aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--mm/percpu-vm.c451
-rw-r--r--mm/percpu.c452
2 files changed, 475 insertions, 428 deletions
diff --git a/mm/percpu-vm.c b/mm/percpu-vm.c
new file mode 100644
index 000000000000..7d9c1d0ebd3f
--- /dev/null
+++ b/mm/percpu-vm.c
@@ -0,0 +1,451 @@
1/*
2 * mm/percpu-vm.c - vmalloc area based chunk allocation
3 *
4 * Copyright (C) 2010 SUSE Linux Products GmbH
5 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * Chunks are mapped into vmalloc areas and populated page by page.
10 * This is the default chunk allocator.
11 */
12
13static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
14 unsigned int cpu, int page_idx)
15{
16 /* must not be used on pre-mapped chunk */
17 WARN_ON(chunk->immutable);
18
19 return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
20}
21
22/**
23 * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
24 * @chunk: chunk of interest
25 * @bitmapp: output parameter for bitmap
26 * @may_alloc: may allocate the array
27 *
28 * Returns pointer to array of pointers to struct page and bitmap,
29 * both of which can be indexed with pcpu_page_idx(). The returned
30 * array is cleared to zero and *@bitmapp is copied from
31 * @chunk->populated. Note that there is only one array and bitmap
32 * and access exclusion is the caller's responsibility.
33 *
34 * CONTEXT:
35 * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
36 * Otherwise, don't care.
37 *
38 * RETURNS:
39 * Pointer to temp pages array on success, NULL on failure.
40 */
41static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
42 unsigned long **bitmapp,
43 bool may_alloc)
44{
45 static struct page **pages;
46 static unsigned long *bitmap;
47 size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
48 size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
49 sizeof(unsigned long);
50
51 if (!pages || !bitmap) {
52 if (may_alloc && !pages)
53 pages = pcpu_mem_alloc(pages_size);
54 if (may_alloc && !bitmap)
55 bitmap = pcpu_mem_alloc(bitmap_size);
56 if (!pages || !bitmap)
57 return NULL;
58 }
59
60 memset(pages, 0, pages_size);
61 bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);
62
63 *bitmapp = bitmap;
64 return pages;
65}
66
67/**
68 * pcpu_free_pages - free pages which were allocated for @chunk
69 * @chunk: chunk pages were allocated for
70 * @pages: array of pages to be freed, indexed by pcpu_page_idx()
71 * @populated: populated bitmap
72 * @page_start: page index of the first page to be freed
73 * @page_end: page index of the last page to be freed + 1
74 *
75 * Free pages [@page_start and @page_end) in @pages for all units.
76 * The pages were allocated for @chunk.
77 */
78static void pcpu_free_pages(struct pcpu_chunk *chunk,
79 struct page **pages, unsigned long *populated,
80 int page_start, int page_end)
81{
82 unsigned int cpu;
83 int i;
84
85 for_each_possible_cpu(cpu) {
86 for (i = page_start; i < page_end; i++) {
87 struct page *page = pages[pcpu_page_idx(cpu, i)];
88
89 if (page)
90 __free_page(page);
91 }
92 }
93}
94
95/**
96 * pcpu_alloc_pages - allocates pages for @chunk
97 * @chunk: target chunk
98 * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
99 * @populated: populated bitmap
100 * @page_start: page index of the first page to be allocated
101 * @page_end: page index of the last page to be allocated + 1
102 *
103 * Allocate pages [@page_start,@page_end) into @pages for all units.
104 * The allocation is for @chunk. Percpu core doesn't care about the
105 * content of @pages and will pass it verbatim to pcpu_map_pages().
