diff options
-rw-r--r-- | sound/soc/Kconfig | 1 | ||||
-rw-r--r-- | sound/soc/Makefile | 2 | ||||
-rw-r--r-- | sound/soc/fsl/Kconfig | 20 | ||||
-rw-r--r-- | sound/soc/fsl/Makefile | 6 | ||||
-rw-r--r-- | sound/soc/fsl/fsl_dma.c | 839 | ||||
-rw-r--r-- | sound/soc/fsl/fsl_dma.h | 149 | ||||
-rw-r--r-- | sound/soc/fsl/fsl_ssi.c | 644 | ||||
-rw-r--r-- | sound/soc/fsl/fsl_ssi.h | 224 | ||||
-rw-r--r-- | sound/soc/fsl/mpc8610_hpcd.c | 631 |
9 files changed, 2515 insertions, 1 deletions
diff --git a/sound/soc/Kconfig b/sound/soc/Kconfig index 97b255233175..276585215160 100644 --- a/sound/soc/Kconfig +++ b/sound/soc/Kconfig | |||
@@ -28,6 +28,7 @@ source "sound/soc/at91/Kconfig" | |||
28 | source "sound/soc/pxa/Kconfig" | 28 | source "sound/soc/pxa/Kconfig" |
29 | source "sound/soc/s3c24xx/Kconfig" | 29 | source "sound/soc/s3c24xx/Kconfig" |
30 | source "sound/soc/sh/Kconfig" | 30 | source "sound/soc/sh/Kconfig" |
31 | source "sound/soc/fsl/Kconfig" | ||
31 | 32 | ||
32 | # Supported codecs | 33 | # Supported codecs |
33 | source "sound/soc/codecs/Kconfig" | 34 | source "sound/soc/codecs/Kconfig" |
diff --git a/sound/soc/Makefile b/sound/soc/Makefile index 304140377632..4869c9ae7a03 100644 --- a/sound/soc/Makefile +++ b/sound/soc/Makefile | |||
@@ -1,4 +1,4 @@ | |||
1 | snd-soc-core-objs := soc-core.o soc-dapm.o | 1 | snd-soc-core-objs := soc-core.o soc-dapm.o |
2 | 2 | ||
3 | obj-$(CONFIG_SND_SOC) += snd-soc-core.o | 3 | obj-$(CONFIG_SND_SOC) += snd-soc-core.o |
4 | obj-$(CONFIG_SND_SOC) += codecs/ at91/ pxa/ s3c24xx/ sh/ | 4 | obj-$(CONFIG_SND_SOC) += codecs/ at91/ pxa/ s3c24xx/ sh/ fsl/ |
diff --git a/sound/soc/fsl/Kconfig b/sound/soc/fsl/Kconfig new file mode 100644 index 000000000000..257101f44e9e --- /dev/null +++ b/sound/soc/fsl/Kconfig | |||
@@ -0,0 +1,20 @@ | |||
1 | menu "ALSA SoC audio for Freescale SOCs" | ||
2 | |||
3 | config SND_SOC_MPC8610 | ||
4 | bool "ALSA SoC support for the MPC8610 SOC" | ||
5 | depends on SND_SOC && MPC8610_HPCD | ||
6 | default y if MPC8610 | ||
7 | help | ||
8 | Say Y if you want to add support for codecs attached to the SSI | ||
9 | device on an MPC8610. | ||
10 | |||
11 | config SND_SOC_MPC8610_HPCD | ||
12 | bool "ALSA SoC support for the Freescale MPC8610 HPCD board" | ||
13 | depends on SND_SOC_MPC8610 | ||
14 | select SND_SOC_CS4270 | ||
15 | select SND_SOC_CS4270_VD33_ERRATA | ||
16 | default y if MPC8610_HPCD | ||
17 | help | ||
18 | Say Y if you want to enable audio on the Freescale MPC8610 HPCD. | ||
19 | |||
20 | endmenu | ||
diff --git a/sound/soc/fsl/Makefile b/sound/soc/fsl/Makefile new file mode 100644 index 000000000000..62f680a4a776 --- /dev/null +++ b/sound/soc/fsl/Makefile | |||
@@ -0,0 +1,6 @@ | |||
1 | # MPC8610 HPCD Machine Support | ||
2 | obj-$(CONFIG_SND_SOC_MPC8610_HPCD) += mpc8610_hpcd.o | ||
3 | |||
4 | # MPC8610 Platform Support | ||
5 | obj-$(CONFIG_SND_SOC_MPC8610) += fsl_ssi.o fsl_dma.o | ||
6 | |||
diff --git a/sound/soc/fsl/fsl_dma.c b/sound/soc/fsl/fsl_dma.c new file mode 100644 index 000000000000..2173203b29ab --- /dev/null +++ b/sound/soc/fsl/fsl_dma.c | |||
@@ -0,0 +1,839 @@ | |||
1 | /* | ||
2 | * Freescale DMA ALSA SoC PCM driver | ||
3 | * | ||
4 | * Author: Timur Tabi <timur@freescale.com> | ||
5 | * | ||
6 | * Copyright 2007-2008 Freescale Semiconductor, Inc. This file is licensed | ||
7 | * under the terms of the GNU General Public License version 2. This | ||
8 | * program is licensed "as is" without any warranty of any kind, whether | ||
9 | * express or implied. | ||
10 | * | ||
11 | * This driver implements ASoC support for the Elo DMA controller, which is | ||
12 | * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms, | ||
13 | * the PCM driver is what handles the DMA buffer. | ||
14 | */ | ||
15 | |||
16 | #include <linux/module.h> | ||
17 | #include <linux/init.h> | ||
18 | #include <linux/platform_device.h> | ||
19 | #include <linux/dma-mapping.h> | ||
20 | #include <linux/interrupt.h> | ||
21 | #include <linux/delay.h> | ||
22 | |||
23 | #include <sound/driver.h> | ||
24 | #include <sound/core.h> | ||
25 | #include <sound/pcm.h> | ||
26 | #include <sound/pcm_params.h> | ||
27 | #include <sound/soc.h> | ||
28 | |||
29 | #include <asm/io.h> | ||
30 | |||
31 | #include "fsl_dma.h" | ||
32 | |||
33 | /* | ||
34 | * The formats that the DMA controller supports, which is anything | ||
35 | * that is 8, 16, or 32 bits. | ||
36 | */ | ||
37 | #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \ | ||
38 | SNDRV_PCM_FMTBIT_U8 | \ | ||
39 | SNDRV_PCM_FMTBIT_S16_LE | \ | ||
40 | SNDRV_PCM_FMTBIT_S16_BE | \ | ||
41 | SNDRV_PCM_FMTBIT_U16_LE | \ | ||
42 | SNDRV_PCM_FMTBIT_U16_BE | \ | ||
43 | SNDRV_PCM_FMTBIT_S24_LE | \ | ||
44 | SNDRV_PCM_FMTBIT_S24_BE | \ | ||
45 | SNDRV_PCM_FMTBIT_U24_LE | \ | ||
46 | SNDRV_PCM_FMTBIT_U24_BE | \ | ||
47 | SNDRV_PCM_FMTBIT_S32_LE | \ | ||
48 | SNDRV_PCM_FMTBIT_S32_BE | \ | ||
49 | SNDRV_PCM_FMTBIT_U32_LE | \ | ||
50 | SNDRV_PCM_FMTBIT_U32_BE) | ||
51 | |||
52 | #define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \ | ||
53 | SNDRV_PCM_RATE_CONTINUOUS) | ||
54 | |||
55 | /* DMA global data. This structure is used by fsl_dma_open() to determine | ||
56 | * which DMA channels to assign to a substream. Unfortunately, ASoC V1 does | ||
57 | * not allow the machine driver to provide this information to the PCM | ||
58 | * driver in advance, and there's no way to differentiate between the two | ||
59 | * DMA controllers. So for now, this driver only supports one SSI device | ||
60 | * using two DMA channels. We cannot support multiple DMA devices. | ||
61 | * | ||
62 | * ssi_stx_phys: bus address of SSI STX register | ||
63 | * ssi_srx_phys: bus address of SSI SRX register | ||
64 | * dma_channel: pointer to the DMA channel's registers | ||
65 | * irq: IRQ for this DMA channel | ||
66 | * assigned: set to 1 if that DMA channel is assigned to a substream | ||
67 | */ | ||
68 | static struct { | ||
69 | dma_addr_t ssi_stx_phys; | ||
70 | dma_addr_t ssi_srx_phys; | ||
71 | struct ccsr_dma_channel __iomem *dma_channel[2]; | ||
72 | unsigned int irq[2]; | ||
73 | unsigned int assigned[2]; | ||
74 | } dma_global_data; | ||
75 | |||
76 | /* | ||
77 | * The number of DMA links to use. Two is the bare minimum, but if you | ||
78 | * have really small links you might need more. | ||
79 | */ | ||
80 | #define NUM_DMA_LINKS 2 | ||
81 | |||
82 | /** fsl_dma_private: p-substream DMA data | ||
83 | * | ||
84 | * Each substream has a 1-to-1 association with a DMA channel. | ||
85 | * | ||
86 | * The link[] array is first because it needs to be aligned on a 32-byte | ||
87 | * boundary, so putting it first will ensure alignment without padding the | ||
88 | * structure. | ||
89 | * | ||
90 | * @link[]: array of link descriptors | ||
91 | * @controller_id: which DMA controller (0, 1, ...) | ||
92 | * @channel_id: which DMA channel on the controller (0, 1, 2, ...) | ||
93 | * @dma_channel: pointer to the DMA channel's registers | ||
94 | * @irq: IRQ for this DMA channel | ||
95 | * @substream: pointer to the substream object, needed by the ISR | ||
96 | * @ssi_sxx_phys: bus address of the STX or SRX register to use | ||
97 | * @ld_buf_phys: physical address of the LD buffer | ||
98 | * @current_link: index into link[] of the link currently being processed | ||
99 | * @dma_buf_phys: physical address of the DMA buffer | ||
100 | * @dma_buf_next: physical address of the next period to process | ||
101 | * @dma_buf_end: physical address of the byte after the end of the DMA | ||
102 | * @buffer period_size: the size of a single period | ||
103 | * @num_periods: the number of periods in the DMA buffer | ||
104 | */ | ||
105 | struct fsl_dma_private { | ||
106 | struct fsl_dma_link_descriptor link[NUM_DMA_LINKS]; | ||
107 | unsigned int controller_id; | ||
108 | unsigned int channel_id; | ||
109 | struct ccsr_dma_channel __iomem *dma_channel; | ||
110 | unsigned int irq; | ||
111 | struct snd_pcm_substream *substream; | ||
112 | dma_addr_t ssi_sxx_phys; | ||
113 | dma_addr_t ld_buf_phys; | ||
114 | unsigned int current_link; | ||
115 | dma_addr_t dma_buf_phys; | ||
116 | dma_addr_t dma_buf_next; | ||
117 | dma_addr_t dma_buf_end; | ||
118 | size_t period_size; | ||
119 | unsigned int num_periods; | ||
120 | }; | ||
121 | |||
122 | /** | ||
123 | * fsl_dma_hardare: define characteristics of the PCM hardware. | ||
124 | * | ||
125 | * The PCM hardware is the Freescale DMA controller. This structure defines | ||
126 | * the capabilities of that hardware. | ||
127 | * | ||
128 | * Since the sampling rate and data format are not controlled by the DMA | ||
129 | * controller, we specify no limits for those values. The only exception is | ||
130 | * period_bytes_min, which is set to a reasonably low value to prevent the | ||
131 | * DMA controller from generating too many interrupts per second. | ||
132 | * | ||
133 | * Since each link descriptor has a 32-bit byte count field, we set | ||
134 | * period_bytes_max to the largest 32-bit number. We also have no maximum | ||
135 | * number of periods. | ||
136 | */ | ||
137 | static const struct snd_pcm_hardware fsl_dma_hardware = { | ||
138 | |||
139 | .info = SNDRV_PCM_INFO_INTERLEAVED, | ||
140 | .formats = FSLDMA_PCM_FORMATS, | ||
141 | .rates = FSLDMA_PCM_RATES, | ||
142 | .rate_min = 5512, | ||
143 | .rate_max = 192000, | ||
144 | .period_bytes_min = 512, /* A reasonable limit */ | ||
145 | .period_bytes_max = (u32) -1, | ||
146 | .periods_min = NUM_DMA_LINKS, | ||
147 | .periods_max = (unsigned int) -1, | ||
148 | .buffer_bytes_max = 128 * 1024, /* A reasonable limit */ | ||
149 | }; | ||
150 | |||
151 | /** | ||
152 | * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted | ||
153 | * | ||
154 | * This function should be called by the ISR whenever the DMA controller | ||
155 | * halts data transfer. | ||
156 | */ | ||
157 | static void fsl_dma_abort_stream(struct snd_pcm_substream *substream) | ||
158 | { | ||
159 | unsigned long flags; | ||
160 | |||
161 | snd_pcm_stream_lock_irqsave(substream, flags); | ||
162 | |||
163 | if (snd_pcm_running(substream)) | ||
164 | snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN); | ||
165 | |||
166 | snd_pcm_stream_unlock_irqrestore(substream, flags); | ||
167 | } | ||
168 | |||
169 | /** | ||
170 | * fsl_dma_update_pointers - update LD pointers to point to the next period | ||
171 | * | ||
172 | * As each period is completed, this function changes the the link | ||
173 | * descriptor pointers for that period to point to the next period. | ||
174 | */ | ||
175 | static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private) | ||
176 | { | ||
177 | struct fsl_dma_link_descriptor *link = | ||
178 | &dma_private->link[dma_private->current_link]; | ||
179 | |||
180 | /* Update our link descriptors to point to the next period */ | ||
181 | if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) | ||
182 | link->source_addr = | ||
183 | cpu_to_be32(dma_private->dma_buf_next); | ||
184 | else | ||
185 | link->dest_addr = | ||
186 | cpu_to_be32(dma_private->dma_buf_next); | ||
187 | |||
188 | /* Update our variables for next time */ | ||
189 | dma_private->dma_buf_next += dma_private->period_size; | ||
190 | |||
191 | if (dma_private->dma_buf_next >= dma_private->dma_buf_end) | ||
192 | dma_private->dma_buf_next = dma_private->dma_buf_phys; | ||
193 | |||
194 | if (++dma_private->current_link >= NUM_DMA_LINKS) | ||
195 | dma_private->current_link = 0; | ||
196 | } | ||
197 | |||
198 | /** | ||
199 | * fsl_dma_isr: interrupt handler for the DMA controller | ||
200 | * | ||
201 | * @irq: IRQ of the DMA channel | ||
202 | * @dev_id: pointer to the dma_private structure for this DMA channel | ||
203 | */ | ||
204 | static irqreturn_t fsl_dma_isr(int irq, void *dev_id) | ||
205 | { | ||
206 | struct fsl_dma_private *dma_private = dev_id; | ||
207 | struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel; | ||
208 | irqreturn_t ret = IRQ_NONE; | ||
209 | u32 sr, sr2 = 0; | ||
210 | |||
211 | /* We got an interrupt, so read the status register to see what we | ||
212 | were interrupted for. | ||
213 | */ | ||
214 | sr = in_be32(&dma_channel->sr); | ||
215 | |||
216 | if (sr & CCSR_DMA_SR_TE) { | ||
217 | dev_err(dma_private->substream->pcm->card->dev, | ||
218 | "DMA transmit error (controller=%u channel=%u irq=%u\n", | ||
219 | dma_private->controller_id, | ||
220 | dma_private->channel_id, irq); | ||
221 | fsl_dma_abort_stream(dma_private->substream); | ||
222 | sr2 |= CCSR_DMA_SR_TE; | ||
223 | ret = IRQ_HANDLED; | ||
224 | } | ||
225 | |||
226 | if (sr & CCSR_DMA_SR_CH) | ||
227 | ret = IRQ_HANDLED; | ||
228 | |||
229 | if (sr & CCSR_DMA_SR_PE) { | ||
230 | dev_err(dma_private->substream->pcm->card->dev, | ||
231 | "DMA%u programming error (channel=%u irq=%u)\n", | ||
232 | dma_private->controller_id, | ||
233 | dma_private->channel_id, irq); | ||
234 | fsl_dma_abort_stream(dma_private->substream); | ||
235 | sr2 |= CCSR_DMA_SR_PE; | ||
236 | ret = IRQ_HANDLED; | ||
237 | } | ||
238 | |||
239 | if (sr & CCSR_DMA_SR_EOLNI) { | ||
240 | sr2 |= CCSR_DMA_SR_EOLNI; | ||
