | debugf4("\tchannel = %p\n", chan); | ||
1155 | debugf4("\tchannel->chan_idx = %d\n", chan->chan_idx); | ||
1156 | debugf4("\tchannel->ce_count = %d\n", chan->ce_count); | ||
1157 | debugf4("\tchannel->label = '%s'\n", chan->label); | ||
1158 | debugf4("\tchannel->csrow = %p\n\n", chan->csrow); | ||
1159 | } | ||
1160 | |||
1161 | |||
1162 | EXPORT_SYMBOL(edac_mc_dump_csrow); | ||
1163 | |||
1164 | void edac_mc_dump_csrow(struct csrow_info *csrow) | ||
1165 | { | ||
1166 | debugf4("\tcsrow = %p\n", csrow); | ||
1167 | debugf4("\tcsrow->csrow_idx = %d\n", csrow->csrow_idx); | ||
1168 | debugf4("\tcsrow->first_page = 0x%lx\n", | ||
1169 | csrow->first_page); | ||
1170 | debugf4("\tcsrow->last_page = 0x%lx\n", csrow->last_page); | ||
1171 | debugf4("\tcsrow->page_mask = 0x%lx\n", csrow->page_mask); | ||
1172 | debugf4("\tcsrow->nr_pages = 0x%x\n", csrow->nr_pages); | ||
1173 | debugf4("\tcsrow->nr_channels = %d\n", | ||
1174 | csrow->nr_channels); | ||
1175 | debugf4("\tcsrow->channels = %p\n", csrow->channels); | ||
1176 | debugf4("\tcsrow->mci = %p\n\n", csrow->mci); | ||
1177 | } | ||
1178 | |||
1179 | |||
1180 | EXPORT_SYMBOL(edac_mc_dump_mci); | ||
1181 | |||
1182 | void edac_mc_dump_mci(struct mem_ctl_info *mci) | ||
1183 | { | ||
1184 | debugf3("\tmci = %p\n", mci); | ||
1185 | debugf3("\tmci->mtype_cap = %lx\n", mci->mtype_cap); | ||
1186 | debugf3("\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap); | ||
1187 | debugf3("\tmci->edac_cap = %lx\n", mci->edac_cap); | ||
1188 | debugf4("\tmci->edac_check = %p\n", mci->edac_check); | ||
1189 | debugf3("\tmci->nr_csrows = %d, csrows = %p\n", | ||
1190 | mci->nr_csrows, mci->csrows); | ||
1191 | debugf3("\tpdev = %p\n", mci->pdev); | ||
1192 | debugf3("\tmod_name:ctl_name = %s:%s\n", | ||
1193 | mci->mod_name, mci->ctl_name); | ||
1194 | debugf3("\tpvt_info = %p\n\n", mci->pvt_info); | ||
1195 | } | ||
1196 | |||
1197 | |||
1198 | #endif /* CONFIG_EDAC_DEBUG */ | ||
1199 | |||
1200 | /* 'ptr' points to a possibly unaligned item X such that sizeof(X) is 'size'. | ||
1201 | * Adjust 'ptr' so that its alignment is at least as stringent as what the | ||
1202 | * compiler would provide for X and return the aligned result. | ||
1203 | * | ||
1204 | * If 'size' is a constant, the compiler will optimize this whole function | ||
1205 | * down to either a no-op or the addition of a constant to the value of 'ptr'. | ||
1206 | */ | ||
1207 | static inline char * align_ptr (void *ptr, unsigned size) | ||
1208 | { | ||
1209 | unsigned align, r; | ||
1210 | |||
1211 | /* Here we assume that the alignment of a "long long" is the most | ||
1212 | * stringent alignment that the compiler will ever provide by default. | ||
1213 | * As far as I know, this is a reasonable assumption. | ||
1214 | */ | ||
1215 | if (size > sizeof(long)) | ||
1216 | align = sizeof(long long); | ||
1217 | else if (size > sizeof(int)) | ||
1218 | align = sizeof(long); | ||
1219 | else if (size > sizeof(short)) | ||
1220 | align = sizeof(int); | ||
1221 | else if (size > sizeof(char)) | ||
1222 | align = sizeof(short); | ||
1223 | else | ||
1224 | return (char *) ptr; | ||
1225 | |||
1226 | r = size % align; | ||
1227 | |||
1228 | if (r == 0) | ||
1229 | return (char *) ptr; | ||
1230 | |||
1231 | return (char *) (((unsigned long) ptr) + align - r); | ||
1232 | } | ||
1233 | |||
1234 | |||
1235 | EXPORT_SYMBOL(edac_mc_alloc); | ||
1236 | |||
1237 | /** | ||
1238 | * edac_mc_alloc: Allocate a struct mem_ctl_info structure | ||
1239 | * @size_pvt: size of private storage needed | ||
1240 | * @nr_csrows: Number of CWROWS needed for this MC | ||
1241 | * @nr_chans: Number of channels for the MC | ||
1242 | * | ||
1243 | * Everything is kmalloc'ed as one big chunk - more efficient. | ||
1244 | * Only can be used if all structures have the same lifetime - otherwise | ||
1245 | * you have to allocate and initialize your own structures. | ||
1246 | * | ||
1247 | * Use edac_mc_free() to free mc structures allocated by this function. | ||
1248 | * | ||
1249 | * Returns: | ||
1250 | * NULL allocation failed | ||
1251 | * struct mem_ctl_info pointer | ||
1252 | */ | ||
1253 | struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows, | ||
1254 | unsigned nr_chans) | ||
1255 | { | ||
1256 | struct mem_ctl_info *mci; | ||
1257 | struct csrow_info *csi, *csrow; | ||
1258 | struct channel_info *chi, *chp, *chan; | ||
1259 | void *pvt; | ||
1260 | unsigned size; | ||
1261 | int row, chn; | ||
1262 | |||
1263 | /* Figure out the offsets of the various items from the start of an mc | ||
1264 | * structure. We want the alignment of each item to be at least as | ||
1265 | * stringent as what the compiler would provide if we could simply | ||
1266 | * hardcode everything into a single struct. | ||
1267 | */ | ||
1268 | mci = (struct mem_ctl_info *) 0; | ||
1269 | csi = (struct csrow_info *)align_ptr(&mci[1], sizeof(*csi)); | ||
1270 | chi = (struct channel_info *) | ||
1271 | align_ptr(&csi[nr_csrows], sizeof(*chi)); | ||
1272 | pvt = align_ptr(&chi[nr_chans * nr_csrows], sz_pvt); | ||
1273 | size = ((unsigned long) pvt) + sz_pvt; | ||
1274 | |||
1275 | if ((mci = kmalloc(size, GFP_KERNEL)) == NULL) | ||
1276 | return NULL; | ||
1277 | |||
1278 | /* Adjust pointers so they point within the memory we just allocated | ||
1279 | * rather than an imaginary chunk of memory located at address 0. | ||
1280 | */ | ||
1281 | csi = (struct csrow_info *) (((char *) mci) + ((unsigned long) csi)); | ||
1282 | chi = (struct channel_info *) (((char *) mci) + ((unsigned long) chi)); | ||
1283 | pvt = sz_pvt ? (((char *) mci) + ((unsigned long) pvt)) : NULL; | ||
1284 | |||
1285 | memset(mci, 0, size); /* clear all fields */ | ||
1286 | |||
1287 | mci->csrows = csi; | ||
1288 | mci->pvt_info = pvt; | ||
1289 | mci->nr_csrows = nr_csrows; | ||
1290 | |||
1291 | for (row = 0; row < nr_csrows; row++) { | ||
1292 | csrow = &csi[row]; | ||
1293 | csrow->csrow_idx = row; | ||
1294 | csrow->mci = mci; | ||
1295 | csrow->nr_channels = nr_chans; | ||
1296 | chp = &chi[row * nr_chans]; | ||
1297 | csrow->channels = chp; | ||
1298 | |||
1299 | for (chn = 0; chn < nr_chans; chn++) { | ||
1300 | chan = &chp[chn]; | ||
1301 | chan->chan_idx = chn; | ||
1302 | chan->csrow = csrow; | ||
1303 | } | ||
1304 | } | ||
1305 | |||
1306 | return mci; | ||
1307 | } | ||
1308 | |||
1309 | |||
1310 | EXPORT_SYMBOL(edac_mc_free); | ||
1311 | |||
1312 | /** | ||
1313 | * edac_mc_free: Free a previously allocated 'mci' structure | ||
1314 | * @mci: pointer to a struct mem_ctl_info structure | ||
1315 | * | ||
1316 | * Free up a previously allocated mci structure | ||
1317 | * A MCI structure can be in 2 states after being allocated | ||
1318 | * by edac_mc_alloc(). | ||
1319 | * 1) Allocated in a MC driver's probe, but not yet committed | ||
1320 | * 2) Allocated and committed, by a call to edac_mc_add_mc() | ||
1321 | * edac_mc_add_mc() is the function that adds the sysfs entries | ||
1322 | * thus, this free function must determine which state the 'mci' | ||
1323 | * structure is in, then either free it directly or | ||
1324 | * perform kobject cleanup by calling edac_remove_sysfs_mci_device(). | ||
1325 | * | ||
1326 | * VOID Return | ||
1327 | */ | ||
1328 | void edac_mc_free(struct mem_ctl_info *mci) | ||
1329 | { | ||
1330 | /* only if sysfs entries for this mci instance exist | ||
1331 | * do we remove them and defer the actual kfree via | ||
1332 | * the kobject 'release()' callback. | ||
1333 | * | ||
1334 | * Otherwise, do a straight kfree now. | ||
1335 | */ | ||
1336 | if (mci->sysfs_active == MCI_SYSFS_ACTIVE) | ||
1337 | edac_remove_sysfs_mci_device(mci); | ||
