diff options
-rw-r--r-- | Documentation/filesystems/00-INDEX | 2 | ||||
-rw-r--r-- | Documentation/filesystems/logfs.txt | 241 | ||||
-rw-r--r-- | MAINTAINERS | 7 | ||||
-rw-r--r-- | fs/Kconfig | 1 | ||||
-rw-r--r-- | fs/Makefile | 1 | ||||
-rw-r--r-- | fs/logfs/Kconfig | 17 | ||||
-rw-r--r-- | fs/logfs/Makefile | 13 | ||||
-rw-r--r-- | fs/logfs/compr.c | 95 | ||||
-rw-r--r-- | fs/logfs/dev_bdev.c | 327 | ||||
-rw-r--r-- | fs/logfs/dev_mtd.c | 254 | ||||
-rw-r--r-- | fs/logfs/dir.c | 827 | ||||
-rw-r--r-- | fs/logfs/file.c | 263 | ||||
-rw-r--r-- | fs/logfs/gc.c | 730 | ||||
-rw-r--r-- | fs/logfs/inode.c | 417 | ||||
-rw-r--r-- | fs/logfs/journal.c | 883 | ||||
-rw-r--r-- | fs/logfs/logfs.h | 724 | ||||
-rw-r--r-- | fs/logfs/logfs_abi.h | 629 | ||||
-rw-r--r-- | fs/logfs/readwrite.c | 2246 | ||||
-rw-r--r-- | fs/logfs/segment.c | 927 | ||||
-rw-r--r-- | fs/logfs/super.c | 650 | ||||
-rw-r--r-- | include/linux/btree-128.h | 109 | ||||
-rw-r--r-- | include/linux/btree-type.h | 147 | ||||
-rw-r--r-- | include/linux/btree.h | 243 | ||||
-rw-r--r-- | lib/Kconfig | 3 | ||||
-rw-r--r-- | lib/Makefile | 1 | ||||
-rw-r--r-- | lib/btree.c | 797 |
26 files changed, 10554 insertions, 0 deletions
diff --git a/Documentation/filesystems/00-INDEX b/Documentation/filesystems/00-INDEX index 875d49696b6e..5139b8c9d5af 100644 --- a/Documentation/filesystems/00-INDEX +++ b/Documentation/filesystems/00-INDEX | |||
@@ -62,6 +62,8 @@ jfs.txt | |||
62 | - info and mount options for the JFS filesystem. | 62 | - info and mount options for the JFS filesystem. |
63 | locks.txt | 63 | locks.txt |
64 | - info on file locking implementations, flock() vs. fcntl(), etc. | 64 | - info on file locking implementations, flock() vs. fcntl(), etc. |
65 | logfs.txt | ||
66 | - info on the LogFS flash filesystem. | ||
65 | mandatory-locking.txt | 67 | mandatory-locking.txt |
66 | - info on the Linux implementation of Sys V mandatory file locking. | 68 | - info on the Linux implementation of Sys V mandatory file locking. |
67 | ncpfs.txt | 69 | ncpfs.txt |
diff --git a/Documentation/filesystems/logfs.txt b/Documentation/filesystems/logfs.txt new file mode 100644 index 000000000000..e64c94ba401a --- /dev/null +++ b/Documentation/filesystems/logfs.txt | |||
@@ -0,0 +1,241 @@ | |||
1 | |||
2 | The LogFS Flash Filesystem | ||
3 | ========================== | ||
4 | |||
5 | Specification | ||
6 | ============= | ||
7 | |||
8 | Superblocks | ||
9 | ----------- | ||
10 | |||
11 | Two superblocks exist at the beginning and end of the filesystem. | ||
12 | Each superblock is 256 Bytes large, with another 3840 Bytes reserved | ||
13 | for future purposes, making a total of 4096 Bytes. | ||
14 | |||
15 | Superblock locations may differ for MTD and block devices. On MTD the | ||
16 | first non-bad block contains a superblock in the first 4096 Bytes and | ||
17 | the last non-bad block contains a superblock in the last 4096 Bytes. | ||
18 | On block devices, the first 4096 Bytes of the device contain the first | ||
19 | superblock and the last aligned 4096 Byte-block contains the second | ||
20 | superblock. | ||
21 | |||
22 | For the most part, the superblocks can be considered read-only. They | ||
23 | are written only to correct errors detected within the superblocks, | ||
24 | move the journal and change the filesystem parameters through tunefs. | ||
25 | As a result, the superblock does not contain any fields that require | ||
26 | constant updates, like the amount of free space, etc. | ||
27 | |||
28 | Segments | ||
29 | -------- | ||
30 | |||
31 | The space in the device is split up into equal-sized segments. | ||
32 | Segments are the primary write unit of LogFS. Within each segments, | ||
33 | writes happen from front (low addresses) to back (high addresses. If | ||
34 | only a partial segment has been written, the segment number, the | ||
35 | current position within and optionally a write buffer are stored in | ||
36 | the journal. | ||
37 | |||
38 | Segments are erased as a whole. Therefore Garbage Collection may be | ||
39 | required to completely free a segment before doing so. | ||
40 | |||
41 | Journal | ||
42 | -------- | ||
43 | |||
44 | The journal contains all global information about the filesystem that | ||
45 | is subject to frequent change. At mount time, it has to be scanned | ||
46 | for the most recent commit entry, which contains a list of pointers to | ||
47 | all currently valid entries. | ||
48 | |||
49 | Object Store | ||
50 | ------------ | ||
51 | |||
52 | All space except for the superblocks and journal is part of the object | ||
53 | store. Each segment contains a segment header and a number of | ||
54 | objects, each consisting of the object header and the payload. | ||
55 | Objects are either inodes, directory entries (dentries), file data | ||
56 | blocks or indirect blocks. | ||
57 | |||
58 | Levels | ||
59 | ------ | ||
60 | |||
61 | Garbage collection (GC) may fail if all data is written | ||
62 | indiscriminately. One requirement of GC is that data is seperated | ||
63 | roughly according to the distance between the tree root and the data. | ||
64 | Effectively that means all file data is on level 0, indirect blocks | ||
65 | are on levels 1, 2, 3 4 or 5 for 1x, 2x, 3x, 4x or 5x indirect blocks, | ||
66 | respectively. Inode file data is on level 6 for the inodes and 7-11 | ||
67 | for indirect blocks. | ||
68 | |||
69 | Each segment contains objects of a single level only. As a result, | ||
70 | each level requires its own seperate segment to be open for writing. | ||
71 | |||
72 | Inode File | ||
73 | ---------- | ||
74 | |||
75 | All inodes are stored in a special file, the inode file. Single | ||
76 | exception is the inode file's inode (master inode) which for obvious | ||
77 | reasons is stored in the journal instead. Instead of data blocks, the | ||
78 | leaf nodes of the inode files are inodes. | ||
79 | |||
80 | Aliases | ||
81 | ------- | ||
82 | |||
83 | Writes in LogFS are done by means of a wandering tree. A naïve | ||
84 | implementation would require that for each write or a block, all | ||
85 | parent blocks are written as well, since the block pointers have | ||
86 | changed. Such an implementation would not be very efficient. | ||
87 | |||
88 | In LogFS, the block pointer changes are cached in the journal by means | ||
89 | of alias entries. Each alias consists of its logical address - inode | ||
90 | number, block index, level and child number (index into block) - and | ||
91 | the changed data. Any 8-byte word can be changes in this manner. | ||
92 | |||
93 | Currently aliases are used for block pointers, file size, file used | ||
94 | bytes and the height of an inodes indirect tree. | ||
95 | |||
96 | Segment Aliases | ||
97 | --------------- | ||
98 | |||
99 | Related to regular aliases, these are used to handle bad blocks. | ||
100 | Initially, bad blocks are handled by moving the affected segment | ||
101 | content to a spare segment and noting this move in the journal with a | ||
102 | segment alias, a simple (to, from) tupel. GC will later empty this | ||
103 | segment and the alias can be removed again. This is used on MTD only. | ||
104 | |||
105 | Vim | ||
106 | --- | ||
107 | |||
108 | By cleverly predicting the life time of data, it is possible to | ||
109 | seperate long-living data from short-living data and thereby reduce | ||
110 | the GC overhead later. Each type of distinc life expectency (vim) can | ||
111 | have a seperate segment open for writing. Each (level, vim) tupel can | ||
112 | be open just once. If an open segment with unknown vim is encountered | ||
113 | at mount time, it is closed and ignored henceforth. | ||
114 | |||
115 | Indirect Tree | ||
116 | ------------- | ||
117 | |||
118 | Inodes in LogFS are similar to FFS-style filesystems with direct and | ||
119 | indirect block pointers. One difference is that LogFS uses a single | ||
120 | indirect pointer that can be either a 1x, 2x, etc. indirect pointer. | ||
121 | A height field in the inode defines the height of the indirect tree | ||
122 | and thereby the indirection of the pointer. | ||
123 | |||
124 | Another difference is the addressing of indirect blocks. In LogFS, | ||
125 | the first 16 pointers in the first indirect block are left empty, | ||
126 | corresponding to the 16 direct pointers in the inode. In ext2 (maybe | ||
127 | others as well) the first pointer in the first indirect block | ||
128 | corresponds to logical block 12, skipping the 12 direct pointers. | ||
129 | So where ext2 is using arithmetic to better utilize space, LogFS keeps | ||
130 | arithmetic simple and uses compression to save space. | ||
131 | |||
132 | Compression | ||
133 | ----------- | ||
134 | |||
135 | Both file data and metadata can be compressed. Compression for file | ||
136 | data can be enabled with chattr +c and disabled with chattr -c. Doing | ||
137 | so has no effect on existing data, but new data will be stored | ||
138 | accordingly. New inodes will inherit the compression flag of the | ||
139 | parent directory. | ||
140 | |||
141 | Metadata is always compressed. However, the space accounting ignores | ||
142 | this and charges for the uncompressed size. Failing to do so could | ||
143 | result in GC failures when, after moving some data, indirect blocks | ||
144 | compress worse than previously. Even on a 100% full medium, GC may | ||
145 | not consume any extra space, so the compression gains are lost space | ||
146 | to the user. | ||
147 | |||
148 | However, they are not lost space to the filesystem internals. By | ||
149 | cheating the user for those bytes, the filesystem gained some slack | ||
150 | space and GC will run less often and faster. | ||
151 | |||
152 | Garbage Collection and Wear Leveling | ||
153 | ------------------------------------ | ||
154 | |||
155 | Garbage collection is invoked whenever the number of free segments | ||
156 | falls below a threshold. The best (known) candidate is picked based | ||
157 | on the least amount of valid data contained in the segment. All | ||
158 | remaining valid data is copied elsewhere, thereby invalidating it. | ||
159 | |||
160 | The GC code also checks for aliases and writes then back if their | ||
161 | number gets too large. | ||
162 | |||
163 | Wear leveling is done by occasionally picking a suboptimal segment for | ||
164 | garbage collection. If a stale segments erase count is significantly | ||
165 | lower than the active segments' erase counts, it will be picked. Wear | ||
166 | leveling is rate limited, so it will never monopolize the device for | ||
167 | more than one segment worth at a time. | ||
168 | |||
169 | Values for "occasionally", "significantly lower" are compile time | ||
170 | constants. | ||
171 | |||
172 | Hashed directories | ||
173 | ------------------ | ||
174 | |||
175 | To satisfy efficient lookup(), directory entries are hashed and | ||
176 | located based on the hash. In order to both support large directories | ||
177 | and not be overly inefficient for small directories, several hash | ||
178 | tables of increasing size are used. For each table, the hash value | ||
179 | modulo the table size gives the table index. | ||
180 | |||
181 | Tables sizes are chosen to limit the number of indirect blocks with a | ||
182 | fully populated table to 0, 1, 2 or 3 respectively. So the first | ||
183 | table contains 16 entries, the second 512-16, etc. | ||
184 | |||
185 | The last table is special in several ways. First its size depends on | ||
186 | the effective 32bit limit on telldir/seekdir cookies. Since logfs | ||
187 | uses the upper half of the address space for indirect blocks, the size | ||
188 | is limited to 2^31. Secondly the table contains hash buckets with 16 | ||
189 | entries each. | ||
190 | |||
191 | Using single-entry buckets would result in birthday "attacks". At | ||
192 | just 2^16 used entries, hash collisions would be likely (P >= 0.5). | ||
193 | My math skills are insufficient to do the combinatorics for the 17x | ||
194 | collisions necessary to overflow a bucket, but testing showed that in | ||
195 | 10,000 runs the lowest directory fill before a bucket overflow was | ||
196 | 188,057,130 entries with an average of 315,149,915 entries. So for | ||
197 | directory sizes of up to a million, bucket overflows should be | ||
198 | virtually impossible under normal circumstances. | ||
199 | |||
200 | With carefully chosen filenames, it is obviously possible to cause an | ||
201 | overflow with just 21 entries (4 higher tables + 16 entries + 1). So | ||
202 | there may be a security concern if a malicious user has write access | ||
203 | to a directory. | ||
204 | |||
205 | Open For Discussion | ||
206 | =================== | ||
207 | |||
208 | Device Address Space | ||
209 | -------------------- | ||
210 | |||
211 | A device address space is used for caching. Both block devices and | ||
212 | MTD provide functions to either read a single page or write a segment. | ||
213 | Partial segments may be written for data integrity, but where possible | ||
214 | complete segments are written for performance on simple block device | ||
215 | flash media. | ||
216 | |||
217 | Meta Inodes | ||
218 | ----------- | ||
219 | |||
220 | Inodes are stored in the inode file, which is just a regular file for | ||
221 | most purposes. At umount time, however, the inode file needs to | ||
222 | remain open until all dirty inodes are written. So | ||
223 | generic_shutdown_super() may not close this inode, but shouldn't | ||
224 | complain about remaining inodes due to the inode file either. Same | ||
225 | goes for mapping inode of the device address space. | ||
226 | |||
227 | Currently logfs uses a hack that essentially copies part of fs/inode.c | ||
228 | code over. A general solution would be preferred. | ||
229 | |||
230 | Indirect block mapping | ||
231 | ---------------------- | ||
232 | |||
233 | With compression, the block device (or mapping inode) cannot be used | ||
234 | to cache indirect blocks. Some other place is required. Currently | ||
235 | logfs uses the top half of each inode's address space. The low 8TB | ||
236 | (on 32bit) are filled with file data, the high 8TB are used for | ||
237 | indirect blocks. | ||
238 | |||
239 | One problem is that 16TB files created on 64bit systems actually have | ||
240 | data in the top 8TB. But files >16TB would cause problems anyway, so | ||
241 | only the limit has changed. | ||
diff --git a/MAINTAINERS b/MAINTAINERS index bfa4fd1f3c03..c8a8b1fd58b3 100644 --- a/MAINTAINERS +++ b/MAINTAINERS | |||
@@ -3450,6 +3450,13 @@ S: Maintained | |||
3450 | F: Documentation/ldm.txt | 3450 | F: Documentation/ldm.txt |
3451 | F: fs/partitions/ldm.* | 3451 | F: fs/partitions/ldm.* |
3452 | 3452 | ||
3453 | LogFS | ||
3454 | M: Joern Engel <joern@logfs.org> | ||
3455 | L: logfs@logfs.org | ||
3456 | W: logfs.org | ||
3457 | S: Maintained | ||
3458 | F: fs/logfs/ | ||
3459 | |||
3453 | LSILOGIC MPT FUSION DRIVERS (FC/SAS/SPI) | 3460 | LSILOGIC MPT FUSION DRIVERS (FC/SAS/SPI) |
3454 | M: Eric Moore <Eric.Moore@lsi.com> | 3461 | M: Eric Moore <Eric.Moore@lsi.com> |
3455 | M: support@lsi.com | 3462 | M: support@lsi.com |
diff --git a/fs/Kconfig b/fs/Kconfig index 64d44efad7a5..7405f071be67 100644 --- a/fs/Kconfig +++ b/fs/Kconfig | |||
@@ -177,6 +177,7 @@ source "fs/efs/Kconfig" | |||
177 | source "fs/jffs2/Kconfig" | 177 | source "fs/jffs2/Kconfig" |
178 | # UBIFS File system configuration | 178 | # UBIFS File system configuration |
179 | source "fs/ubifs/Kconfig" | 179 | source "fs/ubifs/Kconfig" |
180 | source "fs/logfs/Kconfig" | ||
180 | source "fs/cramfs/Kconfig" | 181 | source "fs/cramfs/Kconfig" |
181 | source "fs/squashfs/Kconfig" | 182 | source "fs/squashfs/Kconfig" |
182 | source "fs/freevxfs/Kconfig" | 183 | source "fs/freevxfs/Kconfig" |
diff --git a/fs/Makefile b/fs/Makefile index af6d04700d9c..c3633aa46911 100644 --- a/fs/Makefile +++ b/fs/Makefile | |||
@@ -99,6 +99,7 @@ obj-$(CONFIG_NTFS_FS) += ntfs/ | |||
99 | obj-$(CONFIG_UFS_FS) += ufs/ | 99 | obj-$(CONFIG_UFS_FS) += ufs/ |
100 | obj-$(CONFIG_EFS_FS) += efs/ | 100 | obj-$(CONFIG_EFS_FS) += efs/ |
101 | obj-$(CONFIG_JFFS2_FS) += jffs2/ | 101 | obj-$(CONFIG_JFFS2_FS) += jffs2/ |
102 | obj-$(CONFIG_LOGFS) += logfs/ | ||
102 | obj-$(CONFIG_UBIFS_FS) += ubifs/ | 103 | obj-$(CONFIG_UBIFS_FS) += ubifs/ |
103 | obj-$(CONFIG_AFFS_FS) += affs/ | 104 | obj-$(CONFIG_AFFS_FS) += affs/ |
104 | obj-$(CONFIG_ROMFS_FS) += romfs/ | 105 | obj-$(CONFIG_ROMFS_FS) += romfs/ |
diff --git a/fs/logfs/Kconfig b/fs/logfs/Kconfig new file mode 100644 index 000000000000..daf9a9b32dd3 --- /dev/null +++ b/fs/logfs/Kconfig | |||
@@ -0,0 +1,17 @@ | |||
1 | config LOGFS | ||
2 | tristate "LogFS file system (EXPERIMENTAL)" | ||
3 | depends on (MTD || BLOCK) && EXPERIMENTAL | ||
4 | select ZLIB_INFLATE | ||
5 | select ZLIB_DEFLATE | ||
6 | select CRC32 | ||
7 | select BTREE | ||
8 | help | ||
9 | Flash filesystem aimed to scale efficiently to large devices. | ||
10 | In comparison to JFFS2 it offers significantly faster mount | ||
11 | times and potentially less RAM usage, although the latter has | ||
12 | not been measured yet. | ||
13 | |||
14 | In its current state it is still very experimental and should | ||
15 | not be used for other than testing purposes. | ||
16 | |||
17 | If unsure, say N. | ||
diff --git a/fs/logfs/Makefile b/fs/logfs/Makefile new file mode 100644 index 000000000000..4820027787ee --- /dev/null +++ b/fs/logfs/Makefile | |||
@@ -0,0 +1,13 @@ | |||
1 | obj-$(CONFIG_LOGFS) += logfs.o | ||
2 | |||
3 | logfs-y += compr.o | ||
4 | logfs-y += dir.o | ||
5 | logfs-y += file.o | ||
6 | logfs-y += gc.o | ||
7 | logfs-y += inode.o | ||
8 | logfs-y += journal.o | ||
9 | logfs-y += readwrite.o | ||
10 | logfs-y += segment.o | ||
11 | logfs-y += super.o | ||
12 | logfs-$(CONFIG_BLOCK) += dev_bdev.o | ||
13 | logfs-$(CONFIG_MTD) += dev_mtd.o | ||
diff --git a/fs/logfs/compr.c b/fs/logfs/compr.c new file mode 100644 index 000000000000..44bbfd249abc --- /dev/null +++ b/fs/logfs/compr.c | |||
@@ -0,0 +1,95 @@ | |||
1 | /* | ||
2 | * fs/logfs/compr.c - compression routines | ||
3 | * | ||
4 | * As should be obvious for Linux kernel code, license is GPLv2 | ||
5 | * | ||
6 | * Copyright (c) 2005-2008 Joern Engel <joern@logfs.org> | ||
7 | */ | ||
8 | #include "logfs.h" | ||
9 | #include <linux/vmalloc.h> | ||
10 | #include <linux/zlib.h> | ||
11 | |||
12 | #define COMPR_LEVEL 3 | ||
13 | |||
14 | static DEFINE_MUTEX(compr_mutex); | ||
15 | static struct z_stream_s stream; | ||
16 | |||
17 | int logfs_compress(void *in, void *out, size_t inlen, size_t outlen) | ||
18 | { | ||
19 | int err, ret; | ||
20 | |||
21 | ret = -EIO; | ||
22 | mutex_lock(&compr_mutex); | ||
23 | err = zlib_deflateInit(&stream, COMPR_LEVEL); | ||
24 | if (err != Z_OK) | ||
25 | goto error; | ||
26 | |||
27 | stream.next_in = in; | ||
28 | stream.avail_in = inlen; | ||
29 | stream.total_in = 0; | ||
30 | stream.next_out = out; | ||
31 | stream.avail_out = outlen; | ||
32 | stream.total_out = 0; | ||
33 | |||
34 | err = zlib_deflate(&stream, Z_FINISH); | ||
35 | if (err != Z_STREAM_END) | ||
36 | goto error; | ||
37 | |||
38 | err = zlib_deflateEnd(&stream); | ||
39 | if (err != Z_OK) | ||
40 | goto error; | ||
41 | |||
42 | if (stream.total_out >= stream.total_in) | ||
43 | goto error; | ||
44 | |||
45 | ret = stream.total_out; | ||
46 | error: | ||
47 | mutex_unlock(&compr_mutex); | ||
48 | return ret; | ||
49 | } | ||
50 | |||
51 | int logfs_uncompress(void *in, void *out, size_t inlen, size_t outlen) | ||
52 | { | ||
53 | int err, ret; | ||
54 | |||
55 | ret = -EIO; | ||
56 | mutex_lock(&compr_mutex); | ||
57 | err = zlib_inflateInit(&stream); | ||
58 | if (err != Z_OK) | ||
59 | goto error; | ||
60 | |||
61 | stream.next_in = in; | ||
62 | stream.avail_in = inlen; | ||
63 | stream.total_in = 0; | ||
64 | stream.next_out = out; | ||
65 | stream.avail_out = outlen; | ||
66 | stream.total_out = 0; | ||
67 | |||
68 | err = zlib_inflate(&stream, Z_FINISH); | ||
69 | if (err != Z_STREAM_END) | ||
70 | goto error; | ||
71 | |||
72 | err = zlib_inflateEnd(&stream); | ||
73 | if (err != Z_OK) | ||
74 | goto error; | ||
75 | |||
76 | ret = 0; | ||
77 | error: | ||
78 | mutex_unlock(&compr_mutex); | ||
79 | return ret; | ||
80 | } | ||
81 | |||
82 | int __init logfs_compr_init(void) | ||
83 | { | ||
84 | size_t size = max(zlib_deflate_workspacesize(), | ||
85 | zlib_inflate_workspacesize()); | ||
86 | stream.workspace = vmalloc(size); | ||
87 | if (!stream.workspace) | ||
88 | return -ENOMEM; | ||
89 | return 0; | ||
90 | } | ||
91 | |||
92 | void logfs_compr_exit(void) | ||
93 | { | ||
94 | vfree(stream.workspace); | ||
95 | } | ||
diff --git a/fs/logfs/dev_bdev.c b/fs/logfs/dev_bdev.c new file mode 100644 index 000000000000..9718c22f186d --- /dev/null +++ b/fs/logfs/dev_bdev.c | |||
@@ -0,0 +1,327 @@ | |||
1 | /* | ||
2 | * fs/logfs/dev_bdev.c - Device access methods for block devices | ||
3 | * | ||
4 | * As should be obvious for Linux kernel code, license is GPLv2 | ||
5 | * | ||
6 | * Copyright (c) 2005-2008 Joern Engel <joern@logfs.org> | ||
7 | */ | ||
8 | #include "logfs.h" | ||
9 | #include <linux/bio.h> | ||
10 | #include <linux/blkdev.h> | ||
11 | #include <linux/buffer_head.h> | ||
12 | |||
13 | #define PAGE_OFS(ofs) ((ofs) & (PAGE_SIZE-1)) | ||
14 | |||
15 | static void request_complete(struct bio *bio, int err) | ||
16 | { | ||
17 | complete((struct completion *)bio->bi_private); | ||
18 | } | ||
19 | |||
20 | static int sync_request(struct page *page, struct block_device *bdev, int rw) | ||
21 | { | ||
22 | struct bio bio; | ||
23 | struct bio_vec bio_vec; | ||
24 | struct completion complete; | ||
25 | |||
26 | bio_init(&bio); | ||
27 | bio.bi_io_vec = &bio_vec; | ||
28 | bio_vec.bv_page = page; | ||
29 | bio_vec.bv_len = PAGE_SIZE; | ||
30 | bio_vec.bv_offset = 0; | ||
31 | bio.bi_vcnt = 1; | ||
32 | bio.bi_idx = 0; | ||
33 | bio.bi_size = PAGE_SIZE; | ||
34 | bio.bi_bdev = bdev; | ||
35 | bio.bi_sector = page->index * (PAGE_SIZE >> 9); | ||
36 | init_completion(&complete); | ||
37 | bio.bi_private = &complete; | ||
38 | bio.bi_end_io = request_complete; | ||
39 | |||
40 | submit_bio(rw, &bio); | ||
41 | generic_unplug_device(bdev_get_queue(bdev)); | ||
42 | wait_for_completion(&complete); | ||
43 | return test_bit(BIO_UPTODATE, &bio.bi_flags) ? 0 : -EIO; | ||
44 | } | ||
45 | |||
46 | static int bdev_readpage(void *_sb, struct page *page) | ||
47 | { | ||
48 | struct super_block *sb = _sb; | ||
49 | struct block_device *bdev = logfs_super(sb)->s_bdev; | ||
50 | int err; | ||
51 | |||
52 | err = sync_request(page, bdev, READ); | ||
53 | if (err) { | ||
54 | ClearPageUptodate(page); | ||
55 | SetPageError(page); | ||
56 | } else { | ||
57 | SetPageUptodate(page); | ||
58 | ClearPageError(page); | ||
59 | } | ||
60 | unlock_page(page); | ||
61 | return err; | ||
62 | } | ||
63 | |||
64 | static DECLARE_WAIT_QUEUE_HEAD(wq); | ||
65 | |||
66 | static void writeseg_end_io(struct bio *bio, int err) | ||
67 | { | ||
68 | const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); | ||
69 | struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; | ||
70 | struct super_block *sb = bio->bi_private; | ||
71 | struct logfs_super *super = logfs_super(sb); | ||
72 | struct page *page; | ||
73 | |||
74 | BUG_ON(!uptodate); /* FIXME: Retry io or write elsewhere */ | ||
75 | BUG_ON(err); | ||
76 | BUG_ON(bio->bi_vcnt == 0); | ||
77 | do { | ||
78 | page = bvec->bv_page; | ||
79 | if (--bvec >= bio->bi_io_vec) | ||
80 | prefetchw(&bvec->bv_page->flags); | ||
81 | |||
82 | end_page_writeback(page); | ||
83 | } while (bvec >= bio->bi_io_vec); | ||
84 | bio_put(bio); | ||
85 | if (atomic_dec_and_test(&super->s_pending_writes)) | ||
86 | wake_up(&wq); | ||
87 | } | ||
88 | |||
89 | static int __bdev_writeseg(struct super_block *sb, u64 ofs, pgoff_t index, | ||
90 | size_t nr_pages) | ||
91 | { | ||
92 | struct logfs_super *super = logfs_super(sb); | ||
93 | struct address_space *mapping = super->s_mapping_inode->i_mapping; | ||
94 | struct bio *bio; | ||
95 | struct page *page; | ||
96 | struct request_queue *q = bdev_get_queue(sb->s_bdev); | ||
97 | unsigned int max_pages = queue_max_hw_sectors(q) >> (PAGE_SHIFT - 9); | ||
98 | int i; | ||
99 | |||
100 | bio = bio_alloc(GFP_NOFS, max_pages); | ||
101 | BUG_ON(!bio); /* FIXME: handle this */ | ||
102 | |||
103 | for (i = 0; i < nr_pages; i++) { | ||
104 | if (i >= max_pages) { | ||
105 | /* Block layer cannot split bios :( */ | ||
106 | bio->bi_vcnt = i; | ||
107 | bio->bi_idx = 0; | ||
108 | bio->bi_size = i * PAGE_SIZE; | ||
109 | bio->bi_bdev = super->s_bdev; | ||
110 | bio->bi_sector = ofs >> 9; | ||
111 | bio->bi_private = sb; | ||
112 | bio->bi_end_io = writeseg_end_io; | ||
113 | atomic_inc(&super->s_pending_writes); | ||
114 | submit_bio(WRITE, bio); | ||
115 | |||
116 | ofs += i * PAGE_SIZE; | ||
117 | index += i; | ||
118 | nr_pages -= i; | ||
119 | i = 0; | ||
120 | |||
121 | bio = bio_alloc(GFP_NOFS, max_pages); | ||
122 | BUG_ON(!bio); | ||
123 | } | ||
124 | page = find_lock_page(mapping, index + i); | ||
125 | BUG_ON(!page); | ||
126 | bio->bi_io_vec[i].bv_page = page; | ||
127 | bio->bi_io_vec[i].bv_len = PAGE_SIZE; | ||
128 | bio->bi_io_vec[i].bv_offset = 0; | ||
129 | |||
130 | BUG_ON(PageWriteback(page)); | ||
131 | set_page_writeback(page); | ||
132 | unlock_page(page); | ||
133 | } | ||
134 | bio->bi_vcnt = nr_pages; | ||
135 | bio->bi_idx = 0; | ||
136 | bio->bi_size = nr_pages * PAGE_SIZE; | ||
137 | bio->bi_bdev = super->s_bdev; | ||
138 | bio->bi_sector = ofs >> 9; | ||
139 | bio->bi_private = sb; | ||
140 | bio->bi_end_io = writeseg_end_io; | ||
141 | atomic_inc(&super->s_pending_writes); | ||
142 | submit_bio(WRITE, bio); | ||
143 | return 0; | ||
144 | } | ||
145 | |||
146 | static void bdev_writeseg(struct super_block *sb, u64 ofs, size_t len) | ||
147 | { | ||
148 | struct logfs_super *super = logfs_super(sb); | ||
149 | int head; | ||
150 | |||
151 | BUG_ON(super->s_flags & LOGFS_SB_FLAG_RO); | ||
152 | |||
153 | if (len == 0) { | ||
154 | /* This can happen when the object fit perfectly into a | ||
155 | * segment, the segment gets written per sync and subsequently | ||
156 | * closed. | ||
157 | */ | ||
158 | return; | ||
159 | } | ||
160 | head = ofs & (PAGE_SIZE - 1); | ||
161 | if (head) { | ||
162 | ofs -= head; | ||
163 | len += head; | ||
164 | } | ||
165 | len = PAGE_ALIGN(len); | ||
166 | __bdev_writeseg(sb, ofs, ofs >> PAGE_SHIFT, len >> PAGE_SHIFT); | ||
167 | generic_unplug_device(bdev_get_queue(logfs_super(sb)->s_bdev)); | ||
168 | } | ||
169 | |||
170 | |||
171 | static void erase_end_io(struct bio *bio, int err) | ||
172 | { | ||
173 | const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); | ||
174 | struct super_block *sb = bio->bi_private; | ||
175 | struct logfs_super *super = logfs_super(sb); | ||
176 | |||
177 | BUG_ON(!uptodate); /* FIXME: Retry io or write elsewhere */ | ||
178 | BUG_ON(err); | ||
179 | BUG_ON(bio->bi_vcnt == 0); | ||
180 | bio_put(bio); | ||
181 | if (atomic_dec_and_test(&super->s_pending_writes)) | ||
182 | wake_up(&wq); | ||
183 | } | ||
184 | |||
185 | static int do_erase(struct super_block *sb, u64 ofs, pgoff_t index, | ||
186 | size_t nr_pages) | ||
187 | { | ||
188 | struct logfs_super *super = logfs_super(sb); | ||
189 | struct bio *bio; | ||
190 | struct request_queue *q = bdev_get_queue(sb->s_bdev); | ||
191 | unsigned int max_pages = queue_max_hw_sectors(q) >> (PAGE_SHIFT - 9); | ||
192 | int i; | ||
193 | |||
194 | bio = bio_alloc(GFP_NOFS, max_pages); | ||
195 | BUG_ON(!bio); /* FIXME: handle this */ | ||
196 | |||
197 | for (i = 0; i < nr_pages; i++) { | ||
198 | if (i >= max_pages) { | ||
199 | /* Block layer cannot split bios :( */ | ||
200 | bio->bi_vcnt = i; | ||
201 | bio->bi_idx = 0; | ||
202 | bio->bi_size = i * PAGE_SIZE; | ||
203 | bio->bi_bdev = super->s_bdev; | ||
204 | bio->bi_sector = ofs >> 9; | ||
205 | bio->bi_private = sb; | ||
206 | bio->bi_end_io = erase_end_io; | ||
207 | atomic_inc(&super->s_pending_writes); | ||
208 | submit_bio(WRITE, bio); | ||
209 | |||
210 | ofs += i * PAGE_SIZE; | ||
211 | index += i; | ||
212 | nr_pages -= i; | ||
213 | i = 0; | ||
214 | |||
215 | bio = bio_alloc(GFP_NOFS, max_pages); | ||
216 | BUG_ON(!bio); | ||
217 | } | ||
218 | bio->bi_io_vec[i].bv_page = super->s_erase_page; | ||
219 | bio->bi_io_vec[i].bv_len = PAGE_SIZE; | ||
220 | bio->bi_io_vec[i].bv_offset = 0; | ||
221 | } | ||
222 | bio->bi_vcnt = nr_pages; | ||
223 | bio->bi_idx = 0; | ||
224 | bio->bi_size = nr_pages * PAGE_SIZE; | ||
225 | bio->bi_bdev = super->s_bdev; | ||
226 | bio->bi_sector = ofs >> 9; | ||
227 | bio->bi_private = sb; | ||
228 | bio->bi_end_io = erase_end_io; | ||
229 | atomic_inc(&super->s_pending_writes); | ||
230 | submit_bio(WRITE, bio); | ||
231 | return 0; | ||
232 | } | ||
233 | |||
234 | static int bdev_erase(struct super_block *sb, loff_t to, size_t len, | ||
235 | int ensure_write) | ||
236 | { | ||
237 | struct logfs_super *super = logfs_super(sb); | ||
238 | |||
239 | BUG_ON(to & (PAGE_SIZE - 1)); | ||
240 | BUG_ON(len & (PAGE_SIZE - 1)); | ||
241 | |||
242 | if (super->s_flags & LOGFS_SB_FLAG_RO) | ||
243 | return -EROFS; | ||
244 | |||
245 | if (ensure_write) { | ||
246 | /* | ||
247 | * Object store doesn't care whether erases happen or not. | ||
248 | * But for the journal they are required. Otherwise a scan | ||
249 | * can find an old commit entry and assume it is the current | ||
250 | * one, travelling back in time. | ||
251 | */ | ||
252 | do_erase(sb, to, to >> PAGE_SHIFT, len >> PAGE_SHIFT); | ||
253 | } | ||
254 | |||
255 | return 0; | ||
256 | } | ||
257 | |||
258 | static void bdev_sync(struct super_block *sb) | ||
259 | { | ||
260 | struct logfs_super *super = logfs_super(sb); | ||
261 | |||
262 | wait_event(wq, atomic_read(&super->s_pending_writes) == 0); | ||
263 | } | ||
264 | |||
265 | static struct page *bdev_find_first_sb(struct super_block *sb, u64 *ofs) | ||
266 | { | ||
267 | struct logfs_super *super = logfs_super(sb); | ||
268 | struct address_space *mapping = super->s_mapping_inode->i_mapping; | ||
269 | filler_t *filler = bdev_readpage; | ||
270 | |||
271 | *ofs = 0; | ||
272 | return read_cache_page(mapping, 0, filler, sb); | ||
273 | } | ||
274 | |||
275 | static struct page *bdev_find_last_sb(struct super_block *sb, u64 *ofs) | ||
276 | { | ||
277 | struct logfs_super *super = logfs_super(sb); | ||
278 | struct address_space *mapping = super->s_mapping_inode->i_mapping; | ||
279 | filler_t *filler = bdev_readpage; | ||
280 | u64 pos = (super->s_bdev->bd_inode->i_size & ~0xfffULL) - 0x1000; | ||
281 | pgoff_t index = pos >> PAGE_SHIFT; | ||
282 | |||
283 | *ofs = pos; | ||
284 | return read_cache_page(mapping, index, filler, sb); | ||
285 | } | ||
286 | |||
287 | static int bdev_write_sb(struct super_block *sb, struct page *page) | ||
288 | { | ||
289 | struct block_device *bdev = logfs_super(sb)->s_bdev; | ||
290 | |||
291 | /* Nothing special to do for block devices. */ | ||
292 | return sync_request(page, bdev, WRITE); | ||
293 | } | ||
294 | |||
295 | static void bdev_put_device(struct super_block *sb) | ||
296 | { | ||
297 | close_bdev_exclusive(logfs_super(sb)->s_bdev, FMODE_READ|FMODE_WRITE); | ||
298 | } | ||
299 | |||
300 | static const struct logfs_device_ops bd_devops = { | ||
301 | .find_first_sb = bdev_find_first_sb, | ||
302 | .find_last_sb = bdev_find_last_sb, | ||
303 | .write_sb = bdev_write_sb, | ||
304 | .readpage = bdev_readpage, | ||
305 | .writeseg = bdev_writeseg, | ||
306 | .erase = bdev_erase, | ||
307 | .sync = bdev_sync, | ||
308 | .put_device = bdev_put_device, | ||
309 | }; | ||
310 | |||
311 | int logfs_get_sb_bdev(struct file_system_type *type, int flags, | ||
312 | const char *devname, struct vfsmount *mnt) | ||
313 | { | ||
314 | struct block_device *bdev; | ||
315 | |||
316 | bdev = open_bdev_exclusive(devname, FMODE_READ|FMODE_WRITE, type); | ||
317 | if (IS_ERR(bdev)) | ||
318 | return PTR_ERR(bdev); | ||
319 | |||
320 | if (MAJOR(bdev->bd_dev) == MTD_BLOCK_MAJOR) { | ||
321 | int mtdnr = MINOR(bdev->bd_dev); | ||
322 | close_bdev_exclusive(bdev, FMODE_READ|FMODE_WRITE); | ||
323 | return logfs_get_sb_mtd(type, flags, mtdnr, mnt); | ||
324 | } | ||
325 | |||
326 | return logfs_get_sb_device(type, flags, NULL, bdev, &bd_devops, mnt); | ||
327 | } | ||
diff --git a/fs/logfs/dev_mtd.c b/fs/logfs/dev_mtd.c new file mode 100644 index 000000000000..cafb6ef2e05b --- /dev/null +++ b/fs/logfs/dev_mtd.c | |||
@@ -0,0 +1,254 @@ | |||
1 | /* | ||
2 | * fs/logfs/dev_mtd.c - Device access methods for MTD | ||
3 | * | ||
4 | * As should be obvious for Linux kernel code, license is GPLv2 | ||
5 | * | ||
6 | * Copyright (c) 2005-2008 Joern Engel <joern@logfs.org> | ||
7 | */ | ||
8 | #include "logfs.h" | ||
9 | #include <linux/completion.h> | ||
10 | #include <linux/mount.h> | ||
11 | #include <linux/sched.h> | ||
12 | |||
13 | #define PAGE_OFS(ofs) ((ofs) & (PAGE_SIZE-1)) | ||
14 | |||
15 | static int mtd_read(struct super_block *sb, loff_t ofs, size_t len, void *buf) | ||
16 | { | ||
17 | struct mtd_info *mtd = logfs_super(sb)->s_mtd; | ||
18 | size_t retlen; | ||
19 | int ret; | ||
20 | |||
21 | ret = mtd->read(mtd, ofs, len, &retlen, buf); | ||
22 | BUG_ON(ret == -EINVAL); | ||
23 | if (ret) | ||
24 | return ret; | ||
25 | |||
26 | /* Not sure if we should loop instead. */ | ||
27 | if (retlen != len) | ||
28 | return -EIO; | ||
29 | |||
30 | return 0; | ||
31 | } | ||
32 | |||
33 | static int mtd_write(struct super_block *sb, loff_t ofs, size_t len, void *buf) | ||
34 | { | ||
35 | struct logfs_super *super = logfs_super(sb); | ||
36 | struct mtd_info *mtd = super->s_mtd; | ||
37 | size_t retlen; | ||
38 | loff_t page_start, page_end; | ||
39 | int ret; | ||
40 | |||
41 | if (super->s_flags & LOGFS_SB_FLAG_RO) | ||
42 | return -EROFS; | ||
43 | |||
44 | BUG_ON((ofs >= mtd->size) || (len > mtd->size - ofs)); | ||
45 | BUG_ON(ofs != (ofs >> super->s_writeshift) << super->s_writeshift); | ||
46 | BUG_ON(len > PAGE_CACHE_SIZE); | ||
47 | page_start = ofs & PAGE_CACHE_MASK; | ||
48 | page_end = PAGE_CACHE_ALIGN(ofs + len) - 1; | ||
49 | ret = mtd->write(mtd, ofs, len, &retlen, buf); | ||
50 | if (ret || (retlen != len)) | ||
51 | return -EIO; | ||
52 | |||
53 | return 0; | ||
54 | } | ||
55 | |||
56 | /* | ||
57 | * For as long as I can remember (since about 2001) mtd->erase has been an | ||
58 | * asynchronous interface lacking the first driver to actually use the | ||
59 | * asynchronous properties. So just to prevent the first implementor of such | ||
60 | * a thing from breaking logfs in 2350, we do the usual pointless dance to | ||
61 | * declare a completion variable and wait for completion before returning | ||
62 | * from mtd_erase(). What an excercise in futility! | ||
63 | */ | ||
64 | static void logfs_erase_callback(struct erase_info *ei) | ||
65 | { | ||
66 | complete((struct completion *)ei->priv); | ||
67 | } | ||
68 | |||
69 | static int mtd_erase_mapping(struct super_block *sb, loff_t ofs, size_t len) | ||
70 | { | ||
71 | struct logfs_super *super = logfs_super(sb); | ||
72 | struct address_space *mapping = super->s_mapping_inode->i_mapping; | ||
73 | struct page *page; | ||
74 | pgoff_t index = ofs >> PAGE_SHIFT; | ||
75 | |||
76 | for (index = ofs >> PAGE_SHIFT; index < (ofs + len) >> PAGE_SHIFT; index++) { | ||
77 | page = find_get_page(mapping, index); | ||
78 | if (!page) | ||
79 | continue; | ||
80 | memset(page_address(page), 0xFF, PAGE_SIZE); | ||
81 | page_cache_release(page); | ||
82 | } | ||
83 | return 0; | ||
84 | } | ||
85 | |||
86 | static int mtd_erase(struct super_block *sb, loff_t ofs, size_t len, | ||
87 | int ensure_write) | ||
88 | { | ||
89 | struct mtd_info *mtd = logfs_super(sb)->s_mtd; | ||
90 | struct erase_info ei; | ||
91 | DECLARE_COMPLETION_ONSTACK(complete); | ||
92 | int ret; | ||
93 | |||
94 | BUG_ON(len % mtd->erasesize); | ||
95 | if (logfs_super(sb)->s_flags & LOGFS_SB_FLAG_RO) | ||
96 | return -EROFS; | ||
97 | |||
98 | memset(&ei, 0, sizeof(ei)); | ||
99 | ei.mtd = mtd; | ||
100 | ei.addr = ofs; | ||
101 | ei.len = len; | ||
102 | ei.callback = logfs_erase_callback; | ||
103 | ei.priv = (long)&complete; | ||
104 | ret = mtd->erase(mtd, &ei); | ||
105 | if (ret) | ||
106 | return -EIO; | ||
107 | |||
108 | wait_for_completion(&complete); | ||
109 | if (ei.state != MTD_ERASE_DONE) | ||
110 | return -EIO; | ||
111 | return mtd_erase_mapping(sb, ofs, len); | ||
112 | } | ||
113 | |||
114 | static void mtd_sync(struct super_block *sb) | ||
115 | { | ||
116 | struct mtd_info *mtd = logfs_super(sb)->s_mtd; | ||
117 | |||
118 | if (mtd->sync) | ||
119 | mtd->sync(mtd); | ||
120 | } | ||
121 | |||
122 | static int mtd_readpage(void *_sb, struct page *page) | ||
123 | { | ||
124 | struct super_block *sb = _sb; | ||
125 | int err; | ||
126 | |||
127 | err = mtd_read(sb, page->index << PAGE_SHIFT, PAGE_SIZE, | ||
128 | page_address(page)); | ||
129 | if (err == -EUCLEAN) { | ||
130 | err = 0; | ||
131 | /* FIXME: force GC this segment */ | ||
132 | } | ||
133 | if (err) { | ||
134 | ClearPageUptodate(page); | ||
135 | SetPageError(page); | ||
136 | } else { | ||
137 | SetPageUptodate(page); | ||
138 | ClearPageError(page); | ||
139 | } | ||
140 | unlock_page(page); | ||
141 | return err; | ||
142 | } | ||
143 | |||
144 | static struct page *mtd_find_first_sb(struct super_block *sb, u64 *ofs) | ||
145 | { | ||
146 | struct logfs_super *super = logfs_super(sb); | ||
147 | struct address_space *mapping = super->s_mapping_inode->i_mapping; | ||
148 | filler_t *filler = mtd_readpage; | ||
149 | struct mtd_info *mtd = super->s_mtd; | ||
150 | |||
151 | if (!mtd->block_isbad) | ||
152 | return NULL; | ||
153 | |||
154 | *ofs = 0; | ||
155 | while (mtd->block_isbad(mtd, *ofs)) { | ||
156 | *ofs += mtd->erasesize; | ||
157 | if (*ofs >= mtd->size) | ||
158 | return NULL; | ||
159 | } | ||
160 | BUG_ON(*ofs & ~PAGE_MASK); | ||
161 | return read_cache_page(mapping, *ofs >> PAGE_SHIFT, filler, sb); | ||
162 | } | ||
163 | |||
164 | static struct page *mtd_find_last_sb(struct super_block *sb, u64 *ofs) | ||
165 | { | ||
166 | struct logfs_super *super = logfs_super(sb); | ||
167 | struct address_space *mapping = super->s_mapping_inode->i_mapping; | ||
168 | filler_t *filler = mtd_readpage; | ||
169 | struct mtd_info *mtd = super->s_mtd; | ||
170 | |||
171 | if (!mtd->block_isbad) | ||
172 | return NULL; | ||
173 | |||
174 | *ofs = mtd->size - mtd->erasesize; | ||
175 | while (mtd->block_isbad(mtd, *ofs)) { | ||
176 | *ofs -= mtd->erasesize; | ||
177 | if (*ofs <= 0) | ||
178 | return NULL; | ||
179 | } | ||
180 | *ofs = *ofs + mtd->erasesize - 0x1000; | ||
181 | BUG_ON(*ofs & ~PAGE_MASK); | ||
182 | return read_cache_page(mapping, *ofs >> PAGE_SHIFT, filler, sb); | ||
183 | } | ||
184 | |||
185 | static int __mtd_writeseg(struct super_block *sb, u64 ofs, pgoff_t index, | ||
186 | size_t nr_pages) | ||
187 | { | ||
188 | struct logfs_super *super = logfs_super(sb); | ||
189 | struct address_space *mapping = super->s_mapping_inode->i_mapping; | ||
190 | struct page *page; | ||
191 | int i, err; | ||
192 | |||
193 | for (i = 0; i < nr_pages; i++) { | ||
194 | page = find_lock_page(mapping, index + i); | ||
195 | BUG_ON(!page); | ||
196 | |||
197 | err = mtd_write(sb, page->index << PAGE_SHIFT, PAGE_SIZE, | ||
198 | page_address(page)); | ||
199 | unlock_page(page); | ||
200 | page_cache_release(page); | ||
201 | if (err) | ||
202 | return err; | ||
203 | } | ||
204 | return 0; | ||
205 | } | ||
206 | |||
207 | static void mtd_writeseg(struct super_block *sb, u64 ofs, size_t len) | ||
208 | { | ||
209 | struct logfs_super *super = logfs_super(sb); | ||
210 | int head; | ||
211 | |||
212 | if (super->s_flags & LOGFS_SB_FLAG_RO) | ||
213 | return; | ||
214 | |||
215 | if (len == 0) { | ||
216 | /* This can happen when the object fit perfectly into a | ||
217 | * segment, the segment gets written per sync and subsequently | ||
218 | * closed. | ||
219 | */ | ||
220 | return; | ||
221 | } | ||
222 | head = ofs & (PAGE_SIZE - 1); | ||
223 | if (head) { | ||
224 | ofs -= head; | ||
225 | len += head; | ||
226 | } | ||
227 | len = PAGE_ALIGN(len); | ||
228 | __mtd_writeseg(sb, ofs, ofs >> PAGE_SHIFT, len >> PAGE_SHIFT); | ||
229 | } | ||
230 | |||
231 | static void mtd_put_device(struct super_block *sb) | ||
232 | { | ||
233 | put_mtd_device(logfs_super(sb)->s_mtd); | ||
234 | } | ||
235 | |||
236 | static const struct logfs_device_ops mtd_devops = { | ||
237 | .find_first_sb = mtd_find_first_sb, | ||
238 | .find_last_sb = mtd_find_last_sb, | ||
239 | .readpage = mtd_readpage, | ||
240 | .writeseg = mtd_writeseg, | ||
241 | .erase = mtd_erase, | ||
242 | .sync = mtd_sync, | ||
243 | .put_device = mtd_put_device, | ||
244 | }; | ||
245 | |||
246 | int logfs_get_sb_mtd(struct file_system_type *type, int flags, | ||
247 | int mtdnr, struct vfsmount *mnt) | ||
248 | { | ||
249 | struct mtd_info *mtd; | ||
250 | const struct logfs_device_ops *devops = &mtd_devops; | ||
251 | |||
252 | mtd = get_mtd_device(NULL, mtdnr); | ||
253 | return logfs_get_sb_device(type, flags, mtd, NULL, devops, mnt); | ||
254 | } | ||
diff --git a/fs/logfs/dir.c b/fs/logfs/dir.c new file mode 100644 index 000000000000..56a8bfbb0120 --- /dev/null +++ b/fs/logfs/dir.c | |||
@@ -0,0 +1,827 @@ | |||
1 | /* | ||
2 | * fs/logfs/dir.c - directory-related code | ||
3 | * | ||
4 | * As should be obvious for Linux kernel code, license is GPLv2 | ||
5 | * | ||
6 | * Copyright (c) 2005-2008 Joern Engel <joern@logfs.org> | ||
7 | */ | ||
8 | #include "logfs.h" | ||
9 | |||
10 | |||
11 | /* | ||
12 | * Atomic dir operations | ||
13 | * | ||
14 | * Directory operations are by default not atomic. Dentries and Inodes are | ||
15 | * created/removed/altered in seperate operations. Therefore we need to do | ||
16 | * a small amount of journaling. | ||
17 | * | ||
18 | * Create, link, mkdir, mknod and symlink all share the same function to do | ||
19 | * the work: __logfs_create. This function works in two atomic steps: | ||
20 | * 1. allocate inode (remember in journal) | ||
21 | * 2. allocate dentry (clear journal) | ||
22 | * | ||
23 | * As we can only get interrupted between the two, when the inode we just | ||
24 | * created is simply stored in the anchor. On next mount, if we were | ||
25 | * interrupted, we delete the inode. From a users point of view the | ||
26 | * operation never happened. | ||
27 | * | ||
28 | * Unlink and rmdir also share the same function: unlink. Again, this | ||
29 | * function works in two atomic steps | ||
30 | * 1. remove dentry (remember inode in journal) | ||
31 | * 2. unlink inode (clear journal) | ||
32 | * | ||
33 | * And again, on the next mount, if we were interrupted, we delete the inode. | ||
34 | * From a users point of view the operation succeeded. | ||
35 | * | ||
36 | * Rename is the real pain to deal with, harder than all the other methods | ||
37 | * combined. Depending on the circumstances we can run into three cases. | ||
38 | * A "target rename" where the target dentry already existed, a "local | ||
39 | * rename" where both parent directories are identical or a "cross-directory | ||
40 | * rename" in the remaining case. | ||
41 | * | ||
42 | * Local rename is atomic, as the old dentry is simply rewritten with a new | ||
43 | * name. | ||
44 | * | ||
45 | * Cross-directory rename works in two steps, similar to __logfs_create and | ||
46 | * logfs_unlink: | ||
47 | * 1. Write new dentry (remember old dentry in journal) | ||
48 | * 2. Remove old dentry (clear journal) | ||
49 | * | ||
50 | * Here we remember a dentry instead of an inode. On next mount, if we were | ||
51 | * interrupted, we delete the dentry. From a users point of view, the | ||
52 | * operation succeeded. | ||
53 | * | ||
54 | * Target rename works in three atomic steps: | ||
55 | * 1. Attach old inode to new dentry (remember old dentry and new inode) | ||
56 | * 2. Remove old dentry (still remember the new inode) | ||
57 | * 3. Remove victim inode | ||
58 | * | ||
59 | * Here we remember both an inode an a dentry. If we get interrupted | ||
60 | * between steps 1 and 2, we delete both the dentry and the inode. If | ||
61 | * we get interrupted between steps 2 and 3, we delete just the inode. | ||
62 | * In either case, the remaining objects are deleted on next mount. From | ||
63 | * a users point of view, the operation succeeded. | ||
64 | */ | ||
65 | |||
66 | static int write_dir(struct inode *dir, struct logfs_disk_dentry *dd, | ||
67 | loff_t pos) | ||
68 | { | ||
69 | return logfs_inode_write(dir, dd, sizeof(*dd), pos, WF_LOCK, NULL); | ||
70 | } | ||
71 | |||
72 | static int write_inode(struct inode *inode) | ||
73 | { | ||
74 | return __logfs_write_inode(inode, WF_LOCK); | ||
75 | } | ||
76 | |||
77 | static s64 dir_seek_data(struct inode *inode, s64 pos) | ||
78 | { | ||
79 | s64 new_pos = logfs_seek_data(inode, pos); | ||
80 | |||
81 | return max(pos, new_pos - 1); | ||
82 | } | ||
83 | |||
84 | static int beyond_eof(struct inode *inode, loff_t bix) | ||
85 | { | ||
86 | loff_t pos = bix << inode->i_sb->s_blocksize_bits; | ||
87 | return pos >= i_size_read(inode); | ||
88 | } | ||
89 | |||
90 | /* | ||
91 | * Prime value was chosen to be roughly 256 + 26. r5 hash uses 11, | ||
92 | * so short names (len <= 9) don't even occupy the complete 32bit name | ||
93 | * space. A prime >256 ensures short names quickly spread the 32bit | ||
94 | * name space. Add about 26 for the estimated amount of information | ||
95 | * of each character and pick a prime nearby, preferrably a bit-sparse | ||
96 | * one. | ||
97 | */ | ||
98 | static u32 hash_32(const char *s, int len, u32 seed) | ||
99 | { | ||
100 | u32 hash = seed; | ||
101 | int i; | ||
102 | |||
103 | for (i = 0; i < len; i++) | ||
104 | hash = hash * 293 + s[i]; | ||
105 | return hash; | ||
106 | } | ||
107 | |||
108 | /* | ||
109 | * We have to satisfy several conflicting requirements here. Small | ||
110 | * directories should stay fairly compact and not require too many | ||
111 | * indirect blocks. The number of possible locations for a given hash | ||
112 | * should be small to make lookup() fast. And we should try hard not | ||
113 | * to overflow the 32bit name space or nfs and 32bit host systems will | ||
114 | * be unhappy. | ||
115 | * | ||
116 | * So we use the following scheme. First we reduce the hash to 0..15 | ||
117 | * and try a direct block. If that is occupied we reduce the hash to | ||
118 | * 16..255 and try an indirect block. Same for 2x and 3x indirect | ||
119 | * blocks. Lastly we reduce the hash to 0x800_0000 .. 0xffff_ffff, | ||
120 | * but use buckets containing eight entries instead of a single one. | ||
121 | * | ||
122 | * Using 16 entries should allow for a reasonable amount of hash | ||
123 | * collisions, so the 32bit name space can be packed fairly tight | ||
124 | * before overflowing. Oh and currently we don't overflow but return | ||
125 | * and error. | ||
126 | * | ||
127 | * How likely are collisions? Doing the appropriate math is beyond me | ||
128 | * and the Bronstein textbook. But running a test program to brute | ||
129 | * force collisions for a couple of days showed that on average the | ||
130 | * first collision occurs after 598M entries, with 290M being the | ||
131 | * smallest result. Obviously 21 entries could already cause a | ||
132 | * collision if all entries are carefully chosen. | ||
133 | */ | ||
134 | static pgoff_t hash_index(u32 hash, int round) | ||
135 | { | ||
136 | u32 i0_blocks = I0_BLOCKS; | ||
137 | u32 i1_blocks = I1_BLOCKS; | ||
138 | u32 i2_blocks = I2_BLOCKS; | ||
139 | u32 i3_blocks = I3_BLOCKS; | ||
140 | |||
141 | switch (round) { | ||
142 | case 0: | ||
143 | return hash % i0_blocks; | ||
144 | case 1: | ||
145 | return i0_blocks + hash % (i1_blocks - i0_blocks); | ||
146 | case 2: | ||
147 | return i1_blocks + hash % (i2_blocks - i1_blocks); | ||
148 | case 3: | ||
149 | return i2_blocks + hash % (i3_blocks - i2_blocks); | ||
150 | case 4 ... 19: | ||
151 | return i3_blocks + 16 * (hash % (((1<<31) - i3_blocks) / 16)) | ||
152 | + round - 4; | ||
153 | } | ||
154 | BUG(); | ||
155 | } | ||
156 | |||
157 | static struct page *logfs_get_dd_page(struct inode *dir, struct dentry *dentry) | ||
158 | { | ||
159 | struct qstr *name = &dentry->d_name; | ||
160 | struct page *page; | ||
161 | struct logfs_disk_dentry *dd; | ||
162 | u32 hash = hash_32(name->name, name->len, 0); | ||
163 | pgoff_t index; | ||
164 | int round; | ||
165 | |||
166 | if (name->len > LOGFS_MAX_NAMELEN) | ||
167 | return ERR_PTR(-ENAMETOOLONG); | ||
168 | |||
169 | for (round = 0; round < 20; round++) { | ||
170 | index = hash_index(hash, round); | ||
171 | |||
172 | if (beyond_eof(dir, index)) | ||
173 | return NULL; | ||
174 | if (!logfs_exist_block(dir, index)) | ||
175 | continue; | ||
176 | page = read_cache_page(dir->i_mapping, index, | ||