241 | ret = IRQ_HANDLED; | ||
242 | } | ||
243 | |||
244 | if (sr & CCSR_DMA_SR_CB) | ||
245 | ret = IRQ_HANDLED; | ||
246 | |||
247 | if (sr & CCSR_DMA_SR_EOSI) { | ||
248 | struct snd_pcm_substream *substream = dma_private->substream; | ||
249 | |||
250 | /* Tell ALSA we completed a period. */ | ||
251 | snd_pcm_period_elapsed(substream); | ||
252 | |||
253 | /* | ||
254 | * Update our link descriptors to point to the next period. We | ||
255 | * only need to do this if the number of periods is not equal to | ||
256 | * the number of links. | ||
257 | */ | ||
258 | if (dma_private->num_periods != NUM_DMA_LINKS) | ||
259 | fsl_dma_update_pointers(dma_private); | ||
260 | |||
261 | sr2 |= CCSR_DMA_SR_EOSI; | ||
262 | ret = IRQ_HANDLED; | ||
263 | } | ||
264 | |||
265 | if (sr & CCSR_DMA_SR_EOLSI) { | ||
266 | sr2 |= CCSR_DMA_SR_EOLSI; | ||
267 | ret = IRQ_HANDLED; | ||
268 | } | ||
269 | |||
270 | /* Clear the bits that we set */ | ||
271 | if (sr2) | ||
272 | out_be32(&dma_channel->sr, sr2); | ||
273 | |||
274 | return ret; | ||
275 | } | ||
276 | |||
277 | /** | ||
278 | * fsl_dma_new: initialize this PCM driver. | ||
279 | * | ||
280 | * This function is called when the codec driver calls snd_soc_new_pcms(), | ||
281 | * once for each .dai_link in the machine driver's snd_soc_machine | ||
282 | * structure. | ||
283 | */ | ||
284 | static int fsl_dma_new(struct snd_card *card, struct snd_soc_codec_dai *dai, | ||
285 | struct snd_pcm *pcm) | ||
286 | { | ||
287 | static u64 fsl_dma_dmamask = DMA_BIT_MASK(32); | ||
288 | int ret; | ||
289 | |||
290 | if (!card->dev->dma_mask) | ||
291 | card->dev->dma_mask = &fsl_dma_dmamask; | ||
292 | |||
293 | if (!card->dev->coherent_dma_mask) | ||
294 | card->dev->coherent_dma_mask = fsl_dma_dmamask; | ||
295 | |||
296 | ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev, | ||
297 | fsl_dma_hardware.buffer_bytes_max, | ||
298 | &pcm->streams[0].substream->dma_buffer); | ||
299 | if (ret) { | ||
300 | dev_err(card->dev, | ||
301 | "Can't allocate playback DMA buffer (size=%u)\n", | ||
302 | fsl_dma_hardware.buffer_bytes_max); | ||
303 | return -ENOMEM; | ||
304 | } | ||
305 | |||
306 | ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev, | ||
307 | fsl_dma_hardware.buffer_bytes_max, | ||
308 | &pcm->streams[1].substream->dma_buffer); | ||
309 | if (ret) { | ||
310 | snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer); | ||
311 | dev_err(card->dev, | ||
312 | "Can't allocate capture DMA buffer (size=%u)\n", | ||
313 | fsl_dma_hardware.buffer_bytes_max); | ||
314 | return -ENOMEM; | ||
315 | } | ||
316 | |||
317 | return 0; | ||
318 | } | ||
319 | |||
320 | /** | ||
321 | * fsl_dma_open: open a new substream. | ||
322 | * | ||
323 | * Each substream has its own DMA buffer. | ||
324 | */ | ||
325 | static int fsl_dma_open(struct snd_pcm_substream *substream) | ||
326 | { | ||
327 | struct snd_pcm_runtime *runtime = substream->runtime; | ||
328 | struct fsl_dma_private *dma_private; | ||
329 | dma_addr_t ld_buf_phys; | ||
330 | unsigned int channel; | ||
331 | int ret = 0; | ||
332 | |||
333 | /* | ||
334 | * Reject any DMA buffer whose size is not a multiple of the period | ||
335 | * size. We need to make sure that the DMA buffer can be evenly divided | ||
336 | * into periods. | ||
337 | */ | ||
338 | ret = snd_pcm_hw_constraint_integer(runtime, | ||
339 | SNDRV_PCM_HW_PARAM_PERIODS); | ||
340 | if (ret < 0) { | ||
341 | dev_err(substream->pcm->card->dev, "invalid buffer size\n"); | ||
342 | return ret; | ||
343 | } | ||
344 | |||
345 | channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1; | ||
346 | |||
347 | if (dma_global_data.assigned[channel]) { | ||
348 | dev_err(substream->pcm->card->dev, | ||
349 | "DMA channel already assigned\n"); | ||
350 | return -EBUSY; | ||
351 | } | ||
352 | |||
353 | dma_private = dma_alloc_coherent(substream->pcm->dev, | ||
354 | sizeof(struct fsl_dma_private), &ld_buf_phys, GFP_KERNEL); | ||
355 | if (!dma_private) { | ||
356 | dev_err(substream->pcm->card->dev, | ||
357 | "can't allocate DMA private data\n"); | ||
358 | return -ENOMEM; | ||
359 | } | ||
360 | if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) | ||
361 | dma_private->ssi_sxx_phys = dma_global_data.ssi_stx_phys; | ||
362 | else | ||
363 | dma_private->ssi_sxx_phys = dma_global_data.ssi_srx_phys; | ||
364 | |||
365 | dma_private->dma_channel = dma_global_data.dma_channel[channel]; | ||
366 | dma_private->irq = dma_global_data.irq[channel]; | ||
367 | dma_private->substream = substream; | ||
368 | dma_private->ld_buf_phys = ld_buf_phys; | ||
369 | dma_private->dma_buf_phys = substream->dma_buffer.addr; | ||
370 | |||
371 | /* We only support one DMA controller for now */ | ||
372 | dma_private->controller_id = 0; | ||
373 | dma_private->channel_id = channel; | ||
374 | |||
375 | ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "DMA", dma_private); | ||
376 | if (ret) { | ||
377 | dev_err(substream->pcm->card->dev, | ||
378 | "can't register ISR for IRQ %u (ret=%i)\n", | ||
379 | dma_private->irq, ret); | ||
380 | dma_free_coherent(substream->pcm->dev, | ||
381 | sizeof(struct fsl_dma_private), | ||
382 | dma_private, dma_private->ld_buf_phys); | ||
383 | return ret; | ||
384 | } | ||
385 | |||
386 | dma_global_data.assigned[channel] = 1; | ||
387 | |||
388 | snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer); | ||
389 | snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware); | ||
390 | runtime->private_data = dma_private; | ||
391 | |||
392 | return 0; | ||
393 | } | ||
394 | |||
395 | /** | ||
396 | * fsl_dma_hw_params: allocate the DMA buffer and the DMA link descriptors. | ||
397 | * | ||
398 | * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link | ||
399 | * descriptors that ping-pong from one period to the next. For example, if | ||
400 | * there are six periods and two link descriptors, this is how they look | ||
401 | * before playback starts: | ||
402 | * | ||
403 | * The last link descriptor | ||
404 | * ____________ points back to the first | ||
405 | * | | | ||
406 | * V | | ||
407 | * ___ ___ | | ||
408 | * | |->| |->| | ||
409 | * |___| |___| | ||
410 | * | | | ||
411 | * | | | ||
412 | * V V | ||
413 | * _________________________________________ | ||
414 | * | | | | | | | The DMA buffer is | ||
415 | * | | | | | | | divided into 6 parts | ||
416 | * |______|______|______|______|______|______| | ||
417 | * | ||
418 | * and here's how they look after the first period is finished playing: | ||
419 | * | ||
420 | * ____________ | ||
421 | * | | | ||
422 | * V | | ||
423 | * ___ ___ | | ||
424 | * | |->| |->| | ||
425 | * |___| |___| | ||
426 | * | | | ||
427 | * |______________ | ||
428 | * | | | ||
429 | * V V | ||
430 | * _________________________________________ | ||
431 | * | | | | | | | | ||
432 | * | | | | | | | | ||
433 | * |______|______|______|______|______|______| | ||
434 | * | ||
435 | * The first link descriptor now points to the third period. The DMA | ||
436 | * controller is currently playing the second period. When it finishes, it | ||
437 | * will jump back to the first descriptor and play the third period. | ||
438 | * | ||
439 | * There are four reasons we do this: | ||
440 | * | ||
441 | * 1. The only way to get the DMA controller to automatically restart the | ||
442 | * transfer when it gets to the end of the buffer is to use chaining | ||
443 | * mode. Basic direct mode doesn't offer that feature. | ||
444 | * 2. We need to receive an interrupt at the end of every period. The DMA | ||
445 | * controller can generate an interrupt at the end of every link transfer | ||
446 | * (aka segment). Making each period into a DMA segment will give us the | ||
447 | * interrupts we need. | ||
448 | * 3. By creating only two link descriptors, regardless of the number of | ||
449 | * periods, we do not need to reallocate the link descriptors if the | ||
450 | * number of periods changes. | ||
451 | * 4. All of the audio data is still stored in a single, contiguous DMA | ||
452 | * buffer, which is what ALSA expects. We're just dividing it into | ||
453 | * contiguous parts, and creating a link descriptor for each one. | ||
454 | * | ||
455 | * Note that due to a quirk of the SSI's STX register, the target address | ||
456 | * for the DMA operations depends on the sample size. So we don't program | ||
457 | * the dest_addr (for playback -- source_addr for capture) fields in the | ||
458 | * link descriptors here. We do that in fsl_dma_prepare() | ||
459 | */ | ||
460 | static int fsl_dma_hw_params(struct snd_pcm_substream *substream, | ||
461 | struct snd_pcm_hw_params *hw_params) | ||
462 | { | ||
463 | struct snd_pcm_runtime *runtime = substream->runtime; | ||
464 | struct fsl_dma_private *dma_private = runtime->private_data; | ||
465 | struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel; | ||
466 | |||
467 | dma_addr_t temp_addr; /* Pointer to next period */ | ||
468 | u64 temp_link; /* Pointer to next link descriptor */ | ||
469 | u32 mr; /* Temporary variable for MR register */ | ||
470 | |||
471 | unsigned int i; | ||
472 | |||
473 | /* Get all the parameters we need */ | ||
474 | size_t buffer_size = params_buffer_bytes(hw_params); | ||
475 | size_t period_size = params_period_bytes(hw_params); | ||
476 | |||
477 | /* Initialize our DMA tracking variables */ | ||
478 | dma_private->period_size = period_size; | ||
479 | dma_private->num_periods = params_periods(hw_params); | ||
480 | dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size; | ||
481 | dma_private->dma_buf_next = dma_private->dma_buf_phys + | ||
482 | (NUM_DMA_LINKS * period_size); | ||
483 | if (dma_private->dma_buf_next >= dma_private->dma_buf_end) | ||
484 | dma_private->dma_buf_next = dma_private->dma_buf_phys; | ||
485 | |||
486 | /* | ||
487 | * Initialize each link descriptor. | ||
488 | * | ||
489 | * The actual address in STX0 (destination for playback, source for | ||
490 | * capture) is based on the sample size, but we don't know the sample | ||
491 | * size in this function, so we'll have to adjust that later. See | ||
492 | * comments in fsl_dma_prepare(). | ||
493 | * | ||
494 | * The DMA controller does not have a cache, so the CPU does not | ||
495 | * need to tell it to flush its cache. However, the DMA | ||
496 | * controller does need to tell the CPU to flush its cache. | ||
497 | * That's what the SNOOP bit does. | ||
498 | * | ||
499 | * Also, even though the DMA controller supports 36-bit addressing, for | ||
500 | * simplicity we currently support only 32-bit addresses for the audio | ||
501 | * buffer itself. | ||
502 | */ | ||
503 | temp_addr = substream->dma_buffer.addr; | ||
504 | temp_link = dma_private->ld_buf_phys + | ||
505 | sizeof(struct fsl_dma_link_descriptor); | ||
506 | |||
507 | for (i = 0; i < NUM_DMA_LINKS; i++) { | ||
508 | struct fsl_dma_link_descriptor *link = &dma_private->link[i]; | ||
509 | |||
510 | link->count = cpu_to_be32(period_size); | ||
511 | link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP); | ||
512 | link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP); | ||
513 | link->next = cpu_to_be64(temp_link); | ||
514 | |||
515 | if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) | ||
516 | link->source_addr = cpu_to_be32(temp_addr); | ||
517 | else | ||
518 | link->dest_addr = cpu_to_be32(temp_addr); | ||
519 | |||
520 | temp_addr += period_size; | ||
521 | temp_link += sizeof(struct fsl_dma_link_descriptor); | ||
522 | } | ||
523 | /* The last link descriptor points to the first */ | ||
524 | dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys); | ||
525 | |||
526 | /* Tell the DMA controller where the first link descriptor is */ | ||
527 | out_be32(&dma_channel->clndar, | ||
528 | CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys)); | ||
529 | out_be32(&dma_channel->eclndar, | ||
530 | CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys)); | ||
531 | |||
532 | /* The manual says the BCR must be clear before enabling EMP */ | ||
533 | out_be32(&dma_channel->bcr, 0); | ||
534 | |||
535 | /* | ||
536 | * Program the mode register for interrupts, external master control, | ||
537 | * and source/destination hold. Also clear the Channel Abort bit. | ||
538 | */ | ||
539 | mr = in_be32(&dma_channel->mr) & | ||
540 | ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE); | ||
541 | |||
542 | /* | ||
543 | * We want External Master Start and External Master Pause enabled, | ||
544 | * because the SSI is controlling the DMA controller. We want the DMA | ||
545 | * controller to be set up in advance, and then we signal only the SSI | ||
546 | * to start transfering. | ||
547 | * | ||
548 | * We want End-Of-Segment Interrupts enabled, because this will generate | ||
549 | * an interrupt at the end of each segment (each link descriptor | ||
550 | * represents one segment). Each DMA segment is the same thing as an | ||
551 | * ALSA period, so this is how we get an interrupt at the end of every | ||
552 | * period. | ||
553 | * | ||