1338 | else | ||
1339 | kfree(mci); | ||
1340 | } | ||
1341 | |||
1342 | |||
1343 | |||
1344 | EXPORT_SYMBOL(edac_mc_find_mci_by_pdev); | ||
1345 | |||
1346 | struct mem_ctl_info *edac_mc_find_mci_by_pdev(struct pci_dev *pdev) | ||
1347 | { | ||
1348 | struct mem_ctl_info *mci; | ||
1349 | struct list_head *item; | ||
1350 | |||
1351 | debugf3("MC: " __FILE__ ": %s()\n", __func__); | ||
1352 | |||
1353 | list_for_each(item, &mc_devices) { | ||
1354 | mci = list_entry(item, struct mem_ctl_info, link); | ||
1355 | |||
1356 | if (mci->pdev == pdev) | ||
1357 | return mci; | ||
1358 | } | ||
1359 | |||
1360 | return NULL; | ||
1361 | } | ||
1362 | |||
1363 | static int add_mc_to_global_list (struct mem_ctl_info *mci) | ||
1364 | { | ||
1365 | struct list_head *item, *insert_before; | ||
1366 | struct mem_ctl_info *p; | ||
1367 | int i; | ||
1368 | |||
1369 | if (list_empty(&mc_devices)) { | ||
1370 | mci->mc_idx = 0; | ||
1371 | insert_before = &mc_devices; | ||
1372 | } else { | ||
1373 | if (edac_mc_find_mci_by_pdev(mci->pdev)) { | ||
1374 | printk(KERN_WARNING | ||
1375 | "EDAC MC: %s (%s) %s %s already assigned %d\n", | ||
1376 | mci->pdev->dev.bus_id, pci_name(mci->pdev), | ||
1377 | mci->mod_name, mci->ctl_name, mci->mc_idx); | ||
1378 | return 1; | ||
1379 | } | ||
1380 | |||
1381 | insert_before = NULL; | ||
1382 | i = 0; | ||
1383 | |||
1384 | list_for_each(item, &mc_devices) { | ||
1385 | p = list_entry(item, struct mem_ctl_info, link); | ||
1386 | |||
1387 | if (p->mc_idx != i) { | ||
1388 | insert_before = item; | ||
1389 | break; | ||
1390 | } | ||
1391 | |||
1392 | i++; | ||
1393 | } | ||
1394 | |||
1395 | mci->mc_idx = i; | ||
1396 | |||
1397 | if (insert_before == NULL) | ||
1398 | insert_before = &mc_devices; | ||
1399 | } | ||
1400 | |||
1401 | list_add_tail_rcu(&mci->link, insert_before); | ||
1402 | return 0; | ||
1403 | } | ||
1404 | |||
1405 | |||
1406 | |||
1407 | EXPORT_SYMBOL(edac_mc_add_mc); | ||
1408 | |||
1409 | /** | ||
1410 | * edac_mc_add_mc: Insert the 'mci' structure into the mci global list | ||
1411 | * @mci: pointer to the mci structure to be added to the list | ||
1412 | * | ||
1413 | * Return: | ||
1414 | * 0 Success | ||
1415 | * !0 Failure | ||
1416 | */ | ||
1417 | |||
1418 | /* FIXME - should a warning be printed if no error detection? correction? */ | ||
1419 | int edac_mc_add_mc(struct mem_ctl_info *mci) | ||
1420 | { | ||
1421 | int rc = 1; | ||
1422 | |||
1423 | debugf0("MC: " __FILE__ ": %s()\n", __func__); | ||
1424 | #ifdef CONFIG_EDAC_DEBUG | ||
1425 | if (edac_debug_level >= 3) | ||
1426 | edac_mc_dump_mci(mci); | ||
1427 | if (edac_debug_level >= 4) { | ||
1428 | int i; | ||
1429 | |||
1430 | for (i = 0; i < mci->nr_csrows; i++) { | ||
1431 | int j; | ||
1432 | edac_mc_dump_csrow(&mci->csrows[i]); | ||
1433 | for (j = 0; j < mci->csrows[i].nr_channels; j++) | ||
1434 | edac_mc_dump_channel(&mci->csrows[i]. | ||
1435 | channels[j]); | ||
1436 | } | ||
1437 | } | ||
1438 | #endif | ||
1439 | down(&mem_ctls_mutex); | ||
1440 | |||
1441 | if (add_mc_to_global_list(mci)) | ||
1442 | goto finish; | ||
1443 | |||
1444 | /* set load time so that error rate can be tracked */ | ||
1445 | mci->start_time = jiffies; | ||
1446 | |||
1447 | if (edac_create_sysfs_mci_device(mci)) { | ||
1448 | printk(KERN_WARNING | ||
1449 | "EDAC MC%d: failed to create sysfs device\n", | ||
1450 | mci->mc_idx); | ||
1451 | /* FIXME - should there be an error code and unwind? */ | ||
1452 | goto finish; | ||
1453 | } | ||
1454 | |||
1455 | /* Report action taken */ | ||
1456 | printk(KERN_INFO | ||
1457 | "EDAC MC%d: Giving out device to %s %s: PCI %s\n", | ||
1458 | mci->mc_idx, mci->mod_name, mci->ctl_name, | ||
1459 | pci_name(mci->pdev)); | ||
1460 | |||
1461 | |||
1462 | rc = 0; | ||
1463 | |||
1464 | finish: | ||
1465 | up(&mem_ctls_mutex); | ||
1466 | return rc; | ||
1467 | } | ||
1468 | |||
1469 | |||
1470 | |||
1471 | static void complete_mc_list_del (struct rcu_head *head) | ||
1472 | { | ||
1473 | struct mem_ctl_info *mci; | ||
1474 | |||
1475 | mci = container_of(head, struct mem_ctl_info, rcu); | ||
1476 | INIT_LIST_HEAD(&mci->link); | ||
1477 | complete(&mci->complete); | ||
1478 | } | ||
1479 | |||
1480 | static void del_mc_from_global_list (struct mem_ctl_info *mci) | ||
1481 | { | ||
1482 | list_del_rcu(&mci->link); | ||
1483 | init_completion(&mci->complete); | ||
1484 | call_rcu(&mci->rcu, complete_mc_list_del); | ||
1485 | wait_for_completion(&mci->complete); | ||
1486 | } | ||
1487 | |||
1488 | EXPORT_SYMBOL(edac_mc_del_mc); | ||
1489 | |||
1490 | /** | ||
1491 | * edac_mc_del_mc: Remove the specified mci structure from global list | ||
1492 | * @mci: Pointer to struct mem_ctl_info structure | ||
1493 | * | ||
1494 | * Returns: | ||
1495 | * 0 Success | ||
1496 | * 1 Failure | ||
1497 | */ | ||
1498 | int edac_mc_del_mc(struct mem_ctl_info *mci) | ||
1499 | { | ||
1500 | int rc = 1; | ||
1501 | |||
1502 | debugf0("MC%d: " __FILE__ ": %s()\n", mci->mc_idx, __func__); | ||
1503 | down(&mem_ctls_mutex); | ||
1504 | del_mc_from_global_list(mci); | ||
1505 | printk(KERN_INFO | ||
1506 | "EDAC MC%d: Removed device %d for %s %s: PCI %s\n", | ||
1507 | mci->mc_idx, mci->mc_idx, mci->mod_name, mci->ctl_name, | ||
1508 | pci_name(mci->pdev)); | ||
1509 | rc = 0; | ||
1510 | up(&mem_ctls_mutex); | ||
1511 | |||
1512 | return rc; | ||
1513 | } | ||
1514 | |||
1515 | |||
1516 | EXPORT_SYMBOL(edac_mc_scrub_block); | ||
1517 | |||
1518 | void edac_mc_scrub_block(unsigned long page, unsigned long offset, | ||
1519 | u32 size) | ||
1520 | { | ||
1521 | struct page *pg; | ||
1522 | void *virt_addr; | ||
1523 | unsigned long flags = 0; | ||
1524 | |||
1525 | debugf3("MC: " __FILE__ ": %s()\n", __func__); | ||
1526 | |||
1527 | /* ECC error page was not in our memory. Ignore it. */ | ||
1528 | if(!pfn_valid(page)) | ||
1529 | return; | ||
1530 | |||
1531 | /* Find the actual page structure then map it and fix */ | ||
1532 | pg = pfn_to_page(page); | ||
1533 | |||
1534 | if (PageHighMem(pg)) | ||
1535 | local_irq_save(flags); | ||
1536 | |||
1537 | virt_addr = kmap_atomic(pg, KM_BOUNCE_READ); | ||
1538 | |||
1539 | /* Perform architecture specific atomic scrub operation */ | ||
1540 | atomic_scrub(virt_addr + offset, size); | ||
1541 | |||
1542 | /* Unmap and complete */ | ||
1543 | kunmap_atomic(virt_addr, KM_BOUNCE_READ); | ||
1544 | |||
1545 | if (PageHighMem(pg)) | ||
1546 | local_irq_restore(flags); | ||
1547 | } | ||
1548 | |||
1549 | |||
1550 | /* FIXME - should return -1 */ | ||
1551 | EXPORT_SYMBOL(edac_mc_find_csrow_by_page); | ||
1552 | |||
1553 | int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, | ||
1554 | unsigned long page) | ||
1555 | { | ||
1556 | struct csrow_info *csrows = mci->csrows; | ||
1557 | int row, i; | ||
1558 | |||
1559 | debugf1("MC%d: " __FILE__ ": %s(): 0x%lx\n", mci->mc_idx, __func__, | ||
1560 | page); | ||
1561 | row = -1; | ||
1562 | |||
1563 | for (i = 0; i < mci->nr_csrows; i++) { | ||
1564 | struct csrow_info *csrow = &csrows[i]; | ||
1565 | |||
1566 | if (csrow->nr_pages == 0) | ||
1567 | continue; | ||
1568 | |||
1569 | debugf3("MC%d: " __FILE__ | ||
1570 | ": %s(): first(0x%lx) page(0x%lx)" | ||
1571 | " last(0x%lx) mask(0x%lx)\n", mci->mc_idx, | ||
1572 | __func__, csrow->first_page, page, | ||
1573 | csrow->last_page, csrow->page_mask); | ||
1574 | |||
1575 | if ((page >= csrow->first_page) && | ||
1576 | (page <= csrow->last_page) && | ||
1577 | ((page & csrow->page_mask) == | ||
1578 | (csrow->first_page & csrow->page_mask))) { | ||
1579 | row = i; | ||
1580 | break; | ||
1581 | } | ||
1582 | } | ||
1583 | |||
1584 | if (row == -1) | ||
