diff options
-rw-r--r-- | drivers/scsi/Kconfig | 60 | ||||
-rw-r--r-- | drivers/scsi/Makefile | 7 | ||||
-rw-r--r-- | drivers/scsi/blz1230.c | 353 | ||||
-rw-r--r-- | drivers/scsi/blz2060.c | 306 | ||||
-rw-r--r-- | drivers/scsi/cyberstorm.c | 377 | ||||
-rw-r--r-- | drivers/scsi/cyberstormII.c | 314 | ||||
-rw-r--r-- | drivers/scsi/fastlane.c | 421 | ||||
-rw-r--r-- | drivers/scsi/mac_esp.c | 751 | ||||
-rw-r--r-- | drivers/scsi/oktagon_esp.c | 606 | ||||
-rw-r--r-- | drivers/scsi/oktagon_io.S | 194 |
10 files changed, 0 insertions, 3389 deletions
diff --git a/drivers/scsi/Kconfig b/drivers/scsi/Kconfig index 9680f82b3ecf..510bedb37575 100644 --- a/drivers/scsi/Kconfig +++ b/drivers/scsi/Kconfig | |||
@@ -1578,45 +1578,6 @@ config GVP11_SCSI | |||
1578 | To compile this driver as a module, choose M here: the | 1578 | To compile this driver as a module, choose M here: the |
1579 | module will be called gvp11. | 1579 | module will be called gvp11. |
1580 | 1580 | ||
1581 | config CYBERSTORM_SCSI | ||
1582 | tristate "CyberStorm SCSI support" | ||
1583 | depends on ZORRO && SCSI | ||
1584 | help | ||
1585 | If you have an Amiga with an original (MkI) Phase5 Cyberstorm | ||
1586 | accelerator board and the optional Cyberstorm SCSI controller, | ||
1587 | answer Y. Otherwise, say N. | ||
1588 | |||
1589 | config CYBERSTORMII_SCSI | ||
1590 | tristate "CyberStorm Mk II SCSI support" | ||
1591 | depends on ZORRO && SCSI | ||
1592 | help | ||
1593 | If you have an Amiga with a Phase5 Cyberstorm MkII accelerator board | ||
1594 | and the optional Cyberstorm SCSI controller, say Y. Otherwise, | ||
1595 | answer N. | ||
1596 | |||
1597 | config BLZ2060_SCSI | ||
1598 | tristate "Blizzard 2060 SCSI support" | ||
1599 | depends on ZORRO && SCSI | ||
1600 | help | ||
1601 | If you have an Amiga with a Phase5 Blizzard 2060 accelerator board | ||
1602 | and want to use the onboard SCSI controller, say Y. Otherwise, | ||
1603 | answer N. | ||
1604 | |||
1605 | config BLZ1230_SCSI | ||
1606 | tristate "Blizzard 1230IV/1260 SCSI support" | ||
1607 | depends on ZORRO && SCSI | ||
1608 | help | ||
1609 | If you have an Amiga 1200 with a Phase5 Blizzard 1230IV or Blizzard | ||
1610 | 1260 accelerator, and the optional SCSI module, say Y. Otherwise, | ||
1611 | say N. | ||
1612 | |||
1613 | config FASTLANE_SCSI | ||
1614 | tristate "Fastlane SCSI support" | ||
1615 | depends on ZORRO && SCSI | ||
1616 | help | ||
1617 | If you have the Phase5 Fastlane Z3 SCSI controller, or plan to use | ||
1618 | one in the near future, say Y to this question. Otherwise, say N. | ||
1619 | |||
1620 | config SCSI_A4000T | 1581 | config SCSI_A4000T |
1621 | tristate "A4000T NCR53c710 SCSI support (EXPERIMENTAL)" | 1582 | tristate "A4000T NCR53c710 SCSI support (EXPERIMENTAL)" |
1622 | depends on AMIGA && SCSI && EXPERIMENTAL | 1583 | depends on AMIGA && SCSI && EXPERIMENTAL |
@@ -1644,15 +1605,6 @@ config SCSI_ZORRO7XX | |||
1644 | accelerator card for the Amiga 1200, | 1605 | accelerator card for the Amiga 1200, |
1645 | - the SCSI controller on the GVP Turbo 040/060 accelerator. | 1606 | - the SCSI controller on the GVP Turbo 040/060 accelerator. |
1646 | 1607 | ||
1647 | config OKTAGON_SCSI | ||
1648 | tristate "BSC Oktagon SCSI support (EXPERIMENTAL)" | ||
1649 | depends on ZORRO && SCSI && EXPERIMENTAL | ||
1650 | help | ||
1651 | If you have the BSC Oktagon SCSI disk controller for the Amiga, say | ||
1652 | Y to this question. If you're in doubt about whether you have one, | ||
1653 | see the picture at | ||
1654 | <http://amiga.resource.cx/exp/search.pl?product=oktagon>. | ||
1655 | |||
1656 | config ATARI_SCSI | 1608 | config ATARI_SCSI |
1657 | tristate "Atari native SCSI support" | 1609 | tristate "Atari native SCSI support" |
1658 | depends on ATARI && SCSI | 1610 | depends on ATARI && SCSI |
@@ -1705,18 +1657,6 @@ config MAC_SCSI | |||
1705 | SCSI-HOWTO, available from | 1657 | SCSI-HOWTO, available from |
1706 | <http://www.tldp.org/docs.html#howto>. | 1658 | <http://www.tldp.org/docs.html#howto>. |
1707 | 1659 | ||
1708 | config SCSI_MAC_ESP | ||
1709 | tristate "Macintosh NCR53c9[46] SCSI" | ||
1710 | depends on MAC && SCSI | ||
1711 | help | ||
1712 | This is the NCR 53c9x SCSI controller found on most of the 68040 | ||
1713 | based Macintoshes. If you have one of these say Y and read the | ||
1714 | SCSI-HOWTO, available from | ||
1715 | <http://www.tldp.org/docs.html#howto>. | ||
1716 | |||
1717 | To compile this driver as a module, choose M here: the | ||
1718 | module will be called mac_esp. | ||
1719 | |||
1720 | config MVME147_SCSI | 1660 | config MVME147_SCSI |
1721 | bool "WD33C93 SCSI driver for MVME147" | 1661 | bool "WD33C93 SCSI driver for MVME147" |
1722 | depends on MVME147 && SCSI=y | 1662 | depends on MVME147 && SCSI=y |
diff --git a/drivers/scsi/Makefile b/drivers/scsi/Makefile index 576cfc68d469..118dc525e267 100644 --- a/drivers/scsi/Makefile +++ b/drivers/scsi/Makefile | |||
@@ -44,15 +44,8 @@ obj-$(CONFIG_A2091_SCSI) += a2091.o wd33c93.o | |||
44 | obj-$(CONFIG_GVP11_SCSI) += gvp11.o wd33c93.o | 44 | obj-$(CONFIG_GVP11_SCSI) += gvp11.o wd33c93.o |
45 | obj-$(CONFIG_MVME147_SCSI) += mvme147.o wd33c93.o | 45 | obj-$(CONFIG_MVME147_SCSI) += mvme147.o wd33c93.o |
46 | obj-$(CONFIG_SGIWD93_SCSI) += sgiwd93.o wd33c93.o | 46 | obj-$(CONFIG_SGIWD93_SCSI) += sgiwd93.o wd33c93.o |
47 | obj-$(CONFIG_CYBERSTORM_SCSI) += NCR53C9x.o cyberstorm.o | ||
48 | obj-$(CONFIG_CYBERSTORMII_SCSI) += NCR53C9x.o cyberstormII.o | ||
49 | obj-$(CONFIG_BLZ2060_SCSI) += NCR53C9x.o blz2060.o | ||
50 | obj-$(CONFIG_BLZ1230_SCSI) += NCR53C9x.o blz1230.o | ||
51 | obj-$(CONFIG_FASTLANE_SCSI) += NCR53C9x.o fastlane.o | ||
52 | obj-$(CONFIG_OKTAGON_SCSI) += NCR53C9x.o oktagon_esp_mod.o | ||
53 | obj-$(CONFIG_ATARI_SCSI) += atari_scsi.o | 47 | obj-$(CONFIG_ATARI_SCSI) += atari_scsi.o |
54 | obj-$(CONFIG_MAC_SCSI) += mac_scsi.o | 48 | obj-$(CONFIG_MAC_SCSI) += mac_scsi.o |
55 | obj-$(CONFIG_SCSI_MAC_ESP) += mac_esp.o NCR53C9x.o | ||
56 | obj-$(CONFIG_SUN3_SCSI) += sun3_scsi.o sun3_scsi_vme.o | 49 | obj-$(CONFIG_SUN3_SCSI) += sun3_scsi.o sun3_scsi_vme.o |
57 | obj-$(CONFIG_MVME16x_SCSI) += 53c700.o mvme16x_scsi.o | 50 | obj-$(CONFIG_MVME16x_SCSI) += 53c700.o mvme16x_scsi.o |
58 | obj-$(CONFIG_BVME6000_SCSI) += 53c700.o bvme6000_scsi.o | 51 | obj-$(CONFIG_BVME6000_SCSI) += 53c700.o bvme6000_scsi.o |
diff --git a/drivers/scsi/blz1230.c b/drivers/scsi/blz1230.c deleted file mode 100644 index 23f7c24ab809..000000000000 --- a/drivers/scsi/blz1230.c +++ /dev/null | |||
@@ -1,353 +0,0 @@ | |||
1 | /* blz1230.c: Driver for Blizzard 1230 SCSI IV Controller. | ||
2 | * | ||
3 | * Copyright (C) 1996 Jesper Skov (jskov@cygnus.co.uk) | ||
4 | * | ||
5 | * This driver is based on the CyberStorm driver, hence the occasional | ||
6 | * reference to CyberStorm. | ||
7 | */ | ||
8 | |||
9 | /* TODO: | ||
10 | * | ||
11 | * 1) Figure out how to make a cleaner merge with the sparc driver with regard | ||
12 | * to the caches and the Sparc MMU mapping. | ||
13 | * 2) Make as few routines required outside the generic driver. A lot of the | ||
14 | * routines in this file used to be inline! | ||
15 | */ | ||
16 | |||
17 | #include <linux/module.h> | ||
18 | |||
19 | #include <linux/init.h> | ||
20 | #include <linux/kernel.h> | ||
21 | #include <linux/delay.h> | ||
22 | #include <linux/types.h> | ||
23 | #include <linux/string.h> | ||
24 | #include <linux/slab.h> | ||
25 | #include <linux/blkdev.h> | ||
26 | #include <linux/proc_fs.h> | ||
27 | #include <linux/stat.h> | ||
28 | #include <linux/interrupt.h> | ||
29 | |||
30 | #include "scsi.h" | ||
31 | #include <scsi/scsi_host.h> | ||
32 | #include "NCR53C9x.h" | ||
33 | |||
34 | #include <linux/zorro.h> | ||
35 | #include <asm/irq.h> | ||
36 | #include <asm/amigaints.h> | ||
37 | #include <asm/amigahw.h> | ||
38 | |||
39 | #include <asm/pgtable.h> | ||
40 | |||
41 | #define MKIV 1 | ||
42 | |||
43 | /* The controller registers can be found in the Z2 config area at these | ||
44 | * offsets: | ||
45 | */ | ||
46 | #define BLZ1230_ESP_ADDR 0x8000 | ||
47 | #define BLZ1230_DMA_ADDR 0x10000 | ||
48 | #define BLZ1230II_ESP_ADDR 0x10000 | ||
49 | #define BLZ1230II_DMA_ADDR 0x10021 | ||
50 | |||
51 | |||
52 | /* The Blizzard 1230 DMA interface | ||
53 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
54 | * Only two things can be programmed in the Blizzard DMA: | ||
55 | * 1) The data direction is controlled by the status of bit 31 (1 = write) | ||
56 | * 2) The source/dest address (word aligned, shifted one right) in bits 30-0 | ||
57 | * | ||
58 | * Program DMA by first latching the highest byte of the address/direction | ||
59 | * (i.e. bits 31-24 of the long word constructed as described in steps 1+2 | ||
60 | * above). Then write each byte of the address/direction (starting with the | ||
61 | * top byte, working down) to the DMA address register. | ||
62 | * | ||
63 | * Figure out interrupt status by reading the ESP status byte. | ||
64 | */ | ||
65 | struct blz1230_dma_registers { | ||
66 | volatile unsigned char dma_addr; /* DMA address [0x0000] */ | ||
67 | unsigned char dmapad2[0x7fff]; | ||
68 | volatile unsigned char dma_latch; /* DMA latch [0x8000] */ | ||
69 | }; | ||
70 | |||
71 | struct blz1230II_dma_registers { | ||
72 | volatile unsigned char dma_addr; /* DMA address [0x0000] */ | ||
73 | unsigned char dmapad2[0xf]; | ||
74 | volatile unsigned char dma_latch; /* DMA latch [0x0010] */ | ||
75 | }; | ||
76 | |||
77 | #define BLZ1230_DMA_WRITE 0x80000000 | ||
78 | |||
79 | static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count); | ||
80 | static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp); | ||
81 | static void dma_dump_state(struct NCR_ESP *esp); | ||
82 | static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length); | ||
83 | static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length); | ||
84 | static void dma_ints_off(struct NCR_ESP *esp); | ||
85 | static void dma_ints_on(struct NCR_ESP *esp); | ||
86 | static int dma_irq_p(struct NCR_ESP *esp); | ||
87 | static int dma_ports_p(struct NCR_ESP *esp); | ||
88 | static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write); | ||
89 | |||
90 | static volatile unsigned char cmd_buffer[16]; | ||
91 | /* This is where all commands are put | ||
92 | * before they are transferred to the ESP chip | ||
93 | * via PIO. | ||
94 | */ | ||
95 | |||
96 | /***************************************************************** Detection */ | ||
97 | int __init blz1230_esp_detect(struct scsi_host_template *tpnt) | ||
98 | { | ||
99 | struct NCR_ESP *esp; | ||
100 | struct zorro_dev *z = NULL; | ||
101 | unsigned long address; | ||
102 | struct ESP_regs *eregs; | ||
103 | unsigned long board; | ||
104 | |||
105 | #if MKIV | ||
106 | #define REAL_BLZ1230_ID ZORRO_PROD_PHASE5_BLIZZARD_1230_IV_1260 | ||
107 | #define REAL_BLZ1230_ESP_ADDR BLZ1230_ESP_ADDR | ||
108 | #define REAL_BLZ1230_DMA_ADDR BLZ1230_DMA_ADDR | ||
109 | #else | ||
110 | #define REAL_BLZ1230_ID ZORRO_PROD_PHASE5_BLIZZARD_1230_II_FASTLANE_Z3_CYBERSCSI_CYBERSTORM060 | ||
111 | #define REAL_BLZ1230_ESP_ADDR BLZ1230II_ESP_ADDR | ||
112 | #define REAL_BLZ1230_DMA_ADDR BLZ1230II_DMA_ADDR | ||
113 | #endif | ||
114 | |||
115 | if ((z = zorro_find_device(REAL_BLZ1230_ID, z))) { | ||
116 | board = z->resource.start; | ||
117 | if (request_mem_region(board+REAL_BLZ1230_ESP_ADDR, | ||
118 | sizeof(struct ESP_regs), "NCR53C9x")) { | ||
119 | /* Do some magic to figure out if the blizzard is | ||
120 | * equipped with a SCSI controller | ||
121 | */ | ||
122 | address = ZTWO_VADDR(board); | ||
123 | eregs = (struct ESP_regs *)(address + REAL_BLZ1230_ESP_ADDR); | ||
124 | esp = esp_allocate(tpnt, (void *)board + REAL_BLZ1230_ESP_ADDR, | ||
125 | 0); | ||
126 | |||
127 | esp_write(eregs->esp_cfg1, (ESP_CONFIG1_PENABLE | 7)); | ||
128 | udelay(5); | ||
129 | if(esp_read(eregs->esp_cfg1) != (ESP_CONFIG1_PENABLE | 7)) | ||
130 | goto err_out; | ||
131 | |||
132 | /* Do command transfer with programmed I/O */ | ||
133 | esp->do_pio_cmds = 1; | ||
134 | |||
135 | /* Required functions */ | ||
136 | esp->dma_bytes_sent = &dma_bytes_sent; | ||
137 | esp->dma_can_transfer = &dma_can_transfer; | ||
138 | esp->dma_dump_state = &dma_dump_state; | ||
139 | esp->dma_init_read = &dma_init_read; | ||
140 | esp->dma_init_write = &dma_init_write; | ||
141 | esp->dma_ints_off = &dma_ints_off; | ||
142 | esp->dma_ints_on = &dma_ints_on; | ||
143 | esp->dma_irq_p = &dma_irq_p; | ||
144 | esp->dma_ports_p = &dma_ports_p; | ||
145 | esp->dma_setup = &dma_setup; | ||
146 | |||
147 | /* Optional functions */ | ||
148 | esp->dma_barrier = 0; | ||
149 | esp->dma_drain = 0; | ||
150 | esp->dma_invalidate = 0; | ||
151 | esp->dma_irq_entry = 0; | ||
152 | esp->dma_irq_exit = 0; | ||
153 | esp->dma_led_on = 0; | ||
154 | esp->dma_led_off = 0; | ||
155 | esp->dma_poll = 0; | ||
156 | esp->dma_reset = 0; | ||
157 | |||
158 | /* SCSI chip speed */ | ||
159 | esp->cfreq = 40000000; | ||
160 | |||
161 | /* The DMA registers on the Blizzard are mapped | ||
162 | * relative to the device (i.e. in the same Zorro | ||
163 | * I/O block). | ||
164 | */ | ||
165 | esp->dregs = (void *)(address + REAL_BLZ1230_DMA_ADDR); | ||
166 | |||
167 | /* ESP register base */ | ||
168 | esp->eregs = eregs; | ||
169 | |||
170 | /* Set the command buffer */ | ||
171 | esp->esp_command = cmd_buffer; | ||
172 | esp->esp_command_dvma = virt_to_bus((void *)cmd_buffer); | ||
173 | |||
174 | esp->irq = IRQ_AMIGA_PORTS; | ||
175 | esp->slot = board+REAL_BLZ1230_ESP_ADDR; | ||
176 | if (request_irq(IRQ_AMIGA_PORTS, esp_intr, IRQF_SHARED, | ||
177 | "Blizzard 1230 SCSI IV", esp->ehost)) | ||
178 | goto err_out; | ||
179 | |||
180 | /* Figure out our scsi ID on the bus */ | ||
181 | esp->scsi_id = 7; | ||
182 | |||
183 | /* We don't have a differential SCSI-bus. */ | ||
184 | esp->diff = 0; | ||
185 | |||
186 | esp_initialize(esp); | ||
187 | |||