554 | * We want Error Interrupt enabled, so that we can get an error if | ||
555 | * the DMA controller is mis-programmed somehow. | ||
556 | */ | ||
557 | mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN | | ||
558 | CCSR_DMA_MR_EMS_EN; | ||
559 | |||
560 | /* For playback, we want the destination address to be held. For | ||
561 | capture, set the source address to be held. */ | ||
562 | mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ? | ||
563 | CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE; | ||
564 | |||
565 | out_be32(&dma_channel->mr, mr); | ||
566 | |||
567 | return 0; | ||
568 | } | ||
569 | |||
570 | /** | ||
571 | * fsl_dma_prepare - prepare the DMA registers for playback. | ||
572 | * | ||
573 | * This function is called after the specifics of the audio data are known, | ||
574 | * i.e. snd_pcm_runtime is initialized. | ||
575 | * | ||
576 | * In this function, we finish programming the registers of the DMA | ||
577 | * controller that are dependent on the sample size. | ||
578 | * | ||
579 | * One of the drawbacks with big-endian is that when copying integers of | ||
580 | * different sizes to a fixed-sized register, the address to which the | ||
581 | * integer must be copied is dependent on the size of the integer. | ||
582 | * | ||
583 | * For example, if P is the address of a 32-bit register, and X is a 32-bit | ||
584 | * integer, then X should be copied to address P. However, if X is a 16-bit | ||
585 | * integer, then it should be copied to P+2. If X is an 8-bit register, | ||
586 | * then it should be copied to P+3. | ||
587 | * | ||
588 | * So for playback of 8-bit samples, the DMA controller must transfer single | ||
589 | * bytes from the DMA buffer to the last byte of the STX0 register, i.e. | ||
590 | * offset by 3 bytes. For 16-bit samples, the offset is two bytes. | ||
591 | * | ||
592 | * For 24-bit samples, the offset is 1 byte. However, the DMA controller | ||
593 | * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4, | ||
594 | * and 8 bytes at a time). So we do not support packed 24-bit samples. | ||
595 | * 24-bit data must be padded to 32 bits. | ||
596 | */ | ||
597 | static int fsl_dma_prepare(struct snd_pcm_substream *substream) | ||
598 | { | ||
599 | struct snd_pcm_runtime *runtime = substream->runtime; | ||
600 | struct fsl_dma_private *dma_private = runtime->private_data; | ||
601 | struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel; | ||
602 | u32 mr; | ||
603 | unsigned int i; | ||
604 | dma_addr_t ssi_sxx_phys; /* Bus address of SSI STX register */ | ||
605 | unsigned int frame_size; /* Number of bytes per frame */ | ||
606 | |||
607 | ssi_sxx_phys = dma_private->ssi_sxx_phys; | ||
608 | |||
609 | mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK | | ||
610 | CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK); | ||
611 | |||
612 | switch (runtime->sample_bits) { | ||
613 | case 8: | ||
614 | mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1; | ||
615 | ssi_sxx_phys += 3; | ||
616 | break; | ||
617 | case 16: | ||
618 | mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2; | ||
619 | ssi_sxx_phys += 2; | ||
620 | break; | ||
621 | case 32: | ||
622 | mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4; | ||
623 | break; | ||
624 | default: | ||
625 | dev_err(substream->pcm->card->dev, | ||
626 | "unsupported sample size %u\n", runtime->sample_bits); | ||
627 | return -EINVAL; | ||
628 | } | ||
629 | |||
630 | frame_size = runtime->frame_bits / 8; | ||
631 | /* | ||
632 | * BWC should always be a multiple of the frame size. BWC determines | ||
633 | * how many bytes are sent/received before the DMA controller checks the | ||
634 | * SSI to see if it needs to stop. For playback, the transmit FIFO can | ||
635 | * hold three frames, so we want to send two frames at a time. For | ||
636 | * capture, the receive FIFO is triggered when it contains one frame, so | ||
637 | * we want to receive one frame at a time. | ||
638 | */ | ||
639 | |||
640 | if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) | ||
641 | mr |= CCSR_DMA_MR_BWC(2 * frame_size); | ||
642 | else | ||
643 | mr |= CCSR_DMA_MR_BWC(frame_size); | ||
644 | |||
645 | out_be32(&dma_channel->mr, mr); | ||
646 | |||
647 | /* | ||
648 | * Program the address of the DMA transfer to/from the SSI. | ||
649 | */ | ||
650 | for (i = 0; i < NUM_DMA_LINKS; i++) { | ||
651 | struct fsl_dma_link_descriptor *link = &dma_private->link[i]; | ||
652 | |||
653 | if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) | ||
654 | link->dest_addr = cpu_to_be32(ssi_sxx_phys); | ||
655 | else | ||
656 | link->source_addr = cpu_to_be32(ssi_sxx_phys); | ||
657 | } | ||
658 | |||
659 | return 0; | ||
660 | } | ||
661 | |||
662 | /** | ||
663 | * fsl_dma_pointer: determine the current position of the DMA transfer | ||
664 | * | ||
665 | * This function is called by ALSA when ALSA wants to know where in the | ||
666 | * stream buffer the hardware currently is. | ||
667 | * | ||
668 | * For playback, the SAR register contains the physical address of the most | ||
669 | * recent DMA transfer. For capture, the value is in the DAR register. | ||
670 | * | ||
671 | * The base address of the buffer is stored in the source_addr field of the | ||
672 | * first link descriptor. | ||
673 | */ | ||
674 | static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream) | ||
675 | { | ||
676 | struct snd_pcm_runtime *runtime = substream->runtime; | ||
677 | struct fsl_dma_private *dma_private = runtime->private_data; | ||
678 | struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel; | ||
679 | dma_addr_t position; | ||
680 | snd_pcm_uframes_t frames; | ||
681 | |||
682 | if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) | ||
683 | position = in_be32(&dma_channel->sar); | ||
684 | else | ||
685 | position = in_be32(&dma_channel->dar); | ||
686 | |||
687 | frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys); | ||
688 | |||
689 | /* | ||
690 | * If the current address is just past the end of the buffer, wrap it | ||
691 | * around. | ||
692 | */ | ||
693 | if (frames == runtime->buffer_size) | ||
694 | frames = 0; | ||
695 | |||
696 | return frames; | ||
697 | } | ||
698 | |||
699 | /** | ||
700 | * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params() | ||
701 | * | ||
702 | * Release the resources allocated in fsl_dma_hw_params() and de-program the | ||
703 | * registers. | ||
704 | * | ||
705 | * This function can be called multiple times. | ||
706 | */ | ||
707 | static int fsl_dma_hw_free(struct snd_pcm_substream *substream) | ||
708 | { | ||
709 | struct snd_pcm_runtime *runtime = substream->runtime; | ||
710 | struct fsl_dma_private *dma_private = runtime->private_data; | ||
711 | |||
712 | if (dma_private) { | ||
713 | struct ccsr_dma_channel __iomem *dma_channel; | ||
714 | |||
715 | dma_channel = dma_private->dma_channel; | ||
716 | |||
717 | /* Stop the DMA */ | ||
718 | out_be32(&dma_channel->mr, CCSR_DMA_MR_CA); | ||
719 | out_be32(&dma_channel->mr, 0); | ||
720 | |||
721 | /* Reset all the other registers */ | ||
722 | out_be32(&dma_channel->sr, -1); | ||
723 | out_be32(&dma_channel->clndar, 0); | ||
724 | out_be32(&dma_channel->eclndar, 0); | ||
725 | out_be32(&dma_channel->satr, 0); | ||
726 | out_be32(&dma_channel->sar, 0); | ||
727 | out_be32(&dma_channel->datr, 0); | ||
728 | out_be32(&dma_channel->dar, 0); | ||
729 | out_be32(&dma_channel->bcr, 0); | ||
730 | out_be32(&dma_channel->nlndar, 0); | ||
731 | out_be32(&dma_channel->enlndar, 0); | ||
732 | } | ||
733 | |||
734 | return 0; | ||
735 | } | ||
736 | |||
737 | /** | ||
738 | * fsl_dma_close: close the stream. | ||
739 | */ | ||
740 | static int fsl_dma_close(struct snd_pcm_substream *substream) | ||
741 | { | ||
742 | struct snd_pcm_runtime *runtime = substream->runtime; | ||
743 | struct fsl_dma_private *dma_private = runtime->private_data; | ||
744 | int dir = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1; | ||
745 | |||
746 | if (dma_private) { | ||
747 | if (dma_private->irq) | ||
748 | free_irq(dma_private->irq, dma_private); | ||
749 | |||
750 | if (dma_private->ld_buf_phys) { | ||
751 | dma_unmap_single(substream->pcm->dev, | ||
752 | dma_private->ld_buf_phys, | ||
753 | sizeof(dma_private->link), DMA_TO_DEVICE); | ||
754 | } | ||
755 | |||
756 | /* Deallocate the fsl_dma_private structure */ | ||
757 | dma_free_coherent(substream->pcm->dev, | ||
758 | sizeof(struct fsl_dma_private), | ||
759 | dma_private, dma_private->ld_buf_phys); | ||
760 | substream->runtime->private_data = NULL; | ||
761 | } | ||
762 | |||
763 | dma_global_data.assigned[dir] = 0; | ||
764 | |||
765 | return 0; | ||
766 | } | ||
767 | |||
768 | /* | ||
769 | * Remove this PCM driver. | ||
770 | */ | ||
771 | static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm) | ||
772 | { | ||
773 | struct snd_pcm_substream *substream; | ||
774 | unsigned int i; | ||
775 | |||
776 | for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) { | ||
777 | substream = pcm->streams[i].substream; | ||
778 | if (substream) { | ||
779 | snd_dma_free_pages(&substream->dma_buffer); | ||
780 | substream->dma_buffer.area = NULL; | ||
781 | substream->dma_buffer.addr = 0; | ||
782 | } | ||
783 | } | ||
784 | } | ||
785 | |||
786 | static struct snd_pcm_ops fsl_dma_ops = { | ||
787 | .open = fsl_dma_open, | ||
788 | .close = fsl_dma_close, | ||
789 | .ioctl = snd_pcm_lib_ioctl, | ||
790 | .hw_params = fsl_dma_hw_params, | ||
791 | .hw_free = fsl_dma_hw_free, | ||
792 | .prepare = fsl_dma_prepare, | ||
793 | .pointer = fsl_dma_pointer, | ||
794 | }; | ||
795 | |||
796 | struct snd_soc_platform fsl_soc_platform = { | ||
797 | .name = "fsl-dma", | ||
798 | .pcm_ops = &fsl_dma_ops, | ||
799 | .pcm_new = fsl_dma_new, | ||
800 | .pcm_free = fsl_dma_free_dma_buffers, | ||
801 | }; | ||
802 | EXPORT_SYMBOL_GPL(fsl_soc_platform); | ||
803 | |||
804 | /** | ||
805 | * fsl_dma_configure: store the DMA parameters from the fabric driver. | ||
806 | * | ||
807 | * This function is called by the ASoC fabric driver to give us the DMA and | ||
808 | * SSI channel information. | ||
809 | * | ||
810 | * Unfortunately, ASoC V1 does make it possible to determine the DMA/SSI | ||
811 | * data when a substream is created, so for now we need to store this data | ||
812 | * into a global variable. This means that we can only support one DMA | ||
813 | * controller, and hence only one SSI. | ||
814 | */ | ||
815 | int fsl_dma_configure(struct fsl_dma_info *dma_info) | ||
816 | { | ||
817 | static int initialized; | ||
818 | |||
819 | /* We only support one DMA controller for now */ | ||
820 | if (initialized) | ||
821 | return 0; | ||
822 | |||
823 | dma_global_data.ssi_stx_phys = dma_info->ssi_stx_phys; | ||
824 | dma_global_data.ssi_srx_phys = dma_info->ssi_srx_phys; | ||
825 | dma_global_data.dma_channel[0] = dma_info->dma_channel[0]; | ||
826 | dma_global_data.dma_channel[1] = dma_info->dma_channel[1]; | ||
827 | dma_global_data.irq[0] = dma_info->dma_irq[0]; | ||
828 | dma_global_data.irq[1] = dma_info->dma_irq[1]; | ||
829 | dma_global_data.assigned[0] = 0; | ||
830 | dma_global_data.assigned[1] = 0; | ||
831 | |||
832 | initialized = 1; | ||
833 | return 1; | ||
834 | } | ||
835 | EXPORT_SYMBOL_GPL(fsl_dma_configure); | ||
836 | |||
837 | MODULE_AUTHOR("Timur Tabi <timur@freescale.com>"); | ||
838 | MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM module"); | ||
839 | MODULE_LICENSE("GPL"); | ||
diff --git a/sound/soc/fsl/fsl_dma.h b/sound/soc/fsl/fsl_dma.h new file mode 100644 index 000000000000..430a6ce8b0d0 --- /dev/null +++ b/sound/soc/fsl/fsl_dma.h | |||
@@ -0,0 +1,149 @@ | |||
1 | /* | ||
2 | * mpc8610-pcm.h - ALSA PCM interface for the Freescale MPC8610 SoC | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or modify | ||
5 | * it under the terms of the GNU General Public License version 2 as | ||
6 | * published by the Free Software Foundation. | ||
7 | */ | ||
8 | |||
9 | #ifndef _MPC8610_PCM_H | ||
10 | #define _MPC8610_PCM_H | ||
11 | |||
12 | struct ccsr_dma { | ||
13 | u8 res0[0x100]; | ||
14 | struct ccsr_dma_channel { | ||
15 | __be32 mr; /* Mode register */ | ||
16 | __be32 sr; /* Status register */ | ||
17 | __be32 eclndar; /* Current link descriptor extended addr reg */ | ||
18 | __be32 clndar; /* Current link descriptor address register */ | ||
19 | __be32 satr; /* Source attributes register */ | ||
20 | __be32 sar; /* Source address register */ | ||
21 | __be32 datr; /* Destination attributes register */ | ||
22 | __be32 dar; /* Destination address register */ | ||
23 | __be32 bcr; /* Byte count register */ | ||
24 | __be32 enlndar; /* Next link descriptor extended address reg */ | ||
25 | __be32 nlndar; /* Next link descriptor address register */ | ||
26 | u8 res1[4]; | ||
27 | __be32 eclsdar; /* Current list descriptor extended addr reg */ | ||
28 | __be32 clsdar; /* Current list descriptor address register */ | ||
29 | __be32 enlsdar; /* Next list descriptor extended address reg */ | ||
30 | __be32 nlsdar; /* Next list descriptor address register */ | ||