1585 | printk(KERN_ERR | ||
1586 | "EDAC MC%d: could not look up page error address %lx\n", | ||
1587 | mci->mc_idx, (unsigned long) page); | ||
1588 | |||
1589 | return row; | ||
1590 | } | ||
1591 | |||
1592 | |||
1593 | EXPORT_SYMBOL(edac_mc_handle_ce); | ||
1594 | |||
1595 | /* FIXME - setable log (warning/emerg) levels */ | ||
1596 | /* FIXME - integrate with evlog: http://evlog.sourceforge.net/ */ | ||
1597 | void edac_mc_handle_ce(struct mem_ctl_info *mci, | ||
1598 | unsigned long page_frame_number, | ||
1599 | unsigned long offset_in_page, | ||
1600 | unsigned long syndrome, int row, int channel, | ||
1601 | const char *msg) | ||
1602 | { | ||
1603 | unsigned long remapped_page; | ||
1604 | |||
1605 | debugf3("MC%d: " __FILE__ ": %s()\n", mci->mc_idx, __func__); | ||
1606 | |||
1607 | /* FIXME - maybe make panic on INTERNAL ERROR an option */ | ||
1608 | if (row >= mci->nr_csrows || row < 0) { | ||
1609 | /* something is wrong */ | ||
1610 | printk(KERN_ERR | ||
1611 | "EDAC MC%d: INTERNAL ERROR: row out of range (%d >= %d)\n", | ||
1612 | mci->mc_idx, row, mci->nr_csrows); | ||
1613 | edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR"); | ||
1614 | return; | ||
1615 | } | ||
1616 | if (channel >= mci->csrows[row].nr_channels || channel < 0) { | ||
1617 | /* something is wrong */ | ||
1618 | printk(KERN_ERR | ||
1619 | "EDAC MC%d: INTERNAL ERROR: channel out of range " | ||
1620 | "(%d >= %d)\n", | ||
1621 | mci->mc_idx, channel, mci->csrows[row].nr_channels); | ||
1622 | edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR"); | ||
1623 | return; | ||
1624 | } | ||
1625 | |||
1626 | if (log_ce) | ||
1627 | /* FIXME - put in DIMM location */ | ||
1628 | printk(KERN_WARNING | ||
1629 | "EDAC MC%d: CE page 0x%lx, offset 0x%lx," | ||
1630 | " grain %d, syndrome 0x%lx, row %d, channel %d," | ||
1631 | " label \"%s\": %s\n", mci->mc_idx, | ||
1632 | page_frame_number, offset_in_page, | ||
1633 | mci->csrows[row].grain, syndrome, row, channel, | ||
1634 | mci->csrows[row].channels[channel].label, msg); | ||
1635 | |||
1636 | mci->ce_count++; | ||
1637 | mci->csrows[row].ce_count++; | ||
1638 | mci->csrows[row].channels[channel].ce_count++; | ||
1639 | |||
1640 | if (mci->scrub_mode & SCRUB_SW_SRC) { | ||
1641 | /* | ||
1642 | * Some MC's can remap memory so that it is still available | ||
1643 | * at a different address when PCI devices map into memory. | ||
1644 | * MC's that can't do this lose the memory where PCI devices | ||
1645 | * are mapped. This mapping is MC dependant and so we call | ||
1646 | * back into the MC driver for it to map the MC page to | ||
1647 | * a physical (CPU) page which can then be mapped to a virtual | ||
1648 | * page - which can then be scrubbed. | ||
1649 | */ | ||
1650 | remapped_page = mci->ctl_page_to_phys ? | ||
1651 | mci->ctl_page_to_phys(mci, page_frame_number) : | ||
1652 | page_frame_number; | ||
1653 | |||
1654 | edac_mc_scrub_block(remapped_page, offset_in_page, | ||
1655 | mci->csrows[row].grain); | ||
1656 | } | ||
1657 | } | ||
1658 | |||
1659 | |||
1660 | EXPORT_SYMBOL(edac_mc_handle_ce_no_info); | ||
1661 | |||
1662 | void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci, | ||
1663 | const char *msg) | ||
1664 | { | ||
1665 | if (log_ce) | ||
1666 | printk(KERN_WARNING | ||
1667 | "EDAC MC%d: CE - no information available: %s\n", | ||
1668 | mci->mc_idx, msg); | ||
1669 | mci->ce_noinfo_count++; | ||
1670 | mci->ce_count++; | ||
1671 | } | ||
1672 | |||
1673 | |||
1674 | EXPORT_SYMBOL(edac_mc_handle_ue); | ||
1675 | |||
1676 | void edac_mc_handle_ue(struct mem_ctl_info *mci, | ||
1677 | unsigned long page_frame_number, | ||
1678 | unsigned long offset_in_page, int row, | ||
1679 | const char *msg) | ||
1680 | { | ||
1681 | int len = EDAC_MC_LABEL_LEN * 4; | ||
1682 | char labels[len + 1]; | ||
1683 | char *pos = labels; | ||
1684 | int chan; | ||
1685 | int chars; | ||
1686 | |||
1687 | debugf3("MC%d: " __FILE__ ": %s()\n", mci->mc_idx, __func__); | ||
1688 | |||
1689 | /* FIXME - maybe make panic on INTERNAL ERROR an option */ | ||
1690 | if (row >= mci->nr_csrows || row < 0) { | ||
1691 | /* something is wrong */ | ||
1692 | printk(KERN_ERR | ||
1693 | "EDAC MC%d: INTERNAL ERROR: row out of range (%d >= %d)\n", | ||
1694 | mci->mc_idx, row, mci->nr_csrows); | ||
1695 | edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR"); | ||
1696 | return; | ||
1697 | } | ||
1698 | |||
1699 | chars = snprintf(pos, len + 1, "%s", | ||
1700 | mci->csrows[row].channels[0].label); | ||
1701 | len -= chars; | ||
1702 | pos += chars; | ||
1703 | for (chan = 1; (chan < mci->csrows[row].nr_channels) && (len > 0); | ||
1704 | chan++) { | ||
1705 | chars = snprintf(pos, len + 1, ":%s", | ||
1706 | mci->csrows[row].channels[chan].label); | ||
1707 | len -= chars; | ||
1708 | pos += chars; | ||
1709 | } | ||
1710 | |||
1711 | if (log_ue) | ||
1712 | printk(KERN_EMERG | ||
1713 | "EDAC MC%d: UE page 0x%lx, offset 0x%lx, grain %d, row %d," | ||
1714 | " labels \"%s\": %s\n", mci->mc_idx, | ||
1715 | page_frame_number, offset_in_page, | ||
1716 | mci->csrows[row].grain, row, labels, msg); | ||
1717 | |||
1718 | if (panic_on_ue) | ||
1719 | panic | ||
1720 | ("EDAC MC%d: UE page 0x%lx, offset 0x%lx, grain %d, row %d," | ||
1721 | " labels \"%s\": %s\n", mci->mc_idx, | ||
1722 | page_frame_number, offset_in_page, | ||
1723 | mci->csrows[row].grain, row, labels, msg); | ||
1724 | |||
1725 | mci->ue_count++; | ||
1726 | mci->csrows[row].ue_count++; | ||
1727 | } | ||
1728 | |||
1729 | |||
1730 | EXPORT_SYMBOL(edac_mc_handle_ue_no_info); | ||
1731 | |||
1732 | void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci, | ||
1733 | const char *msg) | ||
1734 | { | ||
1735 | if (panic_on_ue) | ||
1736 | panic("EDAC MC%d: Uncorrected Error", mci->mc_idx); | ||
1737 | |||
1738 | if (log_ue) | ||
1739 | printk(KERN_WARNING | ||
1740 | "EDAC MC%d: UE - no information available: %s\n", | ||
1741 | mci->mc_idx, msg); | ||
1742 | mci->ue_noinfo_count++; | ||
1743 | mci->ue_count++; | ||
1744 | } | ||
1745 | |||
1746 | |||
1747 | #ifdef CONFIG_PCI | ||
1748 | |||
1749 | static u16 get_pci_parity_status(struct pci_dev *dev, int secondary) | ||
1750 | { | ||
1751 | int where; | ||
1752 | u16 status; | ||
1753 | |||
1754 | where = secondary ? PCI_SEC_STATUS : PCI_STATUS; | ||
1755 | pci_read_config_word(dev, where, &status); | ||
1756 | |||
1757 | /* If we get back 0xFFFF then we must suspect that the card has been pulled but | ||
1758 | the Linux PCI layer has not yet finished cleaning up. We don't want to report | ||
1759 | on such devices */ | ||
1760 | |||
1761 | if (status == 0xFFFF) { | ||
1762 | u32 sanity; | ||
1763 | pci_read_config_dword(dev, 0, &sanity); | ||
1764 | if (sanity == 0xFFFFFFFF) | ||
1765 | return 0; | ||
1766 | } | ||
1767 | status &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR | | ||
1768 | PCI_STATUS_PARITY; | ||
1769 | |||
1770 | if (status) | ||
1771 | /* reset only the bits we are interested in */ | ||
1772 | pci_write_config_word(dev, where, status); | ||
1773 | |||
1774 | return status; | ||
1775 | } | ||
1776 | |||
1777 | typedef void (*pci_parity_check_fn_t) (struct pci_dev *dev); | ||
1778 | |||
1779 | /* Clear any PCI parity errors logged by this device. */ | ||
1780 | static void edac_pci_dev_parity_clear( struct pci_dev *dev ) | ||
1781 | { | ||
1782 | u8 header_type; | ||
1783 | |||
1784 | get_pci_parity_status(dev, 0); | ||
1785 | |||
1786 | /* read the device TYPE, looking for bridges */ | ||
1787 | pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type); | ||
1788 | |||
1789 | if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) | ||