188 | printk("ESP: Total of %d ESP hosts found, %d actually in use.\n", nesps, esps_in_use); | ||
189 | esps_running = esps_in_use; | ||
190 | return esps_in_use; | ||
191 | } | ||
192 | } | ||
193 | return 0; | ||
194 | |||
195 | err_out: | ||
196 | scsi_unregister(esp->ehost); | ||
197 | esp_deallocate(esp); | ||
198 | release_mem_region(board+REAL_BLZ1230_ESP_ADDR, | ||
199 | sizeof(struct ESP_regs)); | ||
200 | return 0; | ||
201 | } | ||
202 | |||
203 | /************************************************************* DMA Functions */ | ||
204 | static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count) | ||
205 | { | ||
206 | /* Since the Blizzard DMA is fully dedicated to the ESP chip, | ||
207 | * the number of bytes sent (to the ESP chip) equals the number | ||
208 | * of bytes in the FIFO - there is no buffering in the DMA controller. | ||
209 | * XXXX Do I read this right? It is from host to ESP, right? | ||
210 | */ | ||
211 | return fifo_count; | ||
212 | } | ||
213 | |||
214 | static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp) | ||
215 | { | ||
216 | /* I don't think there's any limit on the Blizzard DMA. So we use what | ||
217 | * the ESP chip can handle (24 bit). | ||
218 | */ | ||
219 | unsigned long sz = sp->SCp.this_residual; | ||
220 | if(sz > 0x1000000) | ||
221 | sz = 0x1000000; | ||
222 | return sz; | ||
223 | } | ||
224 | |||
225 | static void dma_dump_state(struct NCR_ESP *esp) | ||
226 | { | ||
227 | ESPLOG(("intreq:<%04x>, intena:<%04x>\n", | ||
228 | amiga_custom.intreqr, amiga_custom.intenar)); | ||
229 | } | ||
230 | |||
231 | void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length) | ||
232 | { | ||
233 | #if MKIV | ||
234 | struct blz1230_dma_registers *dregs = | ||
235 | (struct blz1230_dma_registers *) (esp->dregs); | ||
236 | #else | ||
237 | struct blz1230II_dma_registers *dregs = | ||
238 | (struct blz1230II_dma_registers *) (esp->dregs); | ||
239 | #endif | ||
240 | |||
241 | cache_clear(addr, length); | ||
242 | |||
243 | addr >>= 1; | ||
244 | addr &= ~(BLZ1230_DMA_WRITE); | ||
245 | |||
246 | /* First set latch */ | ||
247 | dregs->dma_latch = (addr >> 24) & 0xff; | ||
248 | |||
249 | /* Then pump the address to the DMA address register */ | ||
250 | #if MKIV | ||
251 | dregs->dma_addr = (addr >> 24) & 0xff; | ||
252 | #endif | ||
253 | dregs->dma_addr = (addr >> 16) & 0xff; | ||
254 | dregs->dma_addr = (addr >> 8) & 0xff; | ||
255 | dregs->dma_addr = (addr ) & 0xff; | ||
256 | } | ||
257 | |||
258 | void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length) | ||
259 | { | ||
260 | #if MKIV | ||
261 | struct blz1230_dma_registers *dregs = | ||
262 | (struct blz1230_dma_registers *) (esp->dregs); | ||
263 | #else | ||
264 | struct blz1230II_dma_registers *dregs = | ||
265 | (struct blz1230II_dma_registers *) (esp->dregs); | ||
266 | #endif | ||
267 | |||
268 | cache_push(addr, length); | ||
269 | |||
270 | addr >>= 1; | ||
271 | addr |= BLZ1230_DMA_WRITE; | ||
272 | |||
273 | /* First set latch */ | ||
274 | dregs->dma_latch = (addr >> 24) & 0xff; | ||
275 | |||
276 | /* Then pump the address to the DMA address register */ | ||
277 | #if MKIV | ||
278 | dregs->dma_addr = (addr >> 24) & 0xff; | ||
279 | #endif | ||
280 | dregs->dma_addr = (addr >> 16) & 0xff; | ||
281 | dregs->dma_addr = (addr >> 8) & 0xff; | ||
282 | dregs->dma_addr = (addr ) & 0xff; | ||
283 | } | ||
284 | |||
285 | static void dma_ints_off(struct NCR_ESP *esp) | ||
286 | { | ||
287 | disable_irq(esp->irq); | ||
288 | } | ||
289 | |||
290 | static void dma_ints_on(struct NCR_ESP *esp) | ||
291 | { | ||
292 | enable_irq(esp->irq); | ||
293 | } | ||
294 | |||
295 | static int dma_irq_p(struct NCR_ESP *esp) | ||
296 | { | ||
297 | return (esp_read(esp->eregs->esp_status) & ESP_STAT_INTR); | ||
298 | } | ||
299 | |||
300 | static int dma_ports_p(struct NCR_ESP *esp) | ||
301 | { | ||
302 | return ((amiga_custom.intenar) & IF_PORTS); | ||
303 | } | ||
304 | |||
305 | static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write) | ||
306 | { | ||
307 | /* On the Sparc, DMA_ST_WRITE means "move data from device to memory" | ||
308 | * so when (write) is true, it actually means READ! | ||
309 | */ | ||
310 | if(write){ | ||
311 | dma_init_read(esp, addr, count); | ||
312 | } else { | ||
313 | dma_init_write(esp, addr, count); | ||
314 | } | ||
315 | } | ||
316 | |||
317 | #define HOSTS_C | ||
318 | |||
319 | int blz1230_esp_release(struct Scsi_Host *instance) | ||
320 | { | ||
321 | #ifdef MODULE | ||
322 | unsigned long address = (unsigned long)((struct NCR_ESP *)instance->hostdata)->edev; | ||
323 | esp_deallocate((struct NCR_ESP *)instance->hostdata); | ||
324 | esp_release(); | ||
325 | release_mem_region(address, sizeof(struct ESP_regs)); | ||
326 | free_irq(IRQ_AMIGA_PORTS, esp_intr); | ||
327 | #endif | ||
328 | return 1; | ||
329 | } | ||
330 | |||
331 | |||
332 | static struct scsi_host_template driver_template = { | ||
333 | .proc_name = "esp-blz1230", | ||
334 | .proc_info = esp_proc_info, | ||
335 | .name = "Blizzard1230 SCSI IV", | ||
336 | .detect = blz1230_esp_detect, | ||
337 | .slave_alloc = esp_slave_alloc, | ||
338 | .slave_destroy = esp_slave_destroy, | ||
339 | .release = blz1230_esp_release, | ||
340 | .queuecommand = esp_queue, | ||
341 | .eh_abort_handler = esp_abort, | ||
342 | .eh_bus_reset_handler = esp_reset, | ||
343 | .can_queue = 7, | ||
344 | .this_id = 7, | ||
345 | .sg_tablesize = SG_ALL, | ||
346 | .cmd_per_lun = 1, | ||
347 | .use_clustering = ENABLE_CLUSTERING | ||
348 | }; | ||
349 | |||
350 | |||
351 | #include "scsi_module.c" | ||
352 | |||
353 | MODULE_LICENSE("GPL"); | ||
diff --git a/drivers/scsi/blz2060.c b/drivers/scsi/blz2060.c deleted file mode 100644 index b6203ec00961..000000000000 --- a/drivers/scsi/blz2060.c +++ /dev/null | |||
@@ -1,306 +0,0 @@ | |||
1 | /* blz2060.c: Driver for Blizzard 2060 SCSI Controller. | ||
2 | * | ||
3 | * Copyright (C) 1996 Jesper Skov (jskov@cygnus.co.uk) | ||
4 | * | ||
5 | * This driver is based on the CyberStorm driver, hence the occasional | ||
6 | * reference to CyberStorm. | ||
7 | */ | ||
8 | |||
9 | /* TODO: | ||
10 | * | ||
11 | * 1) Figure out how to make a cleaner merge with the sparc driver with regard | ||
12 | * to the caches and the Sparc MMU mapping. | ||
13 | * 2) Make as few routines required outside the generic driver. A lot of the | ||
14 | * routines in this file used to be inline! | ||
15 | */ | ||
16 | |||
17 | #include <linux/module.h> | ||
18 | |||
19 | #include <linux/init.h> | ||
20 | #include <linux/kernel.h> | ||
21 | #include <linux/delay.h> | ||
22 | #include <linux/types.h> | ||
23 | #include <linux/string.h> | ||
24 | #include <linux/slab.h> | ||
25 | #include <linux/blkdev.h> | ||
26 | #include <linux/proc_fs.h> | ||
27 | #include <linux/stat.h> | ||
28 | #include <linux/interrupt.h> | ||
29 | |||
30 | #include "scsi.h" | ||
31 | #include <scsi/scsi_host.h> | ||
32 | #include "NCR53C9x.h" | ||
33 | |||
34 | #include <linux/zorro.h> | ||
35 | #include <asm/irq.h> | ||
36 | #include <asm/amigaints.h> | ||
37 | #include <asm/amigahw.h> | ||
38 | |||
39 | #include <asm/pgtable.h> | ||
40 | |||
41 | /* The controller registers can be found in the Z2 config area at these | ||
42 | * offsets: | ||
43 | */ | ||
44 | #define BLZ2060_ESP_ADDR 0x1ff00 | ||
45 | #define BLZ2060_DMA_ADDR 0x1ffe0 | ||
46 | |||
47 | |||
48 | /* The Blizzard 2060 DMA interface | ||
49 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
50 | * Only two things can be programmed in the Blizzard DMA: | ||
51 | * 1) The data direction is controlled by the status of bit 31 (1 = write) | ||
52 | * 2) The source/dest address (word aligned, shifted one right) in bits 30-0 | ||
53 | * | ||
54 | * Figure out interrupt status by reading the ESP status byte. | ||
55 | */ | ||
56 | struct blz2060_dma_registers { | ||
57 | volatile unsigned char dma_led_ctrl; /* DMA led control [0x000] */ | ||
58 | unsigned char dmapad1[0x0f]; | ||
59 | volatile unsigned char dma_addr0; /* DMA address (MSB) [0x010] */ | ||
60 | unsigned char dmapad2[0x03]; | ||
61 | volatile unsigned char dma_addr1; /* DMA address [0x014] */ | ||
62 | unsigned char dmapad3[0x03]; | ||
63 | volatile unsigned char dma_addr2; /* DMA address [0x018] */ | ||
64 | unsigned char dmapad4[0x03]; | ||
65 | volatile unsigned char dma_addr3; /* DMA address (LSB) [0x01c] */ | ||
66 | }; | ||
67 | |||
68 | #define BLZ2060_DMA_WRITE 0x80000000 | ||
69 | |||
70 | /* DMA control bits */ | ||
71 | #define BLZ2060_DMA_LED 0x02 /* HD led control 1 = off */ | ||
72 | |||
73 | static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count); | ||
74 | static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp); | ||
75 | static void dma_dump_state(struct NCR_ESP *esp); | ||
76 | static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length); | ||
77 | static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length); | ||
78 | static void dma_ints_off(struct NCR_ESP *esp); | ||
79 | static void dma_ints_on(struct NCR_ESP *esp); | ||
80 | static int dma_irq_p(struct NCR_ESP *esp); | ||
81 | static void dma_led_off(struct NCR_ESP *esp); | ||
82 | static void dma_led_on(struct NCR_ESP *esp); | ||
83 | static int dma_ports_p(struct NCR_ESP *esp); | ||
84 | static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write); | ||
85 | |||
86 | static volatile unsigned char cmd_buffer[16]; | ||
87 | /* This is where all commands are put | ||
88 | * before they are transferred to the ESP chip | ||
89 | * via PIO. | ||
90 | */ | ||
91 | |||
92 | /***************************************************************** Detection */ | ||
93 | int __init blz2060_esp_detect(struct scsi_host_template *tpnt) | ||
94 | { | ||
95 | struct NCR_ESP *esp; | ||
96 | struct zorro_dev *z = NULL; | ||
97 | unsigned long address; | ||
98 | |||
99 | if ((z = zorro_find_device(ZORRO_PROD_PHASE5_BLIZZARD_2060, z))) { | ||
100 | unsigned long board = z->resource.start; | ||
101 | if (request_mem_region(board+BLZ2060_ESP_ADDR, | ||
102 | sizeof(struct ESP_regs), "NCR53C9x")) { | ||
103 | esp = esp_allocate(tpnt, (void *)board + BLZ2060_ESP_ADDR, 0); | ||
104 | |||
105 | /* Do command transfer with programmed I/O */ | ||
106 | esp->do_pio_cmds = 1; | ||
107 | |||
108 | /* Required functions */ | ||
109 | esp->dma_bytes_sent = &dma_bytes_sent; | ||
110 | esp->dma_can_transfer = &dma_can_transfer; | ||
111 | esp->dma_dump_state = &dma_dump_state; | ||
112 | esp->dma_init_read = &dma_init_read; | ||
113 | esp->dma_init_write = &dma_init_write; | ||
114 | esp->dma_ints_off = &dma_ints_off; | ||
115 | esp->dma_ints_on = &dma_ints_on; | ||
116 | esp->dma_irq_p = &dma_irq_p; | ||
117 | esp->dma_ports_p = &dma_ports_p; | ||
118 | esp->dma_setup = &dma_setup; | ||
119 | |||
120 | /* Optional functions */ | ||
121 | esp->dma_barrier = 0; | ||
122 | esp->dma_drain = 0; | ||
123 | esp->dma_invalidate = 0; | ||
124 | esp->dma_irq_entry = 0; | ||
125 | esp->dma_irq_exit = 0; | ||
126 | esp->dma_led_on = &dma_led_on; | ||
127 | esp->dma_led_off = &dma_led_off; | ||
128 | esp->dma_poll = 0; | ||
129 | esp->dma_reset = 0; | ||
130 | |||
131 | /* SCSI chip speed */ | ||
132 | esp->cfreq = 40000000; | ||
133 | |||
134 | /* The DMA registers on the Blizzard are mapped | ||
135 | * relative to the device (i.e. in the same Zorro | ||
136 | * I/O block). | ||
137 | */ | ||
138 | address = (unsigned long)ZTWO_VADDR(board); | ||
139 | esp->dregs = (void *)(address + BLZ2060_DMA_ADDR); | ||
140 | |||
141 | /* ESP register base */ | ||
142 | esp->eregs = (struct ESP_regs *)(address + BLZ2060_ESP_ADDR); | ||
143 | |||
144 | /* Set the command buffer */ | ||
145 | esp->esp_command = cmd_buffer; | ||
146 | esp->esp_command_dvma = virt_to_bus((void *)cmd_buffer); | ||
147 | |||
148 | esp->irq = IRQ_AMIGA_PORTS; | ||
149 | request_irq(IRQ_AMIGA_PORTS, esp_intr, IRQF_SHARED, | ||
150 | "Blizzard 2060 SCSI", esp->ehost); | ||
151 | |||
152 | /* Figure out our scsi ID on the bus */ | ||
153 | esp->scsi_id = 7; | ||
154 | |||
155 | /* We don't have a differential SCSI-bus. */ | ||
156 | esp->diff = 0; | ||
157 | |||
158 | esp_initialize(esp); | ||
159 | |||
160 | printk("ESP: Total of %d ESP hosts found, %d actually in use.\n", nesps, esps_in_use); | ||
161 | esps_running = esps_in_use; | ||
162 | return esps_in_use; | ||
163 | } | ||
164 | } | ||
165 | return 0; | ||
166 | } | ||
167 | |||
168 | /************************************************************* DMA Functions */ | ||
169 | static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count) | ||
170 | { | ||
171 | /* Since the Blizzard DMA is fully dedicated to the ESP chip, | ||
172 | * the number of bytes sent (to the ESP chip) equals the number | ||
173 | * of bytes in the FIFO - there is no buffering in the DMA controller. | ||
174 | * XXXX Do I read this right? It is from host to ESP, right? | ||
175 | */ | ||
176 | return fifo_count; | ||
177 | } | ||
178 | |||
179 | static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp) | ||
180 | { | ||
181 | /* I don't think there's any limit on the Blizzard DMA. So we use what | ||
182 | * the ESP chip can handle (24 bit). | ||
183 | */ | ||
184 | unsigned long sz = sp->SCp.this_residual; | ||
185 | if(sz > 0x1000000) | ||
186 | sz = 0x1000000; | ||
187 | return sz; | ||
188 | } | ||
189 | |||
190 | static void dma_dump_state(struct NCR_ESP *esp) | ||
191 | { | ||
192 | ESPLOG(("intreq:<%04x>, intena:<%04x>\n", | ||
193 | amiga_custom.intreqr, amiga_custom.intenar)); | ||
194 | } | ||
195 | |||
196 | static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length) | ||
197 | { | ||
198 | struct blz2060_dma_registers *dregs = | ||
199 | (struct blz2060_dma_registers *) (esp->dregs); | ||
200 | |||
201 | cache_clear(addr, length); | ||
202 | |||
203 | addr >>= 1; | ||
204 | addr &= ~(BLZ2060_DMA_WRITE); | ||
205 | dregs->dma_addr3 = (addr ) & 0xff; | ||
206 | dregs->dma_addr2 = (addr >> 8) & 0xff; | ||
207 | dregs->dma_addr1 = (addr >> 16) & 0xff; | ||
208 | dregs->dma_addr0 = (addr >> 24) & 0xff; | ||