31 | __be32 ssr; /* Source stride register */ | ||
32 | __be32 dsr; /* Destination stride register */ | ||
33 | u8 res2[0x38]; | ||
34 | } channel[4]; | ||
35 | __be32 dgsr; | ||
36 | }; | ||
37 | |||
38 | #define CCSR_DMA_MR_BWC_DISABLED 0x0F000000 | ||
39 | #define CCSR_DMA_MR_BWC_SHIFT 24 | ||
40 | #define CCSR_DMA_MR_BWC_MASK 0x0F000000 | ||
41 | #define CCSR_DMA_MR_BWC(x) \ | ||
42 | ((ilog2(x) << CCSR_DMA_MR_BWC_SHIFT) & CCSR_DMA_MR_BWC_MASK) | ||
43 | #define CCSR_DMA_MR_EMP_EN 0x00200000 | ||
44 | #define CCSR_DMA_MR_EMS_EN 0x00040000 | ||
45 | #define CCSR_DMA_MR_DAHTS_MASK 0x00030000 | ||
46 | #define CCSR_DMA_MR_DAHTS_1 0x00000000 | ||
47 | #define CCSR_DMA_MR_DAHTS_2 0x00010000 | ||
48 | #define CCSR_DMA_MR_DAHTS_4 0x00020000 | ||
49 | #define CCSR_DMA_MR_DAHTS_8 0x00030000 | ||
50 | #define CCSR_DMA_MR_SAHTS_MASK 0x0000C000 | ||
51 | #define CCSR_DMA_MR_SAHTS_1 0x00000000 | ||
52 | #define CCSR_DMA_MR_SAHTS_2 0x00004000 | ||
53 | #define CCSR_DMA_MR_SAHTS_4 0x00008000 | ||
54 | #define CCSR_DMA_MR_SAHTS_8 0x0000C000 | ||
55 | #define CCSR_DMA_MR_DAHE 0x00002000 | ||
56 | #define CCSR_DMA_MR_SAHE 0x00001000 | ||
57 | #define CCSR_DMA_MR_SRW 0x00000400 | ||
58 | #define CCSR_DMA_MR_EOSIE 0x00000200 | ||
59 | #define CCSR_DMA_MR_EOLNIE 0x00000100 | ||
60 | #define CCSR_DMA_MR_EOLSIE 0x00000080 | ||
61 | #define CCSR_DMA_MR_EIE 0x00000040 | ||
62 | #define CCSR_DMA_MR_XFE 0x00000020 | ||
63 | #define CCSR_DMA_MR_CDSM_SWSM 0x00000010 | ||
64 | #define CCSR_DMA_MR_CA 0x00000008 | ||
65 | #define CCSR_DMA_MR_CTM 0x00000004 | ||
66 | #define CCSR_DMA_MR_CC 0x00000002 | ||
67 | #define CCSR_DMA_MR_CS 0x00000001 | ||
68 | |||
69 | #define CCSR_DMA_SR_TE 0x00000080 | ||
70 | #define CCSR_DMA_SR_CH 0x00000020 | ||
71 | #define CCSR_DMA_SR_PE 0x00000010 | ||
72 | #define CCSR_DMA_SR_EOLNI 0x00000008 | ||
73 | #define CCSR_DMA_SR_CB 0x00000004 | ||
74 | #define CCSR_DMA_SR_EOSI 0x00000002 | ||
75 | #define CCSR_DMA_SR_EOLSI 0x00000001 | ||
76 | |||
77 | /* ECLNDAR takes bits 32-36 of the CLNDAR register */ | ||
78 | static inline u32 CCSR_DMA_ECLNDAR_ADDR(u64 x) | ||
79 | { | ||
80 | return (x >> 32) & 0xf; | ||
81 | } | ||
82 | |||
83 | #define CCSR_DMA_CLNDAR_ADDR(x) ((x) & 0xFFFFFFFE) | ||
84 | #define CCSR_DMA_CLNDAR_EOSIE 0x00000008 | ||
85 | |||
86 | /* SATR and DATR, combined */ | ||
87 | #define CCSR_DMA_ATR_PBATMU 0x20000000 | ||
88 | #define CCSR_DMA_ATR_TFLOWLVL_0 0x00000000 | ||
89 | #define CCSR_DMA_ATR_TFLOWLVL_1 0x06000000 | ||
90 | #define CCSR_DMA_ATR_TFLOWLVL_2 0x08000000 | ||
91 | #define CCSR_DMA_ATR_TFLOWLVL_3 0x0C000000 | ||
92 | #define CCSR_DMA_ATR_PCIORDER 0x02000000 | ||
93 | #define CCSR_DMA_ATR_SME 0x01000000 | ||
94 | #define CCSR_DMA_ATR_NOSNOOP 0x00040000 | ||
95 | #define CCSR_DMA_ATR_SNOOP 0x00050000 | ||
96 | #define CCSR_DMA_ATR_ESAD_MASK 0x0000000F | ||
97 | |||
98 | /** | ||
99 | * List Descriptor for extended chaining mode DMA operations. | ||
100 | * | ||
101 | * The CLSDAR register points to the first (in a linked-list) List | ||
102 | * Descriptor. Each object must be aligned on a 32-byte boundary. Each | ||
103 | * list descriptor points to a linked-list of link Descriptors. | ||
104 | */ | ||
105 | struct fsl_dma_list_descriptor { | ||
106 | __be64 next; /* Address of next list descriptor */ | ||
107 | __be64 first_link; /* Address of first link descriptor */ | ||
108 | __be32 source; /* Source stride */ | ||
109 | __be32 dest; /* Destination stride */ | ||
110 | u8 res[8]; /* Reserved */ | ||
111 | } __attribute__ ((aligned(32), packed)); | ||
112 | |||
113 | /** | ||
114 | * Link Descriptor for basic and extended chaining mode DMA operations. | ||
115 | * | ||
116 | * A Link Descriptor points to a single DMA buffer. Each link descriptor | ||
117 | * must be aligned on a 32-byte boundary. | ||
118 | */ | ||
119 | struct fsl_dma_link_descriptor { | ||
120 | __be32 source_attr; /* Programmed into SATR register */ | ||
121 | __be32 source_addr; /* Programmed into SAR register */ | ||
122 | __be32 dest_attr; /* Programmed into DATR register */ | ||
123 | __be32 dest_addr; /* Programmed into DAR register */ | ||
124 | __be64 next; /* Address of next link descriptor */ | ||
125 | __be32 count; /* Byte count */ | ||
126 | u8 res[4]; /* Reserved */ | ||
127 | } __attribute__ ((aligned(32), packed)); | ||
128 | |||
129 | /* DMA information needed to create a snd_soc_cpu_dai object | ||
130 | * | ||
131 | * ssi_stx_phys: bus address of SSI STX register to use | ||
132 | * ssi_srx_phys: bus address of SSI SRX register to use | ||
133 | * dma[0]: points to the DMA channel to use for playback | ||
134 | * dma[1]: points to the DMA channel to use for capture | ||
135 | * dma_irq[0]: IRQ of the DMA channel to use for playback | ||
136 | * dma_irq[1]: IRQ of the DMA channel to use for capture | ||
137 | */ | ||
138 | struct fsl_dma_info { | ||
139 | dma_addr_t ssi_stx_phys; | ||
140 | dma_addr_t ssi_srx_phys; | ||
141 | struct ccsr_dma_channel __iomem *dma_channel[2]; | ||
142 | unsigned int dma_irq[2]; | ||
143 | }; | ||
144 | |||
145 | extern struct snd_soc_platform fsl_soc_platform; | ||
146 | |||
147 | int fsl_dma_configure(struct fsl_dma_info *dma_info); | ||
148 | |||
149 | #endif | ||
diff --git a/sound/soc/fsl/fsl_ssi.c b/sound/soc/fsl/fsl_ssi.c new file mode 100644 index 000000000000..145ad13d52d1 --- /dev/null +++ b/sound/soc/fsl/fsl_ssi.c | |||
@@ -0,0 +1,644 @@ | |||
1 | /* | ||
2 | * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver | ||
3 | * | ||
4 | * Author: Timur Tabi <timur@freescale.com> | ||
5 | * | ||
6 | * Copyright 2007-2008 Freescale Semiconductor, Inc. This file is licensed | ||
7 | * under the terms of the GNU General Public License version 2. This | ||
8 | * program is licensed "as is" without any warranty of any kind, whether | ||
9 | * express or implied. | ||
10 | */ | ||
11 | |||
12 | #include <linux/init.h> | ||
13 | #include <linux/module.h> | ||
14 | #include <linux/interrupt.h> | ||
15 | #include <linux/device.h> | ||
16 | #include <linux/delay.h> | ||
17 | |||
18 | #include <sound/driver.h> | ||
19 | #include <sound/core.h> | ||
20 | #include <sound/pcm.h> | ||
21 | #include <sound/pcm_params.h> | ||
22 | #include <sound/initval.h> | ||
23 | #include <sound/soc.h> | ||
24 | |||
25 | #include <asm/immap_86xx.h> | ||
26 | |||
27 | #include "fsl_ssi.h" | ||
28 | |||
29 | /** | ||
30 | * FSLSSI_I2S_RATES: sample rates supported by the I2S | ||
31 | * | ||
32 | * This driver currently only supports the SSI running in I2S slave mode, | ||
33 | * which means the codec determines the sample rate. Therefore, we tell | ||
34 | * ALSA that we support all rates and let the codec driver decide what rates | ||
35 | * are really supported. | ||
36 | */ | ||
37 | #define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \ | ||
38 | SNDRV_PCM_RATE_CONTINUOUS) | ||
39 | |||
40 | /** | ||
41 | * FSLSSI_I2S_FORMATS: audio formats supported by the SSI | ||
42 | * | ||
43 | * This driver currently only supports the SSI running in I2S slave mode. | ||
44 | * | ||
45 | * The SSI has a limitation in that the samples must be in the same byte | ||
46 | * order as the host CPU. This is because when multiple bytes are written | ||
47 | * to the STX register, the bytes and bits must be written in the same | ||
48 | * order. The STX is a shift register, so all the bits need to be aligned | ||
49 | * (bit-endianness must match byte-endianness). Processors typically write | ||
50 | * the bits within a byte in the same order that the bytes of a word are | ||
51 | * written in. So if the host CPU is big-endian, then only big-endian | ||
52 | * samples will be written to STX properly. | ||
53 | */ | ||
54 | #ifdef __BIG_ENDIAN | ||
55 | #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \ | ||
56 | SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \ | ||
57 | SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE) | ||
58 | #else | ||
59 | #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \ | ||
60 | SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \ | ||
61 | SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE) | ||
62 | #endif | ||
63 | |||
64 | /** | ||
65 | * fsl_ssi_private: per-SSI private data | ||
66 | * | ||
67 | * @name: short name for this device ("SSI0", "SSI1", etc) | ||
68 | * @ssi: pointer to the SSI's registers | ||
69 | * @ssi_phys: physical address of the SSI registers | ||
70 | * @irq: IRQ of this SSI | ||
71 | * @dev: struct device pointer | ||
72 | * @playback: the number of playback streams opened | ||
73 | * @capture: the number of capture streams opened | ||
74 | * @cpu_dai: the CPU DAI for this device | ||
75 | * @dev_attr: the sysfs device attribute structure | ||
76 | * @stats: SSI statistics | ||
77 | */ | ||
78 | struct fsl_ssi_private { | ||
79 | char name[8]; | ||
80 | struct ccsr_ssi __iomem *ssi; | ||
81 | dma_addr_t ssi_phys; | ||
82 | unsigned int irq; | ||
83 | struct device *dev; | ||
84 | unsigned int playback; | ||
85 | unsigned int capture; | ||
86 | struct snd_soc_cpu_dai cpu_dai; | ||
87 | struct device_attribute dev_attr; | ||
88 | |||
89 | struct { | ||
90 | unsigned int rfrc; | ||
91 | unsigned int tfrc; | ||
92 | unsigned int cmdau; | ||
93 | unsigned int cmddu; | ||
94 | unsigned int rxt; | ||
95 | unsigned int rdr1; | ||
96 | unsigned int rdr0; | ||
97 | unsigned int tde1; | ||
98 | unsigned int tde0; | ||
99 | unsigned int roe1; | ||
100 | unsigned int roe0; | ||
101 | unsigned int tue1; | ||
102 | unsigned int tue0; | ||
103 | unsigned int tfs; | ||
104 | unsigned int rfs; | ||
105 | unsigned int tls; | ||
106 | unsigned int rls; | ||
107 | unsigned int rff1; | ||
108 | unsigned int rff0; | ||
109 | unsigned int tfe1; | ||
110 | unsigned int tfe0; | ||
111 | } stats; | ||
112 | }; | ||
113 | |||
114 | /** | ||
115 | * fsl_ssi_isr: SSI interrupt handler | ||
116 | * | ||
117 | * Although it's possible to use the interrupt handler to send and receive | ||
118 | * data to/from the SSI, we use the DMA instead. Programming is more | ||
119 | * complicated, but the performance is much better. | ||
120 | * | ||
121 | * This interrupt handler is used only to gather statistics. | ||
122 | * | ||
123 | * @irq: IRQ of the SSI device | ||
124 | * @dev_id: pointer to the ssi_private structure for this SSI device | ||
125 | */ | ||
126 | static irqreturn_t fsl_ssi_isr(int irq, void *dev_id) | ||
127 | { | ||
128 | struct fsl_ssi_private *ssi_private = dev_id; | ||
129 | struct ccsr_ssi __iomem *ssi = ssi_private->ssi; | ||
130 | irqreturn_t ret = IRQ_NONE; | ||
131 | __be32 sisr; | ||
132 | __be32 sisr2 = 0; | ||
133 | |||
134 | /* We got an interrupt, so read the status register to see what we | ||
135 | were interrupted for. We mask it with the Interrupt Enable register | ||
136 | so that we only check for events that we're interested in. | ||
137 | */ | ||
138 | sisr = in_be32(&ssi->sisr) & in_be32(&ssi->sier); | ||
139 | |||
140 | if (sisr & CCSR_SSI_SISR_RFRC) { | ||
141 | ssi_private->stats.rfrc++; | ||
142 | sisr2 |= CCSR_SSI_SISR_RFRC; | ||
143 | ret = IRQ_HANDLED; | ||
144 | } | ||
145 | |||
146 | if (sisr & CCSR_SSI_SISR_TFRC) { | ||
147 | ssi_private->stats.tfrc++; | ||
148 | sisr2 |= CCSR_SSI_SISR_TFRC; | ||
149 | ret = IRQ_HANDLED; | ||
150 | } | ||
151 | |||
152 | if (sisr & CCSR_SSI_SISR_CMDAU) { | ||
153 | ssi_private->stats.cmdau++; | ||
154 | ret = IRQ_HANDLED; | ||
155 | } | ||
156 | |||
157 | if (sisr & CCSR_SSI_SISR_CMDDU) { | ||
158 | ssi_private->stats.cmddu++; | ||
159 | ret = IRQ_HANDLED; | ||
160 | } | ||
161 | |||
162 | if (sisr & CCSR_SSI_SISR_RXT) { | ||
163 | ssi_private->stats.rxt++; | ||
164 | ret = IRQ_HANDLED; | ||
165 | } | ||
166 | |||
167 | if (sisr & CCSR_SSI_SISR_RDR1) { | ||
168 | ssi_private->stats.rdr1++; | ||
169 | ret = IRQ_HANDLED; | ||
170 | } | ||
171 | |||
172 | if (sisr & CCSR_SSI_SISR_RDR0) { | ||
173 | ssi_private->stats.rdr0++; | ||
174 | ret = IRQ_HANDLED; | ||
175 | } | ||
176 | |||
177 | if (sisr & CCSR_SSI_SISR_TDE1) { | ||
178 | ssi_private->stats.tde1++; | ||
179 | ret = IRQ_HANDLED; | ||
180 | } | ||
181 | |||
182 | if (sisr & CCSR_SSI_SISR_TDE0) { | ||
183 | ssi_private->stats.tde0++; | ||
184 | ret = IRQ_HANDLED; | ||
185 | } | ||
186 | |||
187 | if (sisr & CCSR_SSI_SISR_ROE1) { | ||
188 | ssi_private->stats.roe1++; | ||
189 | sisr2 |= CCSR_SSI_SISR_ROE1; | ||
190 | ret = IRQ_HANDLED; | ||
191 | } | ||
192 | |||
193 | if (sisr & CCSR_SSI_SISR_ROE0) { | ||
194 | ssi_private->stats.roe0++; | ||
195 | sisr2 |= CCSR_SSI_SISR_ROE0; | ||
196 | ret = IRQ_HANDLED; | ||
197 | } | ||
198 | |||
199 | if (sisr & CCSR_SSI_SISR_TUE1) { | ||
200 | ssi_private->stats.tue1++; | ||
201 | sisr2 |= CCSR_SSI_SISR_TUE1; | ||
202 | ret = IRQ_HANDLED; | ||
203 | } | ||
204 | |||
205 | if (sisr & CCSR_SSI_SISR_TUE0) { | ||
206 | ssi_private->stats.tue0++; | ||
207 | sisr2 |= CCSR_SSI_SISR_TUE0; | ||
208 | ret = IRQ_HANDLED; | ||
209 | } | ||
210 | |||
211 | if (sisr & CCSR_SSI_SISR_TFS) { | ||
212 | ssi_private->stats.tfs++; | ||
213 | ret = IRQ_HANDLED; | ||
214 | } | ||
215 | |||
216 | if (sisr & CCSR_SSI_SISR_RFS) { | ||