1790 | get_pci_parity_status(dev, 1); | ||
1791 | } | ||
1792 | |||
1793 | /* | ||
1794 | * PCI Parity polling | ||
1795 | * | ||
1796 | */ | ||
1797 | static void edac_pci_dev_parity_test(struct pci_dev *dev) | ||
1798 | { | ||
1799 | u16 status; | ||
1800 | u8 header_type; | ||
1801 | |||
1802 | /* read the STATUS register on this device | ||
1803 | */ | ||
1804 | status = get_pci_parity_status(dev, 0); | ||
1805 | |||
1806 | debugf2("PCI STATUS= 0x%04x %s\n", status, dev->dev.bus_id ); | ||
1807 | |||
1808 | /* check the status reg for errors */ | ||
1809 | if (status) { | ||
1810 | if (status & (PCI_STATUS_SIG_SYSTEM_ERROR)) | ||
1811 | printk(KERN_CRIT | ||
1812 | "EDAC PCI- " | ||
1813 | "Signaled System Error on %s\n", | ||
1814 | pci_name (dev)); | ||
1815 | |||
1816 | if (status & (PCI_STATUS_PARITY)) { | ||
1817 | printk(KERN_CRIT | ||
1818 | "EDAC PCI- " | ||
1819 | "Master Data Parity Error on %s\n", | ||
1820 | pci_name (dev)); | ||
1821 | |||
1822 | atomic_inc(&pci_parity_count); | ||
1823 | } | ||
1824 | |||
1825 | if (status & (PCI_STATUS_DETECTED_PARITY)) { | ||
1826 | printk(KERN_CRIT | ||
1827 | "EDAC PCI- " | ||
1828 | "Detected Parity Error on %s\n", | ||
1829 | pci_name (dev)); | ||
1830 | |||
1831 | atomic_inc(&pci_parity_count); | ||
1832 | } | ||
1833 | } | ||
1834 | |||
1835 | /* read the device TYPE, looking for bridges */ | ||
1836 | pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type); | ||
1837 | |||
1838 | debugf2("PCI HEADER TYPE= 0x%02x %s\n", header_type, dev->dev.bus_id ); | ||
1839 | |||
1840 | if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { | ||
1841 | /* On bridges, need to examine secondary status register */ | ||
1842 | status = get_pci_parity_status(dev, 1); | ||
1843 | |||
1844 | debugf2("PCI SEC_STATUS= 0x%04x %s\n", | ||
1845 | status, dev->dev.bus_id ); | ||
1846 | |||
1847 | /* check the secondary status reg for errors */ | ||
1848 | if (status) { | ||
1849 | if (status & (PCI_STATUS_SIG_SYSTEM_ERROR)) | ||
1850 | printk(KERN_CRIT | ||
1851 | "EDAC PCI-Bridge- " | ||
1852 | "Signaled System Error on %s\n", | ||
1853 | pci_name (dev)); | ||
1854 | |||
1855 | if (status & (PCI_STATUS_PARITY)) { | ||
1856 | printk(KERN_CRIT | ||
1857 | "EDAC PCI-Bridge- " | ||
1858 | "Master Data Parity Error on %s\n", | ||
1859 | pci_name (dev)); | ||
1860 | |||
1861 | atomic_inc(&pci_parity_count); | ||
1862 | } | ||
1863 | |||
1864 | if (status & (PCI_STATUS_DETECTED_PARITY)) { | ||
1865 | printk(KERN_CRIT | ||
1866 | "EDAC PCI-Bridge- " | ||
1867 | "Detected Parity Error on %s\n", | ||
1868 | pci_name (dev)); | ||
1869 | |||
1870 | atomic_inc(&pci_parity_count); | ||
1871 | } | ||
1872 | } | ||
1873 | } | ||
1874 | } | ||
1875 | |||
1876 | /* | ||
1877 | * check_dev_on_list: Scan for a PCI device on a white/black list | ||
1878 | * @list: an EDAC &edac_pci_device_list white/black list pointer | ||
1879 | * @free_index: index of next free entry on the list | ||
1880 | * @pci_dev: PCI Device pointer | ||
1881 | * | ||
1882 | * see if list contains the device. | ||
1883 | * | ||
1884 | * Returns: 0 not found | ||
1885 | * 1 found on list | ||
1886 | */ | ||
1887 | static int check_dev_on_list(struct edac_pci_device_list *list, int free_index, | ||
1888 | struct pci_dev *dev) | ||
1889 | { | ||
1890 | int i; | ||
1891 | int rc = 0; /* Assume not found */ | ||
1892 | unsigned short vendor=dev->vendor; | ||
1893 | unsigned short device=dev->device; | ||
1894 | |||
1895 | /* Scan the list, looking for a vendor/device match | ||
1896 | */ | ||
1897 | for (i = 0; i < free_index; i++, list++ ) { | ||
1898 | if ( (list->vendor == vendor ) && | ||
1899 | (list->device == device )) { | ||
1900 | rc = 1; | ||
1901 | break; | ||
1902 | } | ||
1903 | } | ||
1904 | |||
1905 | return rc; | ||
1906 | } | ||
1907 | |||
1908 | /* | ||
1909 | * pci_dev parity list iterator | ||
1910 | * Scan the PCI device list for one iteration, looking for SERRORs | ||
1911 | * Master Parity ERRORS or Parity ERRORs on primary or secondary devices | ||
1912 | */ | ||
1913 | static inline void edac_pci_dev_parity_iterator(pci_parity_check_fn_t fn) | ||
1914 | { | ||
1915 | struct pci_dev *dev=NULL; | ||
1916 | |||
1917 | /* request for kernel access to the next PCI device, if any, | ||
1918 | * and while we are looking at it have its reference count | ||
1919 | * bumped until we are done with it | ||
1920 | */ | ||
1921 | while((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) { | ||
1922 | |||
1923 | /* if whitelist exists then it has priority, so only scan those | ||
1924 | * devices on the whitelist | ||
1925 | */ | ||
1926 | if (pci_whitelist_count > 0 ) { | ||
1927 | if (check_dev_on_list(pci_whitelist, | ||
1928 | pci_whitelist_count, dev)) | ||
1929 | fn(dev); | ||
1930 | } else { | ||
1931 | /* | ||
1932 | * if no whitelist, then check if this devices is | ||
1933 | * blacklisted | ||
1934 | */ | ||
1935 | if (!check_dev_on_list(pci_blacklist, | ||
1936 | pci_blacklist_count, dev)) | ||
1937 | fn(dev); | ||
1938 | } | ||
1939 | } | ||
1940 | } | ||
1941 | |||
1942 | static void do_pci_parity_check(void) | ||
1943 | { | ||
1944 | unsigned long flags; | ||
1945 | int before_count; | ||
1946 | |||
1947 | debugf3("MC: " __FILE__ ": %s()\n", __func__); | ||
1948 | |||
1949 | if (!check_pci_parity) | ||
1950 | return; | ||
1951 | |||
1952 | before_count = atomic_read(&pci_parity_count); | ||
1953 | |||
1954 | /* scan all PCI devices looking for a Parity Error on devices and | ||
1955 | * bridges | ||
1956 | */ | ||
1957 | local_irq_save(flags); | ||
1958 | edac_pci_dev_parity_iterator(edac_pci_dev_parity_test); | ||
1959 | local_irq_restore(flags); | ||
1960 | |||
1961 | /* Only if operator has selected panic on PCI Error */ | ||
1962 | if (panic_on_pci_parity) { | ||
1963 | /* If the count is different 'after' from 'before' */ | ||
1964 | if (before_count != atomic_read(&pci_parity_count)) | ||
1965 | panic("EDAC: PCI Parity Error"); | ||
1966 | } | ||
1967 | } | ||
1968 | |||
1969 | |||
1970 | static inline void clear_pci_parity_errors(void) | ||
1971 | { | ||
1972 | /* Clear any PCI bus parity errors that devices initially have logged | ||
1973 | * in their registers. | ||
1974 | */ | ||
1975 | edac_pci_dev_parity_iterator(edac_pci_dev_parity_clear); | ||
1976 | } | ||
1977 | |||
1978 | |||
1979 | #else /* CONFIG_PCI */ | ||
1980 | |||
1981 | |||
1982 | static inline void do_pci_parity_check(void) | ||
1983 | { | ||
1984 | /* no-op */ | ||
1985 | } | ||
1986 | |||
1987 | |||
1988 | static inline void clear_pci_parity_errors(void) | ||
1989 | { | ||
1990 | /* no-op */ | ||
1991 | } | ||
1992 | |||
1993 | |||
1994 | #endif /* CONFIG_PCI */ | ||
1995 | |||
1996 | /* | ||
1997 | * Iterate over all MC instances and check for ECC, et al, errors | ||
1998 | */ | ||
1999 | static inline void check_mc_devices (void) | ||
2000 | { | ||
2001 | unsigned long flags; | ||
2002 | struct list_head *item; | ||
2003 | struct mem_ctl_info *mci; | ||
2004 | |||
2005 | debugf3("MC: " __FILE__ ": %s()\n", __func__); | ||
2006 | |||
2007 | /* during poll, have interrupts off */ | ||
2008 | local_irq_save(flags); | ||
2009 | |||
2010 | list_for_each(item, &mc_devices) { | ||
2011 | mci = list_entry(item, struct mem_ctl_info, link); | ||
2012 | |||
2013 | if (mci->edac_check != NULL) | ||
2014 | mci->edac_check(mci); | ||
2015 | } | ||
2016 | |||
2017 | local_irq_restore(flags); | ||
2018 | } | ||
2019 | |||
2020 | |||
2021 | /* | ||
2022 | * Check MC status every poll_msec. | ||
2023 | * Check PCI status every poll_msec as well. | ||
2024 | * | ||
2025 | * This where the work gets done for edac. | ||
2026 | * | ||