106 */
107static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
108 struct page **pages, unsigned long *populated,
109 int page_start, int page_end)
110{
111 const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
112 unsigned int cpu;
113 int i;
114
115 for_each_possible_cpu(cpu) {
116 for (i = page_start; i < page_end; i++) {
117 struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
118
119 *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
120 if (!*pagep) {
121 pcpu_free_pages(chunk, pages, populated,
122 page_start, page_end);
123 return -ENOMEM;
124 }
125 }
126 }
127 return 0;
128}
129
130/**
131 * pcpu_pre_unmap_flush - flush cache prior to unmapping
132 * @chunk: chunk the regions to be flushed belongs to
133 * @page_start: page index of the first page to be flushed
134 * @page_end: page index of the last page to be flushed + 1
135 *
136 * Pages in [@page_start,@page_end) of @chunk are about to be
137 * unmapped. Flush cache. As each flushing trial can be very
138 * expensive, issue flush on the whole region at once rather than
139 * doing it for each cpu. This could be an overkill but is more
140 * scalable.
141 */
142static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
143 int page_start, int page_end)
144{
145 flush_cache_vunmap(
146 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
147 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
148}
149
150static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
151{
152 unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
153}
154
155/**
156 * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
157 * @chunk: chunk of interest
158 * @pages: pages array which can be used to pass information to free
159 * @populated: populated bitmap
160 * @page_start: page index of the first page to unmap
161 * @page_end: page index of the last page to unmap + 1
162 *
163 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
164 * Corresponding elements in @pages were cleared by the caller and can
165 * be used to carry information to pcpu_free_pages() which will be
166 * called after all unmaps are finished. The caller should call
167 * proper pre/post flush functions.
168 */
169static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
170 struct page **pages, unsigned long *populated,
171 int page_start, int page_end)
172{
173 unsigned int cpu;
174 int i;
175
176 for_each_possible_cpu(cpu) {
177 for (i = page_start; i < page_end; i++) {
178 struct page *page;
179
180 page = pcpu_chunk_page(chunk, cpu, i);
181 WARN_ON(!page);
182 pages[pcpu_page_idx(cpu, i)] = page;
183 }
184 __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
185 page_end - page_start);
186 }
187
188 for (i = page_start; i < page_end; i++)
189 __clear_bit(i, populated);
190}
191
192/**
193 * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
194 * @chunk: pcpu_chunk the regions to be flushed belong to
195 * @page_start: page index of the first page to be flushed
196 * @page_end: page index of the last page to be flushed + 1
197 *
198 * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush
199 * TLB for the regions. This can be skipped if the area is to be
200 * returned to vmalloc as vmalloc will handle TLB flushing lazily.
201 *
202 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
203 * for the whole region.
204 */
205static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
206 int page_start, int page_end)
207{
208 flush_tlb_kernel_range(
209 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
210 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
211}
212
213static int __pcpu_map_pages(unsigned long addr, struct page **pages,
214 int nr_pages)
215{
216 return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
217 PAGE_KERNEL, pages);
218}
219
220/**
221 * pcpu_map_pages - map pages into a pcpu_chunk
222 * @chunk: chunk of interest
223 * @pages: pages array containing pages to be mapped
224 * @populated: populated bitmap
225 * @page_start: page index of the first page to map
226 * @page_end: page index of the last page to map + 1
227 *
228 * For each cpu, map pages [@page_start,@page_end) into @chunk. The
229 * caller is responsible for calling pcpu_post_map_flush() after all
230 * mappings are complete.
231 *
232 * This function is responsible for setting corresponding bits in
233 * @chunk->populated bitmap and whatever is necessary for reverse
234 * lookup (addr -> chunk).
235 */
236static int pcpu_map_pages(struct pcpu_chunk *chunk,
237 struct page **pages, unsigned long *populated,
238 int page_start, int page_end)
239{
240 unsigned int cpu, tcpu;
241 int i, err;
242
243 for_each_possible_cpu(cpu) {
244 err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
245 &pages[pcpu_page_idx(cpu, page_start)],
246 page_end - page_start);
247 if (err < 0)
248 goto err;
249 }
250
251 /* mapping successful, link chunk and mark populated */
252 for (i = page_start; i < page_end; i++) {
253 for_each_possible_cpu(cpu)
254 pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
255 chunk);
256 __set_bit(i, populated);
257 }
258
259 return 0;
260
261err:
262 for_each_possible_cpu(tcpu) {
263 if (tcpu == cpu)
264 break;
265 __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
266 page_end - page_start);
267 }
268 return err;
269}
270
271/**
272 * pcpu_post_map_flush - flush cache after mapping
273 * @chunk: pcpu_chunk the regions to be flushed belong to
274 * @page_start: page index of the first page to be flushed
275 * @page_end: page index of the last page to be flushed + 1
276 *
277 * Pages [@page_start,@page_end) of @chunk have been mapped. Flush
278 * cache.