217 | ssi_private->stats.rfs++; | ||
218 | ret = IRQ_HANDLED; | ||
219 | } | ||
220 | |||
221 | if (sisr & CCSR_SSI_SISR_TLS) { | ||
222 | ssi_private->stats.tls++; | ||
223 | ret = IRQ_HANDLED; | ||
224 | } | ||
225 | |||
226 | if (sisr & CCSR_SSI_SISR_RLS) { | ||
227 | ssi_private->stats.rls++; | ||
228 | ret = IRQ_HANDLED; | ||
229 | } | ||
230 | |||
231 | if (sisr & CCSR_SSI_SISR_RFF1) { | ||
232 | ssi_private->stats.rff1++; | ||
233 | ret = IRQ_HANDLED; | ||
234 | } | ||
235 | |||
236 | if (sisr & CCSR_SSI_SISR_RFF0) { | ||
237 | ssi_private->stats.rff0++; | ||
238 | ret = IRQ_HANDLED; | ||
239 | } | ||
240 | |||
241 | if (sisr & CCSR_SSI_SISR_TFE1) { | ||
242 | ssi_private->stats.tfe1++; | ||
243 | ret = IRQ_HANDLED; | ||
244 | } | ||
245 | |||
246 | if (sisr & CCSR_SSI_SISR_TFE0) { | ||
247 | ssi_private->stats.tfe0++; | ||
248 | ret = IRQ_HANDLED; | ||
249 | } | ||
250 | |||
251 | /* Clear the bits that we set */ | ||
252 | if (sisr2) | ||
253 | out_be32(&ssi->sisr, sisr2); | ||
254 | |||
255 | return ret; | ||
256 | } | ||
257 | |||
258 | /** | ||
259 | * fsl_ssi_startup: create a new substream | ||
260 | * | ||
261 | * This is the first function called when a stream is opened. | ||
262 | * | ||
263 | * If this is the first stream open, then grab the IRQ and program most of | ||
264 | * the SSI registers. | ||
265 | */ | ||
266 | static int fsl_ssi_startup(struct snd_pcm_substream *substream) | ||
267 | { | ||
268 | struct snd_soc_pcm_runtime *rtd = substream->private_data; | ||
269 | struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data; | ||
270 | |||
271 | /* | ||
272 | * If this is the first stream opened, then request the IRQ | ||
273 | * and initialize the SSI registers. | ||
274 | */ | ||
275 | if (!ssi_private->playback && !ssi_private->capture) { | ||
276 | struct ccsr_ssi __iomem *ssi = ssi_private->ssi; | ||
277 | int ret; | ||
278 | |||
279 | ret = request_irq(ssi_private->irq, fsl_ssi_isr, 0, | ||
280 | ssi_private->name, ssi_private); | ||
281 | if (ret < 0) { | ||
282 | dev_err(substream->pcm->card->dev, | ||
283 | "could not claim irq %u\n", ssi_private->irq); | ||
284 | return ret; | ||
285 | } | ||
286 | |||
287 | /* | ||
288 | * Section 16.5 of the MPC8610 reference manual says that the | ||
289 | * SSI needs to be disabled before updating the registers we set | ||
290 | * here. | ||
291 | */ | ||
292 | clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN); | ||
293 | |||
294 | /* | ||
295 | * Program the SSI into I2S Slave Non-Network Synchronous mode. | ||
296 | * Also enable the transmit and receive FIFO. | ||
297 | * | ||
298 | * FIXME: Little-endian samples require a different shift dir | ||
299 | */ | ||
300 | clrsetbits_be32(&ssi->scr, CCSR_SSI_SCR_I2S_MODE_MASK, | ||
301 | CCSR_SSI_SCR_TFR_CLK_DIS | | ||
302 | CCSR_SSI_SCR_I2S_MODE_SLAVE | CCSR_SSI_SCR_SYN); | ||
303 | |||
304 | out_be32(&ssi->stcr, | ||
305 | CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 | | ||
306 | CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS | | ||
307 | CCSR_SSI_STCR_TSCKP); | ||
308 | |||
309 | out_be32(&ssi->srcr, | ||
310 | CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 | | ||
311 | CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS | | ||
312 | CCSR_SSI_SRCR_RSCKP); | ||
313 | |||
314 | /* | ||
315 | * The DC and PM bits are only used if the SSI is the clock | ||
316 | * master. | ||
317 | */ | ||
318 | |||
319 | /* 4. Enable the interrupts and DMA requests */ | ||
320 | out_be32(&ssi->sier, | ||
321 | CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE | | ||
322 | CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN | | ||
323 | CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN | | ||
324 | CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE | | ||
325 | CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN); | ||
326 | |||
327 | /* | ||
328 | * Set the watermark for transmit FIFI 0 and receive FIFO 0. We | ||
329 | * don't use FIFO 1. Since the SSI only supports stereo, the | ||
330 | * watermark should never be an odd number. | ||
331 | */ | ||
332 | out_be32(&ssi->sfcsr, | ||
333 | CCSR_SSI_SFCSR_TFWM0(6) | CCSR_SSI_SFCSR_RFWM0(2)); | ||
334 | |||
335 | /* | ||
336 | * We keep the SSI disabled because if we enable it, then the | ||
337 | * DMA controller will start. It's not supposed to start until | ||
338 | * the SCR.TE (or SCR.RE) bit is set, but it does anyway. The | ||
339 | * DMA controller will transfer one "BWC" of data (i.e. the | ||
340 | * amount of data that the MR.BWC bits are set to). The reason | ||
341 | * this is bad is because at this point, the PCM driver has not | ||
342 | * finished initializing the DMA controller. | ||
343 | */ | ||
344 | } | ||
345 | |||
346 | if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) | ||
347 | ssi_private->playback++; | ||
348 | |||
349 | if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) | ||
350 | ssi_private->capture++; | ||
351 | |||
352 | return 0; | ||
353 | } | ||
354 | |||
355 | /** | ||
356 | * fsl_ssi_prepare: prepare the SSI. | ||
357 | * | ||
358 | * Most of the SSI registers have been programmed in the startup function, | ||
359 | * but the word length must be programmed here. Unfortunately, programming | ||
360 | * the SxCCR.WL bits requires the SSI to be temporarily disabled. This can | ||
361 | * cause a problem with supporting simultaneous playback and capture. If | ||
362 | * the SSI is already playing a stream, then that stream may be temporarily | ||
363 | * stopped when you start capture. | ||
364 | * | ||
365 | * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the | ||
366 | * clock master. | ||
367 | */ | ||
368 | static int fsl_ssi_prepare(struct snd_pcm_substream *substream) | ||
369 | { | ||
370 | struct snd_pcm_runtime *runtime = substream->runtime; | ||
371 | struct snd_soc_pcm_runtime *rtd = substream->private_data; | ||
372 | struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data; | ||
373 | |||
374 | struct ccsr_ssi __iomem *ssi = ssi_private->ssi; | ||
375 | u32 wl; | ||
376 | |||
377 | wl = CCSR_SSI_SxCCR_WL(snd_pcm_format_width(runtime->format)); | ||
378 | |||
379 | clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN); | ||
380 | |||
381 | if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) | ||
382 | clrsetbits_be32(&ssi->stccr, CCSR_SSI_SxCCR_WL_MASK, wl); | ||
383 | else | ||
384 | clrsetbits_be32(&ssi->srccr, CCSR_SSI_SxCCR_WL_MASK, wl); | ||
385 | |||
386 | setbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN); | ||
387 | |||
388 | return 0; | ||
389 | } | ||
390 | |||
391 | /** | ||
392 | * fsl_ssi_trigger: start and stop the DMA transfer. | ||
393 | * | ||
394 | * This function is called by ALSA to start, stop, pause, and resume the DMA | ||
395 | * transfer of data. | ||
396 | * | ||
397 | * The DMA channel is in external master start and pause mode, which | ||
398 | * means the SSI completely controls the flow of data. | ||
399 | */ | ||
400 | static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd) | ||
401 | { | ||
402 | struct snd_soc_pcm_runtime *rtd = substream->private_data; | ||
403 | struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data; | ||
404 | struct ccsr_ssi __iomem *ssi = ssi_private->ssi; | ||
405 | |||
406 | switch (cmd) { | ||
407 | case SNDRV_PCM_TRIGGER_START: | ||
408 | case SNDRV_PCM_TRIGGER_RESUME: | ||
409 | case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: | ||
410 | if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { | ||
411 | setbits32(&ssi->scr, CCSR_SSI_SCR_TE); | ||
412 | } else { | ||
413 | setbits32(&ssi->scr, CCSR_SSI_SCR_RE); | ||
414 | |||
415 | /* | ||
416 | * I think we need this delay to allow time for the SSI | ||
417 | * to put data into its FIFO. Without it, ALSA starts | ||
418 | * to complain about overruns. | ||
419 | */ | ||
420 | msleep(1); | ||
421 | } | ||
422 | break; | ||
423 | |||
424 | case SNDRV_PCM_TRIGGER_STOP: | ||
425 | case SNDRV_PCM_TRIGGER_SUSPEND: | ||
426 | case SNDRV_PCM_TRIGGER_PAUSE_PUSH: | ||
427 | if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) | ||
428 | clrbits32(&ssi->scr, CCSR_SSI_SCR_TE); | ||
429 | else | ||
430 | clrbits32(&ssi->scr, CCSR_SSI_SCR_RE); | ||
431 | break; | ||
432 | |||
433 | default: | ||
434 | return -EINVAL; | ||
435 | } | ||
436 | |||
437 | return 0; | ||
438 | } | ||
439 | |||
440 | /** | ||
441 | * fsl_ssi_shutdown: shutdown the SSI | ||
442 | * | ||
443 | * Shutdown the SSI if there are no other substreams open. | ||
444 | */ | ||
445 | static void fsl_ssi_shutdown(struct snd_pcm_substream *substream) | ||
446 | { | ||
447 | struct snd_soc_pcm_runtime *rtd = substream->private_data; | ||
448 | struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data; | ||
449 | |||
450 | if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) | ||
451 | ssi_private->playback--; | ||
452 | |||
453 | if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) | ||
454 | ssi_private->capture--; | ||
455 | |||
456 | /* | ||
457 | * If this is the last active substream, disable the SSI and release | ||
458 | * the IRQ. | ||
459 | */ | ||
460 | if (!ssi_private->playback && !ssi_private->capture) { | ||
461 | struct ccsr_ssi __iomem *ssi = ssi_private->ssi; | ||
462 | |||
463 | clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN); | ||
464 | |||
465 | free_irq(ssi_private->irq, ssi_private); | ||
466 | } | ||
467 | } | ||
468 | |||
469 | /** | ||
470 | * fsl_ssi_set_sysclk: set the clock frequency and direction | ||
471 | * | ||
472 | * This function is called by the machine driver to tell us what the clock | ||
473 | * frequency and direction are. | ||
474 | * | ||
475 | * Currently, we only support operating as a clock slave (SND_SOC_CLOCK_IN), | ||
476 | * and we don't care about the frequency. Return an error if the direction | ||
477 | * is not SND_SOC_CLOCK_IN. | ||
478 | * | ||
479 | * @clk_id: reserved, should be zero | ||
480 | * @freq: the frequency of the given clock ID, currently ignored | ||
481 | * @dir: SND_SOC_CLOCK_IN (clock slave) or SND_SOC_CLOCK_OUT (clock master) | ||
482 | */ | ||
483 | static int fsl_ssi_set_sysclk(struct snd_soc_cpu_dai *cpu_dai, | ||
484 | int clk_id, unsigned int freq, int dir) | ||
485 | { | ||
486 | |||
487 | return (dir == SND_SOC_CLOCK_IN) ? 0 : -EINVAL; | ||
488 | } | ||
489 | |||
490 | /** | ||
491 | * fsl_ssi_set_fmt: set the serial format. | ||
492 | * | ||
493 | * This function is called by the machine driver to tell us what serial | ||
494 | * format to use. | ||
495 | * | ||
496 | * Currently, we only support I2S mode. Return an error if the format is | ||
497 | * not SND_SOC_DAIFMT_I2S. | ||
498 | * | ||
499 | * @format: one of SND_SOC_DAIFMT_xxx | ||
500 | */ | ||
501 | static int fsl_ssi_set_fmt(struct snd_soc_cpu_dai *cpu_dai, unsigned int format) | ||
502 | { | ||
503 | return (format == SND_SOC_DAIFMT_I2S) ? 0 : -EINVAL; | ||
504 | } | ||
505 | |||
506 | /** | ||
507 | * fsl_ssi_dai_template: template CPU DAI for the SSI | ||
508 | */ | ||
509 | static struct snd_soc_cpu_dai fsl_ssi_dai_template = { | ||
510 | .playback = { | ||
511 | /* The SSI does not support monaural audio. */ | ||
512 | .channels_min = 2, | ||
513 | .channels_max = 2, | ||
514 | .rates = FSLSSI_I2S_RATES, | ||
515 | .formats = FSLSSI_I2S_FORMATS, | ||
516 | }, | ||
517 | .capture = { | ||
518 | .channels_min = 2, | ||
519 | .channels_max = 2, | ||
520 | .rates = FSLSSI_I2S_RATES, | ||
521 | .formats = FSLSSI_I2S_FORMATS, | ||
522 | }, | ||
523 | .ops = { | ||
524 | .startup = fsl_ssi_startup, | ||
525 | .prepare = fsl_ssi_prepare, | ||
526 | .shutdown = fsl_ssi_shutdown, | ||
527 | .trigger = fsl_ssi_trigger, | ||
528 | }, | ||
529 | .dai_ops = { | ||
530 | .set_sysclk = fsl_ssi_set_sysclk, | ||
531 | .set_fmt = fsl_ssi_set_fmt, | ||
532 | }, | ||
533 | }; | ||
534 | |||
535 | /** | ||
536 | * fsl_sysfs_ssi_show: display SSI statistics | ||
537 | * | ||
538 | * Display the statistics for the current SSI device. | ||
539 | */ | ||
540 | static ssize_t fsl_sysfs_ssi_show(struct device *dev, | ||
541 | struct device_attribute *attr, char *buf) | ||
542 | { | ||
543 | struct fsl_ssi_private *ssi_private = | ||
544 | container_of(attr, struct fsl_ssi_private, dev_attr); | ||
545 | ssize_t length; | ||
546 | |||
547 | length = sprintf(buf, "rfrc=%u", ssi_private->stats.rfrc); | ||
548 | length += sprintf(buf + length, "\ttfrc=%u", ssi_private->stats.tfrc); | ||
549 | length += sprintf(buf + length, "\tcmdau=%u", ssi_private->stats.cmdau); | ||
550 | length += sprintf(buf + length, "\tcmddu=%u", ssi_private->stats.cmddu); | ||
551 | length += sprintf(buf + length, "\trxt=%u", ssi_private->stats.rxt); | ||
552 | length += sprintf(buf + length, "\trdr1=%u", ssi_private->stats.rdr1); | ||
553 | length += sprintf(buf + length, "\trdr0=%u", ssi_private->stats.rdr0); | ||
554 | length += sprintf(buf + length, "\ttde1=%u", ssi_private->stats.tde1); | ||
555 | length += sprintf(buf + length, "\ttde0=%u", ssi_private->stats.tde0); | ||
556 | length += sprintf(buf + length, "\troe1=%u", ssi_private->stats.roe1); | ||