209 | } | ||
210 | |||
211 | static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length) | ||
212 | { | ||
213 | struct blz2060_dma_registers *dregs = | ||
214 | (struct blz2060_dma_registers *) (esp->dregs); | ||
215 | |||
216 | cache_push(addr, length); | ||
217 | |||
218 | addr >>= 1; | ||
219 | addr |= BLZ2060_DMA_WRITE; | ||
220 | dregs->dma_addr3 = (addr ) & 0xff; | ||
221 | dregs->dma_addr2 = (addr >> 8) & 0xff; | ||
222 | dregs->dma_addr1 = (addr >> 16) & 0xff; | ||
223 | dregs->dma_addr0 = (addr >> 24) & 0xff; | ||
224 | } | ||
225 | |||
226 | static void dma_ints_off(struct NCR_ESP *esp) | ||
227 | { | ||
228 | disable_irq(esp->irq); | ||
229 | } | ||
230 | |||
231 | static void dma_ints_on(struct NCR_ESP *esp) | ||
232 | { | ||
233 | enable_irq(esp->irq); | ||
234 | } | ||
235 | |||
236 | static int dma_irq_p(struct NCR_ESP *esp) | ||
237 | { | ||
238 | return (esp_read(esp->eregs->esp_status) & ESP_STAT_INTR); | ||
239 | } | ||
240 | |||
241 | static void dma_led_off(struct NCR_ESP *esp) | ||
242 | { | ||
243 | ((struct blz2060_dma_registers *) (esp->dregs))->dma_led_ctrl = | ||
244 | BLZ2060_DMA_LED; | ||
245 | } | ||
246 | |||
247 | static void dma_led_on(struct NCR_ESP *esp) | ||
248 | { | ||
249 | ((struct blz2060_dma_registers *) (esp->dregs))->dma_led_ctrl = 0; | ||
250 | } | ||
251 | |||
252 | static int dma_ports_p(struct NCR_ESP *esp) | ||
253 | { | ||
254 | return ((amiga_custom.intenar) & IF_PORTS); | ||
255 | } | ||
256 | |||
257 | static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write) | ||
258 | { | ||
259 | /* On the Sparc, DMA_ST_WRITE means "move data from device to memory" | ||
260 | * so when (write) is true, it actually means READ! | ||
261 | */ | ||
262 | if(write){ | ||
263 | dma_init_read(esp, addr, count); | ||
264 | } else { | ||
265 | dma_init_write(esp, addr, count); | ||
266 | } | ||
267 | } | ||
268 | |||
269 | #define HOSTS_C | ||
270 | |||
271 | int blz2060_esp_release(struct Scsi_Host *instance) | ||
272 | { | ||
273 | #ifdef MODULE | ||
274 | unsigned long address = (unsigned long)((struct NCR_ESP *)instance->hostdata)->edev; | ||
275 | |||
276 | esp_deallocate((struct NCR_ESP *)instance->hostdata); | ||
277 | esp_release(); | ||
278 | release_mem_region(address, sizeof(struct ESP_regs)); | ||
279 | free_irq(IRQ_AMIGA_PORTS, esp_intr); | ||
280 | #endif | ||
281 | return 1; | ||
282 | } | ||
283 | |||
284 | |||
285 | static struct scsi_host_template driver_template = { | ||
286 | .proc_name = "esp-blz2060", | ||
287 | .proc_info = esp_proc_info, | ||
288 | .name = "Blizzard2060 SCSI", | ||
289 | .detect = blz2060_esp_detect, | ||
290 | .slave_alloc = esp_slave_alloc, | ||
291 | .slave_destroy = esp_slave_destroy, | ||
292 | .release = blz2060_esp_release, | ||
293 | .queuecommand = esp_queue, | ||
294 | .eh_abort_handler = esp_abort, | ||
295 | .eh_bus_reset_handler = esp_reset, | ||
296 | .can_queue = 7, | ||
297 | .this_id = 7, | ||
298 | .sg_tablesize = SG_ALL, | ||
299 | .cmd_per_lun = 1, | ||
300 | .use_clustering = ENABLE_CLUSTERING | ||
301 | }; | ||
302 | |||
303 | |||
304 | #include "scsi_module.c" | ||
305 | |||
306 | MODULE_LICENSE("GPL"); | ||
diff --git a/drivers/scsi/cyberstorm.c b/drivers/scsi/cyberstorm.c deleted file mode 100644 index c6b98a42e89d..000000000000 --- a/drivers/scsi/cyberstorm.c +++ /dev/null | |||
@@ -1,377 +0,0 @@ | |||
1 | /* cyberstorm.c: Driver for CyberStorm SCSI Controller. | ||
2 | * | ||
3 | * Copyright (C) 1996 Jesper Skov (jskov@cygnus.co.uk) | ||
4 | * | ||
5 | * The CyberStorm SCSI driver is based on David S. Miller's ESP driver | ||
6 | * for the Sparc computers. | ||
7 | * | ||
8 | * This work was made possible by Phase5 who willingly (and most generously) | ||
9 | * supported me with hardware and all the information I needed. | ||
10 | */ | ||
11 | |||
12 | /* TODO: | ||
13 | * | ||
14 | * 1) Figure out how to make a cleaner merge with the sparc driver with regard | ||
15 | * to the caches and the Sparc MMU mapping. | ||
16 | * 2) Make as few routines required outside the generic driver. A lot of the | ||
17 | * routines in this file used to be inline! | ||
18 | */ | ||
19 | |||
20 | #include <linux/module.h> | ||
21 | |||
22 | #include <linux/init.h> | ||
23 | #include <linux/kernel.h> | ||
24 | #include <linux/delay.h> | ||
25 | #include <linux/types.h> | ||
26 | #include <linux/string.h> | ||
27 | #include <linux/slab.h> | ||
28 | #include <linux/blkdev.h> | ||
29 | #include <linux/proc_fs.h> | ||
30 | #include <linux/stat.h> | ||
31 | #include <linux/interrupt.h> | ||
32 | |||
33 | #include "scsi.h" | ||
34 | #include <scsi/scsi_host.h> | ||
35 | #include "NCR53C9x.h" | ||
36 | |||
37 | #include <linux/zorro.h> | ||
38 | #include <asm/irq.h> | ||
39 | #include <asm/amigaints.h> | ||
40 | #include <asm/amigahw.h> | ||
41 | |||
42 | #include <asm/pgtable.h> | ||
43 | |||
44 | /* The controller registers can be found in the Z2 config area at these | ||
45 | * offsets: | ||
46 | */ | ||
47 | #define CYBER_ESP_ADDR 0xf400 | ||
48 | #define CYBER_DMA_ADDR 0xf800 | ||
49 | |||
50 | |||
51 | /* The CyberStorm DMA interface */ | ||
52 | struct cyber_dma_registers { | ||
53 | volatile unsigned char dma_addr0; /* DMA address (MSB) [0x000] */ | ||
54 | unsigned char dmapad1[1]; | ||
55 | volatile unsigned char dma_addr1; /* DMA address [0x002] */ | ||
56 | unsigned char dmapad2[1]; | ||
57 | volatile unsigned char dma_addr2; /* DMA address [0x004] */ | ||
58 | unsigned char dmapad3[1]; | ||
59 | volatile unsigned char dma_addr3; /* DMA address (LSB) [0x006] */ | ||
60 | unsigned char dmapad4[0x3fb]; | ||
61 | volatile unsigned char cond_reg; /* DMA cond (ro) [0x402] */ | ||
62 | #define ctrl_reg cond_reg /* DMA control (wo) [0x402] */ | ||
63 | }; | ||
64 | |||
65 | /* DMA control bits */ | ||
66 | #define CYBER_DMA_LED 0x80 /* HD led control 1 = on */ | ||
67 | #define CYBER_DMA_WRITE 0x40 /* DMA direction. 1 = write */ | ||
68 | #define CYBER_DMA_Z3 0x20 /* 16 (Z2) or 32 (CHIP/Z3) bit DMA transfer */ | ||
69 | |||
70 | /* DMA status bits */ | ||
71 | #define CYBER_DMA_HNDL_INTR 0x80 /* DMA IRQ pending? */ | ||
72 | |||
73 | /* The bits below appears to be Phase5 Debug bits only; they were not | ||
74 | * described by Phase5 so using them may seem a bit stupid... | ||
75 | */ | ||
76 | #define CYBER_HOST_ID 0x02 /* If set, host ID should be 7, otherwise | ||
77 | * it should be 6. | ||
78 | */ | ||
79 | #define CYBER_SLOW_CABLE 0x08 /* If *not* set, assume SLOW_CABLE */ | ||
80 | |||
81 | static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count); | ||
82 | static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp); | ||
83 | static void dma_dump_state(struct NCR_ESP *esp); | ||
84 | static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length); | ||
85 | static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length); | ||
86 | static void dma_ints_off(struct NCR_ESP *esp); | ||
87 | static void dma_ints_on(struct NCR_ESP *esp); | ||
88 | static int dma_irq_p(struct NCR_ESP *esp); | ||
89 | static void dma_led_off(struct NCR_ESP *esp); | ||
90 | static void dma_led_on(struct NCR_ESP *esp); | ||
91 | static int dma_ports_p(struct NCR_ESP *esp); | ||
92 | static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write); | ||
93 | |||
94 | static unsigned char ctrl_data = 0; /* Keep backup of the stuff written | ||
95 | * to ctrl_reg. Always write a copy | ||
96 | * to this register when writing to | ||
97 | * the hardware register! | ||
98 | */ | ||
99 | |||
100 | static volatile unsigned char cmd_buffer[16]; | ||
101 | /* This is where all commands are put | ||
102 | * before they are transferred to the ESP chip | ||
103 | * via PIO. | ||
104 | */ | ||
105 | |||
106 | /***************************************************************** Detection */ | ||
107 | int __init cyber_esp_detect(struct scsi_host_template *tpnt) | ||
108 | { | ||
109 | struct NCR_ESP *esp; | ||
110 | struct zorro_dev *z = NULL; | ||
111 | unsigned long address; | ||
112 | |||
113 | while ((z = zorro_find_device(ZORRO_WILDCARD, z))) { | ||
114 | unsigned long board = z->resource.start; | ||
115 | if ((z->id == ZORRO_PROD_PHASE5_BLIZZARD_1220_CYBERSTORM || | ||
116 | z->id == ZORRO_PROD_PHASE5_BLIZZARD_1230_II_FASTLANE_Z3_CYBERSCSI_CYBERSTORM060) && | ||
117 | request_mem_region(board+CYBER_ESP_ADDR, | ||
118 | sizeof(struct ESP_regs), "NCR53C9x")) { | ||
119 | /* Figure out if this is a CyberStorm or really a | ||
120 | * Fastlane/Blizzard Mk II by looking at the board size. | ||
121 | * CyberStorm maps 64kB | ||
122 | * (ZORRO_PROD_PHASE5_BLIZZARD_1220_CYBERSTORM does anyway) | ||
123 | */ | ||
124 | if(z->resource.end-board != 0xffff) { | ||
125 | release_mem_region(board+CYBER_ESP_ADDR, | ||
126 | sizeof(struct ESP_regs)); | ||
127 | return 0; | ||
128 | } | ||
129 | esp = esp_allocate(tpnt, (void *)board + CYBER_ESP_ADDR, 0); | ||
130 | |||
131 | /* Do command transfer with programmed I/O */ | ||
132 | esp->do_pio_cmds = 1; | ||
133 | |||
134 | /* Required functions */ | ||
135 | esp->dma_bytes_sent = &dma_bytes_sent; | ||
136 | esp->dma_can_transfer = &dma_can_transfer; | ||
137 | esp->dma_dump_state = &dma_dump_state; | ||
138 | esp->dma_init_read = &dma_init_read; | ||
139 | esp->dma_init_write = &dma_init_write; | ||
140 | esp->dma_ints_off = &dma_ints_off; | ||
141 | esp->dma_ints_on = &dma_ints_on; | ||
142 | esp->dma_irq_p = &dma_irq_p; | ||
143 | esp->dma_ports_p = &dma_ports_p; | ||
144 | esp->dma_setup = &dma_setup; | ||
145 | |||
146 | /* Optional functions */ | ||
147 | esp->dma_barrier = 0; | ||
148 | esp->dma_drain = 0; | ||
149 | esp->dma_invalidate = 0; | ||
150 | esp->dma_irq_entry = 0; | ||
151 | esp->dma_irq_exit = 0; | ||
152 | esp->dma_led_on = &dma_led_on; | ||
153 | esp->dma_led_off = &dma_led_off; | ||
154 | esp->dma_poll = 0; | ||
155 | esp->dma_reset = 0; | ||
156 | |||
157 | /* SCSI chip speed */ | ||
158 | esp->cfreq = 40000000; | ||
159 | |||
160 | /* The DMA registers on the CyberStorm are mapped | ||
161 | * relative to the device (i.e. in the same Zorro | ||
162 | * I/O block). | ||
163 | */ | ||
164 | address = (unsigned long)ZTWO_VADDR(board); | ||
165 | esp->dregs = (void *)(address + CYBER_DMA_ADDR); | ||
166 | |||
167 | /* ESP register base */ | ||
168 | esp->eregs = (struct ESP_regs *)(address + CYBER_ESP_ADDR); | ||
169 | |||
170 | /* Set the command buffer */ | ||
171 | esp->esp_command = cmd_buffer; | ||
172 | esp->esp_command_dvma = virt_to_bus((void *)cmd_buffer); | ||
173 | |||
174 | esp->irq = IRQ_AMIGA_PORTS; | ||
175 | request_irq(IRQ_AMIGA_PORTS, esp_intr, IRQF_SHARED, | ||
176 | "CyberStorm SCSI", esp->ehost); | ||
177 | /* Figure out our scsi ID on the bus */ | ||
178 | /* The DMA cond flag contains a hardcoded jumper bit | ||
179 | * which can be used to select host number 6 or 7. | ||
180 | * However, even though it may change, we use a hardcoded | ||
181 | * value of 7. | ||
182 | */ | ||
183 | esp->scsi_id = 7; | ||
184 | |||
185 | /* We don't have a differential SCSI-bus. */ | ||
186 | esp->diff = 0; | ||
187 | |||
188 | esp_initialize(esp); | ||
189 | |||
190 | printk("ESP: Total of %d ESP hosts found, %d actually in use.\n", nesps, esps_in_use); | ||
191 | esps_running = esps_in_use; | ||
192 | return esps_in_use; | ||
193 | } | ||
194 | } | ||
195 | return 0; | ||
196 | } | ||
197 | |||
198 | /************************************************************* DMA Functions */ | ||
199 | static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count) | ||
200 | { | ||
201 | /* Since the CyberStorm DMA is fully dedicated to the ESP chip, | ||
202 | * the number of bytes sent (to the ESP chip) equals the number | ||
203 | * of bytes in the FIFO - there is no buffering in the DMA controller. | ||
204 | * XXXX Do I read this right? It is from host to ESP, right? | ||
205 | */ | ||
206 | return fifo_count; | ||
207 | } | ||
208 | |||
209 | static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp) | ||
210 | { | ||
211 | /* I don't think there's any limit on the CyberDMA. So we use what | ||
212 | * the ESP chip can handle (24 bit). | ||
213 | */ | ||
214 | unsigned long sz = sp->SCp.this_residual; | ||
215 | if(sz > 0x1000000) | ||
216 | sz = 0x1000000; | ||
217 | return sz; | ||
218 | } | ||
219 | |||
220 | static void dma_dump_state(struct NCR_ESP *esp) | ||
221 | { | ||
222 | ESPLOG(("esp%d: dma -- cond_reg<%02x>\n", | ||
223 | esp->esp_id, ((struct cyber_dma_registers *) | ||
224 | (esp->dregs))->cond_reg)); | ||
225 | ESPLOG(("intreq:<%04x>, intena:<%04x>\n", | ||
226 | amiga_custom.intreqr, amiga_custom.intenar)); | ||
227 | } | ||
228 | |||
229 | static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length) | ||
230 | { | ||
231 | struct cyber_dma_registers *dregs = | ||
232 | (struct cyber_dma_registers *) esp->dregs; | ||
233 | |||
234 | cache_clear(addr, length); | ||
235 | |||
236 | addr &= ~(1); | ||
237 | dregs->dma_addr0 = (addr >> 24) & 0xff; | ||
238 | dregs->dma_addr1 = (addr >> 16) & 0xff; | ||
239 | dregs->dma_addr2 = (addr >> 8) & 0xff; | ||
240 | dregs->dma_addr3 = (addr ) & 0xff; | ||
241 | ctrl_data &= ~(CYBER_DMA_WRITE); | ||
242 | |||
243 | /* Check if physical address is outside Z2 space and of | ||
244 | * block length/block aligned in memory. If this is the | ||
245 | * case, enable 32 bit transfer. In all other cases, fall back | ||
246 | * to 16 bit transfer. | ||
247 | * Obviously 32 bit transfer should be enabled if the DMA address | ||
248 | * and length are 32 bit aligned. However, this leads to some | ||
249 | * strange behavior. Even 64 bit aligned addr/length fails. | ||
250 | * Until I've found a reason for this, 32 bit transfer is only | ||
251 | * used for full-block transfers (1kB). | ||
252 | * -jskov | ||
253 | */ | ||
254 | #if 0 | ||
255 | if((addr & 0x3fc) || length & 0x3ff || ((addr > 0x200000) && | ||
256 | (addr < 0xff0000))) | ||
257 | ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */ | ||
258 | else | ||
259 | ctrl_data |= CYBER_DMA_Z3; /* CHIP/Z3, do 32 bit DMA */ | ||