2027 | * SMP safe, doesn't use NMI, and auto-rate-limits. | ||
2028 | */ | ||
2029 | static void do_edac_check(void) | ||
2030 | { | ||
2031 | |||
2032 | debugf3("MC: " __FILE__ ": %s()\n", __func__); | ||
2033 | |||
2034 | check_mc_devices(); | ||
2035 | |||
2036 | do_pci_parity_check(); | ||
2037 | } | ||
2038 | |||
2039 | |||
2040 | /* | ||
2041 | * EDAC thread state information | ||
2042 | */ | ||
2043 | struct bs_thread_info | ||
2044 | { | ||
2045 | struct task_struct *task; | ||
2046 | struct completion *event; | ||
2047 | char *name; | ||
2048 | void (*run)(void); | ||
2049 | }; | ||
2050 | |||
2051 | static struct bs_thread_info bs_thread; | ||
2052 | |||
2053 | /* | ||
2054 | * edac_kernel_thread | ||
2055 | * This the kernel thread that processes edac operations | ||
2056 | * in a normal thread environment | ||
2057 | */ | ||
2058 | static int edac_kernel_thread(void *arg) | ||
2059 | { | ||
2060 | struct bs_thread_info *thread = (struct bs_thread_info *) arg; | ||
2061 | |||
2062 | /* detach thread */ | ||
2063 | daemonize(thread->name); | ||
2064 | |||
2065 | current->exit_signal = SIGCHLD; | ||
2066 | allow_signal(SIGKILL); | ||
2067 | thread->task = current; | ||
2068 | |||
2069 | /* indicate to starting task we have started */ | ||
2070 | complete(thread->event); | ||
2071 | |||
2072 | /* loop forever, until we are told to stop */ | ||
2073 | while(thread->run != NULL) { | ||
2074 | void (*run)(void); | ||
2075 | |||
2076 | /* call the function to check the memory controllers */ | ||
2077 | run = thread->run; | ||
2078 | if (run) | ||
2079 | run(); | ||
2080 | |||
2081 | if (signal_pending(current)) | ||
2082 | flush_signals(current); | ||
2083 | |||
2084 | /* ensure we are interruptable */ | ||
2085 | set_current_state(TASK_INTERRUPTIBLE); | ||
2086 | |||
2087 | /* goto sleep for the interval */ | ||
2088 | schedule_timeout((HZ * poll_msec) / 1000); | ||
2089 | try_to_freeze(); | ||
2090 | } | ||
2091 | |||
2092 | /* notify waiter that we are exiting */ | ||
2093 | complete(thread->event); | ||
2094 | |||
2095 | return 0; | ||
2096 | } | ||
2097 | |||
2098 | /* | ||
2099 | * edac_mc_init | ||
2100 | * module initialization entry point | ||
2101 | */ | ||
2102 | static int __init edac_mc_init(void) | ||
2103 | { | ||
2104 | int ret; | ||
2105 | struct completion event; | ||
2106 | |||
2107 | printk(KERN_INFO "MC: " __FILE__ " version " EDAC_MC_VERSION "\n"); | ||
2108 | |||
2109 | /* | ||
2110 | * Harvest and clear any boot/initialization PCI parity errors | ||
2111 | * | ||
2112 | * FIXME: This only clears errors logged by devices present at time of | ||
2113 | * module initialization. We should also do an initial clear | ||
2114 | * of each newly hotplugged device. | ||
2115 | */ | ||
2116 | clear_pci_parity_errors(); | ||
2117 | |||
2118 | /* perform check for first time to harvest boot leftovers */ | ||
2119 | do_edac_check(); | ||
2120 | |||
2121 | /* Create the MC sysfs entires */ | ||
2122 | if (edac_sysfs_memctrl_setup()) { | ||
2123 | printk(KERN_ERR "EDAC MC: Error initializing sysfs code\n"); | ||
2124 | return -ENODEV; | ||
2125 | } | ||
2126 | |||
2127 | /* Create the PCI parity sysfs entries */ | ||
2128 | if (edac_sysfs_pci_setup()) { | ||
2129 | edac_sysfs_memctrl_teardown(); | ||
2130 | printk(KERN_ERR "EDAC PCI: Error initializing sysfs code\n"); | ||
2131 | return -ENODEV; | ||
2132 | } | ||
2133 | |||
2134 | /* Create our kernel thread */ | ||
2135 | init_completion(&event); | ||
2136 | bs_thread.event = &event; | ||
2137 | bs_thread.name = "kedac"; | ||
2138 | bs_thread.run = do_edac_check; | ||
2139 | |||
2140 | /* create our kernel thread */ | ||
2141 | ret = kernel_thread(edac_kernel_thread, &bs_thread, CLONE_KERNEL); | ||
2142 | if (ret < 0) { | ||
2143 | /* remove the sysfs entries */ | ||
2144 | edac_sysfs_memctrl_teardown(); | ||
2145 | edac_sysfs_pci_teardown(); | ||
2146 | return -ENOMEM; | ||
2147 | } | ||
2148 | |||
2149 | /* wait for our kernel theard ack that it is up and running */ | ||
2150 | wait_for_completion(&event); | ||
2151 | |||
2152 | return 0; | ||
2153 | } | ||
2154 | |||
2155 | |||
2156 | /* | ||
2157 | * edac_mc_exit() | ||
2158 | * module exit/termination functioni | ||
2159 | */ | ||
2160 | static void __exit edac_mc_exit(void) | ||
2161 | { | ||
2162 | struct completion event; | ||
2163 | |||
2164 | debugf0("MC: " __FILE__ ": %s()\n", __func__); | ||
2165 | |||
2166 | init_completion(&event); | ||
2167 | bs_thread.event = &event; | ||
2168 | |||
2169 | /* As soon as ->run is set to NULL, the task could disappear, | ||
2170 | * so we need to hold tasklist_lock until we have sent the signal | ||
2171 | */ | ||
2172 | read_lock(&tasklist_lock); | ||
2173 | bs_thread.run = NULL; | ||
2174 | send_sig(SIGKILL, bs_thread.task, 1); | ||
2175 | read_unlock(&tasklist_lock); | ||
2176 | wait_for_completion(&event); | ||
2177 | |||
2178 | /* tear down the sysfs device */ | ||
2179 | edac_sysfs_memctrl_teardown(); | ||
2180 | edac_sysfs_pci_teardown(); | ||
2181 | } | ||
2182 | |||
2183 | |||
2184 | |||
2185 | |||
2186 | module_init(edac_mc_init); | ||
2187 | module_exit(edac_mc_exit); | ||
2188 | |||
2189 | MODULE_LICENSE("GPL"); | ||
2190 | MODULE_AUTHOR("Linux Networx (http://lnxi.com) Thayne Harbaugh et al\n" | ||
2191 | "Based on.work by Dan Hollis et al"); | ||
2192 | MODULE_DESCRIPTION("Core library routines for MC reporting"); | ||
2193 | |||
2194 | module_param(panic_on_ue, int, 0644); | ||
2195 | MODULE_PARM_DESC(panic_on_ue, "Panic on uncorrected error: 0=off 1=on"); | ||
2196 | module_param(check_pci_parity, int, 0644); | ||
2197 | MODULE_PARM_DESC(check_pci_parity, "Check for PCI bus parity errors: 0=off 1=on"); | ||
2198 | module_param(panic_on_pci_parity, int, 0644); | ||
2199 | MODULE_PARM_DESC(panic_on_pci_parity, "Panic on PCI Bus Parity error: 0=off 1=on"); | ||
2200 | module_param(log_ue, int, 0644); | ||
2201 | MODULE_PARM_DESC(log_ue, "Log uncorrectable error to console: 0=off 1=on"); | ||
2202 | module_param(log_ce, int, 0644); | ||
2203 | MODULE_PARM_DESC(log_ce, "Log correctable error to console: 0=off 1=on"); | ||
2204 | module_param(poll_msec, int, 0644); | ||
2205 | MODULE_PARM_DESC(poll_msec, "Polling period in milliseconds"); | ||
2206 | #ifdef CONFIG_EDAC_DEBUG | ||
2207 | module_param(edac_debug_level, int, 0644); | ||
2208 | MODULE_PARM_DESC(edac_debug_level, "Debug level"); | ||
2209 | #endif | ||
diff --git a/drivers/edac/edac_mc.h b/drivers/edac/edac_mc.h new file mode 100644 index 000000000000..75ecf484a43a --- /dev/null +++ b/drivers/edac/edac_mc.h | |||
@@ -0,0 +1,448 @@ | |||
1 | /* | ||
2 | * MC kernel module | ||
3 | * (C) 2003 Linux Networx (http://lnxi.com) | ||
4 | * This file may be distributed under the terms of the | ||
5 | * GNU General Public License. | ||
6 | * | ||
7 | * Written by Thayne Harbaugh | ||
8 | * Based on work by Dan Hollis <goemon at anime dot net> and others. | ||
9 | * http://www.anime.net/~goemon/linux-ecc/ | ||
10 | * | ||
11 | * NMI handling support added by | ||
12 | * Dave Peterson <dsp@llnl.gov> <dave_peterson@pobox.com> | ||
13 | * | ||
14 | * $Id: edac_mc.h,v 1.4.2.10 2005/10/05 00:43:44 dsp_llnl Exp $ | ||
15 | * | ||
16 | */ | ||
17 | |||
18 | |||
19 | #ifndef _EDAC_MC_H_ | ||
20 | #define _EDAC_MC_H_ | ||
21 | |||
22 | |||
23 | #include <linux/config.h> | ||
24 | #include <linux/kernel.h> | ||
25 | #include <linux/types.h> | ||
26 | #include <linux/module.h> | ||
27 | #include <linux/spinlock.h> | ||
28 | #include <linux/smp.h> | ||
29 | #include <linux/pci.h> | ||
30 | #include <linux/time.h> | ||
31 | #include <linux/nmi.h> | ||
32 | #include <linux/rcupdate.h> | ||
33 | #include <linux/completion.h> | ||