557 | length += sprintf(buf + length, "\troe0=%u", ssi_private->stats.roe0); | ||
558 | length += sprintf(buf + length, "\ttue1=%u", ssi_private->stats.tue1); | ||
559 | length += sprintf(buf + length, "\ttue0=%u", ssi_private->stats.tue0); | ||
560 | length += sprintf(buf + length, "\ttfs=%u", ssi_private->stats.tfs); | ||
561 | length += sprintf(buf + length, "\trfs=%u", ssi_private->stats.rfs); | ||
562 | length += sprintf(buf + length, "\ttls=%u", ssi_private->stats.tls); | ||
563 | length += sprintf(buf + length, "\trls=%u", ssi_private->stats.rls); | ||
564 | length += sprintf(buf + length, "\trff1=%u", ssi_private->stats.rff1); | ||
565 | length += sprintf(buf + length, "\trff0=%u", ssi_private->stats.rff0); | ||
566 | length += sprintf(buf + length, "\ttfe1=%u", ssi_private->stats.tfe1); | ||
567 | length += sprintf(buf + length, "\ttfe0=%u\n", ssi_private->stats.tfe0); | ||
568 | |||
569 | return length; | ||
570 | } | ||
571 | |||
572 | /** | ||
573 | * fsl_ssi_create_dai: create a snd_soc_cpu_dai structure | ||
574 | * | ||
575 | * This function is called by the machine driver to create a snd_soc_cpu_dai | ||
576 | * structure. The function creates an ssi_private object, which contains | ||
577 | * the snd_soc_cpu_dai. It also creates the sysfs statistics device. | ||
578 | */ | ||
579 | struct snd_soc_cpu_dai *fsl_ssi_create_dai(struct fsl_ssi_info *ssi_info) | ||
580 | { | ||
581 | struct snd_soc_cpu_dai *fsl_ssi_dai; | ||
582 | struct fsl_ssi_private *ssi_private; | ||
583 | int ret = 0; | ||
584 | struct device_attribute *dev_attr; | ||
585 | |||
586 | ssi_private = kzalloc(sizeof(struct fsl_ssi_private), GFP_KERNEL); | ||
587 | if (!ssi_private) { | ||
588 | dev_err(ssi_info->dev, "could not allocate DAI object\n"); | ||
589 | return NULL; | ||
590 | } | ||
591 | memcpy(&ssi_private->cpu_dai, &fsl_ssi_dai_template, | ||
592 | sizeof(struct snd_soc_cpu_dai)); | ||
593 | |||
594 | fsl_ssi_dai = &ssi_private->cpu_dai; | ||
595 | dev_attr = &ssi_private->dev_attr; | ||
596 | |||
597 | sprintf(ssi_private->name, "ssi%u", (u8) ssi_info->id); | ||
598 | ssi_private->ssi = ssi_info->ssi; | ||
599 | ssi_private->ssi_phys = ssi_info->ssi_phys; | ||
600 | ssi_private->irq = ssi_info->irq; | ||
601 | ssi_private->dev = ssi_info->dev; | ||
602 | |||
603 | ssi_private->dev->driver_data = fsl_ssi_dai; | ||
604 | |||
605 | /* Initialize the the device_attribute structure */ | ||
606 | dev_attr->attr.name = "ssi-stats"; | ||
607 | dev_attr->attr.mode = S_IRUGO; | ||
608 | dev_attr->show = fsl_sysfs_ssi_show; | ||
609 | |||
610 | ret = device_create_file(ssi_private->dev, dev_attr); | ||
611 | if (ret) { | ||
612 | dev_err(ssi_info->dev, "could not create sysfs %s file\n", | ||
613 | ssi_private->dev_attr.attr.name); | ||
614 | kfree(fsl_ssi_dai); | ||
615 | return NULL; | ||
616 | } | ||
617 | |||
618 | fsl_ssi_dai->private_data = ssi_private; | ||
619 | fsl_ssi_dai->name = ssi_private->name; | ||
620 | fsl_ssi_dai->id = ssi_info->id; | ||
621 | |||
622 | return fsl_ssi_dai; | ||
623 | } | ||
624 | EXPORT_SYMBOL_GPL(fsl_ssi_create_dai); | ||
625 | |||
626 | /** | ||
627 | * fsl_ssi_destroy_dai: destroy the snd_soc_cpu_dai object | ||
628 | * | ||
629 | * This function undoes the operations of fsl_ssi_create_dai() | ||
630 | */ | ||
631 | void fsl_ssi_destroy_dai(struct snd_soc_cpu_dai *fsl_ssi_dai) | ||
632 | { | ||
633 | struct fsl_ssi_private *ssi_private = | ||
634 | container_of(fsl_ssi_dai, struct fsl_ssi_private, cpu_dai); | ||
635 | |||
636 | device_remove_file(ssi_private->dev, &ssi_private->dev_attr); | ||
637 | |||
638 | kfree(ssi_private); | ||
639 | } | ||
640 | EXPORT_SYMBOL_GPL(fsl_ssi_destroy_dai); | ||
641 | |||
642 | MODULE_AUTHOR("Timur Tabi <timur@freescale.com>"); | ||
643 | MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver"); | ||
644 | MODULE_LICENSE("GPL"); | ||
diff --git a/sound/soc/fsl/fsl_ssi.h b/sound/soc/fsl/fsl_ssi.h new file mode 100644 index 000000000000..c5ce88e15651 --- /dev/null +++ b/sound/soc/fsl/fsl_ssi.h | |||
@@ -0,0 +1,224 @@ | |||
1 | /* | ||
2 | * fsl_ssi.h - ALSA SSI interface for the Freescale MPC8610 SoC | ||
3 | * | ||
4 | * Author: Timur Tabi <timur@freescale.com> | ||
5 | * | ||
6 | * Copyright 2007-2008 Freescale Semiconductor, Inc. This file is licensed | ||
7 | * under the terms of the GNU General Public License version 2. This | ||
8 | * program is licensed "as is" without any warranty of any kind, whether | ||
9 | * express or implied. | ||
10 | */ | ||
11 | |||
12 | #ifndef _MPC8610_I2S_H | ||
13 | #define _MPC8610_I2S_H | ||
14 | |||
15 | /* SSI Register Map */ | ||
16 | struct ccsr_ssi { | ||
17 | __be32 stx0; /* 0x.0000 - SSI Transmit Data Register 0 */ | ||
18 | __be32 stx1; /* 0x.0004 - SSI Transmit Data Register 1 */ | ||
19 | __be32 srx0; /* 0x.0008 - SSI Receive Data Register 0 */ | ||
20 | __be32 srx1; /* 0x.000C - SSI Receive Data Register 1 */ | ||
21 | __be32 scr; /* 0x.0010 - SSI Control Register */ | ||
22 | __be32 sisr; /* 0x.0014 - SSI Interrupt Status Register Mixed */ | ||
23 | __be32 sier; /* 0x.0018 - SSI Interrupt Enable Register */ | ||
24 | __be32 stcr; /* 0x.001C - SSI Transmit Configuration Register */ | ||
25 | __be32 srcr; /* 0x.0020 - SSI Receive Configuration Register */ | ||
26 | __be32 stccr; /* 0x.0024 - SSI Transmit Clock Control Register */ | ||
27 | __be32 srccr; /* 0x.0028 - SSI Receive Clock Control Register */ | ||
28 | __be32 sfcsr; /* 0x.002C - SSI FIFO Control/Status Register */ | ||
29 | __be32 str; /* 0x.0030 - SSI Test Register */ | ||
30 | __be32 sor; /* 0x.0034 - SSI Option Register */ | ||
31 | __be32 sacnt; /* 0x.0038 - SSI AC97 Control Register */ | ||
32 | __be32 sacadd; /* 0x.003C - SSI AC97 Command Address Register */ | ||
33 | __be32 sacdat; /* 0x.0040 - SSI AC97 Command Data Register */ | ||
34 | __be32 satag; /* 0x.0044 - SSI AC97 Tag Register */ | ||
35 | __be32 stmsk; /* 0x.0048 - SSI Transmit Time Slot Mask Register */ | ||
36 | __be32 srmsk; /* 0x.004C - SSI Receive Time Slot Mask Register */ | ||
37 | __be32 saccst; /* 0x.0050 - SSI AC97 Channel Status Register */ | ||
38 | __be32 saccen; /* 0x.0054 - SSI AC97 Channel Enable Register */ | ||
39 | __be32 saccdis; /* 0x.0058 - SSI AC97 Channel Disable Register */ | ||
40 | }; | ||
41 | |||
42 | #define CCSR_SSI_SCR_RFR_CLK_DIS 0x00000800 | ||
43 | #define CCSR_SSI_SCR_TFR_CLK_DIS 0x00000400 | ||
44 | #define CCSR_SSI_SCR_TCH_EN 0x00000100 | ||
45 | #define CCSR_SSI_SCR_SYS_CLK_EN 0x00000080 | ||
46 | #define CCSR_SSI_SCR_I2S_MODE_MASK 0x00000060 | ||
47 | #define CCSR_SSI_SCR_I2S_MODE_NORMAL 0x00000000 | ||
48 | #define CCSR_SSI_SCR_I2S_MODE_MASTER 0x00000020 | ||
49 | #define CCSR_SSI_SCR_I2S_MODE_SLAVE 0x00000040 | ||
50 | #define CCSR_SSI_SCR_SYN 0x00000010 | ||
51 | #define CCSR_SSI_SCR_NET 0x00000008 | ||
52 | #define CCSR_SSI_SCR_RE 0x00000004 | ||
53 | #define CCSR_SSI_SCR_TE 0x00000002 | ||
54 | #define CCSR_SSI_SCR_SSIEN 0x00000001 | ||
55 | |||
56 | #define CCSR_SSI_SISR_RFRC 0x01000000 | ||
57 | #define CCSR_SSI_SISR_TFRC 0x00800000 | ||
58 | #define CCSR_SSI_SISR_CMDAU 0x00040000 | ||
59 | #define CCSR_SSI_SISR_CMDDU 0x00020000 | ||
60 | #define CCSR_SSI_SISR_RXT 0x00010000 | ||
61 | #define CCSR_SSI_SISR_RDR1 0x00008000 | ||
62 | #define CCSR_SSI_SISR_RDR0 0x00004000 | ||
63 | #define CCSR_SSI_SISR_TDE1 0x00002000 | ||
64 | #define CCSR_SSI_SISR_TDE0 0x00001000 | ||
65 | #define CCSR_SSI_SISR_ROE1 0x00000800 | ||
66 | #define CCSR_SSI_SISR_ROE0 0x00000400 | ||
67 | #define CCSR_SSI_SISR_TUE1 0x00000200 | ||
68 | #define CCSR_SSI_SISR_TUE0 0x00000100 | ||
69 | #define CCSR_SSI_SISR_TFS 0x00000080 | ||
70 | #define CCSR_SSI_SISR_RFS 0x00000040 | ||
71 | #define CCSR_SSI_SISR_TLS 0x00000020 | ||
72 | #define CCSR_SSI_SISR_RLS 0x00000010 | ||
73 | #define CCSR_SSI_SISR_RFF1 0x00000008 | ||
74 | #define CCSR_SSI_SISR_RFF0 0x00000004 | ||
75 | #define CCSR_SSI_SISR_TFE1 0x00000002 | ||
76 | #define CCSR_SSI_SISR_TFE0 0x00000001 | ||
77 | |||
78 | #define CCSR_SSI_SIER_RFRC_EN 0x01000000 | ||
79 | #define CCSR_SSI_SIER_TFRC_EN 0x00800000 | ||
80 | #define CCSR_SSI_SIER_RDMAE 0x00400000 | ||
81 | #define CCSR_SSI_SIER_RIE 0x00200000 | ||
82 | #define CCSR_SSI_SIER_TDMAE 0x00100000 | ||
83 | #define CCSR_SSI_SIER_TIE 0x00080000 | ||
84 | #define CCSR_SSI_SIER_CMDAU_EN 0x00040000 | ||
85 | #define CCSR_SSI_SIER_CMDDU_EN 0x00020000 | ||
86 | #define CCSR_SSI_SIER_RXT_EN 0x00010000 | ||
87 | #define CCSR_SSI_SIER_RDR1_EN 0x00008000 | ||
88 | #define CCSR_SSI_SIER_RDR0_EN 0x00004000 | ||
89 | #define CCSR_SSI_SIER_TDE1_EN 0x00002000 | ||
90 | #define CCSR_SSI_SIER_TDE0_EN 0x00001000 | ||
91 | #define CCSR_SSI_SIER_ROE1_EN 0x00000800 | ||
92 | #define CCSR_SSI_SIER_ROE0_EN 0x00000400 | ||
93 | #define CCSR_SSI_SIER_TUE1_EN 0x00000200 | ||
94 | #define CCSR_SSI_SIER_TUE0_EN 0x00000100 | ||
95 | #define CCSR_SSI_SIER_TFS_EN 0x00000080 | ||
96 | #define CCSR_SSI_SIER_RFS_EN 0x00000040 | ||
97 | #define CCSR_SSI_SIER_TLS_EN 0x00000020 | ||
98 | #define CCSR_SSI_SIER_RLS_EN 0x00000010 | ||
99 | #define CCSR_SSI_SIER_RFF1_EN 0x00000008 | ||
100 | #define CCSR_SSI_SIER_RFF0_EN 0x00000004 | ||
101 | #define CCSR_SSI_SIER_TFE1_EN 0x00000002 | ||
102 | #define CCSR_SSI_SIER_TFE0_EN 0x00000001 | ||
103 | |||
104 | #define CCSR_SSI_STCR_TXBIT0 0x00000200 | ||
105 | #define CCSR_SSI_STCR_TFEN1 0x00000100 | ||
106 | #define CCSR_SSI_STCR_TFEN0 0x00000080 | ||
107 | #define CCSR_SSI_STCR_TFDIR 0x00000040 | ||
108 | #define CCSR_SSI_STCR_TXDIR 0x00000020 | ||
109 | #define CCSR_SSI_STCR_TSHFD 0x00000010 | ||
110 | #define CCSR_SSI_STCR_TSCKP 0x00000008 | ||
111 | #define CCSR_SSI_STCR_TFSI 0x00000004 | ||
112 | #define CCSR_SSI_STCR_TFSL 0x00000002 | ||
113 | #define CCSR_SSI_STCR_TEFS 0x00000001 | ||
114 | |||
115 | #define CCSR_SSI_SRCR_RXEXT 0x00000400 | ||
116 | #define CCSR_SSI_SRCR_RXBIT0 0x00000200 | ||
117 | #define CCSR_SSI_SRCR_RFEN1 0x00000100 | ||
118 | #define CCSR_SSI_SRCR_RFEN0 0x00000080 | ||
119 | #define CCSR_SSI_SRCR_RFDIR 0x00000040 | ||
120 | #define CCSR_SSI_SRCR_RXDIR 0x00000020 | ||
121 | #define CCSR_SSI_SRCR_RSHFD 0x00000010 | ||
122 | #define CCSR_SSI_SRCR_RSCKP 0x00000008 | ||
123 | #define CCSR_SSI_SRCR_RFSI 0x00000004 | ||
124 | #define CCSR_SSI_SRCR_RFSL 0x00000002 | ||
125 | #define CCSR_SSI_SRCR_REFS 0x00000001 | ||
126 | |||
127 | /* STCCR and SRCCR */ | ||
128 | #define CCSR_SSI_SxCCR_DIV2 0x00040000 | ||
129 | #define CCSR_SSI_SxCCR_PSR 0x00020000 | ||
130 | #define CCSR_SSI_SxCCR_WL_SHIFT 13 | ||
131 | #define CCSR_SSI_SxCCR_WL_MASK 0x0001E000 | ||
132 | #define CCSR_SSI_SxCCR_WL(x) \ | ||
133 | (((((x) / 2) - 1) << CCSR_SSI_SxCCR_WL_SHIFT) & CCSR_SSI_SxCCR_WL_MASK) | ||
134 | #define CCSR_SSI_SxCCR_DC_SHIFT 8 | ||
135 | #define CCSR_SSI_SxCCR_DC_MASK 0x00001F00 | ||
136 | #define CCSR_SSI_SxCCR_DC(x) \ | ||
137 | ((((x) - 1) << CCSR_SSI_SxCCR_DC_SHIFT) & CCSR_SSI_SxCCR_DC_MASK) | ||
138 | #define CCSR_SSI_SxCCR_PM_SHIFT 0 | ||
139 | #define CCSR_SSI_SxCCR_PM_MASK 0x000000FF | ||
140 | #define CCSR_SSI_SxCCR_PM(x) \ | ||
141 | ((((x) - 1) << CCSR_SSI_SxCCR_PM_SHIFT) & CCSR_SSI_SxCCR_PM_MASK) | ||
142 | |||
143 | /* | ||
144 | * The xFCNT bits are read-only, and the xFWM bits are read/write. Use the | ||
145 | * CCSR_SSI_SFCSR_xFCNTy() macros to read the FIFO counters, and use the | ||
146 | * CCSR_SSI_SFCSR_xFWMy() macros to set the watermarks. | ||
147 | */ | ||
148 | #define CCSR_SSI_SFCSR_RFCNT1_SHIFT 28 | ||
149 | #define CCSR_SSI_SFCSR_RFCNT1_MASK 0xF0000000 | ||
150 | #define CCSR_SSI_SFCSR_RFCNT1(x) \ | ||
151 | (((x) & CCSR_SSI_SFCSR_RFCNT1_MASK) >> CCSR_SSI_SFCSR_RFCNT1_SHIFT) | ||
152 | #define CCSR_SSI_SFCSR_TFCNT1_SHIFT 24 | ||
153 | #define CCSR_SSI_SFCSR_TFCNT1_MASK 0x0F000000 | ||
154 | #define CCSR_SSI_SFCSR_TFCNT1(x) \ | ||
155 | (((x) & CCSR_SSI_SFCSR_TFCNT1_MASK) >> CCSR_SSI_SFCSR_TFCNT1_SHIFT) | ||
156 | #define CCSR_SSI_SFCSR_RFWM1_SHIFT 20 | ||
157 | #define CCSR_SSI_SFCSR_RFWM1_MASK 0x00F00000 | ||
158 | #define CCSR_SSI_SFCSR_RFWM1(x) \ | ||
159 | (((x) << CCSR_SSI_SFCSR_RFWM1_SHIFT) & CCSR_SSI_SFCSR_RFWM1_MASK) | ||
160 | #define CCSR_SSI_SFCSR_TFWM1_SHIFT 16 | ||
161 | #define CCSR_SSI_SFCSR_TFWM1_MASK 0x000F0000 | ||
162 | #define CCSR_SSI_SFCSR_TFWM1(x) \ | ||
163 | (((x) << CCSR_SSI_SFCSR_TFWM1_SHIFT) & CCSR_SSI_SFCSR_TFWM1_MASK) | ||
164 | #define CCSR_SSI_SFCSR_RFCNT0_SHIFT 12 | ||
165 | #define CCSR_SSI_SFCSR_RFCNT0_MASK 0x0000F000 | ||
166 | #define CCSR_SSI_SFCSR_RFCNT0(x) \ | ||
167 | (((x) & CCSR_SSI_SFCSR_RFCNT0_MASK) >> CCSR_SSI_SFCSR_RFCNT0_SHIFT) | ||
168 | #define CCSR_SSI_SFCSR_TFCNT0_SHIFT 8 | ||
169 | #define CCSR_SSI_SFCSR_TFCNT0_MASK 0x00000F00 | ||
170 | #define CCSR_SSI_SFCSR_TFCNT0(x) \ | ||
171 | (((x) & CCSR_SSI_SFCSR_TFCNT0_MASK) >> CCSR_SSI_SFCSR_TFCNT0_SHIFT) | ||
172 | #define CCSR_SSI_SFCSR_RFWM0_SHIFT 4 | ||
173 | #define CCSR_SSI_SFCSR_RFWM0_MASK 0x000000F0 | ||
174 | #define CCSR_SSI_SFCSR_RFWM0(x) \ | ||
175 | (((x) << CCSR_SSI_SFCSR_RFWM0_SHIFT) & CCSR_SSI_SFCSR_RFWM0_MASK) | ||
176 | #define CCSR_SSI_SFCSR_TFWM0_SHIFT 0 | ||
177 | #define CCSR_SSI_SFCSR_TFWM0_MASK 0x0000000F | ||