177 | (filler_t *)logfs_readpage, NULL); | ||
178 | if (IS_ERR(page)) | ||
179 | return page; | ||
180 | dd = kmap_atomic(page, KM_USER0); | ||
181 | BUG_ON(dd->namelen == 0); | ||
182 | |||
183 | if (name->len != be16_to_cpu(dd->namelen) || | ||
184 | memcmp(name->name, dd->name, name->len)) { | ||
185 | kunmap_atomic(dd, KM_USER0); | ||
186 | page_cache_release(page); | ||
187 | continue; | ||
188 | } | ||
189 | |||
190 | kunmap_atomic(dd, KM_USER0); | ||
191 | return page; | ||
192 | } | ||
193 | return NULL; | ||
194 | } | ||
195 | |||
196 | static int logfs_remove_inode(struct inode *inode) | ||
197 | { | ||
198 | int ret; | ||
199 | |||
200 | inode->i_nlink--; | ||
201 | ret = write_inode(inode); | ||
202 | LOGFS_BUG_ON(ret, inode->i_sb); | ||
203 | return ret; | ||
204 | } | ||
205 | |||
206 | static void abort_transaction(struct inode *inode, struct logfs_transaction *ta) | ||
207 | { | ||
208 | if (logfs_inode(inode)->li_block) | ||
209 | logfs_inode(inode)->li_block->ta = NULL; | ||
210 | kfree(ta); | ||
211 | } | ||
212 | |||
213 | static int logfs_unlink(struct inode *dir, struct dentry *dentry) | ||
214 | { | ||
215 | struct logfs_super *super = logfs_super(dir->i_sb); | ||
216 | struct inode *inode = dentry->d_inode; | ||
217 | struct logfs_transaction *ta; | ||
218 | struct page *page; | ||
219 | pgoff_t index; | ||
220 | int ret; | ||
221 | |||
222 | ta = kzalloc(sizeof(*ta), GFP_KERNEL); | ||
223 | if (!ta) | ||
224 | return -ENOMEM; | ||
225 | |||
226 | ta->state = UNLINK_1; | ||
227 | ta->ino = inode->i_ino; | ||
228 | |||
229 | inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; | ||
230 | |||
231 | page = logfs_get_dd_page(dir, dentry); | ||
232 | if (!page) { | ||
233 | kfree(ta); | ||
234 | return -ENOENT; | ||
235 | } | ||
236 | if (IS_ERR(page)) { | ||
237 | kfree(ta); | ||
238 | return PTR_ERR(page); | ||
239 | } | ||
240 | index = page->index; | ||
241 | page_cache_release(page); | ||
242 | |||
243 | mutex_lock(&super->s_dirop_mutex); | ||
244 | logfs_add_transaction(dir, ta); | ||
245 | |||
246 | ret = logfs_delete(dir, index, NULL); | ||
247 | if (!ret) | ||
248 | ret = write_inode(dir); | ||
249 | |||
250 | if (ret) { | ||
251 | abort_transaction(dir, ta); | ||
252 | printk(KERN_ERR"LOGFS: unable to delete inode\n"); | ||
253 | goto out; | ||
254 | } | ||
255 | |||
256 | ta->state = UNLINK_2; | ||
257 | logfs_add_transaction(inode, ta); | ||
258 | ret = logfs_remove_inode(inode); | ||
259 | out: | ||
260 | mutex_unlock(&super->s_dirop_mutex); | ||
261 | return ret; | ||
262 | } | ||
263 | |||
264 | static inline int logfs_empty_dir(struct inode *dir) | ||
265 | { | ||
266 | u64 data; | ||
267 | |||
268 | data = logfs_seek_data(dir, 0) << dir->i_sb->s_blocksize_bits; | ||
269 | return data >= i_size_read(dir); | ||
270 | } | ||
271 | |||
272 | static int logfs_rmdir(struct inode *dir, struct dentry *dentry) | ||
273 | { | ||
274 | struct inode *inode = dentry->d_inode; | ||
275 | |||
276 | if (!logfs_empty_dir(inode)) | ||
277 | return -ENOTEMPTY; | ||
278 | |||
279 | return logfs_unlink(dir, dentry); | ||
280 | } | ||
281 | |||
282 | /* FIXME: readdir currently has it's own dir_walk code. I don't see a good | ||
283 | * way to combine the two copies */ | ||
284 | #define IMPLICIT_NODES 2 | ||
285 | static int __logfs_readdir(struct file *file, void *buf, filldir_t filldir) | ||
286 | { | ||
287 | struct inode *dir = file->f_dentry->d_inode; | ||
288 | loff_t pos = file->f_pos - IMPLICIT_NODES; | ||
289 | struct page *page; | ||
290 | struct logfs_disk_dentry *dd; | ||
291 | int full; | ||
292 | |||
293 | BUG_ON(pos < 0); | ||
294 | for (;; pos++) { | ||
295 | if (beyond_eof(dir, pos)) | ||
296 | break; | ||
297 | if (!logfs_exist_block(dir, pos)) { | ||
298 | /* deleted dentry */ | ||
299 | pos = dir_seek_data(dir, pos); | ||
300 | continue; | ||
301 | } | ||
302 | page = read_cache_page(dir->i_mapping, pos, | ||
303 | (filler_t *)logfs_readpage, NULL); | ||
304 | if (IS_ERR(page)) | ||
305 | return PTR_ERR(page); | ||
306 | dd = kmap_atomic(page, KM_USER0); | ||
307 | BUG_ON(dd->namelen == 0); | ||
308 | |||
309 | full = filldir(buf, (char *)dd->name, be16_to_cpu(dd->namelen), | ||
310 | pos, be64_to_cpu(dd->ino), dd->type); | ||
311 | kunmap_atomic(dd, KM_USER0); | ||
312 | page_cache_release(page); | ||
313 | if (full) | ||
314 | break; | ||
315 | } | ||
316 | |||
317 | file->f_pos = pos + IMPLICIT_NODES; | ||
318 | return 0; | ||
319 | } | ||
320 | |||
321 | static int logfs_readdir(struct file *file, void *buf, filldir_t filldir) | ||
322 | { | ||
323 | struct inode *inode = file->f_dentry->d_inode; | ||
324 | ino_t pino = parent_ino(file->f_dentry); | ||
325 | int err; | ||
326 | |||
327 | if (file->f_pos < 0) | ||
328 | return -EINVAL; | ||
329 | |||
330 | if (file->f_pos == 0) { | ||
331 | if (filldir(buf, ".", 1, 1, inode->i_ino, DT_DIR) < 0) | ||
332 | return 0; | ||
333 | file->f_pos++; | ||
334 | } | ||
335 | if (file->f_pos == 1) { | ||
336 | if (filldir(buf, "..", 2, 2, pino, DT_DIR) < 0) | ||
337 | return 0; | ||
338 | file->f_pos++; | ||
339 | } | ||
340 | |||
341 | err = __logfs_readdir(file, buf, filldir); | ||
342 | return err; | ||
343 | } | ||
344 | |||
345 | static void logfs_set_name(struct logfs_disk_dentry *dd, struct qstr *name) | ||
346 | { | ||
347 | dd->namelen = cpu_to_be16(name->len); | ||
348 | memcpy(dd->name, name->name, name->len); | ||
349 | } | ||
350 | |||
351 | static struct dentry *logfs_lookup(struct inode *dir, struct dentry *dentry, | ||
352 | struct nameidata *nd) | ||
353 | { | ||
354 | struct page *page; | ||
355 | struct logfs_disk_dentry *dd; | ||
356 | pgoff_t index; | ||
357 | u64 ino = 0; | ||
358 | struct inode *inode; | ||
359 | |||
360 | page = logfs_get_dd_page(dir, dentry); | ||
361 | if (IS_ERR(page)) | ||
362 | return ERR_CAST(page); | ||
363 | if (!page) { | ||
364 | d_add(dentry, NULL); | ||
365 | return NULL; | ||
366 | } | ||
367 | index = page->index; | ||
368 | dd = kmap_atomic(page, KM_USER0); | ||
369 | ino = be64_to_cpu(dd->ino); | ||
370 | kunmap_atomic(dd, KM_USER0); | ||
371 | page_cache_release(page); | ||
372 | |||
373 | inode = logfs_iget(dir->i_sb, ino); | ||
374 | if (IS_ERR(inode)) { | ||
375 | printk(KERN_ERR"LogFS: Cannot read inode #%llx for dentry (%lx, %lx)n", | ||
376 | ino, dir->i_ino, index); | ||
377 | return ERR_CAST(inode); | ||
378 | } | ||
379 | return d_splice_alias(inode, dentry); | ||
380 | } | ||
381 | |||
382 | static void grow_dir(struct inode *dir, loff_t index) | ||
383 | { | ||
384 | index = (index + 1) << dir->i_sb->s_blocksize_bits; | ||
385 | if (i_size_read(dir) < index) | ||
386 | i_size_write(dir, index); | ||
387 | } | ||
388 | |||
389 | static int logfs_write_dir(struct inode *dir, struct dentry *dentry, | ||
390 | struct inode *inode) | ||
391 | { | ||
392 | struct page *page; | ||
393 | struct logfs_disk_dentry *dd; | ||
394 | u32 hash = hash_32(dentry->d_name.name, dentry->d_name.len, 0); | ||
395 | pgoff_t index; | ||
396 | int round, err; | ||
397 | |||
398 | for (round = 0; round < 20; round++) { | ||
399 | index = hash_index(hash, round); | ||
400 | |||
401 | if (logfs_exist_block(dir, index)) | ||
402 | continue; | ||
403 | page = find_or_create_page(dir->i_mapping, index, GFP_KERNEL); | ||
404 | if (!page) | ||
405 | return -ENOMEM; | ||
406 | |||
407 | dd = kmap_atomic(page, KM_USER0); | ||
408 | memset(dd, 0, sizeof(*dd)); | ||
409 | dd->ino = cpu_to_be64(inode->i_ino); | ||
410 | dd->type = logfs_type(inode); | ||
411 | logfs_set_name(dd, &dentry->d_name); | ||
412 | kunmap_atomic(dd, KM_USER0); | ||
413 | |||
414 | err = logfs_write_buf(dir, page, WF_LOCK); | ||
415 | unlock_page(page); | ||
416 | page_cache_release(page); | ||
417 | if (!err) | ||
418 | grow_dir(dir, index); | ||
419 | return err; | ||
420 | } | ||
421 | /* FIXME: Is there a better return value? In most cases neither | ||
422 | * the filesystem nor the directory are full. But we have had | ||
423 | * too many collisions for this particular hash and no fallback. | ||
424 | */ | ||
425 | return -ENOSPC; | ||
426 | } | ||
427 | |||
428 | static int __logfs_create(struct inode *dir, struct dentry *dentry, | ||
429 | struct inode *inode, const char *dest, long destlen) | ||
430 | { | ||
431 | struct logfs_super *super = logfs_super(dir->i_sb); | ||
432 | struct logfs_inode *li = logfs_inode(inode); | ||
433 | struct logfs_transaction *ta; | ||
434 | int ret; | ||
435 | |||
436 | ta = kzalloc(sizeof(*ta), GFP_KERNEL); | ||
437 | if (!ta) | ||
438 | return -ENOMEM; | ||
439 | |||
440 | ta->state = CREATE_1; | ||
441 | ta->ino = inode->i_ino; | ||
442 | mutex_lock(&super->s_dirop_mutex); | ||
443 | logfs_add_transaction(inode, ta); | ||
444 | |||
445 | if (dest) { | ||
446 | /* symlink */ | ||
447 | ret = logfs_inode_write(inode, dest, destlen, 0, WF_LOCK, NULL); | ||
448 | if (!ret) | ||
449 | ret = write_inode(inode); | ||
450 | } else { | ||
451 | /* creat/mkdir/mknod */ | ||
452 | ret = write_inode(inode); | ||
453 | } | ||
454 | if (ret) { | ||
455 | abort_transaction(inode, ta); | ||
456 | li->li_flags |= LOGFS_IF_STILLBORN; | ||
457 | /* FIXME: truncate symlink */ | ||
458 | inode->i_nlink--; | ||
459 | iput(inode); | ||
460 | goto out; | ||
461 | } | ||
462 | |||
463 | ta->state = CREATE_2; | ||
464 | logfs_add_transaction(dir, ta); | ||
465 | ret = logfs_write_dir(dir, dentry, inode); | ||
466 | /* sync directory */ | ||
467 | if (!ret) | ||
468 | ret = write_inode(dir); | ||
469 | |||
470 | if (ret) { | ||
471 | logfs_del_transaction(dir, ta); | ||
472 | ta->state = CREATE_2; | ||
473 | logfs_add_transaction(inode, ta); | ||
474 | logfs_remove_inode(inode); | ||
475 | iput(inode); | ||
476 | goto out; | ||
477 | } | ||
478 | d_instantiate(dentry, inode); | ||
479 | out: | ||
480 | mutex_unlock(&super->s_dirop_mutex); | ||
481 | return ret; | ||
482 | } | ||
483 | |||
484 | static int logfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) | ||
485 | { | ||
486 | struct inode *inode; | ||
487 | |||
488 | /* | ||
489 | * FIXME: why do we have to fill in S_IFDIR, while the mode is | ||
490 | * correct for mknod, creat, etc.? Smells like the vfs *should* | ||
491 | * do it for us but for some reason fails to do so. | ||
492 | */ | ||
493 | inode = logfs_new_inode(dir, S_IFDIR | mode); | ||
494 | if (IS_ERR(inode)) | ||
495 | return PTR_ERR(inode); | ||
496 | |||
497 | inode->i_op = &logfs_dir_iops; | ||
498 | inode->i_fop = &logfs_dir_fops; | ||
499 | |||
500 | return __logfs_create(dir, dentry, inode, NULL, 0); | ||
501 | } | ||
502 | |||
503 | static int logfs_create(struct inode *dir, struct dentry *dentry, int mode, | ||
504 | struct nameidata *nd) | ||
505 | { | ||
506 | struct inode *inode; | ||
507 | |||
508 | inode = logfs_new_inode(dir, mode); | ||
509 | if (IS_ERR(inode)) | ||
510 | return PTR_ERR(inode); | ||
511 | |||
512 | inode->i_op = &logfs_reg_iops; | ||
513 | inode->i_fop = &logfs_reg_fops; | ||
514 | inode->i_mapping->a_ops = &logfs_reg_aops; | ||
515 | |||
516 | return __logfs_create(dir, dentry, inode, NULL, 0); | ||
517 | } | ||
518 | |||
519 | static int logfs_mknod(struct inode *dir, struct dentry *dentry, int mode, | ||
520 | dev_t rdev) | ||
521 | { | ||
522 | struct inode *inode; | ||
523 | |||
524 | if (dentry->d_name.len > LOGFS_MAX_NAMELEN) | ||
525 | return -ENAMETOOLONG; | ||
526 | |||
527 | inode = logfs_new_inode(dir, mode); | ||
528 | if (IS_ERR(inode)) | ||
529 | return PTR_ERR(inode); | ||
530 | |||
531 | init_special_inode(inode, mode, rdev); | ||
532 | |||
533 | return __logfs_create(dir, dentry, inode, NULL, 0); | ||
534 | } | ||
535 | |||
536 | static int logfs_symlink(struct inode *dir, struct dentry *dentry, | ||
537 | const char *target) | ||
538 | { | ||
539 | struct inode *inode; | ||
540 | size_t destlen = strlen(target) + 1; | ||
541 | |||
542 | if (destlen > dir->i_sb->s_blocksize) | ||
543 | return -ENAMETOOLONG; | ||
544 | |||
545 | inode = logfs_new_inode(dir, S_IFLNK | 0777); | ||
546 | if (IS_ERR(inode)) | ||
547 | return PTR_ERR(inode); | ||
548 | |||
549 | inode->i_op = &logfs_symlink_iops; | ||
550 | inode->i_mapping->a_ops = &logfs_reg_aops; | ||
551 | |||
552 | return __logfs_create(dir, dentry, inode, target, destlen); | ||
553 | } | ||
554 | |||
555 | static int logfs_permission(struct inode *inode, int mask) | ||
556 | { | ||
557 | return generic_permission(inode, mask, NULL); | ||
558 | } | ||
559 | |||
560 | static int logfs_link(struct dentry *old_dentry, struct inode *dir, | ||
561 | struct dentry *dentry) | ||
562 | { | ||
563 | struct inode *inode = old_dentry->d_inode; | ||
564 | |||
565 | if (inode->i_nlink >= LOGFS_LINK_MAX) | ||
566 | return -EMLINK; | ||
567 | |||
568 | inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; | ||
569 | atomic_inc(&inode->i_count); | ||
570 | inode->i_nlink++; | ||
571 | mark_inode_dirty_sync(inode); | ||
572 | |||
573 | return __logfs_create(dir, dentry, inode, NULL, 0); | ||
574 | } | ||
575 | |||
576 | static int logfs_get_dd(struct inode *dir, struct dentry *dentry, | ||
577 | struct logfs_disk_dentry *dd, loff_t *pos) | ||
578 | { | ||
579 | struct page *page; | ||
580 | void *map; | ||
581 | |||
582 | page = logfs_get_dd_page(dir, dentry); | ||
583 | if (IS_ERR(page)) | ||
584 | return PTR_ERR(page); | ||
585 | *pos = page->index; | ||
586 | map = kmap_atomic(page, KM_USER0); | ||
587 | memcpy(dd, map, sizeof(*dd)); | ||
588 | kunmap_atomic(map, KM_USER0); | ||
589 | page_cache_release(page); | ||
590 | return 0; | ||
591 | } | ||
592 | |||
593 | static int logfs_delete_dd(struct inode *dir, loff_t pos) | ||
594 | { | ||
595 | /* | ||
596 | * Getting called with pos somewhere beyond eof is either a goofup | ||
597 | * within this file or means someone maliciously edited the | ||
598 | * (crc-protected) journal. | ||
599 | */ | ||
600 | BUG_ON(beyond_eof(dir, pos)); | ||
601 | dir->i_ctime = dir->i_mtime = CURRENT_TIME; | ||
602 | log_dir(" Delete dentry (%lx, %llx)\n", dir->i_ino, pos); | ||
603 | return logfs_delete(dir, pos, NULL); | ||
604 | } | ||
605 | |||
606 | /* | ||
607 | * Cross-directory rename, target does not exist. Just a little nasty. | ||
608 | * Create a new dentry in the target dir, then remove the old dentry, | ||
609 | * all the while taking care to remember our operation in the journal. | ||
610 | */ | ||
611 | static int logfs_rename_cross(struct inode *old_dir, struct dentry *old_dentry, | ||
612 | struct inode *new_dir, struct dentry *new_dentry) | ||
613 | { | ||
614 | struct logfs_super *super = logfs_super(old_dir->i_sb); | ||
615 | struct logfs_disk_dentry dd; | ||
616 | struct logfs_transaction *ta; | ||
617 | loff_t pos; | ||
618 | int err; | ||
619 | |||
620 | /* 1. locate source dd */ | ||
621 | err = logfs_get_dd(old_dir, old_dentry, &dd, &pos); | ||
622 | if (err) | ||
623 | return err; | ||
624 | |||
625 | ta = kzalloc(sizeof(*ta), GFP_KERNEL); | ||
626 | if (!ta) | ||
627 | return -ENOMEM; | ||
628 | |||
629 | ta->state = CROSS_RENAME_1; | ||
630 | ta->dir = old_dir->i_ino; | ||
631 | ta->pos = pos; | ||
632 | |||
633 | /* 2. write target dd */ | ||
634 | mutex_lock(&super->s_dirop_mutex); | ||
635 | logfs_add_transaction(new_dir, ta); | ||
636 | err = logfs_write_dir(new_dir, new_dentry, old_dentry->d_inode); | ||
637 | if (!err) | ||
638 | err = write_inode(new_dir); | ||
639 | |||
640 | if (err) { | ||
641 | super->s_rename_dir = 0; | ||
642 | super->s_rename_pos = 0; | ||
643 | abort_transaction(new_dir, ta); | ||
644 | goto out; | ||
645 | } | ||
646 | |||
647 | /* 3. remove source dd */ | ||
648 | ta->state = CROSS_RENAME_2; | ||
649 | logfs_add_transaction(old_dir, ta); | ||
650 | err = logfs_delete_dd(old_dir, pos); | ||
651 | if (!err) | ||
652 | err = write_inode(old_dir); | ||
653 | LOGFS_BUG_ON(err, old_dir->i_sb); | ||
654 | out: | ||
655 | mutex_unlock(&super->s_dirop_mutex); | ||
656 | return err; | ||
657 | } | ||
658 | |||
659 | static int logfs_replace_inode(struct inode *dir, struct dentry *dentry, | ||
660 | struct logfs_disk_dentry *dd, struct inode *inode) | ||
661 | { | ||
662 | loff_t pos; | ||
663 | int err; | ||
664 | |||
665 | err = logfs_get_dd(dir, dentry, dd, &pos); | ||
666 | if (err) | ||
667 | return err; | ||
668 | dd->ino = cpu_to_be64(inode->i_ino); | ||
669 | dd->type = logfs_type(inode); | ||
670 | |||
671 | err = write_dir(dir, dd, pos); | ||
672 | if (err) | ||
673 | return err; | ||
674 | log_dir("Replace dentry (%lx, %llx) %s -> %llx\n", dir->i_ino, pos, | ||
675 | dd->name, be64_to_cpu(dd->ino)); | ||
676 | return write_inode(dir); | ||
677 | } | ||
678 | |||
679 | /* Target dentry exists - the worst case. We need to attach the source | ||
680 | * inode to the target dentry, then remove the orphaned target inode and | ||
681 | * source dentry. | ||
682 | */ | ||
683 | static int logfs_rename_target(struct inode *old_dir, struct dentry *old_dentry, | ||
684 | struct inode *new_dir, struct dentry *new_dentry) | ||
685 | { | ||
686 | struct logfs_super *super = logfs_super(old_dir->i_sb); | ||
687 | struct inode *old_inode = old_dentry->d_inode; | ||
688 | struct inode *new_inode = new_dentry->d_inode; | ||
689 | int isdir = S_ISDIR(old_inode->i_mode); | ||
690 | struct logfs_disk_dentry dd; | ||
691 | struct logfs_transaction *ta; | ||
692 | loff_t pos; | ||
693 | int err; | ||
694 | |||
695 | BUG_ON(isdir != S_ISDIR(new_inode->i_mode)); | ||
696 | if (isdir) { | ||
697 | if (!logfs_empty_dir(new_inode)) | ||
698 | return -ENOTEMPTY; | ||
699 | } | ||
700 | |||
701 | /* 1. locate source dd */ | ||
702 | err = logfs_get_dd(old_dir, old_dentry, &dd, &pos); | ||
703 | if (err) | ||
704 | return err; | ||
705 | |||
706 | ta = kzalloc(sizeof(*ta), GFP_KERNEL); | ||
707 | if (!ta) | ||
708 | return -ENOMEM; | ||
709 | |||
710 | ta->state = TARGET_RENAME_1; | ||
711 | ta->dir = old_dir->i_ino; | ||
712 | ta->pos = pos; | ||
713 | ta->ino = new_inode->i_ino; | ||
714 | |||
715 | /* 2. attach source inode to target dd */ | ||
716 | mutex_lock(&super->s_dirop_mutex); | ||
717 | logfs_add_transaction(new_dir, ta); | ||
718 | err = logfs_replace_inode(new_dir, new_dentry, &dd, old_inode); | ||
719 | if (err) { | ||
720 | super->s_rename_dir = 0; | ||
721 | super->s_rename_pos = 0; | ||
722 | super->s_victim_ino = 0; | ||
723 | abort_transaction(new_dir, ta); | ||
724 | goto out; | ||
725 | } | ||
726 | |||
727 | /* 3. remove source dd */ | ||
728 | ta->state = TARGET_RENAME_2; | ||
729 | logfs_add_transaction(old_dir, ta); | ||
730 | err = logfs_delete_dd(old_dir, pos); | ||
731 | if (!err) | ||
732 | err = write_inode(old_dir); | ||
733 | LOGFS_BUG_ON(err, old_dir->i_sb); | ||
734 | |||
735 | /* 4. remove target inode */ | ||
736 | ta->state = TARGET_RENAME_3; | ||
737 | logfs_add_transaction(new_inode, ta); | ||
738 | err = logfs_remove_inode(new_inode); | ||
739 | |||
740 | out: | ||
741 | mutex_unlock(&super->s_dirop_mutex); | ||
742 | return err; | ||
743 | } | ||
744 | |||
745 | static int logfs_rename(struct inode *old_dir, struct dentry *old_dentry, | ||
746 | struct inode *new_dir, struct dentry *new_dentry) | ||
747 | { | ||
748 | if (new_dentry->d_inode) | ||
749 | return logfs_rename_target(old_dir, old_dentry, | ||
750 | new_dir, new_dentry); | ||
751 | return logfs_rename_cross(old_dir, old_dentry, new_dir, new_dentry); | ||
752 | } | ||
753 | |||
754 | /* No locking done here, as this is called before .get_sb() returns. */ | ||
755 | int logfs_replay_journal(struct super_block *sb) | ||
756 | { | ||
757 | struct logfs_super *super = logfs_super(sb); | ||
758 | struct inode *inode; | ||
759 | u64 ino, pos; | ||
760 | int err; | ||
761 | |||
762 | if (super->s_victim_ino) { | ||
763 | /* delete victim inode */ | ||
764 | ino = super->s_victim_ino; | ||
765 | printk(KERN_INFO"LogFS: delete unmapped inode #%llx\n", ino); | ||
766 | inode = logfs_iget(sb, ino); | ||
767 | if (IS_ERR(inode)) | ||
768 | goto fail; | ||
769 | |||
770 | LOGFS_BUG_ON(i_size_read(inode) > 0, sb); | ||
771 | super->s_victim_ino = 0; | ||
772 | err = logfs_remove_inode(inode); | ||
773 | iput(inode); | ||
774 | if (err) { | ||
775 | super->s_victim_ino = ino; | ||
776 | goto fail; | ||
777 | } | ||
778 | } | ||
779 | if (super->s_rename_dir) { | ||
780 | /* delete old dd from rename */ | ||
781 | ino = super->s_rename_dir; | ||
782 | pos = super->s_rename_pos; | ||
783 | printk(KERN_INFO"LogFS: delete unbacked dentry (%llx, %llx)\n", | ||
784 | ino, pos); | ||
785 | inode = logfs_iget(sb, ino); | ||
786 | if (IS_ERR(inode)) | ||
787 | goto fail; | ||
788 | |||
789 | super->s_rename_dir = 0; | ||
790 | super->s_rename_pos = 0; | ||
791 | err = logfs_delete_dd(inode, pos); | ||
792 | iput(inode); | ||
793 | if (err) { | ||
794 | super->s_rename_dir = ino; | ||
795 | super->s_rename_pos = pos; | ||
796 | goto fail; | ||
797 | } | ||
798 | } | ||
799 | return 0; | ||
800 | fail: | ||
801 | LOGFS_BUG(sb); | ||
802 | return -EIO; | ||
803 | } | ||
804 | |||
805 | const struct inode_operations logfs_symlink_iops = { | ||
806 | .readlink = generic_readlink, | ||
807 | .follow_link = page_follow_link_light, | ||
808 | }; | ||
809 | |||
810 | const struct inode_operations logfs_dir_iops = { | ||
811 | .create = logfs_create, | ||
812 | .link = logfs_link, | ||
813 | .lookup = logfs_lookup, | ||
814 | .mkdir = logfs_mkdir, | ||
815 | .mknod = logfs_mknod, | ||
816 | .rename = logfs_rename, | ||
817 | .rmdir = logfs_rmdir, | ||
818 | .permission = logfs_permission, | ||
819 | .symlink = logfs_symlink, | ||
820 | .unlink = logfs_unlink, | ||
821 | }; | ||
822 | const struct file_operations logfs_dir_fops = { | ||
823 | .fsync = logfs_fsync, | ||
824 | .ioctl = logfs_ioctl, | ||
825 | .readdir = logfs_readdir, | ||
826 | .read = generic_read_dir, | ||
827 | }; | ||
diff --git a/fs/logfs/file.c b/fs/logfs/file.c new file mode 100644 index 000000000000..370f367a933e --- /dev/null +++ b/fs/logfs/file.c | |||
@@ -0,0 +1,263 @@ | |||
1 | /* | ||
2 | * fs/logfs/file.c - prepare_write, commit_write and friends | ||
3 | * | ||
4 | * As should be obvious for Linux kernel code, license is GPLv2 | ||
5 | * | ||
6 | * Copyright (c) 2005-2008 Joern Engel <joern@logfs.org> | ||
7 | */ | ||
8 | #include "logfs.h" | ||
9 | #include <linux/sched.h> | ||
10 | #include <linux/writeback.h> | ||
11 | |||
12 | static int logfs_write_begin(struct file *file, struct address_space *mapping, | ||
13 | loff_t pos, unsigned len, unsigned flags, | ||
14 | struct page **pagep, void **fsdata) | ||
15 | { | ||
16 | struct inode *inode = mapping->host; | ||
17 | struct page *page; | ||
18 | pgoff_t index = pos >> PAGE_CACHE_SHIFT; | ||
19 | |||
20 | page = grab_cache_page_write_begin(mapping, index, flags); | ||
21 | if (!page) | ||
22 | return -ENOMEM; | ||
23 | *pagep = page; | ||
24 | |||
25 | if ((len == PAGE_CACHE_SIZE) || PageUptodate(page)) | ||
26 | return 0; | ||
27 | if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) { | ||
28 | unsigned start = pos & (PAGE_CACHE_SIZE - 1); | ||
29 | unsigned end = start + len; | ||
30 | |||
31 | /* Reading beyond i_size is simple: memset to zero */ | ||
32 | zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE); | ||
33 | return 0; | ||
34 | } | ||
35 | return logfs_readpage_nolock(page); | ||
36 | } | ||
37 | |||
38 | static int logfs_write_end(struct file *file, struct address_space *mapping, | ||
39 | loff_t pos, unsigned len, unsigned copied, struct page *page, | ||
40 | void *fsdata) | ||
41 | { | ||
42 | struct inode *inode = mapping->host; | ||
43 | pgoff_t index = page->index; | ||
44 | unsigned start = pos & (PAGE_CACHE_SIZE - 1); | ||
45 | unsigned end = start + copied; | ||
46 | int ret = 0; | ||
47 | |||
48 | BUG_ON(PAGE_CACHE_SIZE != inode->i_sb->s_blocksize); | ||
49 | BUG_ON(page->index > I3_BLOCKS); | ||
50 | |||
51 | if (copied < len) { | ||
52 | /* | ||
53 | * Short write of a non-initialized paged. Just tell userspace | ||
54 | * to retry the entire page. | ||
55 | */ | ||
56 | if (!PageUptodate(page)) { | ||
57 | copied = 0; | ||
58 | goto out; | ||
59 | } | ||
60 | } | ||
61 | if (copied == 0) | ||
62 | goto out; /* FIXME: do we need to update inode? */ | ||
63 | |||
64 | if (i_size_read(inode) < (index << PAGE_CACHE_SHIFT) + end) { | ||
65 | i_size_write(inode, (index << PAGE_CACHE_SHIFT) + end); | ||
66 | mark_inode_dirty_sync(inode); | ||
67 | } | ||
68 | |||
69 | SetPageUptodate(page); | ||
70 | if (!PageDirty(page)) { | ||
71 | if (!get_page_reserve(inode, page)) | ||
72 | __set_page_dirty_nobuffers(page); | ||
73 | else | ||
74 | ret = logfs_write_buf(inode, page, WF_LOCK); | ||
75 | } | ||
76 | out: | ||
77 | unlock_page(page); | ||
78 | page_cache_release(page); | ||
79 | return ret ? ret : copied; | ||
80 | } | ||
81 | |||
82 | int logfs_readpage(struct file *file, struct page *page) | ||
83 | { | ||
84 | int ret; | ||
85 | |||
86 | ret = logfs_readpage_nolock(page); | ||
87 | unlock_page(page); | ||
88 | return ret; | ||
89 | } | ||
90 | |||
91 | /* Clear the page's dirty flag in the radix tree. */ | ||
92 | /* TODO: mucking with PageWriteback is silly. Add a generic function to clear | ||
93 | * the dirty bit from the radix tree for filesystems that don't have to wait | ||
94 | * for page writeback to finish (i.e. any compressing filesystem). | ||
95 | */ | ||
96 | static void clear_radix_tree_dirty(struct page *page) | ||
97 | { | ||
98 | BUG_ON(PagePrivate(page) || page->private); | ||
99 | set_page_writeback(page); | ||
100 | end_page_writeback(page); | ||
101 | } | ||
102 | |||
103 | static int __logfs_writepage(struct page *page) | ||
104 | { | ||
105 | struct inode *inode = page->mapping->host; | ||
106 | int err; | ||
107 | |||
108 | err = logfs_write_buf(inode, page, WF_LOCK); | ||
109 | if (err) | ||
110 | set_page_dirty(page); | ||
111 | else | ||
112 | clear_radix_tree_dirty(page); | ||
113 | unlock_page(page); | ||
114 | return err; | ||
115 | } | ||
116 | |||
117 | static int logfs_writepage(struct page *page, struct writeback_control *wbc) | ||
118 | { | ||
119 | struct inode *inode = page->mapping->host; | ||
120 | loff_t i_size = i_size_read(inode); | ||
121 | pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; | ||
122 | unsigned offset; | ||
123 | u64 bix; | ||
124 | level_t level; | ||
125 | |||
126 | log_file("logfs_writepage(%lx, %lx, %p)\n", inode->i_ino, page->index, | ||
127 | page); | ||
128 | |||
129 | logfs_unpack_index(page->index, &bix, &level); | ||
130 | |||
131 | /* Indirect blocks are never truncated */ | ||
132 | if (level != 0) | ||
133 | return __logfs_writepage(page); | ||
134 | |||
135 | /* | ||
136 | * TODO: everything below is a near-verbatim copy of nobh_writepage(). | ||
137 | * The relevant bits should be factored out after logfs is merged. | ||
138 | */ | ||
139 | |||
140 | /* Is the page fully inside i_size? */ | ||
141 | if (bix < end_index) | ||
142 | return __logfs_writepage(page); | ||
143 | |||
144 | /* Is the page fully outside i_size? (truncate in progress) */ | ||
145 | offset = i_size & (PAGE_CACHE_SIZE-1); | ||
146 | if (bix > end_index || offset == 0) { | ||
147 | unlock_page(page); | ||
148 | return 0; /* don't care */ | ||
149 | } | ||
150 | |||
151 | /* | ||
152 | * The page straddles i_size. It must be zeroed out on each and every | ||
153 | * writepage invokation because it may be mmapped. "A file is mapped | ||
154 | * in multiples of the page size. For a file that is not a multiple of | ||
155 | * the page size, the remaining memory is zeroed when mapped, and | ||
156 | * writes to that region are not written out to the file." | ||
157 | */ | ||
158 | zero_user_segment(page, offset, PAGE_CACHE_SIZE); | ||
159 | return __logfs_writepage(page); | ||
160 | } | ||
161 | |||
162 | static void logfs_invalidatepage(struct page *page, unsigned long offset) | ||
163 | { | ||
164 | move_page_to_btree(page); | ||
165 | BUG_ON(PagePrivate(page) || page->private); | ||
166 | } | ||
167 | |||
168 | static int logfs_releasepage(struct page *page, gfp_t only_xfs_uses_this) | ||
169 | { | ||
170 | return 0; /* None of these are easy to release */ | ||
171 | } | ||
172 | |||
173 | |||
174 | int logfs_ioctl(struct inode *inode, struct file *file, unsigned int cmd, | ||
175 | unsigned long arg) | ||
176 | { | ||
177 | struct logfs_inode *li = logfs_inode(inode); | ||
178 | unsigned int oldflags, flags; | ||
179 | int err; | ||
180 | |||
181 | switch (cmd) { | ||
182 | case FS_IOC_GETFLAGS: | ||
183 | flags = li->li_flags & LOGFS_FL_USER_VISIBLE; | ||
184 | return put_user(flags, (int __user *)arg); | ||
185 | case FS_IOC_SETFLAGS: | ||
186 | if (IS_RDONLY(inode)) | ||
187 | return -EROFS; | ||
188 | |||
189 | if (!is_owner_or_cap(inode)) | ||
190 | return -EACCES; | ||
191 | |||
192 | err = get_user(flags, (int __user *)arg); | ||
193 | if (err) | ||
194 | return err; | ||
195 | |||
196 | mutex_lock(&inode->i_mutex); | ||
197 | oldflags = li->li_flags; | ||
198 | flags &= LOGFS_FL_USER_MODIFIABLE; | ||
199 | flags |= oldflags & ~LOGFS_FL_USER_MODIFIABLE; | ||
200 | li->li_flags = flags; | ||
201 | mutex_unlock(&inode->i_mutex); | ||
202 | |||
203 | inode->i_ctime = CURRENT_TIME; | ||
204 | mark_inode_dirty_sync(inode); | ||
205 | return 0; | ||
206 | |||
207 | default: | ||
208 | return -ENOTTY; | ||
209 | } | ||
210 | } | ||
211 | |||
212 | int logfs_fsync(struct file *file, struct dentry *dentry, int datasync) | ||
213 | { | ||
214 | struct super_block *sb = dentry->d_inode->i_sb; | ||
215 | struct logfs_super *super = logfs_super(sb); | ||
216 | |||
217 | /* FIXME: write anchor */ | ||
218 | super->s_devops->sync(sb); | ||
219 | return 0; | ||
220 | } | ||
221 | |||
222 | static int logfs_setattr(struct dentry *dentry, struct iattr *attr) | ||
223 | { | ||
224 | struct inode *inode = dentry->d_inode; | ||
225 | int err = 0; | ||
226 | |||
227 | if (attr->ia_valid & ATTR_SIZE) | ||
228 | err = logfs_truncate(inode, attr->ia_size); | ||
229 | attr->ia_valid &= ~ATTR_SIZE; | ||
230 | |||
231 | if (!err) | ||
232 | err = inode_change_ok(inode, attr); | ||
233 | if (!err) | ||
234 | err = inode_setattr(inode, attr); | ||
235 | return err; | ||
236 | } | ||
237 | |||
238 | const struct inode_operations logfs_reg_iops = { | ||
239 | .setattr = logfs_setattr, | ||
240 | }; | ||
241 | |||
242 | const struct file_operations logfs_reg_fops = { | ||
243 | .aio_read = generic_file_aio_read, | ||
244 | .aio_write = generic_file_aio_write, | ||
245 | .fsync = logfs_fsync, | ||
246 | .ioctl = logfs_ioctl, | ||
247 | .llseek = generic_file_llseek, | ||
248 | .mmap = generic_file_readonly_mmap, | ||
249 | .open = generic_file_open, | ||
250 | .read = do_sync_read, | ||
251 | .write = do_sync_write, | ||
252 | }; | ||
253 | |||
254 | const struct address_space_operations logfs_reg_aops = { | ||
255 | .invalidatepage = logfs_invalidatepage, | ||
256 | .readpage = logfs_readpage, | ||
257 | .releasepage = logfs_releasepage, | ||
258 | .set_page_dirty = __set_page_dirty_nobuffers, | ||
259 | .writepage = logfs_writepage, | ||
260 | .writepages = generic_writepages, | ||
261 | .write_begin = logfs_write_begin, | ||
262 | .write_end = logfs_write_end, | ||
263 | }; | ||
diff --git a/fs/logfs/gc.c b/fs/logfs/gc.c new file mode 100644 index 000000000000..92949f95a901 --- /dev/null +++ b/fs/logfs/gc.c | |||
@@ -0,0 +1,730 @@ | |||
1 | /* | ||
2 | * fs/logfs/gc.c - garbage collection code | ||
3 | * | ||
4 | * As should be obvious for Linux kernel code, license is GPLv2 | ||
5 | * | ||
6 | * Copyright (c) 2005-2008 Joern Engel <joern@logfs.org> | ||
7 | */ | ||
8 | #include "logfs.h" | ||
9 | #include <linux/sched.h> | ||
10 | |||
11 | /* | ||
12 | * Wear leveling needs to kick in when the difference between low erase | ||
13 | * counts and high erase counts gets too big. A good value for "too big" | ||
14 | * may be somewhat below 10% of maximum erase count for the device. | ||
15 | * Why not 397, to pick a nice round number with no specific meaning? :) | ||
16 | * | ||
17 | * WL_RATELIMIT is the minimum time between two wear level events. A huge | ||
18 | * number of segments may fulfil the requirements for wear leveling at the | ||
19 | * same time. If that happens we don't want to cause a latency from hell, | ||
20 | * but just gently pick one segment every so often and minimize overhead. | ||
21 | */ | ||
22 | #define WL_DELTA 397 | ||
23 | #define WL_RATELIMIT 100 | ||
24 | #define MAX_OBJ_ALIASES 2600 | ||
25 | #define SCAN_RATIO 512 /* number of scanned segments per gc'd segment */ | ||
26 | #define LIST_SIZE 64 /* base size of candidate lists */ | ||
27 | #define SCAN_ROUNDS 128 /* maximum number of complete medium scans */ | ||
28 | #define SCAN_ROUNDS_HIGH 4 /* maximum number of higher-level scans */ | ||
29 | |||
30 | static int no_free_segments(struct super_block *sb) | ||
31 | { | ||
32 | struct logfs_super *super = logfs_super(sb); | ||
33 | |||
34 | return super->s_free_list.count; | ||
35 | } | ||
36 | |||
37 | /* journal has distance -1, top-most ifile layer distance 0 */ | ||
38 | static u8 root_distance(struct super_block *sb, gc_level_t __gc_level) | ||
39 | { | ||
40 | struct logfs_super *super = logfs_super(sb); | ||
41 | u8 gc_level = (__force u8)__gc_level; | ||
42 | |||
43 | switch (gc_level) { | ||
44 | case 0: /* fall through */ | ||
45 | case 1: /* fall through */ | ||
46 | case 2: /* fall through */ | ||
47 | case 3: | ||
48 | /* file data or indirect blocks */ | ||
49 | return super->s_ifile_levels + super->s_iblock_levels - gc_level; | ||
50 | case 6: /* fall through */ | ||
51 | case 7: /* fall through */ | ||
52 | case 8: /* fall through */ | ||
53 | case 9: | ||
54 | /* inode file data or indirect blocks */ | ||
55 | return super->s_ifile_levels - (gc_level - 6); | ||
56 | default: | ||
57 | printk(KERN_ERR"LOGFS: segment of unknown level %x found\n", | ||
58 | gc_level); | ||
59 | WARN_ON(1); | ||
60 | return super->s_ifile_levels + super->s_iblock_levels; | ||
61 | } | ||
62 | } | ||
63 | |||
64 | static int segment_is_reserved(struct super_block *sb, u32 segno) | ||
65 | { | ||
66 | struct logfs_super *super = logfs_super(sb); | ||
67 | struct logfs_area *area; | ||
68 | void *reserved; | ||
69 | int i; | ||
70 | |||
71 | /* Some segments are reserved. Just pretend they were all valid */ | ||
72 | reserved = btree_lookup32(&super->s_reserved_segments, segno); | ||
73 | if (reserved) | ||
74 | return 1; | ||
75 | |||
76 | /* Currently open segments */ | ||
77 | for_each_area(i) { | ||
78 | area = super->s_area[i]; | ||
79 | if (area->a_is_open && area->a_segno == segno) | ||
80 | return 1; | ||
81 | } | ||
82 | |||
83 | return 0; | ||
84 | } | ||
85 | |||
86 | static void logfs_mark_segment_bad(struct super_block *sb, u32 segno) | ||
87 | { | ||
88 | BUG(); | ||
89 | } | ||
90 | |||
91 | /* | ||
92 | * Returns the bytes consumed by valid objects in this segment. Object headers | ||
93 | * are counted, the segment header is not. | ||
94 | */ | ||
95 | static u32 logfs_valid_bytes(struct super_block *sb, u32 segno, u32 *ec, | ||
96 | gc_level_t *gc_level) | ||
97 | { | ||
98 | struct logfs_segment_entry se; | ||
99 | u32 ec_level; | ||
100 | |||
101 | logfs_get_segment_entry(sb, segno, &se); | ||
102 | if (se.ec_level == cpu_to_be32(BADSEG) || | ||
103 | se.valid == cpu_to_be32(RESERVED)) | ||
104 | return RESERVED; | ||
105 | |||
106 | ec_level = be32_to_cpu(se.ec_level); | ||
107 | *ec = ec_level >> 4; | ||
108 | *gc_level = GC_LEVEL(ec_level & 0xf); | ||
109 | return be32_to_cpu(se.valid); | ||
110 | } | ||
111 | |||
112 | static void logfs_cleanse_block(struct super_block *sb, u64 ofs, u64 ino, | ||
113 | u64 bix, gc_level_t gc_level) | ||
114 | { | ||
115 | struct inode *inode; | ||
116 | int err, cookie; | ||
117 | |||
118 | inode = logfs_safe_iget(sb, ino, &cookie); | ||
119 | err = logfs_rewrite_block(inode, bix, ofs, gc_level, 0); | ||
120 | BUG_ON(err); | ||
121 | logfs_safe_iput(inode, cookie); | ||
122 | } | ||
123 | |||
124 | static u32 logfs_gc_segment(struct super_block *sb, u32 segno, u8 dist) | ||
125 | { | ||
126 | struct logfs_super *super = logfs_super(sb); | ||
127 | struct logfs_segment_header sh; | ||
128 | struct logfs_object_header oh; | ||
129 | u64 ofs, ino, bix; | ||
130 | u32 seg_ofs, logical_segno, cleaned = 0; | ||
131 | int err, len, valid; | ||
132 | gc_level_t gc_level; | ||
133 | |||
134 | LOGFS_BUG_ON(segment_is_reserved(sb, segno), sb); | ||
135 | |||
136 | btree_insert32(&super->s_reserved_segments, segno, (void *)1, GFP_NOFS); | ||
137 | err = wbuf_read(sb, dev_ofs(sb, segno, 0), sizeof(sh), &sh); | ||
138 | BUG_ON(err); | ||
139 | gc_level = GC_LEVEL(sh.level); | ||
140 | logical_segno = be32_to_cpu(sh.segno); | ||
141 | if (sh.crc != logfs_crc32(&sh, sizeof(sh), 4)) { | ||
142 | logfs_mark_segment_bad(sb, segno); | ||
143 | cleaned = -1; | ||
144 | goto out; | ||
145 | } | ||
146 | |||
147 | for (seg_ofs = LOGFS_SEGMENT_HEADERSIZE; | ||
148 | seg_ofs + sizeof(oh) < super->s_segsize; ) { | ||
149 | ofs = dev_ofs(sb, logical_segno, seg_ofs); | ||
150 | err = wbuf_read(sb, dev_ofs(sb, segno, seg_ofs), sizeof(oh), | ||
151 | &oh); | ||
152 | BUG_ON(err); | ||
153 | |||
154 | if (!memchr_inv(&oh, 0xff, sizeof(oh))) | ||
155 | break; | ||
156 | |||
157 | if (oh.crc != logfs_crc32(&oh, sizeof(oh) - 4, 4)) { | ||
158 | logfs_mark_segment_bad(sb, segno); | ||
159 | cleaned = super->s_segsize - 1; | ||
160 | goto out; | ||
161 | } | ||
162 | |||
163 | ino = be64_to_cpu(oh.ino); | ||
164 | bix = be64_to_cpu(oh.bix); | ||
165 | len = sizeof(oh) + be16_to_cpu(oh.len); | ||
166 | valid = logfs_is_valid_block(sb, ofs, ino, bix, gc_level); | ||
167 | if (valid == 1) { | ||
168 | logfs_cleanse_block(sb, ofs, ino, bix, gc_level); | ||
169 | cleaned += len; | ||
170 | } else if (valid == 2) { | ||
171 | /* Will be invalid upon journal commit */ | ||
172 | cleaned += len; | ||
173 | } | ||
174 | seg_ofs += len; | ||
175 | } | ||
176 | out: | ||
177 | btree_remove32(&super->s_reserved_segments, segno); | ||
178 | return cleaned; | ||
179 | } | ||
180 | |||
181 | static struct gc_candidate *add_list(struct gc_candidate *cand, | ||
182 | struct candidate_list *list) | ||
183 | { | ||
184 | struct rb_node **p = &list->rb_tree.rb_node; | ||
185 | struct rb_node *parent = NULL; | ||
186 | struct gc_candidate *cur; | ||
187 | int comp; | ||
188 | |||
189 | cand->list = list; | ||
190 | while (*p) { | ||
191 | parent = *p; | ||
192 | cur = rb_entry(parent, struct gc_candidate, rb_node); | ||
193 | |||
194 | if (list->sort_by_ec) | ||
195 | comp = cand->erase_count < cur->erase_count; | ||
196 | else | ||
197 | comp = cand->valid < cur->valid; | ||
198 | |||
199 | if (comp) | ||
200 | p = &parent->rb_left; | ||
201 | else | ||
202 | p = &parent->rb_right; | ||
203 | } | ||
204 | rb_link_node(&cand->rb_node, parent, p); | ||
205 | rb_insert_color(&cand->rb_node, &list->rb_tree); | ||
206 | |||
207 | if (list->count <= list->maxcount) { | ||
208 | list->count++; | ||
209 | return NULL; | ||
210 | } | ||
211 | cand = rb_entry(rb_last(&list->rb_tree), struct gc_candidate, rb_node); | ||
212 | rb_erase(&cand->rb_node, &list->rb_tree); | ||
213 | cand->list = NULL; | ||
214 | return cand; | ||
215 | } | ||
216 | |||
217 | static void remove_from_list(struct gc_candidate *cand) | ||
218 | { | ||
219 | struct candidate_list *list = cand->list; | ||
220 | |||
221 | rb_erase(&cand->rb_node, &list->rb_tree); | ||
222 | list->count--; | ||
223 | } | ||
224 | |||
225 | static void free_candidate(struct super_block *sb, struct gc_candidate *cand) | ||
226 | { | ||
227 | struct logfs_super *super = logfs_super(sb); | ||
228 | |||
229 | btree_remove32(&super->s_cand_tree, cand->segno); | ||
230 | kfree(cand); | ||
231 | } | ||
232 | |||
233 | u32 get_best_cand(struct super_block *sb, struct candidate_list *list, u32 *ec) | ||
234 | { | ||
235 | struct gc_candidate *cand; | ||
236 | u32 segno; | ||
237 | |||
238 | BUG_ON(list->count == 0); | ||
239 | |||
240 | cand = rb_entry(rb_first(&list->rb_tree), struct gc_candidate, rb_node); | ||
241 | remove_from_list(cand); | ||
242 | segno = cand->segno; | ||
243 | if (ec) | ||
244 | *ec = cand->erase_count; | ||
245 | free_candidate(sb, cand); | ||
246 | return segno; | ||
247 | } | ||
248 | |||
249 | /* | ||
250 | * We have several lists to manage segments with. The reserve_list is used to | ||
251 | * deal with bad blocks. We try to keep the best (lowest ec) segments on this | ||
252 | * list. | ||
253 | * The free_list contains free segments for normal usage. It usually gets the | ||
254 | * second pick after the reserve_list. But when the free_list is running short | ||
255 | * it is more important to keep the free_list full than to keep a reserve. | ||
256 | * | ||
257 | * Segments that are not free are put onto a per-level low_list. If we have | ||
258 | * to run garbage collection, we pick a candidate from there. All segments on | ||
259 | * those lists should have at least some free space so GC will make progress. | ||
260 | * | ||
261 | * And last we have the ec_list, which is used to pick segments for wear | ||
262 | * leveling. | ||
263 | * | ||
264 | * If all appropriate lists are full, we simply free the candidate and forget | ||
265 | * about that segment for a while. We have better candidates for each purpose. | ||
266 | */ | ||
267 | static void __add_candidate(struct super_block *sb, struct gc_candidate *cand) | ||
268 | { | ||
269 | struct logfs_super *super = logfs_super(sb); | ||
270 | u32 full = super->s_segsize - LOGFS_SEGMENT_RESERVE; | ||
271 | |||
272 | if (cand->valid == 0) { | ||
273 | /* 100% free segments */ | ||
274 | log_gc_noisy("add reserve segment %x (ec %x) at %llx\n", | ||
275 | cand->segno, cand->erase_count, | ||
276 | dev_ofs(sb, cand->segno, 0)); | ||
277 | cand = add_list(cand, &super->s_reserve_list); | ||
278 | if (cand) { | ||
279 | log_gc_noisy("add free segment %x (ec %x) at %llx\n", | ||
280 | cand->segno, cand->erase_count, | ||
281 | dev_ofs(sb, cand->segno, 0)); | ||
282 | cand = add_list(cand, &super->s_free_list); | ||
283 | } | ||
284 | } else { | ||
285 | /* good candidates for Garbage Collection */ | ||
286 | if (cand->valid < full) | ||
287 | cand = add_list(cand, &super->s_low_list[cand->dist]); | ||
288 | /* good candidates for wear leveling, | ||
289 | * segments that were recently written get ignored */ | ||
290 | if (cand) | ||
291 | cand = add_list(cand, &super->s_ec_list); | ||
292 | } | ||
293 | if (cand) | ||
294 | free_candidate(sb, cand); | ||
295 | } | ||
296 | |||
297 | static int add_candidate(struct super_block *sb, u32 segno, u32 valid, u32 ec, | ||
298 | u8 dist) | ||
299 | { | ||
300 | struct logfs_super *super = logfs_super(sb); | ||
301 | struct gc_candidate *cand; | ||
302 | |||
303 | cand = kmalloc(sizeof(*cand), GFP_NOFS); | ||
304 | if (!cand) | ||
305 | return -ENOMEM; | ||
306 | |||
307 | cand->segno = segno; | ||
308 | cand->valid = valid; | ||
309 | cand->erase_count = ec; | ||
310 | cand->dist = dist; | ||
311 | |||
312 | btree_insert32(&super->s_cand_tree, segno, cand, GFP_NOFS); | ||
313 | __add_candidate(sb, cand); | ||
314 | return 0; | ||
315 | } | ||
316 | |||
317 | static void remove_segment_from_lists(struct super_block *sb, u32 segno) | ||
318 | { | ||
319 | struct logfs_super *super = logfs_super(sb); | ||
320 | struct gc_candidate *cand; | ||
321 | |||
322 | cand = btree_lookup32(&super->s_cand_tree, segno); | ||
323 | if (cand) { | ||
324 | remove_from_list(cand); | ||
325 | free_candidate(sb, cand); | ||
326 | } | ||
327 | } | ||
328 | |||
329 | static void scan_segment(struct super_block *sb, u32 segno) | ||
330 | { | ||
331 | u32 valid, ec = 0; | ||
332 | gc_level_t gc_level = 0; | ||
333 | u8 dist; | ||
334 | |||
335 | if (segment_is_reserved(sb, segno)) | ||
336 | return; | ||
337 | |||
338 | remove_segment_from_lists(sb, segno); | ||
339 | valid = logfs_valid_bytes(sb, segno, &ec, &gc_level); | ||
340 | if (valid == RESERVED) | ||
341 | return; | ||
342 | |||
343 | dist = root_distance(sb, gc_level); | ||
344 | add_candidate(sb, segno, valid, ec, dist); | ||
345 | } | ||
346 | |||
347 | static struct gc_candidate *first_in_list(struct candidate_list *list) | ||
348 | { | ||
349 | if (list->count == 0) | ||
350 | return NULL; | ||
351 | return rb_entry(rb_first(&list->rb_tree), struct gc_candidate, rb_node); | ||
352 | } | ||
353 | |||
354 | /* | ||
355 | * Find the best segment for garbage collection. Main criterion is | ||
356 | * the segment requiring the least effort to clean. Secondary | ||
357 | * criterion is to GC on the lowest level available. | ||
358 | * | ||
359 | * So we search the least effort segment on the lowest level first, | ||
360 | * then move up and pick another segment iff is requires significantly | ||
361 | * less effort. Hence the LOGFS_MAX_OBJECTSIZE in the comparison. | ||
362 | */ | ||
363 | static struct gc_candidate *get_candidate(struct super_block *sb) | ||
364 | { | ||
365 | struct logfs_super *super = logfs_super(sb); | ||
366 | int i, max_dist; | ||
367 | struct gc_candidate *cand = NULL, *this; | ||
368 | |||
369 | max_dist = min(no_free_segments(sb), LOGFS_NO_AREAS); | ||
370 | |||
371 | for (i = max_dist; i >= 0; i--) { | ||
372 | this = first_in_list(&super->s_low_list[i]); | ||
373 | if (!this) | ||
374 | continue; | ||
375 | if (!cand) | ||
376 | cand = this; | ||
377 | if (this->valid + LOGFS_MAX_OBJECTSIZE <= cand->valid) | ||
378 | cand = this; | ||
379 | } | ||
380 | return cand; | ||
381 | } | ||
382 | |||
383 | static int __logfs_gc_once(struct super_block *sb, struct gc_candidate *cand) | ||
384 | { | ||
385 | struct logfs_super *super = logfs_super(sb); | ||
386 | gc_level_t gc_level; | ||
387 | u32 cleaned, valid, segno, ec; | ||
388 | u8 dist; | ||
389 | |||
390 | if (!cand) { | ||
391 | log_gc("GC attempted, but no candidate found\n"); | ||
392 | return 0; | ||
393 | } | ||
394 | |||
395 | segno = cand->segno; | ||
396 | dist = cand->dist; | ||
397 | valid = logfs_valid_bytes(sb, segno, &ec, &gc_level); | ||
398 | free_candidate(sb, cand); | ||
399 | log_gc("GC segment #%02x at %llx, %x required, %x free, %x valid, %llx free\n", | ||
400 | segno, (u64)segno << super->s_segshift, | ||
401 | dist, no_free_segments(sb), valid, | ||
402 | super->s_free_bytes); | ||
403 | cleaned = logfs_gc_segment(sb, segno, dist); | ||
404 | log_gc("GC segment #%02x complete - now %x valid\n", segno, | ||
405 | valid - cleaned); | ||
406 | BUG_ON(cleaned != valid); | ||
407 | return 1; | ||
408 | } | ||
409 | |||
410 | static int logfs_gc_once(struct super_block *sb) | ||
411 | { | ||
412 | struct gc_candidate *cand; | ||
413 | |||
414 | cand = get_candidate(sb); | ||
415 | if (cand) | ||
416 | remove_from_list(cand); | ||
417 | return __logfs_gc_once(sb, cand); | ||
418 | } | ||
419 | |||
420 | /* returns 1 if a wrap occurs, 0 otherwise */ | ||
421 | static int logfs_scan_some(struct super_block *sb) | ||
422 | { | ||
423 | struct logfs_super *super = logfs_super(sb); | ||
424 | u32 segno; | ||
425 | int i, ret = 0; | ||
426 | |||
427 | segno = super->s_sweeper; | ||
428 | for (i = SCAN_RATIO; i > 0; i--) { | ||
429 | segno++; | ||
430 | if (segno >= super->s_no_segs) { | ||
431 | segno = 0; | ||
432 | ret = 1; | ||
433 | /* Break out of the loop. We want to read a single | ||
434 | * block from the segment size on next invocation if | ||
435 | * SCAN_RATIO is set to match block size | ||
436 | */ | ||
437 | break; | ||
438 | } | ||
439 | |||
440 | scan_segment(sb, segno); | ||
441 | } | ||
442 | super->s_sweeper = segno; | ||
443 | return ret; | ||
444 | } | ||
445 | |||
446 | /* | ||
447 | * In principle, this function should loop forever, looking for GC candidates | ||
448 | * and moving data. LogFS is designed in such a way that this loop is | ||
449 | * guaranteed to terminate. | ||
450 | * | ||
451 | * Limiting the loop to some iterations serves purely to catch cases when | ||
452 | * these guarantees have failed. An actual endless loop is an obvious bug | ||
453 | * and should be reported as such. | ||
454 | */ | ||
455 | static void __logfs_gc_pass(struct super_block *sb, int target) | ||
456 | { | ||
457 | struct logfs_super *super = logfs_super(sb); | ||
458 | struct logfs_block *block; | ||
459 | int round, progress, last_progress = 0; | ||
460 | |||
461 | if (no_free_segments(sb) >= target && | ||
462 | super->s_no_object_aliases < MAX_OBJ_ALIASES) | ||
463 | return; | ||
464 | |||
465 | log_gc("__logfs_gc_pass(%x)\n", target); | ||
466 | for (round = 0; round < SCAN_ROUNDS; ) { | ||
467 | if (no_free_segments(sb) >= target) | ||
468 | goto write_alias; | ||
469 | |||
470 | /* Sync in-memory state with on-medium state in case they | ||
471 | * diverged */ | ||
472 | logfs_write_anchor(sb); | ||
473 | round += logfs_scan_some(sb); | ||
474 | if (no_free_segments(sb) >= target) | ||
475 | goto write_alias; | ||
476 | progress = logfs_gc_once(sb); | ||
477 | if (progress) | ||
478 | last_progress = round; | ||
479 | else if (round - last_progress > 2) | ||
480 | break; | ||
481 | continue; | ||
482 | |||
483 | /* | ||