260 | #else | ||
261 | ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */ | ||
262 | #endif | ||
263 | dregs->ctrl_reg = ctrl_data; | ||
264 | } | ||
265 | |||
266 | static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length) | ||
267 | { | ||
268 | struct cyber_dma_registers *dregs = | ||
269 | (struct cyber_dma_registers *) esp->dregs; | ||
270 | |||
271 | cache_push(addr, length); | ||
272 | |||
273 | addr |= 1; | ||
274 | dregs->dma_addr0 = (addr >> 24) & 0xff; | ||
275 | dregs->dma_addr1 = (addr >> 16) & 0xff; | ||
276 | dregs->dma_addr2 = (addr >> 8) & 0xff; | ||
277 | dregs->dma_addr3 = (addr ) & 0xff; | ||
278 | ctrl_data |= CYBER_DMA_WRITE; | ||
279 | |||
280 | /* See comment above */ | ||
281 | #if 0 | ||
282 | if((addr & 0x3fc) || length & 0x3ff || ((addr > 0x200000) && | ||
283 | (addr < 0xff0000))) | ||
284 | ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */ | ||
285 | else | ||
286 | ctrl_data |= CYBER_DMA_Z3; /* CHIP/Z3, do 32 bit DMA */ | ||
287 | #else | ||
288 | ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */ | ||
289 | #endif | ||
290 | dregs->ctrl_reg = ctrl_data; | ||
291 | } | ||
292 | |||
293 | static void dma_ints_off(struct NCR_ESP *esp) | ||
294 | { | ||
295 | disable_irq(esp->irq); | ||
296 | } | ||
297 | |||
298 | static void dma_ints_on(struct NCR_ESP *esp) | ||
299 | { | ||
300 | enable_irq(esp->irq); | ||
301 | } | ||
302 | |||
303 | static int dma_irq_p(struct NCR_ESP *esp) | ||
304 | { | ||
305 | /* It's important to check the DMA IRQ bit in the correct way! */ | ||
306 | return ((esp_read(esp->eregs->esp_status) & ESP_STAT_INTR) && | ||
307 | ((((struct cyber_dma_registers *)(esp->dregs))->cond_reg) & | ||
308 | CYBER_DMA_HNDL_INTR)); | ||
309 | } | ||
310 | |||
311 | static void dma_led_off(struct NCR_ESP *esp) | ||
312 | { | ||
313 | ctrl_data &= ~CYBER_DMA_LED; | ||
314 | ((struct cyber_dma_registers *)(esp->dregs))->ctrl_reg = ctrl_data; | ||
315 | } | ||
316 | |||
317 | static void dma_led_on(struct NCR_ESP *esp) | ||
318 | { | ||
319 | ctrl_data |= CYBER_DMA_LED; | ||
320 | ((struct cyber_dma_registers *)(esp->dregs))->ctrl_reg = ctrl_data; | ||
321 | } | ||
322 | |||
323 | static int dma_ports_p(struct NCR_ESP *esp) | ||
324 | { | ||
325 | return ((amiga_custom.intenar) & IF_PORTS); | ||
326 | } | ||
327 | |||
328 | static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write) | ||
329 | { | ||
330 | /* On the Sparc, DMA_ST_WRITE means "move data from device to memory" | ||
331 | * so when (write) is true, it actually means READ! | ||
332 | */ | ||
333 | if(write){ | ||
334 | dma_init_read(esp, addr, count); | ||
335 | } else { | ||
336 | dma_init_write(esp, addr, count); | ||
337 | } | ||
338 | } | ||
339 | |||
340 | #define HOSTS_C | ||
341 | |||
342 | int cyber_esp_release(struct Scsi_Host *instance) | ||
343 | { | ||
344 | #ifdef MODULE | ||
345 | unsigned long address = (unsigned long)((struct NCR_ESP *)instance->hostdata)->edev; | ||
346 | |||
347 | esp_deallocate((struct NCR_ESP *)instance->hostdata); | ||
348 | esp_release(); | ||
349 | release_mem_region(address, sizeof(struct ESP_regs)); | ||
350 | free_irq(IRQ_AMIGA_PORTS, esp_intr); | ||
351 | #endif | ||
352 | return 1; | ||
353 | } | ||
354 | |||
355 | |||
356 | static struct scsi_host_template driver_template = { | ||
357 | .proc_name = "esp-cyberstorm", | ||
358 | .proc_info = esp_proc_info, | ||
359 | .name = "CyberStorm SCSI", | ||
360 | .detect = cyber_esp_detect, | ||
361 | .slave_alloc = esp_slave_alloc, | ||
362 | .slave_destroy = esp_slave_destroy, | ||
363 | .release = cyber_esp_release, | ||
364 | .queuecommand = esp_queue, | ||
365 | .eh_abort_handler = esp_abort, | ||
366 | .eh_bus_reset_handler = esp_reset, | ||
367 | .can_queue = 7, | ||
368 | .this_id = 7, | ||
369 | .sg_tablesize = SG_ALL, | ||
370 | .cmd_per_lun = 1, | ||
371 | .use_clustering = ENABLE_CLUSTERING | ||
372 | }; | ||
373 | |||
374 | |||
375 | #include "scsi_module.c" | ||
376 | |||
377 | MODULE_LICENSE("GPL"); | ||
diff --git a/drivers/scsi/cyberstormII.c b/drivers/scsi/cyberstormII.c deleted file mode 100644 index e336e853e66f..000000000000 --- a/drivers/scsi/cyberstormII.c +++ /dev/null | |||
@@ -1,314 +0,0 @@ | |||
1 | /* cyberstormII.c: Driver for CyberStorm SCSI Mk II | ||
2 | * | ||
3 | * Copyright (C) 1996 Jesper Skov (jskov@cygnus.co.uk) | ||
4 | * | ||
5 | * This driver is based on cyberstorm.c | ||
6 | */ | ||
7 | |||
8 | /* TODO: | ||
9 | * | ||
10 | * 1) Figure out how to make a cleaner merge with the sparc driver with regard | ||
11 | * to the caches and the Sparc MMU mapping. | ||
12 | * 2) Make as few routines required outside the generic driver. A lot of the | ||
13 | * routines in this file used to be inline! | ||
14 | */ | ||
15 | |||
16 | #include <linux/module.h> | ||
17 | |||
18 | #include <linux/init.h> | ||
19 | #include <linux/kernel.h> | ||
20 | #include <linux/delay.h> | ||
21 | #include <linux/types.h> | ||
22 | #include <linux/string.h> | ||
23 | #include <linux/slab.h> | ||
24 | #include <linux/blkdev.h> | ||
25 | #include <linux/proc_fs.h> | ||
26 | #include <linux/stat.h> | ||
27 | #include <linux/interrupt.h> | ||
28 | |||
29 | #include "scsi.h" | ||
30 | #include <scsi/scsi_host.h> | ||
31 | #include "NCR53C9x.h" | ||
32 | |||
33 | #include <linux/zorro.h> | ||
34 | #include <asm/irq.h> | ||
35 | #include <asm/amigaints.h> | ||
36 | #include <asm/amigahw.h> | ||
37 | |||
38 | #include <asm/pgtable.h> | ||
39 | |||
40 | /* The controller registers can be found in the Z2 config area at these | ||
41 | * offsets: | ||
42 | */ | ||
43 | #define CYBERII_ESP_ADDR 0x1ff03 | ||
44 | #define CYBERII_DMA_ADDR 0x1ff43 | ||
45 | |||
46 | |||
47 | /* The CyberStorm II DMA interface */ | ||
48 | struct cyberII_dma_registers { | ||
49 | volatile unsigned char cond_reg; /* DMA cond (ro) [0x000] */ | ||
50 | #define ctrl_reg cond_reg /* DMA control (wo) [0x000] */ | ||
51 | unsigned char dmapad4[0x3f]; | ||
52 | volatile unsigned char dma_addr0; /* DMA address (MSB) [0x040] */ | ||
53 | unsigned char dmapad1[3]; | ||
54 | volatile unsigned char dma_addr1; /* DMA address [0x044] */ | ||
55 | unsigned char dmapad2[3]; | ||
56 | volatile unsigned char dma_addr2; /* DMA address [0x048] */ | ||
57 | unsigned char dmapad3[3]; | ||
58 | volatile unsigned char dma_addr3; /* DMA address (LSB) [0x04c] */ | ||
59 | }; | ||
60 | |||
61 | /* DMA control bits */ | ||
62 | #define CYBERII_DMA_LED 0x02 /* HD led control 1 = on */ | ||
63 | |||
64 | static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count); | ||
65 | static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp); | ||
66 | static void dma_dump_state(struct NCR_ESP *esp); | ||
67 | static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length); | ||
68 | static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length); | ||
69 | static void dma_ints_off(struct NCR_ESP *esp); | ||
70 | static void dma_ints_on(struct NCR_ESP *esp); | ||
71 | static int dma_irq_p(struct NCR_ESP *esp); | ||
72 | static void dma_led_off(struct NCR_ESP *esp); | ||
73 | static void dma_led_on(struct NCR_ESP *esp); | ||
74 | static int dma_ports_p(struct NCR_ESP *esp); | ||
75 | static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write); | ||
76 | |||
77 | static volatile unsigned char cmd_buffer[16]; | ||
78 | /* This is where all commands are put | ||
79 | * before they are transferred to the ESP chip | ||
80 | * via PIO. | ||
81 | */ | ||
82 | |||
83 | /***************************************************************** Detection */ | ||
84 | int __init cyberII_esp_detect(struct scsi_host_template *tpnt) | ||
85 | { | ||
86 | struct NCR_ESP *esp; | ||
87 | struct zorro_dev *z = NULL; | ||
88 | unsigned long address; | ||
89 | struct ESP_regs *eregs; | ||
90 | |||
91 | if ((z = zorro_find_device(ZORRO_PROD_PHASE5_CYBERSTORM_MK_II, z))) { | ||
92 | unsigned long board = z->resource.start; | ||
93 | if (request_mem_region(board+CYBERII_ESP_ADDR, | ||
94 | sizeof(struct ESP_regs), "NCR53C9x")) { | ||
95 | /* Do some magic to figure out if the CyberStorm Mk II | ||
96 | * is equipped with a SCSI controller | ||
97 | */ | ||
98 | address = (unsigned long)ZTWO_VADDR(board); | ||
99 | eregs = (struct ESP_regs *)(address + CYBERII_ESP_ADDR); | ||
100 | |||
101 | esp = esp_allocate(tpnt, (void *)board + CYBERII_ESP_ADDR, 0); | ||
102 | |||
103 | esp_write(eregs->esp_cfg1, (ESP_CONFIG1_PENABLE | 7)); | ||
104 | udelay(5); | ||
105 | if(esp_read(eregs->esp_cfg1) != (ESP_CONFIG1_PENABLE | 7)) { | ||
106 | esp_deallocate(esp); | ||
107 | scsi_unregister(esp->ehost); | ||
108 | release_mem_region(board+CYBERII_ESP_ADDR, | ||
109 | sizeof(struct ESP_regs)); | ||
110 | return 0; /* Bail out if address did not hold data */ | ||
111 | } | ||
112 | |||
113 | /* Do command transfer with programmed I/O */ | ||
114 | esp->do_pio_cmds = 1; | ||
115 | |||
116 | /* Required functions */ | ||
117 | esp->dma_bytes_sent = &dma_bytes_sent; | ||
118 | esp->dma_can_transfer = &dma_can_transfer; | ||
119 | esp->dma_dump_state = &dma_dump_state; | ||
120 | esp->dma_init_read = &dma_init_read; | ||
121 | esp->dma_init_write = &dma_init_write; | ||
122 | esp->dma_ints_off = &dma_ints_off; | ||
123 | esp->dma_ints_on = &dma_ints_on; | ||
124 | esp->dma_irq_p = &dma_irq_p; | ||
125 | esp->dma_ports_p = &dma_ports_p; | ||
126 | esp->dma_setup = &dma_setup; | ||
127 | |||
128 | /* Optional functions */ | ||
129 | esp->dma_barrier = 0; | ||
130 | esp->dma_drain = 0; | ||
131 | esp->dma_invalidate = 0; | ||
132 | esp->dma_irq_entry = 0; | ||
133 | esp->dma_irq_exit = 0; | ||
134 | esp->dma_led_on = &dma_led_on; | ||
135 | esp->dma_led_off = &dma_led_off; | ||
136 | esp->dma_poll = 0; | ||
137 | esp->dma_reset = 0; | ||
138 | |||
139 | /* SCSI chip speed */ | ||
140 | esp->cfreq = 40000000; | ||
141 | |||
142 | /* The DMA registers on the CyberStorm are mapped | ||
143 | * relative to the device (i.e. in the same Zorro | ||
144 | * I/O block). | ||
145 | */ | ||
146 | esp->dregs = (void *)(address + CYBERII_DMA_ADDR); | ||
147 | |||
148 | /* ESP register base */ | ||
149 | esp->eregs = eregs; | ||
150 | |||
151 | /* Set the command buffer */ | ||
152 | esp->esp_command = cmd_buffer; | ||
153 | esp->esp_command_dvma = virt_to_bus((void *)cmd_buffer); | ||
154 | |||
155 | esp->irq = IRQ_AMIGA_PORTS; | ||
156 | request_irq(IRQ_AMIGA_PORTS, esp_intr, IRQF_SHARED, | ||
157 | "CyberStorm SCSI Mk II", esp->ehost); | ||
158 | |||
159 | /* Figure out our scsi ID on the bus */ | ||
160 | esp->scsi_id = 7; | ||
161 | |||
162 | /* We don't have a differential SCSI-bus. */ | ||
163 | esp->diff = 0; | ||
164 | |||
165 | esp_initialize(esp); | ||
166 | |||
167 | printk("ESP: Total of %d ESP hosts found, %d actually in use.\n", nesps, esps_in_use); | ||
168 | esps_running = esps_in_use; | ||
169 | return esps_in_use; | ||
170 | } | ||
171 | } | ||
172 | return 0; | ||
173 | } | ||
174 | |||
175 | /************************************************************* DMA Functions */ | ||
176 | static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count) | ||
177 | { | ||
178 | /* Since the CyberStorm DMA is fully dedicated to the ESP chip, | ||
179 | * the number of bytes sent (to the ESP chip) equals the number | ||
180 | * of bytes in the FIFO - there is no buffering in the DMA controller. | ||
181 | * XXXX Do I read this right? It is from host to ESP, right? | ||
182 | */ | ||
183 | return fifo_count; | ||
184 | } | ||
185 | |||
186 | static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp) | ||
187 | { | ||
188 | /* I don't think there's any limit on the CyberDMA. So we use what | ||
189 | * the ESP chip can handle (24 bit). | ||
190 | */ | ||
191 | unsigned long sz = sp->SCp.this_residual; | ||
192 | if(sz > 0x1000000) | ||
193 | sz = 0x1000000; | ||
194 | return sz; | ||
195 | } | ||
196 | |||
197 | static void dma_dump_state(struct NCR_ESP *esp) | ||
198 | { | ||
199 | ESPLOG(("esp%d: dma -- cond_reg<%02x>\n", | ||
200 | esp->esp_id, ((struct cyberII_dma_registers *) | ||
201 | (esp->dregs))->cond_reg)); | ||
202 | ESPLOG(("intreq:<%04x>, intena:<%04x>\n", | ||
203 | amiga_custom.intreqr, amiga_custom.intenar)); | ||
204 | } | ||
205 | |||
206 | static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length) | ||
207 | { | ||
208 | struct cyberII_dma_registers *dregs = | ||
209 | (struct cyberII_dma_registers *) esp->dregs; | ||
210 | |||
211 | cache_clear(addr, length); | ||
212 | |||
213 | addr &= ~(1); | ||
214 | dregs->dma_addr0 = (addr >> 24) & 0xff; | ||
215 | dregs->dma_addr1 = (addr >> 16) & 0xff; | ||
216 | dregs->dma_addr2 = (addr >> 8) & 0xff; | ||
217 | dregs->dma_addr3 = (addr ) & 0xff; | ||
218 | } | ||
219 | |||
220 | static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length) | ||
221 | { | ||
222 | struct cyberII_dma_registers *dregs = | ||
223 | (struct cyberII_dma_registers *) esp->dregs; | ||
224 | |||
225 | cache_push(addr, length); | ||
226 | |||
227 | addr |= 1; | ||
228 | dregs->dma_addr0 = (addr >> 24) & 0xff; | ||
229 | dregs->dma_addr1 = (addr >> 16) & 0xff; | ||
230 | dregs->dma_addr2 = (addr >> 8) & 0xff; | ||
231 | dregs->dma_addr3 = (addr ) & 0xff; | ||
232 | } | ||
233 | |||
234 | static void dma_ints_off(struct NCR_ESP *esp) | ||
235 | { | ||
236 | disable_irq(esp->irq); | ||
237 | } | ||
238 | |||
239 | static void dma_ints_on(struct NCR_ESP *esp) | ||
240 | { | ||
241 | enable_irq(esp->irq); | ||
242 | } | ||
243 | |||
244 | static int dma_irq_p(struct NCR_ESP *esp) | ||
245 | { | ||
246 | /* It's important to check the DMA IRQ bit in the correct way! */ | ||
247 | return (esp_read(esp->eregs->esp_status) & ESP_STAT_INTR); | ||
248 | } | ||
249 | |||
250 | static void dma_led_off(struct NCR_ESP *esp) | ||
251 | { | ||
252 | ((struct cyberII_dma_registers *)(esp->dregs))->ctrl_reg &= ~CYBERII_DMA_LED; | ||
253 | } | ||
254 | |||
255 | static void dma_led_on(struct NCR_ESP *esp) | ||
256 | { | ||
257 | ((struct cyberII_dma_registers *)(esp->dregs))->ctrl_reg |= CYBERII_DMA_LED; | ||