279 *
280 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
281 * for the whole region.
282 */
283static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
284 int page_start, int page_end)
285{
286 flush_cache_vmap(
287 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
288 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
289}
290
291/**
292 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
293 * @chunk: chunk of interest
294 * @off: offset to the area to populate
295 * @size: size of the area to populate in bytes
296 *
297 * For each cpu, populate and map pages [@page_start,@page_end) into
298 * @chunk. The area is cleared on return.
299 *
300 * CONTEXT:
301 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
302 */
303static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
304{
305 int page_start = PFN_DOWN(off);
306 int page_end = PFN_UP(off + size);
307 int free_end = page_start, unmap_end = page_start;
308 struct page **pages;
309 unsigned long *populated;
310 unsigned int cpu;
311 int rs, re, rc;
312
313 /* quick path, check whether all pages are already there */
314 rs = page_start;
315 pcpu_next_pop(chunk, &rs, &re, page_end);
316 if (rs == page_start && re == page_end)
317 goto clear;
318
319 /* need to allocate and map pages, this chunk can't be immutable */
320 WARN_ON(chunk->immutable);
321
322 pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
323 if (!pages)
324 return -ENOMEM;
325
326 /* alloc and map */
327 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
328 rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
329 if (rc)
330 goto err_free;
331 free_end = re;
332 }
333
334 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
335 rc = pcpu_map_pages(chunk, pages, populated, rs, re);
336 if (rc)
337 goto err_unmap;
338 unmap_end = re;
339 }
340 pcpu_post_map_flush(chunk, page_start, page_end);
341
342 /* commit new bitmap */
343 bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
344clear:
345 for_each_possible_cpu(cpu)
346 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
347 return 0;
348
349err_unmap:
350 pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
351 pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
352 pcpu_unmap_pages(chunk, pages, populated, rs, re);
353 pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
354err_free:
355 pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
356 pcpu_free_pages(chunk, pages, populated, rs, re);
357 return rc;
358}
359
360/**
361 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
362 * @chunk: chunk to depopulate
363 * @off: offset to the area to depopulate
364 * @size: size of the area to depopulate in bytes
365 * @flush: whether to flush cache and tlb or not
366 *
367 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
368 * from @chunk. If @flush is true, vcache is flushed before unmapping
369 * and tlb after.
370 *
371 * CONTEXT:
372 * pcpu_alloc_mutex.
373 */
374static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
375{
376 int page_start = PFN_DOWN(off);
377 int page_end = PFN_UP(off + size);
378 struct page **pages;
379 unsigned long *populated;
380 int rs, re;
381
382 /* quick path, check whether it's empty already */
383 rs = page_start;
384 pcpu_next_unpop(chunk, &rs, &re, page_end);
385 if (rs == page_start && re == page_end)
386 return;
387
388 /* immutable chunks can't be depopulated */
389 WARN_ON(chunk->immutable);
390
391 /*
392 * If control reaches here, there must have been at least one
393 * successful population attempt so the temp pages array must
394 * be available now.