484 | * The goto logic is nasty, I just don't know a better way to | ||
485 | * code it. GC is supposed to ensure two things: | ||
486 | * 1. Enough free segments are available. | ||
487 | * 2. The number of aliases is bounded. | ||
488 | * When 1. is achieved, we take a look at 2. and write back | ||
489 | * some alias-containing blocks, if necessary. However, after | ||
490 | * each such write we need to go back to 1., as writes can | ||
491 | * consume free segments. | ||
492 | */ | ||
493 | write_alias: | ||
494 | if (super->s_no_object_aliases < MAX_OBJ_ALIASES) | ||
495 | return; | ||
496 | if (list_empty(&super->s_object_alias)) { | ||
497 | /* All aliases are still in btree */ | ||
498 | return; | ||
499 | } | ||
500 | log_gc("Write back one alias\n"); | ||
501 | block = list_entry(super->s_object_alias.next, | ||
502 | struct logfs_block, alias_list); | ||
503 | block->ops->write_block(block); | ||
504 | /* | ||
505 | * To round off the nasty goto logic, we reset round here. It | ||
506 | * is a safety-net for GC not making any progress and limited | ||
507 | * to something reasonably small. If incremented it for every | ||
508 | * single alias, the loop could terminate rather quickly. | ||
509 | */ | ||
510 | round = 0; | ||
511 | } | ||
512 | LOGFS_BUG(sb); | ||
513 | } | ||
514 | |||
515 | static int wl_ratelimit(struct super_block *sb, u64 *next_event) | ||
516 | { | ||
517 | struct logfs_super *super = logfs_super(sb); | ||
518 | |||
519 | if (*next_event < super->s_gec) { | ||
520 | *next_event = super->s_gec + WL_RATELIMIT; | ||
521 | return 0; | ||
522 | } | ||
523 | return 1; | ||
524 | } | ||
525 | |||
526 | static void logfs_wl_pass(struct super_block *sb) | ||
527 | { | ||
528 | struct logfs_super *super = logfs_super(sb); | ||
529 | struct gc_candidate *wl_cand, *free_cand; | ||
530 | |||
531 | if (wl_ratelimit(sb, &super->s_wl_gec_ostore)) | ||
532 | return; | ||
533 | |||
534 | wl_cand = first_in_list(&super->s_ec_list); | ||
535 | if (!wl_cand) | ||
536 | return; | ||
537 | free_cand = first_in_list(&super->s_free_list); | ||
538 | if (!free_cand) | ||
539 | return; | ||
540 | |||
541 | if (wl_cand->erase_count < free_cand->erase_count + WL_DELTA) { | ||
542 | remove_from_list(wl_cand); | ||
543 | __logfs_gc_once(sb, wl_cand); | ||
544 | } | ||
545 | } | ||
546 | |||
547 | /* | ||
548 | * The journal needs wear leveling as well. But moving the journal is an | ||
549 | * expensive operation so we try to avoid it as much as possible. And if we | ||
550 | * have to do it, we move the whole journal, not individual segments. | ||
551 | * | ||
552 | * Ratelimiting is not strictly necessary here, it mainly serves to avoid the | ||
553 | * calculations. First we check whether moving the journal would be a | ||
554 | * significant improvement. That means that a) the current journal segments | ||
555 | * have more wear than the future journal segments and b) the current journal | ||
556 | * segments have more wear than normal ostore segments. | ||
557 | * Rationale for b) is that we don't have to move the journal if it is aging | ||
558 | * less than the ostore, even if the reserve segments age even less (they are | ||
559 | * excluded from wear leveling, after all). | ||
560 | * Next we check that the superblocks have less wear than the journal. Since | ||
561 | * moving the journal requires writing the superblocks, we have to protect the | ||
562 | * superblocks even more than the journal. | ||
563 | * | ||
564 | * Also we double the acceptable wear difference, compared to ostore wear | ||
565 | * leveling. Journal data is read and rewritten rapidly, comparatively. So | ||
566 | * soft errors have much less time to accumulate and we allow the journal to | ||
567 | * be a bit worse than the ostore. | ||
568 | */ | ||
569 | static void logfs_journal_wl_pass(struct super_block *sb) | ||
570 | { | ||
571 | struct logfs_super *super = logfs_super(sb); | ||
572 | struct gc_candidate *cand; | ||
573 | u32 min_journal_ec = -1, max_reserve_ec = 0; | ||
574 | int i; | ||
575 | |||
576 | if (wl_ratelimit(sb, &super->s_wl_gec_journal)) | ||
577 | return; | ||
578 | |||
579 | if (super->s_reserve_list.count < super->s_no_journal_segs) { | ||
580 | /* Reserve is not full enough to move complete journal */ | ||
581 | return; | ||
582 | } | ||
583 | |||
584 | journal_for_each(i) | ||
585 | if (super->s_journal_seg[i]) | ||
586 | min_journal_ec = min(min_journal_ec, | ||
587 | super->s_journal_ec[i]); | ||
588 | cand = rb_entry(rb_first(&super->s_free_list.rb_tree), | ||
589 | struct gc_candidate, rb_node); | ||
590 | max_reserve_ec = cand->erase_count; | ||
591 | for (i = 0; i < 2; i++) { | ||
592 | struct logfs_segment_entry se; | ||
593 | u32 segno = seg_no(sb, super->s_sb_ofs[i]); | ||
594 | u32 ec; | ||
595 | |||
596 | logfs_get_segment_entry(sb, segno, &se); | ||
597 | ec = be32_to_cpu(se.ec_level) >> 4; | ||
598 | max_reserve_ec = max(max_reserve_ec, ec); | ||
599 | } | ||
600 | |||
601 | if (min_journal_ec > max_reserve_ec + 2 * WL_DELTA) { | ||
602 | do_logfs_journal_wl_pass(sb); | ||
603 | } | ||
604 | } | ||
605 | |||
606 | void logfs_gc_pass(struct super_block *sb) | ||
607 | { | ||
608 | struct logfs_super *super = logfs_super(sb); | ||
609 | |||
610 | //BUG_ON(mutex_trylock(&logfs_super(sb)->s_w_mutex)); | ||
611 | /* Write journal before free space is getting saturated with dirty | ||
612 | * objects. | ||
613 | */ | ||
614 | if (super->s_dirty_used_bytes + super->s_dirty_free_bytes | ||
615 | + LOGFS_MAX_OBJECTSIZE >= super->s_free_bytes) | ||
616 | logfs_write_anchor(sb); | ||
617 | __logfs_gc_pass(sb, super->s_total_levels); | ||
618 | logfs_wl_pass(sb); | ||
619 | logfs_journal_wl_pass(sb); | ||
620 | } | ||
621 | |||
622 | static int check_area(struct super_block *sb, int i) | ||
623 | { | ||
624 | struct logfs_super *super = logfs_super(sb); | ||
625 | struct logfs_area *area = super->s_area[i]; | ||
626 | struct logfs_object_header oh; | ||
627 | u32 segno = area->a_segno; | ||
628 | u32 ofs = area->a_used_bytes; | ||
629 | __be32 crc; | ||
630 | int err; | ||
631 | |||
632 | if (!area->a_is_open) | ||
633 | return 0; | ||
634 | |||
635 | for (ofs = area->a_used_bytes; | ||
636 | ofs <= super->s_segsize - sizeof(oh); | ||
637 | ofs += (u32)be16_to_cpu(oh.len) + sizeof(oh)) { | ||
638 | err = wbuf_read(sb, dev_ofs(sb, segno, ofs), sizeof(oh), &oh); | ||
639 | if (err) | ||
640 | return err; | ||
641 | |||
642 | if (!memchr_inv(&oh, 0xff, sizeof(oh))) | ||
643 | break; | ||
644 | |||
645 | crc = logfs_crc32(&oh, sizeof(oh) - 4, 4); | ||
646 | if (crc != oh.crc) { | ||
647 | printk(KERN_INFO "interrupted header at %llx\n", | ||
648 | dev_ofs(sb, segno, ofs)); | ||
649 | return 0; | ||
650 | } | ||
651 | } | ||
652 | if (ofs != area->a_used_bytes) { | ||
653 | printk(KERN_INFO "%x bytes unaccounted data found at %llx\n", | ||
654 | ofs - area->a_used_bytes, | ||
655 | dev_ofs(sb, segno, area->a_used_bytes)); | ||
656 | area->a_used_bytes = ofs; | ||
657 | } | ||
658 | return 0; | ||
659 | } | ||
660 | |||
661 | int logfs_check_areas(struct super_block *sb) | ||
662 | { | ||
663 | int i, err; | ||
664 | |||
665 | for_each_area(i) { | ||
666 | err = check_area(sb, i); | ||
667 | if (err) | ||
668 | return err; | ||
669 | } | ||
670 | return 0; | ||
671 | } | ||
672 | |||
673 | static void logfs_init_candlist(struct candidate_list *list, int maxcount, | ||
674 | int sort_by_ec) | ||
675 | { | ||
676 | list->count = 0; | ||
677 | list->maxcount = maxcount; | ||
678 | list->sort_by_ec = sort_by_ec; | ||
679 | list->rb_tree = RB_ROOT; | ||
680 | } | ||
681 | |||
682 | int logfs_init_gc(struct super_block *sb) | ||
683 | { | ||
684 | struct logfs_super *super = logfs_super(sb); | ||
685 | int i; | ||
686 | |||
687 | btree_init_mempool32(&super->s_cand_tree, super->s_btree_pool); | ||
688 | logfs_init_candlist(&super->s_free_list, LIST_SIZE + SCAN_RATIO, 1); | ||
689 | logfs_init_candlist(&super->s_reserve_list, | ||
690 | super->s_bad_seg_reserve, 1); | ||
691 | for_each_area(i) | ||
692 | logfs_init_candlist(&super->s_low_list[i], LIST_SIZE, 0); | ||
693 | logfs_init_candlist(&super->s_ec_list, LIST_SIZE, 1); | ||
694 | return 0; | ||
695 | } | ||
696 | |||
697 | static void logfs_cleanup_list(struct super_block *sb, | ||
698 | struct candidate_list *list) | ||
699 | { | ||
700 | struct gc_candidate *cand; | ||
701 | |||
702 | while (list->count) { | ||
703 | cand = rb_entry(list->rb_tree.rb_node, struct gc_candidate, | ||
704 | rb_node); | ||
705 | remove_from_list(cand); | ||
706 | free_candidate(sb, cand); | ||
707 | } | ||
708 | BUG_ON(list->rb_tree.rb_node); | ||
709 | } | ||
710 | |||
711 | void logfs_cleanup_gc(struct super_block *sb) | ||
712 | { | ||
713 | struct logfs_super *super = logfs_super(sb); | ||
714 | int i; | ||
715 | |||
716 | if (!super->s_free_list.count) | ||
717 | return; | ||
718 | |||
719 | /* | ||
720 | * FIXME: The btree may still contain a single empty node. So we | ||
721 | * call the grim visitor to clean up that mess. Btree code should | ||
722 | * do it for us, really. | ||
723 | */ | ||
724 | btree_grim_visitor32(&super->s_cand_tree, 0, NULL); | ||
725 | logfs_cleanup_list(sb, &super->s_free_list); | ||
726 | logfs_cleanup_list(sb, &super->s_reserve_list); | ||
727 | for_each_area(i) | ||
728 | logfs_cleanup_list(sb, &super->s_low_list[i]); | ||
729 | logfs_cleanup_list(sb, &super->s_ec_list); | ||
730 | } | ||
diff --git a/fs/logfs/inode.c b/fs/logfs/inode.c new file mode 100644 index 000000000000..33ec1aeaeec4 --- /dev/null +++ b/fs/logfs/inode.c | |||
@@ -0,0 +1,417 @@ | |||
1 | /* | ||
2 | * fs/logfs/inode.c - inode handling code | ||
3 | * | ||
4 | * As should be obvious for Linux kernel code, license is GPLv2 | ||
5 | * | ||
6 | * Copyright (c) 2005-2008 Joern Engel <joern@logfs.org> | ||
7 | */ | ||
8 | #include "logfs.h" | ||
9 | #include <linux/writeback.h> | ||
10 | #include <linux/backing-dev.h> | ||
11 | |||
12 | /* | ||
13 | * How soon to reuse old inode numbers? LogFS doesn't store deleted inodes | ||
14 | * on the medium. It therefore also lacks a method to store the previous | ||
15 | * generation number for deleted inodes. Instead a single generation number | ||
16 | * is stored which will be used for new inodes. Being just a 32bit counter, | ||
17 | * this can obvious wrap relatively quickly. So we only reuse inodes if we | ||
18 | * know that a fair number of inodes can be created before we have to increment | ||
19 | * the generation again - effectively adding some bits to the counter. | ||
20 | * But being too aggressive here means we keep a very large and very sparse | ||
21 | * inode file, wasting space on indirect blocks. | ||
22 | * So what is a good value? Beats me. 64k seems moderately bad on both | ||
23 | * fronts, so let's use that for now... | ||
24 | * | ||
25 | * NFS sucks, as everyone already knows. | ||
26 | */ | ||
27 | #define INOS_PER_WRAP (0x10000) | ||
28 | |||
29 | /* | ||
30 | * Logfs' requirement to read inodes for garbage collection makes life a bit | ||
31 | * harder. GC may have to read inodes that are in I_FREEING state, when they | ||
32 | * are being written out - and waiting for GC to make progress, naturally. | ||
33 | * | ||
34 | * So we cannot just call iget() or some variant of it, but first have to check | ||
35 | * wether the inode in question might be in I_FREEING state. Therefore we | ||
36 | * maintain our own per-sb list of "almost deleted" inodes and check against | ||
37 | * that list first. Normally this should be at most 1-2 entries long. | ||
38 | * | ||
39 | * Also, inodes have logfs-specific reference counting on top of what the vfs | ||
40 | * does. When .destroy_inode is called, normally the reference count will drop | ||
41 | * to zero and the inode gets deleted. But if GC accessed the inode, its | ||
42 | * refcount will remain nonzero and final deletion will have to wait. | ||
43 | * | ||
44 | * As a result we have two sets of functions to get/put inodes: | ||
45 | * logfs_safe_iget/logfs_safe_iput - safe to call from GC context | ||
46 | * logfs_iget/iput - normal version | ||
47 | */ | ||
48 | static struct kmem_cache *logfs_inode_cache; | ||
49 | |||
50 | static DEFINE_SPINLOCK(logfs_inode_lock); | ||
51 | |||
52 | static void logfs_inode_setops(struct inode *inode) | ||
53 | { | ||
54 | switch (inode->i_mode & S_IFMT) { | ||
55 | case S_IFDIR: | ||
56 | inode->i_op = &logfs_dir_iops; | ||
57 | inode->i_fop = &logfs_dir_fops; | ||
58 | inode->i_mapping->a_ops = &logfs_reg_aops; | ||
59 | break; | ||
60 | case S_IFREG: | ||
61 | inode->i_op = &logfs_reg_iops; | ||
62 | inode->i_fop = &logfs_reg_fops; | ||
63 | inode->i_mapping->a_ops = &logfs_reg_aops; | ||
64 | break; | ||
65 | case S_IFLNK: | ||
66 | inode->i_op = &logfs_symlink_iops; | ||
67 | inode->i_mapping->a_ops = &logfs_reg_aops; | ||
68 | break; | ||
69 | case S_IFSOCK: /* fall through */ | ||
70 | case S_IFBLK: /* fall through */ | ||
71 | case S_IFCHR: /* fall through */ | ||
72 | case S_IFIFO: | ||
73 | init_special_inode(inode, inode->i_mode, inode->i_rdev); | ||
74 | break; | ||
75 | default: | ||
76 | BUG(); | ||
77 | } | ||
78 | } | ||
79 | |||
80 | static struct inode *__logfs_iget(struct super_block *sb, ino_t ino) | ||
81 | { | ||
82 | struct inode *inode = iget_locked(sb, ino); | ||
83 | int err; | ||
84 | |||
85 | if (!inode) | ||
86 | return ERR_PTR(-ENOMEM); | ||
87 | if (!(inode->i_state & I_NEW)) | ||
88 | return inode; | ||
89 | |||
90 | err = logfs_read_inode(inode); | ||
91 | if (err || inode->i_nlink == 0) { | ||
92 | /* inode->i_nlink == 0 can be true when called from | ||
93 | * block validator */ | ||
94 | /* set i_nlink to 0 to prevent caching */ | ||
95 | inode->i_nlink = 0; | ||
96 | logfs_inode(inode)->li_flags |= LOGFS_IF_ZOMBIE; | ||
97 | iget_failed(inode); | ||
98 | if (!err) | ||
99 | err = -ENOENT; | ||
100 | return ERR_PTR(err); | ||
101 | } | ||
102 | |||
103 | logfs_inode_setops(inode); | ||
104 | unlock_new_inode(inode); | ||
105 | return inode; | ||
106 | } | ||
107 | |||
108 | struct inode *logfs_iget(struct super_block *sb, ino_t ino) | ||
109 | { | ||
110 | BUG_ON(ino == LOGFS_INO_MASTER); | ||
111 | BUG_ON(ino == LOGFS_INO_SEGFILE); | ||
112 | return __logfs_iget(sb, ino); | ||
113 | } | ||
114 | |||
115 | /* | ||
116 | * is_cached is set to 1 if we hand out a cached inode, 0 otherwise. | ||
117 | * this allows logfs_iput to do the right thing later | ||
118 | */ | ||
119 | struct inode *logfs_safe_iget(struct super_block *sb, ino_t ino, int *is_cached) | ||
120 | { | ||
121 | struct logfs_super *super = logfs_super(sb); | ||
122 | struct logfs_inode *li; | ||
123 | |||
124 | if (ino == LOGFS_INO_MASTER) | ||
125 | return super->s_master_inode; | ||
126 | if (ino == LOGFS_INO_SEGFILE) | ||
127 | return super->s_segfile_inode; | ||
128 | |||
129 | spin_lock(&logfs_inode_lock); | ||
130 | list_for_each_entry(li, &super->s_freeing_list, li_freeing_list) | ||
131 | if (li->vfs_inode.i_ino == ino) { | ||
132 | li->li_refcount++; | ||
133 | spin_unlock(&logfs_inode_lock); | ||
134 | *is_cached = 1; | ||
135 | return &li->vfs_inode; | ||
136 | } | ||
137 | spin_unlock(&logfs_inode_lock); | ||
138 | |||
139 | *is_cached = 0; | ||
140 | return __logfs_iget(sb, ino); | ||
141 | } | ||
142 | |||
143 | static void __logfs_destroy_inode(struct inode *inode) | ||
144 | { | ||
145 | struct logfs_inode *li = logfs_inode(inode); | ||
146 | |||
147 | BUG_ON(li->li_block); | ||
148 | list_del(&li->li_freeing_list); | ||
149 | kmem_cache_free(logfs_inode_cache, li); | ||
150 | } | ||
151 | |||
152 | static void logfs_destroy_inode(struct inode *inode) | ||
153 | { | ||
154 | struct logfs_inode *li = logfs_inode(inode); | ||
155 | |||
156 | BUG_ON(list_empty(&li->li_freeing_list)); | ||
157 | spin_lock(&logfs_inode_lock); | ||
158 | li->li_refcount--; | ||
159 | if (li->li_refcount == 0) | ||
160 | __logfs_destroy_inode(inode); | ||
161 | spin_unlock(&logfs_inode_lock); | ||
162 | } | ||
163 | |||
164 | void logfs_safe_iput(struct inode *inode, int is_cached) | ||
165 | { | ||
166 | if (inode->i_ino == LOGFS_INO_MASTER) | ||
167 | return; | ||
168 | if (inode->i_ino == LOGFS_INO_SEGFILE) | ||
169 | return; | ||
170 | |||
171 | if (is_cached) { | ||
172 | logfs_destroy_inode(inode); | ||
173 | return; | ||
174 | } | ||
175 | |||
176 | iput(inode); | ||
177 | } | ||
178 | |||
179 | static void logfs_init_inode(struct super_block *sb, struct inode *inode) | ||
180 | { | ||
181 | struct logfs_inode *li = logfs_inode(inode); | ||
182 | int i; | ||
183 | |||
184 | li->li_flags = 0; | ||
185 | li->li_height = 0; | ||
186 | li->li_used_bytes = 0; | ||
187 | li->li_block = NULL; | ||
188 | inode->i_uid = 0; | ||
189 | inode->i_gid = 0; | ||
190 | inode->i_size = 0; | ||
191 | inode->i_blocks = 0; | ||
192 | inode->i_ctime = CURRENT_TIME; | ||
193 | inode->i_mtime = CURRENT_TIME; | ||
194 | inode->i_nlink = 1; | ||
195 | INIT_LIST_HEAD(&li->li_freeing_list); | ||
196 | |||
197 | for (i = 0; i < LOGFS_EMBEDDED_FIELDS; i++) | ||
198 | li->li_data[i] = 0; | ||
199 | |||
200 | return; | ||
201 | } | ||
202 | |||
203 | static struct inode *logfs_alloc_inode(struct super_block *sb) | ||
204 | { | ||
205 | struct logfs_inode *li; | ||
206 | |||
207 | li = kmem_cache_alloc(logfs_inode_cache, GFP_NOFS); | ||
208 | if (!li) | ||
209 | return NULL; | ||
210 | logfs_init_inode(sb, &li->vfs_inode); | ||
211 | return &li->vfs_inode; | ||
212 | } | ||
213 | |||
214 | /* | ||
215 | * In logfs inodes are written to an inode file. The inode file, like any | ||
216 | * other file, is managed with a inode. The inode file's inode, aka master | ||
217 | * inode, requires special handling in several respects. First, it cannot be | ||
218 | * written to the inode file, so it is stored in the journal instead. | ||
219 | * | ||
220 | * Secondly, this inode cannot be written back and destroyed before all other | ||
221 | * inodes have been written. The ordering is important. Linux' VFS is happily | ||
222 | * unaware of the ordering constraint and would ordinarily destroy the master | ||
223 | * inode at umount time while other inodes are still in use and dirty. Not | ||
224 | * good. | ||
225 | * | ||
226 | * So logfs makes sure the master inode is not written until all other inodes | ||
227 | * have been destroyed. Sadly, this method has another side-effect. The VFS | ||
228 | * will notice one remaining inode and print a frightening warning message. | ||
229 | * Worse, it is impossible to judge whether such a warning was caused by the | ||
230 | * master inode or any other inodes have leaked as well. | ||
231 | * | ||
232 | * Our attempt of solving this is with logfs_new_meta_inode() below. Its | ||
233 | * purpose is to create a new inode that will not trigger the warning if such | ||
234 | * an inode is still in use. An ugly hack, no doubt. Suggections for | ||
235 | * improvement are welcome. | ||
236 | */ | ||
237 | struct inode *logfs_new_meta_inode(struct super_block *sb, u64 ino) | ||
238 | { | ||
239 | struct inode *inode; | ||
240 | |||
241 | inode = logfs_alloc_inode(sb); | ||
242 | if (!inode) | ||
243 | return ERR_PTR(-ENOMEM); | ||
244 | |||
245 | inode->i_mode = S_IFREG; | ||
246 | inode->i_ino = ino; | ||
247 | inode->i_sb = sb; | ||
248 | |||
249 | /* This is a blatant copy of alloc_inode code. We'd need alloc_inode | ||
250 | * to be nonstatic, alas. */ | ||
251 | { | ||
252 | struct address_space * const mapping = &inode->i_data; | ||
253 | |||
254 | mapping->a_ops = &logfs_reg_aops; | ||
255 | mapping->host = inode; | ||
256 | mapping->flags = 0; | ||
257 | mapping_set_gfp_mask(mapping, GFP_NOFS); | ||
258 | mapping->assoc_mapping = NULL; | ||
259 | mapping->backing_dev_info = &default_backing_dev_info; | ||
260 | inode->i_mapping = mapping; | ||
261 | inode->i_nlink = 1; | ||
262 | } | ||
263 | |||
264 | return inode; | ||
265 | } | ||
266 | |||
267 | struct inode *logfs_read_meta_inode(struct super_block *sb, u64 ino) | ||
268 | { | ||
269 | struct inode *inode; | ||
270 | int err; | ||
271 | |||
272 | inode = logfs_new_meta_inode(sb, ino); | ||
273 | if (IS_ERR(inode)) | ||
274 | return inode; | ||
275 | |||
276 | err = logfs_read_inode(inode); | ||
277 | if (err) { | ||
278 | destroy_meta_inode(inode); | ||
279 | return ERR_PTR(err); | ||
280 | } | ||
281 | logfs_inode_setops(inode); | ||
282 | return inode; | ||
283 | } | ||
284 | |||
285 | static int logfs_write_inode(struct inode *inode, struct writeback_control *wbc) | ||
286 | { | ||
287 | int ret; | ||
288 | long flags = WF_LOCK; | ||
289 | |||
290 | /* Can only happen if creat() failed. Safe to skip. */ | ||
291 | if (logfs_inode(inode)->li_flags & LOGFS_IF_STILLBORN) | ||
292 | return 0; | ||
293 | |||
294 | ret = __logfs_write_inode(inode, flags); | ||
295 | LOGFS_BUG_ON(ret, inode->i_sb); | ||
296 | return ret; | ||
297 | } | ||
298 | |||
299 | void destroy_meta_inode(struct inode *inode) | ||
300 | { | ||
301 | if (inode) { | ||
302 | if (inode->i_data.nrpages) | ||
303 | truncate_inode_pages(&inode->i_data, 0); | ||
304 | logfs_clear_inode(inode); | ||
305 | kmem_cache_free(logfs_inode_cache, logfs_inode(inode)); | ||
306 | } | ||
307 | } | ||
308 | |||
309 | /* called with inode_lock held */ | ||
310 | static void logfs_drop_inode(struct inode *inode) | ||
311 | { | ||
312 | struct logfs_super *super = logfs_super(inode->i_sb); | ||
313 | struct logfs_inode *li = logfs_inode(inode); | ||
314 | |||
315 | spin_lock(&logfs_inode_lock); | ||
316 | list_move(&li->li_freeing_list, &super->s_freeing_list); | ||
317 | spin_unlock(&logfs_inode_lock); | ||
318 | generic_drop_inode(inode); | ||
319 | } | ||
320 | |||
321 | static void logfs_set_ino_generation(struct super_block *sb, | ||
322 | struct inode *inode) | ||
323 | { | ||
324 | struct logfs_super *super = logfs_super(sb); | ||
325 | u64 ino; | ||
326 | |||
327 | mutex_lock(&super->s_journal_mutex); | ||
328 | ino = logfs_seek_hole(super->s_master_inode, super->s_last_ino); | ||
329 | super->s_last_ino = ino; | ||
330 | super->s_inos_till_wrap--; | ||
331 | if (super->s_inos_till_wrap < 0) { | ||
332 | super->s_last_ino = LOGFS_RESERVED_INOS; | ||
333 | super->s_generation++; | ||
334 | super->s_inos_till_wrap = INOS_PER_WRAP; | ||
335 | } | ||
336 | inode->i_ino = ino; | ||
337 | inode->i_generation = super->s_generation; | ||
338 | mutex_unlock(&super->s_journal_mutex); | ||
339 | } | ||
340 | |||
341 | struct inode *logfs_new_inode(struct inode *dir, int mode) | ||
342 | { | ||
343 | struct super_block *sb = dir->i_sb; | ||
344 | struct inode *inode; | ||
345 | |||
346 | inode = new_inode(sb); | ||
347 | if (!inode) | ||
348 | return ERR_PTR(-ENOMEM); | ||
349 | |||
350 | logfs_init_inode(sb, inode); | ||
351 | |||
352 | /* inherit parent flags */ | ||
353 | logfs_inode(inode)->li_flags |= | ||
354 | logfs_inode(dir)->li_flags & LOGFS_FL_INHERITED; | ||
355 | |||
356 | inode->i_mode = mode; | ||
357 | logfs_set_ino_generation(sb, inode); | ||
358 | |||
359 | inode->i_uid = current_fsuid(); | ||
360 | inode->i_gid = current_fsgid(); | ||
361 | if (dir->i_mode & S_ISGID) { | ||
362 | inode->i_gid = dir->i_gid; | ||
363 | if (S_ISDIR(mode)) | ||
364 | inode->i_mode |= S_ISGID; | ||
365 | } | ||
366 | |||
367 | logfs_inode_setops(inode); | ||
368 | insert_inode_hash(inode); | ||
369 | |||
370 | return inode; | ||
371 | } | ||
372 | |||
373 | static void logfs_init_once(void *_li) | ||
374 | { | ||
375 | struct logfs_inode *li = _li; | ||
376 | int i; | ||
377 | |||
378 | li->li_flags = 0; | ||
379 | li->li_used_bytes = 0; | ||
380 | li->li_refcount = 1; | ||
381 | for (i = 0; i < LOGFS_EMBEDDED_FIELDS; i++) | ||
382 | li->li_data[i] = 0; | ||
383 | inode_init_once(&li->vfs_inode); | ||
384 | } | ||
385 | |||
386 | static int logfs_sync_fs(struct super_block *sb, int wait) | ||
387 | { | ||
388 | /* FIXME: write anchor */ | ||
389 | logfs_super(sb)->s_devops->sync(sb); | ||
390 | return 0; | ||
391 | } | ||
392 | |||
393 | const struct super_operations logfs_super_operations = { | ||
394 | .alloc_inode = logfs_alloc_inode, | ||
395 | .clear_inode = logfs_clear_inode, | ||
396 | .delete_inode = logfs_delete_inode, | ||
397 | .destroy_inode = logfs_destroy_inode, | ||
398 | .drop_inode = logfs_drop_inode, | ||
399 | .write_inode = logfs_write_inode, | ||
400 | .statfs = logfs_statfs, | ||
401 | .sync_fs = logfs_sync_fs, | ||
402 | }; | ||
403 | |||
404 | int logfs_init_inode_cache(void) | ||
405 | { | ||
406 | logfs_inode_cache = kmem_cache_create("logfs_inode_cache", | ||
407 | sizeof(struct logfs_inode), 0, SLAB_RECLAIM_ACCOUNT, | ||
408 | logfs_init_once); | ||
409 | if (!logfs_inode_cache) | ||
410 | return -ENOMEM; | ||
411 | return 0; | ||
412 | } | ||
413 | |||
414 | void logfs_destroy_inode_cache(void) | ||
415 | { | ||
416 | kmem_cache_destroy(logfs_inode_cache); | ||
417 | } | ||
diff --git a/fs/logfs/journal.c b/fs/logfs/journal.c new file mode 100644 index 000000000000..6ad30a4c9052 --- /dev/null +++ b/fs/logfs/journal.c | |||
@@ -0,0 +1,883 @@ | |||
1 | /* | ||
2 | * fs/logfs/journal.c - journal handling code | ||
3 | * | ||
4 | * As should be obvious for Linux kernel code, license is GPLv2 | ||
5 | * | ||
6 | * Copyright (c) 2005-2008 Joern Engel <joern@logfs.org> | ||
7 | */ | ||
8 | #include "logfs.h" | ||
9 | |||
10 | static void logfs_calc_free(struct super_block *sb) | ||
11 | { | ||
12 | struct logfs_super *super = logfs_super(sb); | ||
13 | u64 reserve, no_segs = super->s_no_segs; | ||
14 | s64 free; | ||
15 | int i; | ||
16 | |||
17 | /* superblock segments */ | ||
18 | no_segs -= 2; | ||
19 | super->s_no_journal_segs = 0; | ||
20 | /* journal */ | ||
21 | journal_for_each(i) | ||
22 | if (super->s_journal_seg[i]) { | ||
23 | no_segs--; | ||
24 | super->s_no_journal_segs++; | ||
25 | } | ||
26 | |||
27 | /* open segments plus one extra per level for GC */ | ||
28 | no_segs -= 2 * super->s_total_levels; | ||
29 | |||
30 | free = no_segs * (super->s_segsize - LOGFS_SEGMENT_RESERVE); | ||
31 | free -= super->s_used_bytes; | ||
32 | /* just a bit extra */ | ||
33 | free -= super->s_total_levels * 4096; | ||
34 | |||
35 | /* Bad blocks are 'paid' for with speed reserve - the filesystem | ||
36 | * simply gets slower as bad blocks accumulate. Until the bad blocks | ||
37 | * exceed the speed reserve - then the filesystem gets smaller. | ||
38 | */ | ||
39 | reserve = super->s_bad_segments + super->s_bad_seg_reserve; | ||
40 | reserve *= super->s_segsize - LOGFS_SEGMENT_RESERVE; | ||
41 | reserve = max(reserve, super->s_speed_reserve); | ||
42 | free -= reserve; | ||
43 | if (free < 0) | ||
44 | free = 0; | ||
45 | |||
46 | super->s_free_bytes = free; | ||
47 | } | ||
48 | |||
49 | static void reserve_sb_and_journal(struct super_block *sb) | ||
50 | { | ||
51 | struct logfs_super *super = logfs_super(sb); | ||
52 | struct btree_head32 *head = &super->s_reserved_segments; | ||
53 | int i, err; | ||
54 | |||
55 | err = btree_insert32(head, seg_no(sb, super->s_sb_ofs[0]), (void *)1, | ||
56 | GFP_KERNEL); | ||
57 | BUG_ON(err); | ||
58 | |||
59 | err = btree_insert32(head, seg_no(sb, super->s_sb_ofs[1]), (void *)1, | ||
60 | GFP_KERNEL); | ||
61 | BUG_ON(err); | ||
62 | |||
63 | journal_for_each(i) { | ||
64 | if (!super->s_journal_seg[i]) | ||
65 | continue; | ||
66 | err = btree_insert32(head, super->s_journal_seg[i], (void *)1, | ||
67 | GFP_KERNEL); | ||
68 | BUG_ON(err); | ||
69 | } | ||
70 | } | ||
71 | |||
72 | static void read_dynsb(struct super_block *sb, | ||
73 | struct logfs_je_dynsb *dynsb) | ||
74 | { | ||
75 | struct logfs_super *super = logfs_super(sb); | ||
76 | |||
77 | super->s_gec = be64_to_cpu(dynsb->ds_gec); | ||
78 | super->s_sweeper = be64_to_cpu(dynsb->ds_sweeper); | ||
79 | super->s_victim_ino = be64_to_cpu(dynsb->ds_victim_ino); | ||
80 | super->s_rename_dir = be64_to_cpu(dynsb->ds_rename_dir); | ||
81 | super->s_rename_pos = be64_to_cpu(dynsb->ds_rename_pos); | ||
82 | super->s_used_bytes = be64_to_cpu(dynsb->ds_used_bytes); | ||
83 | super->s_generation = be32_to_cpu(dynsb->ds_generation); | ||
84 | } | ||
85 | |||
86 | static void read_anchor(struct super_block *sb, | ||
87 | struct logfs_je_anchor *da) | ||
88 | { | ||
89 | struct logfs_super *super = logfs_super(sb); | ||
90 | struct inode *inode = super->s_master_inode; | ||
91 | struct logfs_inode *li = logfs_inode(inode); | ||
92 | int i; | ||
93 | |||
94 | super->s_last_ino = be64_to_cpu(da->da_last_ino); | ||
95 | li->li_flags = 0; | ||
96 | li->li_height = da->da_height; | ||
97 | i_size_write(inode, be64_to_cpu(da->da_size)); | ||
98 | li->li_used_bytes = be64_to_cpu(da->da_used_bytes); | ||
99 | |||
100 | for (i = 0; i < LOGFS_EMBEDDED_FIELDS; i++) | ||
101 | li->li_data[i] = be64_to_cpu(da->da_data[i]); | ||
102 | } | ||
103 | |||
104 | static void read_erasecount(struct super_block *sb, | ||
105 | struct logfs_je_journal_ec *ec) | ||
106 | { | ||
107 | struct logfs_super *super = logfs_super(sb); | ||
108 | int i; | ||
109 | |||
110 | journal_for_each(i) | ||
111 | super->s_journal_ec[i] = be32_to_cpu(ec->ec[i]); | ||
112 | } | ||
113 | |||
114 | static int read_area(struct super_block *sb, struct logfs_je_area *a) | ||
115 | { | ||
116 | struct logfs_super *super = logfs_super(sb); | ||
117 | struct logfs_area *area = super->s_area[a->gc_level]; | ||
118 | u64 ofs; | ||
119 | u32 writemask = ~(super->s_writesize - 1); | ||
120 | |||
121 | if (a->gc_level >= LOGFS_NO_AREAS) | ||
122 | return -EIO; | ||
123 | if (a->vim != VIM_DEFAULT) | ||
124 | return -EIO; /* TODO: close area and continue */ | ||
125 | |||
126 | area->a_used_bytes = be32_to_cpu(a->used_bytes); | ||
127 | area->a_written_bytes = area->a_used_bytes & writemask; | ||
128 | area->a_segno = be32_to_cpu(a->segno); | ||
129 | if (area->a_segno) | ||
130 | area->a_is_open = 1; | ||
131 | |||
132 | ofs = dev_ofs(sb, area->a_segno, area->a_written_bytes); | ||
133 | if (super->s_writesize > 1) | ||
134 | logfs_buf_recover(area, ofs, a + 1, super->s_writesize); | ||
135 | else | ||
136 | logfs_buf_recover(area, ofs, NULL, 0); | ||
137 | return 0; | ||
138 | } | ||
139 | |||
140 | static void *unpack(void *from, void *to) | ||
141 | { | ||
142 | struct logfs_journal_header *jh = from; | ||
143 | void *data = from + sizeof(struct logfs_journal_header); | ||
144 | int err; | ||
145 | size_t inlen, outlen; | ||
146 | |||
147 | inlen = be16_to_cpu(jh->h_len); | ||
148 | outlen = be16_to_cpu(jh->h_datalen); | ||
149 | |||
150 | if (jh->h_compr == COMPR_NONE) | ||
151 | memcpy(to, data, inlen); | ||
152 | else { | ||
153 | err = logfs_uncompress(data, to, inlen, outlen); | ||
154 | BUG_ON(err); | ||
155 | } | ||
156 | return to; | ||
157 | } | ||
158 | |||
159 | static int __read_je_header(struct super_block *sb, u64 ofs, | ||
160 | struct logfs_journal_header *jh) | ||
161 | { | ||
162 | struct logfs_super *super = logfs_super(sb); | ||
163 | size_t bufsize = max_t(size_t, sb->s_blocksize, super->s_writesize) | ||
164 | + MAX_JOURNAL_HEADER; | ||
165 | u16 type, len, datalen; | ||
166 | int err; | ||
167 | |||
168 | /* read header only */ | ||
169 | err = wbuf_read(sb, ofs, sizeof(*jh), jh); | ||
170 | if (err) | ||
171 | return err; | ||
172 | type = be16_to_cpu(jh->h_type); | ||
173 | len = be16_to_cpu(jh->h_len); | ||
174 | datalen = be16_to_cpu(jh->h_datalen); | ||
175 | if (len > sb->s_blocksize) | ||
176 | return -EIO; | ||
177 | if ((type < JE_FIRST) || (type > JE_LAST)) | ||
178 | return -EIO; | ||
179 | if (datalen > bufsize) | ||
180 | return -EIO; | ||
181 | return 0; | ||
182 | } | ||
183 | |||
184 | static int __read_je_payload(struct super_block *sb, u64 ofs, | ||
185 | struct logfs_journal_header *jh) | ||
186 | { | ||
187 | u16 len; | ||
188 | int err; | ||
189 | |||
190 | len = be16_to_cpu(jh->h_len); | ||
191 | err = wbuf_read(sb, ofs + sizeof(*jh), len, jh + 1); | ||
192 | if (err) | ||
193 | return err; | ||
194 | if (jh->h_crc != logfs_crc32(jh, len + sizeof(*jh), 4)) { | ||
195 | /* Old code was confused. It forgot about the header length | ||
196 | * and stopped calculating the crc 16 bytes before the end | ||
197 | * of data - ick! | ||
198 | * FIXME: Remove this hack once the old code is fixed. | ||
199 | */ | ||
200 | if (jh->h_crc == logfs_crc32(jh, len, 4)) | ||
201 | WARN_ON_ONCE(1); | ||
202 | else | ||
203 | return -EIO; | ||
204 | } | ||
205 | return 0; | ||
206 | } | ||
207 | |||
208 | /* | ||
209 | * jh needs to be large enough to hold the complete entry, not just the header | ||
210 | */ | ||
211 | static int __read_je(struct super_block *sb, u64 ofs, | ||
212 | struct logfs_journal_header *jh) | ||
213 | { | ||
214 | int err; | ||
215 | |||
216 | err = __read_je_header(sb, ofs, jh); | ||
217 | if (err) | ||
218 | return err; | ||
219 | return __read_je_payload(sb, ofs, jh); | ||
220 | } | ||
221 | |||
222 | static int read_je(struct super_block *sb, u64 ofs) | ||
223 | { | ||
224 | struct logfs_super *super = logfs_super(sb); | ||
225 | struct logfs_journal_header *jh = super->s_compressed_je; | ||
226 | void *scratch = super->s_je; | ||
227 | u16 type, datalen; | ||
228 | int err; | ||
229 | |||
230 | err = __read_je(sb, ofs, jh); | ||
231 | if (err) | ||
232 | return err; | ||
233 | type = be16_to_cpu(jh->h_type); | ||
234 | datalen = be16_to_cpu(jh->h_datalen); | ||
235 | |||
236 | switch (type) { | ||
237 | case JE_DYNSB: | ||
238 | read_dynsb(sb, unpack(jh, scratch)); | ||
239 | break; | ||
240 | case JE_ANCHOR: | ||
241 | read_anchor(sb, unpack(jh, scratch)); | ||
242 | break; | ||
243 | case JE_ERASECOUNT: | ||
244 | read_erasecount(sb, unpack(jh, scratch)); | ||
245 | break; | ||
246 | case JE_AREA: | ||
247 | read_area(sb, unpack(jh, scratch)); | ||
248 | break; | ||
249 | case JE_OBJ_ALIAS: | ||
250 | err = logfs_load_object_aliases(sb, unpack(jh, scratch), | ||
251 | datalen); | ||
252 | break; | ||
253 | default: | ||
254 | WARN_ON_ONCE(1); | ||
255 | return -EIO; | ||
256 | } | ||
257 | return err; | ||
258 | } | ||
259 | |||
260 | static int logfs_read_segment(struct super_block *sb, u32 segno) | ||
261 | { | ||
262 | struct logfs_super *super = logfs_super(sb); | ||
263 | struct logfs_journal_header *jh = super->s_compressed_je; | ||
264 | u64 ofs, seg_ofs = dev_ofs(sb, segno, 0); | ||
265 | u32 h_ofs, last_ofs = 0; | ||
266 | u16 len, datalen, last_len = 0; | ||
267 | int i, err; | ||
268 | |||
269 | /* search for most recent commit */ | ||
270 | for (h_ofs = 0; h_ofs < super->s_segsize; h_ofs += sizeof(*jh)) { | ||
271 | ofs = seg_ofs + h_ofs; | ||
272 | err = __read_je_header(sb, ofs, jh); | ||
273 | if (err) | ||
274 | continue; | ||
275 | if (jh->h_type != cpu_to_be16(JE_COMMIT)) | ||
276 | continue; | ||
277 | err = __read_je_payload(sb, ofs, jh); | ||
278 | if (err) | ||
279 | continue; | ||
280 | len = be16_to_cpu(jh->h_len); | ||
281 | datalen = be16_to_cpu(jh->h_datalen); | ||
282 | if ((datalen > sizeof(super->s_je_array)) || | ||
283 | (datalen % sizeof(__be64))) | ||
284 | continue; | ||
285 | last_ofs = h_ofs; | ||
286 | last_len = datalen; | ||
287 | h_ofs += ALIGN(len, sizeof(*jh)) - sizeof(*jh); | ||
288 | } | ||
289 | /* read commit */ | ||
290 | if (last_ofs == 0) | ||
291 | return -ENOENT; | ||
292 | ofs = seg_ofs + last_ofs; | ||
293 | log_journal("Read commit from %llx\n", ofs); | ||
294 | err = __read_je(sb, ofs, jh); | ||
295 | BUG_ON(err); /* We should have caught it in the scan loop already */ | ||
296 | if (err) | ||
297 | return err; | ||
298 | /* uncompress */ | ||
299 | unpack(jh, super->s_je_array); | ||
300 | super->s_no_je = last_len / sizeof(__be64); | ||
301 | /* iterate over array */ | ||
302 | for (i = 0; i < super->s_no_je; i++) { | ||
303 | err = read_je(sb, be64_to_cpu(super->s_je_array[i])); | ||
304 | if (err) | ||
305 | return err; | ||
306 | } | ||
307 | super->s_journal_area->a_segno = segno; | ||
308 | return 0; | ||
309 | } | ||
310 | |||
311 | static u64 read_gec(struct super_block *sb, u32 segno) | ||
312 | { | ||
313 | struct logfs_segment_header sh; | ||
314 | __be32 crc; | ||
315 | int err; | ||
316 | |||
317 | if (!segno) | ||
318 | return 0; | ||
319 | err = wbuf_read(sb, dev_ofs(sb, segno, 0), sizeof(sh), &sh); | ||
320 | if (err) | ||
321 | return 0; | ||
322 | crc = logfs_crc32(&sh, sizeof(sh), 4); | ||
323 | if (crc != sh.crc) { | ||
324 | WARN_ON(sh.gec != cpu_to_be64(0xffffffffffffffffull)); | ||
325 | /* Most likely it was just erased */ | ||
326 | return 0; | ||
327 | } | ||
328 | return be64_to_cpu(sh.gec); | ||
329 | } | ||
330 | |||
331 | static int logfs_read_journal(struct super_block *sb) | ||
332 | { | ||
333 | struct logfs_super *super = logfs_super(sb); | ||
334 | u64 gec[LOGFS_JOURNAL_SEGS], max; | ||
335 | u32 segno; | ||
336 | int i, max_i; | ||
337 | |||
338 | max = 0; | ||
339 | max_i = -1; | ||
340 | journal_for_each(i) { | ||
341 | segno = super->s_journal_seg[i]; | ||
342 | gec[i] = read_gec(sb, super->s_journal_seg[i]); | ||
343 | if (gec[i] > max) { | ||
344 | max = gec[i]; | ||
345 | max_i = i; | ||
346 | } | ||
347 | } | ||
348 | if (max_i == -1) | ||
349 | return -EIO; | ||
350 | /* FIXME: Try older segments in case of error */ | ||
351 | return logfs_read_segment(sb, super->s_journal_seg[max_i]); | ||
352 | } | ||
353 | |||
354 | /* | ||
355 | * First search the current segment (outer loop), then pick the next segment | ||
356 | * in the array, skipping any zero entries (inner loop). | ||
357 | */ | ||
358 | static void journal_get_free_segment(struct logfs_area *area) | ||
359 | { | ||
360 | struct logfs_super *super = logfs_super(area->a_sb); | ||
361 | int i; | ||
362 | |||
363 | journal_for_each(i) { | ||
364 | if (area->a_segno != super->s_journal_seg[i]) | ||
365 | continue; | ||
366 | |||
367 | do { | ||
368 | i++; | ||
369 | if (i == LOGFS_JOURNAL_SEGS) | ||
370 | i = 0; | ||
371 | } while (!super->s_journal_seg[i]); | ||
372 | |||
373 | area->a_segno = super->s_journal_seg[i]; | ||
374 | area->a_erase_count = ++(super->s_journal_ec[i]); | ||
375 | log_journal("Journal now at %x (ec %x)\n", area->a_segno, | ||
376 | area->a_erase_count); | ||
377 | return; | ||
378 | } | ||
379 | BUG(); | ||
380 | } | ||
381 | |||
382 | static void journal_get_erase_count(struct logfs_area *area) | ||
383 | { | ||
384 | /* erase count is stored globally and incremented in | ||
385 | * journal_get_free_segment() - nothing to do here */ | ||
386 | } | ||
387 | |||
388 | static int journal_erase_segment(struct logfs_area *area) | ||
389 | { | ||
390 | struct super_block *sb = area->a_sb; | ||
391 | struct logfs_segment_header sh; | ||
392 | u64 ofs; | ||
393 | int err; | ||
394 | |||
395 | err = logfs_erase_segment(sb, area->a_segno, 1); | ||
396 | if (err) | ||
397 | return err; | ||
398 | |||
399 | sh.pad = 0; | ||
400 | sh.type = SEG_JOURNAL; | ||
401 | sh.level = 0; | ||
402 | sh.segno = cpu_to_be32(area->a_segno); | ||
403 | sh.ec = cpu_to_be32(area->a_erase_count); | ||
404 | sh.gec = cpu_to_be64(logfs_super(sb)->s_gec); | ||
405 | sh.crc = logfs_crc32(&sh, sizeof(sh), 4); | ||
406 | |||
407 | /* This causes a bug in segment.c. Not yet. */ | ||
408 | //logfs_set_segment_erased(sb, area->a_segno, area->a_erase_count, 0); | ||
409 | |||
410 | ofs = dev_ofs(sb, area->a_segno, 0); | ||
411 | area->a_used_bytes = ALIGN(sizeof(sh), 16); | ||
412 | logfs_buf_write(area, ofs, &sh, sizeof(sh)); | ||
413 | return 0; | ||
414 | } | ||
415 | |||
416 | static size_t __logfs_write_header(struct logfs_super *super, | ||
417 | struct logfs_journal_header *jh, size_t len, size_t datalen, | ||
418 | u16 type, u8 compr) | ||
419 | { | ||
420 | jh->h_len = cpu_to_be16(len); | ||
421 | jh->h_type = cpu_to_be16(type); | ||
422 | jh->h_datalen = cpu_to_be16(datalen); | ||
423 | jh->h_compr = compr; | ||
424 | jh->h_pad[0] = 'H'; | ||
425 | jh->h_pad[1] = 'E'; | ||
426 | jh->h_pad[2] = 'A'; | ||
427 | jh->h_pad[3] = 'D'; | ||
428 | jh->h_pad[4] = 'R'; | ||
429 | jh->h_crc = logfs_crc32(jh, len + sizeof(*jh), 4); | ||
430 | return ALIGN(len, 16) + sizeof(*jh); | ||
431 | } | ||
432 | |||
433 | static size_t logfs_write_header(struct logfs_super *super, | ||
434 | struct logfs_journal_header *jh, size_t datalen, u16 type) | ||
435 | { | ||
436 | size_t len = datalen; | ||
437 | |||
438 | return __logfs_write_header(super, jh, len, datalen, type, COMPR_NONE); | ||
439 | } | ||
440 | |||
441 | static inline size_t logfs_journal_erasecount_size(struct logfs_super *super) | ||
442 | { | ||
443 | return LOGFS_JOURNAL_SEGS * sizeof(__be32); | ||
444 | } | ||
445 | |||
446 | static void *logfs_write_erasecount(struct super_block *sb, void *_ec, | ||
447 | u16 *type, size_t *len) | ||
448 | { | ||
449 | struct logfs_super *super = logfs_super(sb); | ||
450 | struct logfs_je_journal_ec *ec = _ec; | ||
451 | int i; | ||
452 | |||
453 | journal_for_each(i) | ||
454 | ec->ec[i] = cpu_to_be32(super->s_journal_ec[i]); | ||
455 | *type = JE_ERASECOUNT; | ||
456 | *len = logfs_journal_erasecount_size(super); | ||
457 | return ec; | ||
458 | } | ||
459 | |||
460 | static void account_shadow(void *_shadow, unsigned long _sb, u64 ignore, | ||
461 | size_t ignore2) | ||
462 | { | ||
463 | struct logfs_shadow *shadow = _shadow; | ||
464 | struct super_block *sb = (void *)_sb; | ||
465 | struct logfs_super *super = logfs_super(sb); | ||
466 | |||
467 | /* consume new space */ | ||
468 | super->s_free_bytes -= shadow->new_len; | ||
469 | super->s_used_bytes += shadow->new_len; | ||
470 | super->s_dirty_used_bytes -= shadow->new_len; | ||
471 | |||
472 | /* free up old space */ | ||
473 | super->s_free_bytes += shadow->old_len; | ||
474 | super->s_used_bytes -= shadow->old_len; | ||
475 | super->s_dirty_free_bytes -= shadow->old_len; | ||
476 | |||
477 | logfs_set_segment_used(sb, shadow->old_ofs, -shadow->old_len); | ||
478 | logfs_set_segment_used(sb, shadow->new_ofs, shadow->new_len); | ||
479 | |||
480 | log_journal("account_shadow(%llx, %llx, %x) %llx->%llx %x->%x\n", | ||
481 | shadow->ino, shadow->bix, shadow->gc_level, | ||
482 | shadow->old_ofs, shadow->new_ofs, | ||
483 | shadow->old_len, shadow->new_len); | ||
484 | mempool_free(shadow, super->s_shadow_pool); | ||
485 | } | ||
486 | |||
487 | static void account_shadows(struct super_block *sb) | ||
488 | { | ||
489 | struct logfs_super *super = logfs_super(sb); | ||
490 | struct inode *inode = super->s_master_inode; | ||
491 | struct logfs_inode *li = logfs_inode(inode); | ||
492 | struct shadow_tree *tree = &super->s_shadow_tree; | ||
493 | |||
494 | btree_grim_visitor64(&tree->new, (unsigned long)sb, account_shadow); | ||
495 | btree_grim_visitor64(&tree->old, (unsigned long)sb, account_shadow); | ||
496 | |||
497 | if (li->li_block) { | ||
498 | /* | ||
499 | * We never actually use the structure, when attached to the | ||
500 | * master inode. But it is easier to always free it here than | ||
501 | * to have checks in several places elsewhere when allocating | ||
502 | * it. | ||
503 | */ | ||
504 | li->li_block->ops->free_block(sb, li->li_block); | ||
505 | } | ||
506 | BUG_ON((s64)li->li_used_bytes < 0); | ||
507 | } | ||
508 | |||
509 | static void *__logfs_write_anchor(struct super_block *sb, void *_da, | ||
510 | u16 *type, size_t *len) | ||
511 | { | ||
512 | struct logfs_super *super = logfs_super(sb); | ||
513 | struct logfs_je_anchor *da = _da; | ||
514 | struct inode *inode = super->s_master_inode; | ||
515 | struct logfs_inode *li = logfs_inode(inode); | ||
516 | int i; | ||
517 | |||
518 | da->da_height = li->li_height; | ||
519 | da->da_last_ino = cpu_to_be64(super->s_last_ino); | ||
520 | da->da_size = cpu_to_be64(i_size_read(inode)); | ||
521 | da->da_used_bytes = cpu_to_be64(li->li_used_bytes); | ||
522 | for (i = 0; i < LOGFS_EMBEDDED_FIELDS; i++) | ||
523 | da->da_data[i] = cpu_to_be64(li->li_data[i]); | ||
524 | *type = JE_ANCHOR; | ||
525 | *len = sizeof(*da); | ||
526 | return da; | ||
527 | } | ||
528 | |||
529 | static void *logfs_write_dynsb(struct super_block *sb, void *_dynsb, | ||
530 | u16 *type, size_t *len) | ||
531 | { | ||
532 | struct logfs_super *super = logfs_super(sb); | ||
533 | struct logfs_je_dynsb *dynsb = _dynsb; | ||
534 | |||
535 | dynsb->ds_gec = cpu_to_be64(super->s_gec); | ||
536 | dynsb->ds_sweeper = cpu_to_be64(super->s_sweeper); | ||
537 | dynsb->ds_victim_ino = cpu_to_be64(super->s_victim_ino); | ||
538 | dynsb->ds_rename_dir = cpu_to_be64(super->s_rename_dir); | ||
539 | dynsb->ds_rename_pos = cpu_to_be64(super->s_rename_pos); | ||
540 | dynsb->ds_used_bytes = cpu_to_be64(super->s_used_bytes); | ||
541 | dynsb->ds_generation = cpu_to_be32(super->s_generation); | ||
542 | *type = JE_DYNSB; | ||
543 | *len = sizeof(*dynsb); | ||
544 | return dynsb; | ||
545 | } | ||
546 | |||
547 | static void write_wbuf(struct super_block *sb, struct logfs_area *area, | ||
548 | void *wbuf) | ||
549 | { | ||
550 | struct logfs_super *super = logfs_super(sb); | ||
551 | struct address_space *mapping = super->s_mapping_inode->i_mapping; | ||
552 | u64 ofs; | ||
553 | pgoff_t index; | ||
554 | int page_ofs; | ||
555 | struct page *page; | ||
556 | |||
557 | ofs = dev_ofs(sb, area->a_segno, | ||
558 | area->a_used_bytes & ~(super->s_writesize - 1)); | ||
559 | index = ofs >> PAGE_SHIFT; | ||
560 | page_ofs = ofs & (PAGE_SIZE - 1); | ||
561 | |||
562 | page = find_lock_page(mapping, index); | ||
563 | BUG_ON(!page); | ||
564 | memcpy(wbuf, page_address(page) + page_ofs, super->s_writesize); | ||
565 | unlock_page(page); | ||
566 | } | ||
567 | |||
568 | static void *logfs_write_area(struct super_block *sb, void *_a, | ||
569 | u16 *type, size_t *len) | ||
570 | { | ||
571 | struct logfs_super *super = logfs_super(sb); | ||
572 | struct logfs_area *area = super->s_area[super->s_sum_index]; | ||
573 | struct logfs_je_area *a = _a; | ||
574 | |||
575 | a->vim = VIM_DEFAULT; | ||
576 | a->gc_level = super->s_sum_index; | ||
577 | a->used_bytes = cpu_to_be32(area->a_used_bytes); | ||
578 | a->segno = cpu_to_be32(area->a_segno); | ||
579 | if (super->s_writesize > 1) | ||
580 | write_wbuf(sb, area, a + 1); | ||
581 | |||
582 | *type = JE_AREA; | ||
583 | *len = sizeof(*a) + super->s_writesize; | ||
584 | return a; | ||
585 | } | ||
586 | |||
587 | static void *logfs_write_commit(struct super_block *sb, void *h, | ||
588 | u16 *type, size_t *len) | ||
589 | { | ||
590 | struct logfs_super *super = logfs_super(sb); | ||
591 | |||
592 | *type = JE_COMMIT; | ||
593 | *len = super->s_no_je * sizeof(__be64); | ||
594 | return super->s_je_array; | ||
595 | } | ||
596 | |||
597 | static size_t __logfs_write_je(struct super_block *sb, void *buf, u16 type, | ||
598 | size_t len) | ||
599 | { | ||
600 | struct logfs_super *super = logfs_super(sb); | ||
601 | void *header = super->s_compressed_je; | ||
602 | void *data = header + sizeof(struct logfs_journal_header); | ||
603 | ssize_t compr_len, pad_len; | ||
604 | u8 compr = COMPR_ZLIB; | ||
605 | |||
606 | if (len == 0) | ||
607 | return logfs_write_header(super, header, 0, type); | ||
608 | |||
609 | compr_len = logfs_compress(buf, data, len, sb->s_blocksize); | ||
610 | if (compr_len < 0 || type == JE_ANCHOR) { | ||
611 | BUG_ON(len > sb->s_blocksize); | ||
612 | memcpy(data, buf, len); | ||
613 | compr_len = len; | ||
614 | compr = COMPR_NONE; | ||
615 | } | ||
616 | |||
617 | pad_len = ALIGN(compr_len, 16); | ||
618 | memset(data + compr_len, 0, pad_len - compr_len); | ||
619 | |||
620 | return __logfs_write_header(super, header, compr_len, len, type, compr); | ||
621 | } | ||
622 | |||
623 | static s64 logfs_get_free_bytes(struct logfs_area *area, size_t *bytes, | ||
624 | int must_pad) | ||
625 | { | ||
626 | u32 writesize = logfs_super(area->a_sb)->s_writesize; | ||
627 | s32 ofs; | ||
628 | int ret; | ||
629 | |||
630 | ret = logfs_open_area(area, *bytes); | ||
631 | if (ret) | ||
632 | return -EAGAIN; | ||
633 | |||
634 | ofs = area->a_used_bytes; | ||
635 | area->a_used_bytes += *bytes; | ||
636 | |||
637 | if (must_pad) { | ||
638 | area->a_used_bytes = ALIGN(area->a_used_bytes, writesize); | ||
639 | *bytes = area->a_used_bytes - ofs; | ||
640 | } | ||
641 | |||
642 | return dev_ofs(area->a_sb, area->a_segno, ofs); | ||
643 | } | ||
644 | |||
645 | static int logfs_write_je_buf(struct super_block *sb, void *buf, u16 type, | ||
646 | size_t buf_len) | ||
647 | { | ||
648 | struct logfs_super *super = logfs_super(sb); | ||
649 | struct logfs_area *area = super->s_journal_area; | ||
650 | struct logfs_journal_header *jh = super->s_compressed_je; | ||
651 | size_t len; | ||
652 | int must_pad = 0; | ||
653 | s64 ofs; | ||
654 | |||
655 | len = __logfs_write_je(sb, buf, type, buf_len); | ||
656 | if (jh->h_type == cpu_to_be16(JE_COMMIT)) | ||
657 | must_pad = 1; | ||
658 | |||
659 | ofs = logfs_get_free_bytes(area, &len, must_pad); | ||
660 | if (ofs < 0) | ||
661 | return ofs; | ||
662 | logfs_buf_write(area, ofs, super->s_compressed_je, len); | ||
663 | super->s_je_array[super->s_no_je++] = cpu_to_be64(ofs); | ||
664 | return 0; | ||
665 | } | ||
666 | |||
667 | static int logfs_write_je(struct super_block *sb, | ||
668 | void* (*write)(struct super_block *sb, void *scratch, | ||