34 | #include <linux/kobject.h> | ||
35 | |||
36 | |||
37 | #define EDAC_MC_LABEL_LEN 31 | ||
38 | #define MC_PROC_NAME_MAX_LEN 7 | ||
39 | |||
40 | #if PAGE_SHIFT < 20 | ||
41 | #define PAGES_TO_MiB( pages ) ( ( pages ) >> ( 20 - PAGE_SHIFT ) ) | ||
42 | #else /* PAGE_SHIFT > 20 */ | ||
43 | #define PAGES_TO_MiB( pages ) ( ( pages ) << ( PAGE_SHIFT - 20 ) ) | ||
44 | #endif | ||
45 | |||
46 | #ifdef CONFIG_EDAC_DEBUG | ||
47 | extern int edac_debug_level; | ||
48 | #define edac_debug_printk(level, fmt, args...) \ | ||
49 | do { if (level <= edac_debug_level) printk(KERN_DEBUG fmt, ##args); } while(0) | ||
50 | #define debugf0( ... ) edac_debug_printk(0, __VA_ARGS__ ) | ||
51 | #define debugf1( ... ) edac_debug_printk(1, __VA_ARGS__ ) | ||
52 | #define debugf2( ... ) edac_debug_printk(2, __VA_ARGS__ ) | ||
53 | #define debugf3( ... ) edac_debug_printk(3, __VA_ARGS__ ) | ||
54 | #define debugf4( ... ) edac_debug_printk(4, __VA_ARGS__ ) | ||
55 | #else /* !CONFIG_EDAC_DEBUG */ | ||
56 | #define debugf0( ... ) | ||
57 | #define debugf1( ... ) | ||
58 | #define debugf2( ... ) | ||
59 | #define debugf3( ... ) | ||
60 | #define debugf4( ... ) | ||
61 | #endif /* !CONFIG_EDAC_DEBUG */ | ||
62 | |||
63 | |||
64 | #define bs_xstr(s) bs_str(s) | ||
65 | #define bs_str(s) #s | ||
66 | #define BS_MOD_STR bs_xstr(KBUILD_BASENAME) | ||
67 | |||
68 | #define BIT(x) (1 << (x)) | ||
69 | |||
70 | #define PCI_VEND_DEV(vend, dev) PCI_VENDOR_ID_ ## vend, PCI_DEVICE_ID_ ## vend ## _ ## dev | ||
71 | |||
72 | /* memory devices */ | ||
73 | enum dev_type { | ||
74 | DEV_UNKNOWN = 0, | ||
75 | DEV_X1, | ||
76 | DEV_X2, | ||
77 | DEV_X4, | ||
78 | DEV_X8, | ||
79 | DEV_X16, | ||
80 | DEV_X32, /* Do these parts exist? */ | ||
81 | DEV_X64 /* Do these parts exist? */ | ||
82 | }; | ||
83 | |||
84 | #define DEV_FLAG_UNKNOWN BIT(DEV_UNKNOWN) | ||
85 | #define DEV_FLAG_X1 BIT(DEV_X1) | ||
86 | #define DEV_FLAG_X2 BIT(DEV_X2) | ||
87 | #define DEV_FLAG_X4 BIT(DEV_X4) | ||
88 | #define DEV_FLAG_X8 BIT(DEV_X8) | ||
89 | #define DEV_FLAG_X16 BIT(DEV_X16) | ||
90 | #define DEV_FLAG_X32 BIT(DEV_X32) | ||
91 | #define DEV_FLAG_X64 BIT(DEV_X64) | ||
92 | |||
93 | /* memory types */ | ||
94 | enum mem_type { | ||
95 | MEM_EMPTY = 0, /* Empty csrow */ | ||
96 | MEM_RESERVED, /* Reserved csrow type */ | ||
97 | MEM_UNKNOWN, /* Unknown csrow type */ | ||
98 | MEM_FPM, /* Fast page mode */ | ||
99 | MEM_EDO, /* Extended data out */ | ||
100 | MEM_BEDO, /* Burst Extended data out */ | ||
101 | MEM_SDR, /* Single data rate SDRAM */ | ||
102 | MEM_RDR, /* Registered single data rate SDRAM */ | ||
103 | MEM_DDR, /* Double data rate SDRAM */ | ||
104 | MEM_RDDR, /* Registered Double data rate SDRAM */ | ||
105 | MEM_RMBS /* Rambus DRAM */ | ||
106 | }; | ||
107 | |||
108 | #define MEM_FLAG_EMPTY BIT(MEM_EMPTY) | ||
109 | #define MEM_FLAG_RESERVED BIT(MEM_RESERVED) | ||
110 | #define MEM_FLAG_UNKNOWN BIT(MEM_UNKNOWN) | ||
111 | #define MEM_FLAG_FPM BIT(MEM_FPM) | ||
112 | #define MEM_FLAG_EDO BIT(MEM_EDO) | ||
113 | #define MEM_FLAG_BEDO BIT(MEM_BEDO) | ||
114 | #define MEM_FLAG_SDR BIT(MEM_SDR) | ||
115 | #define MEM_FLAG_RDR BIT(MEM_RDR) | ||
116 | #define MEM_FLAG_DDR BIT(MEM_DDR) | ||
117 | #define MEM_FLAG_RDDR BIT(MEM_RDDR) | ||
118 | #define MEM_FLAG_RMBS BIT(MEM_RMBS) | ||
119 | |||
120 | |||
121 | /* chipset Error Detection and Correction capabilities and mode */ | ||
122 | enum edac_type { | ||
123 | EDAC_UNKNOWN = 0, /* Unknown if ECC is available */ | ||
124 | EDAC_NONE, /* Doesnt support ECC */ | ||
125 | EDAC_RESERVED, /* Reserved ECC type */ | ||
126 | EDAC_PARITY, /* Detects parity errors */ | ||
127 | EDAC_EC, /* Error Checking - no correction */ | ||
128 | EDAC_SECDED, /* Single bit error correction, Double detection */ | ||
129 | EDAC_S2ECD2ED, /* Chipkill x2 devices - do these exist? */ | ||
130 | EDAC_S4ECD4ED, /* Chipkill x4 devices */ | ||
131 | EDAC_S8ECD8ED, /* Chipkill x8 devices */ | ||
132 | EDAC_S16ECD16ED, /* Chipkill x16 devices */ | ||
133 | }; | ||
134 | |||
135 | #define EDAC_FLAG_UNKNOWN BIT(EDAC_UNKNOWN) | ||
136 | #define EDAC_FLAG_NONE BIT(EDAC_NONE) | ||
137 | #define EDAC_FLAG_PARITY BIT(EDAC_PARITY) | ||
138 | #define EDAC_FLAG_EC BIT(EDAC_EC) | ||
139 | #define EDAC_FLAG_SECDED BIT(EDAC_SECDED) | ||
140 | #define EDAC_FLAG_S2ECD2ED BIT(EDAC_S2ECD2ED) | ||
141 | #define EDAC_FLAG_S4ECD4ED BIT(EDAC_S4ECD4ED) | ||
142 | #define EDAC_FLAG_S8ECD8ED BIT(EDAC_S8ECD8ED) | ||
143 | #define EDAC_FLAG_S16ECD16ED BIT(EDAC_S16ECD16ED) | ||
144 | |||
145 | |||
146 | /* scrubbing capabilities */ | ||
147 | enum scrub_type { | ||
148 | SCRUB_UNKNOWN = 0, /* Unknown if scrubber is available */ | ||
149 | SCRUB_NONE, /* No scrubber */ | ||
150 | SCRUB_SW_PROG, /* SW progressive (sequential) scrubbing */ | ||
151 | SCRUB_SW_SRC, /* Software scrub only errors */ | ||
152 | SCRUB_SW_PROG_SRC, /* Progressive software scrub from an error */ | ||
153 | SCRUB_SW_TUNABLE, /* Software scrub frequency is tunable */ | ||
154 | SCRUB_HW_PROG, /* HW progressive (sequential) scrubbing */ | ||
155 | SCRUB_HW_SRC, /* Hardware scrub only errors */ | ||
156 | SCRUB_HW_PROG_SRC, /* Progressive hardware scrub from an error */ | ||
157 | SCRUB_HW_TUNABLE /* Hardware scrub frequency is tunable */ | ||
158 | }; | ||
159 | |||
160 | #define SCRUB_FLAG_SW_PROG BIT(SCRUB_SW_PROG) | ||
161 | #define SCRUB_FLAG_SW_SRC BIT(SCRUB_SW_SRC_CORR) | ||
162 | #define SCRUB_FLAG_SW_PROG_SRC BIT(SCRUB_SW_PROG_SRC_CORR) | ||
163 | #define SCRUB_FLAG_SW_TUN BIT(SCRUB_SW_SCRUB_TUNABLE) | ||
164 | #define SCRUB_FLAG_HW_PROG BIT(SCRUB_HW_PROG) | ||
165 | #define SCRUB_FLAG_HW_SRC BIT(SCRUB_HW_SRC_CORR) | ||
166 | #define SCRUB_FLAG_HW_PROG_SRC BIT(SCRUB_HW_PROG_SRC_CORR) | ||
167 | #define SCRUB_FLAG_HW_TUN BIT(SCRUB_HW_TUNABLE) | ||
168 | |||
169 | enum mci_sysfs_status { | ||
170 | MCI_SYSFS_INACTIVE = 0, /* sysfs entries NOT registered */ | ||
171 | MCI_SYSFS_ACTIVE /* sysfs entries ARE registered */ | ||
172 | }; | ||
173 | |||
174 | /* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */ | ||
175 | |||
176 | /* | ||
177 | * There are several things to be aware of that aren't at all obvious: | ||
178 | * | ||
179 | * | ||
180 | * SOCKETS, SOCKET SETS, BANKS, ROWS, CHIP-SELECT ROWS, CHANNELS, etc.. | ||
181 | * | ||
182 | * These are some of the many terms that are thrown about that don't always | ||
183 | * mean what people think they mean (Inconceivable!). In the interest of | ||
184 | * creating a common ground for discussion, terms and their definitions | ||
185 | * will be established. | ||
186 | * | ||
187 | * Memory devices: The individual chip on a memory stick. These devices | ||
188 | * commonly output 4 and 8 bits each. Grouping several | ||
189 | * of these in parallel provides 64 bits which is common | ||
190 | * for a memory stick. | ||
191 | * | ||
192 | * Memory Stick: A printed circuit board that agregates multiple | ||
193 | * memory devices in parallel. This is the atomic | ||
194 | * memory component that is purchaseable by Joe consumer | ||
195 | * and loaded into a memory socket. | ||
196 | * | ||
197 | * Socket: A physical connector on the motherboard that accepts | ||
198 | * a single memory stick. | ||
199 | * | ||
200 | * Channel: Set of memory devices on a memory stick that must be | ||
201 | * grouped in parallel with one or more additional | ||
202 | * channels from other memory sticks. This parallel | ||
203 | * grouping of the output from multiple channels are | ||
204 | * necessary for the smallest granularity of memory access. | ||
205 | * Some memory controllers are capable of single channel - | ||
206 | * which means that memory sticks can be loaded | ||