395 */
396 pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
397 BUG_ON(!pages);
398
399 /* unmap and free */
400 pcpu_pre_unmap_flush(chunk, page_start, page_end);
401
402 pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
403 pcpu_unmap_pages(chunk, pages, populated, rs, re);
404
405 /* no need to flush tlb, vmalloc will handle it lazily */
406
407 pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
408 pcpu_free_pages(chunk, pages, populated, rs, re);
409
410 /* commit new bitmap */
411 bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
412}
413
414static struct pcpu_chunk *pcpu_create_chunk(void)
415{
416 struct pcpu_chunk *chunk;
417 struct vm_struct **vms;
418
419 chunk = pcpu_alloc_chunk();
420 if (!chunk)
421 return NULL;
422
423 vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
424 pcpu_nr_groups, pcpu_atom_size, GFP_KERNEL);
425 if (!vms) {
426 pcpu_free_chunk(chunk);
427 return NULL;
428 }
429
430 chunk->data = vms;
431 chunk->base_addr = vms[0]->addr - pcpu_group_offsets[0];
432 return chunk;
433}
434
435static void pcpu_destroy_chunk(struct pcpu_chunk *chunk)
436{
437 if (chunk && chunk->data)
438 pcpu_free_vm_areas(chunk->data, pcpu_nr_groups);
439 pcpu_free_chunk(chunk);
440}
441
442static struct page *pcpu_addr_to_page(void *addr)
443{
444 return vmalloc_to_page(addr);
445}
446
447static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai)
448{
449 /* no extra restriction */
450 return 0;
451}
diff --git a/mm/percpu.c b/mm/percpu.c
index b403d7c02c67..15f680430671 100644
--- a/mm/percpu.c
+++ b/mm/percpu.c
@@ -236,15 +236,6 @@ static unsigned long __maybe_unused pcpu_chunk_addr(struct pcpu_chunk *chunk,
236 (page_idx << PAGE_SHIFT); 236 (page_idx << PAGE_SHIFT);
237} 237}
238 238
239static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
240 unsigned int cpu, int page_idx)
241{
242 /* must not be used on pre-mapped chunk */
243 WARN_ON(chunk->immutable);
244
245 return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
246}
247
248static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk, 239static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
249 int *rs, int *re, int end) 240 int *rs, int *re, int end)
250{ 241{
@@ -641,425 +632,29 @@ static void pcpu_free_chunk(struct pcpu_chunk *chunk)
641 kfree(chunk); 632 kfree(chunk);
642} 633}
643 634
644/** 635/*
645 * pcpu_get_pages_and_bitmap - get temp pages array and bitmap 636 * Chunk management implementation.
646 * @chunk: chunk of interest 637 *
647 * @bitmapp: output parameter for bitmap 638 * To allow different implementations, chunk alloc/free and
648 * @may_alloc: may allocate the array 639 * [de]population are implemented in a separate file which is pulled
649 * 640 * into this file and compiled together. The following functions
650 * Returns pointer to array of pointers to struct page and bitmap, 641 * should be implemented.
651 * both of which can be indexed with pcpu_page_idx(). The returned 642 *
652 * array is cleared to zero and *@bitmapp is copied from 643 * pcpu_populate_chunk - populate the specified range of a chunk
653 * @chunk->populated. Note that there is only one array and bitmap 644 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
654 * and access exclusion is the caller's responsibility. 645 * pcpu_create_chunk - create a new chunk
655 * 646 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
656 * CONTEXT: 647 * pcpu_addr_to_page - translate address to physical address
657 * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc. 648 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
658 * Otherwise, don't care.
659 *
660 * RETURNS:
661 * Pointer to temp pages array on success, NULL on failure.
662 */
663static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
664 unsigned long **bitmapp,
665 bool may_alloc)
666{
667 static struct page **pages;
668 static unsigned long *bitmap;
669 size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
670 size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
671 sizeof(unsigned long);
672
673 if (!pages || !bitmap) {
674 if (may_alloc && !pages)
675 pages = pcpu_mem_alloc(pages_size);
676 if (may_alloc && !bitmap)
677 bitmap = pcpu_mem_alloc(bitmap_size);
678 if (!pages || !bitmap)
679 return NULL;
680 }
681
682 memset(pages, 0, pages_size);
683 bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);
684
685 *bitmapp = bitmap;
686 return pages;
687}
688
689/**
690 * pcpu_free_pages - free pages which were allocated for @chunk
691 * @chunk: chunk pages were allocated for
692 * @pages: array of pages to be freed, indexed by pcpu_page_idx()
693 * @populated: populated bitmap
694 * @page_start: page index of the first page to be freed
695 * @page_end: page index of the last page to be freed + 1
696 *
697 * Free pages [@page_start and @page_end) in @pages for all units.