669 | u16 *type, size_t *len)) | ||
670 | { | ||
671 | void *buf; | ||
672 | size_t len; | ||
673 | u16 type; | ||
674 | |||
675 | buf = write(sb, logfs_super(sb)->s_je, &type, &len); | ||
676 | return logfs_write_je_buf(sb, buf, type, len); | ||
677 | } | ||
678 | |||
679 | int write_alias_journal(struct super_block *sb, u64 ino, u64 bix, | ||
680 | level_t level, int child_no, __be64 val) | ||
681 | { | ||
682 | struct logfs_super *super = logfs_super(sb); | ||
683 | struct logfs_obj_alias *oa = super->s_je; | ||
684 | int err = 0, fill = super->s_je_fill; | ||
685 | |||
686 | log_aliases("logfs_write_obj_aliases #%x(%llx, %llx, %x, %x) %llx\n", | ||
687 | fill, ino, bix, level, child_no, be64_to_cpu(val)); | ||
688 | oa[fill].ino = cpu_to_be64(ino); | ||
689 | oa[fill].bix = cpu_to_be64(bix); | ||
690 | oa[fill].val = val; | ||
691 | oa[fill].level = (__force u8)level; | ||
692 | oa[fill].child_no = cpu_to_be16(child_no); | ||
693 | fill++; | ||
694 | if (fill >= sb->s_blocksize / sizeof(*oa)) { | ||
695 | err = logfs_write_je_buf(sb, oa, JE_OBJ_ALIAS, sb->s_blocksize); | ||
696 | fill = 0; | ||
697 | } | ||
698 | |||
699 | super->s_je_fill = fill; | ||
700 | return err; | ||
701 | } | ||
702 | |||
703 | static int logfs_write_obj_aliases(struct super_block *sb) | ||
704 | { | ||
705 | struct logfs_super *super = logfs_super(sb); | ||
706 | int err; | ||
707 | |||
708 | log_journal("logfs_write_obj_aliases: %d aliases to write\n", | ||
709 | super->s_no_object_aliases); | ||
710 | super->s_je_fill = 0; | ||
711 | err = logfs_write_obj_aliases_pagecache(sb); | ||
712 | if (err) | ||
713 | return err; | ||
714 | |||
715 | if (super->s_je_fill) | ||
716 | err = logfs_write_je_buf(sb, super->s_je, JE_OBJ_ALIAS, | ||
717 | super->s_je_fill | ||
718 | * sizeof(struct logfs_obj_alias)); | ||
719 | return err; | ||
720 | } | ||
721 | |||
722 | /* | ||
723 | * Write all journal entries. The goto logic ensures that all journal entries | ||
724 | * are written whenever a new segment is used. It is ugly and potentially a | ||
725 | * bit wasteful, but robustness is more important. With this we can *always* | ||
726 | * erase all journal segments except the one containing the most recent commit. | ||
727 | */ | ||
728 | void logfs_write_anchor(struct super_block *sb) | ||
729 | { | ||
730 | struct logfs_super *super = logfs_super(sb); | ||
731 | struct logfs_area *area = super->s_journal_area; | ||
732 | int i, err; | ||
733 | |||
734 | if (!(super->s_flags & LOGFS_SB_FLAG_DIRTY)) | ||
735 | return; | ||
736 | super->s_flags &= ~LOGFS_SB_FLAG_DIRTY; | ||
737 | |||
738 | BUG_ON(super->s_flags & LOGFS_SB_FLAG_SHUTDOWN); | ||
739 | mutex_lock(&super->s_journal_mutex); | ||
740 | |||
741 | /* Do this first or suffer corruption */ | ||
742 | logfs_sync_segments(sb); | ||
743 | account_shadows(sb); | ||
744 | |||
745 | again: | ||
746 | super->s_no_je = 0; | ||
747 | for_each_area(i) { | ||
748 | if (!super->s_area[i]->a_is_open) | ||
749 | continue; | ||
750 | super->s_sum_index = i; | ||
751 | err = logfs_write_je(sb, logfs_write_area); | ||
752 | if (err) | ||
753 | goto again; | ||
754 | } | ||
755 | err = logfs_write_obj_aliases(sb); | ||
756 | if (err) | ||
757 | goto again; | ||
758 | err = logfs_write_je(sb, logfs_write_erasecount); | ||
759 | if (err) | ||
760 | goto again; | ||
761 | err = logfs_write_je(sb, __logfs_write_anchor); | ||
762 | if (err) | ||
763 | goto again; | ||
764 | err = logfs_write_je(sb, logfs_write_dynsb); | ||
765 | if (err) | ||
766 | goto again; | ||
767 | /* | ||
768 | * Order is imperative. First we sync all writes, including the | ||
769 | * non-committed journal writes. Then we write the final commit and | ||
770 | * sync the current journal segment. | ||
771 | * There is a theoretical bug here. Syncing the journal segment will | ||
772 | * write a number of journal entries and the final commit. All these | ||
773 | * are written in a single operation. If the device layer writes the | ||
774 | * data back-to-front, the commit will precede the other journal | ||
775 | * entries, leaving a race window. | ||
776 | * Two fixes are possible. Preferred is to fix the device layer to | ||
777 | * ensure writes happen front-to-back. Alternatively we can insert | ||
778 | * another logfs_sync_area() super->s_devops->sync() combo before | ||
779 | * writing the commit. | ||
780 | */ | ||
781 | /* | ||
782 | * On another subject, super->s_devops->sync is usually not necessary. | ||
783 | * Unless called from sys_sync or friends, a barrier would suffice. | ||
784 | */ | ||
785 | super->s_devops->sync(sb); | ||
786 | err = logfs_write_je(sb, logfs_write_commit); | ||
787 | if (err) | ||
788 | goto again; | ||
789 | log_journal("Write commit to %llx\n", | ||
790 | be64_to_cpu(super->s_je_array[super->s_no_je - 1])); | ||
791 | logfs_sync_area(area); | ||
792 | BUG_ON(area->a_used_bytes != area->a_written_bytes); | ||
793 | super->s_devops->sync(sb); | ||
794 | |||
795 | mutex_unlock(&super->s_journal_mutex); | ||
796 | return; | ||
797 | } | ||
798 | |||
799 | void do_logfs_journal_wl_pass(struct super_block *sb) | ||
800 | { | ||
801 | struct logfs_super *super = logfs_super(sb); | ||
802 | struct logfs_area *area = super->s_journal_area; | ||
803 | u32 segno, ec; | ||
804 | int i, err; | ||
805 | |||
806 | log_journal("Journal requires wear-leveling.\n"); | ||
807 | /* Drop old segments */ | ||
808 | journal_for_each(i) | ||
809 | if (super->s_journal_seg[i]) { | ||
810 | logfs_set_segment_unreserved(sb, | ||
811 | super->s_journal_seg[i], | ||
812 | super->s_journal_ec[i]); | ||
813 | super->s_journal_seg[i] = 0; | ||
814 | super->s_journal_ec[i] = 0; | ||
815 | } | ||
816 | /* Get new segments */ | ||
817 | for (i = 0; i < super->s_no_journal_segs; i++) { | ||
818 | segno = get_best_cand(sb, &super->s_reserve_list, &ec); | ||
819 | super->s_journal_seg[i] = segno; | ||
820 | super->s_journal_ec[i] = ec; | ||
821 | logfs_set_segment_reserved(sb, segno); | ||
822 | } | ||
823 | /* Manually move journal_area */ | ||
824 | area->a_segno = super->s_journal_seg[0]; | ||
825 | area->a_is_open = 0; | ||
826 | area->a_used_bytes = 0; | ||
827 | /* Write journal */ | ||
828 | logfs_write_anchor(sb); | ||
829 | /* Write superblocks */ | ||
830 | err = logfs_write_sb(sb); | ||
831 | BUG_ON(err); | ||
832 | } | ||
833 | |||
834 | static const struct logfs_area_ops journal_area_ops = { | ||
835 | .get_free_segment = journal_get_free_segment, | ||
836 | .get_erase_count = journal_get_erase_count, | ||
837 | .erase_segment = journal_erase_segment, | ||
838 | }; | ||
839 | |||
840 | int logfs_init_journal(struct super_block *sb) | ||
841 | { | ||
842 | struct logfs_super *super = logfs_super(sb); | ||
843 | size_t bufsize = max_t(size_t, sb->s_blocksize, super->s_writesize) | ||
844 | + MAX_JOURNAL_HEADER; | ||
845 | int ret = -ENOMEM; | ||
846 | |||
847 | mutex_init(&super->s_journal_mutex); | ||
848 | btree_init_mempool32(&super->s_reserved_segments, super->s_btree_pool); | ||
849 | |||
850 | super->s_je = kzalloc(bufsize, GFP_KERNEL); | ||
851 | if (!super->s_je) | ||
852 | return ret; | ||
853 | |||
854 | super->s_compressed_je = kzalloc(bufsize, GFP_KERNEL); | ||
855 | if (!super->s_compressed_je) | ||
856 | return ret; | ||
857 | |||
858 | super->s_master_inode = logfs_new_meta_inode(sb, LOGFS_INO_MASTER); | ||
859 | if (IS_ERR(super->s_master_inode)) | ||
860 | return PTR_ERR(super->s_master_inode); | ||
861 | |||
862 | ret = logfs_read_journal(sb); | ||
863 | if (ret) | ||
864 | return -EIO; | ||
865 | |||
866 | reserve_sb_and_journal(sb); | ||
867 | logfs_calc_free(sb); | ||
868 | |||
869 | super->s_journal_area->a_ops = &journal_area_ops; | ||
870 | return 0; | ||
871 | } | ||
872 | |||
873 | void logfs_cleanup_journal(struct super_block *sb) | ||
874 | { | ||
875 | struct logfs_super *super = logfs_super(sb); | ||
876 | |||
877 | btree_grim_visitor32(&super->s_reserved_segments, 0, NULL); | ||
878 | destroy_meta_inode(super->s_master_inode); | ||
879 | super->s_master_inode = NULL; | ||
880 | |||
881 | kfree(super->s_compressed_je); | ||
882 | kfree(super->s_je); | ||
883 | } | ||
diff --git a/fs/logfs/logfs.h b/fs/logfs/logfs.h new file mode 100644 index 000000000000..129779431373 --- /dev/null +++ b/fs/logfs/logfs.h | |||
@@ -0,0 +1,724 @@ | |||
1 | /* | ||
2 | * fs/logfs/logfs.h | ||
3 | * | ||
4 | * As should be obvious for Linux kernel code, license is GPLv2 | ||
5 | * | ||
6 | * Copyright (c) 2005-2008 Joern Engel <joern@logfs.org> | ||
7 | * | ||
8 | * Private header for logfs. | ||
9 | */ | ||
10 | #ifndef FS_LOGFS_LOGFS_H | ||
11 | #define FS_LOGFS_LOGFS_H | ||
12 | |||
13 | #undef __CHECK_ENDIAN__ | ||
14 | #define __CHECK_ENDIAN__ | ||
15 | |||
16 | #include <linux/btree.h> | ||
17 | #include <linux/crc32.h> | ||
18 | #include <linux/fs.h> | ||
19 | #include <linux/kernel.h> | ||
20 | #include <linux/mempool.h> | ||
21 | #include <linux/pagemap.h> | ||
22 | #include <linux/mtd/mtd.h> | ||
23 | #include "logfs_abi.h" | ||
24 | |||
25 | #define LOGFS_DEBUG_SUPER (0x0001) | ||
26 | #define LOGFS_DEBUG_SEGMENT (0x0002) | ||
27 | #define LOGFS_DEBUG_JOURNAL (0x0004) | ||
28 | #define LOGFS_DEBUG_DIR (0x0008) | ||
29 | #define LOGFS_DEBUG_FILE (0x0010) | ||
30 | #define LOGFS_DEBUG_INODE (0x0020) | ||
31 | #define LOGFS_DEBUG_READWRITE (0x0040) | ||
32 | #define LOGFS_DEBUG_GC (0x0080) | ||
33 | #define LOGFS_DEBUG_GC_NOISY (0x0100) | ||
34 | #define LOGFS_DEBUG_ALIASES (0x0200) | ||
35 | #define LOGFS_DEBUG_BLOCKMOVE (0x0400) | ||
36 | #define LOGFS_DEBUG_ALL (0xffffffff) | ||
37 | |||
38 | #define LOGFS_DEBUG (0x01) | ||
39 | /* | ||
40 | * To enable specific log messages, simply define LOGFS_DEBUG to match any | ||
41 | * or all of the above. | ||
42 | */ | ||
43 | #ifndef LOGFS_DEBUG | ||
44 | #define LOGFS_DEBUG (0) | ||
45 | #endif | ||
46 | |||
47 | #define log_cond(cond, fmt, arg...) do { \ | ||
48 | if (cond) \ | ||
49 | printk(KERN_DEBUG fmt, ##arg); \ | ||
50 | } while (0) | ||
51 | |||
52 | #define log_super(fmt, arg...) \ | ||
53 | log_cond(LOGFS_DEBUG & LOGFS_DEBUG_SUPER, fmt, ##arg) | ||
54 | #define log_segment(fmt, arg...) \ | ||
55 | log_cond(LOGFS_DEBUG & LOGFS_DEBUG_SEGMENT, fmt, ##arg) | ||
56 | #define log_journal(fmt, arg...) \ | ||
57 | log_cond(LOGFS_DEBUG & LOGFS_DEBUG_JOURNAL, fmt, ##arg) | ||
58 | #define log_dir(fmt, arg...) \ | ||
59 | log_cond(LOGFS_DEBUG & LOGFS_DEBUG_DIR, fmt, ##arg) | ||
60 | #define log_file(fmt, arg...) \ | ||
61 | log_cond(LOGFS_DEBUG & LOGFS_DEBUG_FILE, fmt, ##arg) | ||
62 | #define log_inode(fmt, arg...) \ | ||
63 | log_cond(LOGFS_DEBUG & LOGFS_DEBUG_INODE, fmt, ##arg) | ||
64 | #define log_readwrite(fmt, arg...) \ | ||
65 | log_cond(LOGFS_DEBUG & LOGFS_DEBUG_READWRITE, fmt, ##arg) | ||
66 | #define log_gc(fmt, arg...) \ | ||
67 | log_cond(LOGFS_DEBUG & LOGFS_DEBUG_GC, fmt, ##arg) | ||
68 | #define log_gc_noisy(fmt, arg...) \ | ||
69 | log_cond(LOGFS_DEBUG & LOGFS_DEBUG_GC_NOISY, fmt, ##arg) | ||
70 | #define log_aliases(fmt, arg...) \ | ||
71 | log_cond(LOGFS_DEBUG & LOGFS_DEBUG_ALIASES, fmt, ##arg) | ||
72 | #define log_blockmove(fmt, arg...) \ | ||
73 | log_cond(LOGFS_DEBUG & LOGFS_DEBUG_BLOCKMOVE, fmt, ##arg) | ||
74 | |||
75 | #define PG_pre_locked PG_owner_priv_1 | ||
76 | #define PagePreLocked(page) test_bit(PG_pre_locked, &(page)->flags) | ||
77 | #define SetPagePreLocked(page) set_bit(PG_pre_locked, &(page)->flags) | ||
78 | #define ClearPagePreLocked(page) clear_bit(PG_pre_locked, &(page)->flags) | ||
79 | |||
80 | /* FIXME: This should really be somewhere in the 64bit area. */ | ||
81 | #define LOGFS_LINK_MAX (1<<30) | ||
82 | |||
83 | /* Read-only filesystem */ | ||
84 | #define LOGFS_SB_FLAG_RO 0x0001 | ||
85 | #define LOGFS_SB_FLAG_DIRTY 0x0002 | ||
86 | #define LOGFS_SB_FLAG_OBJ_ALIAS 0x0004 | ||
87 | #define LOGFS_SB_FLAG_SHUTDOWN 0x0008 | ||
88 | |||
89 | /* Write Control Flags */ | ||
90 | #define WF_LOCK 0x01 /* take write lock */ | ||
91 | #define WF_WRITE 0x02 /* write block */ | ||
92 | #define WF_DELETE 0x04 /* delete old block */ | ||
93 | |||
94 | typedef u8 __bitwise level_t; | ||
95 | typedef u8 __bitwise gc_level_t; | ||
96 | |||
97 | #define LEVEL(level) ((__force level_t)(level)) | ||
98 | #define GC_LEVEL(gc_level) ((__force gc_level_t)(gc_level)) | ||
99 | |||
100 | #define SUBLEVEL(level) ( (void)((level) == LEVEL(1)), \ | ||
101 | (__force level_t)((__force u8)(level) - 1) ) | ||
102 | |||
103 | /** | ||
104 | * struct logfs_area - area management information | ||
105 | * | ||
106 | * @a_sb: the superblock this area belongs to | ||
107 | * @a_is_open: 1 if the area is currently open, else 0 | ||
108 | * @a_segno: segment number of area | ||
109 | * @a_written_bytes: number of bytes already written back | ||
110 | * @a_used_bytes: number of used bytes | ||
111 | * @a_ops: area operations (either journal or ostore) | ||
112 | * @a_erase_count: erase count | ||
113 | * @a_level: GC level | ||
114 | */ | ||
115 | struct logfs_area { /* a segment open for writing */ | ||
116 | struct super_block *a_sb; | ||
117 | int a_is_open; | ||
118 | u32 a_segno; | ||
119 | u32 a_written_bytes; | ||
120 | u32 a_used_bytes; | ||
121 | const struct logfs_area_ops *a_ops; | ||
122 | u32 a_erase_count; | ||
123 | gc_level_t a_level; | ||
124 | }; | ||
125 | |||
126 | /** | ||
127 | * struct logfs_area_ops - area operations | ||
128 | * | ||
129 | * @get_free_segment: fill area->ofs with the offset of a free segment | ||
130 | * @get_erase_count: fill area->erase_count (needs area->ofs) | ||
131 | * @erase_segment: erase and setup segment | ||
132 | */ | ||
133 | struct logfs_area_ops { | ||
134 | void (*get_free_segment)(struct logfs_area *area); | ||
135 | void (*get_erase_count)(struct logfs_area *area); | ||
136 | int (*erase_segment)(struct logfs_area *area); | ||
137 | }; | ||
138 | |||
139 | /** | ||
140 | * struct logfs_device_ops - device access operations | ||
141 | * | ||
142 | * @readpage: read one page (mm page) | ||
143 | * @writeseg: write one segment. may be a partial segment | ||
144 | * @erase: erase one segment | ||
145 | * @read: read from the device | ||
146 | * @erase: erase part of the device | ||
147 | */ | ||
148 | struct logfs_device_ops { | ||
149 | struct page *(*find_first_sb)(struct super_block *sb, u64 *ofs); | ||
150 | struct page *(*find_last_sb)(struct super_block *sb, u64 *ofs); | ||
151 | int (*write_sb)(struct super_block *sb, struct page *page); | ||
152 | int (*readpage)(void *_sb, struct page *page); | ||
153 | void (*writeseg)(struct super_block *sb, u64 ofs, size_t len); | ||
154 | int (*erase)(struct super_block *sb, loff_t ofs, size_t len, | ||
155 | int ensure_write); | ||
156 | void (*sync)(struct super_block *sb); | ||
157 | void (*put_device)(struct super_block *sb); | ||
158 | }; | ||
159 | |||
160 | /** | ||
161 | * struct candidate_list - list of similar candidates | ||
162 | */ | ||
163 | struct candidate_list { | ||
164 | struct rb_root rb_tree; | ||
165 | int count; | ||
166 | int maxcount; | ||
167 | int sort_by_ec; | ||
168 | }; | ||
169 | |||
170 | /** | ||
171 | * struct gc_candidate - "candidate" segment to be garbage collected next | ||
172 | * | ||
173 | * @list: list (either free of low) | ||
174 | * @segno: segment number | ||
175 | * @valid: number of valid bytes | ||
176 | * @erase_count: erase count of segment | ||
177 | * @dist: distance from tree root | ||
178 | * | ||
179 | * Candidates can be on two lists. The free list contains electees rather | ||
180 | * than candidates - segments that no longer contain any valid data. The | ||
181 | * low list contains candidates to be picked for GC. It should be kept | ||
182 | * short. It is not required to always pick a perfect candidate. In the | ||
183 | * worst case GC will have to move more data than absolutely necessary. | ||
184 | */ | ||
185 | struct gc_candidate { | ||
186 | struct rb_node rb_node; | ||
187 | struct candidate_list *list; | ||
188 | u32 segno; | ||
189 | u32 valid; | ||
190 | u32 erase_count; | ||
191 | u8 dist; | ||
192 | }; | ||
193 | |||
194 | /** | ||
195 | * struct logfs_journal_entry - temporary structure used during journal scan | ||
196 | * | ||
197 | * @used: | ||
198 | * @version: normalized version | ||
199 | * @len: length | ||
200 | * @offset: offset | ||
201 | */ | ||
202 | struct logfs_journal_entry { | ||
203 | int used; | ||
204 | s16 version; | ||
205 | u16 len; | ||
206 | u16 datalen; | ||
207 | u64 offset; | ||
208 | }; | ||
209 | |||
210 | enum transaction_state { | ||
211 | CREATE_1 = 1, | ||
212 | CREATE_2, | ||
213 | UNLINK_1, | ||
214 | UNLINK_2, | ||
215 | CROSS_RENAME_1, | ||
216 | CROSS_RENAME_2, | ||
217 | TARGET_RENAME_1, | ||
218 | TARGET_RENAME_2, | ||
219 | TARGET_RENAME_3 | ||
220 | }; | ||
221 | |||
222 | /** | ||
223 | * struct logfs_transaction - essential fields to support atomic dirops | ||
224 | * | ||
225 | * @ino: target inode | ||
226 | * @dir: inode of directory containing dentry | ||
227 | * @pos: pos of dentry in directory | ||
228 | */ | ||
229 | struct logfs_transaction { | ||
230 | enum transaction_state state; | ||
231 | u64 ino; | ||
232 | u64 dir; | ||
233 | u64 pos; | ||
234 | }; | ||
235 | |||
236 | /** | ||
237 | * struct logfs_shadow - old block in the shadow of a not-yet-committed new one | ||
238 | * @old_ofs: offset of old block on medium | ||
239 | * @new_ofs: offset of new block on medium | ||
240 | * @ino: inode number | ||
241 | * @bix: block index | ||
242 | * @old_len: size of old block, including header | ||
243 | * @new_len: size of new block, including header | ||
244 | * @level: block level | ||
245 | */ | ||
246 | struct logfs_shadow { | ||
247 | u64 old_ofs; | ||
248 | u64 new_ofs; | ||
249 | u64 ino; | ||
250 | u64 bix; | ||
251 | int old_len; | ||
252 | int new_len; | ||
253 | gc_level_t gc_level; | ||
254 | }; | ||
255 | |||
256 | /** | ||
257 | * struct shadow_tree | ||
258 | * @new: shadows where old_ofs==0, indexed by new_ofs | ||
259 | * @old: shadows where old_ofs!=0, indexed by old_ofs | ||
260 | */ | ||
261 | struct shadow_tree { | ||
262 | struct btree_head64 new; | ||
263 | struct btree_head64 old; | ||
264 | }; | ||
265 | |||
266 | struct object_alias_item { | ||
267 | struct list_head list; | ||
268 | __be64 val; | ||
269 | int child_no; | ||
270 | }; | ||
271 | |||
272 | /** | ||
273 | * struct logfs_block - contains any block state | ||
274 | * @type: indirect block or inode | ||
275 | * @full: number of fully populated children | ||
276 | * @partial: number of partially populated children | ||
277 | * | ||
278 | * Most blocks are directly represented by page cache pages. But when a block | ||
279 | * becomes dirty, is part of a transaction, contains aliases or is otherwise | ||
280 | * special, a struct logfs_block is allocated to track the additional state. | ||
281 | * Inodes are very similar to indirect blocks, so they can also get one of | ||
282 | * these structures added when appropriate. | ||
283 | */ | ||
284 | #define BLOCK_INDIRECT 1 /* Indirect block */ | ||
285 | #define BLOCK_INODE 2 /* Inode */ | ||
286 | struct logfs_block_ops; | ||
287 | struct logfs_block { | ||
288 | struct list_head alias_list; | ||
289 | struct list_head item_list; | ||
290 | struct super_block *sb; | ||
291 | u64 ino; | ||
292 | u64 bix; | ||
293 | level_t level; | ||
294 | struct page *page; | ||
295 | struct inode *inode; | ||
296 | struct logfs_transaction *ta; | ||
297 | unsigned long alias_map[LOGFS_BLOCK_FACTOR / BITS_PER_LONG]; | ||
298 | struct logfs_block_ops *ops; | ||
299 | int full; | ||
300 | int partial; | ||
301 | int reserved_bytes; | ||
302 | }; | ||
303 | |||
304 | typedef int write_alias_t(struct super_block *sb, u64 ino, u64 bix, | ||
305 | level_t level, int child_no, __be64 val); | ||
306 | struct logfs_block_ops { | ||
307 | void (*write_block)(struct logfs_block *block); | ||
308 | gc_level_t (*block_level)(struct logfs_block *block); | ||
309 | void (*free_block)(struct super_block *sb, struct logfs_block*block); | ||
310 | int (*write_alias)(struct super_block *sb, | ||
311 | struct logfs_block *block, | ||
312 | write_alias_t *write_one_alias); | ||
313 | }; | ||
314 | |||
315 | struct logfs_super { | ||
316 | struct mtd_info *s_mtd; /* underlying device */ | ||
317 | struct block_device *s_bdev; /* underlying device */ | ||
318 | const struct logfs_device_ops *s_devops;/* device access */ | ||
319 | struct inode *s_master_inode; /* inode file */ | ||
320 | struct inode *s_segfile_inode; /* segment file */ | ||
321 | struct inode *s_mapping_inode; /* device mapping */ | ||
322 | atomic_t s_pending_writes; /* outstanting bios */ | ||
323 | long s_flags; | ||
324 | mempool_t *s_btree_pool; /* for btree nodes */ | ||
325 | mempool_t *s_alias_pool; /* aliases in segment.c */ | ||
326 | u64 s_feature_incompat; | ||
327 | u64 s_feature_ro_compat; | ||
328 | u64 s_feature_compat; | ||
329 | u64 s_feature_flags; | ||
330 | u64 s_sb_ofs[2]; | ||
331 | struct page *s_erase_page; /* for dev_bdev.c */ | ||
332 | /* alias.c fields */ | ||
333 | struct btree_head32 s_segment_alias; /* remapped segments */ | ||
334 | int s_no_object_aliases; | ||
335 | struct list_head s_object_alias; /* remapped objects */ | ||
336 | struct btree_head128 s_object_alias_tree; /* remapped objects */ | ||
337 | struct mutex s_object_alias_mutex; | ||
338 | /* dir.c fields */ | ||
339 | struct mutex s_dirop_mutex; /* for creat/unlink/rename */ | ||
340 | u64 s_victim_ino; /* used for atomic dir-ops */ | ||
341 | u64 s_rename_dir; /* source directory ino */ | ||
342 | u64 s_rename_pos; /* position of source dd */ | ||
343 | /* gc.c fields */ | ||
344 | long s_segsize; /* size of a segment */ | ||
345 | int s_segshift; /* log2 of segment size */ | ||
346 | long s_segmask; /* 1 << s_segshift - 1 */ | ||
347 | long s_no_segs; /* segments on device */ | ||
348 | long s_no_journal_segs; /* segments used for journal */ | ||
349 | long s_no_blocks; /* blocks per segment */ | ||
350 | long s_writesize; /* minimum write size */ | ||
351 | int s_writeshift; /* log2 of write size */ | ||
352 | u64 s_size; /* filesystem size */ | ||
353 | struct logfs_area *s_area[LOGFS_NO_AREAS]; /* open segment array */ | ||
354 | u64 s_gec; /* global erase count */ | ||
355 | u64 s_wl_gec_ostore; /* time of last wl event */ | ||
356 | u64 s_wl_gec_journal; /* time of last wl event */ | ||
357 | u64 s_sweeper; /* current sweeper pos */ | ||
358 | u8 s_ifile_levels; /* max level of ifile */ | ||
359 | u8 s_iblock_levels; /* max level of regular files */ | ||
360 | u8 s_data_levels; /* # of segments to leaf block*/ | ||
361 | u8 s_total_levels; /* sum of above three */ | ||
362 | struct btree_head32 s_cand_tree; /* all candidates */ | ||
363 | struct candidate_list s_free_list; /* 100% free segments */ | ||
364 | struct candidate_list s_reserve_list; /* Bad segment reserve */ | ||
365 | struct candidate_list s_low_list[LOGFS_NO_AREAS];/* good candidates */ | ||
366 | struct candidate_list s_ec_list; /* wear level candidates */ | ||
367 | struct btree_head32 s_reserved_segments;/* sb, journal, bad, etc. */ | ||
368 | /* inode.c fields */ | ||
369 | u64 s_last_ino; /* highest ino used */ | ||
370 | long s_inos_till_wrap; | ||
371 | u32 s_generation; /* i_generation for new files */ | ||
372 | struct list_head s_freeing_list; /* inodes being freed */ | ||
373 | /* journal.c fields */ | ||
374 | struct mutex s_journal_mutex; | ||
375 | void *s_je; /* journal entry to compress */ | ||
376 | void *s_compressed_je; /* block to write to journal */ | ||
377 | u32 s_journal_seg[LOGFS_JOURNAL_SEGS]; /* journal segments */ | ||
378 | u32 s_journal_ec[LOGFS_JOURNAL_SEGS]; /* journal erasecounts */ | ||
379 | u64 s_last_version; | ||
380 | struct logfs_area *s_journal_area; /* open journal segment */ | ||
381 | __be64 s_je_array[64]; | ||
382 | int s_no_je; | ||
383 | |||
384 | int s_sum_index; /* for the 12 summaries */ | ||
385 | struct shadow_tree s_shadow_tree; | ||
386 | int s_je_fill; /* index of current je */ | ||
387 | /* readwrite.c fields */ | ||
388 | struct mutex s_write_mutex; | ||
389 | int s_lock_count; | ||
390 | mempool_t *s_block_pool; /* struct logfs_block pool */ | ||
391 | mempool_t *s_shadow_pool; /* struct logfs_shadow pool */ | ||
392 | /* | ||
393 | * Space accounting: | ||
394 | * - s_used_bytes specifies space used to store valid data objects. | ||
395 | * - s_dirty_used_bytes is space used to store non-committed data | ||
396 | * objects. Those objects have already been written themselves, | ||
397 | * but they don't become valid until all indirect blocks up to the | ||
398 | * journal have been written as well. | ||
399 | * - s_dirty_free_bytes is space used to store the old copy of a | ||
400 | * replaced object, as long as the replacement is non-committed. | ||
401 | * In other words, it is the amount of space freed when all dirty | ||
402 | * blocks are written back. | ||
403 | * - s_free_bytes is the amount of free space available for any | ||
404 | * purpose. | ||
405 | * - s_root_reserve is the amount of free space available only to | ||
406 | * the root user. Non-privileged users can no longer write once | ||
407 | * this watermark has been reached. | ||
408 | * - s_speed_reserve is space which remains unused to speed up | ||
409 | * garbage collection performance. | ||
410 | * - s_dirty_pages is the space reserved for currently dirty pages. | ||
411 | * It is a pessimistic estimate, so some/most will get freed on | ||
412 | * page writeback. | ||
413 | * | ||
414 | * s_used_bytes + s_free_bytes + s_speed_reserve = total usable size | ||
415 | */ | ||
416 | u64 s_free_bytes; | ||
417 | u64 s_used_bytes; | ||
418 | u64 s_dirty_free_bytes; | ||
419 | u64 s_dirty_used_bytes; | ||
420 | u64 s_root_reserve; | ||
421 | u64 s_speed_reserve; | ||
422 | u64 s_dirty_pages; | ||
423 | /* Bad block handling: | ||
424 | * - s_bad_seg_reserve is a number of segments usually kept | ||
425 | * free. When encountering bad blocks, the affected segment's data | ||
426 | * is _temporarily_ moved to a reserved segment. | ||
427 | * - s_bad_segments is the number of known bad segments. | ||
428 | */ | ||
429 | u32 s_bad_seg_reserve; | ||
430 | u32 s_bad_segments; | ||
431 | }; | ||
432 | |||
433 | /** | ||
434 | * struct logfs_inode - in-memory inode | ||
435 | * | ||
436 | * @vfs_inode: struct inode | ||
437 | * @li_data: data pointers | ||
438 | * @li_used_bytes: number of used bytes | ||
439 | * @li_freeing_list: used to track inodes currently being freed | ||
440 | * @li_flags: inode flags | ||
441 | * @li_refcount: number of internal (GC-induced) references | ||
442 | */ | ||
443 | struct logfs_inode { | ||
444 | struct inode vfs_inode; | ||
445 | u64 li_data[LOGFS_EMBEDDED_FIELDS]; | ||
446 | u64 li_used_bytes; | ||
447 | struct list_head li_freeing_list; | ||
448 | struct logfs_block *li_block; | ||
449 | u32 li_flags; | ||
450 | u8 li_height; | ||
451 | int li_refcount; | ||
452 | }; | ||
453 | |||
454 | #define journal_for_each(__i) for (__i = 0; __i < LOGFS_JOURNAL_SEGS; __i++) | ||
455 | #define for_each_area(__i) for (__i = 0; __i < LOGFS_NO_AREAS; __i++) | ||
456 | #define for_each_area_down(__i) for (__i = LOGFS_NO_AREAS - 1; __i >= 0; __i--) | ||
457 | |||
458 | /* compr.c */ | ||
459 | int logfs_compress(void *in, void *out, size_t inlen, size_t outlen); | ||
460 | int logfs_uncompress(void *in, void *out, size_t inlen, size_t outlen); | ||
461 | int __init logfs_compr_init(void); | ||
462 | void logfs_compr_exit(void); | ||
463 | |||
464 | /* dev_bdev.c */ | ||
465 | #ifdef CONFIG_BLOCK | ||
466 | int logfs_get_sb_bdev(struct file_system_type *type, int flags, | ||
467 | const char *devname, struct vfsmount *mnt); | ||
468 | #else | ||
469 | static inline int logfs_get_sb_bdev(struct file_system_type *type, int flags, | ||
470 | const char *devname, struct vfsmount *mnt) | ||
471 | { | ||
472 | return -ENODEV; | ||
473 | } | ||
474 | #endif | ||
475 | |||
476 | /* dev_mtd.c */ | ||
477 | #ifdef CONFIG_MTD | ||
478 | int logfs_get_sb_mtd(struct file_system_type *type, int flags, | ||
479 | int mtdnr, struct vfsmount *mnt); | ||
480 | #else | ||
481 | static inline int logfs_get_sb_mtd(struct file_system_type *type, int flags, | ||
482 | int mtdnr, struct vfsmount *mnt) | ||
483 | { | ||
484 | return -ENODEV; | ||
485 | } | ||
486 | #endif | ||
487 | |||
488 | /* dir.c */ | ||
489 | extern const struct inode_operations logfs_symlink_iops; | ||
490 | extern const struct inode_operations logfs_dir_iops; | ||
491 | extern const struct file_operations logfs_dir_fops; | ||
492 | int logfs_replay_journal(struct super_block *sb); | ||
493 | |||
494 | /* file.c */ | ||
495 | extern const struct inode_operations logfs_reg_iops; | ||
496 | extern const struct file_operations logfs_reg_fops; | ||
497 | extern const struct address_space_operations logfs_reg_aops; | ||
498 | int logfs_readpage(struct file *file, struct page *page); | ||
499 | int logfs_ioctl(struct inode *inode, struct file *file, unsigned int cmd, | ||
500 | unsigned long arg); | ||
501 | int logfs_fsync(struct file *file, struct dentry *dentry, int datasync); | ||
502 | |||
503 | /* gc.c */ | ||
504 | u32 get_best_cand(struct super_block *sb, struct candidate_list *list, u32 *ec); | ||
505 | void logfs_gc_pass(struct super_block *sb); | ||
506 | int logfs_check_areas(struct super_block *sb); | ||
507 | int logfs_init_gc(struct super_block *sb); | ||
508 | void logfs_cleanup_gc(struct super_block *sb); | ||
509 | |||
510 | /* inode.c */ | ||
511 | extern const struct super_operations logfs_super_operations; | ||
512 | struct inode *logfs_iget(struct super_block *sb, ino_t ino); | ||
513 | struct inode *logfs_safe_iget(struct super_block *sb, ino_t ino, int *cookie); | ||
514 | void logfs_safe_iput(struct inode *inode, int cookie); | ||
515 | struct inode *logfs_new_inode(struct inode *dir, int mode); | ||
516 | struct inode *logfs_new_meta_inode(struct super_block *sb, u64 ino); | ||
517 | struct inode *logfs_read_meta_inode(struct super_block *sb, u64 ino); | ||
518 | int logfs_init_inode_cache(void); | ||
519 | void logfs_destroy_inode_cache(void); | ||
520 | void destroy_meta_inode(struct inode *inode); | ||
521 | void logfs_set_blocks(struct inode *inode, u64 no); | ||
522 | /* these logically belong into inode.c but actually reside in readwrite.c */ | ||
523 | int logfs_read_inode(struct inode *inode); | ||
524 | int __logfs_write_inode(struct inode *inode, long flags); | ||
525 | void logfs_delete_inode(struct inode *inode); | ||
526 | void logfs_clear_inode(struct inode *inode); | ||
527 | |||
528 | /* journal.c */ | ||
529 | void logfs_write_anchor(struct super_block *sb); | ||
530 | int logfs_init_journal(struct super_block *sb); | ||
531 | void logfs_cleanup_journal(struct super_block *sb); | ||
532 | int write_alias_journal(struct super_block *sb, u64 ino, u64 bix, | ||
533 | level_t level, int child_no, __be64 val); | ||
534 | void do_logfs_journal_wl_pass(struct super_block *sb); | ||
535 | |||
536 | /* readwrite.c */ | ||
537 | pgoff_t logfs_pack_index(u64 bix, level_t level); | ||
538 | void logfs_unpack_index(pgoff_t index, u64 *bix, level_t *level); | ||
539 | int logfs_inode_write(struct inode *inode, const void *buf, size_t count, | ||
540 | loff_t bix, long flags, struct shadow_tree *shadow_tree); | ||
541 | int logfs_readpage_nolock(struct page *page); | ||
542 | int logfs_write_buf(struct inode *inode, struct page *page, long flags); | ||
543 | int logfs_delete(struct inode *inode, pgoff_t index, | ||
544 | struct shadow_tree *shadow_tree); | ||
545 | int logfs_rewrite_block(struct inode *inode, u64 bix, u64 ofs, | ||
546 | gc_level_t gc_level, long flags); | ||
547 | int logfs_is_valid_block(struct super_block *sb, u64 ofs, u64 ino, u64 bix, | ||
548 | gc_level_t gc_level); | ||
549 | int logfs_truncate(struct inode *inode, u64 size); | ||
550 | u64 logfs_seek_hole(struct inode *inode, u64 bix); | ||
551 | u64 logfs_seek_data(struct inode *inode, u64 bix); | ||
552 | int logfs_open_segfile(struct super_block *sb); | ||
553 | int logfs_init_rw(struct super_block *sb); | ||
554 | void logfs_cleanup_rw(struct super_block *sb); | ||
555 | void logfs_add_transaction(struct inode *inode, struct logfs_transaction *ta); | ||
556 | void logfs_del_transaction(struct inode *inode, struct logfs_transaction *ta); | ||
557 | void logfs_write_block(struct logfs_block *block, long flags); | ||
558 | int logfs_write_obj_aliases_pagecache(struct super_block *sb); | ||
559 | void logfs_get_segment_entry(struct super_block *sb, u32 segno, | ||
560 | struct logfs_segment_entry *se); | ||
561 | void logfs_set_segment_used(struct super_block *sb, u64 ofs, int increment); | ||
562 | void logfs_set_segment_erased(struct super_block *sb, u32 segno, u32 ec, | ||
563 | gc_level_t gc_level); | ||
564 | void logfs_set_segment_reserved(struct super_block *sb, u32 segno); | ||
565 | void logfs_set_segment_unreserved(struct super_block *sb, u32 segno, u32 ec); | ||
566 | struct logfs_block *__alloc_block(struct super_block *sb, | ||
567 | u64 ino, u64 bix, level_t level); | ||
568 | void __free_block(struct super_block *sb, struct logfs_block *block); | ||
569 | void btree_write_block(struct logfs_block *block); | ||
570 | void initialize_block_counters(struct page *page, struct logfs_block *block, | ||
571 | __be64 *array, int page_is_empty); | ||
572 | int logfs_exist_block(struct inode *inode, u64 bix); | ||
573 | int get_page_reserve(struct inode *inode, struct page *page); | ||
574 | extern struct logfs_block_ops indirect_block_ops; | ||
575 | |||
576 | /* segment.c */ | ||
577 | int logfs_erase_segment(struct super_block *sb, u32 ofs, int ensure_erase); | ||
578 | int wbuf_read(struct super_block *sb, u64 ofs, size_t len, void *buf); | ||
579 | int logfs_segment_read(struct inode *inode, struct page *page, u64 ofs, u64 bix, | ||
580 | level_t level); | ||
581 | int logfs_segment_write(struct inode *inode, struct page *page, | ||
582 | struct logfs_shadow *shadow); | ||
583 | int logfs_segment_delete(struct inode *inode, struct logfs_shadow *shadow); | ||
584 | int logfs_load_object_aliases(struct super_block *sb, | ||
585 | struct logfs_obj_alias *oa, int count); | ||
586 | void move_page_to_btree(struct page *page); | ||
587 | int logfs_init_mapping(struct super_block *sb); | ||
588 | void logfs_sync_area(struct logfs_area *area); | ||
589 | void logfs_sync_segments(struct super_block *sb); | ||
590 | |||
591 | /* area handling */ | ||
592 | int logfs_init_areas(struct super_block *sb); | ||
593 | void logfs_cleanup_areas(struct super_block *sb); | ||
594 | int logfs_open_area(struct logfs_area *area, size_t bytes); | ||
595 | void __logfs_buf_write(struct logfs_area *area, u64 ofs, void *buf, size_t len, | ||
596 | int use_filler); | ||
597 | |||
598 | static inline void logfs_buf_write(struct logfs_area *area, u64 ofs, | ||
599 | void *buf, size_t len) | ||
600 | { | ||
601 | __logfs_buf_write(area, ofs, buf, len, 0); | ||
602 | } | ||
603 | |||
604 | static inline void logfs_buf_recover(struct logfs_area *area, u64 ofs, | ||
605 | void *buf, size_t len) | ||
606 | { | ||
607 | __logfs_buf_write(area, ofs, buf, len, 1); | ||
608 | } | ||
609 | |||
610 | /* super.c */ | ||
611 | struct page *emergency_read_begin(struct address_space *mapping, pgoff_t index); | ||
612 | void emergency_read_end(struct page *page); | ||
613 | void logfs_crash_dump(struct super_block *sb); | ||
614 | void *memchr_inv(const void *s, int c, size_t n); | ||
615 | int logfs_statfs(struct dentry *dentry, struct kstatfs *stats); | ||
616 | int logfs_get_sb_device(struct file_system_type *type, int flags, | ||
617 | struct mtd_info *mtd, struct block_device *bdev, | ||
618 | const struct logfs_device_ops *devops, struct vfsmount *mnt); | ||
619 | int logfs_check_ds(struct logfs_disk_super *ds); | ||
620 | int logfs_write_sb(struct super_block *sb); | ||
621 | |||
622 | static inline struct logfs_super *logfs_super(struct super_block *sb) | ||
623 | { | ||
624 | return sb->s_fs_info; | ||
625 | } | ||
626 | |||
627 | static inline struct logfs_inode *logfs_inode(struct inode *inode) | ||
628 | { | ||
629 | return container_of(inode, struct logfs_inode, vfs_inode); | ||
630 | } | ||
631 | |||
632 | static inline void logfs_set_ro(struct super_block *sb) | ||
633 | { | ||
634 | logfs_super(sb)->s_flags |= LOGFS_SB_FLAG_RO; | ||
635 | } | ||
636 | |||
637 | #define LOGFS_BUG(sb) do { \ | ||
638 | struct super_block *__sb = sb; \ | ||
639 | logfs_crash_dump(__sb); \ | ||
640 | logfs_super(__sb)->s_flags |= LOGFS_SB_FLAG_RO; \ | ||
641 | BUG(); \ | ||
642 | } while (0) | ||
643 | |||
644 | #define LOGFS_BUG_ON(condition, sb) \ | ||
645 | do { if (unlikely(condition)) LOGFS_BUG((sb)); } while (0) | ||
646 | |||
647 | static inline __be32 logfs_crc32(void *data, size_t len, size_t skip) | ||
648 | { | ||
649 | return cpu_to_be32(crc32(~0, data+skip, len-skip)); | ||
650 | } | ||
651 | |||
652 | static inline u8 logfs_type(struct inode *inode) | ||
653 | { | ||
654 | return (inode->i_mode >> 12) & 15; | ||
655 | } | ||
656 | |||
657 | static inline pgoff_t logfs_index(struct super_block *sb, u64 pos) | ||
658 | { | ||
659 | return pos >> sb->s_blocksize_bits; | ||
660 | } | ||
661 | |||
662 | static inline u64 dev_ofs(struct super_block *sb, u32 segno, u32 ofs) | ||
663 | { | ||
664 | return ((u64)segno << logfs_super(sb)->s_segshift) + ofs; | ||
665 | } | ||
666 | |||
667 | static inline u32 seg_no(struct super_block *sb, u64 ofs) | ||
668 | { | ||
669 | return ofs >> logfs_super(sb)->s_segshift; | ||
670 | } | ||
671 | |||
672 | static inline u32 seg_ofs(struct super_block *sb, u64 ofs) | ||
673 | { | ||
674 | return ofs & logfs_super(sb)->s_segmask; | ||
675 | } | ||
676 | |||
677 | static inline u64 seg_align(struct super_block *sb, u64 ofs) | ||
678 | { | ||
679 | return ofs & ~logfs_super(sb)->s_segmask; | ||
680 | } | ||
681 | |||
682 | static inline struct logfs_block *logfs_block(struct page *page) | ||
683 | { | ||
684 | return (void *)page->private; | ||
685 | } | ||
686 | |||
687 | static inline level_t shrink_level(gc_level_t __level) | ||
688 | { | ||
689 | u8 level = (__force u8)__level; | ||
690 | |||
691 | if (level >= LOGFS_MAX_LEVELS) | ||
692 | level -= LOGFS_MAX_LEVELS; | ||
693 | return (__force level_t)level; | ||
694 | } | ||
695 | |||
696 | static inline gc_level_t expand_level(u64 ino, level_t __level) | ||
697 | { | ||
698 | u8 level = (__force u8)__level; | ||
699 | |||
700 | if (ino == LOGFS_INO_MASTER) { | ||
701 | /* ifile has seperate areas */ | ||
702 | level += LOGFS_MAX_LEVELS; | ||
703 | } | ||
704 | return (__force gc_level_t)level; | ||
705 | } | ||
706 | |||
707 | static inline int logfs_block_shift(struct super_block *sb, level_t level) | ||
708 | { | ||
709 | level = shrink_level((__force gc_level_t)level); | ||
710 | return (__force int)level * (sb->s_blocksize_bits - 3); | ||
711 | } | ||
712 | |||
713 | static inline u64 logfs_block_mask(struct super_block *sb, level_t level) | ||
714 | { | ||
715 | return ~0ull << logfs_block_shift(sb, level); | ||
716 | } | ||
717 | |||
718 | static inline struct logfs_area *get_area(struct super_block *sb, | ||
719 | gc_level_t gc_level) | ||
720 | { | ||
721 | return logfs_super(sb)->s_area[(__force u8)gc_level]; | ||
722 | } | ||
723 | |||
724 | #endif | ||
diff --git a/fs/logfs/logfs_abi.h b/fs/logfs/logfs_abi.h new file mode 100644 index 000000000000..f674725663fe --- /dev/null +++ b/fs/logfs/logfs_abi.h | |||
@@ -0,0 +1,629 @@ | |||
1 | /* | ||
2 | * fs/logfs/logfs_abi.h | ||
3 | * | ||
4 | * As should be obvious for Linux kernel code, license is GPLv2 | ||
5 | * | ||
6 | * Copyright (c) 2005-2008 Joern Engel <joern@logfs.org> | ||
7 | * | ||
8 | * Public header for logfs. | ||
9 | */ | ||
10 | #ifndef FS_LOGFS_LOGFS_ABI_H | ||
11 | #define FS_LOGFS_LOGFS_ABI_H | ||
12 | |||
13 | /* For out-of-kernel compiles */ | ||
14 | #ifndef BUILD_BUG_ON | ||
15 | #define BUILD_BUG_ON(condition) /**/ | ||
16 | #endif | ||
17 | |||
18 | #define SIZE_CHECK(type, size) \ | ||
19 | static inline void check_##type(void) \ | ||
20 | { \ | ||
21 | BUILD_BUG_ON(sizeof(struct type) != (size)); \ | ||
22 | } | ||
23 | |||
24 | /* | ||
25 | * Throughout the logfs code, we're constantly dealing with blocks at | ||
26 | * various positions or offsets. To remove confusion, we stricly | ||
27 | * distinguish between a "position" - the logical position within a | ||
28 | * file and an "offset" - the physical location within the device. | ||
29 | * | ||
30 | * Any usage of the term offset for a logical location or position for | ||
31 | * a physical one is a bug and should get fixed. | ||
32 | */ | ||
33 | |||
34 | /* | ||
35 | * Block are allocated in one of several segments depending on their | ||
36 | * level. The following levels are used: | ||
37 | * 0 - regular data block | ||
38 | * 1 - i1 indirect blocks | ||
39 | * 2 - i2 indirect blocks | ||
40 | * 3 - i3 indirect blocks | ||
41 | * 4 - i4 indirect blocks | ||
42 | * 5 - i5 indirect blocks | ||
43 | * 6 - ifile data blocks | ||
44 | * 7 - ifile i1 indirect blocks | ||
45 | * 8 - ifile i2 indirect blocks | ||
46 | * 9 - ifile i3 indirect blocks | ||
47 | * 10 - ifile i4 indirect blocks | ||
48 | * 11 - ifile i5 indirect blocks | ||
49 | * Potential levels to be used in the future: | ||
50 | * 12 - gc recycled blocks, long-lived data | ||
51 | * 13 - replacement blocks, short-lived data | ||
52 | * | ||
53 | * Levels 1-11 are necessary for robust gc operations and help seperate | ||
54 | * short-lived metadata from longer-lived file data. In the future, | ||
55 | * file data should get seperated into several segments based on simple | ||
56 | * heuristics. Old data recycled during gc operation is expected to be | ||
57 | * long-lived. New data is of uncertain life expectancy. New data | ||
58 | * used to replace older blocks in existing files is expected to be | ||
59 | * short-lived. | ||
60 | */ | ||
61 | |||
62 | |||
63 | /* Magic numbers. 64bit for superblock, 32bit for statfs f_type */ | ||
64 | #define LOGFS_MAGIC 0x7a3a8e5cb9d5bf67ull | ||
65 | #define LOGFS_MAGIC_U32 0xc97e8168u | ||
66 | |||
67 | /* | ||
68 | * Various blocksize related macros. Blocksize is currently fixed at 4KiB. | ||
69 | * Sooner or later that should become configurable and the macros replaced | ||
70 | * by something superblock-dependent. Pointers in indirect blocks are and | ||
71 | * will remain 64bit. | ||
72 | * | ||
73 | * LOGFS_BLOCKSIZE - self-explaining | ||
74 | * LOGFS_BLOCK_FACTOR - number of pointers per indirect block | ||
75 | * LOGFS_BLOCK_BITS - log2 of LOGFS_BLOCK_FACTOR, used for shifts | ||
76 | */ | ||
77 | #define LOGFS_BLOCKSIZE (4096ull) | ||
78 | #define LOGFS_BLOCK_FACTOR (LOGFS_BLOCKSIZE / sizeof(u64)) | ||
79 | #define LOGFS_BLOCK_BITS (9) | ||
80 | |||
81 | /* | ||
82 | * Number of blocks at various levels of indirection. There are 16 direct | ||
83 | * block pointers plus a single indirect pointer. | ||
84 | */ | ||
85 | #define I0_BLOCKS (16) | ||
86 | #define I1_BLOCKS LOGFS_BLOCK_FACTOR | ||
87 | #define I2_BLOCKS (LOGFS_BLOCK_FACTOR * I1_BLOCKS) | ||
88 | #define I3_BLOCKS (LOGFS_BLOCK_FACTOR * I2_BLOCKS) | ||
89 | #define I4_BLOCKS (LOGFS_BLOCK_FACTOR * I3_BLOCKS) | ||
90 | #define I5_BLOCKS (LOGFS_BLOCK_FACTOR * I4_BLOCKS) | ||
91 | |||
92 | #define INDIRECT_INDEX I0_BLOCKS | ||
93 | #define LOGFS_EMBEDDED_FIELDS (I0_BLOCKS + 1) | ||
94 | |||
95 | /* | ||
96 | * Sizes at which files require another level of indirection. Files smaller | ||
97 | * than LOGFS_EMBEDDED_SIZE can be completely stored in the inode itself, | ||
98 | * similar like ext2 fast symlinks. | ||
99 | * | ||
100 | * Data at a position smaller than LOGFS_I0_SIZE is accessed through the | ||
101 | * direct pointers, else through the 1x indirect pointer and so forth. | ||
102 | */ | ||
103 | #define LOGFS_EMBEDDED_SIZE (LOGFS_EMBEDDED_FIELDS * sizeof(u64)) | ||
104 | #define LOGFS_I0_SIZE (I0_BLOCKS * LOGFS_BLOCKSIZE) | ||
105 | #define LOGFS_I1_SIZE (I1_BLOCKS * LOGFS_BLOCKSIZE) | ||
106 | #define LOGFS_I2_SIZE (I2_BLOCKS * LOGFS_BLOCKSIZE) | ||
107 | #define LOGFS_I3_SIZE (I3_BLOCKS * LOGFS_BLOCKSIZE) | ||
108 | #define LOGFS_I4_SIZE (I4_BLOCKS * LOGFS_BLOCKSIZE) | ||
109 | #define LOGFS_I5_SIZE (I5_BLOCKS * LOGFS_BLOCKSIZE) | ||
110 | |||
111 | /* | ||
112 | * Each indirect block pointer must have this flag set, if all block pointers | ||
113 | * behind it are set, i.e. there is no hole hidden in the shadow of this | ||
114 | * indirect block pointer. | ||
115 | */ | ||
116 | #define LOGFS_FULLY_POPULATED (1ULL << 63) | ||
117 | #define pure_ofs(ofs) (ofs & ~LOGFS_FULLY_POPULATED) | ||
118 | |||
119 | /* | ||
120 | * LogFS needs to seperate data into levels. Each level is defined as the | ||
121 | * maximal possible distance from the master inode (inode of the inode file). | ||
122 | * Data blocks reside on level 0, 1x indirect block on level 1, etc. | ||
123 | * Inodes reside on level 6, indirect blocks for the inode file on levels 7-11. | ||
124 | * This effort is necessary to guarantee garbage collection to always make | ||
125 | * progress. | ||
126 | * | ||
127 | * LOGFS_MAX_INDIRECT is the maximal indirection through indirect blocks, | ||
128 | * LOGFS_MAX_LEVELS is one more for the actual data level of a file. It is | ||
129 | * the maximal number of levels for one file. | ||
130 | * LOGFS_NO_AREAS is twice that, as the inode file and regular files are | ||
131 | * effectively stacked on top of each other. | ||
132 | */ | ||
133 | #define LOGFS_MAX_INDIRECT (5) | ||
134 | #define LOGFS_MAX_LEVELS (LOGFS_MAX_INDIRECT + 1) | ||
135 | #define LOGFS_NO_AREAS (2 * LOGFS_MAX_LEVELS) | ||
136 | |||
137 | /* Maximum size of filenames */ | ||
138 | #define LOGFS_MAX_NAMELEN (255) | ||
139 | |||
140 | /* Number of segments in the primary journal. */ | ||
141 | #define LOGFS_JOURNAL_SEGS (16) | ||
142 | |||
143 | /* Maximum number of free/erased/etc. segments in journal entries */ | ||
144 | #define MAX_CACHED_SEGS (64) | ||
145 | |||
146 | |||
147 | /* | ||
148 | * LOGFS_OBJECT_HEADERSIZE is the size of a single header in the object store, | ||
149 | * LOGFS_MAX_OBJECTSIZE the size of the largest possible object, including | ||
150 | * its header, | ||
151 | * LOGFS_SEGMENT_RESERVE is the amount of space reserved for each segment for | ||
152 | * its segment header and the padded space at the end when no further objects | ||
153 | * fit. | ||
154 | */ | ||
155 | #define LOGFS_OBJECT_HEADERSIZE (0x1c) | ||
156 | #define LOGFS_SEGMENT_HEADERSIZE (0x18) | ||
157 | #define LOGFS_MAX_OBJECTSIZE (LOGFS_OBJECT_HEADERSIZE + LOGFS_BLOCKSIZE) | ||
158 | #define LOGFS_SEGMENT_RESERVE \ | ||
159 | (LOGFS_SEGMENT_HEADERSIZE + LOGFS_MAX_OBJECTSIZE - 1) | ||
160 | |||
161 | /* | ||
162 | * Segment types: | ||
163 | * SEG_SUPER - Data or indirect block | ||
164 | * SEG_JOURNAL - Inode | ||
165 | * SEG_OSTORE - Dentry | ||
166 | */ | ||
167 | enum { | ||
168 | SEG_SUPER = 0x01, | ||
169 | SEG_JOURNAL = 0x02, | ||
170 | SEG_OSTORE = 0x03, | ||
171 | }; | ||
172 | |||
173 | /** | ||
174 | * struct logfs_segment_header - per-segment header in the ostore | ||
175 | * | ||
176 | * @crc: crc32 of header (there is no data) | ||
177 | * @pad: unused, must be 0 | ||
178 | * @type: segment type, see above | ||
179 | * @level: GC level for all objects in this segment | ||
180 | * @segno: segment number | ||
181 | * @ec: erase count for this segment | ||
182 | * @gec: global erase count at time of writing | ||
183 | */ | ||
184 | struct logfs_segment_header { | ||
185 | __be32 crc; | ||
186 | __be16 pad; | ||
187 | __u8 type; | ||
188 | __u8 level; | ||
189 | __be32 segno; | ||
190 | __be32 ec; | ||
191 | __be64 gec; | ||
192 | }; | ||
193 | |||
194 | SIZE_CHECK(logfs_segment_header, LOGFS_SEGMENT_HEADERSIZE); | ||
195 | |||
196 | #define LOGFS_FEATURES_INCOMPAT (0ull) | ||
197 | #define LOGFS_FEATURES_RO_COMPAT (0ull) | ||
198 | #define LOGFS_FEATURES_COMPAT (0ull) | ||
199 | |||
200 | /** | ||
201 | * struct logfs_disk_super - on-medium superblock | ||
202 | * | ||
203 | * @ds_magic: magic number, must equal LOGFS_MAGIC | ||
204 | * @ds_crc: crc32 of structure starting with the next field | ||
205 | * @ds_ifile_levels: maximum number of levels for ifile | ||
206 | * @ds_iblock_levels: maximum number of levels for regular files | ||
207 | * @ds_data_levels: number of seperate levels for data | ||
208 | * @pad0: reserved, must be 0 | ||
209 | * @ds_feature_incompat: incompatible filesystem features | ||
210 | * @ds_feature_ro_compat: read-only compatible filesystem features | ||
211 | * @ds_feature_compat: compatible filesystem features | ||
212 | * @ds_flags: flags | ||
213 | * @ds_segment_shift: log2 of segment size | ||
214 | * @ds_block_shift: log2 of block size | ||
215 | * @ds_write_shift: log2 of write size | ||
216 | * @pad1: reserved, must be 0 | ||
217 | * @ds_journal_seg: segments used by primary journal | ||