178 | #define CCSR_SSI_SFCSR_TFWM0(x) \ | ||
179 | (((x) << CCSR_SSI_SFCSR_TFWM0_SHIFT) & CCSR_SSI_SFCSR_TFWM0_MASK) | ||
180 | |||
181 | #define CCSR_SSI_STR_TEST 0x00008000 | ||
182 | #define CCSR_SSI_STR_RCK2TCK 0x00004000 | ||
183 | #define CCSR_SSI_STR_RFS2TFS 0x00002000 | ||
184 | #define CCSR_SSI_STR_RXSTATE(x) (((x) >> 8) & 0x1F) | ||
185 | #define CCSR_SSI_STR_TXD2RXD 0x00000080 | ||
186 | #define CCSR_SSI_STR_TCK2RCK 0x00000040 | ||
187 | #define CCSR_SSI_STR_TFS2RFS 0x00000020 | ||
188 | #define CCSR_SSI_STR_TXSTATE(x) ((x) & 0x1F) | ||
189 | |||
190 | #define CCSR_SSI_SOR_CLKOFF 0x00000040 | ||
191 | #define CCSR_SSI_SOR_RX_CLR 0x00000020 | ||
192 | #define CCSR_SSI_SOR_TX_CLR 0x00000010 | ||
193 | #define CCSR_SSI_SOR_INIT 0x00000008 | ||
194 | #define CCSR_SSI_SOR_WAIT_SHIFT 1 | ||
195 | #define CCSR_SSI_SOR_WAIT_MASK 0x00000006 | ||
196 | #define CCSR_SSI_SOR_WAIT(x) (((x) & 3) << CCSR_SSI_SOR_WAIT_SHIFT) | ||
197 | #define CCSR_SSI_SOR_SYNRST 0x00000001 | ||
198 | |||
199 | /* Instantiation data for an SSI interface | ||
200 | * | ||
201 | * This structure contains all the information that the the SSI driver needs | ||
202 | * to instantiate an SSI interface with ALSA. The machine driver should | ||
203 | * create this structure, fill it in, call fsl_ssi_create_dai(), and then | ||
204 | * delete the structure. | ||
205 | * | ||
206 | * id: which SSI this is (0, 1, etc. ) | ||
207 | * ssi: pointer to the SSI's registers | ||
208 | * ssi_phys: physical address of the SSI registers | ||
209 | * irq: IRQ of this SSI | ||
210 | * dev: struct device, used to create the sysfs statistics file | ||
211 | */ | ||
212 | struct fsl_ssi_info { | ||
213 | unsigned int id; | ||
214 | struct ccsr_ssi __iomem *ssi; | ||
215 | dma_addr_t ssi_phys; | ||
216 | unsigned int irq; | ||
217 | struct device *dev; | ||
218 | }; | ||
219 | |||
220 | struct snd_soc_cpu_dai *fsl_ssi_create_dai(struct fsl_ssi_info *ssi_info); | ||
221 | void fsl_ssi_destroy_dai(struct snd_soc_cpu_dai *fsl_ssi_dai); | ||
222 | |||
223 | #endif | ||
224 | |||
diff --git a/sound/soc/fsl/mpc8610_hpcd.c b/sound/soc/fsl/mpc8610_hpcd.c new file mode 100644 index 000000000000..f26c4b2e8b6e --- /dev/null +++ b/sound/soc/fsl/mpc8610_hpcd.c | |||
@@ -0,0 +1,631 @@ | |||
1 | /** | ||
2 | * Freescale MPC8610HPCD ALSA SoC Fabric driver | ||
3 | * | ||
4 | * Author: Timur Tabi <timur@freescale.com> | ||
5 | * | ||
6 | * Copyright 2007-2008 Freescale Semiconductor, Inc. This file is licensed | ||
7 | * under the terms of the GNU General Public License version 2. This | ||
8 | * program is licensed "as is" without any warranty of any kind, whether | ||
9 | * express or implied. | ||
10 | */ | ||
11 | |||
12 | #include <linux/module.h> | ||
13 | #include <linux/interrupt.h> | ||
14 | #include <linux/of_device.h> | ||
15 | #include <linux/of_platform.h> | ||
16 | #include <sound/soc.h> | ||
17 | #include <asm/immap_86xx.h> | ||
18 | |||
19 | #include "../codecs/cs4270.h" | ||
20 | #include "fsl_dma.h" | ||
21 | #include "fsl_ssi.h" | ||
22 | |||
23 | /** | ||
24 | * mpc8610_hpcd_data: fabric-specific ASoC device data | ||
25 | * | ||
26 | * This structure contains data for a single sound platform device on an | ||
27 | * MPC8610 HPCD. Some of the data is taken from the device tree. | ||
28 | */ | ||
29 | struct mpc8610_hpcd_data { | ||
30 | struct snd_soc_device sound_devdata; | ||
31 | struct snd_soc_dai_link dai; | ||
32 | struct snd_soc_machine machine; | ||
33 | unsigned int dai_format; | ||
34 | unsigned int codec_clk_direction; | ||
35 | unsigned int cpu_clk_direction; | ||
36 | unsigned int clk_frequency; | ||
37 | struct ccsr_guts __iomem *guts; | ||
38 | struct ccsr_ssi __iomem *ssi; | ||
39 | unsigned int ssi_id; /* 0 = SSI1, 1 = SSI2, etc */ | ||
40 | unsigned int ssi_irq; | ||
41 | unsigned int dma_id; /* 0 = DMA1, 1 = DMA2, etc */ | ||
42 | unsigned int dma_irq[2]; | ||
43 | struct ccsr_dma_channel __iomem *dma[2]; | ||
44 | unsigned int dma_channel_id[2]; /* 0 = ch 0, 1 = ch 1, etc*/ | ||
45 | }; | ||
46 | |||
47 | /** | ||
48 | * mpc8610_hpcd_machine_probe: initalize the board | ||
49 | * | ||
50 | * This function is called when platform_device_add() is called. It is used | ||
51 | * to initialize the board-specific hardware. | ||
52 | * | ||
53 | * Here we program the DMACR and PMUXCR registers. | ||
54 | */ | ||
55 | static int mpc8610_hpcd_machine_probe(struct platform_device *sound_device) | ||
56 | { | ||
57 | struct mpc8610_hpcd_data *machine_data = | ||
58 | sound_device->dev.platform_data; | ||
59 | |||
60 | /* Program the signal routing between the SSI and the DMA */ | ||
61 | guts_set_dmacr(machine_data->guts, machine_data->dma_id + 1, | ||
62 | machine_data->dma_channel_id[0], CCSR_GUTS_DMACR_DEV_SSI); | ||
63 | guts_set_dmacr(machine_data->guts, machine_data->dma_id + 1, | ||
64 | machine_data->dma_channel_id[1], CCSR_GUTS_DMACR_DEV_SSI); | ||
65 | |||
66 | guts_set_pmuxcr_dma(machine_data->guts, machine_data->dma_id, | ||
67 | machine_data->dma_channel_id[0], 0); | ||
68 | guts_set_pmuxcr_dma(machine_data->guts, machine_data->dma_id, | ||
69 | machine_data->dma_channel_id[1], 0); | ||
70 | |||
71 | guts_set_pmuxcr_dma(machine_data->guts, 1, 0, 0); | ||
72 | guts_set_pmuxcr_dma(machine_data->guts, 1, 3, 0); | ||
73 | guts_set_pmuxcr_dma(machine_data->guts, 0, 3, 0); | ||
74 | |||
75 | switch (machine_data->ssi_id) { | ||
76 | case 0: | ||
77 | clrsetbits_be32(&machine_data->guts->pmuxcr, | ||
78 | CCSR_GUTS_PMUXCR_SSI1_MASK, CCSR_GUTS_PMUXCR_SSI1_SSI); | ||
79 | break; | ||
80 | case 1: | ||
81 | clrsetbits_be32(&machine_data->guts->pmuxcr, | ||
82 | CCSR_GUTS_PMUXCR_SSI2_MASK, CCSR_GUTS_PMUXCR_SSI2_SSI); | ||
83 | break; | ||
84 | } | ||
85 | |||
86 | return 0; | ||
87 | } | ||
88 | |||
89 | /** | ||
90 | * mpc8610_hpcd_startup: program the board with various hardware parameters | ||
91 | * | ||
92 | * This function takes board-specific information, like clock frequencies | ||
93 | * and serial data formats, and passes that information to the codec and | ||
94 | * transport drivers. | ||
95 | */ | ||
96 | static int mpc8610_hpcd_startup(struct snd_pcm_substream *substream) | ||
97 | { | ||
98 | struct snd_soc_pcm_runtime *rtd = substream->private_data; | ||
99 | struct snd_soc_codec_dai *codec_dai = rtd->dai->codec_dai; | ||
100 | struct snd_soc_cpu_dai *cpu_dai = rtd->dai->cpu_dai; | ||
101 | struct mpc8610_hpcd_data *machine_data = | ||
102 | rtd->socdev->dev->platform_data; | ||
103 | int ret = 0; | ||
104 | |||
105 | /* Tell the CPU driver what the serial protocol is. */ | ||
106 | if (cpu_dai->dai_ops.set_fmt) { | ||
107 | ret = cpu_dai->dai_ops.set_fmt(cpu_dai, | ||
108 | machine_data->dai_format); | ||
109 | if (ret < 0) { | ||
110 | dev_err(substream->pcm->card->dev, | ||
111 | "could not set CPU driver audio format\n"); | ||
112 | return ret; | ||
113 | } | ||
114 | } | ||
115 | |||
116 | /* Tell the codec driver what the serial protocol is. */ | ||
117 | if (codec_dai->dai_ops.set_fmt) { | ||
118 | ret = codec_dai->dai_ops.set_fmt(codec_dai, | ||
119 | machine_data->dai_format); | ||
120 | if (ret < 0) { | ||
121 | dev_err(substream->pcm->card->dev, | ||
122 | "could not set codec driver audio format\n"); | ||
123 | return ret; | ||
124 | } | ||
125 | } | ||
126 | |||
127 | /* | ||
128 | * Tell the CPU driver what the clock frequency is, and whether it's a | ||
129 | * slave or master. | ||
130 | */ | ||
131 | if (cpu_dai->dai_ops.set_sysclk) { | ||
132 | ret = cpu_dai->dai_ops.set_sysclk(cpu_dai, 0, | ||
133 | machine_data->clk_frequency, | ||
134 | machine_data->cpu_clk_direction); | ||
135 | if (ret < 0) { | ||
136 | dev_err(substream->pcm->card->dev, | ||
137 | "could not set CPU driver clock parameters\n"); | ||
138 | return ret; | ||
139 | } | ||
140 | } | ||
141 | |||
142 | /* | ||
143 | * Tell the codec driver what the MCLK frequency is, and whether it's | ||
144 | * a slave or master. | ||
145 | */ | ||
146 | if (codec_dai->dai_ops.set_sysclk) { | ||
147 | ret = codec_dai->dai_ops.set_sysclk(codec_dai, 0, | ||
148 | machine_data->clk_frequency, | ||
149 | machine_data->codec_clk_direction); | ||
150 | if (ret < 0) { | ||
151 | dev_err(substream->pcm->card->dev, | ||
152 | "could not set codec driver clock params\n"); | ||
153 | return ret; | ||
154 | } | ||
155 | } | ||
156 | |||
157 | return 0; | ||
158 | } | ||
159 | |||
160 | /** | ||
161 | * mpc8610_hpcd_machine_remove: Remove the sound device | ||
162 | * | ||
163 | * This function is called to remove the sound device for one SSI. We | ||
164 | * de-program the DMACR and PMUXCR register. | ||
165 | */ | ||
166 | int mpc8610_hpcd_machine_remove(struct platform_device *sound_device) | ||
167 | { | ||
168 | struct mpc8610_hpcd_data *machine_data = | ||
169 | sound_device->dev.platform_data; | ||
170 | |||
171 | /* Restore the signal routing */ | ||
172 | |||
173 | guts_set_dmacr(machine_data->guts, machine_data->dma_id + 1, | ||
174 | machine_data->dma_channel_id[0], 0); | ||
175 | guts_set_dmacr(machine_data->guts, machine_data->dma_id + 1, | ||
176 | machine_data->dma_channel_id[1], 0); | ||
177 | |||
178 | switch (machine_data->ssi_id) { | ||
179 | case 0: | ||
180 | clrsetbits_be32(&machine_data->guts->pmuxcr, | ||
181 | CCSR_GUTS_PMUXCR_SSI1_MASK, CCSR_GUTS_PMUXCR_SSI1_LA); | ||
182 | break; | ||
183 | case 1: | ||
184 | clrsetbits_be32(&machine_data->guts->pmuxcr, | ||
185 | CCSR_GUTS_PMUXCR_SSI2_MASK, CCSR_GUTS_PMUXCR_SSI1_LA); | ||
186 | break; | ||
187 | } | ||
188 | |||
189 | return 0; | ||
190 | } | ||
191 | |||
192 | /** | ||
193 | * mpc8610_hpcd_ops: ASoC fabric driver operations | ||
194 | */ | ||
195 | static struct snd_soc_ops mpc8610_hpcd_ops = { | ||
196 | .startup = mpc8610_hpcd_startup, | ||
197 | }; | ||
198 | |||
199 | /** | ||
200 | * mpc8610_hpcd_machine: ASoC machine data | ||
201 | */ | ||
202 | static struct snd_soc_machine mpc8610_hpcd_machine = { | ||
203 | .probe = mpc8610_hpcd_machine_probe, | ||
204 | .remove = mpc8610_hpcd_machine_remove, | ||
205 | .name = "MPC8610 HPCD", | ||
206 | .num_links = 1, | ||
207 | }; | ||
208 | |||
209 | /** | ||
210 | * mpc8610_hpcd_probe: OF probe function for the fabric driver | ||
211 | * | ||
212 | * This function gets called when an SSI node is found in the device tree. | ||
213 | * | ||
214 | * Although this is a fabric driver, the SSI node is the "master" node with | ||
215 | * respect to audio hardware connections. Therefore, we create a new ASoC | ||
216 | * device for each new SSI node that has a codec attached. | ||
217 | * | ||
218 | * FIXME: Currently, we only support one DMA controller, so if there are | ||
219 | * multiple SSI nodes with codecs, only the first will be supported. | ||
220 | * | ||
221 | * FIXME: Even if we did support multiple DMA controllers, we have no | ||
222 | * mechanism for assigning DMA controllers and channels to the individual | ||
223 | * SSI devices. We also probably aren't compatible with the generic Elo DMA | ||
224 | * device driver. | ||
225 | */ | ||
226 | static int mpc8610_hpcd_probe(struct of_device *ofdev, | ||
227 | const struct of_device_id *match) | ||
228 | { | ||
229 | struct device_node *np = ofdev->node; | ||
230 | struct device_node *codec_np = NULL; | ||
231 | struct device_node *guts_np = NULL; | ||
232 | struct device_node *dma_np = NULL; | ||
233 | struct device_node *dma_channel_np = NULL; | ||
234 | const phandle *codec_ph; | ||
235 | const char *sprop; | ||
236 | const u32 *iprop; | ||
237 | struct resource res; | ||
238 | struct platform_device *sound_device = NULL; | ||
239 | struct mpc8610_hpcd_data *machine_data; | ||
240 | struct fsl_ssi_info ssi_info; | ||
241 | struct fsl_dma_info dma_info; | ||
242 | int ret = -ENODEV; | ||
243 | |||
244 | machine_data = kzalloc(sizeof(struct mpc8610_hpcd_data), GFP_KERNEL); | ||
245 | if (!machine_data) | ||
246 | return -ENOMEM; | ||
247 | |||
248 | memset(&ssi_info, 0, sizeof(ssi_info)); | ||
249 | memset(&dma_info, 0, sizeof(dma_info)); | ||
250 | |||
251 | ssi_info.dev = &ofdev->dev; | ||
252 | |||
253 | /* | ||
254 | * We are only interested in SSIs with a codec phandle in them, so let's | ||
255 | * make sure this SSI has one. | ||
256 | */ | ||
257 | codec_ph = of_get_property(np, "codec-handle", NULL); | ||
258 | if (!codec_ph) | ||
259 | goto error; | ||
260 | |||
261 | codec_np = of_find_node_by_phandle(*codec_ph); | ||
262 | if (!codec_np) | ||
263 | goto error; | ||
264 | |||
265 | /* The MPC8610 HPCD only knows about the CS4270 codec, so reject | ||
266 | anything else. */ | ||
267 | if (!of_device_is_compatible(codec_np, "cirrus,cs4270")) | ||
268 | goto error; | ||
269 | |||
270 | /* Get the device ID */ | ||
271 | iprop = of_get_property(np, "cell-index", NULL); | ||
272 | if (!iprop) { | ||
273 | dev_err(&ofdev->dev, "cell-index property not found\n"); | ||
274 | ret = -EINVAL; | ||
275 | goto error; | ||
276 | } | ||
277 | machine_data->ssi_id = *iprop; | ||
278 | ssi_info.id = *iprop; | ||
279 | |||
280 | /* Get the serial format and clock direction. */ | ||