698 * The pages were allocated for @chunk.
699 */
700static void pcpu_free_pages(struct pcpu_chunk *chunk,
701 struct page **pages, unsigned long *populated,
702 int page_start, int page_end)
703{
704 unsigned int cpu;
705 int i;
706
707 for_each_possible_cpu(cpu) {
708 for (i = page_start; i < page_end; i++) {
709 struct page *page = pages[pcpu_page_idx(cpu, i)];
710
711 if (page)
712 __free_page(page);
713 }
714 }
715}
716
717/**
718 * pcpu_alloc_pages - allocates pages for @chunk
719 * @chunk: target chunk
720 * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
721 * @populated: populated bitmap
722 * @page_start: page index of the first page to be allocated
723 * @page_end: page index of the last page to be allocated + 1
724 *
725 * Allocate pages [@page_start,@page_end) into @pages for all units.
726 * The allocation is for @chunk. Percpu core doesn't care about the
727 * content of @pages and will pass it verbatim to pcpu_map_pages().
728 */
729static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
730 struct page **pages, unsigned long *populated,
731 int page_start, int page_end)
732{
733 const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
734 unsigned int cpu;
735 int i;
736
737 for_each_possible_cpu(cpu) {
738 for (i = page_start; i < page_end; i++) {
739 struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
740
741 *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
742 if (!*pagep) {
743 pcpu_free_pages(chunk, pages, populated,
744 page_start, page_end);
745 return -ENOMEM;
746 }
747 }
748 }
749 return 0;
750}
751
752/**
753 * pcpu_pre_unmap_flush - flush cache prior to unmapping
754 * @chunk: chunk the regions to be flushed belongs to
755 * @page_start: page index of the first page to be flushed
756 * @page_end: page index of the last page to be flushed + 1
757 *
758 * Pages in [@page_start,@page_end) of @chunk are about to be
759 * unmapped. Flush cache. As each flushing trial can be very
760 * expensive, issue flush on the whole region at once rather than
761 * doing it for each cpu. This could be an overkill but is more
762 * scalable.
763 */
764static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
765 int page_start, int page_end)
766{
767 flush_cache_vunmap(
768 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
769 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
770}
771
772static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
773{
774 unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
775}
776
777/**
778 * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
779 * @chunk: chunk of interest
780 * @pages: pages array which can be used to pass information to free
781 * @populated: populated bitmap
782 * @page_start: page index of the first page to unmap
783 * @page_end: page index of the last page to unmap + 1
784 *
785 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
786 * Corresponding elements in @pages were cleared by the caller and can
787 * be used to carry information to pcpu_free_pages() which will be
788 * called after all unmaps are finished. The caller should call
789 * proper pre/post flush functions.
790 */
791static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
792 struct page **pages, unsigned long *populated,
793 int page_start, int page_end)
794{
795 unsigned int cpu;
796 int i;
797
798 for_each_possible_cpu(cpu) {
799 for (i = page_start; i < page_end; i++) {
800 struct page *page;
801
802 page = pcpu_chunk_page(chunk, cpu, i);
803 WARN_ON(!page);
804 pages[pcpu_page_idx(cpu, i)] = page;
805 }
806 __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
807 page_end - page_start);
808 }
809
810 for (i = page_start; i < page_end; i++)
811 __clear_bit(i, populated);
812}
813
814/**
815 * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
816 * @chunk: pcpu_chunk the regions to be flushed belong to
817 * @page_start: page index of the first page to be flushed
818 * @page_end: page index of the last page to be flushed + 1
819 *
820 * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush
821 * TLB for the regions. This can be skipped if the area is to be
822 * returned to vmalloc as vmalloc will handle TLB flushing lazily.
823 *
824 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
825 * for the whole region.