218 | * @ds_root_reserve: bytes reserved for the superuser | ||
219 | * @ds_speed_reserve: bytes reserved to speed up GC | ||
220 | * @ds_bad_seg_reserve: number of segments reserved to handle bad blocks | ||
221 | * @pad2: reserved, must be 0 | ||
222 | * @pad3: reserved, must be 0 | ||
223 | * | ||
224 | * Contains only read-only fields. Read-write fields like the amount of used | ||
225 | * space is tracked in the dynamic superblock, which is stored in the journal. | ||
226 | */ | ||
227 | struct logfs_disk_super { | ||
228 | struct logfs_segment_header ds_sh; | ||
229 | __be64 ds_magic; | ||
230 | |||
231 | __be32 ds_crc; | ||
232 | __u8 ds_ifile_levels; | ||
233 | __u8 ds_iblock_levels; | ||
234 | __u8 ds_data_levels; | ||
235 | __u8 ds_segment_shift; | ||
236 | __u8 ds_block_shift; | ||
237 | __u8 ds_write_shift; | ||
238 | __u8 pad0[6]; | ||
239 | |||
240 | __be64 ds_filesystem_size; | ||
241 | __be32 ds_segment_size; | ||
242 | __be32 ds_bad_seg_reserve; | ||
243 | |||
244 | __be64 ds_feature_incompat; | ||
245 | __be64 ds_feature_ro_compat; | ||
246 | |||
247 | __be64 ds_feature_compat; | ||
248 | __be64 ds_feature_flags; | ||
249 | |||
250 | __be64 ds_root_reserve; | ||
251 | __be64 ds_speed_reserve; | ||
252 | |||
253 | __be32 ds_journal_seg[LOGFS_JOURNAL_SEGS]; | ||
254 | |||
255 | __be64 ds_super_ofs[2]; | ||
256 | __be64 pad3[8]; | ||
257 | }; | ||
258 | |||
259 | SIZE_CHECK(logfs_disk_super, 256); | ||
260 | |||
261 | /* | ||
262 | * Object types: | ||
263 | * OBJ_BLOCK - Data or indirect block | ||
264 | * OBJ_INODE - Inode | ||
265 | * OBJ_DENTRY - Dentry | ||
266 | */ | ||
267 | enum { | ||
268 | OBJ_BLOCK = 0x04, | ||
269 | OBJ_INODE = 0x05, | ||
270 | OBJ_DENTRY = 0x06, | ||
271 | }; | ||
272 | |||
273 | /** | ||
274 | * struct logfs_object_header - per-object header in the ostore | ||
275 | * | ||
276 | * @crc: crc32 of header, excluding data_crc | ||
277 | * @len: length of data | ||
278 | * @type: object type, see above | ||
279 | * @compr: compression type | ||
280 | * @ino: inode number | ||
281 | * @bix: block index | ||
282 | * @data_crc: crc32 of payload | ||
283 | */ | ||
284 | struct logfs_object_header { | ||
285 | __be32 crc; | ||
286 | __be16 len; | ||
287 | __u8 type; | ||
288 | __u8 compr; | ||
289 | __be64 ino; | ||
290 | __be64 bix; | ||
291 | __be32 data_crc; | ||
292 | } __attribute__((packed)); | ||
293 | |||
294 | SIZE_CHECK(logfs_object_header, LOGFS_OBJECT_HEADERSIZE); | ||
295 | |||
296 | /* | ||
297 | * Reserved inode numbers: | ||
298 | * LOGFS_INO_MASTER - master inode (for inode file) | ||
299 | * LOGFS_INO_ROOT - root directory | ||
300 | * LOGFS_INO_SEGFILE - per-segment used bytes and erase count | ||
301 | */ | ||
302 | enum { | ||
303 | LOGFS_INO_MAPPING = 0x00, | ||
304 | LOGFS_INO_MASTER = 0x01, | ||
305 | LOGFS_INO_ROOT = 0x02, | ||
306 | LOGFS_INO_SEGFILE = 0x03, | ||
307 | LOGFS_RESERVED_INOS = 0x10, | ||
308 | }; | ||
309 | |||
310 | /* | ||
311 | * Inode flags. High bits should never be written to the medium. They are | ||
312 | * reserved for in-memory usage. | ||
313 | * Low bits should either remain in sync with the corresponding FS_*_FL or | ||
314 | * reuse slots that obviously don't make sense for logfs. | ||
315 | * | ||
316 | * LOGFS_IF_DIRTY Inode must be written back | ||
317 | * LOGFS_IF_ZOMBIE Inode has been deleted | ||
318 | * LOGFS_IF_STILLBORN -ENOSPC happened when creating inode | ||
319 | */ | ||
320 | #define LOGFS_IF_COMPRESSED 0x00000004 /* == FS_COMPR_FL */ | ||
321 | #define LOGFS_IF_DIRTY 0x20000000 | ||
322 | #define LOGFS_IF_ZOMBIE 0x40000000 | ||
323 | #define LOGFS_IF_STILLBORN 0x80000000 | ||
324 | |||
325 | /* Flags available to chattr */ | ||
326 | #define LOGFS_FL_USER_VISIBLE (LOGFS_IF_COMPRESSED) | ||
327 | #define LOGFS_FL_USER_MODIFIABLE (LOGFS_IF_COMPRESSED) | ||
328 | /* Flags inherited from parent directory on file/directory creation */ | ||
329 | #define LOGFS_FL_INHERITED (LOGFS_IF_COMPRESSED) | ||
330 | |||
331 | /** | ||
332 | * struct logfs_disk_inode - on-medium inode | ||
333 | * | ||
334 | * @di_mode: file mode | ||
335 | * @di_pad: reserved, must be 0 | ||
336 | * @di_flags: inode flags, see above | ||
337 | * @di_uid: user id | ||
338 | * @di_gid: group id | ||
339 | * @di_ctime: change time | ||
340 | * @di_mtime: modify time | ||
341 | * @di_refcount: reference count (aka nlink or link count) | ||
342 | * @di_generation: inode generation, for nfs | ||
343 | * @di_used_bytes: number of bytes used | ||
344 | * @di_size: file size | ||
345 | * @di_data: data pointers | ||
346 | */ | ||
347 | struct logfs_disk_inode { | ||
348 | __be16 di_mode; | ||
349 | __u8 di_height; | ||
350 | __u8 di_pad; | ||
351 | __be32 di_flags; | ||
352 | __be32 di_uid; | ||
353 | __be32 di_gid; | ||
354 | |||
355 | __be64 di_ctime; | ||
356 | __be64 di_mtime; | ||
357 | |||
358 | __be64 di_atime; | ||
359 | __be32 di_refcount; | ||
360 | __be32 di_generation; | ||
361 | |||
362 | __be64 di_used_bytes; | ||
363 | __be64 di_size; | ||
364 | |||
365 | __be64 di_data[LOGFS_EMBEDDED_FIELDS]; | ||
366 | }; | ||
367 | |||
368 | SIZE_CHECK(logfs_disk_inode, 200); | ||
369 | |||
370 | #define INODE_POINTER_OFS \ | ||
371 | (offsetof(struct logfs_disk_inode, di_data) / sizeof(__be64)) | ||
372 | #define INODE_USED_OFS \ | ||
373 | (offsetof(struct logfs_disk_inode, di_used_bytes) / sizeof(__be64)) | ||
374 | #define INODE_SIZE_OFS \ | ||
375 | (offsetof(struct logfs_disk_inode, di_size) / sizeof(__be64)) | ||
376 | #define INODE_HEIGHT_OFS (0) | ||
377 | |||
378 | /** | ||
379 | * struct logfs_disk_dentry - on-medium dentry structure | ||
380 | * | ||
381 | * @ino: inode number | ||
382 | * @namelen: length of file name | ||
383 | * @type: file type, identical to bits 12..15 of mode | ||
384 | * @name: file name | ||
385 | */ | ||
386 | /* FIXME: add 6 bytes of padding to remove the __packed */ | ||
387 | struct logfs_disk_dentry { | ||
388 | __be64 ino; | ||
389 | __be16 namelen; | ||
390 | __u8 type; | ||
391 | __u8 name[LOGFS_MAX_NAMELEN]; | ||
392 | } __attribute__((packed)); | ||
393 | |||
394 | SIZE_CHECK(logfs_disk_dentry, 266); | ||
395 | |||
396 | #define RESERVED 0xffffffff | ||
397 | #define BADSEG 0xffffffff | ||
398 | /** | ||
399 | * struct logfs_segment_entry - segment file entry | ||
400 | * | ||
401 | * @ec_level: erase count and level | ||
402 | * @valid: number of valid bytes | ||
403 | * | ||
404 | * Segment file contains one entry for every segment. ec_level contains the | ||
405 | * erasecount in the upper 28 bits and the level in the lower 4 bits. An | ||
406 | * ec_level of BADSEG (-1) identifies bad segments. valid contains the number | ||
407 | * of valid bytes or RESERVED (-1 again) if the segment is used for either the | ||
408 | * superblock or the journal, or when the segment is bad. | ||
409 | */ | ||
410 | struct logfs_segment_entry { | ||
411 | __be32 ec_level; | ||
412 | __be32 valid; | ||
413 | }; | ||
414 | |||
415 | SIZE_CHECK(logfs_segment_entry, 8); | ||
416 | |||
417 | /** | ||
418 | * struct logfs_journal_header - header for journal entries (JEs) | ||
419 | * | ||
420 | * @h_crc: crc32 of journal entry | ||
421 | * @h_len: length of compressed journal entry, | ||
422 | * not including header | ||
423 | * @h_datalen: length of uncompressed data | ||
424 | * @h_type: JE type | ||
425 | * @h_compr: compression type | ||
426 | * @h_pad: reserved | ||
427 | */ | ||
428 | struct logfs_journal_header { | ||
429 | __be32 h_crc; | ||
430 | __be16 h_len; | ||
431 | __be16 h_datalen; | ||
432 | __be16 h_type; | ||
433 | __u8 h_compr; | ||
434 | __u8 h_pad[5]; | ||
435 | }; | ||
436 | |||
437 | SIZE_CHECK(logfs_journal_header, 16); | ||
438 | |||
439 | /* | ||
440 | * Life expectency of data. | ||
441 | * VIM_DEFAULT - default vim | ||
442 | * VIM_SEGFILE - for segment file only - very short-living | ||
443 | * VIM_GC - GC'd data - likely long-living | ||
444 | */ | ||
445 | enum logfs_vim { | ||
446 | VIM_DEFAULT = 0, | ||
447 | VIM_SEGFILE = 1, | ||
448 | }; | ||
449 | |||
450 | /** | ||
451 | * struct logfs_je_area - wbuf header | ||
452 | * | ||
453 | * @segno: segment number of area | ||
454 | * @used_bytes: number of bytes already used | ||
455 | * @gc_level: GC level | ||
456 | * @vim: life expectancy of data | ||
457 | * | ||
458 | * "Areas" are segments currently being used for writing. There is at least | ||
459 | * one area per GC level. Several may be used to seperate long-living from | ||
460 | * short-living data. If an area with unknown vim is encountered, it can | ||
461 | * simply be closed. | ||
462 | * The write buffer immediately follow this header. | ||
463 | */ | ||
464 | struct logfs_je_area { | ||
465 | __be32 segno; | ||
466 | __be32 used_bytes; | ||
467 | __u8 gc_level; | ||
468 | __u8 vim; | ||
469 | } __attribute__((packed)); | ||
470 | |||
471 | SIZE_CHECK(logfs_je_area, 10); | ||
472 | |||
473 | #define MAX_JOURNAL_HEADER \ | ||
474 | (sizeof(struct logfs_journal_header) + sizeof(struct logfs_je_area)) | ||
475 | |||
476 | /** | ||
477 | * struct logfs_je_dynsb - dynamic superblock | ||
478 | * | ||
479 | * @ds_gec: global erase count | ||
480 | * @ds_sweeper: current position of GC "sweeper" | ||
481 | * @ds_rename_dir: source directory ino (see dir.c documentation) | ||
482 | * @ds_rename_pos: position of source dd (see dir.c documentation) | ||
483 | * @ds_victim_ino: victims of incomplete dir operation (see dir.c) | ||
484 | * @ds_victim_ino: parent inode of victim (see dir.c) | ||
485 | * @ds_used_bytes: number of used bytes | ||
486 | */ | ||
487 | struct logfs_je_dynsb { | ||
488 | __be64 ds_gec; | ||
489 | __be64 ds_sweeper; | ||
490 | |||
491 | __be64 ds_rename_dir; | ||
492 | __be64 ds_rename_pos; | ||
493 | |||
494 | __be64 ds_victim_ino; | ||
495 | __be64 ds_victim_parent; /* XXX */ | ||
496 | |||
497 | __be64 ds_used_bytes; | ||
498 | __be32 ds_generation; | ||
499 | __be32 pad; | ||
500 | }; | ||
501 | |||
502 | SIZE_CHECK(logfs_je_dynsb, 64); | ||
503 | |||
504 | /** | ||
505 | * struct logfs_je_anchor - anchor of filesystem tree, aka master inode | ||
506 | * | ||
507 | * @da_size: size of inode file | ||
508 | * @da_last_ino: last created inode | ||
509 | * @da_used_bytes: number of bytes used | ||
510 | * @da_data: data pointers | ||
511 | */ | ||
512 | struct logfs_je_anchor { | ||
513 | __be64 da_size; | ||
514 | __be64 da_last_ino; | ||
515 | |||
516 | __be64 da_used_bytes; | ||
517 | u8 da_height; | ||
518 | u8 pad[7]; | ||
519 | |||
520 | __be64 da_data[LOGFS_EMBEDDED_FIELDS]; | ||
521 | }; | ||
522 | |||
523 | SIZE_CHECK(logfs_je_anchor, 168); | ||
524 | |||
525 | /** | ||
526 | * struct logfs_je_spillout - spillout entry (from 1st to 2nd journal) | ||
527 | * | ||
528 | * @so_segment: segments used for 2nd journal | ||
529 | * | ||
530 | * Length of the array is given by h_len field in the header. | ||
531 | */ | ||
532 | struct logfs_je_spillout { | ||
533 | __be64 so_segment[0]; | ||
534 | }; | ||
535 | |||
536 | SIZE_CHECK(logfs_je_spillout, 0); | ||
537 | |||
538 | /** | ||
539 | * struct logfs_je_journal_ec - erase counts for all journal segments | ||
540 | * | ||
541 | * @ec: erase count | ||
542 | * | ||
543 | * Length of the array is given by h_len field in the header. | ||
544 | */ | ||
545 | struct logfs_je_journal_ec { | ||
546 | __be32 ec[0]; | ||
547 | }; | ||
548 | |||
549 | SIZE_CHECK(logfs_je_journal_ec, 0); | ||
550 | |||
551 | /** | ||
552 | * struct logfs_je_free_segments - list of free segmetns with erase count | ||
553 | */ | ||
554 | struct logfs_je_free_segments { | ||
555 | __be32 segno; | ||
556 | __be32 ec; | ||
557 | }; | ||
558 | |||
559 | SIZE_CHECK(logfs_je_free_segments, 8); | ||
560 | |||
561 | /** | ||
562 | * struct logfs_seg_alias - list of segment aliases | ||
563 | */ | ||
564 | struct logfs_seg_alias { | ||
565 | __be32 old_segno; | ||
566 | __be32 new_segno; | ||
567 | }; | ||
568 | |||
569 | SIZE_CHECK(logfs_seg_alias, 8); | ||
570 | |||
571 | /** | ||
572 | * struct logfs_obj_alias - list of object aliases | ||
573 | */ | ||
574 | struct logfs_obj_alias { | ||
575 | __be64 ino; | ||
576 | __be64 bix; | ||
577 | __be64 val; | ||
578 | u8 level; | ||
579 | u8 pad[5]; | ||
580 | __be16 child_no; | ||
581 | }; | ||
582 | |||
583 | SIZE_CHECK(logfs_obj_alias, 32); | ||
584 | |||
585 | /** | ||
586 | * Compression types. | ||
587 | * | ||
588 | * COMPR_NONE - uncompressed | ||
589 | * COMPR_ZLIB - compressed with zlib | ||
590 | */ | ||
591 | enum { | ||
592 | COMPR_NONE = 0, | ||
593 | COMPR_ZLIB = 1, | ||
594 | }; | ||
595 | |||
596 | /* | ||
597 | * Journal entries come in groups of 16. First group contains unique | ||
598 | * entries, next groups contain one entry per level | ||
599 | * | ||
600 | * JE_FIRST - smallest possible journal entry number | ||
601 | * | ||
602 | * JEG_BASE - base group, containing unique entries | ||
603 | * JE_COMMIT - commit entry, validates all previous entries | ||
604 | * JE_DYNSB - dynamic superblock, anything that ought to be in the | ||
605 | * superblock but cannot because it is read-write data | ||
606 | * JE_ANCHOR - anchor aka master inode aka inode file's inode | ||
607 | * JE_ERASECOUNT erasecounts for all journal segments | ||
608 | * JE_SPILLOUT - unused | ||
609 | * JE_SEG_ALIAS - aliases segments | ||
610 | * JE_AREA - area description | ||
611 | * | ||
612 | * JE_LAST - largest possible journal entry number | ||
613 | */ | ||
614 | enum { | ||
615 | JE_FIRST = 0x01, | ||
616 | |||
617 | JEG_BASE = 0x00, | ||
618 | JE_COMMIT = 0x02, | ||
619 | JE_DYNSB = 0x03, | ||
620 | JE_ANCHOR = 0x04, | ||
621 | JE_ERASECOUNT = 0x05, | ||
622 | JE_SPILLOUT = 0x06, | ||
623 | JE_OBJ_ALIAS = 0x0d, | ||
624 | JE_AREA = 0x0e, | ||
625 | |||
626 | JE_LAST = 0x0e, | ||
627 | }; | ||
628 | |||
629 | #endif | ||
diff --git a/fs/logfs/readwrite.c b/fs/logfs/readwrite.c new file mode 100644 index 000000000000..7a23b3e7c0a7 --- /dev/null +++ b/fs/logfs/readwrite.c | |||
@@ -0,0 +1,2246 @@ | |||
1 | /* | ||
2 | * fs/logfs/readwrite.c | ||
3 | * | ||
4 | * As should be obvious for Linux kernel code, license is GPLv2 | ||
5 | * | ||
6 | * Copyright (c) 2005-2008 Joern Engel <joern@logfs.org> | ||
7 | * | ||
8 | * | ||
9 | * Actually contains five sets of very similar functions: | ||
10 | * read read blocks from a file | ||
11 | * seek_hole find next hole | ||
12 | * seek_data find next data block | ||
13 | * valid check whether a block still belongs to a file | ||
14 | * write write blocks to a file | ||
15 | * delete delete a block (for directories and ifile) | ||
16 | * rewrite move existing blocks of a file to a new location (gc helper) | ||
17 | * truncate truncate a file | ||
18 | */ | ||
19 | #include "logfs.h" | ||
20 | #include <linux/sched.h> | ||
21 | |||
22 | static u64 adjust_bix(u64 bix, level_t level) | ||
23 | { | ||
24 | switch (level) { | ||
25 | case 0: | ||
26 | return bix; | ||
27 | case LEVEL(1): | ||
28 | return max_t(u64, bix, I0_BLOCKS); | ||
29 | case LEVEL(2): | ||
30 | return max_t(u64, bix, I1_BLOCKS); | ||
31 | case LEVEL(3): | ||
32 | return max_t(u64, bix, I2_BLOCKS); | ||
33 | case LEVEL(4): | ||
34 | return max_t(u64, bix, I3_BLOCKS); | ||
35 | case LEVEL(5): | ||
36 | return max_t(u64, bix, I4_BLOCKS); | ||
37 | default: | ||
38 | WARN_ON(1); | ||
39 | return bix; | ||
40 | } | ||
41 | } | ||
42 | |||
43 | static inline u64 maxbix(u8 height) | ||
44 | { | ||
45 | return 1ULL << (LOGFS_BLOCK_BITS * height); | ||
46 | } | ||
47 | |||
48 | /** | ||
49 | * The inode address space is cut in two halves. Lower half belongs to data | ||
50 | * pages, upper half to indirect blocks. If the high bit (INDIRECT_BIT) is | ||
51 | * set, the actual block index (bix) and level can be derived from the page | ||
52 | * index. | ||
53 | * | ||
54 | * The lowest three bits of the block index are set to 0 after packing and | ||
55 | * unpacking. Since the lowest n bits (9 for 4KiB blocksize) are ignored | ||
56 | * anyway this is harmless. | ||
57 | */ | ||
58 | #define ARCH_SHIFT (BITS_PER_LONG - 32) | ||
59 | #define INDIRECT_BIT (0x80000000UL << ARCH_SHIFT) | ||
60 | #define LEVEL_SHIFT (28 + ARCH_SHIFT) | ||
61 | static inline pgoff_t first_indirect_block(void) | ||
62 | { | ||
63 | return INDIRECT_BIT | (1ULL << LEVEL_SHIFT); | ||
64 | } | ||
65 | |||
66 | pgoff_t logfs_pack_index(u64 bix, level_t level) | ||
67 | { | ||
68 | pgoff_t index; | ||
69 | |||
70 | BUG_ON(bix >= INDIRECT_BIT); | ||
71 | if (level == 0) | ||
72 | return bix; | ||
73 | |||
74 | index = INDIRECT_BIT; | ||
75 | index |= (__force long)level << LEVEL_SHIFT; | ||
76 | index |= bix >> ((__force u8)level * LOGFS_BLOCK_BITS); | ||
77 | return index; | ||
78 | } | ||
79 | |||
80 | void logfs_unpack_index(pgoff_t index, u64 *bix, level_t *level) | ||
81 | { | ||
82 | u8 __level; | ||
83 | |||
84 | if (!(index & INDIRECT_BIT)) { | ||
85 | *bix = index; | ||
86 | *level = 0; | ||
87 | return; | ||
88 | } | ||
89 | |||
90 | __level = (index & ~INDIRECT_BIT) >> LEVEL_SHIFT; | ||
91 | *level = LEVEL(__level); | ||
92 | *bix = (index << (__level * LOGFS_BLOCK_BITS)) & ~INDIRECT_BIT; | ||
93 | *bix = adjust_bix(*bix, *level); | ||
94 | return; | ||
95 | } | ||
96 | #undef ARCH_SHIFT | ||
97 | #undef INDIRECT_BIT | ||
98 | #undef LEVEL_SHIFT | ||
99 | |||
100 | /* | ||
101 | * Time is stored as nanoseconds since the epoch. | ||
102 | */ | ||
103 | static struct timespec be64_to_timespec(__be64 betime) | ||
104 | { | ||
105 | return ns_to_timespec(be64_to_cpu(betime)); | ||
106 | } | ||
107 | |||
108 | static __be64 timespec_to_be64(struct timespec tsp) | ||
109 | { | ||
110 | return cpu_to_be64((u64)tsp.tv_sec * NSEC_PER_SEC + tsp.tv_nsec); | ||
111 | } | ||
112 | |||
113 | static void logfs_disk_to_inode(struct logfs_disk_inode *di, struct inode*inode) | ||
114 | { | ||
115 | struct logfs_inode *li = logfs_inode(inode); | ||
116 | int i; | ||
117 | |||
118 | inode->i_mode = be16_to_cpu(di->di_mode); | ||
119 | li->li_height = di->di_height; | ||
120 | li->li_flags = be32_to_cpu(di->di_flags); | ||
121 | inode->i_uid = be32_to_cpu(di->di_uid); | ||
122 | inode->i_gid = be32_to_cpu(di->di_gid); | ||
123 | inode->i_size = be64_to_cpu(di->di_size); | ||
124 | logfs_set_blocks(inode, be64_to_cpu(di->di_used_bytes)); | ||
125 | inode->i_atime = be64_to_timespec(di->di_atime); | ||
126 | inode->i_ctime = be64_to_timespec(di->di_ctime); | ||
127 | inode->i_mtime = be64_to_timespec(di->di_mtime); | ||
128 | inode->i_nlink = be32_to_cpu(di->di_refcount); | ||
129 | inode->i_generation = be32_to_cpu(di->di_generation); | ||
130 | |||
131 | switch (inode->i_mode & S_IFMT) { | ||
132 | case S_IFSOCK: /* fall through */ | ||
133 | case S_IFBLK: /* fall through */ | ||
134 | case S_IFCHR: /* fall through */ | ||
135 | case S_IFIFO: | ||
136 | inode->i_rdev = be64_to_cpu(di->di_data[0]); | ||
137 | break; | ||
138 | case S_IFDIR: /* fall through */ | ||
139 | case S_IFREG: /* fall through */ | ||
140 | case S_IFLNK: | ||
141 | for (i = 0; i < LOGFS_EMBEDDED_FIELDS; i++) | ||
142 | li->li_data[i] = be64_to_cpu(di->di_data[i]); | ||
143 | break; | ||
144 | default: | ||
145 | BUG(); | ||
146 | } | ||
147 | } | ||
148 | |||
149 | static void logfs_inode_to_disk(struct inode *inode, struct logfs_disk_inode*di) | ||
150 | { | ||
151 | struct logfs_inode *li = logfs_inode(inode); | ||
152 | int i; | ||
153 | |||
154 | di->di_mode = cpu_to_be16(inode->i_mode); | ||
155 | di->di_height = li->li_height; | ||
156 | di->di_pad = 0; | ||
157 | di->di_flags = cpu_to_be32(li->li_flags); | ||
158 | di->di_uid = cpu_to_be32(inode->i_uid); | ||
159 | di->di_gid = cpu_to_be32(inode->i_gid); | ||
160 | di->di_size = cpu_to_be64(i_size_read(inode)); | ||
161 | di->di_used_bytes = cpu_to_be64(li->li_used_bytes); | ||
162 | di->di_atime = timespec_to_be64(inode->i_atime); | ||
163 | di->di_ctime = timespec_to_be64(inode->i_ctime); | ||
164 | di->di_mtime = timespec_to_be64(inode->i_mtime); | ||
165 | di->di_refcount = cpu_to_be32(inode->i_nlink); | ||
166 | di->di_generation = cpu_to_be32(inode->i_generation); | ||
167 | |||
168 | switch (inode->i_mode & S_IFMT) { | ||
169 | case S_IFSOCK: /* fall through */ | ||
170 | case S_IFBLK: /* fall through */ | ||
171 | case S_IFCHR: /* fall through */ | ||
172 | case S_IFIFO: | ||
173 | di->di_data[0] = cpu_to_be64(inode->i_rdev); | ||
174 | break; | ||
175 | case S_IFDIR: /* fall through */ | ||
176 | case S_IFREG: /* fall through */ | ||
177 | case S_IFLNK: | ||
178 | for (i = 0; i < LOGFS_EMBEDDED_FIELDS; i++) | ||
179 | di->di_data[i] = cpu_to_be64(li->li_data[i]); | ||
180 | break; | ||
181 | default: | ||
182 | BUG(); | ||
183 | } | ||
184 | } | ||
185 | |||
186 | static void __logfs_set_blocks(struct inode *inode) | ||
187 | { | ||
188 | struct super_block *sb = inode->i_sb; | ||
189 | struct logfs_inode *li = logfs_inode(inode); | ||
190 | |||
191 | inode->i_blocks = ULONG_MAX; | ||
192 | if (li->li_used_bytes >> sb->s_blocksize_bits < ULONG_MAX) | ||
193 | inode->i_blocks = ALIGN(li->li_used_bytes, 512) >> 9; | ||
194 | } | ||
195 | |||
196 | void logfs_set_blocks(struct inode *inode, u64 bytes) | ||
197 | { | ||
198 | struct logfs_inode *li = logfs_inode(inode); | ||
199 | |||
200 | li->li_used_bytes = bytes; | ||
201 | __logfs_set_blocks(inode); | ||
202 | } | ||
203 | |||
204 | static void prelock_page(struct super_block *sb, struct page *page, int lock) | ||
205 | { | ||
206 | struct logfs_super *super = logfs_super(sb); | ||
207 | |||
208 | BUG_ON(!PageLocked(page)); | ||
209 | if (lock) { | ||
210 | BUG_ON(PagePreLocked(page)); | ||
211 | SetPagePreLocked(page); | ||
212 | } else { | ||
213 | /* We are in GC path. */ | ||
214 | if (PagePreLocked(page)) | ||
215 | super->s_lock_count++; | ||
216 | else | ||
217 | SetPagePreLocked(page); | ||
218 | } | ||
219 | } | ||
220 | |||
221 | static void preunlock_page(struct super_block *sb, struct page *page, int lock) | ||
222 | { | ||
223 | struct logfs_super *super = logfs_super(sb); | ||
224 | |||
225 | BUG_ON(!PageLocked(page)); | ||
226 | if (lock) | ||
227 | ClearPagePreLocked(page); | ||
228 | else { | ||
229 | /* We are in GC path. */ | ||
230 | BUG_ON(!PagePreLocked(page)); | ||
231 | if (super->s_lock_count) | ||
232 | super->s_lock_count--; | ||
233 | else | ||
234 | ClearPagePreLocked(page); | ||
235 | } | ||
236 | } | ||
237 | |||
238 | /* | ||
239 | * Logfs is prone to an AB-BA deadlock where one task tries to acquire | ||
240 | * s_write_mutex with a locked page and GC tries to get that page while holding | ||
241 | * s_write_mutex. | ||
242 | * To solve this issue logfs will ignore the page lock iff the page in question | ||
243 | * is waiting for s_write_mutex. We annotate this fact by setting PG_pre_locked | ||
244 | * in addition to PG_locked. | ||
245 | */ | ||
246 | static void logfs_get_wblocks(struct super_block *sb, struct page *page, | ||
247 | int lock) | ||
248 | { | ||
249 | struct logfs_super *super = logfs_super(sb); | ||
250 | |||
251 | if (page) | ||
252 | prelock_page(sb, page, lock); | ||
253 | |||
254 | if (lock) { | ||
255 | mutex_lock(&super->s_write_mutex); | ||
256 | logfs_gc_pass(sb); | ||
257 | /* FIXME: We also have to check for shadowed space | ||
258 | * and mempool fill grade */ | ||
259 | } | ||
260 | } | ||
261 | |||
262 | static void logfs_put_wblocks(struct super_block *sb, struct page *page, | ||
263 | int lock) | ||
264 | { | ||
265 | struct logfs_super *super = logfs_super(sb); | ||
266 | |||
267 | if (page) | ||
268 | preunlock_page(sb, page, lock); | ||
269 | /* Order matters - we must clear PG_pre_locked before releasing | ||
270 | * s_write_mutex or we could race against another task. */ | ||
271 | if (lock) | ||
272 | mutex_unlock(&super->s_write_mutex); | ||
273 | } | ||
274 | |||
275 | static struct page *logfs_get_read_page(struct inode *inode, u64 bix, | ||
276 | level_t level) | ||
277 | { | ||
278 | return find_or_create_page(inode->i_mapping, | ||
279 | logfs_pack_index(bix, level), GFP_NOFS); | ||
280 | } | ||
281 | |||
282 | static void logfs_put_read_page(struct page *page) | ||
283 | { | ||
284 | unlock_page(page); | ||
285 | page_cache_release(page); | ||
286 | } | ||
287 | |||
288 | static void logfs_lock_write_page(struct page *page) | ||
289 | { | ||
290 | int loop = 0; | ||
291 | |||
292 | while (unlikely(!trylock_page(page))) { | ||
293 | if (loop++ > 0x1000) { | ||
294 | /* Has been observed once so far... */ | ||
295 | printk(KERN_ERR "stack at %p\n", &loop); | ||
296 | BUG(); | ||
297 | } | ||
298 | if (PagePreLocked(page)) { | ||
299 | /* Holder of page lock is waiting for us, it | ||
300 | * is safe to use this page. */ | ||
301 | break; | ||
302 | } | ||
303 | /* Some other process has this page locked and has | ||
304 | * nothing to do with us. Wait for it to finish. | ||
305 | */ | ||
306 | schedule(); | ||
307 | } | ||
308 | BUG_ON(!PageLocked(page)); | ||
309 | } | ||
310 | |||
311 | static struct page *logfs_get_write_page(struct inode *inode, u64 bix, | ||
312 | level_t level) | ||
313 | { | ||
314 | struct address_space *mapping = inode->i_mapping; | ||
315 | pgoff_t index = logfs_pack_index(bix, level); | ||
316 | struct page *page; | ||
317 | int err; | ||
318 | |||
319 | repeat: | ||
320 | page = find_get_page(mapping, index); | ||
321 | if (!page) { | ||
322 | page = __page_cache_alloc(GFP_NOFS); | ||
323 | if (!page) | ||
324 | return NULL; | ||
325 | err = add_to_page_cache_lru(page, mapping, index, GFP_NOFS); | ||
326 | if (unlikely(err)) { | ||
327 | page_cache_release(page); | ||
328 | if (err == -EEXIST) | ||
329 | goto repeat; | ||
330 | return NULL; | ||
331 | } | ||
332 | } else logfs_lock_write_page(page); | ||
333 | BUG_ON(!PageLocked(page)); | ||
334 | return page; | ||
335 | } | ||
336 | |||
337 | static void logfs_unlock_write_page(struct page *page) | ||
338 | { | ||
339 | if (!PagePreLocked(page)) | ||
340 | unlock_page(page); | ||
341 | } | ||
342 | |||
343 | static void logfs_put_write_page(struct page *page) | ||
344 | { | ||
345 | logfs_unlock_write_page(page); | ||
346 | page_cache_release(page); | ||
347 | } | ||
348 | |||
349 | static struct page *logfs_get_page(struct inode *inode, u64 bix, level_t level, | ||
350 | int rw) | ||
351 | { | ||
352 | if (rw == READ) | ||
353 | return logfs_get_read_page(inode, bix, level); | ||
354 | else | ||
355 | return logfs_get_write_page(inode, bix, level); | ||
356 | } | ||
357 | |||
358 | static void logfs_put_page(struct page *page, int rw) | ||
359 | { | ||
360 | if (rw == READ) | ||
361 | logfs_put_read_page(page); | ||
362 | else | ||
363 | logfs_put_write_page(page); | ||
364 | } | ||
365 | |||
366 | static unsigned long __get_bits(u64 val, int skip, int no) | ||
367 | { | ||
368 | u64 ret = val; | ||
369 | |||
370 | ret >>= skip * no; | ||
371 | ret <<= 64 - no; | ||
372 | ret >>= 64 - no; | ||
373 | return ret; | ||
374 | } | ||
375 | |||
376 | static unsigned long get_bits(u64 val, level_t skip) | ||
377 | { | ||
378 | return __get_bits(val, (__force int)skip, LOGFS_BLOCK_BITS); | ||
379 | } | ||
380 | |||
381 | static inline void init_shadow_tree(struct super_block *sb, | ||
382 | struct shadow_tree *tree) | ||
383 | { | ||
384 | struct logfs_super *super = logfs_super(sb); | ||
385 | |||
386 | btree_init_mempool64(&tree->new, super->s_btree_pool); | ||
387 | btree_init_mempool64(&tree->old, super->s_btree_pool); | ||
388 | } | ||
389 | |||
390 | static void indirect_write_block(struct logfs_block *block) | ||
391 | { | ||
392 | struct page *page; | ||
393 | struct inode *inode; | ||
394 | int ret; | ||
395 | |||
396 | page = block->page; | ||
397 | inode = page->mapping->host; | ||
398 | logfs_lock_write_page(page); | ||
399 | ret = logfs_write_buf(inode, page, 0); | ||
400 | logfs_unlock_write_page(page); | ||
401 | /* | ||
402 | * This needs some rework. Unless you want your filesystem to run | ||
403 | * completely synchronously (you don't), the filesystem will always | ||
404 | * report writes as 'successful' before the actual work has been | ||
405 | * done. The actual work gets done here and this is where any errors | ||
406 | * will show up. And there isn't much we can do about it, really. | ||
407 | * | ||
408 | * Some attempts to fix the errors (move from bad blocks, retry io,...) | ||
409 | * have already been done, so anything left should be either a broken | ||
410 | * device or a bug somewhere in logfs itself. Being relatively new, | ||
411 | * the odds currently favor a bug, so for now the line below isn't | ||
412 | * entirely tasteles. | ||
413 | */ | ||
414 | BUG_ON(ret); | ||
415 | } | ||
416 | |||
417 | static void inode_write_block(struct logfs_block *block) | ||
418 | { | ||
419 | struct inode *inode; | ||
420 | int ret; | ||
421 | |||
422 | inode = block->inode; | ||
423 | if (inode->i_ino == LOGFS_INO_MASTER) | ||
424 | logfs_write_anchor(inode->i_sb); | ||
425 | else { | ||
426 | ret = __logfs_write_inode(inode, 0); | ||
427 | /* see indirect_write_block comment */ | ||
428 | BUG_ON(ret); | ||
429 | } | ||
430 | } | ||
431 | |||
432 | static gc_level_t inode_block_level(struct logfs_block *block) | ||
433 | { | ||
434 | BUG_ON(block->inode->i_ino == LOGFS_INO_MASTER); | ||
435 | return GC_LEVEL(LOGFS_MAX_LEVELS); | ||
436 | } | ||
437 | |||
438 | static gc_level_t indirect_block_level(struct logfs_block *block) | ||
439 | { | ||
440 | struct page *page; | ||
441 | struct inode *inode; | ||
442 | u64 bix; | ||
443 | level_t level; | ||
444 | |||
445 | page = block->page; | ||
446 | inode = page->mapping->host; | ||
447 | logfs_unpack_index(page->index, &bix, &level); | ||
448 | return expand_level(inode->i_ino, level); | ||
449 | } | ||
450 | |||
451 | /* | ||
452 | * This silences a false, yet annoying gcc warning. I hate it when my editor | ||
453 | * jumps into bitops.h each time I recompile this file. | ||
454 | * TODO: Complain to gcc folks about this and upgrade compiler. | ||
455 | */ | ||
456 | static unsigned long fnb(const unsigned long *addr, | ||
457 | unsigned long size, unsigned long offset) | ||
458 | { | ||
459 | return find_next_bit(addr, size, offset); | ||
460 | } | ||
461 | |||
462 | static __be64 inode_val0(struct inode *inode) | ||
463 | { | ||
464 | struct logfs_inode *li = logfs_inode(inode); | ||
465 | u64 val; | ||
466 | |||
467 | /* | ||
468 | * Explicit shifting generates good code, but must match the format | ||
469 | * of the structure. Add some paranoia just in case. | ||
470 | */ | ||
471 | BUILD_BUG_ON(offsetof(struct logfs_disk_inode, di_mode) != 0); | ||
472 | BUILD_BUG_ON(offsetof(struct logfs_disk_inode, di_height) != 2); | ||
473 | BUILD_BUG_ON(offsetof(struct logfs_disk_inode, di_flags) != 4); | ||
474 | |||
475 | val = (u64)inode->i_mode << 48 | | ||
476 | (u64)li->li_height << 40 | | ||
477 | (u64)li->li_flags; | ||
478 | return cpu_to_be64(val); | ||
479 | } | ||
480 | |||
481 | static int inode_write_alias(struct super_block *sb, | ||
482 | struct logfs_block *block, write_alias_t *write_one_alias) | ||
483 | { | ||
484 | struct inode *inode = block->inode; | ||
485 | struct logfs_inode *li = logfs_inode(inode); | ||
486 | unsigned long pos; | ||
487 | u64 ino , bix; | ||
488 | __be64 val; | ||
489 | level_t level; | ||
490 | int err; | ||
491 | |||
492 | for (pos = 0; ; pos++) { | ||
493 | pos = fnb(block->alias_map, LOGFS_BLOCK_FACTOR, pos); | ||
494 | if (pos >= LOGFS_EMBEDDED_FIELDS + INODE_POINTER_OFS) | ||
495 | return 0; | ||
496 | |||
497 | switch (pos) { | ||
498 | case INODE_HEIGHT_OFS: | ||
499 | val = inode_val0(inode); | ||
500 | break; | ||
501 | case INODE_USED_OFS: | ||
502 | val = cpu_to_be64(li->li_used_bytes);; | ||
503 | break; | ||
504 | case INODE_SIZE_OFS: | ||
505 | val = cpu_to_be64(i_size_read(inode)); | ||
506 | break; | ||
507 | case INODE_POINTER_OFS ... INODE_POINTER_OFS + LOGFS_EMBEDDED_FIELDS - 1: | ||
508 | val = cpu_to_be64(li->li_data[pos - INODE_POINTER_OFS]); | ||
509 | break; | ||
510 | default: | ||
511 | BUG(); | ||
512 | } | ||
513 | |||
514 | ino = LOGFS_INO_MASTER; | ||
515 | bix = inode->i_ino; | ||
516 | level = LEVEL(0); | ||
517 | err = write_one_alias(sb, ino, bix, level, pos, val); | ||
518 | if (err) | ||
519 | return err; | ||
520 | } | ||
521 | } | ||
522 | |||
523 | static int indirect_write_alias(struct super_block *sb, | ||
524 | struct logfs_block *block, write_alias_t *write_one_alias) | ||
525 | { | ||
526 | unsigned long pos; | ||
527 | struct page *page = block->page; | ||
528 | u64 ino , bix; | ||
529 | __be64 *child, val; | ||
530 | level_t level; | ||
531 | int err; | ||
532 | |||
533 | for (pos = 0; ; pos++) { | ||
534 | pos = fnb(block->alias_map, LOGFS_BLOCK_FACTOR, pos); | ||
535 | if (pos >= LOGFS_BLOCK_FACTOR) | ||
536 | return 0; | ||
537 | |||
538 | ino = page->mapping->host->i_ino; | ||
539 | logfs_unpack_index(page->index, &bix, &level); | ||
540 | child = kmap_atomic(page, KM_USER0); | ||
541 | val = child[pos]; | ||
542 | kunmap_atomic(child, KM_USER0); | ||
543 | err = write_one_alias(sb, ino, bix, level, pos, val); | ||
544 | if (err) | ||
545 | return err; | ||
546 | } | ||
547 | } | ||
548 | |||
549 | int logfs_write_obj_aliases_pagecache(struct super_block *sb) | ||
550 | { | ||
551 | struct logfs_super *super = logfs_super(sb); | ||
552 | struct logfs_block *block; | ||
553 | int err; | ||
554 | |||
555 | list_for_each_entry(block, &super->s_object_alias, alias_list) { | ||
556 | err = block->ops->write_alias(sb, block, write_alias_journal); | ||
557 | if (err) | ||
558 | return err; | ||
559 | } | ||
560 | return 0; | ||
561 | } | ||
562 | |||
563 | void __free_block(struct super_block *sb, struct logfs_block *block) | ||
564 | { | ||
565 | BUG_ON(!list_empty(&block->item_list)); | ||
566 | list_del(&block->alias_list); | ||
567 | mempool_free(block, logfs_super(sb)->s_block_pool); | ||
568 | } | ||
569 | |||
570 | static void inode_free_block(struct super_block *sb, struct logfs_block *block) | ||
571 | { | ||
572 | struct inode *inode = block->inode; | ||
573 | |||
574 | logfs_inode(inode)->li_block = NULL; | ||
575 | __free_block(sb, block); | ||
576 | } | ||
577 | |||
578 | static void indirect_free_block(struct super_block *sb, | ||
579 | struct logfs_block *block) | ||
580 | { | ||
581 | ClearPagePrivate(block->page); | ||
582 | block->page->private = 0; | ||
583 | __free_block(sb, block); | ||
584 | } | ||
585 | |||
586 | |||
587 | static struct logfs_block_ops inode_block_ops = { | ||
588 | .write_block = inode_write_block, | ||
589 | .block_level = inode_block_level, | ||
590 | .free_block = inode_free_block, | ||
591 | .write_alias = inode_write_alias, | ||
592 | }; | ||
593 | |||
594 | struct logfs_block_ops indirect_block_ops = { | ||
595 | .write_block = indirect_write_block, | ||
596 | .block_level = indirect_block_level, | ||
597 | .free_block = indirect_free_block, | ||
598 | .write_alias = indirect_write_alias, | ||
599 | }; | ||
600 | |||
601 | struct logfs_block *__alloc_block(struct super_block *sb, | ||
602 | u64 ino, u64 bix, level_t level) | ||
603 | { | ||
604 | struct logfs_super *super = logfs_super(sb); | ||
605 | struct logfs_block *block; | ||
606 | |||
607 | block = mempool_alloc(super->s_block_pool, GFP_NOFS); | ||
608 | memset(block, 0, sizeof(*block)); | ||
609 | INIT_LIST_HEAD(&block->alias_list); | ||
610 | INIT_LIST_HEAD(&block->item_list); | ||
611 | block->sb = sb; | ||
612 | block->ino = ino; | ||
613 | block->bix = bix; | ||
614 | block->level = level; | ||
615 | return block; | ||
616 | } | ||
617 | |||
618 | static void alloc_inode_block(struct inode *inode) | ||
619 | { | ||
620 | struct logfs_inode *li = logfs_inode(inode); | ||
621 | struct logfs_block *block; | ||
622 | |||
623 | if (li->li_block) | ||
624 | return; | ||
625 | |||
626 | block = __alloc_block(inode->i_sb, LOGFS_INO_MASTER, inode->i_ino, 0); | ||
627 | block->inode = inode; | ||
628 | li->li_block = block; | ||
629 | block->ops = &inode_block_ops; | ||
630 | } | ||
631 | |||
632 | void initialize_block_counters(struct page *page, struct logfs_block *block, | ||
633 | __be64 *array, int page_is_empty) | ||
634 | { | ||
635 | u64 ptr; | ||
636 | int i, start; | ||
637 | |||
638 | block->partial = 0; | ||
639 | block->full = 0; | ||
640 | start = 0; | ||
641 | if (page->index < first_indirect_block()) { | ||
642 | /* Counters are pointless on level 0 */ | ||
643 | return; | ||
644 | } | ||
645 | if (page->index == first_indirect_block()) { | ||
646 | /* Skip unused pointers */ | ||
647 | start = I0_BLOCKS; | ||
648 | block->full = I0_BLOCKS; | ||
649 | } | ||
650 | if (!page_is_empty) { | ||
651 | for (i = start; i < LOGFS_BLOCK_FACTOR; i++) { | ||
652 | ptr = be64_to_cpu(array[i]); | ||
653 | if (ptr) | ||
654 | block->partial++; | ||
655 | if (ptr & LOGFS_FULLY_POPULATED) | ||
656 | block->full++; | ||
657 | } | ||
658 | } | ||
659 | } | ||
660 | |||
661 | static void alloc_data_block(struct inode *inode, struct page *page) | ||
662 | { | ||
663 | struct logfs_block *block; | ||
664 | u64 bix; | ||
665 | level_t level; | ||
666 | |||
667 | if (PagePrivate(page)) | ||
668 | return; | ||
669 | |||
670 | logfs_unpack_index(page->index, &bix, &level); | ||
671 | block = __alloc_block(inode->i_sb, inode->i_ino, bix, level); | ||
672 | block->page = page; | ||
673 | SetPagePrivate(page); | ||
674 | page->private = (unsigned long)block; | ||
675 | block->ops = &indirect_block_ops; | ||
676 | } | ||
677 | |||
678 | static void alloc_indirect_block(struct inode *inode, struct page *page, | ||
679 | int page_is_empty) | ||
680 | { | ||
681 | struct logfs_block *block; | ||
682 | __be64 *array; | ||
683 | |||
684 | if (PagePrivate(page)) | ||
685 | return; | ||
686 | |||
687 | alloc_data_block(inode, page); | ||
688 | |||
689 | block = logfs_block(page); | ||
690 | array = kmap_atomic(page, KM_USER0); | ||
691 | initialize_block_counters(page, block, array, page_is_empty); | ||
692 | kunmap_atomic(array, KM_USER0); | ||
693 | } | ||
694 | |||
695 | static void block_set_pointer(struct page *page, int index, u64 ptr) | ||
696 | { | ||
697 | struct logfs_block *block = logfs_block(page); | ||
698 | __be64 *array; | ||
699 | u64 oldptr; | ||
700 | |||
701 | BUG_ON(!block); | ||
702 | array = kmap_atomic(page, KM_USER0); | ||
703 | oldptr = be64_to_cpu(array[index]); | ||
704 | array[index] = cpu_to_be64(ptr); | ||
705 | kunmap_atomic(array, KM_USER0); | ||
706 | SetPageUptodate(page); | ||
707 | |||
708 | block->full += !!(ptr & LOGFS_FULLY_POPULATED) | ||
709 | - !!(oldptr & LOGFS_FULLY_POPULATED); | ||
710 | block->partial += !!ptr - !!oldptr; | ||
711 | } | ||
712 | |||
713 | static u64 block_get_pointer(struct page *page, int index) | ||
714 | { | ||
715 | __be64 *block; | ||
716 | u64 ptr; | ||
717 | |||
718 | block = kmap_atomic(page, KM_USER0); | ||
719 | ptr = be64_to_cpu(block[index]); | ||
720 | kunmap_atomic(block, KM_USER0); | ||
721 | return ptr; | ||
722 | } | ||
723 | |||
724 | static int logfs_read_empty(struct page *page) | ||
725 | { | ||
726 | zero_user_segment(page, 0, PAGE_CACHE_SIZE); | ||
727 | return 0; | ||
728 | } | ||
729 | |||
730 | static int logfs_read_direct(struct inode *inode, struct page *page) | ||
731 | { | ||
732 | struct logfs_inode *li = logfs_inode(inode); | ||
733 | pgoff_t index = page->index; | ||
734 | u64 block; | ||
735 | |||
736 | block = li->li_data[index]; | ||
737 | if (!block) | ||
738 | return logfs_read_empty(page); | ||
739 | |||
740 | return logfs_segment_read(inode, page, block, index, 0); | ||
741 | } | ||
742 | |||
743 | static int logfs_read_loop(struct inode *inode, struct page *page, | ||
744 | int rw_context) | ||
745 | { | ||
746 | struct logfs_inode *li = logfs_inode(inode); | ||
747 | u64 bix, bofs = li->li_data[INDIRECT_INDEX]; | ||
748 | level_t level, target_level; | ||
749 | int ret; | ||
750 | struct page *ipage; | ||
751 | |||
752 | logfs_unpack_index(page->index, &bix, &target_level); | ||
753 | if (!bofs) | ||
754 | return logfs_read_empty(page); | ||
755 | |||
756 | if (bix >= maxbix(li->li_height)) | ||
757 | return logfs_read_empty(page); | ||
758 | |||
759 | for (level = LEVEL(li->li_height); | ||
760 | (__force u8)level > (__force u8)target_level; | ||
761 | level = SUBLEVEL(level)){ | ||
762 | ipage = logfs_get_page(inode, bix, level, rw_context); | ||
763 | if (!ipage) | ||
764 | return -ENOMEM; | ||
765 | |||
766 | ret = logfs_segment_read(inode, ipage, bofs, bix, level); | ||
767 | if (ret) { | ||
768 | logfs_put_read_page(ipage); | ||
769 | return ret; | ||
770 | } | ||
771 | |||
772 | bofs = block_get_pointer(ipage, get_bits(bix, SUBLEVEL(level))); | ||
773 | logfs_put_page(ipage, rw_context); | ||
774 | if (!bofs) | ||
775 | return logfs_read_empty(page); | ||
776 | } | ||
777 | |||
778 | return logfs_segment_read(inode, page, bofs, bix, 0); | ||
779 | } | ||
780 | |||
781 | static int logfs_read_block(struct inode *inode, struct page *page, | ||
782 | int rw_context) | ||
783 | { | ||
784 | pgoff_t index = page->index; | ||
785 | |||
786 | if (index < I0_BLOCKS) | ||
787 | return logfs_read_direct(inode, page); | ||
788 | return logfs_read_loop(inode, page, rw_context); | ||
789 | } | ||
790 | |||
791 | static int logfs_exist_loop(struct inode *inode, u64 bix) | ||
792 | { | ||
793 | struct logfs_inode *li = logfs_inode(inode); | ||
794 | u64 bofs = li->li_data[INDIRECT_INDEX]; | ||
795 | level_t level; | ||
796 | int ret; | ||
797 | struct page *ipage; | ||
798 | |||
799 | if (!bofs) | ||
800 | return 0; | ||
801 | if (bix >= maxbix(li->li_height)) | ||
802 | return 0; | ||
803 | |||
804 | for (level = LEVEL(li->li_height); level != 0; level = SUBLEVEL(level)) { | ||
805 | ipage = logfs_get_read_page(inode, bix, level); | ||
806 | if (!ipage) | ||
807 | return -ENOMEM; | ||
808 | |||
809 | ret = logfs_segment_read(inode, ipage, bofs, bix, level); | ||
810 | if (ret) { | ||
811 | logfs_put_read_page(ipage); | ||
812 | return ret; | ||
813 | } | ||
814 | |||
815 | bofs = block_get_pointer(ipage, get_bits(bix, SUBLEVEL(level))); | ||
816 | logfs_put_read_page(ipage); | ||
817 | if (!bofs) | ||
818 | return 0; | ||
819 | } | ||
820 | |||
821 | return 1; | ||
822 | } | ||
823 | |||
824 | int logfs_exist_block(struct inode *inode, u64 bix) | ||
825 | { | ||
826 | struct logfs_inode *li = logfs_inode(inode); | ||
827 | |||
828 | if (bix < I0_BLOCKS) | ||
829 | return !!li->li_data[bix]; | ||
830 | return logfs_exist_loop(inode, bix); | ||
831 | } | ||
832 | |||
833 | static u64 seek_holedata_direct(struct inode *inode, u64 bix, int data) | ||
834 | { | ||
835 | struct logfs_inode *li = logfs_inode(inode); | ||
836 | |||
837 | for (; bix < I0_BLOCKS; bix++) | ||
838 | if (data ^ (li->li_data[bix] == 0)) | ||
839 | return bix; | ||
840 | return I0_BLOCKS; | ||
841 | } | ||
842 | |||
843 | static u64 seek_holedata_loop(struct inode *inode, u64 bix, int data) | ||
844 | { | ||
845 | struct logfs_inode *li = logfs_inode(inode); | ||
846 | __be64 *rblock; | ||
847 | u64 increment, bofs = li->li_data[INDIRECT_INDEX]; | ||
848 | level_t level; | ||
849 | int ret, slot; | ||
850 | struct page *page; | ||
851 | |||
852 | BUG_ON(!bofs); | ||
853 | |||
854 | for (level = LEVEL(li->li_height); level != 0; level = SUBLEVEL(level)) { | ||
855 | increment = 1 << (LOGFS_BLOCK_BITS * ((__force u8)level-1)); | ||
856 | page = logfs_get_read_page(inode, bix, level); | ||
857 | if (!page) | ||
858 | return bix; | ||
859 | |||
860 | ret = logfs_segment_read(inode, page, bofs, bix, level); | ||
861 | if (ret) { | ||
862 | logfs_put_read_page(page); | ||
863 | return bix; | ||
864 | } | ||
865 | |||
866 | slot = get_bits(bix, SUBLEVEL(level)); | ||
867 | rblock = kmap_atomic(page, KM_USER0); | ||
868 | while (slot < LOGFS_BLOCK_FACTOR) { | ||
869 | if (data && (rblock[slot] != 0)) | ||
870 | break; | ||
871 | if (!data && !(be64_to_cpu(rblock[slot]) & LOGFS_FULLY_POPULATED)) | ||
872 | break; | ||
873 | slot++; | ||
874 | bix += increment; | ||
875 | bix &= ~(increment - 1); | ||
876 | } | ||
877 | if (slot >= LOGFS_BLOCK_FACTOR) { | ||
878 | kunmap_atomic(rblock, KM_USER0); | ||
879 | logfs_put_read_page(page); | ||
880 | return bix; | ||
881 | } | ||
882 | bofs = be64_to_cpu(rblock[slot]); | ||
883 | kunmap_atomic(rblock, KM_USER0); | ||
884 | logfs_put_read_page(page); | ||
885 | if (!bofs) { | ||
886 | BUG_ON(data); | ||
887 | return bix; | ||
888 | } | ||
889 | } | ||
890 | return bix; | ||
891 | } | ||
892 | |||
893 | /** | ||
894 | * logfs_seek_hole - find next hole starting at a given block index | ||
895 | * @inode: inode to search in | ||
896 | * @bix: block index to start searching | ||
897 | * | ||
898 | * Returns next hole. If the file doesn't contain any further holes, the | ||
899 | * block address next to eof is returned instead. | ||
900 | */ | ||
901 | u64 logfs_seek_hole(struct inode *inode, u64 bix) | ||
902 | { | ||
903 | struct logfs_inode *li = logfs_inode(inode); | ||
904 | |||
905 | if (bix < I0_BLOCKS) { | ||
906 | bix = seek_holedata_direct(inode, bix, 0); | ||
907 | if (bix < I0_BLOCKS) | ||
908 | return bix; | ||
909 | } | ||
910 | |||
911 | if (!li->li_data[INDIRECT_INDEX]) | ||
912 | return bix; | ||
913 | else if (li->li_data[INDIRECT_INDEX] & LOGFS_FULLY_POPULATED) | ||
914 | bix = maxbix(li->li_height); | ||
915 | else { | ||
916 | bix = seek_holedata_loop(inode, bix, 0); | ||
917 | if (bix < maxbix(li->li_height)) | ||
918 | return bix; | ||
919 | /* Should not happen anymore. But if some port writes semi- | ||
920 | * corrupt images (as this one used to) we might run into it. | ||
921 | */ | ||
922 | WARN_ON_ONCE(bix == maxbix(li->li_height)); | ||
923 | } | ||
924 | |||
925 | return bix; | ||
926 | } | ||
927 | |||
928 | static u64 __logfs_seek_data(struct inode *inode, u64 bix) | ||
929 | { | ||
930 | struct logfs_inode *li = logfs_inode(inode); | ||
931 | |||
932 | if (bix < I0_BLOCKS) { | ||
933 | bix = seek_holedata_direct(inode, bix, 1); | ||
934 | if (bix < I0_BLOCKS) | ||
935 | return bix; | ||
936 | } | ||
937 | |||
938 | if (bix < maxbix(li->li_height)) { | ||
939 | if (!li->li_data[INDIRECT_INDEX]) | ||
940 | bix = maxbix(li->li_height); | ||
941 | else | ||
942 | return seek_holedata_loop(inode, bix, 1); | ||
943 | } | ||
944 | |||
945 | return bix; | ||
946 | } | ||
947 | |||
948 | /** | ||
949 | * logfs_seek_data - find next data block after a given block index | ||
950 | * @inode: inode to search in | ||
951 | * @bix: block index to start searching | ||
952 | * | ||
953 | * Returns next data block. If the file doesn't contain any further data | ||
954 | * blocks, the last block in the file is returned instead. | ||
955 | */ | ||
956 | u64 logfs_seek_data(struct inode *inode, u64 bix) | ||
957 | { | ||
958 | struct super_block *sb = inode->i_sb; | ||
959 | u64 ret, end; | ||
960 | |||
961 | ret = __logfs_seek_data(inode, bix); | ||
962 | end = i_size_read(inode) >> sb->s_blocksize_bits; | ||
963 | if (ret >= end) | ||
964 | ret = max(bix, end); | ||
965 | return ret; | ||
966 | } | ||
967 | |||
968 | static int logfs_is_valid_direct(struct logfs_inode *li, u64 bix, u64 ofs) | ||
969 | { | ||
970 | return pure_ofs(li->li_data[bix]) == ofs; | ||
971 | } | ||
972 | |||
973 | static int __logfs_is_valid_loop(struct inode *inode, u64 bix, | ||
974 | u64 ofs, u64 bofs) | ||
975 | { | ||
976 | struct logfs_inode *li = logfs_inode(inode); | ||
977 | level_t level; | ||
978 | int ret; | ||
979 | struct page *page; | ||
980 | |||
981 | for (level = LEVEL(li->li_height); level != 0; level = SUBLEVEL(level)){ | ||
982 | page = logfs_get_write_page(inode, bix, level); | ||
983 | BUG_ON(!page); | ||
984 | |||
985 | ret = logfs_segment_read(inode, page, bofs, bix, level); | ||
986 | if (ret) { | ||
987 | logfs_put_write_page(page); | ||
988 | return 0; | ||
989 | } | ||
990 | |||
991 | bofs = block_get_pointer(page, get_bits(bix, SUBLEVEL(level))); | ||
992 | logfs_put_write_page(page); | ||
993 | if (!bofs) | ||
994 | return 0; | ||
995 | |||
996 | if (pure_ofs(bofs) == ofs) | ||
997 | return 1; | ||
998 | } | ||
999 | return 0; | ||
1000 | } | ||
1001 | |||
1002 | static int logfs_is_valid_loop(struct inode *inode, u64 bix, u64 ofs) | ||
1003 | { | ||
1004 | struct logfs_inode *li = logfs_inode(inode); | ||
1005 | u64 bofs = li->li_data[INDIRECT_INDEX]; | ||
1006 | |||
1007 | if (!bofs) | ||
1008 | return 0; | ||
1009 | |||
1010 | if (bix >= maxbix(li->li_height)) | ||
1011 | return 0; | ||
1012 | |||
1013 | if (pure_ofs(bofs) == ofs) | ||
1014 | return 1; | ||
1015 | |||
1016 | return __logfs_is_valid_loop(inode, bix, ofs, bofs); | ||
1017 | } | ||
1018 | |||
1019 | static int __logfs_is_valid_block(struct inode *inode, u64 bix, u64 ofs) | ||
1020 | { | ||
1021 | struct logfs_inode *li = logfs_inode(inode); | ||
1022 | |||
1023 | if ((inode->i_nlink == 0) && atomic_read(&inode->i_count) == 1) | ||
1024 | return 0; | ||
1025 | |||
1026 | if (bix < I0_BLOCKS) | ||
1027 | return logfs_is_valid_direct(li, bix, ofs); | ||
1028 | return logfs_is_valid_loop(inode, bix, ofs); | ||
1029 | } | ||
1030 | |||
1031 | /** | ||
1032 | * logfs_is_valid_block - check whether this block is still valid | ||