207 | * individually. Other memory controllers are only | ||
208 | * capable of dual channel - which means that memory | ||
209 | * sticks must be loaded as pairs (see "socket set"). | ||
210 | * | ||
211 | * Chip-select row: All of the memory devices that are selected together. | ||
212 | * for a single, minimum grain of memory access. | ||
213 | * This selects all of the parallel memory devices across | ||
214 | * all of the parallel channels. Common chip-select rows | ||
215 | * for single channel are 64 bits, for dual channel 128 | ||
216 | * bits. | ||
217 | * | ||
218 | * Single-Ranked stick: A Single-ranked stick has 1 chip-select row of memmory. | ||
219 | * Motherboards commonly drive two chip-select pins to | ||
220 | * a memory stick. A single-ranked stick, will occupy | ||
221 | * only one of those rows. The other will be unused. | ||
222 | * | ||
223 | * Double-Ranked stick: A double-ranked stick has two chip-select rows which | ||
224 | * access different sets of memory devices. The two | ||
225 | * rows cannot be accessed concurrently. | ||
226 | * | ||
227 | * Double-sided stick: DEPRECATED TERM, see Double-Ranked stick. | ||
228 | * A double-sided stick has two chip-select rows which | ||
229 | * access different sets of memory devices. The two | ||
230 | * rows cannot be accessed concurrently. "Double-sided" | ||
231 | * is irrespective of the memory devices being mounted | ||
232 | * on both sides of the memory stick. | ||
233 | * | ||
234 | * Socket set: All of the memory sticks that are required for for | ||
235 | * a single memory access or all of the memory sticks | ||
236 | * spanned by a chip-select row. A single socket set | ||
237 | * has two chip-select rows and if double-sided sticks | ||
238 | * are used these will occupy those chip-select rows. | ||
239 | * | ||
240 | * Bank: This term is avoided because it is unclear when | ||
241 | * needing to distinguish between chip-select rows and | ||
242 | * socket sets. | ||
243 | * | ||
244 | * Controller pages: | ||
245 | * | ||
246 | * Physical pages: | ||
247 | * | ||
248 | * Virtual pages: | ||
249 | * | ||
250 | * | ||
251 | * STRUCTURE ORGANIZATION AND CHOICES | ||
252 | * | ||
253 | * | ||
254 | * | ||
255 | * PS - I enjoyed writing all that about as much as you enjoyed reading it. | ||
256 | */ | ||
257 | |||
258 | |||
259 | struct channel_info { | ||
260 | int chan_idx; /* channel index */ | ||
261 | u32 ce_count; /* Correctable Errors for this CHANNEL */ | ||
262 | char label[EDAC_MC_LABEL_LEN + 1]; /* DIMM label on motherboard */ | ||
263 | struct csrow_info *csrow; /* the parent */ | ||
264 | }; | ||
265 | |||
266 | |||
267 | struct csrow_info { | ||
268 | unsigned long first_page; /* first page number in dimm */ | ||
269 | unsigned long last_page; /* last page number in dimm */ | ||
270 | unsigned long page_mask; /* used for interleaving - | ||
271 | 0UL for non intlv */ | ||
272 | u32 nr_pages; /* number of pages in csrow */ | ||
273 | u32 grain; /* granularity of reported error in bytes */ | ||
274 | int csrow_idx; /* the chip-select row */ | ||
275 | enum dev_type dtype; /* memory device type */ | ||
276 | u32 ue_count; /* Uncorrectable Errors for this csrow */ | ||
277 | u32 ce_count; /* Correctable Errors for this csrow */ | ||
278 | enum mem_type mtype; /* memory csrow type */ | ||
279 | enum edac_type edac_mode; /* EDAC mode for this csrow */ | ||
280 | struct mem_ctl_info *mci; /* the parent */ | ||
281 | |||
282 | struct kobject kobj; /* sysfs kobject for this csrow */ | ||
283 | |||
284 | /* FIXME the number of CHANNELs might need to become dynamic */ | ||
285 | u32 nr_channels; | ||
286 | struct channel_info *channels; | ||
287 | }; | ||
288 | |||
289 | |||
290 | struct mem_ctl_info { | ||
291 | struct list_head link; /* for global list of mem_ctl_info structs */ | ||
292 | unsigned long mtype_cap; /* memory types supported by mc */ | ||
293 | unsigned long edac_ctl_cap; /* Mem controller EDAC capabilities */ | ||
294 | unsigned long edac_cap; /* configuration capabilities - this is | ||
295 | closely related to edac_ctl_cap. The | ||
296 | difference is that the controller | ||
297 | may be capable of s4ecd4ed which would | ||
298 | be listed in edac_ctl_cap, but if | ||
299 | channels aren't capable of s4ecd4ed then the | ||
300 | edac_cap would not have that capability. */ | ||
301 | unsigned long scrub_cap; /* chipset scrub capabilities */ | ||
302 | enum scrub_type scrub_mode; /* current scrub mode */ | ||
303 | |||
304 | enum mci_sysfs_status sysfs_active; /* status of sysfs */ | ||
305 | |||
306 | /* pointer to edac checking routine */ | ||
307 | void (*edac_check) (struct mem_ctl_info * mci); | ||
308 | /* | ||
309 | * Remaps memory pages: controller pages to physical pages. | ||
310 | * For most MC's, this will be NULL. | ||
311 | */ | ||
312 | /* FIXME - why not send the phys page to begin with? */ | ||
313 | unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci, | ||
314 | unsigned long page); | ||
315 | int mc_idx; | ||
316 | int nr_csrows; | ||
317 | struct csrow_info *csrows; | ||
318 | /* | ||
319 | * FIXME - what about controllers on other busses? - IDs must be | ||
320 | * unique. pdev pointer should be sufficiently unique, but | ||
321 | * BUS:SLOT.FUNC numbers may not be unique. | ||
322 | */ | ||
323 | struct pci_dev *pdev; | ||
324 | const char *mod_name; | ||
325 | const char *mod_ver; | ||
326 | const char *ctl_name; | ||
327 | char proc_name[MC_PROC_NAME_MAX_LEN + 1]; | ||
328 | void *pvt_info; | ||
329 | u32 ue_noinfo_count; /* Uncorrectable Errors w/o info */ | ||
330 | u32 ce_noinfo_count; /* Correctable Errors w/o info */ | ||
331 | u32 ue_count; /* Total Uncorrectable Errors for this MC */ | ||
332 | u32 ce_count; /* Total Correctable Errors for this MC */ | ||
333 | unsigned long start_time; /* mci load start time (in jiffies) */ | ||
334 | |||
335 | /* this stuff is for safe removal of mc devices from global list while | ||
336 | * NMI handlers may be traversing list | ||
337 | */ | ||
338 | struct rcu_head rcu; | ||
339 | struct completion complete; | ||
340 | |||
341 | /* edac sysfs device control */ | ||
342 | struct kobject edac_mci_kobj; | ||
343 | }; | ||
344 | |||
345 | |||
346 | |||
347 | /* write all or some bits in a byte-register*/ | ||
348 | static inline void pci_write_bits8(struct pci_dev *pdev, int offset, | ||
349 | u8 value, u8 mask) | ||
350 | { | ||
351 | if (mask != 0xff) { | ||
352 | u8 buf; | ||
353 | pci_read_config_byte(pdev, offset, &buf); | ||
354 | value &= mask; | ||
355 | buf &= ~mask; | ||
356 | value |= buf; | ||
357 | } | ||
358 | pci_write_config_byte(pdev, offset, value); | ||
359 | } | ||
360 | |||
361 | |||
362 | /* write all or some bits in a word-register*/ | ||
363 | static inline void pci_write_bits16(struct pci_dev *pdev, int offset, | ||
364 | u16 value, u16 mask) | ||
365 | { | ||
366 | if (mask != 0xffff) { | ||
367 | u16 buf; | ||
368 | pci_read_config_word(pdev, offset, &buf); | ||
369 | value &= mask; | ||
370 | buf &= ~mask; | ||
371 | value |= buf; | ||
372 | } | ||
373 | pci_write_config_word(pdev, offset, value); | ||
374 | } | ||
375 | |||
376 | |||
377 | /* write all or some bits in a dword-register*/ | ||
378 | static inline void pci_write_bits32(struct pci_dev *pdev, int offset, | ||
379 | u32 value, u32 mask) | ||
380 | { | ||
381 | if (mask != 0xffff) { | ||
382 | u32 buf; | ||
383 | pci_read_config_dword(pdev, offset, &buf); | ||
384 | value &= mask; | ||
385 | buf &= ~mask; | ||
386 | value |= buf; | ||
387 | } | ||
388 | pci_write_config_dword(pdev, offset, value); | ||
389 | } | ||
390 | |||
391 | |||
392 | #ifdef CONFIG_EDAC_DEBUG | ||