826 */
827static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
828 int page_start, int page_end)
829{
830 flush_tlb_kernel_range(
831 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
832 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
833}
834
835static int __pcpu_map_pages(unsigned long addr, struct page **pages,
836 int nr_pages)
837{
838 return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
839 PAGE_KERNEL, pages);
840}
841
842/**
843 * pcpu_map_pages - map pages into a pcpu_chunk
844 * @chunk: chunk of interest
845 * @pages: pages array containing pages to be mapped
846 * @populated: populated bitmap
847 * @page_start: page index of the first page to map
848 * @page_end: page index of the last page to map + 1
849 *
850 * For each cpu, map pages [@page_start,@page_end) into @chunk. The
851 * caller is responsible for calling pcpu_post_map_flush() after all
852 * mappings are complete.
853 *
854 * This function is responsible for setting corresponding bits in
855 * @chunk->populated bitmap and whatever is necessary for reverse
856 * lookup (addr -> chunk).
857 */
858static int pcpu_map_pages(struct pcpu_chunk *chunk,
859 struct page **pages, unsigned long *populated,
860 int page_start, int page_end)
861{
862 unsigned int cpu, tcpu;
863 int i, err;
864
865 for_each_possible_cpu(cpu) {
866 err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
867 &pages[pcpu_page_idx(cpu, page_start)],
868 page_end - page_start);
869 if (err < 0)
870 goto err;
871 }
872
873 /* mapping successful, link chunk and mark populated */
874 for (i = page_start; i < page_end; i++) {
875 for_each_possible_cpu(cpu)
876 pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
877 chunk);
878 __set_bit(i, populated);
879 }
880
881 return 0;
882
883err:
884 for_each_possible_cpu(tcpu) {
885 if (tcpu == cpu)
886 break;
887 __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
888 page_end - page_start);
889 }
890 return err;
891}
892
893/**
894 * pcpu_post_map_flush - flush cache after mapping
895 * @chunk: pcpu_chunk the regions to be flushed belong to
896 * @page_start: page index of the first page to be flushed
897 * @page_end: page index of the last page to be flushed + 1
898 *
899 * Pages [@page_start,@page_end) of @chunk have been mapped. Flush
900 * cache.
901 *
902 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
903 * for the whole region.
904 */
905static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
906 int page_start, int page_end)
907{
908 flush_cache_vmap(
909 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
910 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
911}
912
913/**
914 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
915 * @chunk: chunk to depopulate
916 * @off: offset to the area to depopulate
917 * @size: size of the area to depopulate in bytes
918 * @flush: whether to flush cache and tlb or not
919 *
920 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
921 * from @chunk. If @flush is true, vcache is flushed before unmapping
922 * and tlb after.
923 *
924 * CONTEXT:
925 * pcpu_alloc_mutex.
926 */
927static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
928{
929 int page_start = PFN_DOWN(off);
930 int page_end = PFN_UP(off + size);
931 struct page **pages;
932 unsigned long *populated;
933 int rs, re;
934
935 /* quick path, check whether it's empty already */
936 rs = page_start;
937 pcpu_next_unpop(chunk, &rs, &re, page_end);
938 if (rs == page_start && re == page_end)
939 return;
940
941 /* immutable chunks can't be depopulated */
942 WARN_ON(chunk->immutable);
943
944 /*
945 * If control reaches here, there must have been at least one
946 * successful population attempt so the temp pages array must
947 * be available now.
948 */
949 pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
950 BUG_ON(!pages);
951
952 /* unmap and free */
953 pcpu_pre_unmap_flush(chunk, page_start, page_end);
954
955 pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
956 pcpu_unmap_pages(chunk, pages, populated, rs, re);
957
958 /* no need to flush tlb, vmalloc will handle it lazily */
959
960 pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
961 pcpu_free_pages(chunk, pages, populated, rs, re);
962
963 /* commit new bitmap */
964 bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
965}
966
967/**
968 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
969 * @chunk: chunk of interest
970 * @off: offset to the area to populate
971 * @size: size of the area to populate in bytes
972 *
973 * For each cpu, populate and map pages [@page_start,@page_end) into
974 * @chunk. The area is cleared on return.