1033 | * | ||
1034 | * @sb - superblock | ||
1035 | * @ofs - block physical offset | ||
1036 | * @ino - block inode number | ||
1037 | * @bix - block index | ||
1038 | * @level - block level | ||
1039 | * | ||
1040 | * Returns 0 if the block is invalid, 1 if it is valid and 2 if it will | ||
1041 | * become invalid once the journal is written. | ||
1042 | */ | ||
1043 | int logfs_is_valid_block(struct super_block *sb, u64 ofs, u64 ino, u64 bix, | ||
1044 | gc_level_t gc_level) | ||
1045 | { | ||
1046 | struct logfs_super *super = logfs_super(sb); | ||
1047 | struct inode *inode; | ||
1048 | int ret, cookie; | ||
1049 | |||
1050 | /* Umount closes a segment with free blocks remaining. Those | ||
1051 | * blocks are by definition invalid. */ | ||
1052 | if (ino == -1) | ||
1053 | return 0; | ||
1054 | |||
1055 | LOGFS_BUG_ON((u64)(u_long)ino != ino, sb); | ||
1056 | |||
1057 | inode = logfs_safe_iget(sb, ino, &cookie); | ||
1058 | if (IS_ERR(inode)) | ||
1059 | goto invalid; | ||
1060 | |||
1061 | ret = __logfs_is_valid_block(inode, bix, ofs); | ||
1062 | logfs_safe_iput(inode, cookie); | ||
1063 | if (ret) | ||
1064 | return ret; | ||
1065 | |||
1066 | invalid: | ||
1067 | /* Block is nominally invalid, but may still sit in the shadow tree, | ||
1068 | * waiting for a journal commit. | ||
1069 | */ | ||
1070 | if (btree_lookup64(&super->s_shadow_tree.old, ofs)) | ||
1071 | return 2; | ||
1072 | return 0; | ||
1073 | } | ||
1074 | |||
1075 | int logfs_readpage_nolock(struct page *page) | ||
1076 | { | ||
1077 | struct inode *inode = page->mapping->host; | ||
1078 | int ret = -EIO; | ||
1079 | |||
1080 | ret = logfs_read_block(inode, page, READ); | ||
1081 | |||
1082 | if (ret) { | ||
1083 | ClearPageUptodate(page); | ||
1084 | SetPageError(page); | ||
1085 | } else { | ||
1086 | SetPageUptodate(page); | ||
1087 | ClearPageError(page); | ||
1088 | } | ||
1089 | flush_dcache_page(page); | ||
1090 | |||
1091 | return ret; | ||
1092 | } | ||
1093 | |||
1094 | static int logfs_reserve_bytes(struct inode *inode, int bytes) | ||
1095 | { | ||
1096 | struct logfs_super *super = logfs_super(inode->i_sb); | ||
1097 | u64 available = super->s_free_bytes + super->s_dirty_free_bytes | ||
1098 | - super->s_dirty_used_bytes - super->s_dirty_pages; | ||
1099 | |||
1100 | if (!bytes) | ||
1101 | return 0; | ||
1102 | |||
1103 | if (available < bytes) | ||
1104 | return -ENOSPC; | ||
1105 | |||
1106 | if (available < bytes + super->s_root_reserve && | ||
1107 | !capable(CAP_SYS_RESOURCE)) | ||
1108 | return -ENOSPC; | ||
1109 | |||
1110 | return 0; | ||
1111 | } | ||
1112 | |||
1113 | int get_page_reserve(struct inode *inode, struct page *page) | ||
1114 | { | ||
1115 | struct logfs_super *super = logfs_super(inode->i_sb); | ||
1116 | int ret; | ||
1117 | |||
1118 | if (logfs_block(page) && logfs_block(page)->reserved_bytes) | ||
1119 | return 0; | ||
1120 | |||
1121 | logfs_get_wblocks(inode->i_sb, page, WF_LOCK); | ||
1122 | ret = logfs_reserve_bytes(inode, 6 * LOGFS_MAX_OBJECTSIZE); | ||
1123 | if (!ret) { | ||
1124 | alloc_data_block(inode, page); | ||
1125 | logfs_block(page)->reserved_bytes += 6 * LOGFS_MAX_OBJECTSIZE; | ||
1126 | super->s_dirty_pages += 6 * LOGFS_MAX_OBJECTSIZE; | ||
1127 | } | ||
1128 | logfs_put_wblocks(inode->i_sb, page, WF_LOCK); | ||
1129 | return ret; | ||
1130 | } | ||
1131 | |||
1132 | /* | ||
1133 | * We are protected by write lock. Push victims up to superblock level | ||
1134 | * and release transaction when appropriate. | ||
1135 | */ | ||
1136 | /* FIXME: This is currently called from the wrong spots. */ | ||
1137 | static void logfs_handle_transaction(struct inode *inode, | ||
1138 | struct logfs_transaction *ta) | ||
1139 | { | ||
1140 | struct logfs_super *super = logfs_super(inode->i_sb); | ||
1141 | |||
1142 | if (!ta) | ||
1143 | return; | ||
1144 | logfs_inode(inode)->li_block->ta = NULL; | ||
1145 | |||
1146 | if (inode->i_ino != LOGFS_INO_MASTER) { | ||
1147 | BUG(); /* FIXME: Yes, this needs more thought */ | ||
1148 | /* just remember the transaction until inode is written */ | ||
1149 | //BUG_ON(logfs_inode(inode)->li_transaction); | ||
1150 | //logfs_inode(inode)->li_transaction = ta; | ||
1151 | return; | ||
1152 | } | ||
1153 | |||
1154 | switch (ta->state) { | ||
1155 | case CREATE_1: /* fall through */ | ||
1156 | case UNLINK_1: | ||
1157 | BUG_ON(super->s_victim_ino); | ||
1158 | super->s_victim_ino = ta->ino; | ||
1159 | break; | ||
1160 | case CREATE_2: /* fall through */ | ||
1161 | case UNLINK_2: | ||
1162 | BUG_ON(super->s_victim_ino != ta->ino); | ||
1163 | super->s_victim_ino = 0; | ||
1164 | /* transaction ends here - free it */ | ||
1165 | kfree(ta); | ||
1166 | break; | ||
1167 | case CROSS_RENAME_1: | ||
1168 | BUG_ON(super->s_rename_dir); | ||
1169 | BUG_ON(super->s_rename_pos); | ||
1170 | super->s_rename_dir = ta->dir; | ||
1171 | super->s_rename_pos = ta->pos; | ||
1172 | break; | ||
1173 | case CROSS_RENAME_2: | ||
1174 | BUG_ON(super->s_rename_dir != ta->dir); | ||
1175 | BUG_ON(super->s_rename_pos != ta->pos); | ||
1176 | super->s_rename_dir = 0; | ||
1177 | super->s_rename_pos = 0; | ||
1178 | kfree(ta); | ||
1179 | break; | ||
1180 | case TARGET_RENAME_1: | ||
1181 | BUG_ON(super->s_rename_dir); | ||
1182 | BUG_ON(super->s_rename_pos); | ||
1183 | BUG_ON(super->s_victim_ino); | ||
1184 | super->s_rename_dir = ta->dir; | ||
1185 | super->s_rename_pos = ta->pos; | ||
1186 | super->s_victim_ino = ta->ino; | ||
1187 | break; | ||
1188 | case TARGET_RENAME_2: | ||
1189 | BUG_ON(super->s_rename_dir != ta->dir); | ||
1190 | BUG_ON(super->s_rename_pos != ta->pos); | ||
1191 | BUG_ON(super->s_victim_ino != ta->ino); | ||
1192 | super->s_rename_dir = 0; | ||
1193 | super->s_rename_pos = 0; | ||
1194 | break; | ||
1195 | case TARGET_RENAME_3: | ||
1196 | BUG_ON(super->s_rename_dir); | ||
1197 | BUG_ON(super->s_rename_pos); | ||
1198 | BUG_ON(super->s_victim_ino != ta->ino); | ||
1199 | super->s_victim_ino = 0; | ||
1200 | kfree(ta); | ||
1201 | break; | ||
1202 | default: | ||
1203 | BUG(); | ||
1204 | } | ||
1205 | } | ||
1206 | |||
1207 | /* | ||
1208 | * Not strictly a reservation, but rather a check that we still have enough | ||
1209 | * space to satisfy the write. | ||
1210 | */ | ||
1211 | static int logfs_reserve_blocks(struct inode *inode, int blocks) | ||
1212 | { | ||
1213 | return logfs_reserve_bytes(inode, blocks * LOGFS_MAX_OBJECTSIZE); | ||
1214 | } | ||
1215 | |||
1216 | struct write_control { | ||
1217 | u64 ofs; | ||
1218 | long flags; | ||
1219 | }; | ||
1220 | |||
1221 | static struct logfs_shadow *alloc_shadow(struct inode *inode, u64 bix, | ||
1222 | level_t level, u64 old_ofs) | ||
1223 | { | ||
1224 | struct logfs_super *super = logfs_super(inode->i_sb); | ||
1225 | struct logfs_shadow *shadow; | ||
1226 | |||
1227 | shadow = mempool_alloc(super->s_shadow_pool, GFP_NOFS); | ||
1228 | memset(shadow, 0, sizeof(*shadow)); | ||
1229 | shadow->ino = inode->i_ino; | ||
1230 | shadow->bix = bix; | ||
1231 | shadow->gc_level = expand_level(inode->i_ino, level); | ||
1232 | shadow->old_ofs = old_ofs & ~LOGFS_FULLY_POPULATED; | ||
1233 | return shadow; | ||
1234 | } | ||
1235 | |||
1236 | static void free_shadow(struct inode *inode, struct logfs_shadow *shadow) | ||
1237 | { | ||
1238 | struct logfs_super *super = logfs_super(inode->i_sb); | ||
1239 | |||
1240 | mempool_free(shadow, super->s_shadow_pool); | ||
1241 | } | ||
1242 | |||
1243 | /** | ||
1244 | * fill_shadow_tree - Propagate shadow tree changes due to a write | ||
1245 | * @inode: Inode owning the page | ||
1246 | * @page: Struct page that was written | ||
1247 | * @shadow: Shadow for the current write | ||
1248 | * | ||
1249 | * Writes in logfs can result in two semi-valid objects. The old object | ||
1250 | * is still valid as long as it can be reached by following pointers on | ||
1251 | * the medium. Only when writes propagate all the way up to the journal | ||
1252 | * has the new object safely replaced the old one. | ||
1253 | * | ||
1254 | * To handle this problem, a struct logfs_shadow is used to represent | ||
1255 | * every single write. It is attached to the indirect block, which is | ||
1256 | * marked dirty. When the indirect block is written, its shadows are | ||
1257 | * handed up to the next indirect block (or inode). Untimately they | ||
1258 | * will reach the master inode and be freed upon journal commit. | ||
1259 | * | ||
1260 | * This function handles a single step in the propagation. It adds the | ||
1261 | * shadow for the current write to the tree, along with any shadows in | ||
1262 | * the page's tree, in case it was an indirect block. If a page is | ||
1263 | * written, the inode parameter is left NULL, if an inode is written, | ||
1264 | * the page parameter is left NULL. | ||
1265 | */ | ||
1266 | static void fill_shadow_tree(struct inode *inode, struct page *page, | ||
1267 | struct logfs_shadow *shadow) | ||
1268 | { | ||
1269 | struct logfs_super *super = logfs_super(inode->i_sb); | ||
1270 | struct logfs_block *block = logfs_block(page); | ||
1271 | struct shadow_tree *tree = &super->s_shadow_tree; | ||
1272 | |||
1273 | if (PagePrivate(page)) { | ||
1274 | if (block->alias_map) | ||
1275 | super->s_no_object_aliases -= bitmap_weight( | ||
1276 | block->alias_map, LOGFS_BLOCK_FACTOR); | ||
1277 | logfs_handle_transaction(inode, block->ta); | ||
1278 | block->ops->free_block(inode->i_sb, block); | ||
1279 | } | ||
1280 | if (shadow) { | ||
1281 | if (shadow->old_ofs) | ||
1282 | btree_insert64(&tree->old, shadow->old_ofs, shadow, | ||
1283 | GFP_NOFS); | ||
1284 | else | ||
1285 | btree_insert64(&tree->new, shadow->new_ofs, shadow, | ||
1286 | GFP_NOFS); | ||
1287 | |||
1288 | super->s_dirty_used_bytes += shadow->new_len; | ||
1289 | super->s_dirty_free_bytes += shadow->old_len; | ||
1290 | } | ||
1291 | } | ||
1292 | |||
1293 | static void logfs_set_alias(struct super_block *sb, struct logfs_block *block, | ||
1294 | long child_no) | ||
1295 | { | ||
1296 | struct logfs_super *super = logfs_super(sb); | ||
1297 | |||
1298 | if (block->inode && block->inode->i_ino == LOGFS_INO_MASTER) { | ||
1299 | /* Aliases in the master inode are pointless. */ | ||
1300 | return; | ||
1301 | } | ||
1302 | |||
1303 | if (!test_bit(child_no, block->alias_map)) { | ||
1304 | set_bit(child_no, block->alias_map); | ||
1305 | super->s_no_object_aliases++; | ||
1306 | } | ||
1307 | list_move_tail(&block->alias_list, &super->s_object_alias); | ||
1308 | } | ||
1309 | |||
1310 | /* | ||
1311 | * Object aliases can and often do change the size and occupied space of a | ||
1312 | * file. So not only do we have to change the pointers, we also have to | ||
1313 | * change inode->i_size and li->li_used_bytes. Which is done by setting | ||
1314 | * another two object aliases for the inode itself. | ||
1315 | */ | ||
1316 | static void set_iused(struct inode *inode, struct logfs_shadow *shadow) | ||
1317 | { | ||
1318 | struct logfs_inode *li = logfs_inode(inode); | ||
1319 | |||
1320 | if (shadow->new_len == shadow->old_len) | ||
1321 | return; | ||
1322 | |||
1323 | alloc_inode_block(inode); | ||
1324 | li->li_used_bytes += shadow->new_len - shadow->old_len; | ||
1325 | __logfs_set_blocks(inode); | ||
1326 | logfs_set_alias(inode->i_sb, li->li_block, INODE_USED_OFS); | ||
1327 | logfs_set_alias(inode->i_sb, li->li_block, INODE_SIZE_OFS); | ||
1328 | } | ||
1329 | |||
1330 | static int logfs_write_i0(struct inode *inode, struct page *page, | ||
1331 | struct write_control *wc) | ||
1332 | { | ||
1333 | struct logfs_shadow *shadow; | ||
1334 | u64 bix; | ||
1335 | level_t level; | ||
1336 | int full, err = 0; | ||
1337 | |||
1338 | logfs_unpack_index(page->index, &bix, &level); | ||
1339 | if (wc->ofs == 0) | ||
1340 | if (logfs_reserve_blocks(inode, 1)) | ||
1341 | return -ENOSPC; | ||
1342 | |||
1343 | shadow = alloc_shadow(inode, bix, level, wc->ofs); | ||
1344 | if (wc->flags & WF_WRITE) | ||
1345 | err = logfs_segment_write(inode, page, shadow); | ||
1346 | if (wc->flags & WF_DELETE) | ||
1347 | logfs_segment_delete(inode, shadow); | ||
1348 | if (err) { | ||
1349 | free_shadow(inode, shadow); | ||
1350 | return err; | ||
1351 | } | ||
1352 | |||
1353 | set_iused(inode, shadow); | ||
1354 | full = 1; | ||
1355 | if (level != 0) { | ||
1356 | alloc_indirect_block(inode, page, 0); | ||
1357 | full = logfs_block(page)->full == LOGFS_BLOCK_FACTOR; | ||
1358 | } | ||
1359 | fill_shadow_tree(inode, page, shadow); | ||
1360 | wc->ofs = shadow->new_ofs; | ||
1361 | if (wc->ofs && full) | ||
1362 | wc->ofs |= LOGFS_FULLY_POPULATED; | ||
1363 | return 0; | ||
1364 | } | ||
1365 | |||
1366 | static int logfs_write_direct(struct inode *inode, struct page *page, | ||
1367 | long flags) | ||
1368 | { | ||
1369 | struct logfs_inode *li = logfs_inode(inode); | ||
1370 | struct write_control wc = { | ||
1371 | .ofs = li->li_data[page->index], | ||
1372 | .flags = flags, | ||
1373 | }; | ||
1374 | int err; | ||
1375 | |||
1376 | alloc_inode_block(inode); | ||
1377 | |||
1378 | err = logfs_write_i0(inode, page, &wc); | ||
1379 | if (err) | ||
1380 | return err; | ||
1381 | |||
1382 | li->li_data[page->index] = wc.ofs; | ||
1383 | logfs_set_alias(inode->i_sb, li->li_block, | ||
1384 | page->index + INODE_POINTER_OFS); | ||
1385 | return 0; | ||
1386 | } | ||
1387 | |||
1388 | static int ptr_change(u64 ofs, struct page *page) | ||
1389 | { | ||
1390 | struct logfs_block *block = logfs_block(page); | ||
1391 | int empty0, empty1, full0, full1; | ||
1392 | |||
1393 | empty0 = ofs == 0; | ||
1394 | empty1 = block->partial == 0; | ||
1395 | if (empty0 != empty1) | ||
1396 | return 1; | ||
1397 | |||
1398 | /* The !! is necessary to shrink result to int */ | ||
1399 | full0 = !!(ofs & LOGFS_FULLY_POPULATED); | ||
1400 | full1 = block->full == LOGFS_BLOCK_FACTOR; | ||
1401 | if (full0 != full1) | ||
1402 | return 1; | ||
1403 | return 0; | ||
1404 | } | ||
1405 | |||
1406 | static int __logfs_write_rec(struct inode *inode, struct page *page, | ||
1407 | struct write_control *this_wc, | ||
1408 | pgoff_t bix, level_t target_level, level_t level) | ||
1409 | { | ||
1410 | int ret, page_empty = 0; | ||
1411 | int child_no = get_bits(bix, SUBLEVEL(level)); | ||
1412 | struct page *ipage; | ||
1413 | struct write_control child_wc = { | ||
1414 | .flags = this_wc->flags, | ||
1415 | }; | ||
1416 | |||
1417 | ipage = logfs_get_write_page(inode, bix, level); | ||
1418 | if (!ipage) | ||
1419 | return -ENOMEM; | ||
1420 | |||
1421 | if (this_wc->ofs) { | ||
1422 | ret = logfs_segment_read(inode, ipage, this_wc->ofs, bix, level); | ||
1423 | if (ret) | ||
1424 | goto out; | ||
1425 | } else if (!PageUptodate(ipage)) { | ||
1426 | page_empty = 1; | ||
1427 | logfs_read_empty(ipage); | ||
1428 | } | ||
1429 | |||
1430 | child_wc.ofs = block_get_pointer(ipage, child_no); | ||
1431 | |||
1432 | if ((__force u8)level-1 > (__force u8)target_level) | ||
1433 | ret = __logfs_write_rec(inode, page, &child_wc, bix, | ||
1434 | target_level, SUBLEVEL(level)); | ||
1435 | else | ||
1436 | ret = logfs_write_i0(inode, page, &child_wc); | ||
1437 | |||
1438 | if (ret) | ||
1439 | goto out; | ||
1440 | |||
1441 | alloc_indirect_block(inode, ipage, page_empty); | ||
1442 | block_set_pointer(ipage, child_no, child_wc.ofs); | ||
1443 | /* FIXME: first condition seems superfluous */ | ||
1444 | if (child_wc.ofs || logfs_block(ipage)->partial) | ||
1445 | this_wc->flags |= WF_WRITE; | ||
1446 | /* the condition on this_wc->ofs ensures that we won't consume extra | ||
1447 | * space for indirect blocks in the future, which we cannot reserve */ | ||
1448 | if (!this_wc->ofs || ptr_change(this_wc->ofs, ipage)) | ||
1449 | ret = logfs_write_i0(inode, ipage, this_wc); | ||
1450 | else | ||
1451 | logfs_set_alias(inode->i_sb, logfs_block(ipage), child_no); | ||
1452 | out: | ||
1453 | logfs_put_write_page(ipage); | ||
1454 | return ret; | ||
1455 | } | ||
1456 | |||
1457 | static int logfs_write_rec(struct inode *inode, struct page *page, | ||
1458 | pgoff_t bix, level_t target_level, long flags) | ||
1459 | { | ||
1460 | struct logfs_inode *li = logfs_inode(inode); | ||
1461 | struct write_control wc = { | ||
1462 | .ofs = li->li_data[INDIRECT_INDEX], | ||
1463 | .flags = flags, | ||
1464 | }; | ||
1465 | int ret; | ||
1466 | |||
1467 | alloc_inode_block(inode); | ||
1468 | |||
1469 | if (li->li_height > (__force u8)target_level) | ||
1470 | ret = __logfs_write_rec(inode, page, &wc, bix, target_level, | ||
1471 | LEVEL(li->li_height)); | ||
1472 | else | ||
1473 | ret = logfs_write_i0(inode, page, &wc); | ||
1474 | if (ret) | ||
1475 | return ret; | ||
1476 | |||
1477 | if (li->li_data[INDIRECT_INDEX] != wc.ofs) { | ||
1478 | li->li_data[INDIRECT_INDEX] = wc.ofs; | ||
1479 | logfs_set_alias(inode->i_sb, li->li_block, | ||
1480 | INDIRECT_INDEX + INODE_POINTER_OFS); | ||
1481 | } | ||
1482 | return ret; | ||
1483 | } | ||
1484 | |||
1485 | void logfs_add_transaction(struct inode *inode, struct logfs_transaction *ta) | ||
1486 | { | ||
1487 | alloc_inode_block(inode); | ||
1488 | logfs_inode(inode)->li_block->ta = ta; | ||
1489 | } | ||
1490 | |||
1491 | void logfs_del_transaction(struct inode *inode, struct logfs_transaction *ta) | ||
1492 | { | ||
1493 | struct logfs_block *block = logfs_inode(inode)->li_block; | ||
1494 | |||
1495 | if (block && block->ta) | ||
1496 | block->ta = NULL; | ||
1497 | } | ||
1498 | |||
1499 | static int grow_inode(struct inode *inode, u64 bix, level_t level) | ||
1500 | { | ||
1501 | struct logfs_inode *li = logfs_inode(inode); | ||
1502 | u8 height = (__force u8)level; | ||
1503 | struct page *page; | ||
1504 | struct write_control wc = { | ||
1505 | .flags = WF_WRITE, | ||
1506 | }; | ||
1507 | int err; | ||
1508 | |||
1509 | BUG_ON(height > 5 || li->li_height > 5); | ||
1510 | while (height > li->li_height || bix >= maxbix(li->li_height)) { | ||
1511 | page = logfs_get_write_page(inode, I0_BLOCKS + 1, | ||
1512 | LEVEL(li->li_height + 1)); | ||
1513 | if (!page) | ||
1514 | return -ENOMEM; | ||
1515 | logfs_read_empty(page); | ||
1516 | alloc_indirect_block(inode, page, 1); | ||
1517 | block_set_pointer(page, 0, li->li_data[INDIRECT_INDEX]); | ||
1518 | err = logfs_write_i0(inode, page, &wc); | ||
1519 | logfs_put_write_page(page); | ||
1520 | if (err) | ||
1521 | return err; | ||
1522 | li->li_data[INDIRECT_INDEX] = wc.ofs; | ||
1523 | wc.ofs = 0; | ||
1524 | li->li_height++; | ||
1525 | logfs_set_alias(inode->i_sb, li->li_block, INODE_HEIGHT_OFS); | ||
1526 | } | ||
1527 | return 0; | ||
1528 | } | ||
1529 | |||
1530 | static int __logfs_write_buf(struct inode *inode, struct page *page, long flags) | ||
1531 | { | ||
1532 | struct logfs_super *super = logfs_super(inode->i_sb); | ||
1533 | pgoff_t index = page->index; | ||
1534 | u64 bix; | ||
1535 | level_t level; | ||
1536 | int err; | ||
1537 | |||
1538 | flags |= WF_WRITE | WF_DELETE; | ||
1539 | inode->i_ctime = inode->i_mtime = CURRENT_TIME; | ||
1540 | |||
1541 | logfs_unpack_index(index, &bix, &level); | ||
1542 | if (logfs_block(page) && logfs_block(page)->reserved_bytes) | ||
1543 | super->s_dirty_pages -= logfs_block(page)->reserved_bytes; | ||
1544 | |||
1545 | if (index < I0_BLOCKS) | ||
1546 | return logfs_write_direct(inode, page, flags); | ||
1547 | |||
1548 | bix = adjust_bix(bix, level); | ||
1549 | err = grow_inode(inode, bix, level); | ||
1550 | if (err) | ||
1551 | return err; | ||
1552 | return logfs_write_rec(inode, page, bix, level, flags); | ||
1553 | } | ||
1554 | |||
1555 | int logfs_write_buf(struct inode *inode, struct page *page, long flags) | ||
1556 | { | ||
1557 | struct super_block *sb = inode->i_sb; | ||
1558 | int ret; | ||
1559 | |||
1560 | logfs_get_wblocks(sb, page, flags & WF_LOCK); | ||
1561 | ret = __logfs_write_buf(inode, page, flags); | ||
1562 | logfs_put_wblocks(sb, page, flags & WF_LOCK); | ||
1563 | return ret; | ||
1564 | } | ||
1565 | |||
1566 | static int __logfs_delete(struct inode *inode, struct page *page) | ||
1567 | { | ||
1568 | long flags = WF_DELETE; | ||
1569 | |||
1570 | inode->i_ctime = inode->i_mtime = CURRENT_TIME; | ||
1571 | |||
1572 | if (page->index < I0_BLOCKS) | ||
1573 | return logfs_write_direct(inode, page, flags); | ||
1574 | return logfs_write_rec(inode, page, page->index, 0, flags); | ||
1575 | } | ||
1576 | |||
1577 | int logfs_delete(struct inode *inode, pgoff_t index, | ||
1578 | struct shadow_tree *shadow_tree) | ||
1579 | { | ||
1580 | struct super_block *sb = inode->i_sb; | ||
1581 | struct page *page; | ||
1582 | int ret; | ||
1583 | |||
1584 | page = logfs_get_read_page(inode, index, 0); | ||
1585 | if (!page) | ||
1586 | return -ENOMEM; | ||
1587 | |||
1588 | logfs_get_wblocks(sb, page, 1); | ||
1589 | ret = __logfs_delete(inode, page); | ||
1590 | logfs_put_wblocks(sb, page, 1); | ||
1591 | |||
1592 | logfs_put_read_page(page); | ||
1593 | |||
1594 | return ret; | ||
1595 | } | ||
1596 | |||
1597 | /* Rewrite cannot mark the inode dirty but has to write it immediatly. */ | ||
1598 | int logfs_rewrite_block(struct inode *inode, u64 bix, u64 ofs, | ||
1599 | gc_level_t gc_level, long flags) | ||
1600 | { | ||
1601 | level_t level = shrink_level(gc_level); | ||
1602 | struct page *page; | ||
1603 | int err; | ||
1604 | |||
1605 | page = logfs_get_write_page(inode, bix, level); | ||
1606 | if (!page) | ||
1607 | return -ENOMEM; | ||
1608 | |||
1609 | err = logfs_segment_read(inode, page, ofs, bix, level); | ||
1610 | if (!err) { | ||
1611 | if (level != 0) | ||
1612 | alloc_indirect_block(inode, page, 0); | ||
1613 | err = logfs_write_buf(inode, page, flags); | ||
1614 | } | ||
1615 | logfs_put_write_page(page); | ||
1616 | return err; | ||
1617 | } | ||
1618 | |||
1619 | static int truncate_data_block(struct inode *inode, struct page *page, | ||
1620 | u64 ofs, struct logfs_shadow *shadow, u64 size) | ||
1621 | { | ||
1622 | loff_t pageofs = page->index << inode->i_sb->s_blocksize_bits; | ||
1623 | u64 bix; | ||
1624 | level_t level; | ||
1625 | int err; | ||
1626 | |||
1627 | /* Does truncation happen within this page? */ | ||
1628 | if (size <= pageofs || size - pageofs >= PAGE_SIZE) | ||
1629 | return 0; | ||
1630 | |||
1631 | logfs_unpack_index(page->index, &bix, &level); | ||
1632 | BUG_ON(level != 0); | ||
1633 | |||
1634 | err = logfs_segment_read(inode, page, ofs, bix, level); | ||
1635 | if (err) | ||
1636 | return err; | ||
1637 | |||
1638 | zero_user_segment(page, size - pageofs, PAGE_CACHE_SIZE); | ||
1639 | return logfs_segment_write(inode, page, shadow); | ||
1640 | } | ||
1641 | |||
1642 | static int logfs_truncate_i0(struct inode *inode, struct page *page, | ||
1643 | struct write_control *wc, u64 size) | ||
1644 | { | ||
1645 | struct logfs_shadow *shadow; | ||
1646 | u64 bix; | ||
1647 | level_t level; | ||
1648 | int err = 0; | ||
1649 | |||
1650 | logfs_unpack_index(page->index, &bix, &level); | ||
1651 | BUG_ON(level != 0); | ||
1652 | shadow = alloc_shadow(inode, bix, level, wc->ofs); | ||
1653 | |||
1654 | err = truncate_data_block(inode, page, wc->ofs, shadow, size); | ||
1655 | if (err) { | ||
1656 | free_shadow(inode, shadow); | ||
1657 | return err; | ||
1658 | } | ||
1659 | |||
1660 | logfs_segment_delete(inode, shadow); | ||
1661 | set_iused(inode, shadow); | ||
1662 | fill_shadow_tree(inode, page, shadow); | ||
1663 | wc->ofs = shadow->new_ofs; | ||
1664 | return 0; | ||
1665 | } | ||
1666 | |||
1667 | static int logfs_truncate_direct(struct inode *inode, u64 size) | ||
1668 | { | ||
1669 | struct logfs_inode *li = logfs_inode(inode); | ||
1670 | struct write_control wc; | ||
1671 | struct page *page; | ||
1672 | int e; | ||
1673 | int err; | ||
1674 | |||
1675 | alloc_inode_block(inode); | ||
1676 | |||
1677 | for (e = I0_BLOCKS - 1; e >= 0; e--) { | ||
1678 | if (size > (e+1) * LOGFS_BLOCKSIZE) | ||
1679 | break; | ||
1680 | |||
1681 | wc.ofs = li->li_data[e]; | ||
1682 | if (!wc.ofs) | ||
1683 | continue; | ||
1684 | |||
1685 | page = logfs_get_write_page(inode, e, 0); | ||
1686 | if (!page) | ||
1687 | return -ENOMEM; | ||
1688 | err = logfs_segment_read(inode, page, wc.ofs, e, 0); | ||
1689 | if (err) { | ||
1690 | logfs_put_write_page(page); | ||
1691 | return err; | ||
1692 | } | ||
1693 | err = logfs_truncate_i0(inode, page, &wc, size); | ||
1694 | logfs_put_write_page(page); | ||
1695 | if (err) | ||
1696 | return err; | ||
1697 | |||
1698 | li->li_data[e] = wc.ofs; | ||
1699 | } | ||
1700 | return 0; | ||
1701 | } | ||
1702 | |||
1703 | /* FIXME: these need to become per-sb once we support different blocksizes */ | ||
1704 | static u64 __logfs_step[] = { | ||
1705 | 1, | ||
1706 | I1_BLOCKS, | ||
1707 | I2_BLOCKS, | ||
1708 | I3_BLOCKS, | ||
1709 | }; | ||
1710 | |||
1711 | static u64 __logfs_start_index[] = { | ||
1712 | I0_BLOCKS, | ||
1713 | I1_BLOCKS, | ||
1714 | I2_BLOCKS, | ||
1715 | I3_BLOCKS | ||
1716 | }; | ||
1717 | |||
1718 | static inline u64 logfs_step(level_t level) | ||
1719 | { | ||
1720 | return __logfs_step[(__force u8)level]; | ||
1721 | } | ||
1722 | |||
1723 | static inline u64 logfs_factor(u8 level) | ||
1724 | { | ||
1725 | return __logfs_step[level] * LOGFS_BLOCKSIZE; | ||
1726 | } | ||
1727 | |||
1728 | static inline u64 logfs_start_index(level_t level) | ||
1729 | { | ||
1730 | return __logfs_start_index[(__force u8)level]; | ||
1731 | } | ||
1732 | |||
1733 | static void logfs_unpack_raw_index(pgoff_t index, u64 *bix, level_t *level) | ||
1734 | { | ||
1735 | logfs_unpack_index(index, bix, level); | ||
1736 | if (*bix <= logfs_start_index(SUBLEVEL(*level))) | ||
1737 | *bix = 0; | ||
1738 | } | ||
1739 | |||
1740 | static int __logfs_truncate_rec(struct inode *inode, struct page *ipage, | ||
1741 | struct write_control *this_wc, u64 size) | ||
1742 | { | ||
1743 | int truncate_happened = 0; | ||
1744 | int e, err = 0; | ||
1745 | u64 bix, child_bix, next_bix; | ||
1746 | level_t level; | ||
1747 | struct page *page; | ||
1748 | struct write_control child_wc = { /* FIXME: flags */ }; | ||
1749 | |||
1750 | logfs_unpack_raw_index(ipage->index, &bix, &level); | ||
1751 | err = logfs_segment_read(inode, ipage, this_wc->ofs, bix, level); | ||
1752 | if (err) | ||
1753 | return err; | ||
1754 | |||
1755 | for (e = LOGFS_BLOCK_FACTOR - 1; e >= 0; e--) { | ||
1756 | child_bix = bix + e * logfs_step(SUBLEVEL(level)); | ||
1757 | next_bix = child_bix + logfs_step(SUBLEVEL(level)); | ||
1758 | if (size > next_bix * LOGFS_BLOCKSIZE) | ||
1759 | break; | ||
1760 | |||
1761 | child_wc.ofs = pure_ofs(block_get_pointer(ipage, e)); | ||
1762 | if (!child_wc.ofs) | ||
1763 | continue; | ||
1764 | |||
1765 | page = logfs_get_write_page(inode, child_bix, SUBLEVEL(level)); | ||
1766 | if (!page) | ||
1767 | return -ENOMEM; | ||
1768 | |||
1769 | if ((__force u8)level > 1) | ||
1770 | err = __logfs_truncate_rec(inode, page, &child_wc, size); | ||
1771 | else | ||
1772 | err = logfs_truncate_i0(inode, page, &child_wc, size); | ||
1773 | logfs_put_write_page(page); | ||
1774 | if (err) | ||
1775 | return err; | ||
1776 | |||
1777 | truncate_happened = 1; | ||
1778 | alloc_indirect_block(inode, ipage, 0); | ||
1779 | block_set_pointer(ipage, e, child_wc.ofs); | ||
1780 | } | ||
1781 | |||
1782 | if (!truncate_happened) { | ||
1783 | printk("ineffectual truncate (%lx, %lx, %llx)\n", inode->i_ino, ipage->index, size); | ||
1784 | return 0; | ||
1785 | } | ||
1786 | |||
1787 | this_wc->flags = WF_DELETE; | ||
1788 | if (logfs_block(ipage)->partial) | ||
1789 | this_wc->flags |= WF_WRITE; | ||
1790 | |||
1791 | return logfs_write_i0(inode, ipage, this_wc); | ||
1792 | } | ||
1793 | |||
1794 | static int logfs_truncate_rec(struct inode *inode, u64 size) | ||
1795 | { | ||
1796 | struct logfs_inode *li = logfs_inode(inode); | ||
1797 | struct write_control wc = { | ||
1798 | .ofs = li->li_data[INDIRECT_INDEX], | ||
1799 | }; | ||
1800 | struct page *page; | ||
1801 | int err; | ||
1802 | |||
1803 | alloc_inode_block(inode); | ||
1804 | |||
1805 | if (!wc.ofs) | ||
1806 | return 0; | ||
1807 | |||
1808 | page = logfs_get_write_page(inode, 0, LEVEL(li->li_height)); | ||
1809 | if (!page) | ||
1810 | return -ENOMEM; | ||
1811 | |||
1812 | err = __logfs_truncate_rec(inode, page, &wc, size); | ||
1813 | logfs_put_write_page(page); | ||
1814 | if (err) | ||
1815 | return err; | ||
1816 | |||
1817 | if (li->li_data[INDIRECT_INDEX] != wc.ofs) | ||
1818 | li->li_data[INDIRECT_INDEX] = wc.ofs; | ||
1819 | return 0; | ||
1820 | } | ||
1821 | |||
1822 | static int __logfs_truncate(struct inode *inode, u64 size) | ||
1823 | { | ||
1824 | int ret; | ||
1825 | |||
1826 | if (size >= logfs_factor(logfs_inode(inode)->li_height)) | ||
1827 | return 0; | ||
1828 | |||
1829 | ret = logfs_truncate_rec(inode, size); | ||
1830 | if (ret) | ||
1831 | return ret; | ||
1832 | |||
1833 | return logfs_truncate_direct(inode, size); | ||
1834 | } | ||
1835 | |||
1836 | int logfs_truncate(struct inode *inode, u64 size) | ||
1837 | { | ||
1838 | struct super_block *sb = inode->i_sb; | ||
1839 | int err; | ||
1840 | |||
1841 | logfs_get_wblocks(sb, NULL, 1); | ||
1842 | err = __logfs_truncate(inode, size); | ||
1843 | if (!err) | ||
1844 | err = __logfs_write_inode(inode, 0); | ||
1845 | logfs_put_wblocks(sb, NULL, 1); | ||
1846 | |||
1847 | if (!err) | ||
1848 | err = vmtruncate(inode, size); | ||
1849 | |||
1850 | /* I don't trust error recovery yet. */ | ||
1851 | WARN_ON(err); | ||
1852 | return err; | ||
1853 | } | ||
1854 | |||
1855 | static void move_page_to_inode(struct inode *inode, struct page *page) | ||
1856 | { | ||
1857 | struct logfs_inode *li = logfs_inode(inode); | ||
1858 | struct logfs_block *block = logfs_block(page); | ||
1859 | |||
1860 | if (!block) | ||
1861 | return; | ||
1862 | |||
1863 | log_blockmove("move_page_to_inode(%llx, %llx, %x)\n", | ||
1864 | block->ino, block->bix, block->level); | ||
1865 | BUG_ON(li->li_block); | ||
1866 | block->ops = &inode_block_ops; | ||
1867 | block->inode = inode; | ||
1868 | li->li_block = block; | ||
1869 | |||
1870 | block->page = NULL; | ||
1871 | page->private = 0; | ||
1872 | ClearPagePrivate(page); | ||
1873 | } | ||
1874 | |||
1875 | static void move_inode_to_page(struct page *page, struct inode *inode) | ||
1876 | { | ||
1877 | struct logfs_inode *li = logfs_inode(inode); | ||
1878 | struct logfs_block *block = li->li_block; | ||
1879 | |||
1880 | if (!block) | ||
1881 | return; | ||
1882 | |||
1883 | log_blockmove("move_inode_to_page(%llx, %llx, %x)\n", | ||
1884 | block->ino, block->bix, block->level); | ||
1885 | BUG_ON(PagePrivate(page)); | ||
1886 | block->ops = &indirect_block_ops; | ||
1887 | block->page = page; | ||
1888 | page->private = (unsigned long)block; | ||
1889 | SetPagePrivate(page); | ||
1890 | |||
1891 | block->inode = NULL; | ||
1892 | li->li_block = NULL; | ||
1893 | } | ||
1894 | |||
1895 | int logfs_read_inode(struct inode *inode) | ||
1896 | { | ||
1897 | struct super_block *sb = inode->i_sb; | ||
1898 | struct logfs_super *super = logfs_super(sb); | ||
1899 | struct inode *master_inode = super->s_master_inode; | ||
1900 | struct page *page; | ||
1901 | struct logfs_disk_inode *di; | ||
1902 | u64 ino = inode->i_ino; | ||
1903 | |||
1904 | if (ino << sb->s_blocksize_bits > i_size_read(master_inode)) | ||
1905 | return -ENODATA; | ||
1906 | if (!logfs_exist_block(master_inode, ino)) | ||
1907 | return -ENODATA; | ||
1908 | |||
1909 | page = read_cache_page(master_inode->i_mapping, ino, | ||
1910 | (filler_t *)logfs_readpage, NULL); | ||
1911 | if (IS_ERR(page)) | ||
1912 | return PTR_ERR(page); | ||
1913 | |||
1914 | di = kmap_atomic(page, KM_USER0); | ||
1915 | logfs_disk_to_inode(di, inode); | ||
1916 | kunmap_atomic(di, KM_USER0); | ||
1917 | move_page_to_inode(inode, page); | ||
1918 | page_cache_release(page); | ||
1919 | return 0; | ||
1920 | } | ||
1921 | |||
1922 | /* Caller must logfs_put_write_page(page); */ | ||
1923 | static struct page *inode_to_page(struct inode *inode) | ||
1924 | { | ||
1925 | struct inode *master_inode = logfs_super(inode->i_sb)->s_master_inode; | ||
1926 | struct logfs_disk_inode *di; | ||
1927 | struct page *page; | ||
1928 | |||
1929 | BUG_ON(inode->i_ino == LOGFS_INO_MASTER); | ||
1930 | |||
1931 | page = logfs_get_write_page(master_inode, inode->i_ino, 0); | ||
1932 | if (!page) | ||
1933 | return NULL; | ||
1934 | |||
1935 | di = kmap_atomic(page, KM_USER0); | ||
1936 | logfs_inode_to_disk(inode, di); | ||
1937 | kunmap_atomic(di, KM_USER0); | ||
1938 | move_inode_to_page(page, inode); | ||
1939 | return page; | ||
1940 | } | ||
1941 | |||
1942 | /* Cheaper version of write_inode. All changes are concealed in | ||
1943 | * aliases, which are moved back. No write to the medium happens. | ||
1944 | */ | ||
1945 | void logfs_clear_inode(struct inode *inode) | ||
1946 | { | ||
1947 | struct super_block *sb = inode->i_sb; | ||
1948 | struct logfs_inode *li = logfs_inode(inode); | ||
1949 | struct logfs_block *block = li->li_block; | ||
1950 | struct page *page; | ||
1951 | |||
1952 | /* Only deleted files may be dirty at this point */ | ||
1953 | BUG_ON(inode->i_state & I_DIRTY && inode->i_nlink); | ||
1954 | if (!block) | ||
1955 | return; | ||
1956 | if ((logfs_super(sb)->s_flags & LOGFS_SB_FLAG_SHUTDOWN)) { | ||
1957 | block->ops->free_block(inode->i_sb, block); | ||
1958 | return; | ||
1959 | } | ||
1960 | |||
1961 | BUG_ON(inode->i_ino < LOGFS_RESERVED_INOS); | ||
1962 | page = inode_to_page(inode); | ||
1963 | BUG_ON(!page); /* FIXME: Use emergency page */ | ||
1964 | logfs_put_write_page(page); | ||
1965 | } | ||
1966 | |||
1967 | static int do_write_inode(struct inode *inode) | ||
1968 | { | ||
1969 | struct super_block *sb = inode->i_sb; | ||
1970 | struct inode *master_inode = logfs_super(sb)->s_master_inode; | ||
1971 | loff_t size = (inode->i_ino + 1) << inode->i_sb->s_blocksize_bits; | ||
1972 | struct page *page; | ||
1973 | int err; | ||
1974 | |||
1975 | BUG_ON(inode->i_ino == LOGFS_INO_MASTER); | ||
1976 | /* FIXME: lock inode */ | ||
1977 | |||
1978 | if (i_size_read(master_inode) < size) | ||
1979 | i_size_write(master_inode, size); | ||
1980 | |||
1981 | /* TODO: Tell vfs this inode is clean now */ | ||
1982 | |||
1983 | page = inode_to_page(inode); | ||
1984 | if (!page) | ||
1985 | return -ENOMEM; | ||
1986 | |||
1987 | /* FIXME: transaction is part of logfs_block now. Is that enough? */ | ||
1988 | err = logfs_write_buf(master_inode, page, 0); | ||
1989 | logfs_put_write_page(page); | ||
1990 | return err; | ||
1991 | } | ||
1992 | |||
1993 | static void logfs_mod_segment_entry(struct super_block *sb, u32 segno, | ||
1994 | int write, | ||
1995 | void (*change_se)(struct logfs_segment_entry *, long), | ||
1996 | long arg) | ||
1997 | { | ||
1998 | struct logfs_super *super = logfs_super(sb); | ||
1999 | struct inode *inode; | ||
2000 | struct page *page; | ||
2001 | struct logfs_segment_entry *se; | ||
2002 | pgoff_t page_no; | ||
2003 | int child_no; | ||
2004 | |||
2005 | page_no = segno >> (sb->s_blocksize_bits - 3); | ||
2006 | child_no = segno & ((sb->s_blocksize >> 3) - 1); | ||
2007 | |||
2008 | inode = super->s_segfile_inode; | ||
2009 | page = logfs_get_write_page(inode, page_no, 0); | ||
2010 | BUG_ON(!page); /* FIXME: We need some reserve page for this case */ | ||
2011 | if (!PageUptodate(page)) | ||
2012 | logfs_read_block(inode, page, WRITE); | ||
2013 | |||
2014 | if (write) | ||
2015 | alloc_indirect_block(inode, page, 0); | ||
2016 | se = kmap_atomic(page, KM_USER0); | ||
2017 | change_se(se + child_no, arg); | ||
2018 | if (write) { | ||
2019 | logfs_set_alias(sb, logfs_block(page), child_no); | ||
2020 | BUG_ON((int)be32_to_cpu(se[child_no].valid) > super->s_segsize); | ||
2021 | } | ||
2022 | kunmap_atomic(se, KM_USER0); | ||
2023 | |||
2024 | logfs_put_write_page(page); | ||
2025 | } | ||
2026 | |||
2027 | static void __get_segment_entry(struct logfs_segment_entry *se, long _target) | ||
2028 | { | ||
2029 | struct logfs_segment_entry *target = (void *)_target; | ||
2030 | |||
2031 | *target = *se; | ||
2032 | } | ||
2033 | |||
2034 | void logfs_get_segment_entry(struct super_block *sb, u32 segno, | ||
2035 | struct logfs_segment_entry *se) | ||
2036 | { | ||
2037 | logfs_mod_segment_entry(sb, segno, 0, __get_segment_entry, (long)se); | ||
2038 | } | ||
2039 | |||
2040 | static void __set_segment_used(struct logfs_segment_entry *se, long increment) | ||
2041 | { | ||
2042 | u32 valid; | ||
2043 | |||
2044 | valid = be32_to_cpu(se->valid); | ||
2045 | valid += increment; | ||
2046 | se->valid = cpu_to_be32(valid); | ||
2047 | } | ||
2048 | |||
2049 | void logfs_set_segment_used(struct super_block *sb, u64 ofs, int increment) | ||
2050 | { | ||
2051 | struct logfs_super *super = logfs_super(sb); | ||
2052 | u32 segno = ofs >> super->s_segshift; | ||
2053 | |||
2054 | if (!increment) | ||
2055 | return; | ||
2056 | |||
2057 | logfs_mod_segment_entry(sb, segno, 1, __set_segment_used, increment); | ||
2058 | } | ||
2059 | |||
2060 | static void __set_segment_erased(struct logfs_segment_entry *se, long ec_level) | ||
2061 | { | ||
2062 | se->ec_level = cpu_to_be32(ec_level); | ||
2063 | } | ||
2064 | |||
2065 | void logfs_set_segment_erased(struct super_block *sb, u32 segno, u32 ec, | ||
2066 | gc_level_t gc_level) | ||
2067 | { | ||
2068 | u32 ec_level = ec << 4 | (__force u8)gc_level; | ||
2069 | |||
2070 | logfs_mod_segment_entry(sb, segno, 1, __set_segment_erased, ec_level); | ||
2071 | } | ||
2072 | |||
2073 | static void __set_segment_reserved(struct logfs_segment_entry *se, long ignore) | ||
2074 | { | ||
2075 | se->valid = cpu_to_be32(RESERVED); | ||
2076 | } | ||
2077 | |||
2078 | void logfs_set_segment_reserved(struct super_block *sb, u32 segno) | ||
2079 | { | ||
2080 | logfs_mod_segment_entry(sb, segno, 1, __set_segment_reserved, 0); | ||
2081 | } | ||
2082 | |||
2083 | static void __set_segment_unreserved(struct logfs_segment_entry *se, | ||
2084 | long ec_level) | ||
2085 | { | ||
2086 | se->valid = 0; | ||
2087 | se->ec_level = cpu_to_be32(ec_level); | ||
2088 | } | ||
2089 | |||
2090 | void logfs_set_segment_unreserved(struct super_block *sb, u32 segno, u32 ec) | ||
2091 | { | ||
2092 | u32 ec_level = ec << 4; | ||
2093 | |||
2094 | logfs_mod_segment_entry(sb, segno, 1, __set_segment_unreserved, | ||
2095 | ec_level); | ||
2096 | } | ||
2097 | |||
2098 | int __logfs_write_inode(struct inode *inode, long flags) | ||
2099 | { | ||
2100 | struct super_block *sb = inode->i_sb; | ||
2101 | int ret; | ||
2102 | |||
2103 | logfs_get_wblocks(sb, NULL, flags & WF_LOCK); | ||
2104 | ret = do_write_inode(inode); | ||
2105 | logfs_put_wblocks(sb, NULL, flags & WF_LOCK); | ||
2106 | return ret; | ||
2107 | } | ||
2108 | |||
2109 | static int do_delete_inode(struct inode *inode) | ||
2110 | { | ||
2111 | struct super_block *sb = inode->i_sb; | ||
2112 | struct inode *master_inode = logfs_super(sb)->s_master_inode; | ||
2113 | struct page *page; | ||
2114 | int ret; | ||
2115 | |||
2116 | page = logfs_get_write_page(master_inode, inode->i_ino, 0); | ||
2117 | if (!page) | ||
2118 | return -ENOMEM; | ||
2119 | |||
2120 | move_inode_to_page(page, inode); | ||
2121 | |||
2122 | logfs_get_wblocks(sb, page, 1); | ||
2123 | ret = __logfs_delete(master_inode, page); | ||
2124 | logfs_put_wblocks(sb, page, 1); | ||
2125 | |||
2126 | logfs_put_write_page(page); | ||
2127 | return ret; | ||
2128 | } | ||
2129 | |||
2130 | /* | ||
2131 | * ZOMBIE inodes have already been deleted before and should remain dead, | ||
2132 | * if it weren't for valid checking. No need to kill them again here. | ||
2133 | */ | ||
2134 | void logfs_delete_inode(struct inode *inode) | ||
2135 | { | ||
2136 | struct logfs_inode *li = logfs_inode(inode); | ||
2137 | |||
2138 | if (!(li->li_flags & LOGFS_IF_ZOMBIE)) { | ||
2139 | li->li_flags |= LOGFS_IF_ZOMBIE; | ||
2140 | if (i_size_read(inode) > 0) | ||
2141 | logfs_truncate(inode, 0); | ||
2142 | do_delete_inode(inode); | ||
2143 | } | ||
2144 | truncate_inode_pages(&inode->i_data, 0); | ||
2145 | clear_inode(inode); | ||
2146 | } | ||
2147 | |||
2148 | void btree_write_block(struct logfs_block *block) | ||
2149 | { | ||
2150 | struct inode *inode; | ||
2151 | struct page *page; | ||
2152 | int err, cookie; | ||
2153 | |||
2154 | inode = logfs_safe_iget(block->sb, block->ino, &cookie); | ||
2155 | page = logfs_get_write_page(inode, block->bix, block->level); | ||
2156 | |||
2157 | err = logfs_readpage_nolock(page); | ||
2158 | BUG_ON(err); | ||
2159 | BUG_ON(!PagePrivate(page)); | ||
2160 | BUG_ON(logfs_block(page) != block); | ||
2161 | err = __logfs_write_buf(inode, page, 0); | ||
2162 | BUG_ON(err); | ||
2163 | BUG_ON(PagePrivate(page) || page->private); | ||
2164 | |||
2165 | logfs_put_write_page(page); | ||
2166 | logfs_safe_iput(inode, cookie); | ||
2167 | } | ||
2168 | |||
2169 | /** | ||
2170 | * logfs_inode_write - write inode or dentry objects | ||
2171 | * | ||
2172 | * @inode: parent inode (ifile or directory) | ||
2173 | * @buf: object to write (inode or dentry) | ||
2174 | * @n: object size | ||
2175 | * @_pos: object number (file position in blocks/objects) | ||
2176 | * @flags: write flags | ||
2177 | * @lock: 0 if write lock is already taken, 1 otherwise | ||
2178 | * @shadow_tree: shadow below this inode | ||
2179 | * | ||
2180 | * FIXME: All caller of this put a 200-300 byte variable on the stack, | ||
2181 | * only to call here and do a memcpy from that stack variable. A good | ||
2182 | * example of wasted performance and stack space. | ||
2183 | */ | ||
2184 | int logfs_inode_write(struct inode *inode, const void *buf, size_t count, | ||
2185 | loff_t bix, long flags, struct shadow_tree *shadow_tree) | ||
2186 | { | ||
2187 | loff_t pos = bix << inode->i_sb->s_blocksize_bits; | ||
2188 | int err; | ||
2189 | struct page *page; | ||
2190 | void *pagebuf; | ||
2191 | |||
2192 | BUG_ON(pos & (LOGFS_BLOCKSIZE-1)); | ||
2193 | BUG_ON(count > LOGFS_BLOCKSIZE); | ||
2194 | page = logfs_get_write_page(inode, bix, 0); | ||
2195 | if (!page) | ||
2196 | return -ENOMEM; | ||
2197 | |||
2198 | pagebuf = kmap_atomic(page, KM_USER0); | ||
2199 | memcpy(pagebuf, buf, count); | ||
2200 | flush_dcache_page(page); | ||
2201 | kunmap_atomic(pagebuf, KM_USER0); | ||
2202 | |||
2203 | if (i_size_read(inode) < pos + LOGFS_BLOCKSIZE) | ||
2204 | i_size_write(inode, pos + LOGFS_BLOCKSIZE); | ||
2205 | |||
2206 | err = logfs_write_buf(inode, page, flags); | ||
2207 | logfs_put_write_page(page); | ||
2208 | return err; | ||
2209 | } | ||
2210 | |||
2211 | int logfs_open_segfile(struct super_block *sb) | ||
2212 | { | ||
2213 | struct logfs_super *super = logfs_super(sb); | ||
2214 | struct inode *inode; | ||
2215 | |||
2216 | inode = logfs_read_meta_inode(sb, LOGFS_INO_SEGFILE); | ||
2217 | if (IS_ERR(inode)) | ||
2218 | return PTR_ERR(inode); | ||
2219 | super->s_segfile_inode = inode; | ||
2220 | return 0; | ||
2221 | } | ||
2222 | |||
2223 | int logfs_init_rw(struct super_block *sb) | ||
2224 | { | ||
2225 | struct logfs_super *super = logfs_super(sb); | ||
2226 | int min_fill = 3 * super->s_no_blocks; | ||
2227 | |||
2228 | INIT_LIST_HEAD(&super->s_object_alias); | ||
2229 | mutex_init(&super->s_write_mutex); | ||
2230 | super->s_block_pool = mempool_create_kmalloc_pool(min_fill, | ||
2231 | sizeof(struct logfs_block)); | ||
2232 | super->s_shadow_pool = mempool_create_kmalloc_pool(min_fill, | ||
2233 | sizeof(struct logfs_shadow)); | ||
2234 | return 0; | ||
2235 | } | ||
2236 | |||
2237 | void logfs_cleanup_rw(struct super_block *sb) | ||
2238 | { | ||
2239 | struct logfs_super *super = logfs_super(sb); | ||
2240 | |||
2241 | destroy_meta_inode(super->s_segfile_inode); | ||
2242 | if (super->s_block_pool) | ||
2243 | mempool_destroy(super->s_block_pool); | ||
2244 | if (super->s_shadow_pool) | ||
2245 | mempool_destroy(super->s_shadow_pool); | ||
2246 | } | ||
diff --git a/fs/logfs/segment.c b/fs/logfs/segment.c new file mode 100644 index 000000000000..1a14f9910d55 --- /dev/null +++ b/fs/logfs/segment.c | |||
@@ -0,0 +1,927 @@ | |||
1 | /* | ||
2 | * fs/logfs/segment.c - Handling the Object Store | ||
3 | * | ||
4 | * As should be obvious for Linux kernel code, license is GPLv2 | ||
5 | * | ||
6 | * Copyright (c) 2005-2008 Joern Engel <joern@logfs.org> | ||
7 | * | ||
8 | * Object store or ostore makes up the complete device with exception of | ||
9 | * the superblock and journal areas. Apart from its own metadata it stores | ||
10 | * three kinds of objects: inodes, dentries and blocks, both data and indirect. | ||
11 | */ | ||
12 | #include "logfs.h" | ||
13 | |||
14 | static int logfs_mark_segment_bad(struct super_block *sb, u32 segno) | ||
15 | { | ||
16 | struct logfs_super *super = logfs_super(sb); | ||
17 | struct btree_head32 *head = &super->s_reserved_segments; | ||
18 | int err; | ||
19 | |||
20 | err = btree_insert32(head, segno, (void *)1, GFP_NOFS); | ||
21 | if (err) | ||
22 | return err; | ||
23 | logfs_super(sb)->s_bad_segments++; | ||
24 | /* FIXME: write to journal */ | ||
25 | return 0; | ||
26 | } | ||
27 | |||
28 | int logfs_erase_segment(struct super_block *sb, u32 segno, int ensure_erase) | ||
29 | { | ||
30 | struct logfs_super *super = logfs_super(sb); | ||
31 | |||
32 | super->s_gec++; | ||
33 | |||
34 | return super->s_devops->erase(sb, (u64)segno << super->s_segshift, | ||
35 | super->s_segsize, ensure_erase); | ||
36 | } | ||
37 | |||
38 | static s64 logfs_get_free_bytes(struct logfs_area *area, size_t bytes) | ||
39 | { | ||
40 | s32 ofs; | ||
41 | |||
42 | logfs_open_area(area, bytes); | ||
43 | |||
44 | ofs = area->a_used_bytes; | ||
45 | area->a_used_bytes += bytes; | ||
46 | BUG_ON(area->a_used_bytes >= logfs_super(area->a_sb)->s_segsize); | ||
47 | |||
48 | return dev_ofs(area->a_sb, area->a_segno, ofs); | ||
49 | } | ||
50 | |||
51 | static struct page *get_mapping_page(struct super_block *sb, pgoff_t index, | ||
52 | int use_filler) | ||
53 | { | ||
54 | struct logfs_super *super = logfs_super(sb); | ||
55 | struct address_space *mapping = super->s_mapping_inode->i_mapping; | ||
56 | filler_t *filler = super->s_devops->readpage; | ||
57 | struct page *page; | ||
58 | |||
59 | BUG_ON(mapping_gfp_mask(mapping) & __GFP_FS); | ||
60 | if (use_filler) | ||
61 | page = read_cache_page(mapping, index, filler, sb); | ||
62 | else { | ||
63 | page = find_or_create_page(mapping, index, GFP_NOFS); | ||
64 | unlock_page(page); | ||
65 | } | ||
66 | return page; | ||
67 | } | ||
68 | |||
69 | void __logfs_buf_write(struct logfs_area *area, u64 ofs, void *buf, size_t len, | ||
70 | int use_filler) | ||
71 | { | ||
72 | pgoff_t index = ofs >> PAGE_SHIFT; | ||
73 | struct page *page; | ||
74 | long offset = ofs & (PAGE_SIZE-1); | ||
75 | long copylen; | ||
76 | |||
77 | /* Only logfs_wbuf_recover may use len==0 */ | ||
78 | BUG_ON(!len && !use_filler); | ||
79 | do { | ||
80 | copylen = min((ulong)len, PAGE_SIZE - offset); | ||
81 | |||
82 | page = get_mapping_page(area->a_sb, index, use_filler); | ||
83 | SetPageUptodate(page); | ||
84 | BUG_ON(!page); /* FIXME: reserve a pool */ | ||
85 | memcpy(page_address(page) + offset, buf, copylen); | ||
86 | SetPagePrivate(page); | ||
87 | page_cache_release(page); | ||
88 | |||
89 | buf += copylen; | ||
90 | len -= copylen; | ||
91 | offset = 0; | ||
92 | index++; | ||
93 | } while (len); | ||
94 | } | ||
95 | |||
96 | /* | ||
97 | * bdev_writeseg will write full pages. Memset the tail to prevent data leaks. | ||
98 | */ | ||
99 | static void pad_wbuf(struct logfs_area *area, int final) | ||
100 | { | ||
101 | struct super_block *sb = area->a_sb; | ||
102 | struct logfs_super *super = logfs_super(sb); | ||
103 | struct page *page; | ||
104 | u64 ofs = dev_ofs(sb, area->a_segno, area->a_used_bytes); | ||
105 | pgoff_t index = ofs >> PAGE_SHIFT; | ||
106 | long offset = ofs & (PAGE_SIZE-1); | ||
107 | u32 len = PAGE_SIZE - offset; | ||
108 | |||
109 | if (len == PAGE_SIZE) { | ||
110 | /* The math in this function can surely use some love */ | ||
111 | len = 0; | ||
112 | } | ||
113 | if (len) { | ||
114 | BUG_ON(area->a_used_bytes >= super->s_segsize); | ||
115 | |||
116 | page = get_mapping_page(area->a_sb, index, 0); | ||
117 | BUG_ON(!page); /* FIXME: reserve a pool */ | ||
118 | memset(page_address(page) + offset, 0xff, len); | ||
119 | SetPagePrivate(page); | ||
120 | page_cache_release(page); | ||
121 | } | ||
122 | |||
123 | if (!final) | ||
124 | return; | ||
125 | |||
126 | area->a_used_bytes += len; | ||
127 | for ( ; area->a_used_bytes < super->s_segsize; | ||
128 | area->a_used_bytes += PAGE_SIZE) { | ||
129 | /* Memset another page */ | ||
130 | index++; | ||
131 | page = get_mapping_page(area->a_sb, index, 0); | ||
132 | BUG_ON(!page); /* FIXME: reserve a pool */ | ||
133 | memset(page_address(page), 0xff, PAGE_SIZE); | ||
134 | SetPagePrivate(page); | ||
135 | page_cache_release(page); | ||
136 | } | ||
137 | } | ||
138 | |||
139 | /* | ||
140 | * We have to be careful with the alias tree. Since lookup is done by bix, | ||