258 | } | ||
259 | |||
260 | static int dma_ports_p(struct NCR_ESP *esp) | ||
261 | { | ||
262 | return ((amiga_custom.intenar) & IF_PORTS); | ||
263 | } | ||
264 | |||
265 | static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write) | ||
266 | { | ||
267 | /* On the Sparc, DMA_ST_WRITE means "move data from device to memory" | ||
268 | * so when (write) is true, it actually means READ! | ||
269 | */ | ||
270 | if(write){ | ||
271 | dma_init_read(esp, addr, count); | ||
272 | } else { | ||
273 | dma_init_write(esp, addr, count); | ||
274 | } | ||
275 | } | ||
276 | |||
277 | #define HOSTS_C | ||
278 | |||
279 | int cyberII_esp_release(struct Scsi_Host *instance) | ||
280 | { | ||
281 | #ifdef MODULE | ||
282 | unsigned long address = (unsigned long)((struct NCR_ESP *)instance->hostdata)->edev; | ||
283 | |||
284 | esp_deallocate((struct NCR_ESP *)instance->hostdata); | ||
285 | esp_release(); | ||
286 | release_mem_region(address, sizeof(struct ESP_regs)); | ||
287 | free_irq(IRQ_AMIGA_PORTS, esp_intr); | ||
288 | #endif | ||
289 | return 1; | ||
290 | } | ||
291 | |||
292 | |||
293 | static struct scsi_host_template driver_template = { | ||
294 | .proc_name = "esp-cyberstormII", | ||
295 | .proc_info = esp_proc_info, | ||
296 | .name = "CyberStorm Mk II SCSI", | ||
297 | .detect = cyberII_esp_detect, | ||
298 | .slave_alloc = esp_slave_alloc, | ||
299 | .slave_destroy = esp_slave_destroy, | ||
300 | .release = cyberII_esp_release, | ||
301 | .queuecommand = esp_queue, | ||
302 | .eh_abort_handler = esp_abort, | ||
303 | .eh_bus_reset_handler = esp_reset, | ||
304 | .can_queue = 7, | ||
305 | .this_id = 7, | ||
306 | .sg_tablesize = SG_ALL, | ||
307 | .cmd_per_lun = 1, | ||
308 | .use_clustering = ENABLE_CLUSTERING | ||
309 | }; | ||
310 | |||
311 | |||
312 | #include "scsi_module.c" | ||
313 | |||
314 | MODULE_LICENSE("GPL"); | ||
diff --git a/drivers/scsi/fastlane.c b/drivers/scsi/fastlane.c deleted file mode 100644 index 4266a2139b5f..000000000000 --- a/drivers/scsi/fastlane.c +++ /dev/null | |||
@@ -1,421 +0,0 @@ | |||
1 | /* fastlane.c: Driver for Phase5's Fastlane SCSI Controller. | ||
2 | * | ||
3 | * Copyright (C) 1996 Jesper Skov (jskov@cygnus.co.uk) | ||
4 | * | ||
5 | * This driver is based on the CyberStorm driver, hence the occasional | ||
6 | * reference to CyberStorm. | ||
7 | * | ||
8 | * Betatesting & crucial adjustments by | ||
9 | * Patrik Rak (prak3264@ss1000.ms.mff.cuni.cz) | ||
10 | * | ||
11 | */ | ||
12 | |||
13 | /* TODO: | ||
14 | * | ||
15 | * o According to the doc from laire, it is required to reset the DMA when | ||
16 | * the transfer is done. ATM we reset DMA just before every new | ||
17 | * dma_init_(read|write). | ||
18 | * | ||
19 | * 1) Figure out how to make a cleaner merge with the sparc driver with regard | ||
20 | * to the caches and the Sparc MMU mapping. | ||
21 | * 2) Make as few routines required outside the generic driver. A lot of the | ||
22 | * routines in this file used to be inline! | ||
23 | */ | ||
24 | |||
25 | #include <linux/module.h> | ||
26 | |||
27 | #include <linux/init.h> | ||
28 | #include <linux/kernel.h> | ||
29 | #include <linux/delay.h> | ||
30 | #include <linux/types.h> | ||
31 | #include <linux/string.h> | ||
32 | #include <linux/slab.h> | ||
33 | #include <linux/blkdev.h> | ||
34 | #include <linux/proc_fs.h> | ||
35 | #include <linux/stat.h> | ||
36 | #include <linux/interrupt.h> | ||
37 | |||
38 | #include "scsi.h" | ||
39 | #include <scsi/scsi_host.h> | ||
40 | #include "NCR53C9x.h" | ||
41 | |||
42 | #include <linux/zorro.h> | ||
43 | #include <asm/irq.h> | ||
44 | |||
45 | #include <asm/amigaints.h> | ||
46 | #include <asm/amigahw.h> | ||
47 | |||
48 | #include <asm/pgtable.h> | ||
49 | |||
50 | /* Such day has just come... */ | ||
51 | #if 0 | ||
52 | /* Let this defined unless you really need to enable DMA IRQ one day */ | ||
53 | #define NODMAIRQ | ||
54 | #endif | ||
55 | |||
56 | /* The controller registers can be found in the Z2 config area at these | ||
57 | * offsets: | ||
58 | */ | ||
59 | #define FASTLANE_ESP_ADDR 0x1000001 | ||
60 | #define FASTLANE_DMA_ADDR 0x1000041 | ||
61 | |||
62 | |||
63 | /* The Fastlane DMA interface */ | ||
64 | struct fastlane_dma_registers { | ||
65 | volatile unsigned char cond_reg; /* DMA status (ro) [0x0000] */ | ||
66 | #define ctrl_reg cond_reg /* DMA control (wo) [0x0000] */ | ||
67 | unsigned char dmapad1[0x3f]; | ||
68 | volatile unsigned char clear_strobe; /* DMA clear (wo) [0x0040] */ | ||
69 | }; | ||
70 | |||
71 | |||
72 | /* DMA status bits */ | ||
73 | #define FASTLANE_DMA_MINT 0x80 | ||
74 | #define FASTLANE_DMA_IACT 0x40 | ||
75 | #define FASTLANE_DMA_CREQ 0x20 | ||
76 | |||
77 | /* DMA control bits */ | ||
78 | #define FASTLANE_DMA_FCODE 0xa0 | ||
79 | #define FASTLANE_DMA_MASK 0xf3 | ||
80 | #define FASTLANE_DMA_LED 0x10 /* HD led control 1 = on */ | ||
81 | #define FASTLANE_DMA_WRITE 0x08 /* 1 = write */ | ||
82 | #define FASTLANE_DMA_ENABLE 0x04 /* Enable DMA */ | ||
83 | #define FASTLANE_DMA_EDI 0x02 /* Enable DMA IRQ ? */ | ||
84 | #define FASTLANE_DMA_ESI 0x01 /* Enable SCSI IRQ */ | ||
85 | |||
86 | static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count); | ||
87 | static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp); | ||
88 | static void dma_dump_state(struct NCR_ESP *esp); | ||
89 | static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length); | ||
90 | static void dma_init_write(struct NCR_ESP *esp, __u32 vaddr, int length); | ||
91 | static void dma_ints_off(struct NCR_ESP *esp); | ||
92 | static void dma_ints_on(struct NCR_ESP *esp); | ||
93 | static int dma_irq_p(struct NCR_ESP *esp); | ||
94 | static void dma_irq_exit(struct NCR_ESP *esp); | ||
95 | static void dma_led_off(struct NCR_ESP *esp); | ||
96 | static void dma_led_on(struct NCR_ESP *esp); | ||
97 | static int dma_ports_p(struct NCR_ESP *esp); | ||
98 | static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write); | ||
99 | |||
100 | static unsigned char ctrl_data = 0; /* Keep backup of the stuff written | ||
101 | * to ctrl_reg. Always write a copy | ||
102 | * to this register when writing to | ||
103 | * the hardware register! | ||
104 | */ | ||
105 | |||
106 | static volatile unsigned char cmd_buffer[16]; | ||
107 | /* This is where all commands are put | ||
108 | * before they are transferred to the ESP chip | ||
109 | * via PIO. | ||
110 | */ | ||
111 | |||
112 | static inline void dma_clear(struct NCR_ESP *esp) | ||
113 | { | ||
114 | struct fastlane_dma_registers *dregs = | ||
115 | (struct fastlane_dma_registers *) (esp->dregs); | ||
116 | unsigned long *t; | ||
117 | |||
118 | ctrl_data = (ctrl_data & FASTLANE_DMA_MASK); | ||
119 | dregs->ctrl_reg = ctrl_data; | ||
120 | |||
121 | t = (unsigned long *)(esp->edev); | ||
122 | |||
123 | dregs->clear_strobe = 0; | ||
124 | *t = 0 ; | ||
125 | } | ||
126 | |||
127 | /***************************************************************** Detection */ | ||
128 | int __init fastlane_esp_detect(struct scsi_host_template *tpnt) | ||
129 | { | ||
130 | struct NCR_ESP *esp; | ||
131 | struct zorro_dev *z = NULL; | ||
132 | unsigned long address; | ||
133 | |||
134 | if ((z = zorro_find_device(ZORRO_PROD_PHASE5_BLIZZARD_1230_II_FASTLANE_Z3_CYBERSCSI_CYBERSTORM060, z))) { | ||
135 | unsigned long board = z->resource.start; | ||
136 | if (request_mem_region(board+FASTLANE_ESP_ADDR, | ||
137 | sizeof(struct ESP_regs), "NCR53C9x")) { | ||
138 | /* Check if this is really a fastlane controller. The problem | ||
139 | * is that also the cyberstorm and blizzard controllers use | ||
140 | * this ID value. Fortunately only Fastlane maps in Z3 space | ||
141 | */ | ||
142 | if (board < 0x1000000) { | ||
143 | goto err_release; | ||
144 | } | ||
145 | esp = esp_allocate(tpnt, (void *)board + FASTLANE_ESP_ADDR, 0); | ||
146 | |||
147 | /* Do command transfer with programmed I/O */ | ||
148 | esp->do_pio_cmds = 1; | ||
149 | |||
150 | /* Required functions */ | ||
151 | esp->dma_bytes_sent = &dma_bytes_sent; | ||
152 | esp->dma_can_transfer = &dma_can_transfer; | ||
153 | esp->dma_dump_state = &dma_dump_state; | ||
154 | esp->dma_init_read = &dma_init_read; | ||
155 | esp->dma_init_write = &dma_init_write; | ||
156 | esp->dma_ints_off = &dma_ints_off; | ||
157 | esp->dma_ints_on = &dma_ints_on; | ||
158 | esp->dma_irq_p = &dma_irq_p; | ||
159 | esp->dma_ports_p = &dma_ports_p; | ||
160 | esp->dma_setup = &dma_setup; | ||
161 | |||
162 | /* Optional functions */ | ||
163 | esp->dma_barrier = 0; | ||
164 | esp->dma_drain = 0; | ||
165 | esp->dma_invalidate = 0; | ||
166 | esp->dma_irq_entry = 0; | ||
167 | esp->dma_irq_exit = &dma_irq_exit; | ||
168 | esp->dma_led_on = &dma_led_on; | ||
169 | esp->dma_led_off = &dma_led_off; | ||
170 | esp->dma_poll = 0; | ||
171 | esp->dma_reset = 0; | ||
172 | |||
173 | /* Initialize the portBits (enable IRQs) */ | ||
174 | ctrl_data = (FASTLANE_DMA_FCODE | | ||
175 | #ifndef NODMAIRQ | ||
176 | FASTLANE_DMA_EDI | | ||
177 | #endif | ||
178 | FASTLANE_DMA_ESI); | ||
179 | |||
180 | |||
181 | /* SCSI chip clock */ | ||
182 | esp->cfreq = 40000000; | ||
183 | |||
184 | |||
185 | /* Map the physical address space into virtual kernel space */ | ||
186 | address = (unsigned long) | ||
187 | z_ioremap(board, z->resource.end-board+1); | ||
188 | |||
189 | if(!address){ | ||
190 | printk("Could not remap Fastlane controller memory!"); | ||
191 | goto err_unregister; | ||
192 | } | ||
193 | |||
194 | |||
195 | /* The DMA registers on the Fastlane are mapped | ||
196 | * relative to the device (i.e. in the same Zorro | ||
197 | * I/O block). | ||
198 | */ | ||
199 | esp->dregs = (void *)(address + FASTLANE_DMA_ADDR); | ||
200 | |||
201 | /* ESP register base */ | ||
202 | esp->eregs = (struct ESP_regs *)(address + FASTLANE_ESP_ADDR); | ||
203 | |||
204 | /* Board base */ | ||
205 | esp->edev = (void *) address; | ||
206 | |||
207 | /* Set the command buffer */ | ||
208 | esp->esp_command = cmd_buffer; | ||
209 | esp->esp_command_dvma = virt_to_bus((void *)cmd_buffer); | ||
210 | |||
211 | esp->irq = IRQ_AMIGA_PORTS; | ||
212 | esp->slot = board+FASTLANE_ESP_ADDR; | ||
213 | if (request_irq(IRQ_AMIGA_PORTS, esp_intr, IRQF_SHARED, | ||
214 | "Fastlane SCSI", esp->ehost)) { | ||
215 | printk(KERN_WARNING "Fastlane: Could not get IRQ%d, aborting.\n", IRQ_AMIGA_PORTS); | ||
216 | goto err_unmap; | ||
217 | } | ||
218 | |||
219 | /* Controller ID */ | ||
220 | esp->scsi_id = 7; | ||
221 | |||
222 | /* We don't have a differential SCSI-bus. */ | ||
223 | esp->diff = 0; | ||
224 | |||
225 | dma_clear(esp); | ||
226 | esp_initialize(esp); | ||
227 | |||
228 | printk("ESP: Total of %d ESP hosts found, %d actually in use.\n", nesps, esps_in_use); | ||
229 | esps_running = esps_in_use; | ||
230 | return esps_in_use; | ||
231 | } | ||
232 | } | ||
233 | return 0; | ||
234 | |||
235 | err_unmap: | ||
236 | z_iounmap((void *)address); | ||
237 | err_unregister: | ||
238 | scsi_unregister (esp->ehost); | ||
239 | err_release: | ||
240 | release_mem_region(z->resource.start+FASTLANE_ESP_ADDR, | ||
241 | sizeof(struct ESP_regs)); | ||
242 | return 0; | ||
243 | } | ||
244 | |||
245 | |||
246 | /************************************************************* DMA Functions */ | ||
247 | static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count) | ||
248 | { | ||
249 | /* Since the Fastlane DMA is fully dedicated to the ESP chip, | ||
250 | * the number of bytes sent (to the ESP chip) equals the number | ||
251 | * of bytes in the FIFO - there is no buffering in the DMA controller. | ||
252 | * XXXX Do I read this right? It is from host to ESP, right? | ||
253 | */ | ||
254 | return fifo_count; | ||
255 | } | ||
256 | |||
257 | static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp) | ||
258 | { | ||
259 | unsigned long sz = sp->SCp.this_residual; | ||
260 | if(sz > 0xfffc) | ||
261 | sz = 0xfffc; | ||
262 | return sz; | ||
263 | } | ||
264 | |||
265 | static void dma_dump_state(struct NCR_ESP *esp) | ||
266 | { | ||
267 | ESPLOG(("esp%d: dma -- cond_reg<%02x>\n", | ||
268 | esp->esp_id, ((struct fastlane_dma_registers *) | ||
269 | (esp->dregs))->cond_reg)); | ||
270 | ESPLOG(("intreq:<%04x>, intena:<%04x>\n", | ||
271 | amiga_custom.intreqr, amiga_custom.intenar)); | ||
272 | } | ||
273 | |||
274 | static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length) | ||
275 | { | ||
276 | struct fastlane_dma_registers *dregs = | ||
277 | (struct fastlane_dma_registers *) (esp->dregs); | ||
278 | unsigned long *t; | ||
279 | |||
280 | cache_clear(addr, length); | ||
281 | |||
282 | dma_clear(esp); | ||
283 | |||
284 | t = (unsigned long *)((addr & 0x00ffffff) + esp->edev); | ||
285 | |||
286 | dregs->clear_strobe = 0; | ||
287 | *t = addr; | ||
288 | |||
289 | ctrl_data = (ctrl_data & FASTLANE_DMA_MASK) | FASTLANE_DMA_ENABLE; | ||
290 | dregs->ctrl_reg = ctrl_data; | ||
291 | } | ||
292 | |||
293 | static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length) | ||
294 | { | ||
295 | struct fastlane_dma_registers *dregs = | ||
296 | (struct fastlane_dma_registers *) (esp->dregs); | ||
297 | unsigned long *t; | ||
298 | |||
299 | cache_push(addr, length); | ||
300 | |||
301 | dma_clear(esp); | ||
302 | |||
303 | t = (unsigned long *)((addr & 0x00ffffff) + (esp->edev)); | ||
304 | |||
305 | dregs->clear_strobe = 0; | ||
306 | *t = addr; | ||
307 | |||
308 | ctrl_data = ((ctrl_data & FASTLANE_DMA_MASK) | | ||
309 | FASTLANE_DMA_ENABLE | | ||
310 | FASTLANE_DMA_WRITE); | ||
311 | dregs->ctrl_reg = ctrl_data; | ||
312 | } | ||
313 | |||
314 | |||
315 | static void dma_ints_off(struct NCR_ESP *esp) | ||
316 | { | ||
317 | disable_irq(esp->irq); | ||
318 | } | ||
319 | |||
320 | static void dma_ints_on(struct NCR_ESP *esp) | ||
321 | { | ||
322 | enable_irq(esp->irq); | ||
323 | } | ||
324 | |||
325 | static void dma_irq_exit(struct NCR_ESP *esp) | ||
326 | { | ||
327 | struct fastlane_dma_registers *dregs = | ||