975 *
976 * CONTEXT:
977 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
978 */ 649 */
979static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size) 650static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
980{ 651static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
981 int page_start = PFN_DOWN(off); 652static struct pcpu_chunk *pcpu_create_chunk(void);
982 int page_end = PFN_UP(off + size); 653static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
983 int free_end = page_start, unmap_end = page_start; 654static struct page *pcpu_addr_to_page(void *addr);
984 struct page **pages; 655static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
985 unsigned long *populated;
986 unsigned int cpu;
987 int rs, re, rc;
988
989 /* quick path, check whether all pages are already there */
990 rs = page_start;
991 pcpu_next_pop(chunk, &rs, &re, page_end);
992 if (rs == page_start && re == page_end)
993 goto clear;
994
995 /* need to allocate and map pages, this chunk can't be immutable */
996 WARN_ON(chunk->immutable);
997
998 pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
999 if (!pages)
1000 return -ENOMEM;
1001
1002 /* alloc and map */
1003 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
1004 rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
1005 if (rc)
1006 goto err_free;
1007 free_end = re;
1008 }
1009
1010 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
1011 rc = pcpu_map_pages(chunk, pages, populated, rs, re);
1012 if (rc)
1013 goto err_unmap;
1014 unmap_end = re;
1015 }
1016 pcpu_post_map_flush(chunk, page_start, page_end);
1017
1018 /* commit new bitmap */
1019 bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
1020clear:
1021 for_each_possible_cpu(cpu)
1022 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1023 return 0;
1024
1025err_unmap:
1026 pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
1027 pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
1028 pcpu_unmap_pages(chunk, pages, populated, rs, re);
1029 pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
1030err_free:
1031 pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
1032 pcpu_free_pages(chunk, pages, populated, rs, re);
1033 return rc;
1034}
1035 656
1036static void pcpu_destroy_chunk(struct pcpu_chunk *chunk) 657#include "percpu-vm.c"
1037{
1038 if (chunk && chunk->data)
1039 pcpu_free_vm_areas(chunk->data, pcpu_nr_groups);
1040 pcpu_free_chunk(chunk);
1041}
1042
1043static struct pcpu_chunk *pcpu_create_chunk(void)
1044{
1045 struct pcpu_chunk *chunk;
1046 struct vm_struct **vms;
1047
1048 chunk = pcpu_alloc_chunk();
1049 if (!chunk)
1050 return NULL;
1051
1052 vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
1053 pcpu_nr_groups, pcpu_atom_size, GFP_KERNEL);
1054 if (!vms) {
1055 pcpu_free_chunk(chunk);
1056 return NULL;
1057 }
1058
1059 chunk->data = vms;
1060 chunk->base_addr = vms[0]->addr - pcpu_group_offsets[0];
1061 return chunk;
1062}
1063 658
1064/** 659/**
1065 * pcpu_chunk_addr_search - determine chunk containing specified address 660 * pcpu_chunk_addr_search - determine chunk containing specified address
@@ -1086,7 +681,7 @@ static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1086 * there's no need to worry about preemption or cpu hotplug. 681 * there's no need to worry about preemption or cpu hotplug.
1087 */ 682 */
1088 addr += pcpu_unit_offsets[raw_smp_processor_id()]; 683 addr += pcpu_unit_offsets[raw_smp_processor_id()];
1089 return pcpu_get_page_chunk(vmalloc_to_page(addr)); 684 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1090} 685}
1091 686
1092/** 687/**
@@ -1386,7 +981,7 @@ phys_addr_t per_cpu_ptr_to_phys(void *addr)
1386 else 981 else
1387 return page_to_phys(vmalloc_to_page(addr)); 982 return page_to_phys(vmalloc_to_page(addr));
1388 } else 983 } else
1389 return page_to_phys(vmalloc_to_page(addr)); 984 return page_to_phys(pcpu_addr_to_page(addr));
1390} 985}
1391 986
1392static inline size_t pcpu_calc_fc_sizes(size_t static_size, 987static inline size_t pcpu_calc_fc_sizes(size_t static_size,
@@ -1758,6 +1353,7 @@ int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1758 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); 1353 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1759 PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK); 1354 PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
1760 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); 1355 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1356 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1761 1357
1762 /* process group information and build config tables accordingly */ 1358 /* process group information and build config tables accordingly */
1763 group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0])); 1359 group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0]));