393 | void edac_mc_dump_channel(struct channel_info *chan); | ||
394 | void edac_mc_dump_mci(struct mem_ctl_info *mci); | ||
395 | void edac_mc_dump_csrow(struct csrow_info *csrow); | ||
396 | #endif /* CONFIG_EDAC_DEBUG */ | ||
397 | |||
398 | extern int edac_mc_add_mc(struct mem_ctl_info *mci); | ||
399 | extern int edac_mc_del_mc(struct mem_ctl_info *mci); | ||
400 | |||
401 | extern int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, | ||
402 | unsigned long page); | ||
403 | |||
404 | extern struct mem_ctl_info *edac_mc_find_mci_by_pdev(struct pci_dev | ||
405 | *pdev); | ||
406 | |||
407 | extern void edac_mc_scrub_block(unsigned long page, | ||
408 | unsigned long offset, u32 size); | ||
409 | |||
410 | /* | ||
411 | * The no info errors are used when error overflows are reported. | ||
412 | * There are a limited number of error logging registers that can | ||
413 | * be exausted. When all registers are exhausted and an additional | ||
414 | * error occurs then an error overflow register records that an | ||
415 | * error occured and the type of error, but doesn't have any | ||
416 | * further information. The ce/ue versions make for cleaner | ||
417 | * reporting logic and function interface - reduces conditional | ||
418 | * statement clutter and extra function arguments. | ||
419 | */ | ||
420 | extern void edac_mc_handle_ce(struct mem_ctl_info *mci, | ||
421 | unsigned long page_frame_number, | ||
422 | unsigned long offset_in_page, | ||
423 | unsigned long syndrome, | ||
424 | int row, int channel, const char *msg); | ||
425 | |||
426 | extern void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci, | ||
427 | const char *msg); | ||
428 | |||
429 | extern void edac_mc_handle_ue(struct mem_ctl_info *mci, | ||
430 | unsigned long page_frame_number, | ||
431 | unsigned long offset_in_page, | ||
432 | int row, const char *msg); | ||
433 | |||
434 | extern void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci, | ||
435 | const char *msg); | ||
436 | |||
437 | /* | ||
438 | * This kmalloc's and initializes all the structures. | ||
439 | * Can't be used if all structures don't have the same lifetime. | ||
440 | */ | ||
441 | extern struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, | ||
442 | unsigned nr_csrows, unsigned nr_chans); | ||
443 | |||
444 | /* Free an mc previously allocated by edac_mc_alloc() */ | ||
445 | extern void edac_mc_free(struct mem_ctl_info *mci); | ||
446 | |||
447 | |||
448 | #endif /* _EDAC_MC_H_ */ | ||
diff --git a/drivers/edac/i82860_edac.c b/drivers/edac/i82860_edac.c index bfb7ae02e379..52596e75f9c2 100644 --- a/drivers/edac/i82860_edac.c +++ b/drivers/edac/i82860_edac.c | |||
@@ -253,7 +253,7 @@ static struct pci_driver i82860_driver = { | |||
253 | .id_table = i82860_pci_tbl, | 253 | .id_table = i82860_pci_tbl, |
254 | }; | 254 | }; |
255 | 255 | ||
256 | int __init i82860_init(void) | 256 | static int __init i82860_init(void) |
257 | { | 257 | { |
258 | int pci_rc; | 258 | int pci_rc; |
259 | 259 | ||
diff --git a/drivers/edac/i82875p_edac.c b/drivers/edac/i82875p_edac.c index 79d14dfbcbdc..009c08fe5d69 100644 --- a/drivers/edac/i82875p_edac.c +++ b/drivers/edac/i82875p_edac.c | |||
@@ -483,7 +483,7 @@ static struct pci_driver i82875p_driver = { | |||
483 | }; | 483 | }; |
484 | 484 | ||
485 | 485 | ||
486 | int __init i82875p_init(void) | 486 | static int __init i82875p_init(void) |
487 | { | 487 | { |
488 | int pci_rc; | 488 | int pci_rc; |
489 | 489 | ||
diff --git a/drivers/edac/r82600_edac.c b/drivers/edac/r82600_edac.c index b6399a542560..e90892831b90 100644 --- a/drivers/edac/r82600_edac.c +++ b/drivers/edac/r82600_edac.c | |||
@@ -381,7 +381,7 @@ static struct pci_driver r82600_driver = { | |||
381 | }; | 381 | }; |
382 | 382 | ||
383 | 383 | ||
384 | int __init r82600_init(void) | 384 | static int __init r82600_init(void) |
385 | { | 385 | { |
386 | return pci_register_driver(&r82600_driver); | 386 | return pci_register_driver(&r82600_driver); |
387 | } | 387 | } |
diff --git a/include/asm-i386/atomic.h b/include/asm-i386/atomic.h index e2c00c95a5e1..de649d3aa2d4 100644 --- a/include/asm-i386/atomic.h +++ b/include/asm-i386/atomic.h | |||
@@ -255,17 +255,5 @@ __asm__ __volatile__(LOCK "orl %0,%1" \ | |||
255 | #define smp_mb__before_atomic_inc() barrier() | 255 | #define smp_mb__before_atomic_inc() barrier() |
256 | #define smp_mb__after_atomic_inc() barrier() | 256 | #define smp_mb__after_atomic_inc() barrier() |
257 | 257 | ||
258 | /* ECC atomic, DMA, SMP and interrupt safe scrub function */ | ||
259 | |||
260 | static __inline__ void atomic_scrub(unsigned long *virt_addr, u32 size) | ||
261 | { | ||
262 | u32 i; | ||
263 | for (i = 0; i < size / 4; i++, virt_addr++) | ||
264 | /* Very carefully read and write to memory atomically | ||
265 | * so we are interrupt, DMA and SMP safe. | ||
266 | */ | ||
267 | __asm__ __volatile__("lock; addl $0, %0"::"m"(*virt_addr)); | ||
268 | } | ||
269 | |||
270 | #include <asm-generic/atomic.h> | 258 | #include <asm-generic/atomic.h> |
271 | #endif | 259 | #endif |
diff --git a/include/asm-i386/edac.h b/include/asm-i386/edac.h new file mode 100644 index 000000000000..3e7dd0ab68ce --- /dev/null +++ b/include/asm-i386/edac.h | |||
@@ -0,0 +1,18 @@ | |||
1 | #ifndef ASM_EDAC_H | ||
2 | #define ASM_EDAC_H | ||
3 | |||
4 | /* ECC atomic, DMA, SMP and interrupt safe scrub function */ | ||
5 | |||
6 | static __inline__ void atomic_scrub(void *va, u32 size) | ||
7 | { | ||
8 | unsigned long *virt_addr = va; | ||
9 | u32 i; | ||
10 | |||
11 | for (i = 0; i < size / 4; i++, virt_addr++) | ||
12 | /* Very carefully read and write to memory atomically | ||
13 | * so we are interrupt, DMA and SMP safe. | ||
14 | */ | ||
15 | __asm__ __volatile__("lock; addl $0, %0"::"m"(*virt_addr)); | ||
16 | } | ||
17 | |||
18 | #endif | ||
diff --git a/include/asm-x86_64/atomic.h b/include/asm-x86_64/atomic.h index 4048508c4f40..4b5cd553e772 100644 --- a/include/asm-x86_64/atomic.h +++ b/include/asm-x86_64/atomic.h | |||
@@ -426,17 +426,5 @@ __asm__ __volatile__(LOCK "orl %0,%1" \ | |||
426 | #define smp_mb__before_atomic_inc() barrier() | 426 | #define smp_mb__before_atomic_inc() barrier() |
427 | #define smp_mb__after_atomic_inc() barrier() | 427 | #define smp_mb__after_atomic_inc() barrier() |
428 | 428 | ||
429 | /* ECC atomic, DMA, SMP and interrupt safe scrub function */ | ||
430 | |||
431 | static __inline__ void atomic_scrub(u32 *virt_addr, u32 size) | ||
432 | { | ||
433 | u32 i; | ||
434 | for (i = 0; i < size / 4; i++, virt_addr++) | ||
435 | /* Very carefully read and write to memory atomically | ||
436 | * so we are interrupt, DMA and SMP safe. | ||
437 | */ | ||
438 | __asm__ __volatile__("lock; addl $0, %0"::"m"(*virt_addr)); | ||
439 | } | ||
440 | |||
441 | #include <asm-generic/atomic.h> | 429 | #include <asm-generic/atomic.h> |
442 | #endif | 430 | #endif |
diff --git a/include/asm-x86_64/edac.h b/include/asm-x86_64/edac.h new file mode 100644 index 000000000000..cad1cd42b4ee --- /dev/null +++ b/include/asm-x86_64/edac.h | |||
@@ -0,0 +1,18 @@ | |||
1 | #ifndef ASM_EDAC_H | ||
2 | #define ASM_EDAC_H | ||
3 | |||
4 | /* ECC atomic, DMA, SMP and interrupt safe scrub function */ | ||
5 | |||
6 | static __inline__ void atomic_scrub(void *va, u32 size) | ||
7 | { | ||
8 | unsigned int *virt_addr = va; | ||
9 | u32 i; | ||
10 | |||
11 | for (i = 0; i < size / 4; i++, virt_addr++) | ||
12 | /* Very carefully read and write to memory atomically | ||
13 | * so we are interrupt, DMA and SMP safe. | ||
14 | */ | ||
15 | __asm__ __volatile__("lock; addl $0, %0"::"m"(*virt_addr)); | ||
16 | } | ||
17 | |||
18 | #endif | ||