328 | (struct fastlane_dma_registers *) (esp->dregs); | ||
329 | |||
330 | dregs->ctrl_reg = ctrl_data & ~(FASTLANE_DMA_EDI|FASTLANE_DMA_ESI); | ||
331 | #ifdef __mc68000__ | ||
332 | nop(); | ||
333 | #endif | ||
334 | dregs->ctrl_reg = ctrl_data; | ||
335 | } | ||
336 | |||
337 | static int dma_irq_p(struct NCR_ESP *esp) | ||
338 | { | ||
339 | struct fastlane_dma_registers *dregs = | ||
340 | (struct fastlane_dma_registers *) (esp->dregs); | ||
341 | unsigned char dma_status; | ||
342 | |||
343 | dma_status = dregs->cond_reg; | ||
344 | |||
345 | if(dma_status & FASTLANE_DMA_IACT) | ||
346 | return 0; /* not our IRQ */ | ||
347 | |||
348 | /* Return non-zero if ESP requested IRQ */ | ||
349 | return ( | ||
350 | #ifndef NODMAIRQ | ||
351 | (dma_status & FASTLANE_DMA_CREQ) && | ||
352 | #endif | ||
353 | (!(dma_status & FASTLANE_DMA_MINT)) && | ||
354 | (esp_read(((struct ESP_regs *) (esp->eregs))->esp_status) & ESP_STAT_INTR)); | ||
355 | } | ||
356 | |||
357 | static void dma_led_off(struct NCR_ESP *esp) | ||
358 | { | ||
359 | ctrl_data &= ~FASTLANE_DMA_LED; | ||
360 | ((struct fastlane_dma_registers *)(esp->dregs))->ctrl_reg = ctrl_data; | ||
361 | } | ||
362 | |||
363 | static void dma_led_on(struct NCR_ESP *esp) | ||
364 | { | ||
365 | ctrl_data |= FASTLANE_DMA_LED; | ||
366 | ((struct fastlane_dma_registers *)(esp->dregs))->ctrl_reg = ctrl_data; | ||
367 | } | ||
368 | |||
369 | static int dma_ports_p(struct NCR_ESP *esp) | ||
370 | { | ||
371 | return ((amiga_custom.intenar) & IF_PORTS); | ||
372 | } | ||
373 | |||
374 | static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write) | ||
375 | { | ||
376 | /* On the Sparc, DMA_ST_WRITE means "move data from device to memory" | ||
377 | * so when (write) is true, it actually means READ! | ||
378 | */ | ||
379 | if(write){ | ||
380 | dma_init_read(esp, addr, count); | ||
381 | } else { | ||
382 | dma_init_write(esp, addr, count); | ||
383 | } | ||
384 | } | ||
385 | |||
386 | #define HOSTS_C | ||
387 | |||
388 | int fastlane_esp_release(struct Scsi_Host *instance) | ||
389 | { | ||
390 | #ifdef MODULE | ||
391 | unsigned long address = (unsigned long)((struct NCR_ESP *)instance->hostdata)->edev; | ||
392 | esp_deallocate((struct NCR_ESP *)instance->hostdata); | ||
393 | esp_release(); | ||
394 | release_mem_region(address, sizeof(struct ESP_regs)); | ||
395 | free_irq(IRQ_AMIGA_PORTS, esp_intr); | ||
396 | #endif | ||
397 | return 1; | ||
398 | } | ||
399 | |||
400 | |||
401 | static struct scsi_host_template driver_template = { | ||
402 | .proc_name = "esp-fastlane", | ||
403 | .proc_info = esp_proc_info, | ||
404 | .name = "Fastlane SCSI", | ||
405 | .detect = fastlane_esp_detect, | ||
406 | .slave_alloc = esp_slave_alloc, | ||
407 | .slave_destroy = esp_slave_destroy, | ||
408 | .release = fastlane_esp_release, | ||
409 | .queuecommand = esp_queue, | ||
410 | .eh_abort_handler = esp_abort, | ||
411 | .eh_bus_reset_handler = esp_reset, | ||
412 | .can_queue = 7, | ||
413 | .this_id = 7, | ||
414 | .sg_tablesize = SG_ALL, | ||
415 | .cmd_per_lun = 1, | ||
416 | .use_clustering = ENABLE_CLUSTERING | ||
417 | }; | ||
418 | |||
419 | #include "scsi_module.c" | ||
420 | |||
421 | MODULE_LICENSE("GPL"); | ||
diff --git a/drivers/scsi/mac_esp.c b/drivers/scsi/mac_esp.c deleted file mode 100644 index bcb49021b7e2..000000000000 --- a/drivers/scsi/mac_esp.c +++ /dev/null | |||
@@ -1,751 +0,0 @@ | |||
1 | /* | ||
2 | * 68k mac 53c9[46] scsi driver | ||
3 | * | ||
4 | * copyright (c) 1998, David Weis weisd3458@uni.edu | ||
5 | * | ||
6 | * debugging on Quadra 800 and 660AV Michael Schmitz, Dave Kilzer 7/98 | ||
7 | * | ||
8 | * based loosely on cyber_esp.c | ||
9 | */ | ||
10 | |||
11 | /* these are unused for now */ | ||
12 | #define myreadl(addr) (*(volatile unsigned int *) (addr)) | ||
13 | #define mywritel(b, addr) ((*(volatile unsigned int *) (addr)) = (b)) | ||
14 | |||
15 | |||
16 | #include <linux/kernel.h> | ||
17 | #include <linux/delay.h> | ||
18 | #include <linux/types.h> | ||
19 | #include <linux/ctype.h> | ||
20 | #include <linux/string.h> | ||
21 | #include <linux/slab.h> | ||
22 | #include <linux/blkdev.h> | ||
23 | #include <linux/proc_fs.h> | ||
24 | #include <linux/stat.h> | ||
25 | #include <linux/init.h> | ||
26 | #include <linux/interrupt.h> | ||
27 | |||
28 | #include "scsi.h" | ||
29 | #include <scsi/scsi_host.h> | ||
30 | #include "NCR53C9x.h" | ||
31 | |||
32 | #include <asm/io.h> | ||
33 | |||
34 | #include <asm/setup.h> | ||
35 | #include <asm/irq.h> | ||
36 | #include <asm/macints.h> | ||
37 | #include <asm/machw.h> | ||
38 | #include <asm/mac_via.h> | ||
39 | |||
40 | #include <asm/pgtable.h> | ||
41 | |||
42 | #include <asm/macintosh.h> | ||
43 | |||
44 | /* #define DEBUG_MAC_ESP */ | ||
45 | |||
46 | extern void esp_handle(struct NCR_ESP *esp); | ||
47 | extern void mac_esp_intr(int irq, void *dev_id); | ||
48 | |||
49 | static int dma_bytes_sent(struct NCR_ESP * esp, int fifo_count); | ||
50 | static int dma_can_transfer(struct NCR_ESP * esp, Scsi_Cmnd *sp); | ||
51 | static void dma_dump_state(struct NCR_ESP * esp); | ||
52 | static void dma_init_read(struct NCR_ESP * esp, char * vaddress, int length); | ||
53 | static void dma_init_write(struct NCR_ESP * esp, char * vaddress, int length); | ||
54 | static void dma_ints_off(struct NCR_ESP * esp); | ||
55 | static void dma_ints_on(struct NCR_ESP * esp); | ||
56 | static int dma_irq_p(struct NCR_ESP * esp); | ||
57 | static int dma_irq_p_quick(struct NCR_ESP * esp); | ||
58 | static void dma_led_off(struct NCR_ESP * esp); | ||
59 | static void dma_led_on(struct NCR_ESP *esp); | ||
60 | static int dma_ports_p(struct NCR_ESP *esp); | ||
61 | static void dma_setup(struct NCR_ESP * esp, __u32 addr, int count, int write); | ||
62 | static void dma_setup_quick(struct NCR_ESP * esp, __u32 addr, int count, int write); | ||
63 | |||
64 | static int esp_dafb_dma_irq_p(struct NCR_ESP * espdev); | ||
65 | static int esp_iosb_dma_irq_p(struct NCR_ESP * espdev); | ||
66 | |||
67 | static volatile unsigned char cmd_buffer[16]; | ||
68 | /* This is where all commands are put | ||
69 | * before they are transferred to the ESP chip | ||
70 | * via PIO. | ||
71 | */ | ||
72 | |||
73 | static int esp_initialized = 0; | ||
74 | |||
75 | static int setup_num_esps = -1; | ||
76 | static int setup_disconnect = -1; | ||
77 | static int setup_nosync = -1; | ||
78 | static int setup_can_queue = -1; | ||
79 | static int setup_cmd_per_lun = -1; | ||
80 | static int setup_sg_tablesize = -1; | ||
81 | #ifdef SUPPORT_TAGS | ||
82 | static int setup_use_tagged_queuing = -1; | ||
83 | #endif | ||
84 | static int setup_hostid = -1; | ||
85 | |||
86 | /* | ||
87 | * Experimental ESP inthandler; check macints.c to make sure dev_id is | ||
88 | * set up properly! | ||
89 | */ | ||
90 | |||
91 | void mac_esp_intr(int irq, void *dev_id) | ||
92 | { | ||
93 | struct NCR_ESP *esp = (struct NCR_ESP *) dev_id; | ||
94 | int irq_p = 0; | ||
95 | |||
96 | /* Handle the one ESP interrupt showing at this IRQ level. */ | ||
97 | if(((esp)->irq & 0xff) == irq) { | ||
98 | /* | ||
99 | * Debug .. | ||
100 | */ | ||
101 | irq_p = esp->dma_irq_p(esp); | ||
102 | printk("mac_esp: irq_p %x current %p disconnected %p\n", | ||
103 | irq_p, esp->current_SC, esp->disconnected_SC); | ||
104 | |||
105 | /* | ||
106 | * Mac: if we're here, it's an ESP interrupt for sure! | ||
107 | */ | ||
108 | if((esp->current_SC || esp->disconnected_SC)) { | ||
109 | esp->dma_ints_off(esp); | ||
110 | |||
111 | ESPIRQ(("I%d(", esp->esp_id)); | ||
112 | esp_handle(esp); | ||
113 | ESPIRQ((")")); | ||
114 | |||
115 | esp->dma_ints_on(esp); | ||
116 | } | ||
117 | } | ||
118 | } | ||
119 | |||
120 | /* | ||
121 | * Debug hooks; use for playing with the interrupt flag testing and interrupt | ||
122 | * acknowledge on the various machines | ||
123 | */ | ||
124 | |||
125 | void scsi_esp_polled(int irq, void *dev_id) | ||
126 | { | ||
127 | if (esp_initialized == 0) | ||
128 | return; | ||
129 | |||
130 | mac_esp_intr(irq, dev_id); | ||
131 | } | ||
132 | |||
133 | void fake_intr(int irq, void *dev_id) | ||
134 | { | ||
135 | #ifdef DEBUG_MAC_ESP | ||
136 | printk("mac_esp: got irq\n"); | ||
137 | #endif | ||
138 | |||
139 | mac_esp_intr(irq, dev_id); | ||
140 | } | ||
141 | |||
142 | irqreturn_t fake_drq(int irq, void *dev_id) | ||
143 | { | ||
144 | printk("mac_esp: got drq\n"); | ||
145 | return IRQ_HANDLED; | ||
146 | } | ||
147 | |||
148 | #define DRIVER_SETUP | ||
149 | |||
150 | /* | ||
151 | * Function : mac_esp_setup(char *str) | ||
152 | * | ||
153 | * Purpose : booter command line initialization of the overrides array, | ||
154 | * | ||
155 | * Inputs : str - parameters, separated by commas. | ||
156 | * | ||
157 | * Currently unused in the new driver; need to add settable parameters to the | ||
158 | * detect function. | ||
159 | * | ||
160 | */ | ||
161 | |||
162 | static int __init mac_esp_setup(char *str) { | ||
163 | #ifdef DRIVER_SETUP | ||
164 | /* Format of mac53c9x parameter is: | ||
165 | * mac53c9x=<num_esps>,<disconnect>,<nosync>,<can_queue>,<cmd_per_lun>,<sg_tablesize>,<hostid>,<use_tags> | ||
166 | * Negative values mean don't change. | ||
167 | */ | ||
168 | |||
169 | char *this_opt; | ||
170 | long opt; | ||
171 | |||
172 | this_opt = strsep (&str, ","); | ||
173 | if(this_opt) { | ||
174 | opt = simple_strtol( this_opt, NULL, 0 ); | ||
175 | |||
176 | if (opt >= 0 && opt <= 2) | ||
177 | setup_num_esps = opt; | ||
178 | else if (opt > 2) | ||
179 | printk( "mac_esp_setup: invalid number of hosts %ld !\n", opt ); | ||
180 | |||
181 | this_opt = strsep (&str, ","); | ||
182 | } | ||
183 | if(this_opt) { | ||
184 | opt = simple_strtol( this_opt, NULL, 0 ); | ||
185 | |||
186 | if (opt > 0) | ||
187 | setup_disconnect = opt; | ||
188 | |||
189 | this_opt = strsep (&str, ","); | ||
190 | } | ||
191 | if(this_opt) { | ||
192 | opt = simple_strtol( this_opt, NULL, 0 ); | ||
193 | |||
194 | if (opt >= 0) | ||
195 | setup_nosync = opt; | ||
196 | |||
197 | this_opt = strsep (&str, ","); | ||
198 | } | ||
199 | if(this_opt) { | ||
200 | opt = simple_strtol( this_opt, NULL, 0 ); | ||
201 | |||
202 | if (opt > 0) | ||
203 | setup_can_queue = opt; | ||
204 | |||
205 | this_opt = strsep (&str, ","); | ||
206 | } | ||
207 | if(this_opt) { | ||
208 | opt = simple_strtol( this_opt, NULL, 0 ); | ||
209 | |||
210 | if (opt > 0) | ||
211 | setup_cmd_per_lun = opt; | ||
212 | |||
213 | this_opt = strsep (&str, ","); | ||
214 | } | ||
215 | if(this_opt) { | ||
216 | opt = simple_strtol( this_opt, NULL, 0 ); | ||
217 | |||
218 | if (opt >= 0) { | ||
219 | setup_sg_tablesize = opt; | ||
220 | /* Must be <= SG_ALL (255) */ | ||
221 | if (setup_sg_tablesize > SG_ALL) | ||
222 | setup_sg_tablesize = SG_ALL; | ||
223 | } | ||
224 | |||
225 | this_opt = strsep (&str, ","); | ||
226 | } | ||
227 | if(this_opt) { | ||
228 | opt = simple_strtol( this_opt, NULL, 0 ); | ||
229 | |||
230 | /* Must be between 0 and 7 */ | ||
231 | if (opt >= 0 && opt <= 7) | ||
232 | setup_hostid = opt; | ||
233 | else if (opt > 7) | ||
234 | printk( "mac_esp_setup: invalid host ID %ld !\n", opt); | ||
235 | |||
236 | this_opt = strsep (&str, ","); | ||
237 | } | ||
238 | #ifdef SUPPORT_TAGS | ||
239 | if(this_opt) { | ||
240 | opt = simple_strtol( this_opt, NULL, 0 ); | ||
241 | if (opt >= 0) | ||
242 | setup_use_tagged_queuing = !!opt; | ||
243 | } | ||
244 | #endif | ||
245 | #endif | ||
246 | return 1; | ||
247 | } | ||
248 | |||
249 | __setup("mac53c9x=", mac_esp_setup); | ||
250 | |||
251 | |||
252 | /* | ||
253 | * ESP address 'detection' | ||
254 | */ | ||
255 | |||
256 | unsigned long get_base(int chip_num) | ||
257 | { | ||
258 | /* | ||
259 | * using the chip_num and mac model, figure out where the | ||
260 | * chips are mapped | ||
261 | */ | ||
262 | |||
263 | unsigned long io_base = 0x50f00000; | ||
264 | unsigned int second_offset = 0x402; | ||
265 | unsigned long scsi_loc = 0; | ||
266 | |||
267 | switch (macintosh_config->scsi_type) { | ||
268 | |||
269 | /* 950, 900, 700 */ | ||
270 | case MAC_SCSI_QUADRA2: | ||
271 | scsi_loc = io_base + 0xf000 + ((chip_num == 0) ? 0 : second_offset); | ||
272 | break; | ||
273 | |||
274 | /* av's */ | ||
275 | case MAC_SCSI_QUADRA3: | ||
276 | scsi_loc = io_base + 0x18000 + ((chip_num == 0) ? 0 : second_offset); | ||
277 | break; | ||
278 | |||
279 | /* most quadra/centris models are like this */ | ||
280 | case MAC_SCSI_QUADRA: | ||
281 | scsi_loc = io_base + 0x10000; | ||
282 | break; | ||
283 | |||
284 | default: | ||
285 | printk("mac_esp: get_base: hit default!\n"); | ||
286 | scsi_loc = io_base + 0x10000; | ||
287 | break; | ||
288 | |||
289 | } /* switch */ | ||
290 | |||
291 | printk("mac_esp: io base at 0x%lx\n", scsi_loc); | ||
292 | |||
293 | return scsi_loc; | ||
294 | } | ||
295 | |||
296 | /* | ||
297 | * Model dependent ESP setup | ||
298 | */ | ||
299 | |||
300 | int mac_esp_detect(struct scsi_host_template * tpnt) | ||
301 | { | ||
302 | int quick = 0; | ||
303 | int chipnum, chipspresent = 0; | ||
304 | #if 0 | ||
305 | unsigned long timeout; | ||
306 | #endif | ||
307 | |||
308 | if (esp_initialized > 0) | ||
309 | return -ENODEV; | ||
310 | |||
311 | /* what do we have in this machine... */ | ||
312 | if (MACHW_PRESENT(MAC_SCSI_96)) { | ||
313 | chipspresent ++; | ||
314 | } | ||
315 | |||
316 | if (MACHW_PRESENT(MAC_SCSI_96_2)) { | ||
317 | chipspresent ++; | ||
318 | } | ||
319 | |||
320 | /* number of ESPs present ? */ | ||
321 | if (setup_num_esps >= 0) { | ||
322 | if (chipspresent >= setup_num_esps) | ||
323 | chipspresent = setup_num_esps; | ||
324 | else | ||
325 | printk("mac_esp_detect: num_hosts detected %d setup %d \n", | ||
326 | chipspresent, setup_num_esps); | ||
327 | } | ||
328 | |||
329 | /* TODO: add disconnect / nosync flags */ | ||
330 | |||
331 | /* setup variables */ | ||
332 | tpnt->can_queue = | ||
333 | (setup_can_queue > 0) ? setup_can_queue : 7; | ||
334 | tpnt->cmd_per_lun = | ||
335 | (setup_cmd_per_lun > 0) ? setup_cmd_per_lun : 1; | ||