281 | sprop = of_get_property(np, "fsl,mode", NULL); | ||
282 | if (!sprop) { | ||
283 | dev_err(&ofdev->dev, "fsl,mode property not found\n"); | ||
284 | ret = -EINVAL; | ||
285 | goto error; | ||
286 | } | ||
287 | |||
288 | if (strcasecmp(sprop, "i2s-slave") == 0) { | ||
289 | machine_data->dai_format = SND_SOC_DAIFMT_I2S; | ||
290 | machine_data->codec_clk_direction = SND_SOC_CLOCK_OUT; | ||
291 | machine_data->cpu_clk_direction = SND_SOC_CLOCK_IN; | ||
292 | |||
293 | /* | ||
294 | * In i2s-slave mode, the codec has its own clock source, so we | ||
295 | * need to get the frequency from the device tree and pass it to | ||
296 | * the codec driver. | ||
297 | */ | ||
298 | iprop = of_get_property(codec_np, "clock-frequency", NULL); | ||
299 | if (!iprop || !*iprop) { | ||
300 | dev_err(&ofdev->dev, "codec bus-frequency property " | ||
301 | "is missing or invalid\n"); | ||
302 | ret = -EINVAL; | ||
303 | goto error; | ||
304 | } | ||
305 | machine_data->clk_frequency = *iprop; | ||
306 | } else if (strcasecmp(sprop, "i2s-master") == 0) { | ||
307 | machine_data->dai_format = SND_SOC_DAIFMT_I2S; | ||
308 | machine_data->codec_clk_direction = SND_SOC_CLOCK_IN; | ||
309 | machine_data->cpu_clk_direction = SND_SOC_CLOCK_OUT; | ||
310 | } else if (strcasecmp(sprop, "lj-slave") == 0) { | ||
311 | machine_data->dai_format = SND_SOC_DAIFMT_LEFT_J; | ||
312 | machine_data->codec_clk_direction = SND_SOC_CLOCK_OUT; | ||
313 | machine_data->cpu_clk_direction = SND_SOC_CLOCK_IN; | ||
314 | } else if (strcasecmp(sprop, "lj-master") == 0) { | ||
315 | machine_data->dai_format = SND_SOC_DAIFMT_LEFT_J; | ||
316 | machine_data->codec_clk_direction = SND_SOC_CLOCK_IN; | ||
317 | machine_data->cpu_clk_direction = SND_SOC_CLOCK_OUT; | ||
318 | } else if (strcasecmp(sprop, "rj-master") == 0) { | ||
319 | machine_data->dai_format = SND_SOC_DAIFMT_RIGHT_J; | ||
320 | machine_data->codec_clk_direction = SND_SOC_CLOCK_OUT; | ||
321 | machine_data->cpu_clk_direction = SND_SOC_CLOCK_IN; | ||
322 | } else if (strcasecmp(sprop, "rj-master") == 0) { | ||
323 | machine_data->dai_format = SND_SOC_DAIFMT_RIGHT_J; | ||
324 | machine_data->codec_clk_direction = SND_SOC_CLOCK_IN; | ||
325 | machine_data->cpu_clk_direction = SND_SOC_CLOCK_OUT; | ||
326 | } else if (strcasecmp(sprop, "ac97-slave") == 0) { | ||
327 | machine_data->dai_format = SND_SOC_DAIFMT_AC97; | ||
328 | machine_data->codec_clk_direction = SND_SOC_CLOCK_OUT; | ||
329 | machine_data->cpu_clk_direction = SND_SOC_CLOCK_IN; | ||
330 | } else if (strcasecmp(sprop, "ac97-master") == 0) { | ||
331 | machine_data->dai_format = SND_SOC_DAIFMT_AC97; | ||
332 | machine_data->codec_clk_direction = SND_SOC_CLOCK_IN; | ||
333 | machine_data->cpu_clk_direction = SND_SOC_CLOCK_OUT; | ||
334 | } else { | ||
335 | dev_err(&ofdev->dev, | ||
336 | "unrecognized fsl,mode property \"%s\"\n", sprop); | ||
337 | ret = -EINVAL; | ||
338 | goto error; | ||
339 | } | ||
340 | |||
341 | if (!machine_data->clk_frequency) { | ||
342 | dev_err(&ofdev->dev, "unknown clock frequency\n"); | ||
343 | ret = -EINVAL; | ||
344 | goto error; | ||
345 | } | ||
346 | |||
347 | /* Read the SSI information from the device tree */ | ||
348 | ret = of_address_to_resource(np, 0, &res); | ||
349 | if (ret) { | ||
350 | dev_err(&ofdev->dev, "could not obtain SSI address\n"); | ||
351 | goto error; | ||
352 | } | ||
353 | if (!res.start) { | ||
354 | dev_err(&ofdev->dev, "invalid SSI address\n"); | ||
355 | goto error; | ||
356 | } | ||
357 | ssi_info.ssi_phys = res.start; | ||
358 | |||
359 | machine_data->ssi = ioremap(ssi_info.ssi_phys, sizeof(struct ccsr_ssi)); | ||
360 | if (!machine_data->ssi) { | ||
361 | dev_err(&ofdev->dev, "could not map SSI address %x\n", | ||
362 | ssi_info.ssi_phys); | ||
363 | ret = -EINVAL; | ||
364 | goto error; | ||
365 | } | ||
366 | ssi_info.ssi = machine_data->ssi; | ||
367 | |||
368 | |||
369 | /* Get the IRQ of the SSI */ | ||
370 | machine_data->ssi_irq = irq_of_parse_and_map(np, 0); | ||
371 | if (!machine_data->ssi_irq) { | ||
372 | dev_err(&ofdev->dev, "could not get SSI IRQ\n"); | ||
373 | ret = -EINVAL; | ||
374 | goto error; | ||
375 | } | ||
376 | ssi_info.irq = machine_data->ssi_irq; | ||
377 | |||
378 | |||
379 | /* Map the global utilities registers. */ | ||
380 | guts_np = of_find_compatible_node(NULL, NULL, "fsl,mpc8610-guts"); | ||
381 | if (!guts_np) { | ||
382 | dev_err(&ofdev->dev, "could not obtain address of GUTS\n"); | ||
383 | ret = -EINVAL; | ||
384 | goto error; | ||
385 | } | ||
386 | machine_data->guts = of_iomap(guts_np, 0); | ||
387 | of_node_put(guts_np); | ||
388 | if (!machine_data->guts) { | ||
389 | dev_err(&ofdev->dev, "could not map GUTS\n"); | ||
390 | ret = -EINVAL; | ||
391 | goto error; | ||
392 | } | ||
393 | |||
394 | /* Find the DMA channels to use. For now, we always use the first DMA | ||
395 | controller. */ | ||
396 | for_each_compatible_node(dma_np, NULL, "fsl,mpc8610-dma") { | ||
397 | iprop = of_get_property(dma_np, "cell-index", NULL); | ||
398 | if (iprop && (*iprop == 0)) { | ||
399 | of_node_put(dma_np); | ||
400 | break; | ||
401 | } | ||
402 | } | ||
403 | if (!dma_np) { | ||
404 | dev_err(&ofdev->dev, "could not find DMA node\n"); | ||
405 | ret = -EINVAL; | ||
406 | goto error; | ||
407 | } | ||
408 | machine_data->dma_id = *iprop; | ||
409 | |||
410 | /* | ||
411 | * Find the DMA channels to use. For now, we always use DMA channel 0 | ||
412 | * for playback, and DMA channel 1 for capture. | ||
413 | */ | ||
414 | while ((dma_channel_np = of_get_next_child(dma_np, dma_channel_np))) { | ||
415 | iprop = of_get_property(dma_channel_np, "cell-index", NULL); | ||
416 | /* Is it DMA channel 0? */ | ||
417 | if (iprop && (*iprop == 0)) { | ||
418 | /* dma_channel[0] and dma_irq[0] are for playback */ | ||
419 | dma_info.dma_channel[0] = of_iomap(dma_channel_np, 0); | ||
420 | dma_info.dma_irq[0] = | ||
421 | irq_of_parse_and_map(dma_channel_np, 0); | ||
422 | machine_data->dma_channel_id[0] = *iprop; | ||
423 | continue; | ||
424 | } | ||
425 | if (iprop && (*iprop == 1)) { | ||
426 | /* dma_channel[1] and dma_irq[1] are for capture */ | ||
427 | dma_info.dma_channel[1] = of_iomap(dma_channel_np, 0); | ||
428 | dma_info.dma_irq[1] = | ||
429 | irq_of_parse_and_map(dma_channel_np, 0); | ||
430 | machine_data->dma_channel_id[1] = *iprop; | ||
431 | continue; | ||
432 | } | ||
433 | } | ||
434 | if (!dma_info.dma_channel[0] || !dma_info.dma_channel[1] || | ||
435 | !dma_info.dma_irq[0] || !dma_info.dma_irq[1]) { | ||
436 | dev_err(&ofdev->dev, "could not find DMA channels\n"); | ||
437 | ret = -EINVAL; | ||
438 | goto error; | ||
439 | } | ||
440 | |||
441 | dma_info.ssi_stx_phys = ssi_info.ssi_phys + | ||
442 | offsetof(struct ccsr_ssi, stx0); | ||
443 | dma_info.ssi_srx_phys = ssi_info.ssi_phys + | ||
444 | offsetof(struct ccsr_ssi, srx0); | ||
445 | |||
446 | /* We have the DMA information, so tell the DMA driver what it is */ | ||
447 | if (!fsl_dma_configure(&dma_info)) { | ||
448 | dev_err(&ofdev->dev, "could not instantiate DMA device\n"); | ||
449 | ret = -EBUSY; | ||
450 | goto error; | ||
451 | } | ||
452 | |||
453 | /* | ||
454 | * Initialize our DAI data structure. We should probably get this | ||
455 | * information from the device tree. | ||
456 | */ | ||
457 | machine_data->dai.name = "CS4270"; | ||
458 | machine_data->dai.stream_name = "CS4270"; | ||
459 | |||
460 | machine_data->dai.cpu_dai = fsl_ssi_create_dai(&ssi_info); | ||
461 | machine_data->dai.codec_dai = &cs4270_dai; /* The codec_dai we want */ | ||
462 | machine_data->dai.ops = &mpc8610_hpcd_ops; | ||
463 | |||
464 | mpc8610_hpcd_machine.dai_link = &machine_data->dai; | ||
465 | |||
466 | /* Allocate a new audio platform device structure */ | ||
467 | sound_device = platform_device_alloc("soc-audio", -1); | ||
468 | if (!sound_device) { | ||
469 | dev_err(&ofdev->dev, "platform device allocation failed\n"); | ||
470 | ret = -ENOMEM; | ||
471 | goto error; | ||
472 | } | ||
473 | |||
474 | machine_data->sound_devdata.machine = &mpc8610_hpcd_machine; | ||
475 | machine_data->sound_devdata.codec_dev = &soc_codec_device_cs4270; | ||
476 | machine_data->sound_devdata.platform = &fsl_soc_platform; | ||
477 | |||
478 | sound_device->dev.platform_data = machine_data; | ||
479 | |||
480 | |||
481 | /* Set the platform device and ASoC device to point to each other */ | ||
482 | platform_set_drvdata(sound_device, &machine_data->sound_devdata); | ||
483 | |||
484 | machine_data->sound_devdata.dev = &sound_device->dev; | ||
485 | |||
486 | |||
487 | /* Tell ASoC to probe us. This will call mpc8610_hpcd_machine.probe(), | ||
488 | if it exists. */ | ||
489 | ret = platform_device_add(sound_device); | ||
490 | |||
491 | if (ret) { | ||
492 | dev_err(&ofdev->dev, "platform device add failed\n"); | ||
493 | goto error; | ||
494 | } | ||
495 | |||
496 | dev_set_drvdata(&ofdev->dev, sound_device); | ||
497 | |||
498 | return 0; | ||
499 | |||
500 | error: | ||
501 | of_node_put(codec_np); | ||
502 | of_node_put(guts_np); | ||
503 | of_node_put(dma_np); | ||
504 | of_node_put(dma_channel_np); | ||
505 | |||
506 | if (sound_device) | ||
507 | platform_device_unregister(sound_device); | ||
508 | |||
509 | if (machine_data->dai.cpu_dai) | ||
510 | fsl_ssi_destroy_dai(machine_data->dai.cpu_dai); | ||
511 | |||
512 | if (ssi_info.ssi) | ||
513 | iounmap(ssi_info.ssi); | ||
514 | |||
515 | if (ssi_info.irq) | ||
516 | irq_dispose_mapping(ssi_info.irq); | ||
517 | |||
518 | if (dma_info.dma_channel[0]) | ||
519 | iounmap(dma_info.dma_channel[0]); | ||
520 | |||
521 | if (dma_info.dma_channel[1]) | ||
522 | iounmap(dma_info.dma_channel[1]); | ||
523 | |||
524 | if (dma_info.dma_irq[0]) | ||
525 | irq_dispose_mapping(dma_info.dma_irq[0]); | ||
526 | |||
527 | if (dma_info.dma_irq[1]) | ||
528 | irq_dispose_mapping(dma_info.dma_irq[1]); | ||
529 | |||
530 | if (machine_data->guts) | ||
531 | iounmap(machine_data->guts); | ||
532 | |||
533 | kfree(machine_data); | ||
534 | |||
535 | return ret; | ||
536 | } | ||
537 | |||
538 | /** | ||
539 | * mpc8610_hpcd_remove: remove the OF device | ||
540 | * | ||
541 | * This function is called when the OF device is removed. | ||
542 | */ | ||
543 | static int mpc8610_hpcd_remove(struct of_device *ofdev) | ||
544 | { | ||
545 | struct platform_device *sound_device = dev_get_drvdata(&ofdev->dev); | ||
546 | struct mpc8610_hpcd_data *machine_data = | ||
547 | sound_device->dev.platform_data; | ||
548 | |||
549 | platform_device_unregister(sound_device); | ||
550 | |||
551 | if (machine_data->dai.cpu_dai) | ||
552 | fsl_ssi_destroy_dai(machine_data->dai.cpu_dai); | ||
553 | |||
554 | if (machine_data->ssi) | ||
555 | iounmap(machine_data->ssi); | ||
556 | |||
557 | if (machine_data->dma[0]) | ||
558 | iounmap(machine_data->dma[0]); | ||
559 | |||
560 | if (machine_data->dma[1]) | ||
561 | iounmap(machine_data->dma[1]); | ||
562 | |||
563 | if (machine_data->dma_irq[0]) | ||
564 | irq_dispose_mapping(machine_data->dma_irq[0]); | ||
565 | |||
566 | if (machine_data->dma_irq[1]) | ||
567 | irq_dispose_mapping(machine_data->dma_irq[1]); | ||
568 | |||
569 | if (machine_data->guts) | ||
570 | iounmap(machine_data->guts); | ||
571 | |||
572 | kfree(machine_data); | ||
573 | sound_device->dev.platform_data = NULL; | ||
574 | |||
575 | dev_set_drvdata(&ofdev->dev, NULL); | ||
576 | |||
577 | return 0; | ||
578 | } | ||
579 | |||
580 | static struct of_device_id mpc8610_hpcd_match[] = { | ||
581 | { | ||
582 | .compatible = "fsl,mpc8610-ssi", | ||
583 | }, | ||
584 | {} | ||
585 | }; | ||
586 | MODULE_DEVICE_TABLE(of, mpc8610_hpcd_match); | ||
587 | |||
588 | static struct of_platform_driver mpc8610_hpcd_of_driver = { | ||
589 | .owner = THIS_MODULE, | ||
590 | .name = "mpc8610_hpcd", | ||
591 | .match_table = mpc8610_hpcd_match, | ||
592 | .probe = mpc8610_hpcd_probe, | ||
593 | .remove = mpc8610_hpcd_remove, | ||
594 | }; | ||
595 | |||
596 | /** | ||
597 | * mpc8610_hpcd_init: fabric driver initialization. | ||
598 | * | ||
599 | * This function is called when this module is loaded. | ||
600 | */ | ||
601 | static int __init mpc8610_hpcd_init(void) | ||
602 | { | ||
603 | int ret; | ||
604 | |||
605 | printk(KERN_INFO "Freescale MPC8610 HPCD ALSA SoC fabric driver\n"); | ||
606 | |||
607 | ret = of_register_platform_driver(&mpc8610_hpcd_of_driver); | ||
608 | |||
609 | if (ret) | ||
610 | printk(KERN_ERR | ||
611 | "mpc8610-hpcd: failed to register platform driver\n"); | ||
612 | |||
613 | return ret; | ||
614 | } | ||
615 | |||
616 | /** | ||
617 | * mpc8610_hpcd_exit: fabric driver exit | ||
618 | * | ||
619 | * This function is called when this driver is unloaded. | ||
620 | */ | ||
621 | static void __exit mpc8610_hpcd_exit(void) | ||
622 | { | ||
623 | of_unregister_platform_driver(&mpc8610_hpcd_of_driver); | ||
624 | } | ||
625 | |||
626 | module_init(mpc8610_hpcd_init); | ||
627 | module_exit(mpc8610_hpcd_exit); | ||
628 | |||
629 | MODULE_AUTHOR("Timur Tabi <timur@freescale.com>"); | ||
630 | MODULE_DESCRIPTION("Freescale MPC8610 HPCD ALSA SoC fabric driver"); | ||
631 | MODULE_LICENSE("GPL"); | ||