141 | * it needs to be normalized, so 14, 15, 16, etc. all match when dealing with | ||
142 | * indirect blocks. So always use it through accessor functions. | ||
143 | */ | ||
144 | static void *alias_tree_lookup(struct super_block *sb, u64 ino, u64 bix, | ||
145 | level_t level) | ||
146 | { | ||
147 | struct btree_head128 *head = &logfs_super(sb)->s_object_alias_tree; | ||
148 | pgoff_t index = logfs_pack_index(bix, level); | ||
149 | |||
150 | return btree_lookup128(head, ino, index); | ||
151 | } | ||
152 | |||
153 | static int alias_tree_insert(struct super_block *sb, u64 ino, u64 bix, | ||
154 | level_t level, void *val) | ||
155 | { | ||
156 | struct btree_head128 *head = &logfs_super(sb)->s_object_alias_tree; | ||
157 | pgoff_t index = logfs_pack_index(bix, level); | ||
158 | |||
159 | return btree_insert128(head, ino, index, val, GFP_NOFS); | ||
160 | } | ||
161 | |||
162 | static int btree_write_alias(struct super_block *sb, struct logfs_block *block, | ||
163 | write_alias_t *write_one_alias) | ||
164 | { | ||
165 | struct object_alias_item *item; | ||
166 | int err; | ||
167 | |||
168 | list_for_each_entry(item, &block->item_list, list) { | ||
169 | err = write_alias_journal(sb, block->ino, block->bix, | ||
170 | block->level, item->child_no, item->val); | ||
171 | if (err) | ||
172 | return err; | ||
173 | } | ||
174 | return 0; | ||
175 | } | ||
176 | |||
177 | static gc_level_t btree_block_level(struct logfs_block *block) | ||
178 | { | ||
179 | return expand_level(block->ino, block->level); | ||
180 | } | ||
181 | |||
182 | static struct logfs_block_ops btree_block_ops = { | ||
183 | .write_block = btree_write_block, | ||
184 | .block_level = btree_block_level, | ||
185 | .free_block = __free_block, | ||
186 | .write_alias = btree_write_alias, | ||
187 | }; | ||
188 | |||
189 | int logfs_load_object_aliases(struct super_block *sb, | ||
190 | struct logfs_obj_alias *oa, int count) | ||
191 | { | ||
192 | struct logfs_super *super = logfs_super(sb); | ||
193 | struct logfs_block *block; | ||
194 | struct object_alias_item *item; | ||
195 | u64 ino, bix; | ||
196 | level_t level; | ||
197 | int i, err; | ||
198 | |||
199 | super->s_flags |= LOGFS_SB_FLAG_OBJ_ALIAS; | ||
200 | count /= sizeof(*oa); | ||
201 | for (i = 0; i < count; i++) { | ||
202 | item = mempool_alloc(super->s_alias_pool, GFP_NOFS); | ||
203 | if (!item) | ||
204 | return -ENOMEM; | ||
205 | memset(item, 0, sizeof(*item)); | ||
206 | |||
207 | super->s_no_object_aliases++; | ||
208 | item->val = oa[i].val; | ||
209 | item->child_no = be16_to_cpu(oa[i].child_no); | ||
210 | |||
211 | ino = be64_to_cpu(oa[i].ino); | ||
212 | bix = be64_to_cpu(oa[i].bix); | ||
213 | level = LEVEL(oa[i].level); | ||
214 | |||
215 | log_aliases("logfs_load_object_aliases(%llx, %llx, %x, %x) %llx\n", | ||
216 | ino, bix, level, item->child_no, | ||
217 | be64_to_cpu(item->val)); | ||
218 | block = alias_tree_lookup(sb, ino, bix, level); | ||
219 | if (!block) { | ||
220 | block = __alloc_block(sb, ino, bix, level); | ||
221 | block->ops = &btree_block_ops; | ||
222 | err = alias_tree_insert(sb, ino, bix, level, block); | ||
223 | BUG_ON(err); /* mempool empty */ | ||
224 | } | ||
225 | if (test_and_set_bit(item->child_no, block->alias_map)) { | ||
226 | printk(KERN_ERR"LogFS: Alias collision detected\n"); | ||
227 | return -EIO; | ||
228 | } | ||
229 | list_move_tail(&block->alias_list, &super->s_object_alias); | ||
230 | list_add(&item->list, &block->item_list); | ||
231 | } | ||
232 | return 0; | ||
233 | } | ||
234 | |||
235 | static void kill_alias(void *_block, unsigned long ignore0, | ||
236 | u64 ignore1, u64 ignore2, size_t ignore3) | ||
237 | { | ||
238 | struct logfs_block *block = _block; | ||
239 | struct super_block *sb = block->sb; | ||
240 | struct logfs_super *super = logfs_super(sb); | ||
241 | struct object_alias_item *item; | ||
242 | |||
243 | while (!list_empty(&block->item_list)) { | ||
244 | item = list_entry(block->item_list.next, typeof(*item), list); | ||
245 | list_del(&item->list); | ||
246 | mempool_free(item, super->s_alias_pool); | ||
247 | } | ||
248 | block->ops->free_block(sb, block); | ||
249 | } | ||
250 | |||
251 | static int obj_type(struct inode *inode, level_t level) | ||
252 | { | ||
253 | if (level == 0) { | ||
254 | if (S_ISDIR(inode->i_mode)) | ||
255 | return OBJ_DENTRY; | ||
256 | if (inode->i_ino == LOGFS_INO_MASTER) | ||
257 | return OBJ_INODE; | ||
258 | } | ||
259 | return OBJ_BLOCK; | ||
260 | } | ||
261 | |||
262 | static int obj_len(struct super_block *sb, int obj_type) | ||
263 | { | ||
264 | switch (obj_type) { | ||
265 | case OBJ_DENTRY: | ||
266 | return sizeof(struct logfs_disk_dentry); | ||
267 | case OBJ_INODE: | ||
268 | return sizeof(struct logfs_disk_inode); | ||
269 | case OBJ_BLOCK: | ||
270 | return sb->s_blocksize; | ||
271 | default: | ||
272 | BUG(); | ||
273 | } | ||
274 | } | ||
275 | |||
276 | static int __logfs_segment_write(struct inode *inode, void *buf, | ||
277 | struct logfs_shadow *shadow, int type, int len, int compr) | ||
278 | { | ||
279 | struct logfs_area *area; | ||
280 | struct super_block *sb = inode->i_sb; | ||
281 | s64 ofs; | ||
282 | struct logfs_object_header h; | ||
283 | int acc_len; | ||
284 | |||
285 | if (shadow->gc_level == 0) | ||
286 | acc_len = len; | ||
287 | else | ||
288 | acc_len = obj_len(sb, type); | ||
289 | |||
290 | area = get_area(sb, shadow->gc_level); | ||
291 | ofs = logfs_get_free_bytes(area, len + LOGFS_OBJECT_HEADERSIZE); | ||
292 | LOGFS_BUG_ON(ofs <= 0, sb); | ||
293 | /* | ||
294 | * Order is important. logfs_get_free_bytes(), by modifying the | ||
295 | * segment file, may modify the content of the very page we're about | ||
296 | * to write now. Which is fine, as long as the calculated crc and | ||
297 | * written data still match. So do the modifications _before_ | ||
298 | * calculating the crc. | ||
299 | */ | ||
300 | |||
301 | h.len = cpu_to_be16(len); | ||
302 | h.type = type; | ||
303 | h.compr = compr; | ||
304 | h.ino = cpu_to_be64(inode->i_ino); | ||
305 | h.bix = cpu_to_be64(shadow->bix); | ||
306 | h.crc = logfs_crc32(&h, sizeof(h) - 4, 4); | ||
307 | h.data_crc = logfs_crc32(buf, len, 0); | ||
308 | |||
309 | logfs_buf_write(area, ofs, &h, sizeof(h)); | ||
310 | logfs_buf_write(area, ofs + LOGFS_OBJECT_HEADERSIZE, buf, len); | ||
311 | |||
312 | shadow->new_ofs = ofs; | ||
313 | shadow->new_len = acc_len + LOGFS_OBJECT_HEADERSIZE; | ||
314 | |||
315 | return 0; | ||
316 | } | ||
317 | |||
318 | static s64 logfs_segment_write_compress(struct inode *inode, void *buf, | ||
319 | struct logfs_shadow *shadow, int type, int len) | ||
320 | { | ||
321 | struct super_block *sb = inode->i_sb; | ||
322 | void *compressor_buf = logfs_super(sb)->s_compressed_je; | ||
323 | ssize_t compr_len; | ||
324 | int ret; | ||
325 | |||
326 | mutex_lock(&logfs_super(sb)->s_journal_mutex); | ||
327 | compr_len = logfs_compress(buf, compressor_buf, len, len); | ||
328 | |||
329 | if (compr_len >= 0) { | ||
330 | ret = __logfs_segment_write(inode, compressor_buf, shadow, | ||
331 | type, compr_len, COMPR_ZLIB); | ||
332 | } else { | ||
333 | ret = __logfs_segment_write(inode, buf, shadow, type, len, | ||
334 | COMPR_NONE); | ||
335 | } | ||
336 | mutex_unlock(&logfs_super(sb)->s_journal_mutex); | ||
337 | return ret; | ||
338 | } | ||
339 | |||
340 | /** | ||
341 | * logfs_segment_write - write data block to object store | ||
342 | * @inode: inode containing data | ||
343 | * | ||
344 | * Returns an errno or zero. | ||
345 | */ | ||
346 | int logfs_segment_write(struct inode *inode, struct page *page, | ||
347 | struct logfs_shadow *shadow) | ||
348 | { | ||
349 | struct super_block *sb = inode->i_sb; | ||
350 | struct logfs_super *super = logfs_super(sb); | ||
351 | int do_compress, type, len; | ||
352 | int ret; | ||
353 | void *buf; | ||
354 | |||
355 | super->s_flags |= LOGFS_SB_FLAG_DIRTY; | ||
356 | BUG_ON(super->s_flags & LOGFS_SB_FLAG_SHUTDOWN); | ||
357 | do_compress = logfs_inode(inode)->li_flags & LOGFS_IF_COMPRESSED; | ||
358 | if (shadow->gc_level != 0) { | ||
359 | /* temporarily disable compression for indirect blocks */ | ||
360 | do_compress = 0; | ||
361 | } | ||
362 | |||
363 | type = obj_type(inode, shrink_level(shadow->gc_level)); | ||
364 | len = obj_len(sb, type); | ||
365 | buf = kmap(page); | ||
366 | if (do_compress) | ||
367 | ret = logfs_segment_write_compress(inode, buf, shadow, type, | ||
368 | len); | ||
369 | else | ||
370 | ret = __logfs_segment_write(inode, buf, shadow, type, len, | ||
371 | COMPR_NONE); | ||
372 | kunmap(page); | ||
373 | |||
374 | log_segment("logfs_segment_write(%llx, %llx, %x) %llx->%llx %x->%x\n", | ||
375 | shadow->ino, shadow->bix, shadow->gc_level, | ||
376 | shadow->old_ofs, shadow->new_ofs, | ||
377 | shadow->old_len, shadow->new_len); | ||
378 | /* this BUG_ON did catch a locking bug. useful */ | ||
379 | BUG_ON(!(shadow->new_ofs & (super->s_segsize - 1))); | ||
380 | return ret; | ||
381 | } | ||
382 | |||
383 | int wbuf_read(struct super_block *sb, u64 ofs, size_t len, void *buf) | ||
384 | { | ||
385 | pgoff_t index = ofs >> PAGE_SHIFT; | ||
386 | struct page *page; | ||
387 | long offset = ofs & (PAGE_SIZE-1); | ||
388 | long copylen; | ||
389 | |||
390 | while (len) { | ||
391 | copylen = min((ulong)len, PAGE_SIZE - offset); | ||
392 | |||
393 | page = get_mapping_page(sb, index, 1); | ||
394 | if (IS_ERR(page)) | ||
395 | return PTR_ERR(page); | ||
396 | memcpy(buf, page_address(page) + offset, copylen); | ||
397 | page_cache_release(page); | ||
398 | |||
399 | buf += copylen; | ||
400 | len -= copylen; | ||
401 | offset = 0; | ||
402 | index++; | ||
403 | } | ||
404 | return 0; | ||
405 | } | ||
406 | |||
407 | /* | ||
408 | * The "position" of indirect blocks is ambiguous. It can be the position | ||
409 | * of any data block somewhere behind this indirect block. So we need to | ||
410 | * normalize the positions through logfs_block_mask() before comparing. | ||
411 | */ | ||
412 | static int check_pos(struct super_block *sb, u64 pos1, u64 pos2, level_t level) | ||
413 | { | ||
414 | return (pos1 & logfs_block_mask(sb, level)) != | ||
415 | (pos2 & logfs_block_mask(sb, level)); | ||
416 | } | ||
417 | |||
418 | #if 0 | ||
419 | static int read_seg_header(struct super_block *sb, u64 ofs, | ||
420 | struct logfs_segment_header *sh) | ||
421 | { | ||
422 | __be32 crc; | ||
423 | int err; | ||
424 | |||
425 | err = wbuf_read(sb, ofs, sizeof(*sh), sh); | ||
426 | if (err) | ||
427 | return err; | ||
428 | crc = logfs_crc32(sh, sizeof(*sh), 4); | ||
429 | if (crc != sh->crc) { | ||
430 | printk(KERN_ERR"LOGFS: header crc error at %llx: expected %x, " | ||
431 | "got %x\n", ofs, be32_to_cpu(sh->crc), | ||
432 | be32_to_cpu(crc)); | ||
433 | return -EIO; | ||
434 | } | ||
435 | return 0; | ||
436 | } | ||
437 | #endif | ||
438 | |||
439 | static int read_obj_header(struct super_block *sb, u64 ofs, | ||
440 | struct logfs_object_header *oh) | ||
441 | { | ||
442 | __be32 crc; | ||
443 | int err; | ||
444 | |||
445 | err = wbuf_read(sb, ofs, sizeof(*oh), oh); | ||
446 | if (err) | ||
447 | return err; | ||
448 | crc = logfs_crc32(oh, sizeof(*oh) - 4, 4); | ||
449 | if (crc != oh->crc) { | ||
450 | printk(KERN_ERR"LOGFS: header crc error at %llx: expected %x, " | ||
451 | "got %x\n", ofs, be32_to_cpu(oh->crc), | ||
452 | be32_to_cpu(crc)); | ||
453 | return -EIO; | ||
454 | } | ||
455 | return 0; | ||
456 | } | ||
457 | |||
458 | static void move_btree_to_page(struct inode *inode, struct page *page, | ||
459 | __be64 *data) | ||
460 | { | ||
461 | struct super_block *sb = inode->i_sb; | ||
462 | struct logfs_super *super = logfs_super(sb); | ||
463 | struct btree_head128 *head = &super->s_object_alias_tree; | ||
464 | struct logfs_block *block; | ||
465 | struct object_alias_item *item, *next; | ||
466 | |||
467 | if (!(super->s_flags & LOGFS_SB_FLAG_OBJ_ALIAS)) | ||
468 | return; | ||
469 | |||
470 | block = btree_remove128(head, inode->i_ino, page->index); | ||
471 | if (!block) | ||
472 | return; | ||
473 | |||
474 | log_blockmove("move_btree_to_page(%llx, %llx, %x)\n", | ||
475 | block->ino, block->bix, block->level); | ||
476 | list_for_each_entry_safe(item, next, &block->item_list, list) { | ||
477 | data[item->child_no] = item->val; | ||
478 | list_del(&item->list); | ||
479 | mempool_free(item, super->s_alias_pool); | ||
480 | } | ||
481 | block->page = page; | ||
482 | SetPagePrivate(page); | ||
483 | page->private = (unsigned long)block; | ||
484 | block->ops = &indirect_block_ops; | ||
485 | initialize_block_counters(page, block, data, 0); | ||
486 | } | ||
487 | |||
488 | /* | ||
489 | * This silences a false, yet annoying gcc warning. I hate it when my editor | ||
490 | * jumps into bitops.h each time I recompile this file. | ||
491 | * TODO: Complain to gcc folks about this and upgrade compiler. | ||
492 | */ | ||
493 | static unsigned long fnb(const unsigned long *addr, | ||
494 | unsigned long size, unsigned long offset) | ||
495 | { | ||
496 | return find_next_bit(addr, size, offset); | ||
497 | } | ||
498 | |||
499 | void move_page_to_btree(struct page *page) | ||
500 | { | ||
501 | struct logfs_block *block = logfs_block(page); | ||
502 | struct super_block *sb = block->sb; | ||
503 | struct logfs_super *super = logfs_super(sb); | ||
504 | struct object_alias_item *item; | ||
505 | unsigned long pos; | ||
506 | __be64 *child; | ||
507 | int err; | ||
508 | |||
509 | if (super->s_flags & LOGFS_SB_FLAG_SHUTDOWN) { | ||
510 | block->ops->free_block(sb, block); | ||
511 | return; | ||
512 | } | ||
513 | log_blockmove("move_page_to_btree(%llx, %llx, %x)\n", | ||
514 | block->ino, block->bix, block->level); | ||
515 | super->s_flags |= LOGFS_SB_FLAG_OBJ_ALIAS; | ||
516 | |||
517 | for (pos = 0; ; pos++) { | ||
518 | pos = fnb(block->alias_map, LOGFS_BLOCK_FACTOR, pos); | ||
519 | if (pos >= LOGFS_BLOCK_FACTOR) | ||
520 | break; | ||
521 | |||
522 | item = mempool_alloc(super->s_alias_pool, GFP_NOFS); | ||
523 | BUG_ON(!item); /* mempool empty */ | ||
524 | memset(item, 0, sizeof(*item)); | ||
525 | |||
526 | child = kmap_atomic(page, KM_USER0); | ||
527 | item->val = child[pos]; | ||
528 | kunmap_atomic(child, KM_USER0); | ||
529 | item->child_no = pos; | ||
530 | list_add(&item->list, &block->item_list); | ||
531 | } | ||
532 | block->page = NULL; | ||
533 | ClearPagePrivate(page); | ||
534 | page->private = 0; | ||
535 | block->ops = &btree_block_ops; | ||
536 | err = alias_tree_insert(block->sb, block->ino, block->bix, block->level, | ||
537 | block); | ||
538 | BUG_ON(err); /* mempool empty */ | ||
539 | ClearPageUptodate(page); | ||
540 | } | ||
541 | |||
542 | static int __logfs_segment_read(struct inode *inode, void *buf, | ||
543 | u64 ofs, u64 bix, level_t level) | ||
544 | { | ||
545 | struct super_block *sb = inode->i_sb; | ||
546 | void *compressor_buf = logfs_super(sb)->s_compressed_je; | ||
547 | struct logfs_object_header oh; | ||
548 | __be32 crc; | ||
549 | u16 len; | ||
550 | int err, block_len; | ||
551 | |||
552 | block_len = obj_len(sb, obj_type(inode, level)); | ||
553 | err = read_obj_header(sb, ofs, &oh); | ||
554 | if (err) | ||
555 | goto out_err; | ||
556 | |||
557 | err = -EIO; | ||
558 | if (be64_to_cpu(oh.ino) != inode->i_ino | ||
559 | || check_pos(sb, be64_to_cpu(oh.bix), bix, level)) { | ||
560 | printk(KERN_ERR"LOGFS: (ino, bix) don't match at %llx: " | ||
561 | "expected (%lx, %llx), got (%llx, %llx)\n", | ||
562 | ofs, inode->i_ino, bix, | ||
563 | be64_to_cpu(oh.ino), be64_to_cpu(oh.bix)); | ||
564 | goto out_err; | ||
565 | } | ||
566 | |||
567 | len = be16_to_cpu(oh.len); | ||
568 | |||
569 | switch (oh.compr) { | ||
570 | case COMPR_NONE: | ||
571 | err = wbuf_read(sb, ofs + LOGFS_OBJECT_HEADERSIZE, len, buf); | ||
572 | if (err) | ||
573 | goto out_err; | ||
574 | crc = logfs_crc32(buf, len, 0); | ||
575 | if (crc != oh.data_crc) { | ||
576 | printk(KERN_ERR"LOGFS: uncompressed data crc error at " | ||
577 | "%llx: expected %x, got %x\n", ofs, | ||
578 | be32_to_cpu(oh.data_crc), | ||
579 | be32_to_cpu(crc)); | ||
580 | goto out_err; | ||
581 | } | ||
582 | break; | ||
583 | case COMPR_ZLIB: | ||
584 | mutex_lock(&logfs_super(sb)->s_journal_mutex); | ||
585 | err = wbuf_read(sb, ofs + LOGFS_OBJECT_HEADERSIZE, len, | ||
586 | compressor_buf); | ||
587 | if (err) { | ||
588 | mutex_unlock(&logfs_super(sb)->s_journal_mutex); | ||
589 | goto out_err; | ||
590 | } | ||
591 | crc = logfs_crc32(compressor_buf, len, 0); | ||
592 | if (crc != oh.data_crc) { | ||
593 | printk(KERN_ERR"LOGFS: compressed data crc error at " | ||
594 | "%llx: expected %x, got %x\n", ofs, | ||
595 | be32_to_cpu(oh.data_crc), | ||
596 | be32_to_cpu(crc)); | ||
597 | mutex_unlock(&logfs_super(sb)->s_journal_mutex); | ||
598 | goto out_err; | ||
599 | } | ||
600 | err = logfs_uncompress(compressor_buf, buf, len, block_len); | ||
601 | mutex_unlock(&logfs_super(sb)->s_journal_mutex); | ||
602 | if (err) { | ||
603 | printk(KERN_ERR"LOGFS: uncompress error at %llx\n", ofs); | ||
604 | goto out_err; | ||
605 | } | ||
606 | break; | ||
607 | default: | ||
608 | LOGFS_BUG(sb); | ||
609 | err = -EIO; | ||
610 | goto out_err; | ||
611 | } | ||
612 | return 0; | ||
613 | |||
614 | out_err: | ||
615 | logfs_set_ro(sb); | ||
616 | printk(KERN_ERR"LOGFS: device is read-only now\n"); | ||
617 | LOGFS_BUG(sb); | ||
618 | return err; | ||
619 | } | ||
620 | |||
621 | /** | ||
622 | * logfs_segment_read - read data block from object store | ||
623 | * @inode: inode containing data | ||
624 | * @buf: data buffer | ||
625 | * @ofs: physical data offset | ||
626 | * @bix: block index | ||
627 | * @level: block level | ||
628 | * | ||
629 | * Returns 0 on success or a negative errno. | ||
630 | */ | ||
631 | int logfs_segment_read(struct inode *inode, struct page *page, | ||
632 | u64 ofs, u64 bix, level_t level) | ||
633 | { | ||
634 | int err; | ||
635 | void *buf; | ||
636 | |||
637 | if (PageUptodate(page)) | ||
638 | return 0; | ||
639 | |||
640 | ofs &= ~LOGFS_FULLY_POPULATED; | ||
641 | |||
642 | buf = kmap(page); | ||
643 | err = __logfs_segment_read(inode, buf, ofs, bix, level); | ||
644 | if (!err) { | ||
645 | move_btree_to_page(inode, page, buf); | ||
646 | SetPageUptodate(page); | ||
647 | } | ||
648 | kunmap(page); | ||
649 | log_segment("logfs_segment_read(%lx, %llx, %x) %llx (%d)\n", | ||
650 | inode->i_ino, bix, level, ofs, err); | ||
651 | return err; | ||
652 | } | ||
653 | |||
654 | int logfs_segment_delete(struct inode *inode, struct logfs_shadow *shadow) | ||
655 | { | ||
656 | struct super_block *sb = inode->i_sb; | ||
657 | struct logfs_super *super = logfs_super(sb); | ||
658 | struct logfs_object_header h; | ||
659 | u16 len; | ||
660 | int err; | ||
661 | |||
662 | super->s_flags |= LOGFS_SB_FLAG_DIRTY; | ||
663 | BUG_ON(super->s_flags & LOGFS_SB_FLAG_SHUTDOWN); | ||
664 | BUG_ON(shadow->old_ofs & LOGFS_FULLY_POPULATED); | ||
665 | if (!shadow->old_ofs) | ||
666 | return 0; | ||
667 | |||
668 | log_segment("logfs_segment_delete(%llx, %llx, %x) %llx->%llx %x->%x\n", | ||
669 | shadow->ino, shadow->bix, shadow->gc_level, | ||
670 | shadow->old_ofs, shadow->new_ofs, | ||
671 | shadow->old_len, shadow->new_len); | ||
672 | err = read_obj_header(sb, shadow->old_ofs, &h); | ||
673 | LOGFS_BUG_ON(err, sb); | ||
674 | LOGFS_BUG_ON(be64_to_cpu(h.ino) != inode->i_ino, sb); | ||
675 | LOGFS_BUG_ON(check_pos(sb, shadow->bix, be64_to_cpu(h.bix), | ||
676 | shrink_level(shadow->gc_level)), sb); | ||
677 | |||
678 | if (shadow->gc_level == 0) | ||
679 | len = be16_to_cpu(h.len); | ||
680 | else | ||
681 | len = obj_len(sb, h.type); | ||
682 | shadow->old_len = len + sizeof(h); | ||
683 | return 0; | ||
684 | } | ||
685 | |||
686 | static void freeseg(struct super_block *sb, u32 segno) | ||
687 | { | ||
688 | struct logfs_super *super = logfs_super(sb); | ||
689 | struct address_space *mapping = super->s_mapping_inode->i_mapping; | ||
690 | struct page *page; | ||
691 | u64 ofs, start, end; | ||
692 | |||
693 | start = dev_ofs(sb, segno, 0); | ||
694 | end = dev_ofs(sb, segno + 1, 0); | ||
695 | for (ofs = start; ofs < end; ofs += PAGE_SIZE) { | ||
696 | page = find_get_page(mapping, ofs >> PAGE_SHIFT); | ||
697 | if (!page) | ||
698 | continue; | ||
699 | ClearPagePrivate(page); | ||
700 | page_cache_release(page); | ||
701 | } | ||
702 | } | ||
703 | |||
704 | int logfs_open_area(struct logfs_area *area, size_t bytes) | ||
705 | { | ||
706 | struct super_block *sb = area->a_sb; | ||
707 | struct logfs_super *super = logfs_super(sb); | ||
708 | int err, closed = 0; | ||
709 | |||
710 | if (area->a_is_open && area->a_used_bytes + bytes <= super->s_segsize) | ||
711 | return 0; | ||
712 | |||
713 | if (area->a_is_open) { | ||
714 | u64 ofs = dev_ofs(sb, area->a_segno, area->a_written_bytes); | ||
715 | u32 len = super->s_segsize - area->a_written_bytes; | ||
716 | |||
717 | log_gc("logfs_close_area(%x)\n", area->a_segno); | ||
718 | pad_wbuf(area, 1); | ||
719 | super->s_devops->writeseg(area->a_sb, ofs, len); | ||
720 | freeseg(sb, area->a_segno); | ||
721 | closed = 1; | ||
722 | } | ||
723 | |||
724 | area->a_used_bytes = 0; | ||
725 | area->a_written_bytes = 0; | ||
726 | again: | ||
727 | area->a_ops->get_free_segment(area); | ||
728 | area->a_ops->get_erase_count(area); | ||
729 | |||
730 | log_gc("logfs_open_area(%x, %x)\n", area->a_segno, area->a_level); | ||
731 | err = area->a_ops->erase_segment(area); | ||
732 | if (err) { | ||
733 | printk(KERN_WARNING "LogFS: Error erasing segment %x\n", | ||
734 | area->a_segno); | ||
735 | logfs_mark_segment_bad(sb, area->a_segno); | ||
736 | goto again; | ||
737 | } | ||
738 | area->a_is_open = 1; | ||
739 | return closed; | ||
740 | } | ||
741 | |||
742 | void logfs_sync_area(struct logfs_area *area) | ||
743 | { | ||
744 | struct super_block *sb = area->a_sb; | ||
745 | struct logfs_super *super = logfs_super(sb); | ||
746 | u64 ofs = dev_ofs(sb, area->a_segno, area->a_written_bytes); | ||
747 | u32 len = (area->a_used_bytes - area->a_written_bytes); | ||
748 | |||
749 | if (super->s_writesize) | ||
750 | len &= ~(super->s_writesize - 1); | ||
751 | if (len == 0) | ||
752 | return; | ||
753 | pad_wbuf(area, 0); | ||
754 | super->s_devops->writeseg(sb, ofs, len); | ||
755 | area->a_written_bytes += len; | ||
756 | } | ||
757 | |||
758 | void logfs_sync_segments(struct super_block *sb) | ||
759 | { | ||
760 | struct logfs_super *super = logfs_super(sb); | ||
761 | int i; | ||
762 | |||
763 | for_each_area(i) | ||
764 | logfs_sync_area(super->s_area[i]); | ||
765 | } | ||
766 | |||
767 | /* | ||
768 | * Pick a free segment to be used for this area. Effectively takes a | ||
769 | * candidate from the free list (not really a candidate anymore). | ||
770 | */ | ||
771 | static void ostore_get_free_segment(struct logfs_area *area) | ||
772 | { | ||
773 | struct super_block *sb = area->a_sb; | ||
774 | struct logfs_super *super = logfs_super(sb); | ||
775 | |||
776 | if (super->s_free_list.count == 0) { | ||
777 | printk(KERN_ERR"LOGFS: ran out of free segments\n"); | ||
778 | LOGFS_BUG(sb); | ||
779 | } | ||
780 | |||
781 | area->a_segno = get_best_cand(sb, &super->s_free_list, NULL); | ||
782 | } | ||
783 | |||
784 | static void ostore_get_erase_count(struct logfs_area *area) | ||
785 | { | ||
786 | struct logfs_segment_entry se; | ||
787 | u32 ec_level; | ||
788 | |||
789 | logfs_get_segment_entry(area->a_sb, area->a_segno, &se); | ||
790 | BUG_ON(se.ec_level == cpu_to_be32(BADSEG) || | ||
791 | se.valid == cpu_to_be32(RESERVED)); | ||
792 | |||
793 | ec_level = be32_to_cpu(se.ec_level); | ||
794 | area->a_erase_count = (ec_level >> 4) + 1; | ||
795 | } | ||
796 | |||
797 | static int ostore_erase_segment(struct logfs_area *area) | ||
798 | { | ||
799 | struct super_block *sb = area->a_sb; | ||
800 | struct logfs_segment_header sh; | ||
801 | u64 ofs; | ||
802 | int err; | ||
803 | |||
804 | err = logfs_erase_segment(sb, area->a_segno, 0); | ||
805 | if (err) | ||
806 | return err; | ||
807 | |||
808 | sh.pad = 0; | ||
809 | sh.type = SEG_OSTORE; | ||
810 | sh.level = (__force u8)area->a_level; | ||
811 | sh.segno = cpu_to_be32(area->a_segno); | ||
812 | sh.ec = cpu_to_be32(area->a_erase_count); | ||
813 | sh.gec = cpu_to_be64(logfs_super(sb)->s_gec); | ||
814 | sh.crc = logfs_crc32(&sh, sizeof(sh), 4); | ||
815 | |||
816 | logfs_set_segment_erased(sb, area->a_segno, area->a_erase_count, | ||
817 | area->a_level); | ||
818 | |||
819 | ofs = dev_ofs(sb, area->a_segno, 0); | ||
820 | area->a_used_bytes = sizeof(sh); | ||
821 | logfs_buf_write(area, ofs, &sh, sizeof(sh)); | ||
822 | return 0; | ||
823 | } | ||
824 | |||
825 | static const struct logfs_area_ops ostore_area_ops = { | ||
826 | .get_free_segment = ostore_get_free_segment, | ||
827 | .get_erase_count = ostore_get_erase_count, | ||
828 | .erase_segment = ostore_erase_segment, | ||
829 | }; | ||
830 | |||
831 | static void free_area(struct logfs_area *area) | ||
832 | { | ||
833 | if (area) | ||
834 | freeseg(area->a_sb, area->a_segno); | ||
835 | kfree(area); | ||
836 | } | ||
837 | |||
838 | static struct logfs_area *alloc_area(struct super_block *sb) | ||
839 | { | ||
840 | struct logfs_area *area; | ||
841 | |||
842 | area = kzalloc(sizeof(*area), GFP_KERNEL); | ||
843 | if (!area) | ||
844 | return NULL; | ||
845 | |||
846 | area->a_sb = sb; | ||
847 | return area; | ||
848 | } | ||
849 | |||
850 | static void map_invalidatepage(struct page *page, unsigned long l) | ||
851 | { | ||
852 | BUG(); | ||
853 | } | ||
854 | |||
855 | static int map_releasepage(struct page *page, gfp_t g) | ||
856 | { | ||
857 | /* Don't release these pages */ | ||
858 | return 0; | ||
859 | } | ||
860 | |||
861 | static const struct address_space_operations mapping_aops = { | ||
862 | .invalidatepage = map_invalidatepage, | ||
863 | .releasepage = map_releasepage, | ||
864 | .set_page_dirty = __set_page_dirty_nobuffers, | ||
865 | }; | ||
866 | |||
867 | int logfs_init_mapping(struct super_block *sb) | ||
868 | { | ||
869 | struct logfs_super *super = logfs_super(sb); | ||
870 | struct address_space *mapping; | ||
871 | struct inode *inode; | ||
872 | |||
873 | inode = logfs_new_meta_inode(sb, LOGFS_INO_MAPPING); | ||
874 | if (IS_ERR(inode)) | ||
875 | return PTR_ERR(inode); | ||
876 | super->s_mapping_inode = inode; | ||
877 | mapping = inode->i_mapping; | ||
878 | mapping->a_ops = &mapping_aops; | ||
879 | /* Would it be possible to use __GFP_HIGHMEM as well? */ | ||
880 | mapping_set_gfp_mask(mapping, GFP_NOFS); | ||
881 | return 0; | ||
882 | } | ||
883 | |||
884 | int logfs_init_areas(struct super_block *sb) | ||
885 | { | ||
886 | struct logfs_super *super = logfs_super(sb); | ||
887 | int i = -1; | ||
888 | |||
889 | super->s_alias_pool = mempool_create_kmalloc_pool(600, | ||
890 | sizeof(struct object_alias_item)); | ||
891 | if (!super->s_alias_pool) | ||
892 | return -ENOMEM; | ||
893 | |||
894 | super->s_journal_area = alloc_area(sb); | ||
895 | if (!super->s_journal_area) | ||
896 | goto err; | ||
897 | |||
898 | for_each_area(i) { | ||
899 | super->s_area[i] = alloc_area(sb); | ||
900 | if (!super->s_area[i]) | ||
901 | goto err; | ||
902 | super->s_area[i]->a_level = GC_LEVEL(i); | ||
903 | super->s_area[i]->a_ops = &ostore_area_ops; | ||
904 | } | ||
905 | btree_init_mempool128(&super->s_object_alias_tree, | ||
906 | super->s_btree_pool); | ||
907 | return 0; | ||
908 | |||
909 | err: | ||
910 | for (i--; i >= 0; i--) | ||
911 | free_area(super->s_area[i]); | ||
912 | free_area(super->s_journal_area); | ||
913 | mempool_destroy(super->s_alias_pool); | ||
914 | return -ENOMEM; | ||
915 | } | ||
916 | |||
917 | void logfs_cleanup_areas(struct super_block *sb) | ||
918 | { | ||
919 | struct logfs_super *super = logfs_super(sb); | ||
920 | int i; | ||
921 | |||
922 | btree_grim_visitor128(&super->s_object_alias_tree, 0, kill_alias); | ||
923 | for_each_area(i) | ||
924 | free_area(super->s_area[i]); | ||
925 | free_area(super->s_journal_area); | ||
926 | destroy_meta_inode(super->s_mapping_inode); | ||
927 | } | ||
diff --git a/fs/logfs/super.c b/fs/logfs/super.c new file mode 100644 index 000000000000..c66beab78dee --- /dev/null +++ b/fs/logfs/super.c | |||
@@ -0,0 +1,650 @@ | |||
1 | /* | ||
2 | * fs/logfs/super.c | ||
3 | * | ||
4 | * As should be obvious for Linux kernel code, license is GPLv2 | ||
5 | * | ||
6 | * Copyright (c) 2005-2008 Joern Engel <joern@logfs.org> | ||
7 | * | ||
8 | * Generally contains mount/umount code and also serves as a dump area for | ||
9 | * any functions that don't fit elsewhere and neither justify a file of their | ||
10 | * own. | ||
11 | */ | ||
12 | #include "logfs.h" | ||
13 | #include <linux/bio.h> | ||
14 | #include <linux/mtd/mtd.h> | ||
15 | #include <linux/statfs.h> | ||
16 | #include <linux/buffer_head.h> | ||
17 | |||
18 | static DEFINE_MUTEX(emergency_mutex); | ||
19 | static struct page *emergency_page; | ||
20 | |||
21 | struct page *emergency_read_begin(struct address_space *mapping, pgoff_t index) | ||
22 | { | ||
23 | filler_t *filler = (filler_t *)mapping->a_ops->readpage; | ||
24 | struct page *page; | ||
25 | int err; | ||
26 | |||
27 | page = read_cache_page(mapping, index, filler, NULL); | ||
28 | if (page) | ||
29 | return page; | ||
30 | |||
31 | /* No more pages available, switch to emergency page */ | ||
32 | printk(KERN_INFO"Logfs: Using emergency page\n"); | ||
33 | mutex_lock(&emergency_mutex); | ||
34 | err = filler(NULL, emergency_page); | ||
35 | if (err) { | ||
36 | mutex_unlock(&emergency_mutex); | ||
37 | printk(KERN_EMERG"Logfs: Error reading emergency page\n"); | ||
38 | return ERR_PTR(err); | ||
39 | } | ||
40 | return emergency_page; | ||
41 | } | ||
42 | |||
43 | void emergency_read_end(struct page *page) | ||
44 | { | ||
45 | if (page == emergency_page) | ||
46 | mutex_unlock(&emergency_mutex); | ||
47 | else | ||
48 | page_cache_release(page); | ||
49 | } | ||
50 | |||
51 | static void dump_segfile(struct super_block *sb) | ||
52 | { | ||
53 | struct logfs_super *super = logfs_super(sb); | ||
54 | struct logfs_segment_entry se; | ||
55 | u32 segno; | ||
56 | |||
57 | for (segno = 0; segno < super->s_no_segs; segno++) { | ||
58 | logfs_get_segment_entry(sb, segno, &se); | ||
59 | printk("%3x: %6x %8x", segno, be32_to_cpu(se.ec_level), | ||
60 | be32_to_cpu(se.valid)); | ||
61 | if (++segno < super->s_no_segs) { | ||
62 | logfs_get_segment_entry(sb, segno, &se); | ||
63 | printk(" %6x %8x", be32_to_cpu(se.ec_level), | ||
64 | be32_to_cpu(se.valid)); | ||
65 | } | ||
66 | if (++segno < super->s_no_segs) { | ||
67 | logfs_get_segment_entry(sb, segno, &se); | ||
68 | printk(" %6x %8x", be32_to_cpu(se.ec_level), | ||
69 | be32_to_cpu(se.valid)); | ||
70 | } | ||
71 | if (++segno < super->s_no_segs) { | ||
72 | logfs_get_segment_entry(sb, segno, &se); | ||
73 | printk(" %6x %8x", be32_to_cpu(se.ec_level), | ||
74 | be32_to_cpu(se.valid)); | ||
75 | } | ||
76 | printk("\n"); | ||
77 | } | ||
78 | } | ||
79 | |||
80 | /* | ||
81 | * logfs_crash_dump - dump debug information to device | ||
82 | * | ||
83 | * The LogFS superblock only occupies part of a segment. This function will | ||
84 | * write as much debug information as it can gather into the spare space. | ||
85 | */ | ||
86 | void logfs_crash_dump(struct super_block *sb) | ||
87 | { | ||
88 | dump_segfile(sb); | ||
89 | } | ||
90 | |||
91 | /* | ||
92 | * TODO: move to lib/string.c | ||
93 | */ | ||
94 | /** | ||
95 | * memchr_inv - Find a character in an area of memory. | ||
96 | * @s: The memory area | ||
97 | * @c: The byte to search for | ||
98 | * @n: The size of the area. | ||
99 | * | ||
100 | * returns the address of the first character other than @c, or %NULL | ||
101 | * if the whole buffer contains just @c. | ||
102 | */ | ||
103 | void *memchr_inv(const void *s, int c, size_t n) | ||
104 | { | ||
105 | const unsigned char *p = s; | ||
106 | while (n-- != 0) | ||
107 | if ((unsigned char)c != *p++) | ||
108 | return (void *)(p - 1); | ||
109 | |||
110 | return NULL; | ||
111 | } | ||
112 | |||
113 | /* | ||
114 | * FIXME: There should be a reserve for root, similar to ext2. | ||
115 | */ | ||
116 | int logfs_statfs(struct dentry *dentry, struct kstatfs *stats) | ||
117 | { | ||
118 | struct super_block *sb = dentry->d_sb; | ||
119 | struct logfs_super *super = logfs_super(sb); | ||
120 | |||
121 | stats->f_type = LOGFS_MAGIC_U32; | ||
122 | stats->f_bsize = sb->s_blocksize; | ||
123 | stats->f_blocks = super->s_size >> LOGFS_BLOCK_BITS >> 3; | ||
124 | stats->f_bfree = super->s_free_bytes >> sb->s_blocksize_bits; | ||
125 | stats->f_bavail = super->s_free_bytes >> sb->s_blocksize_bits; | ||
126 | stats->f_files = 0; | ||
127 | stats->f_ffree = 0; | ||
128 | stats->f_namelen = LOGFS_MAX_NAMELEN; | ||
129 | return 0; | ||
130 | } | ||
131 | |||
132 | static int logfs_sb_set(struct super_block *sb, void *_super) | ||
133 | { | ||
134 | struct logfs_super *super = _super; | ||
135 | |||
136 | sb->s_fs_info = super; | ||
137 | sb->s_mtd = super->s_mtd; | ||
138 | sb->s_bdev = super->s_bdev; | ||
139 | return 0; | ||
140 | } | ||
141 | |||
142 | static int logfs_sb_test(struct super_block *sb, void *_super) | ||
143 | { | ||
144 | struct logfs_super *super = _super; | ||
145 | struct mtd_info *mtd = super->s_mtd; | ||
146 | |||
147 | if (mtd && sb->s_mtd == mtd) | ||
148 | return 1; | ||
149 | if (super->s_bdev && sb->s_bdev == super->s_bdev) | ||
150 | return 1; | ||
151 | return 0; | ||
152 | } | ||
153 | |||
154 | static void set_segment_header(struct logfs_segment_header *sh, u8 type, | ||
155 | u8 level, u32 segno, u32 ec) | ||
156 | { | ||
157 | sh->pad = 0; | ||
158 | sh->type = type; | ||
159 | sh->level = level; | ||
160 | sh->segno = cpu_to_be32(segno); | ||
161 | sh->ec = cpu_to_be32(ec); | ||
162 | sh->gec = cpu_to_be64(segno); | ||
163 | sh->crc = logfs_crc32(sh, LOGFS_SEGMENT_HEADERSIZE, 4); | ||
164 | } | ||
165 | |||
166 | static void logfs_write_ds(struct super_block *sb, struct logfs_disk_super *ds, | ||
167 | u32 segno, u32 ec) | ||
168 | { | ||
169 | struct logfs_super *super = logfs_super(sb); | ||
170 | struct logfs_segment_header *sh = &ds->ds_sh; | ||
171 | int i; | ||
172 | |||
173 | memset(ds, 0, sizeof(*ds)); | ||
174 | set_segment_header(sh, SEG_SUPER, 0, segno, ec); | ||
175 | |||
176 | ds->ds_ifile_levels = super->s_ifile_levels; | ||
177 | ds->ds_iblock_levels = super->s_iblock_levels; | ||
178 | ds->ds_data_levels = super->s_data_levels; /* XXX: Remove */ | ||
179 | ds->ds_segment_shift = super->s_segshift; | ||
180 | ds->ds_block_shift = sb->s_blocksize_bits; | ||
181 | ds->ds_write_shift = super->s_writeshift; | ||
182 | ds->ds_filesystem_size = cpu_to_be64(super->s_size); | ||
183 | ds->ds_segment_size = cpu_to_be32(super->s_segsize); | ||
184 | ds->ds_bad_seg_reserve = cpu_to_be32(super->s_bad_seg_reserve); | ||
185 | ds->ds_feature_incompat = cpu_to_be64(super->s_feature_incompat); | ||
186 | ds->ds_feature_ro_compat= cpu_to_be64(super->s_feature_ro_compat); | ||
187 | ds->ds_feature_compat = cpu_to_be64(super->s_feature_compat); | ||
188 | ds->ds_feature_flags = cpu_to_be64(super->s_feature_flags); | ||
189 | ds->ds_root_reserve = cpu_to_be64(super->s_root_reserve); | ||
190 | ds->ds_speed_reserve = cpu_to_be64(super->s_speed_reserve); | ||
191 | journal_for_each(i) | ||
192 | ds->ds_journal_seg[i] = cpu_to_be32(super->s_journal_seg[i]); | ||
193 | ds->ds_magic = cpu_to_be64(LOGFS_MAGIC); | ||
194 | ds->ds_crc = logfs_crc32(ds, sizeof(*ds), | ||
195 | LOGFS_SEGMENT_HEADERSIZE + 12); | ||
196 | } | ||
197 | |||
198 | static int write_one_sb(struct super_block *sb, | ||
199 | struct page *(*find_sb)(struct super_block *sb, u64 *ofs)) | ||
200 | { | ||
201 | struct logfs_super *super = logfs_super(sb); | ||
202 | struct logfs_disk_super *ds; | ||
203 | struct logfs_segment_entry se; | ||
204 | struct page *page; | ||
205 | u64 ofs; | ||
206 | u32 ec, segno; | ||
207 | int err; | ||
208 | |||
209 | page = find_sb(sb, &ofs); | ||
210 | if (!page) | ||
211 | return -EIO; | ||
212 | ds = page_address(page); | ||
213 | segno = seg_no(sb, ofs); | ||
214 | logfs_get_segment_entry(sb, segno, &se); | ||
215 | ec = be32_to_cpu(se.ec_level) >> 4; | ||
216 | ec++; | ||
217 | logfs_set_segment_erased(sb, segno, ec, 0); | ||
218 | logfs_write_ds(sb, ds, segno, ec); | ||
219 | err = super->s_devops->write_sb(sb, page); | ||
220 | page_cache_release(page); | ||
221 | return err; | ||
222 | } | ||
223 | |||
224 | int logfs_write_sb(struct super_block *sb) | ||
225 | { | ||
226 | struct logfs_super *super = logfs_super(sb); | ||
227 | int err; | ||
228 | |||
229 | /* First superblock */ | ||
230 | err = write_one_sb(sb, super->s_devops->find_first_sb); | ||
231 | if (err) | ||
232 | return err; | ||
233 | |||
234 | /* Last superblock */ | ||
235 | err = write_one_sb(sb, super->s_devops->find_last_sb); | ||
236 | if (err) | ||
237 | return err; | ||
238 | return 0; | ||
239 | } | ||
240 | |||
241 | static int ds_cmp(const void *ds0, const void *ds1) | ||
242 | { | ||
243 | size_t len = sizeof(struct logfs_disk_super); | ||
244 | |||
245 | /* We know the segment headers differ, so ignore them */ | ||
246 | len -= LOGFS_SEGMENT_HEADERSIZE; | ||
247 | ds0 += LOGFS_SEGMENT_HEADERSIZE; | ||
248 | ds1 += LOGFS_SEGMENT_HEADERSIZE; | ||
249 | return memcmp(ds0, ds1, len); | ||
250 | } | ||
251 | |||
252 | static int logfs_recover_sb(struct super_block *sb) | ||
253 | { | ||
254 | struct logfs_super *super = logfs_super(sb); | ||
255 | struct logfs_disk_super _ds0, *ds0 = &_ds0; | ||
256 | struct logfs_disk_super _ds1, *ds1 = &_ds1; | ||
257 | int err, valid0, valid1; | ||
258 | |||
259 | /* read first superblock */ | ||
260 | err = wbuf_read(sb, super->s_sb_ofs[0], sizeof(*ds0), ds0); | ||
261 | if (err) | ||
262 | return err; | ||
263 | /* read last superblock */ | ||
264 | err = wbuf_read(sb, super->s_sb_ofs[1], sizeof(*ds1), ds1); | ||
265 | if (err) | ||
266 | return err; | ||
267 | valid0 = logfs_check_ds(ds0) == 0; | ||
268 | valid1 = logfs_check_ds(ds1) == 0; | ||
269 | |||
270 | if (!valid0 && valid1) { | ||
271 | printk(KERN_INFO"First superblock is invalid - fixing.\n"); | ||
272 | return write_one_sb(sb, super->s_devops->find_first_sb); | ||
273 | } | ||
274 | if (valid0 && !valid1) { | ||
275 | printk(KERN_INFO"Last superblock is invalid - fixing.\n"); | ||
276 | return write_one_sb(sb, super->s_devops->find_last_sb); | ||
277 | } | ||
278 | if (valid0 && valid1 && ds_cmp(ds0, ds1)) { | ||
279 | printk(KERN_INFO"Superblocks don't match - fixing.\n"); | ||
280 | return write_one_sb(sb, super->s_devops->find_last_sb); | ||
281 | } | ||
282 | /* If neither is valid now, something's wrong. Didn't we properly | ||
283 | * check them before?!? */ | ||
284 | BUG_ON(!valid0 && !valid1); | ||
285 | return 0; | ||
286 | } | ||
287 | |||
288 | static int logfs_make_writeable(struct super_block *sb) | ||
289 | { | ||
290 | int err; | ||
291 | |||
292 | /* Repair any broken superblock copies */ | ||
293 | err = logfs_recover_sb(sb); | ||
294 | if (err) | ||
295 | return err; | ||
296 | |||
297 | /* Check areas for trailing unaccounted data */ | ||
298 | err = logfs_check_areas(sb); | ||
299 | if (err) | ||
300 | return err; | ||
301 | |||
302 | err = logfs_open_segfile(sb); | ||
303 | if (err) | ||
304 | return err; | ||
305 | |||
306 | /* Do one GC pass before any data gets dirtied */ | ||
307 | logfs_gc_pass(sb); | ||
308 | |||
309 | /* after all initializations are done, replay the journal | ||
310 | * for rw-mounts, if necessary */ | ||
311 | err = logfs_replay_journal(sb); | ||
312 | if (err) | ||
313 | return err; | ||
314 | |||
315 | return 0; | ||
316 | } | ||
317 | |||
318 | static int logfs_get_sb_final(struct super_block *sb, struct vfsmount *mnt) | ||
319 | { | ||
320 | struct logfs_super *super = logfs_super(sb); | ||
321 | struct inode *rootdir; | ||
322 | int err; | ||
323 | |||
324 | /* root dir */ | ||
325 | rootdir = logfs_iget(sb, LOGFS_INO_ROOT); | ||
326 | if (IS_ERR(rootdir)) | ||
327 | goto fail; | ||
328 | |||
329 | sb->s_root = d_alloc_root(rootdir); | ||
330 | if (!sb->s_root) | ||
331 | goto fail; | ||
332 | |||
333 | super->s_erase_page = alloc_pages(GFP_KERNEL, 0); | ||
334 | if (!super->s_erase_page) | ||
335 | goto fail2; | ||
336 | memset(page_address(super->s_erase_page), 0xFF, PAGE_SIZE); | ||
337 | |||
338 | /* FIXME: check for read-only mounts */ | ||
339 | err = logfs_make_writeable(sb); | ||
340 | if (err) | ||
341 | goto fail3; | ||
342 | |||
343 | log_super("LogFS: Finished mounting\n"); | ||
344 | simple_set_mnt(mnt, sb); | ||
345 | return 0; | ||
346 | |||
347 | fail3: | ||
348 | __free_page(super->s_erase_page); | ||
349 | fail2: | ||
350 | iput(rootdir); | ||
351 | fail: | ||
352 | iput(logfs_super(sb)->s_master_inode); | ||
353 | return -EIO; | ||
354 | } | ||
355 | |||
356 | int logfs_check_ds(struct logfs_disk_super *ds) | ||
357 | { | ||
358 | struct logfs_segment_header *sh = &ds->ds_sh; | ||
359 | |||
360 | if (ds->ds_magic != cpu_to_be64(LOGFS_MAGIC)) | ||
361 | return -EINVAL; | ||
362 | if (sh->crc != logfs_crc32(sh, LOGFS_SEGMENT_HEADERSIZE, 4)) | ||
363 | return -EINVAL; | ||
364 | if (ds->ds_crc != logfs_crc32(ds, sizeof(*ds), | ||
365 | LOGFS_SEGMENT_HEADERSIZE + 12)) | ||
366 | return -EINVAL; | ||
367 | return 0; | ||
368 | } | ||
369 | |||
370 | static struct page *find_super_block(struct super_block *sb) | ||
371 | { | ||
372 | struct logfs_super *super = logfs_super(sb); | ||
373 | struct page *first, *last; | ||
374 | |||
375 | first = super->s_devops->find_first_sb(sb, &super->s_sb_ofs[0]); | ||
376 | if (!first || IS_ERR(first)) | ||
377 | return NULL; | ||
378 | last = super->s_devops->find_last_sb(sb, &super->s_sb_ofs[1]); | ||
379 | if (!last || IS_ERR(first)) { | ||
380 | page_cache_release(first); | ||
381 | return NULL; | ||
382 | } | ||
383 | |||
384 | if (!logfs_check_ds(page_address(first))) { | ||
385 | page_cache_release(last); | ||
386 | return first; | ||
387 | } | ||
388 | |||
389 | /* First one didn't work, try the second superblock */ | ||
390 | if (!logfs_check_ds(page_address(last))) { | ||
391 | page_cache_release(first); | ||
392 | return last; | ||
393 | } | ||
394 | |||
395 | /* Neither worked, sorry folks */ | ||
396 | page_cache_release(first); | ||
397 | page_cache_release(last); | ||
398 | return NULL; | ||
399 | } | ||
400 | |||
401 | static int __logfs_read_sb(struct super_block *sb) | ||
402 | { | ||
403 | struct logfs_super *super = logfs_super(sb); | ||
404 | struct page *page; | ||
405 | struct logfs_disk_super *ds; | ||
406 | int i; | ||
407 | |||
408 | page = find_super_block(sb); | ||
409 | if (!page) | ||
410 | return -EIO; | ||
411 | |||
412 | ds = page_address(page); | ||
413 | super->s_size = be64_to_cpu(ds->ds_filesystem_size); | ||
414 | super->s_root_reserve = be64_to_cpu(ds->ds_root_reserve); | ||
415 | super->s_speed_reserve = be64_to_cpu(ds->ds_speed_reserve); | ||
416 | super->s_bad_seg_reserve = be32_to_cpu(ds->ds_bad_seg_reserve); | ||
417 | super->s_segsize = 1 << ds->ds_segment_shift; | ||
418 | super->s_segmask = (1 << ds->ds_segment_shift) - 1; | ||
419 | super->s_segshift = ds->ds_segment_shift; | ||
420 | sb->s_blocksize = 1 << ds->ds_block_shift; | ||
421 | sb->s_blocksize_bits = ds->ds_block_shift; | ||
422 | super->s_writesize = 1 << ds->ds_write_shift; | ||
423 | super->s_writeshift = ds->ds_write_shift; | ||
424 | super->s_no_segs = super->s_size >> super->s_segshift; | ||
425 | super->s_no_blocks = super->s_segsize >> sb->s_blocksize_bits; | ||
426 | super->s_feature_incompat = be64_to_cpu(ds->ds_feature_incompat); | ||
427 | super->s_feature_ro_compat = be64_to_cpu(ds->ds_feature_ro_compat); | ||
428 | super->s_feature_compat = be64_to_cpu(ds->ds_feature_compat); | ||
429 | super->s_feature_flags = be64_to_cpu(ds->ds_feature_flags); | ||
430 | |||
431 | journal_for_each(i) | ||
432 | super->s_journal_seg[i] = be32_to_cpu(ds->ds_journal_seg[i]); | ||
433 | |||
434 | super->s_ifile_levels = ds->ds_ifile_levels; | ||
435 | super->s_iblock_levels = ds->ds_iblock_levels; | ||
436 | super->s_data_levels = ds->ds_data_levels; | ||
437 | super->s_total_levels = super->s_ifile_levels + super->s_iblock_levels | ||
438 | + super->s_data_levels; | ||
439 | page_cache_release(page); | ||
440 | return 0; | ||
441 | } | ||
442 | |||
443 | static int logfs_read_sb(struct super_block *sb, int read_only) | ||
444 | { | ||
445 | struct logfs_super *super = logfs_super(sb); | ||
446 | int ret; | ||
447 | |||
448 | super->s_btree_pool = mempool_create(32, btree_alloc, btree_free, NULL); | ||
449 | if (!super->s_btree_pool) | ||
450 | return -ENOMEM; | ||
451 | |||
452 | btree_init_mempool64(&super->s_shadow_tree.new, super->s_btree_pool); | ||
453 | btree_init_mempool64(&super->s_shadow_tree.old, super->s_btree_pool); | ||
454 | |||
455 | ret = logfs_init_mapping(sb); | ||
456 | if (ret) | ||
457 | return ret; | ||
458 | |||
459 | ret = __logfs_read_sb(sb); | ||
460 | if (ret) | ||
461 | return ret; | ||
462 | |||
463 | if (super->s_feature_incompat & ~LOGFS_FEATURES_INCOMPAT) | ||
464 | return -EIO; | ||
465 | if ((super->s_feature_ro_compat & ~LOGFS_FEATURES_RO_COMPAT) && | ||
466 | !read_only) | ||
467 | return -EIO; | ||
468 | |||
469 | mutex_init(&super->s_dirop_mutex); | ||
470 | mutex_init(&super->s_object_alias_mutex); | ||
471 | INIT_LIST_HEAD(&super->s_freeing_list); | ||
472 | |||
473 | ret = logfs_init_rw(sb); | ||
474 | if (ret) | ||
475 | return ret; | ||
476 | |||
477 | ret = logfs_init_areas(sb); | ||
478 | if (ret) | ||
479 | return ret; | ||
480 | |||
481 | ret = logfs_init_gc(sb); | ||
482 | if (ret) | ||
483 | return ret; | ||
484 | |||
485 | ret = logfs_init_journal(sb); | ||
486 | if (ret) | ||
487 | return ret; | ||
488 | |||
489 | return 0; | ||
490 | } | ||
491 | |||
492 | static void logfs_kill_sb(struct super_block *sb) | ||
493 | { | ||
494 | struct logfs_super *super = logfs_super(sb); | ||
495 | |||
496 | log_super("LogFS: Start unmounting\n"); | ||
497 | /* Alias entries slow down mount, so evict as many as possible */ | ||
498 | sync_filesystem(sb); | ||
499 | logfs_write_anchor(sb); | ||
500 | |||
501 | /* | ||
502 | * From this point on alias entries are simply dropped - and any | ||
503 | * writes to the object store are considered bugs. | ||
504 | */ | ||
505 | super->s_flags |= LOGFS_SB_FLAG_SHUTDOWN; | ||
506 | log_super("LogFS: Now in shutdown\n"); | ||
507 | generic_shutdown_super(sb); | ||
508 | |||
509 | BUG_ON(super->s_dirty_used_bytes || super->s_dirty_free_bytes); | ||
510 | |||
511 | logfs_cleanup_gc(sb); | ||
512 | logfs_cleanup_journal(sb); | ||
513 | logfs_cleanup_areas(sb); | ||
514 | logfs_cleanup_rw(sb); | ||
515 | if (super->s_erase_page) | ||
516 | __free_page(super->s_erase_page); | ||
517 | super->s_devops->put_device(sb); | ||
518 | mempool_destroy(super->s_btree_pool); | ||
519 | mempool_destroy(super->s_alias_pool); | ||
520 | kfree(super); | ||
521 | log_super("LogFS: Finished unmounting\n"); | ||
522 | } | ||
523 | |||
524 | int logfs_get_sb_device(struct file_system_type *type, int flags, | ||
525 | struct mtd_info *mtd, struct block_device *bdev, | ||
526 | const struct logfs_device_ops *devops, struct vfsmount *mnt) | ||
527 | { | ||
528 | struct logfs_super *super; | ||
529 | struct super_block *sb; | ||
530 | int err = -ENOMEM; | ||
531 | static int mount_count; | ||
532 | |||
533 | log_super("LogFS: Start mount %x\n", mount_count++); | ||
534 | super = kzalloc(sizeof(*super), GFP_KERNEL); | ||
535 | if (!super) | ||
536 | goto err0; | ||
537 | |||
538 | super->s_mtd = mtd; | ||
539 | super->s_bdev = bdev; | ||
540 | err = -EINVAL; | ||
541 | sb = sget(type, logfs_sb_test, logfs_sb_set, super); | ||
542 | if (IS_ERR(sb)) | ||
543 | goto err0; | ||
544 | |||
545 | if (sb->s_root) { | ||
546 | /* Device is already in use */ | ||
547 | err = 0; | ||
548 | simple_set_mnt(mnt, sb); | ||
549 | goto err0; | ||
550 | } | ||
551 | |||
552 | super->s_devops = devops; | ||
553 | |||
554 | /* | ||
555 | * sb->s_maxbytes is limited to 8TB. On 32bit systems, the page cache | ||
556 | * only covers 16TB and the upper 8TB are used for indirect blocks. | ||
557 | * On 64bit system we could bump up the limit, but that would make | ||
558 | * the filesystem incompatible with 32bit systems. | ||
559 | */ | ||
560 | sb->s_maxbytes = (1ull << 43) - 1; | ||
561 | sb->s_op = &logfs_super_operations; | ||
562 | sb->s_flags = flags | MS_NOATIME; | ||
563 | |||
564 | err = logfs_read_sb(sb, sb->s_flags & MS_RDONLY); | ||
565 | if (err) | ||
566 | goto err1; | ||
567 | |||
568 | sb->s_flags |= MS_ACTIVE; | ||
569 | err = logfs_get_sb_final(sb, mnt); | ||
570 | if (err) | ||
571 | goto err1; | ||
572 | return 0; | ||
573 | |||
574 | err1: | ||
575 | up_write(&sb->s_umount); | ||
576 | deactivate_super(sb); | ||
577 | return err; | ||
578 | err0: | ||
579 | kfree(super); | ||
580 | //devops->put_device(sb); | ||
581 | return err; | ||
582 | } | ||
583 | |||
584 | static int logfs_get_sb(struct file_system_type *type, int flags, | ||