336 | tpnt->sg_tablesize = | ||
337 | (setup_sg_tablesize >= 0) ? setup_sg_tablesize : SG_ALL; | ||
338 | |||
339 | if (setup_hostid >= 0) | ||
340 | tpnt->this_id = setup_hostid; | ||
341 | else { | ||
342 | /* use 7 as default */ | ||
343 | tpnt->this_id = 7; | ||
344 | } | ||
345 | |||
346 | #ifdef SUPPORT_TAGS | ||
347 | if (setup_use_tagged_queuing < 0) | ||
348 | setup_use_tagged_queuing = DEFAULT_USE_TAGGED_QUEUING; | ||
349 | #endif | ||
350 | |||
351 | for (chipnum = 0; chipnum < chipspresent; chipnum ++) { | ||
352 | struct NCR_ESP * esp; | ||
353 | |||
354 | esp = esp_allocate(tpnt, NULL, 0); | ||
355 | esp->eregs = (struct ESP_regs *) get_base(chipnum); | ||
356 | |||
357 | esp->dma_irq_p = &esp_dafb_dma_irq_p; | ||
358 | if (chipnum == 0) { | ||
359 | |||
360 | if (macintosh_config->scsi_type == MAC_SCSI_QUADRA) { | ||
361 | /* most machines except those below :-) */ | ||
362 | quick = 1; | ||
363 | esp->dma_irq_p = &esp_iosb_dma_irq_p; | ||
364 | } else if (macintosh_config->scsi_type == MAC_SCSI_QUADRA3) { | ||
365 | /* mostly av's */ | ||
366 | quick = 0; | ||
367 | } else { | ||
368 | /* q950, 900, 700 */ | ||
369 | quick = 1; | ||
370 | out_be32(0xf9800024, 0x1d1); | ||
371 | esp->dregs = (void *) 0xf9800024; | ||
372 | } | ||
373 | |||
374 | } else { /* chipnum */ | ||
375 | |||
376 | quick = 1; | ||
377 | out_be32(0xf9800028, 0x1d1); | ||
378 | esp->dregs = (void *) 0xf9800028; | ||
379 | |||
380 | } /* chipnum == 0 */ | ||
381 | |||
382 | /* use pio for command bytes; pio for message/data: TBI */ | ||
383 | esp->do_pio_cmds = 1; | ||
384 | |||
385 | /* Set the command buffer */ | ||
386 | esp->esp_command = (volatile unsigned char*) cmd_buffer; | ||
387 | esp->esp_command_dvma = (__u32) cmd_buffer; | ||
388 | |||
389 | /* various functions */ | ||
390 | esp->dma_bytes_sent = &dma_bytes_sent; | ||
391 | esp->dma_can_transfer = &dma_can_transfer; | ||
392 | esp->dma_dump_state = &dma_dump_state; | ||
393 | esp->dma_init_read = NULL; | ||
394 | esp->dma_init_write = NULL; | ||
395 | esp->dma_ints_off = &dma_ints_off; | ||
396 | esp->dma_ints_on = &dma_ints_on; | ||
397 | |||
398 | esp->dma_ports_p = &dma_ports_p; | ||
399 | |||
400 | |||
401 | /* Optional functions */ | ||
402 | esp->dma_barrier = NULL; | ||
403 | esp->dma_drain = NULL; | ||
404 | esp->dma_invalidate = NULL; | ||
405 | esp->dma_irq_entry = NULL; | ||
406 | esp->dma_irq_exit = NULL; | ||
407 | esp->dma_led_on = NULL; | ||
408 | esp->dma_led_off = NULL; | ||
409 | esp->dma_poll = NULL; | ||
410 | esp->dma_reset = NULL; | ||
411 | |||
412 | /* SCSI chip speed */ | ||
413 | /* below esp->cfreq = 40000000; */ | ||
414 | |||
415 | |||
416 | if (quick) { | ||
417 | /* 'quick' means there's handshake glue logic like in the 5380 case */ | ||
418 | esp->dma_setup = &dma_setup_quick; | ||
419 | } else { | ||
420 | esp->dma_setup = &dma_setup; | ||
421 | } | ||
422 | |||
423 | if (chipnum == 0) { | ||
424 | |||
425 | esp->irq = IRQ_MAC_SCSI; | ||
426 | |||
427 | request_irq(IRQ_MAC_SCSI, esp_intr, 0, "Mac ESP SCSI", esp->ehost); | ||
428 | #if 0 /* conflicts with IOP ADB */ | ||
429 | request_irq(IRQ_MAC_SCSIDRQ, fake_drq, 0, "Mac ESP DRQ", esp->ehost); | ||
430 | #endif | ||
431 | |||
432 | if (macintosh_config->scsi_type == MAC_SCSI_QUADRA) { | ||
433 | esp->cfreq = 16500000; | ||
434 | } else { | ||
435 | esp->cfreq = 25000000; | ||
436 | } | ||
437 | |||
438 | |||
439 | } else { /* chipnum == 1 */ | ||
440 | |||
441 | esp->irq = IRQ_MAC_SCSIDRQ; | ||
442 | #if 0 /* conflicts with IOP ADB */ | ||
443 | request_irq(IRQ_MAC_SCSIDRQ, esp_intr, 0, "Mac ESP SCSI 2", esp->ehost); | ||
444 | #endif | ||
445 | |||
446 | esp->cfreq = 25000000; | ||
447 | |||
448 | } | ||
449 | |||
450 | if (quick) { | ||
451 | printk("esp: using quick version\n"); | ||
452 | } | ||
453 | |||
454 | printk("esp: addr at 0x%p\n", esp->eregs); | ||
455 | |||
456 | esp->scsi_id = 7; | ||
457 | esp->diff = 0; | ||
458 | |||
459 | esp_initialize(esp); | ||
460 | |||
461 | } /* for chipnum */ | ||
462 | |||
463 | if (chipspresent) | ||
464 | printk("\nmac_esp: %d esp controllers found\n", chipspresent); | ||
465 | |||
466 | esp_initialized = chipspresent; | ||
467 | |||
468 | return chipspresent; | ||
469 | } | ||
470 | |||
471 | static int mac_esp_release(struct Scsi_Host *shost) | ||
472 | { | ||
473 | if (shost->irq) | ||
474 | free_irq(shost->irq, NULL); | ||
475 | if (shost->io_port && shost->n_io_port) | ||
476 | release_region(shost->io_port, shost->n_io_port); | ||
477 | scsi_unregister(shost); | ||
478 | return 0; | ||
479 | } | ||
480 | |||
481 | /* | ||
482 | * I've been wondering what this is supposed to do, for some time. Talking | ||
483 | * to Allen Briggs: These machines have an extra register someplace where the | ||
484 | * DRQ pin of the ESP can be monitored. That isn't useful for determining | ||
485 | * anything else (such as reselect interrupt or other magic) though. | ||
486 | * Maybe make the semantics should be changed like | ||
487 | * if (esp->current_SC) | ||
488 | * ... check DRQ flag ... | ||
489 | * else | ||
490 | * ... disconnected, check pending VIA interrupt ... | ||
491 | * | ||
492 | * There's a problem with using the dabf flag or mac_irq_pending() here: both | ||
493 | * seem to return 1 even though no interrupt is currently pending, resulting | ||
494 | * in esp_exec_cmd() holding off the next command, and possibly infinite loops | ||
495 | * in esp_intr(). | ||
496 | * Short term fix: just use esp_status & ESP_STAT_INTR here, as long as we | ||
497 | * use simple PIO. The DRQ status will be important when implementing pseudo | ||
498 | * DMA mode (set up ESP transfer count, return, do a batch of bytes in PIO or | ||
499 | * 'hardware handshake' mode upon DRQ). | ||
500 | * If you plan on changing this (i.e. to save the esp_status register access in | ||
501 | * favor of a VIA register access or a shadow register for the IFR), make sure | ||
502 | * to try a debug version of this first to monitor what registers would be a good | ||
503 | * indicator of the ESP interrupt. | ||
504 | */ | ||
505 | |||
506 | static int esp_dafb_dma_irq_p(struct NCR_ESP * esp) | ||
507 | { | ||
508 | unsigned int ret; | ||
509 | int sreg = esp_read(esp->eregs->esp_status); | ||
510 | |||
511 | #ifdef DEBUG_MAC_ESP | ||
512 | printk("mac_esp: esp_dafb_dma_irq_p dafb %d irq %d\n", | ||
513 | readl(esp->dregs), mac_irq_pending(IRQ_MAC_SCSI)); | ||
514 | #endif | ||
515 | |||
516 | sreg &= ESP_STAT_INTR; | ||
517 | |||
518 | /* | ||
519 | * maybe working; this is essentially what's used for iosb_dma_irq_p | ||
520 | */ | ||
521 | if (sreg) | ||
522 | return 1; | ||
523 | else | ||
524 | return 0; | ||
525 | |||
526 | /* | ||
527 | * didn't work ... | ||
528 | */ | ||
529 | #if 0 | ||
530 | if (esp->current_SC) | ||
531 | ret = readl(esp->dregs) & 0x200; | ||
532 | else if (esp->disconnected_SC) | ||
533 | ret = 1; /* sreg ?? */ | ||
534 | else | ||
535 | ret = mac_irq_pending(IRQ_MAC_SCSI); | ||
536 | |||
537 | return(ret); | ||
538 | #endif | ||
539 | |||
540 | } | ||
541 | |||
542 | /* | ||
543 | * See above: testing mac_irq_pending always returned 8 (SCSI IRQ) regardless | ||
544 | * of the actual ESP status. | ||
545 | */ | ||
546 | |||
547 | static int esp_iosb_dma_irq_p(struct NCR_ESP * esp) | ||
548 | { | ||
549 | int ret = mac_irq_pending(IRQ_MAC_SCSI) || mac_irq_pending(IRQ_MAC_SCSIDRQ); | ||
550 | int sreg = esp_read(esp->eregs->esp_status); | ||
551 | |||
552 | #ifdef DEBUG_MAC_ESP | ||
553 | printk("mac_esp: dma_irq_p drq %d irq %d sreg %x curr %p disc %p\n", | ||
554 | mac_irq_pending(IRQ_MAC_SCSIDRQ), mac_irq_pending(IRQ_MAC_SCSI), | ||
555 | sreg, esp->current_SC, esp->disconnected_SC); | ||
556 | #endif | ||
557 | |||
558 | sreg &= ESP_STAT_INTR; | ||
559 | |||
560 | if (sreg) | ||
561 | return (sreg); | ||
562 | else | ||
563 | return 0; | ||
564 | } | ||
565 | |||
566 | /* | ||
567 | * This seems to be OK for PIO at least ... usually 0 after PIO. | ||
568 | */ | ||
569 | |||
570 | static int dma_bytes_sent(struct NCR_ESP * esp, int fifo_count) | ||
571 | { | ||
572 | |||
573 | #ifdef DEBUG_MAC_ESP | ||
574 | printk("mac_esp: dma bytes sent = %x\n", fifo_count); | ||
575 | #endif | ||
576 | |||
577 | return fifo_count; | ||
578 | } | ||
579 | |||
580 | /* | ||
581 | * dma_can_transfer is used to switch between DMA and PIO, if DMA (pseudo) | ||
582 | * is ever implemented. Returning 0 here will use PIO. | ||
583 | */ | ||
584 | |||
585 | static int dma_can_transfer(struct NCR_ESP * esp, Scsi_Cmnd * sp) | ||
586 | { | ||
587 | unsigned long sz = sp->SCp.this_residual; | ||
588 | #if 0 /* no DMA yet; make conditional */ | ||
589 | if (sz > 0x10000000) { | ||
590 | sz = 0x10000000; | ||
591 | } | ||
592 | printk("mac_esp: dma can transfer = 0lx%x\n", sz); | ||
593 | #else | ||
594 | |||
595 | #ifdef DEBUG_MAC_ESP | ||
596 | printk("mac_esp: pio to transfer = %ld\n", sz); | ||
597 | #endif | ||
598 | |||
599 | sz = 0; | ||
600 | #endif | ||
601 | return sz; | ||
602 | } | ||
603 | |||
604 | /* | ||
605 | * Not yet ... | ||
606 | */ | ||
607 | |||
608 | static void dma_dump_state(struct NCR_ESP * esp) | ||
609 | { | ||
610 | #ifdef DEBUG_MAC_ESP | ||
611 | printk("mac_esp: dma_dump_state: called\n"); | ||
612 | #endif | ||
613 | #if 0 | ||
614 | ESPLOG(("esp%d: dma -- cond_reg<%02x>\n", | ||
615 | esp->esp_id, ((struct mac_dma_registers *) | ||
616 | (esp->dregs))->cond_reg)); | ||
617 | #endif | ||
618 | } | ||
619 | |||
620 | /* | ||
621 | * DMA setup: should be used to set up the ESP transfer count for pseudo | ||
622 | * DMA transfers; need a DRQ transfer function to do the actual transfer | ||
623 | */ | ||
624 | |||
625 | static void dma_init_read(struct NCR_ESP * esp, char * vaddress, int length) | ||
626 | { | ||
627 | printk("mac_esp: dma_init_read\n"); | ||
628 | } | ||
629 | |||
630 | |||
631 | static void dma_init_write(struct NCR_ESP * esp, char * vaddress, int length) | ||
632 | { | ||
633 | printk("mac_esp: dma_init_write\n"); | ||
634 | } | ||
635 | |||
636 | |||
637 | static void dma_ints_off(struct NCR_ESP * esp) | ||
638 | { | ||
639 | disable_irq(esp->irq); | ||
640 | } | ||
641 | |||
642 | |||
643 | static void dma_ints_on(struct NCR_ESP * esp) | ||
644 | { | ||
645 | enable_irq(esp->irq); | ||
646 | } | ||
647 | |||
648 | /* | ||
649 | * generic dma_irq_p(), unused | ||
650 | */ | ||
651 | |||
652 | static int dma_irq_p(struct NCR_ESP * esp) | ||
653 | { | ||
654 | int i = esp_read(esp->eregs->esp_status); | ||
655 | |||
656 | #ifdef DEBUG_MAC_ESP | ||
657 | printk("mac_esp: dma_irq_p status %d\n", i); | ||
658 | #endif | ||
659 | |||
660 | return (i & ESP_STAT_INTR); | ||
661 | } | ||
662 | |||
663 | static int dma_irq_p_quick(struct NCR_ESP * esp) | ||
664 | { | ||
665 | /* | ||
666 | * Copied from iosb_dma_irq_p() | ||
667 | */ | ||
668 | int ret = mac_irq_pending(IRQ_MAC_SCSI) || mac_irq_pending(IRQ_MAC_SCSIDRQ); | ||
669 | int sreg = esp_read(esp->eregs->esp_status); | ||
670 | |||
671 | #ifdef DEBUG_MAC_ESP | ||
672 | printk("mac_esp: dma_irq_p drq %d irq %d sreg %x curr %p disc %p\n", | ||
673 | mac_irq_pending(IRQ_MAC_SCSIDRQ), mac_irq_pending(IRQ_MAC_SCSI), | ||
674 | sreg, esp->current_SC, esp->disconnected_SC); | ||
675 | #endif | ||
676 | |||
677 | sreg &= ESP_STAT_INTR; | ||
678 | |||
679 | if (sreg) | ||
680 | return (sreg); | ||
681 | else | ||
682 | return 0; | ||
683 | |||
684 | } | ||
685 | |||
686 | static void dma_led_off(struct NCR_ESP * esp) | ||
687 | { | ||
688 | #ifdef DEBUG_MAC_ESP | ||
689 | printk("mac_esp: dma_led_off: called\n"); | ||
690 | #endif | ||
691 | } | ||
692 | |||
693 | |||
694 | static void dma_led_on(struct NCR_ESP * esp) | ||
695 | { | ||
696 | #ifdef DEBUG_MAC_ESP | ||
697 | printk("mac_esp: dma_led_on: called\n"); | ||
698 | #endif | ||
699 | } | ||
700 | |||
701 | |||
702 | static int dma_ports_p(struct NCR_ESP * esp) | ||
703 | { | ||
704 | return 0; | ||
705 | } | ||
706 | |||
707 | |||
708 | static void dma_setup(struct NCR_ESP * esp, __u32 addr, int count, int write) | ||
709 | { | ||
710 | |||
711 | #ifdef DEBUG_MAC_ESP | ||
712 | printk("mac_esp: dma_setup\n"); | ||
713 | #endif | ||
714 | |||
715 | if (write) { | ||
716 | dma_init_read(esp, (char *) addr, count); | ||
717 | } else { | ||
718 | dma_init_write(esp, (char *) addr, count); | ||
719 | } | ||
720 | } | ||
721 | |||
722 | |||
723 | static void dma_setup_quick(struct NCR_ESP * esp, __u32 addr, int count, int write) | ||
724 | { | ||
725 | #ifdef DEBUG_MAC_ESP | ||
726 | printk("mac_esp: dma_setup_quick\n"); | ||
727 | #endif | ||
728 | } | ||
729 | |||
730 | static struct scsi_host_template driver_template = { | ||
731 | .proc_name = "mac_esp", | ||
732 | .name = "Mac 53C9x SCSI", | ||
733 | .detect = mac_esp_detect, | ||
734 | .slave_alloc = esp_slave_alloc, | ||
735 | .slave_destroy = esp_slave_destroy, | ||
736 | .release = mac_esp_release, | ||
737 | .info = esp_info, | ||
738 | .queuecommand = esp_queue, | ||
739 | .eh_abort_handler = esp_abort, | ||
740 | .eh_bus_reset_handler = esp_reset, | ||
741 | .can_queue = 7, | ||
742 | .this_id = 7, | ||
743 | .sg_tablesize = SG_ALL, | ||
744 | .cmd_per_lun = 1, | ||
745 | .use_clustering = DISABLE_CLUSTERING | ||
746 | }; | ||
747 | |||
748 | |||
749 | #include "scsi_module.c" | ||
750 | |||
751 | MODULE_LICENSE("GPL"); | ||
diff --git a/drivers/scsi/oktagon_esp.c b/drivers/scsi/oktagon_esp.c deleted file mode 100644 index 8e5eadbd5c51..000000000000 --- a/drivers/scsi/oktagon_esp.c +++ /dev/null | |||
@@ -1,606 +0,0 @@ | |||
1 | /* | ||
2 | * Oktagon_esp.c -- Driver for bsc Oktagon | ||
3 | * | ||
4 | * Written by Carsten Pluntke 1998 | ||
5 | * | ||
6 | * Based on cyber_esp.c | ||
7 | */ | ||
8 | |||
9 | |||
10 | #if defined(CONFIG_AMIGA) || defined(CONFIG_APUS) | ||
11 | #define USE_BOTTOM_HALF | ||
12 | #endif | ||
13 | |||
14 | #include <linux/module.h> | ||
15 | |||
16 | #include <linux/kernel.h> | ||
17 | #include <linux/delay.h> | ||
18 | #include <linux/types.h> | ||
19 | #include <linux/string.h> | ||