585 | const char *devname, void *data, struct vfsmount *mnt) | ||
586 | { | ||
587 | ulong mtdnr; | ||
588 | |||
589 | if (!devname) | ||
590 | return logfs_get_sb_bdev(type, flags, devname, mnt); | ||
591 | if (strncmp(devname, "mtd", 3)) | ||
592 | return logfs_get_sb_bdev(type, flags, devname, mnt); | ||
593 | |||
594 | { | ||
595 | char *garbage; | ||
596 | mtdnr = simple_strtoul(devname+3, &garbage, 0); | ||
597 | if (*garbage) | ||
598 | return -EINVAL; | ||
599 | } | ||
600 | |||
601 | return logfs_get_sb_mtd(type, flags, mtdnr, mnt); | ||
602 | } | ||
603 | |||
604 | static struct file_system_type logfs_fs_type = { | ||
605 | .owner = THIS_MODULE, | ||
606 | .name = "logfs", | ||
607 | .get_sb = logfs_get_sb, | ||
608 | .kill_sb = logfs_kill_sb, | ||
609 | .fs_flags = FS_REQUIRES_DEV, | ||
610 | |||
611 | }; | ||
612 | |||
613 | static int __init logfs_init(void) | ||
614 | { | ||
615 | int ret; | ||
616 | |||
617 | emergency_page = alloc_pages(GFP_KERNEL, 0); | ||
618 | if (!emergency_page) | ||
619 | return -ENOMEM; | ||
620 | |||
621 | ret = logfs_compr_init(); | ||
622 | if (ret) | ||
623 | goto out1; | ||
624 | |||
625 | ret = logfs_init_inode_cache(); | ||
626 | if (ret) | ||
627 | goto out2; | ||
628 | |||
629 | return register_filesystem(&logfs_fs_type); | ||
630 | out2: | ||
631 | logfs_compr_exit(); | ||
632 | out1: | ||
633 | __free_pages(emergency_page, 0); | ||
634 | return ret; | ||
635 | } | ||
636 | |||
637 | static void __exit logfs_exit(void) | ||
638 | { | ||
639 | unregister_filesystem(&logfs_fs_type); | ||
640 | logfs_destroy_inode_cache(); | ||
641 | logfs_compr_exit(); | ||
642 | __free_pages(emergency_page, 0); | ||
643 | } | ||
644 | |||
645 | module_init(logfs_init); | ||
646 | module_exit(logfs_exit); | ||
647 | |||
648 | MODULE_LICENSE("GPL v2"); | ||
649 | MODULE_AUTHOR("Joern Engel <joern@logfs.org>"); | ||
650 | MODULE_DESCRIPTION("scalable flash filesystem"); | ||
diff --git a/include/linux/btree-128.h b/include/linux/btree-128.h new file mode 100644 index 000000000000..0b3414c4c928 --- /dev/null +++ b/include/linux/btree-128.h | |||
@@ -0,0 +1,109 @@ | |||
1 | extern struct btree_geo btree_geo128; | ||
2 | |||
3 | struct btree_head128 { struct btree_head h; }; | ||
4 | |||
5 | static inline void btree_init_mempool128(struct btree_head128 *head, | ||
6 | mempool_t *mempool) | ||
7 | { | ||
8 | btree_init_mempool(&head->h, mempool); | ||
9 | } | ||
10 | |||
11 | static inline int btree_init128(struct btree_head128 *head) | ||
12 | { | ||
13 | return btree_init(&head->h); | ||
14 | } | ||
15 | |||
16 | static inline void btree_destroy128(struct btree_head128 *head) | ||
17 | { | ||
18 | btree_destroy(&head->h); | ||
19 | } | ||
20 | |||
21 | static inline void *btree_lookup128(struct btree_head128 *head, u64 k1, u64 k2) | ||
22 | { | ||
23 | u64 key[2] = {k1, k2}; | ||
24 | return btree_lookup(&head->h, &btree_geo128, (unsigned long *)&key); | ||
25 | } | ||
26 | |||
27 | static inline void *btree_get_prev128(struct btree_head128 *head, | ||
28 | u64 *k1, u64 *k2) | ||
29 | { | ||
30 | u64 key[2] = {*k1, *k2}; | ||
31 | void *val; | ||
32 | |||
33 | val = btree_get_prev(&head->h, &btree_geo128, | ||
34 | (unsigned long *)&key); | ||
35 | *k1 = key[0]; | ||
36 | *k2 = key[1]; | ||
37 | return val; | ||
38 | } | ||
39 | |||
40 | static inline int btree_insert128(struct btree_head128 *head, u64 k1, u64 k2, | ||
41 | void *val, gfp_t gfp) | ||
42 | { | ||
43 | u64 key[2] = {k1, k2}; | ||
44 | return btree_insert(&head->h, &btree_geo128, | ||
45 | (unsigned long *)&key, val, gfp); | ||
46 | } | ||
47 | |||
48 | static inline int btree_update128(struct btree_head128 *head, u64 k1, u64 k2, | ||
49 | void *val) | ||
50 | { | ||
51 | u64 key[2] = {k1, k2}; | ||
52 | return btree_update(&head->h, &btree_geo128, | ||
53 | (unsigned long *)&key, val); | ||
54 | } | ||
55 | |||
56 | static inline void *btree_remove128(struct btree_head128 *head, u64 k1, u64 k2) | ||
57 | { | ||
58 | u64 key[2] = {k1, k2}; | ||
59 | return btree_remove(&head->h, &btree_geo128, (unsigned long *)&key); | ||
60 | } | ||
61 | |||
62 | static inline void *btree_last128(struct btree_head128 *head, u64 *k1, u64 *k2) | ||
63 | { | ||
64 | u64 key[2]; | ||
65 | void *val; | ||
66 | |||
67 | val = btree_last(&head->h, &btree_geo128, (unsigned long *)&key[0]); | ||
68 | if (val) { | ||
69 | *k1 = key[0]; | ||
70 | *k2 = key[1]; | ||
71 | } | ||
72 | |||
73 | return val; | ||
74 | } | ||
75 | |||
76 | static inline int btree_merge128(struct btree_head128 *target, | ||
77 | struct btree_head128 *victim, | ||
78 | gfp_t gfp) | ||
79 | { | ||
80 | return btree_merge(&target->h, &victim->h, &btree_geo128, gfp); | ||
81 | } | ||
82 | |||
83 | void visitor128(void *elem, unsigned long opaque, unsigned long *__key, | ||
84 | size_t index, void *__func); | ||
85 | |||
86 | typedef void (*visitor128_t)(void *elem, unsigned long opaque, | ||
87 | u64 key1, u64 key2, size_t index); | ||
88 | |||
89 | static inline size_t btree_visitor128(struct btree_head128 *head, | ||
90 | unsigned long opaque, | ||
91 | visitor128_t func2) | ||
92 | { | ||
93 | return btree_visitor(&head->h, &btree_geo128, opaque, | ||
94 | visitor128, func2); | ||
95 | } | ||
96 | |||
97 | static inline size_t btree_grim_visitor128(struct btree_head128 *head, | ||
98 | unsigned long opaque, | ||
99 | visitor128_t func2) | ||
100 | { | ||
101 | return btree_grim_visitor(&head->h, &btree_geo128, opaque, | ||
102 | visitor128, func2); | ||
103 | } | ||
104 | |||
105 | #define btree_for_each_safe128(head, k1, k2, val) \ | ||
106 | for (val = btree_last128(head, &k1, &k2); \ | ||
107 | val; \ | ||
108 | val = btree_get_prev128(head, &k1, &k2)) | ||
109 | |||
diff --git a/include/linux/btree-type.h b/include/linux/btree-type.h new file mode 100644 index 000000000000..9a1147ef8563 --- /dev/null +++ b/include/linux/btree-type.h | |||
@@ -0,0 +1,147 @@ | |||
1 | #define __BTREE_TP(pfx, type, sfx) pfx ## type ## sfx | ||
2 | #define _BTREE_TP(pfx, type, sfx) __BTREE_TP(pfx, type, sfx) | ||
3 | #define BTREE_TP(pfx) _BTREE_TP(pfx, BTREE_TYPE_SUFFIX,) | ||
4 | #define BTREE_FN(name) BTREE_TP(btree_ ## name) | ||
5 | #define BTREE_TYPE_HEAD BTREE_TP(struct btree_head) | ||
6 | #define VISITOR_FN BTREE_TP(visitor) | ||
7 | #define VISITOR_FN_T _BTREE_TP(visitor, BTREE_TYPE_SUFFIX, _t) | ||
8 | |||
9 | BTREE_TYPE_HEAD { | ||
10 | struct btree_head h; | ||
11 | }; | ||
12 | |||
13 | static inline void BTREE_FN(init_mempool)(BTREE_TYPE_HEAD *head, | ||
14 | mempool_t *mempool) | ||
15 | { | ||
16 | btree_init_mempool(&head->h, mempool); | ||
17 | } | ||
18 | |||
19 | static inline int BTREE_FN(init)(BTREE_TYPE_HEAD *head) | ||
20 | { | ||
21 | return btree_init(&head->h); | ||
22 | } | ||
23 | |||
24 | static inline void BTREE_FN(destroy)(BTREE_TYPE_HEAD *head) | ||
25 | { | ||
26 | btree_destroy(&head->h); | ||
27 | } | ||
28 | |||
29 | static inline int BTREE_FN(merge)(BTREE_TYPE_HEAD *target, | ||
30 | BTREE_TYPE_HEAD *victim, | ||
31 | gfp_t gfp) | ||
32 | { | ||
33 | return btree_merge(&target->h, &victim->h, BTREE_TYPE_GEO, gfp); | ||
34 | } | ||
35 | |||
36 | #if (BITS_PER_LONG > BTREE_TYPE_BITS) | ||
37 | static inline void *BTREE_FN(lookup)(BTREE_TYPE_HEAD *head, BTREE_KEYTYPE key) | ||
38 | { | ||
39 | unsigned long _key = key; | ||
40 | return btree_lookup(&head->h, BTREE_TYPE_GEO, &_key); | ||
41 | } | ||
42 | |||
43 | static inline int BTREE_FN(insert)(BTREE_TYPE_HEAD *head, BTREE_KEYTYPE key, | ||
44 | void *val, gfp_t gfp) | ||
45 | { | ||
46 | unsigned long _key = key; | ||
47 | return btree_insert(&head->h, BTREE_TYPE_GEO, &_key, val, gfp); | ||
48 | } | ||
49 | |||
50 | static inline int BTREE_FN(update)(BTREE_TYPE_HEAD *head, BTREE_KEYTYPE key, | ||
51 | void *val) | ||
52 | { | ||
53 | unsigned long _key = key; | ||
54 | return btree_update(&head->h, BTREE_TYPE_GEO, &_key, val); | ||
55 | } | ||
56 | |||
57 | static inline void *BTREE_FN(remove)(BTREE_TYPE_HEAD *head, BTREE_KEYTYPE key) | ||
58 | { | ||
59 | unsigned long _key = key; | ||
60 | return btree_remove(&head->h, BTREE_TYPE_GEO, &_key); | ||
61 | } | ||
62 | |||
63 | static inline void *BTREE_FN(last)(BTREE_TYPE_HEAD *head, BTREE_KEYTYPE *key) | ||
64 | { | ||
65 | unsigned long _key; | ||
66 | void *val = btree_last(&head->h, BTREE_TYPE_GEO, &_key); | ||
67 | if (val) | ||
68 | *key = _key; | ||
69 | return val; | ||
70 | } | ||
71 | |||
72 | static inline void *BTREE_FN(get_prev)(BTREE_TYPE_HEAD *head, BTREE_KEYTYPE *key) | ||
73 | { | ||
74 | unsigned long _key = *key; | ||
75 | void *val = btree_get_prev(&head->h, BTREE_TYPE_GEO, &_key); | ||
76 | if (val) | ||
77 | *key = _key; | ||
78 | return val; | ||
79 | } | ||
80 | #else | ||
81 | static inline void *BTREE_FN(lookup)(BTREE_TYPE_HEAD *head, BTREE_KEYTYPE key) | ||
82 | { | ||
83 | return btree_lookup(&head->h, BTREE_TYPE_GEO, (unsigned long *)&key); | ||
84 | } | ||
85 | |||
86 | static inline int BTREE_FN(insert)(BTREE_TYPE_HEAD *head, BTREE_KEYTYPE key, | ||
87 | void *val, gfp_t gfp) | ||
88 | { | ||
89 | return btree_insert(&head->h, BTREE_TYPE_GEO, (unsigned long *)&key, | ||
90 | val, gfp); | ||
91 | } | ||
92 | |||
93 | static inline int BTREE_FN(update)(BTREE_TYPE_HEAD *head, BTREE_KEYTYPE key, | ||
94 | void *val) | ||
95 | { | ||
96 | return btree_update(&head->h, BTREE_TYPE_GEO, (unsigned long *)&key, val); | ||
97 | } | ||
98 | |||
99 | static inline void *BTREE_FN(remove)(BTREE_TYPE_HEAD *head, BTREE_KEYTYPE key) | ||
100 | { | ||
101 | return btree_remove(&head->h, BTREE_TYPE_GEO, (unsigned long *)&key); | ||
102 | } | ||
103 | |||
104 | static inline void *BTREE_FN(last)(BTREE_TYPE_HEAD *head, BTREE_KEYTYPE *key) | ||
105 | { | ||
106 | return btree_last(&head->h, BTREE_TYPE_GEO, (unsigned long *)key); | ||
107 | } | ||
108 | |||
109 | static inline void *BTREE_FN(get_prev)(BTREE_TYPE_HEAD *head, BTREE_KEYTYPE *key) | ||
110 | { | ||
111 | return btree_get_prev(&head->h, BTREE_TYPE_GEO, (unsigned long *)key); | ||
112 | } | ||
113 | #endif | ||
114 | |||
115 | void VISITOR_FN(void *elem, unsigned long opaque, unsigned long *key, | ||
116 | size_t index, void *__func); | ||
117 | |||
118 | typedef void (*VISITOR_FN_T)(void *elem, unsigned long opaque, | ||
119 | BTREE_KEYTYPE key, size_t index); | ||
120 | |||
121 | static inline size_t BTREE_FN(visitor)(BTREE_TYPE_HEAD *head, | ||
122 | unsigned long opaque, | ||
123 | VISITOR_FN_T func2) | ||
124 | { | ||
125 | return btree_visitor(&head->h, BTREE_TYPE_GEO, opaque, | ||
126 | visitorl, func2); | ||
127 | } | ||
128 | |||
129 | static inline size_t BTREE_FN(grim_visitor)(BTREE_TYPE_HEAD *head, | ||
130 | unsigned long opaque, | ||
131 | VISITOR_FN_T func2) | ||
132 | { | ||
133 | return btree_grim_visitor(&head->h, BTREE_TYPE_GEO, opaque, | ||
134 | visitorl, func2); | ||
135 | } | ||
136 | |||
137 | #undef VISITOR_FN | ||
138 | #undef VISITOR_FN_T | ||
139 | #undef __BTREE_TP | ||
140 | #undef _BTREE_TP | ||
141 | #undef BTREE_TP | ||
142 | #undef BTREE_FN | ||
143 | #undef BTREE_TYPE_HEAD | ||
144 | #undef BTREE_TYPE_SUFFIX | ||
145 | #undef BTREE_TYPE_GEO | ||
146 | #undef BTREE_KEYTYPE | ||
147 | #undef BTREE_TYPE_BITS | ||
diff --git a/include/linux/btree.h b/include/linux/btree.h new file mode 100644 index 000000000000..65b5bb058324 --- /dev/null +++ b/include/linux/btree.h | |||
@@ -0,0 +1,243 @@ | |||
1 | #ifndef BTREE_H | ||
2 | #define BTREE_H | ||
3 | |||
4 | #include <linux/kernel.h> | ||
5 | #include <linux/mempool.h> | ||
6 | |||
7 | /** | ||
8 | * DOC: B+Tree basics | ||
9 | * | ||
10 | * A B+Tree is a data structure for looking up arbitrary (currently allowing | ||
11 | * unsigned long, u32, u64 and 2 * u64) keys into pointers. The data structure | ||
12 | * is described at http://en.wikipedia.org/wiki/B-tree, we currently do not | ||
13 | * use binary search to find the key on lookups. | ||
14 | * | ||
15 | * Each B+Tree consists of a head, that contains bookkeeping information and | ||
16 | * a variable number (starting with zero) nodes. Each node contains the keys | ||
17 | * and pointers to sub-nodes, or, for leaf nodes, the keys and values for the | ||
18 | * tree entries. | ||
19 | * | ||
20 | * Each node in this implementation has the following layout: | ||
21 | * [key1, key2, ..., keyN] [val1, val2, ..., valN] | ||
22 | * | ||
23 | * Each key here is an array of unsigned longs, geo->no_longs in total. The | ||
24 | * number of keys and values (N) is geo->no_pairs. | ||
25 | */ | ||
26 | |||
27 | /** | ||
28 | * struct btree_head - btree head | ||
29 | * | ||
30 | * @node: the first node in the tree | ||
31 | * @mempool: mempool used for node allocations | ||
32 | * @height: current of the tree | ||
33 | */ | ||
34 | struct btree_head { | ||
35 | unsigned long *node; | ||
36 | mempool_t *mempool; | ||
37 | int height; | ||
38 | }; | ||
39 | |||
40 | /* btree geometry */ | ||
41 | struct btree_geo; | ||
42 | |||
43 | /** | ||
44 | * btree_alloc - allocate function for the mempool | ||
45 | * @gfp_mask: gfp mask for the allocation | ||
46 | * @pool_data: unused | ||
47 | */ | ||
48 | void *btree_alloc(gfp_t gfp_mask, void *pool_data); | ||
49 | |||
50 | /** | ||
51 | * btree_free - free function for the mempool | ||
52 | * @element: the element to free | ||
53 | * @pool_data: unused | ||
54 | */ | ||
55 | void btree_free(void *element, void *pool_data); | ||
56 | |||
57 | /** | ||
58 | * btree_init_mempool - initialise a btree with given mempool | ||
59 | * | ||
60 | * @head: the btree head to initialise | ||
61 | * @mempool: the mempool to use | ||
62 | * | ||
63 | * When this function is used, there is no need to destroy | ||
64 | * the mempool. | ||
65 | */ | ||
66 | void btree_init_mempool(struct btree_head *head, mempool_t *mempool); | ||
67 | |||
68 | /** | ||
69 | * btree_init - initialise a btree | ||
70 | * | ||
71 | * @head: the btree head to initialise | ||
72 | * | ||
73 | * This function allocates the memory pool that the | ||
74 | * btree needs. Returns zero or a negative error code | ||
75 | * (-%ENOMEM) when memory allocation fails. | ||
76 | * | ||
77 | */ | ||
78 | int __must_check btree_init(struct btree_head *head); | ||
79 | |||
80 | /** | ||
81 | * btree_destroy - destroy mempool | ||
82 | * | ||
83 | * @head: the btree head to destroy | ||
84 | * | ||
85 | * This function destroys the internal memory pool, use only | ||
86 | * when using btree_init(), not with btree_init_mempool(). | ||
87 | */ | ||
88 | void btree_destroy(struct btree_head *head); | ||
89 | |||
90 | /** | ||
91 | * btree_lookup - look up a key in the btree | ||
92 | * | ||
93 | * @head: the btree to look in | ||
94 | * @geo: the btree geometry | ||
95 | * @key: the key to look up | ||
96 | * | ||
97 | * This function returns the value for the given key, or %NULL. | ||
98 | */ | ||
99 | void *btree_lookup(struct btree_head *head, struct btree_geo *geo, | ||
100 | unsigned long *key); | ||
101 | |||
102 | /** | ||
103 | * btree_insert - insert an entry into the btree | ||
104 | * | ||
105 | * @head: the btree to add to | ||
106 | * @geo: the btree geometry | ||
107 | * @key: the key to add (must not already be present) | ||
108 | * @val: the value to add (must not be %NULL) | ||
109 | * @gfp: allocation flags for node allocations | ||
110 | * | ||
111 | * This function returns 0 if the item could be added, or an | ||
112 | * error code if it failed (may fail due to memory pressure). | ||
113 | */ | ||
114 | int __must_check btree_insert(struct btree_head *head, struct btree_geo *geo, | ||
115 | unsigned long *key, void *val, gfp_t gfp); | ||
116 | /** | ||
117 | * btree_update - update an entry in the btree | ||
118 | * | ||
119 | * @head: the btree to update | ||
120 | * @geo: the btree geometry | ||
121 | * @key: the key to update | ||
122 | * @val: the value to change it to (must not be %NULL) | ||
123 | * | ||
124 | * This function returns 0 if the update was successful, or | ||
125 | * -%ENOENT if the key could not be found. | ||
126 | */ | ||
127 | int btree_update(struct btree_head *head, struct btree_geo *geo, | ||
128 | unsigned long *key, void *val); | ||
129 | /** | ||
130 | * btree_remove - remove an entry from the btree | ||
131 | * | ||
132 | * @head: the btree to update | ||
133 | * @geo: the btree geometry | ||
134 | * @key: the key to remove | ||
135 | * | ||
136 | * This function returns the removed entry, or %NULL if the key | ||
137 | * could not be found. | ||
138 | */ | ||
139 | void *btree_remove(struct btree_head *head, struct btree_geo *geo, | ||
140 | unsigned long *key); | ||
141 | |||
142 | /** | ||
143 | * btree_merge - merge two btrees | ||
144 | * | ||
145 | * @target: the tree that gets all the entries | ||
146 | * @victim: the tree that gets merged into @target | ||
147 | * @geo: the btree geometry | ||
148 | * @gfp: allocation flags | ||
149 | * | ||
150 | * The two trees @target and @victim may not contain the same keys, | ||
151 | * that is a bug and triggers a BUG(). This function returns zero | ||
152 | * if the trees were merged successfully, and may return a failure | ||
153 | * when memory allocation fails, in which case both trees might have | ||
154 | * been partially merged, i.e. some entries have been moved from | ||
155 | * @victim to @target. | ||
156 | */ | ||
157 | int btree_merge(struct btree_head *target, struct btree_head *victim, | ||
158 | struct btree_geo *geo, gfp_t gfp); | ||
159 | |||
160 | /** | ||
161 | * btree_last - get last entry in btree | ||
162 | * | ||
163 | * @head: btree head | ||
164 | * @geo: btree geometry | ||
165 | * @key: last key | ||
166 | * | ||
167 | * Returns the last entry in the btree, and sets @key to the key | ||
168 | * of that entry; returns NULL if the tree is empty, in that case | ||
169 | * key is not changed. | ||
170 | */ | ||
171 | void *btree_last(struct btree_head *head, struct btree_geo *geo, | ||
172 | unsigned long *key); | ||
173 | |||
174 | /** | ||
175 | * btree_get_prev - get previous entry | ||
176 | * | ||
177 | * @head: btree head | ||
178 | * @geo: btree geometry | ||
179 | * @key: pointer to key | ||
180 | * | ||
181 | * The function returns the next item right before the value pointed to by | ||
182 | * @key, and updates @key with its key, or returns %NULL when there is no | ||
183 | * entry with a key smaller than the given key. | ||
184 | */ | ||
185 | void *btree_get_prev(struct btree_head *head, struct btree_geo *geo, | ||
186 | unsigned long *key); | ||
187 | |||
188 | |||
189 | /* internal use, use btree_visitor{l,32,64,128} */ | ||
190 | size_t btree_visitor(struct btree_head *head, struct btree_geo *geo, | ||
191 | unsigned long opaque, | ||
192 | void (*func)(void *elem, unsigned long opaque, | ||
193 | unsigned long *key, size_t index, | ||
194 | void *func2), | ||
195 | void *func2); | ||
196 | |||
197 | /* internal use, use btree_grim_visitor{l,32,64,128} */ | ||
198 | size_t btree_grim_visitor(struct btree_head *head, struct btree_geo *geo, | ||
199 | unsigned long opaque, | ||
200 | void (*func)(void *elem, unsigned long opaque, | ||
201 | unsigned long *key, | ||
202 | size_t index, void *func2), | ||
203 | void *func2); | ||
204 | |||
205 | |||
206 | #include <linux/btree-128.h> | ||
207 | |||
208 | extern struct btree_geo btree_geo32; | ||
209 | #define BTREE_TYPE_SUFFIX l | ||
210 | #define BTREE_TYPE_BITS BITS_PER_LONG | ||
211 | #define BTREE_TYPE_GEO &btree_geo32 | ||
212 | #define BTREE_KEYTYPE unsigned long | ||
213 | #include <linux/btree-type.h> | ||
214 | |||
215 | #define btree_for_each_safel(head, key, val) \ | ||
216 | for (val = btree_lastl(head, &key); \ | ||
217 | val; \ | ||
218 | val = btree_get_prevl(head, &key)) | ||
219 | |||
220 | #define BTREE_TYPE_SUFFIX 32 | ||
221 | #define BTREE_TYPE_BITS 32 | ||
222 | #define BTREE_TYPE_GEO &btree_geo32 | ||
223 | #define BTREE_KEYTYPE u32 | ||
224 | #include <linux/btree-type.h> | ||
225 | |||
226 | #define btree_for_each_safe32(head, key, val) \ | ||
227 | for (val = btree_last32(head, &key); \ | ||
228 | val; \ | ||
229 | val = btree_get_prev32(head, &key)) | ||
230 | |||
231 | extern struct btree_geo btree_geo64; | ||
232 | #define BTREE_TYPE_SUFFIX 64 | ||
233 | #define BTREE_TYPE_BITS 64 | ||
234 | #define BTREE_TYPE_GEO &btree_geo64 | ||
235 | #define BTREE_KEYTYPE u64 | ||
236 | #include <linux/btree-type.h> | ||
237 | |||
238 | #define btree_for_each_safe64(head, key, val) \ | ||
239 | for (val = btree_last64(head, &key); \ | ||
240 | val; \ | ||
241 | val = btree_get_prev64(head, &key)) | ||
242 | |||
243 | #endif | ||
diff --git a/lib/Kconfig b/lib/Kconfig index 8034c46327cb..496d16e1fa2c 100644 --- a/lib/Kconfig +++ b/lib/Kconfig | |||
@@ -163,6 +163,9 @@ config TEXTSEARCH_FSM | |||
163 | config LIST_SORT | 163 | config LIST_SORT |
164 | boolean | 164 | boolean |
165 | 165 | ||
166 | config BTREE | ||
167 | boolean | ||
168 | |||
166 | config HAS_IOMEM | 169 | config HAS_IOMEM |
167 | boolean | 170 | boolean |
168 | depends on !NO_IOMEM | 171 | depends on !NO_IOMEM |
diff --git a/lib/Makefile b/lib/Makefile index e39c361b0be3..59e46a014bc6 100644 --- a/lib/Makefile +++ b/lib/Makefile | |||
@@ -42,6 +42,7 @@ obj-$(CONFIG_GENERIC_FIND_LAST_BIT) += find_last_bit.o | |||
42 | obj-$(CONFIG_GENERIC_HWEIGHT) += hweight.o | 42 | obj-$(CONFIG_GENERIC_HWEIGHT) += hweight.o |
43 | obj-$(CONFIG_LIST_SORT) += list_sort.o | 43 | obj-$(CONFIG_LIST_SORT) += list_sort.o |
44 | obj-$(CONFIG_LOCK_KERNEL) += kernel_lock.o | 44 | obj-$(CONFIG_LOCK_KERNEL) += kernel_lock.o |
45 | obj-$(CONFIG_BTREE) += btree.o | ||
45 | obj-$(CONFIG_DEBUG_PREEMPT) += smp_processor_id.o | 46 | obj-$(CONFIG_DEBUG_PREEMPT) += smp_processor_id.o |
46 | obj-$(CONFIG_DEBUG_LIST) += list_debug.o | 47 | obj-$(CONFIG_DEBUG_LIST) += list_debug.o |
47 | obj-$(CONFIG_DEBUG_OBJECTS) += debugobjects.o | 48 | obj-$(CONFIG_DEBUG_OBJECTS) += debugobjects.o |
diff --git a/lib/btree.c b/lib/btree.c new file mode 100644 index 000000000000..41859a820218 --- /dev/null +++ b/lib/btree.c | |||
@@ -0,0 +1,797 @@ | |||
1 | /* | ||
2 | * lib/btree.c - Simple In-memory B+Tree | ||
3 | * | ||
4 | * As should be obvious for Linux kernel code, license is GPLv2 | ||
5 | * | ||
6 | * Copyright (c) 2007-2008 Joern Engel <joern@logfs.org> | ||
7 | * Bits and pieces stolen from Peter Zijlstra's code, which is | ||
8 | * Copyright 2007, Red Hat Inc. Peter Zijlstra <pzijlstr@redhat.com> | ||
9 | * GPLv2 | ||
10 | * | ||
11 | * see http://programming.kicks-ass.net/kernel-patches/vma_lookup/btree.patch | ||
12 | * | ||
13 | * A relatively simple B+Tree implementation. I have written it as a learning | ||
14 | * excercise to understand how B+Trees work. Turned out to be useful as well. | ||
15 | * | ||
16 | * B+Trees can be used similar to Linux radix trees (which don't have anything | ||
17 | * in common with textbook radix trees, beware). Prerequisite for them working | ||
18 | * well is that access to a random tree node is much faster than a large number | ||
19 | * of operations within each node. | ||
20 | * | ||
21 | * Disks have fulfilled the prerequisite for a long time. More recently DRAM | ||
22 | * has gained similar properties, as memory access times, when measured in cpu | ||
23 | * cycles, have increased. Cacheline sizes have increased as well, which also | ||
24 | * helps B+Trees. | ||
25 | * | ||
26 | * Compared to radix trees, B+Trees are more efficient when dealing with a | ||
27 | * sparsely populated address space. Between 25% and 50% of the memory is | ||
28 | * occupied with valid pointers. When densely populated, radix trees contain | ||
29 | * ~98% pointers - hard to beat. Very sparse radix trees contain only ~2% | ||
30 | * pointers. | ||
31 | * | ||
32 | * This particular implementation stores pointers identified by a long value. | ||
33 | * Storing NULL pointers is illegal, lookup will return NULL when no entry | ||
34 | * was found. | ||
35 | * | ||
36 | * A tricks was used that is not commonly found in textbooks. The lowest | ||
37 | * values are to the right, not to the left. All used slots within a node | ||
38 | * are on the left, all unused slots contain NUL values. Most operations | ||
39 | * simply loop once over all slots and terminate on the first NUL. | ||
40 | */ | ||
41 | |||
42 | #include <linux/btree.h> | ||
43 | #include <linux/cache.h> | ||
44 | #include <linux/kernel.h> | ||
45 | #include <linux/slab.h> | ||
46 | #include <linux/module.h> | ||
47 | |||
48 | #define MAX(a, b) ((a) > (b) ? (a) : (b)) | ||
49 | #define NODESIZE MAX(L1_CACHE_BYTES, 128) | ||
50 | |||
51 | struct btree_geo { | ||
52 | int keylen; | ||
53 | int no_pairs; | ||
54 | int no_longs; | ||
55 | }; | ||
56 | |||
57 | struct btree_geo btree_geo32 = { | ||
58 | .keylen = 1, | ||
59 | .no_pairs = NODESIZE / sizeof(long) / 2, | ||
60 | .no_longs = NODESIZE / sizeof(long) / 2, | ||
61 | }; | ||
62 | EXPORT_SYMBOL_GPL(btree_geo32); | ||
63 | |||
64 | #define LONG_PER_U64 (64 / BITS_PER_LONG) | ||
65 | struct btree_geo btree_geo64 = { | ||
66 | .keylen = LONG_PER_U64, | ||
67 | .no_pairs = NODESIZE / sizeof(long) / (1 + LONG_PER_U64), | ||
68 | .no_longs = LONG_PER_U64 * (NODESIZE / sizeof(long) / (1 + LONG_PER_U64)), | ||
69 | }; | ||
70 | EXPORT_SYMBOL_GPL(btree_geo64); | ||
71 | |||
72 | struct btree_geo btree_geo128 = { | ||
73 | .keylen = 2 * LONG_PER_U64, | ||
74 | .no_pairs = NODESIZE / sizeof(long) / (1 + 2 * LONG_PER_U64), | ||
75 | .no_longs = 2 * LONG_PER_U64 * (NODESIZE / sizeof(long) / (1 + 2 * LONG_PER_U64)), | ||
76 | }; | ||
77 | EXPORT_SYMBOL_GPL(btree_geo128); | ||
78 | |||
79 | static struct kmem_cache *btree_cachep; | ||
80 | |||
81 | void *btree_alloc(gfp_t gfp_mask, void *pool_data) | ||
82 | { | ||
83 | return kmem_cache_alloc(btree_cachep, gfp_mask); | ||
84 | } | ||
85 | EXPORT_SYMBOL_GPL(btree_alloc); | ||
86 | |||
87 | void btree_free(void *element, void *pool_data) | ||
88 | { | ||
89 | kmem_cache_free(btree_cachep, element); | ||
90 | } | ||
91 | EXPORT_SYMBOL_GPL(btree_free); | ||
92 | |||
93 | static unsigned long *btree_node_alloc(struct btree_head *head, gfp_t gfp) | ||
94 | { | ||
95 | unsigned long *node; | ||
96 | |||
97 | node = mempool_alloc(head->mempool, gfp); | ||
98 | memset(node, 0, NODESIZE); | ||
99 | return node; | ||
100 | } | ||
101 | |||
102 | static int longcmp(const unsigned long *l1, const unsigned long *l2, size_t n) | ||
103 | { | ||
104 | size_t i; | ||
105 | |||
106 | for (i = 0; i < n; i++) { | ||
107 | if (l1[i] < l2[i]) | ||
108 | return -1; | ||
109 | if (l1[i] > l2[i]) | ||
110 | return 1; | ||
111 | } | ||
112 | return 0; | ||
113 | } | ||
114 | |||
115 | static unsigned long *longcpy(unsigned long *dest, const unsigned long *src, | ||
116 | size_t n) | ||
117 | { | ||
118 | size_t i; | ||
119 | |||
120 | for (i = 0; i < n; i++) | ||
121 | dest[i] = src[i]; | ||
122 | return dest; | ||
123 | } | ||
124 | |||
125 | static unsigned long *longset(unsigned long *s, unsigned long c, size_t n) | ||
126 | { | ||
127 | size_t i; | ||
128 | |||
129 | for (i = 0; i < n; i++) | ||
130 | s[i] = c; | ||
131 | return s; | ||
132 | } | ||
133 | |||
134 | static void dec_key(struct btree_geo *geo, unsigned long *key) | ||
135 | { | ||
136 | unsigned long val; | ||
137 | int i; | ||
138 | |||
139 | for (i = geo->keylen - 1; i >= 0; i--) { | ||
140 | val = key[i]; | ||
141 | key[i] = val - 1; | ||
142 | if (val) | ||
143 | break; | ||
144 | } | ||
145 | } | ||
146 | |||
147 | static unsigned long *bkey(struct btree_geo *geo, unsigned long *node, int n) | ||
148 | { | ||
149 | return &node[n * geo->keylen]; | ||
150 | } | ||
151 | |||
152 | static void *bval(struct btree_geo *geo, unsigned long *node, int n) | ||
153 | { | ||
154 | return (void *)node[geo->no_longs + n]; | ||
155 | } | ||
156 | |||
157 | static void setkey(struct btree_geo *geo, unsigned long *node, int n, | ||
158 | unsigned long *key) | ||
159 | { | ||
160 | longcpy(bkey(geo, node, n), key, geo->keylen); | ||
161 | } | ||
162 | |||
163 | static void setval(struct btree_geo *geo, unsigned long *node, int n, | ||
164 | void *val) | ||
165 | { | ||
166 | node[geo->no_longs + n] = (unsigned long) val; | ||
167 | } | ||
168 | |||
169 | static void clearpair(struct btree_geo *geo, unsigned long *node, int n) | ||
170 | { | ||
171 | longset(bkey(geo, node, n), 0, geo->keylen); | ||
172 | node[geo->no_longs + n] = 0; | ||
173 | } | ||
174 | |||
175 | static inline void __btree_init(struct btree_head *head) | ||
176 | { | ||
177 | head->node = NULL; | ||
178 | head->height = 0; | ||
179 | } | ||
180 | |||
181 | void btree_init_mempool(struct btree_head *head, mempool_t *mempool) | ||
182 | { | ||
183 | __btree_init(head); | ||
184 | head->mempool = mempool; | ||
185 | } | ||
186 | EXPORT_SYMBOL_GPL(btree_init_mempool); | ||
187 | |||
188 | int btree_init(struct btree_head *head) | ||
189 | { | ||
190 | __btree_init(head); | ||
191 | head->mempool = mempool_create(0, btree_alloc, btree_free, NULL); | ||
192 | if (!head->mempool) | ||
193 | return -ENOMEM; | ||
194 | return 0; | ||
195 | } | ||
196 | EXPORT_SYMBOL_GPL(btree_init); | ||
197 | |||
198 | void btree_destroy(struct btree_head *head) | ||
199 | { | ||
200 | mempool_destroy(head->mempool); | ||
201 | head->mempool = NULL; | ||
202 | } | ||
203 | EXPORT_SYMBOL_GPL(btree_destroy); | ||
204 | |||
205 | void *btree_last(struct btree_head *head, struct btree_geo *geo, | ||
206 | unsigned long *key) | ||
207 | { | ||
208 | int height = head->height; | ||
209 | unsigned long *node = head->node; | ||
210 | |||
211 | if (height == 0) | ||
212 | return NULL; | ||
213 | |||
214 | for ( ; height > 1; height--) | ||
215 | node = bval(geo, node, 0); | ||
216 | |||
217 | longcpy(key, bkey(geo, node, 0), geo->keylen); | ||
218 | return bval(geo, node, 0); | ||
219 | } | ||
220 | EXPORT_SYMBOL_GPL(btree_last); | ||
221 | |||
222 | static int keycmp(struct btree_geo *geo, unsigned long *node, int pos, | ||
223 | unsigned long *key) | ||
224 | { | ||
225 | return longcmp(bkey(geo, node, pos), key, geo->keylen); | ||
226 | } | ||
227 | |||
228 | static int keyzero(struct btree_geo *geo, unsigned long *key) | ||
229 | { | ||
230 | int i; | ||
231 | |||
232 | for (i = 0; i < geo->keylen; i++) | ||
233 | if (key[i]) | ||
234 | return 0; | ||
235 | |||
236 | return 1; | ||
237 | } | ||
238 | |||
239 | void *btree_lookup(struct btree_head *head, struct btree_geo *geo, | ||
240 | unsigned long *key) | ||
241 | { | ||
242 | int i, height = head->height; | ||
243 | unsigned long *node = head->node; | ||
244 | |||
245 | if (height == 0) | ||
246 | return NULL; | ||
247 | |||
248 | for ( ; height > 1; height--) { | ||
249 | for (i = 0; i < geo->no_pairs; i++) | ||
250 | if (keycmp(geo, node, i, key) <= 0) | ||
251 | break; | ||
252 | if (i == geo->no_pairs) | ||
253 | return NULL; | ||
254 | node = bval(geo, node, i); | ||
255 | if (!node) | ||
256 | return NULL; | ||
257 | } | ||
258 | |||
259 | if (!node) | ||
260 | return NULL; | ||
261 | |||
262 | for (i = 0; i < geo->no_pairs; i++) | ||
263 | if (keycmp(geo, node, i, key) == 0) | ||
264 | return bval(geo, node, i); | ||
265 | return NULL; | ||
266 | } | ||
267 | EXPORT_SYMBOL_GPL(btree_lookup); | ||
268 | |||
269 | int btree_update(struct btree_head *head, struct btree_geo *geo, | ||
270 | unsigned long *key, void *val) | ||
271 | { | ||
272 | int i, height = head->height; | ||
273 | unsigned long *node = head->node; | ||
274 | |||
275 | if (height == 0) | ||
276 | return -ENOENT; | ||
277 | |||
278 | for ( ; height > 1; height--) { | ||
279 | for (i = 0; i < geo->no_pairs; i++) | ||
280 | if (keycmp(geo, node, i, key) <= 0) | ||
281 | break; | ||
282 | if (i == geo->no_pairs) | ||
283 | return -ENOENT; | ||
284 | node = bval(geo, node, i); | ||
285 | if (!node) | ||
286 | return -ENOENT; | ||
287 | } | ||
288 | |||
289 | if (!node) | ||
290 | return -ENOENT; | ||
291 | |||
292 | for (i = 0; i < geo->no_pairs; i++) | ||
293 | if (keycmp(geo, node, i, key) == 0) { | ||
294 | setval(geo, node, i, val); | ||
295 | return 0; | ||
296 | } | ||
297 | return -ENOENT; | ||
298 | } | ||
299 | EXPORT_SYMBOL_GPL(btree_update); | ||
300 | |||
301 | /* | ||
302 | * Usually this function is quite similar to normal lookup. But the key of | ||
303 | * a parent node may be smaller than the smallest key of all its siblings. | ||
304 | * In such a case we cannot just return NULL, as we have only proven that no | ||
305 | * key smaller than __key, but larger than this parent key exists. | ||
306 | * So we set __key to the parent key and retry. We have to use the smallest | ||
307 | * such parent key, which is the last parent key we encountered. | ||
308 | */ | ||
309 | void *btree_get_prev(struct btree_head *head, struct btree_geo *geo, | ||
310 | unsigned long *__key) | ||
311 | { | ||
312 | int i, height; | ||
313 | unsigned long *node, *oldnode; | ||
314 | unsigned long *retry_key = NULL, key[geo->keylen]; | ||
315 | |||
316 | if (keyzero(geo, __key)) | ||
317 | return NULL; | ||
318 | |||
319 | if (head->height == 0) | ||
320 | return NULL; | ||
321 | retry: | ||
322 | longcpy(key, __key, geo->keylen); | ||
323 | dec_key(geo, key); | ||
324 | |||
325 | node = head->node; | ||
326 | for (height = head->height ; height > 1; height--) { | ||
327 | for (i = 0; i < geo->no_pairs; i++) | ||
328 | if (keycmp(geo, node, i, key) <= 0) | ||
329 | break; | ||
330 | if (i == geo->no_pairs) | ||
331 | goto miss; | ||
332 | oldnode = node; | ||
333 | node = bval(geo, node, i); | ||
334 | if (!node) | ||
335 | goto miss; | ||
336 | retry_key = bkey(geo, oldnode, i); | ||
337 | } | ||
338 | |||
339 | if (!node) | ||
340 | goto miss; | ||
341 | |||
342 | for (i = 0; i < geo->no_pairs; i++) { | ||
343 | if (keycmp(geo, node, i, key) <= 0) { | ||
344 | if (bval(geo, node, i)) { | ||
345 | longcpy(__key, bkey(geo, node, i), geo->keylen); | ||
346 | return bval(geo, node, i); | ||
347 | } else | ||
348 | goto miss; | ||
349 | } | ||
350 | } | ||
351 | miss: | ||
352 | if (retry_key) { | ||
353 | __key = retry_key; | ||
354 | retry_key = NULL; | ||
355 | goto retry; | ||
356 | } | ||
357 | return NULL; | ||
358 | } | ||
359 | |||
360 | static int getpos(struct btree_geo *geo, unsigned long *node, | ||
361 | unsigned long *key) | ||
362 | { | ||
363 | int i; | ||
364 | |||
365 | for (i = 0; i < geo->no_pairs; i++) { | ||
366 | if (keycmp(geo, node, i, key) <= 0) | ||
367 | break; | ||
368 | } | ||
369 | return i; | ||
370 | } | ||
371 | |||
372 | static int getfill(struct btree_geo *geo, unsigned long *node, int start) | ||
373 | { | ||
374 | int i; | ||
375 | |||
376 | for (i = start; i < geo->no_pairs; i++) | ||
377 | if (!bval(geo, node, i)) | ||
378 | break; | ||
379 | return i; | ||
380 | } | ||
381 | |||
382 | /* | ||
383 | * locate the correct leaf node in the btree | ||
384 | */ | ||
385 | static unsigned long *find_level(struct btree_head *head, struct btree_geo *geo, | ||
386 | unsigned long *key, int level) | ||
387 | { | ||
388 | unsigned long *node = head->node; | ||
389 | int i, height; | ||
390 | |||
391 | for (height = head->height; height > level; height--) { | ||
392 | for (i = 0; i < geo->no_pairs; i++) | ||
393 | if (keycmp(geo, node, i, key) <= 0) | ||
394 | break; | ||
395 | |||
396 | if ((i == geo->no_pairs) || !bval(geo, node, i)) { | ||
397 | /* right-most key is too large, update it */ | ||
398 | /* FIXME: If the right-most key on higher levels is | ||
399 | * always zero, this wouldn't be necessary. */ | ||
400 | i--; | ||
401 | setkey(geo, node, i, key); | ||
402 | } | ||
403 | BUG_ON(i < 0); | ||
404 | node = bval(geo, node, i); | ||
405 | } | ||
406 | BUG_ON(!node); | ||
407 | return node; | ||
408 | } | ||
409 | |||
410 | static int btree_grow(struct btree_head *head, struct btree_geo *geo, | ||
411 | gfp_t gfp) | ||
412 | { | ||
413 | unsigned long *node; | ||
414 | int fill; | ||
415 | |||
416 | node = btree_node_alloc(head, gfp); | ||
417 | if (!node) | ||
418 | return -ENOMEM; | ||
419 | if (head->node) { | ||
420 | fill = getfill(geo, head->node, 0); | ||
421 | setkey(geo, node, 0, bkey(geo, head->node, fill - 1)); | ||
422 | setval(geo, node, 0, head->node); | ||
423 | } | ||
424 | head->node = node; | ||
425 | head->height++; | ||
426 | return 0; | ||
427 | } | ||
428 | |||
429 | static void btree_shrink(struct btree_head *head, struct btree_geo *geo) | ||
430 | { | ||
431 | unsigned long *node; | ||
432 | int fill; | ||
433 | |||
434 | if (head->height <= 1) | ||
435 | return; | ||
436 | |||
437 | node = head->node; | ||
438 | fill = getfill(geo, node, 0); | ||
439 | BUG_ON(fill > 1); | ||
440 | head->node = bval(geo, node, 0); | ||
441 | head->height--; | ||
442 | mempool_free(node, head->mempool); | ||
443 | } | ||
444 | |||
445 | static int btree_insert_level(struct btree_head *head, struct btree_geo *geo, | ||
446 | unsigned long *key, void *val, int level, | ||
447 | gfp_t gfp) | ||
448 | { | ||
449 | unsigned long *node; | ||
450 | int i, pos, fill, err; | ||
451 | |||
452 | BUG_ON(!val); | ||
453 | if (head->height < level) { | ||
454 | err = btree_grow(head, geo, gfp); | ||
455 | if (err) | ||
456 | return err; | ||
457 | } | ||
458 | |||
459 | retry: | ||
460 | node = find_level(head, geo, key, level); | ||
461 | pos = getpos(geo, node, key); | ||
462 | fill = getfill(geo, node, pos); | ||
463 | /* two identical keys are not allowed */ | ||
464 | BUG_ON(pos < fill && keycmp(geo, node, pos, key) == 0); | ||
465 | |||
466 | if (fill == geo->no_pairs) { | ||
467 | /* need to split node */ | ||
468 | unsigned long *new; | ||
469 | |||
470 | new = btree_node_alloc(head, gfp); | ||
471 | if (!new) | ||
472 | return -ENOMEM; | ||
473 | err = btree_insert_level(head, geo, | ||
474 | bkey(geo, node, fill / 2 - 1), | ||
475 | new, level + 1, gfp); | ||
476 | if (err) { | ||
477 | mempool_free(new, head->mempool); | ||
478 | return err; | ||
479 | } | ||
480 | for (i = 0; i < fill / 2; i++) { | ||
481 | setkey(geo, new, i, bkey(geo, node, i)); | ||
482 | setval(geo, new, i, bval(geo, node, i)); | ||
483 | setkey(geo, node, i, bkey(geo, node, i + fill / 2)); | ||
484 | setval(geo, node, i, bval(geo, node, i + fill / 2)); | ||
485 | clearpair(geo, node, i + fill / 2); | ||
486 | } | ||
487 | if (fill & 1) { | ||
488 | setkey(geo, node, i, bkey(geo, node, fill - 1)); | ||
489 | setval(geo, node, i, bval(geo, node, fill - 1)); | ||
490 | clearpair(geo, node, fill - 1); | ||
491 | } | ||
492 | goto retry; | ||
493 | } | ||
494 | BUG_ON(fill >= geo->no_pairs); | ||
495 | |||
496 | /* shift and insert */ | ||
497 | for (i = fill; i > pos; i--) { | ||
498 | setkey(geo, node, i, bkey(geo, node, i - 1)); | ||
499 | setval(geo, node, i, bval(geo, node, i - 1)); | ||
500 | } | ||
501 | setkey(geo, node, pos, key); | ||
502 | setval(geo, node, pos, val); | ||
503 | |||
504 | return 0; | ||
505 | } | ||
506 | |||
507 | int btree_insert(struct btree_head *head, struct btree_geo *geo, | ||
508 | unsigned long *key, void *val, gfp_t gfp) | ||
509 | { | ||
510 | return btree_insert_level(head, geo, key, val, 1, gfp); | ||
511 | } | ||
512 | EXPORT_SYMBOL_GPL(btree_insert); | ||
513 | |||
514 | static void *btree_remove_level(struct btree_head *head, struct btree_geo *geo, | ||
515 | unsigned long *key, int level); | ||
516 | static void merge(struct btree_head *head, struct btree_geo *geo, int level, | ||
517 | unsigned long *left, int lfill, | ||
518 | unsigned long *right, int rfill, | ||
519 | unsigned long *parent, int lpos) | ||
520 | { | ||
521 | int i; | ||
522 | |||
523 | for (i = 0; i < rfill; i++) { | ||
524 | /* Move all keys to the left */ | ||
525 | setkey(geo, left, lfill + i, bkey(geo, right, i)); | ||
526 | setval(geo, left, lfill + i, bval(geo, right, i)); | ||
527 | } | ||
528 | /* Exchange left and right child in parent */ | ||
529 | setval(geo, parent, lpos, right); | ||
530 | setval(geo, parent, lpos + 1, left); | ||
531 | /* Remove left (formerly right) child from parent */ | ||
532 | btree_remove_level(head, geo, bkey(geo, parent, lpos), level + 1); | ||
533 | mempool_free(right, head->mempool); | ||
534 | } | ||
535 | |||
536 | static void rebalance(struct btree_head *head, struct btree_geo *geo, | ||
537 | unsigned long *key, int level, unsigned long *child, int fill) | ||
538 | { | ||
539 | unsigned long *parent, *left = NULL, *right = NULL; | ||
540 | int i, no_left, no_right; | ||
541 | |||
542 | if (fill == 0) { | ||
543 | /* Because we don't steal entries from a neigbour, this case | ||
544 | * can happen. Parent node contains a single child, this | ||
545 | * node, so merging with a sibling never happens. | ||
546 | */ | ||
547 | btree_remove_level(head, geo, key, level + 1); | ||
548 | mempool_free(child, head->mempool); | ||
549 | return; | ||
550 | } | ||
551 | |||
552 | parent = find_level(head, geo, key, level + 1); | ||
553 | i = getpos(geo, parent, key); | ||
554 | BUG_ON(bval(geo, parent, i) != child); | ||
555 | |||
556 | if (i > 0) { | ||
557 | left = bval(geo, parent, i - 1); | ||
558 | no_left = getfill(geo, left, 0); | ||
559 | if (fill + no_left <= geo->no_pairs) { | ||
560 | merge(head, geo, level, | ||
561 | left, no_left, | ||
562 | child, fill, | ||
563 | parent, i - 1); | ||
564 | return; | ||
565 | } | ||
566 | } | ||
567 | if (i + 1 < getfill(geo, parent, i)) { | ||
568 | right = bval(geo, parent, i + 1); | ||
569 | no_right = getfill(geo, right, 0); | ||
570 | if (fill + no_right <= geo->no_pairs) { | ||
571 | merge(head, geo, level, | ||
572 | child, fill, | ||
573 | right, no_right, | ||
574 | parent, i); | ||
575 | return; | ||
576 | } | ||
577 | } | ||
578 | /* | ||
579 | * We could also try to steal one entry from the left or right | ||
580 | * neighbor. By not doing so we changed the invariant from | ||
581 | * "all nodes are at least half full" to "no two neighboring | ||
582 | * nodes can be merged". Which means that the average fill of | ||
583 | * all nodes is still half or better. | ||
584 | */ | ||
585 | } | ||
586 | |||
587 | static void *btree_remove_level(struct btree_head *head, struct btree_geo *geo, | ||
588 | unsigned long *key, int level) | ||
589 | { | ||
590 | unsigned long *node; | ||
591 | int i, pos, fill; | ||
592 | void *ret; | ||
593 | |||
594 | if (level > head->height) { | ||
595 | /* we recursed all the way up */ | ||
596 | head->height = 0; | ||
597 | head->node = NULL; | ||
598 | return NULL; | ||
599 | } | ||
600 | |||
601 | node = find_level(head, geo, key, level); | ||
602 | pos = getpos(geo, node, key); | ||
603 | fill = getfill(geo, node, pos); | ||
604 | if ((level == 1) && (keycmp(geo, node, pos, key) != 0)) | ||
605 | return NULL; | ||
606 | ret = bval(geo, node, pos); | ||
607 | |||
608 | /* remove and shift */ | ||
609 | for (i = pos; i < fill - 1; i++) { | ||
610 | setkey(geo, node, i, bkey(geo, node, i + 1)); | ||
611 | setval(geo, node, i, bval(geo, node, i + 1)); | ||
612 | } | ||
613 | clearpair(geo, node, fill - 1); | ||
614 | |||
615 | if (fill - 1 < geo->no_pairs / 2) { | ||
616 | if (level < head->height) | ||
617 | rebalance(head, geo, key, level, node, fill - 1); | ||
618 | else if (fill - 1 == 1) | ||
619 | btree_shrink(head, geo); | ||
620 | } | ||
621 | |||
622 | return ret; | ||
623 | } | ||
624 | |||
625 | void *btree_remove(struct btree_head *head, struct btree_geo *geo, | ||
626 | unsigned long *key) | ||
627 | { | ||
628 | if (head->height == 0) | ||
629 | return NULL; | ||
630 | |||
631 | return btree_remove_level(head, geo, key, 1); | ||
632 | } | ||
633 | EXPORT_SYMBOL_GPL(btree_remove); | ||
634 | |||
635 | int btree_merge(struct btree_head *target, struct btree_head *victim, | ||
636 | struct btree_geo *geo, gfp_t gfp) | ||
637 | { | ||
638 | unsigned long key[geo->keylen]; | ||
639 | unsigned long dup[geo->keylen]; | ||
640 | void *val; | ||
641 | int err; | ||
642 | |||
643 | BUG_ON(target == victim); | ||
644 | |||
645 | if (!(target->node)) { | ||
646 | /* target is empty, just copy fields over */ | ||
647 | target->node = victim->node; | ||
648 | target->height = victim->height; | ||
649 | __btree_init(victim); | ||
650 | return 0; | ||
651 | } | ||
652 | |||
653 | /* TODO: This needs some optimizations. Currently we do three tree | ||
654 | * walks to remove a single object from the victim. | ||
655 | */ | ||
656 | for (;;) { | ||
657 | if (!btree_last(victim, geo, key)) | ||
658 | break; | ||
659 | val = btree_lookup(victim, geo, key); | ||
660 | err = btree_insert(target, geo, key, val, gfp); | ||
661 | if (err) | ||
662 | return err; | ||
663 | /* We must make a copy of the key, as the original will get | ||
664 | * mangled inside btree_remove. */ | ||
665 | longcpy(dup, key, geo->keylen); | ||
666 | btree_remove(victim, geo, dup); | ||
667 | } | ||
668 | return 0; | ||
669 | } | ||
670 | EXPORT_SYMBOL_GPL(btree_merge); | ||
671 | |||
672 | static size_t __btree_for_each(struct btree_head *head, struct btree_geo *geo, | ||
673 | unsigned long *node, unsigned long opaque, | ||
674 | void (*func)(void *elem, unsigned long opaque, | ||
675 | unsigned long *key, size_t index, | ||
676 | void *func2), | ||
677 | void *func2, int reap, int height, size_t count) | ||
678 | { | ||
679 | int i; | ||
680 | unsigned long *child; | ||
681 | |||
682 | for (i = 0; i < geo->no_pairs; i++) { | ||
683 | child = bval(geo, node, i); | ||
684 | if (!child) | ||
685 | break; | ||
686 | if (height > 1) | ||
687 | count = __btree_for_each(head, geo, child, opaque, | ||
688 | func, func2, reap, height - 1, count); | ||
689 | else | ||
690 | func(child, opaque, bkey(geo, node, i), count++, | ||
691 | func2); | ||
692 | } | ||
693 | if (reap) | ||
694 | mempool_free(node, head->mempool); | ||
695 | return count; | ||
696 | } | ||
697 | |||
698 | static void empty(void *elem, unsigned long opaque, unsigned long *key, | ||
699 | size_t index, void *func2) | ||
700 | { | ||
701 | } | ||
702 | |||
703 | void visitorl(void *elem, unsigned long opaque, unsigned long *key, | ||
704 | size_t index, void *__func) | ||
705 | { | ||
706 | visitorl_t func = __func; | ||
707 | |||
708 | func(elem, opaque, *key, index); | ||
709 | } | ||
710 | EXPORT_SYMBOL_GPL(visitorl); | ||
711 | |||
712 | void visitor32(void *elem, unsigned long opaque, unsigned long *__key, | ||
713 | size_t index, void *__func) | ||
714 | { | ||
715 | visitor32_t func = __func; | ||
716 | u32 *key = (void *)__key; | ||
717 | |||
718 | func(elem, opaque, *key, index); | ||
719 | } | ||
720 | EXPORT_SYMBOL_GPL(visitor32); | ||
721 | |||
722 | void visitor64(void *elem, unsigned long opaque, unsigned long *__key, | ||
723 | size_t index, void *__func) | ||
724 | { | ||
725 | visitor64_t func = __func; | ||
726 | u64 *key = (void *)__key; | ||
727 | |||
728 | func(elem, opaque, *key, index); | ||
729 | } | ||
730 | EXPORT_SYMBOL_GPL(visitor64); | ||
731 | |||
732 | void visitor128(void *elem, unsigned long opaque, unsigned long *__key, | ||
733 | size_t index, void *__func) | ||
734 | { | ||
735 | visitor128_t func = __func; | ||
736 | u64 *key = (void *)__key; | ||
737 | |||
738 | func(elem, opaque, key[0], key[1], index); | ||
739 | } | ||
740 | EXPORT_SYMBOL_GPL(visitor128); | ||
741 | |||
742 | size_t btree_visitor(struct btree_head *head, struct btree_geo *geo, | ||
743 | unsigned long opaque, | ||
744 | void (*func)(void *elem, unsigned long opaque, | ||
745 | unsigned long *key, | ||
746 | size_t index, void *func2), | ||
747 | void *func2) | ||
748 | { | ||
749 | size_t count = 0; | ||
750 | |||
751 | if (!func2) | ||
752 | func = empty; | ||
753 | if (head->node) | ||
754 | count = __btree_for_each(head, geo, head->node, opaque, func, | ||
755 | func2, 0, head->height, 0); | ||
756 | return count; | ||
757 | } | ||
758 | EXPORT_SYMBOL_GPL(btree_visitor); | ||
759 | |||
760 | size_t btree_grim_visitor(struct btree_head *head, struct btree_geo *geo, | ||
761 | unsigned long opaque, | ||
762 | void (*func)(void *elem, unsigned long opaque, | ||
763 | unsigned long *key, | ||
764 | size_t index, void *func2), | ||
765 | void *func2) | ||
766 | { | ||
767 | size_t count = 0; | ||
768 | |||
769 | if (!func2) | ||
770 | func = empty; | ||
771 | if (head->node) | ||
772 | count = __btree_for_each(head, geo, head->node, opaque, func, | ||
773 | func2, 1, head->height, 0); | ||
774 | __btree_init(head); | ||
775 | return count; | ||
776 | } | ||
777 | EXPORT_SYMBOL_GPL(btree_grim_visitor); | ||
778 | |||
779 | static int __init btree_module_init(void) | ||
780 | { | ||
781 | btree_cachep = kmem_cache_create("btree_node", NODESIZE, 0, | ||
782 | SLAB_HWCACHE_ALIGN, NULL); | ||
783 | return 0; | ||
784 | } | ||
785 | |||
786 | static void __exit btree_module_exit(void) | ||
787 | { | ||
788 | kmem_cache_destroy(btree_cachep); | ||
789 | } | ||
790 | |||
791 | /* If core code starts using btree, initialization should happen even earlier */ | ||
792 | module_init(btree_module_init); | ||
793 | module_exit(btree_module_exit); | ||
794 | |||
795 | MODULE_AUTHOR("Joern Engel <joern@logfs.org>"); | ||
796 | MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>"); | ||
797 | MODULE_LICENSE("GPL"); | ||