20 | #include <linux/slab.h> | ||
21 | #include <linux/blkdev.h> | ||
22 | #include <linux/proc_fs.h> | ||
23 | #include <linux/stat.h> | ||
24 | #include <linux/reboot.h> | ||
25 | #include <asm/system.h> | ||
26 | #include <asm/ptrace.h> | ||
27 | #include <asm/pgtable.h> | ||
28 | |||
29 | |||
30 | #include "scsi.h" | ||
31 | #include <scsi/scsi_host.h> | ||
32 | #include "NCR53C9x.h" | ||
33 | |||
34 | #include <linux/zorro.h> | ||
35 | #include <asm/irq.h> | ||
36 | #include <asm/amigaints.h> | ||
37 | #include <asm/amigahw.h> | ||
38 | |||
39 | #ifdef USE_BOTTOM_HALF | ||
40 | #include <linux/workqueue.h> | ||
41 | #include <linux/interrupt.h> | ||
42 | #endif | ||
43 | |||
44 | /* The controller registers can be found in the Z2 config area at these | ||
45 | * offsets: | ||
46 | */ | ||
47 | #define OKTAGON_ESP_ADDR 0x03000 | ||
48 | #define OKTAGON_DMA_ADDR 0x01000 | ||
49 | |||
50 | |||
51 | static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count); | ||
52 | static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp); | ||
53 | static void dma_dump_state(struct NCR_ESP *esp); | ||
54 | static void dma_init_read(struct NCR_ESP *esp, __u32 vaddress, int length); | ||
55 | static void dma_init_write(struct NCR_ESP *esp, __u32 vaddress, int length); | ||
56 | static void dma_ints_off(struct NCR_ESP *esp); | ||
57 | static void dma_ints_on(struct NCR_ESP *esp); | ||
58 | static int dma_irq_p(struct NCR_ESP *esp); | ||
59 | static void dma_led_off(struct NCR_ESP *esp); | ||
60 | static void dma_led_on(struct NCR_ESP *esp); | ||
61 | static int dma_ports_p(struct NCR_ESP *esp); | ||
62 | static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write); | ||
63 | |||
64 | static void dma_irq_exit(struct NCR_ESP *esp); | ||
65 | static void dma_invalidate(struct NCR_ESP *esp); | ||
66 | |||
67 | static void dma_mmu_get_scsi_one(struct NCR_ESP *,Scsi_Cmnd *); | ||
68 | static void dma_mmu_get_scsi_sgl(struct NCR_ESP *,Scsi_Cmnd *); | ||
69 | static void dma_mmu_release_scsi_one(struct NCR_ESP *,Scsi_Cmnd *); | ||
70 | static void dma_mmu_release_scsi_sgl(struct NCR_ESP *,Scsi_Cmnd *); | ||
71 | static void dma_advance_sg(Scsi_Cmnd *); | ||
72 | static int oktagon_notify_reboot(struct notifier_block *this, unsigned long code, void *x); | ||
73 | |||
74 | #ifdef USE_BOTTOM_HALF | ||
75 | static void dma_commit(struct work_struct *unused); | ||
76 | |||
77 | long oktag_to_io(long *paddr, long *addr, long len); | ||
78 | long oktag_from_io(long *addr, long *paddr, long len); | ||
79 | |||
80 | static DECLARE_WORK(tq_fake_dma, dma_commit); | ||
81 | |||
82 | #define DMA_MAXTRANSFER 0x8000 | ||
83 | |||
84 | #else | ||
85 | |||
86 | /* | ||
87 | * No bottom half. Use transfer directly from IRQ. Find a narrow path | ||
88 | * between too much IRQ overhead and clogging the IRQ for too long. | ||
89 | */ | ||
90 | |||
91 | #define DMA_MAXTRANSFER 0x1000 | ||
92 | |||
93 | #endif | ||
94 | |||
95 | static struct notifier_block oktagon_notifier = { | ||
96 | oktagon_notify_reboot, | ||
97 | NULL, | ||
98 | 0 | ||
99 | }; | ||
100 | |||
101 | static long *paddress; | ||
102 | static long *address; | ||
103 | static long len; | ||
104 | static long dma_on; | ||
105 | static int direction; | ||
106 | static struct NCR_ESP *current_esp; | ||
107 | |||
108 | |||
109 | static volatile unsigned char cmd_buffer[16]; | ||
110 | /* This is where all commands are put | ||
111 | * before they are trasfered to the ESP chip | ||
112 | * via PIO. | ||
113 | */ | ||
114 | |||
115 | /***************************************************************** Detection */ | ||
116 | int oktagon_esp_detect(struct scsi_host_template *tpnt) | ||
117 | { | ||
118 | struct NCR_ESP *esp; | ||
119 | struct zorro_dev *z = NULL; | ||
120 | unsigned long address; | ||
121 | struct ESP_regs *eregs; | ||
122 | |||
123 | while ((z = zorro_find_device(ZORRO_PROD_BSC_OKTAGON_2008, z))) { | ||
124 | unsigned long board = z->resource.start; | ||
125 | if (request_mem_region(board+OKTAGON_ESP_ADDR, | ||
126 | sizeof(struct ESP_regs), "NCR53C9x")) { | ||
127 | /* | ||
128 | * It is a SCSI controller. | ||
129 | * Hardwire Host adapter to SCSI ID 7 | ||
130 | */ | ||
131 | |||
132 | address = (unsigned long)ZTWO_VADDR(board); | ||
133 | eregs = (struct ESP_regs *)(address + OKTAGON_ESP_ADDR); | ||
134 | |||
135 | /* This line was 5 lines lower */ | ||
136 | esp = esp_allocate(tpnt, (void *)board + OKTAGON_ESP_ADDR, 0); | ||
137 | |||
138 | /* we have to shift the registers only one bit for oktagon */ | ||
139 | esp->shift = 1; | ||
140 | |||
141 | esp_write(eregs->esp_cfg1, (ESP_CONFIG1_PENABLE | 7)); | ||
142 | udelay(5); | ||
143 | if (esp_read(eregs->esp_cfg1) != (ESP_CONFIG1_PENABLE | 7)) | ||
144 | return 0; /* Bail out if address did not hold data */ | ||
145 | |||
146 | /* Do command transfer with programmed I/O */ | ||
147 | esp->do_pio_cmds = 1; | ||
148 | |||
149 | /* Required functions */ | ||
150 | esp->dma_bytes_sent = &dma_bytes_sent; | ||
151 | esp->dma_can_transfer = &dma_can_transfer; | ||
152 | esp->dma_dump_state = &dma_dump_state; | ||
153 | esp->dma_init_read = &dma_init_read; | ||
154 | esp->dma_init_write = &dma_init_write; | ||
155 | esp->dma_ints_off = &dma_ints_off; | ||
156 | esp->dma_ints_on = &dma_ints_on; | ||
157 | esp->dma_irq_p = &dma_irq_p; | ||
158 | esp->dma_ports_p = &dma_ports_p; | ||
159 | esp->dma_setup = &dma_setup; | ||
160 | |||
161 | /* Optional functions */ | ||
162 | esp->dma_barrier = 0; | ||
163 | esp->dma_drain = 0; | ||
164 | esp->dma_invalidate = &dma_invalidate; | ||
165 | esp->dma_irq_entry = 0; | ||
166 | esp->dma_irq_exit = &dma_irq_exit; | ||
167 | esp->dma_led_on = &dma_led_on; | ||
168 | esp->dma_led_off = &dma_led_off; | ||
169 | esp->dma_poll = 0; | ||
170 | esp->dma_reset = 0; | ||
171 | |||
172 | esp->dma_mmu_get_scsi_one = &dma_mmu_get_scsi_one; | ||
173 | esp->dma_mmu_get_scsi_sgl = &dma_mmu_get_scsi_sgl; | ||
174 | esp->dma_mmu_release_scsi_one = &dma_mmu_release_scsi_one; | ||
175 | esp->dma_mmu_release_scsi_sgl = &dma_mmu_release_scsi_sgl; | ||
176 | esp->dma_advance_sg = &dma_advance_sg; | ||
177 | |||
178 | /* SCSI chip speed */ | ||
179 | /* Looking at the quartz of the SCSI board... */ | ||
180 | esp->cfreq = 25000000; | ||
181 | |||
182 | /* The DMA registers on the CyberStorm are mapped | ||
183 | * relative to the device (i.e. in the same Zorro | ||
184 | * I/O block). | ||
185 | */ | ||
186 | esp->dregs = (void *)(address + OKTAGON_DMA_ADDR); | ||
187 | |||
188 | paddress = (long *) esp->dregs; | ||
189 | |||
190 | /* ESP register base */ | ||
191 | esp->eregs = eregs; | ||
192 | |||
193 | /* Set the command buffer */ | ||
194 | esp->esp_command = (volatile unsigned char*) cmd_buffer; | ||
195 | |||
196 | /* Yes, the virtual address. See below. */ | ||
197 | esp->esp_command_dvma = (__u32) cmd_buffer; | ||
198 | |||
199 | esp->irq = IRQ_AMIGA_PORTS; | ||
200 | request_irq(IRQ_AMIGA_PORTS, esp_intr, IRQF_SHARED, | ||
201 | "BSC Oktagon SCSI", esp->ehost); | ||
202 | |||
203 | /* Figure out our scsi ID on the bus */ | ||
204 | esp->scsi_id = 7; | ||
205 | |||
206 | /* We don't have a differential SCSI-bus. */ | ||
207 | esp->diff = 0; | ||
208 | |||
209 | esp_initialize(esp); | ||
210 | |||
211 | printk("ESP_Oktagon Driver 1.1" | ||
212 | #ifdef USE_BOTTOM_HALF | ||
213 | " [BOTTOM_HALF]" | ||
214 | #else | ||
215 | " [IRQ]" | ||
216 | #endif | ||
217 | " registered.\n"); | ||
218 | printk("ESP: Total of %d ESP hosts found, %d actually in use.\n", nesps,esps_in_use); | ||
219 | esps_running = esps_in_use; | ||
220 | current_esp = esp; | ||
221 | register_reboot_notifier(&oktagon_notifier); | ||
222 | return esps_in_use; | ||
223 | } | ||
224 | } | ||
225 | return 0; | ||
226 | } | ||
227 | |||
228 | |||
229 | /* | ||
230 | * On certain configurations the SCSI equipment gets confused on reboot, | ||
231 | * so we have to reset it then. | ||
232 | */ | ||
233 | |||
234 | static int | ||
235 | oktagon_notify_reboot(struct notifier_block *this, unsigned long code, void *x) | ||
236 | { | ||
237 | struct NCR_ESP *esp; | ||
238 | |||
239 | if((code == SYS_DOWN || code == SYS_HALT) && (esp = current_esp)) | ||
240 | { | ||
241 | esp_bootup_reset(esp,esp->eregs); | ||
242 | udelay(500); /* Settle time. Maybe unnecessary. */ | ||
243 | } | ||
244 | return NOTIFY_DONE; | ||
245 | } | ||
246 | |||
247 | |||
248 | |||
249 | #ifdef USE_BOTTOM_HALF | ||
250 | |||
251 | |||
252 | /* | ||
253 | * The bsc Oktagon controller has no real DMA, so we have to do the 'DMA | ||
254 | * transfer' in the interrupt (Yikes!) or use a bottom half to not to clutter | ||
255 | * IRQ's for longer-than-good. | ||
256 | * | ||
257 | * FIXME | ||
258 | * BIG PROBLEM: 'len' is usually the buffer length, not the expected length | ||
259 | * of the data. So DMA may finish prematurely, further reads lead to | ||
260 | * 'machine check' on APUS systems (don't know about m68k systems, AmigaOS | ||
261 | * deliberately ignores the bus faults) and a normal copy-loop can't | ||
262 | * be exited prematurely just at the right moment by the dma_invalidate IRQ. | ||
263 | * So do it the hard way, write an own copier in assembler and | ||
264 | * catch the exception. | ||
265 | * -- Carsten | ||
266 | */ | ||
267 | |||
268 | |||
269 | static void dma_commit(struct work_struct *unused) | ||
270 | { | ||
271 | long wait,len2,pos; | ||
272 | struct NCR_ESP *esp; | ||
273 | |||
274 | ESPDATA(("Transfer: %ld bytes, Address 0x%08lX, Direction: %d\n", | ||
275 | len,(long) address,direction)); | ||
276 | dma_ints_off(current_esp); | ||
277 | |||
278 | pos = 0; | ||
279 | wait = 1; | ||
280 | if(direction) /* write? (memory to device) */ | ||
281 | { | ||
282 | while(len > 0) | ||
283 | { | ||
284 | len2 = oktag_to_io(paddress, address+pos, len); | ||
285 | if(!len2) | ||
286 | { | ||
287 | if(wait > 1000) | ||
288 | { | ||
289 | printk("Expedited DMA exit (writing) %ld\n",len); | ||
290 | break; | ||
291 | } | ||
292 | mdelay(wait); | ||
293 | wait *= 2; | ||
294 | } | ||
295 | pos += len2; | ||
296 | len -= len2*sizeof(long); | ||
297 | } | ||
298 | } else { | ||
299 | while(len > 0) | ||
300 | { | ||
301 | len2 = oktag_from_io(address+pos, paddress, len); | ||
302 | if(!len2) | ||
303 | { | ||
304 | if(wait > 1000) | ||
305 | { | ||
306 | printk("Expedited DMA exit (reading) %ld\n",len); | ||
307 | break; | ||
308 | } | ||
309 | mdelay(wait); | ||
310 | wait *= 2; | ||
311 | } | ||
312 | pos += len2; | ||
313 | len -= len2*sizeof(long); | ||
314 | } | ||
315 | } | ||
316 | |||
317 | /* to make esp->shift work */ | ||
318 | esp=current_esp; | ||
319 | |||
320 | #if 0 | ||
321 | len2 = (esp_read(current_esp->eregs->esp_tclow) & 0xff) | | ||
322 | ((esp_read(current_esp->eregs->esp_tcmed) & 0xff) << 8); | ||
323 | |||
324 | /* | ||
325 | * Uh uh. If you see this, len and transfer count registers were out of | ||
326 | * sync. That means really serious trouble. | ||
327 | */ | ||
328 | |||
329 | if(len2) | ||
330 | printk("Eeeek!! Transfer count still %ld!\n",len2); | ||
331 | #endif | ||
332 | |||
333 | /* | ||
334 | * Normally we just need to exit and wait for the interrupt to come. | ||
335 | * But at least one device (my Microtek ScanMaker 630) regularly mis- | ||
336 | * calculates the bytes it should send which is really ugly because | ||
337 | * it locks up the SCSI bus if not accounted for. | ||
338 | */ | ||
339 | |||
340 | if(!(esp_read(current_esp->eregs->esp_status) & ESP_STAT_INTR)) | ||
341 | { | ||
342 | long len = 100; | ||
343 | long trash[10]; | ||
344 | |||
345 | /* | ||
346 | * Interrupt bit was not set. Either the device is just plain lazy | ||
347 | * so we give it a 10 ms chance or... | ||
348 | */ | ||
349 | while(len-- && (!(esp_read(current_esp->eregs->esp_status) & ESP_STAT_INTR))) | ||
350 | udelay(100); | ||
351 | |||
352 | |||
353 | if(!(esp_read(current_esp->eregs->esp_status) & ESP_STAT_INTR)) | ||
354 | { | ||
355 | /* | ||
356 | * So we think that the transfer count is out of sync. Since we | ||
357 | * have all we want we are happy and can ditch the trash. | ||
358 | */ | ||
359 | |||
360 | len = DMA_MAXTRANSFER; | ||
361 | |||
362 | while(len-- && (!(esp_read(current_esp->eregs->esp_status) & ESP_STAT_INTR))) | ||
363 | oktag_from_io(trash,paddress,2); | ||
364 | |||
365 | if(!(esp_read(current_esp->eregs->esp_status) & ESP_STAT_INTR)) | ||
366 | { | ||
367 | /* | ||
368 | * Things really have gone wrong. If we leave the system in that | ||
369 | * state, the SCSI bus is locked forever. I hope that this will | ||
370 | * turn the system in a more or less running state. | ||
371 | */ | ||
372 | printk("Device is bolixed, trying bus reset...\n"); | ||
373 | esp_bootup_reset(current_esp,current_esp->eregs); | ||
374 | } | ||
375 | } | ||
376 | } | ||
377 | |||
378 | ESPDATA(("Transfer_finale: do_data_finale should come\n")); | ||
379 | |||
380 | len = 0; | ||
381 | dma_on = 0; | ||
382 | dma_ints_on(current_esp); | ||
383 | } | ||
384 | |||
385 | #endif | ||
386 | |||
387 | /************************************************************* DMA Functions */ | ||
388 | static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count) | ||
389 | { | ||
390 | /* Since the CyberStorm DMA is fully dedicated to the ESP chip, | ||
391 | * the number of bytes sent (to the ESP chip) equals the number | ||
392 | * of bytes in the FIFO - there is no buffering in the DMA controller. | ||
393 | * XXXX Do I read this right? It is from host to ESP, right? | ||
394 | */ | ||
395 | return fifo_count; | ||
396 | } | ||
397 | |||
398 | static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp) | ||
399 | { | ||
400 | unsigned long sz = sp->SCp.this_residual; | ||
401 | if(sz > DMA_MAXTRANSFER) | ||
402 | sz = DMA_MAXTRANSFER; | ||
403 | return sz; | ||
404 | } | ||
405 | |||
406 | static void dma_dump_state(struct NCR_ESP *esp) | ||
407 | { | ||
408 | } | ||
409 | |||
410 | /* | ||
411 | * What the f$@& is this? | ||
412 | * | ||
413 | * Some SCSI devices (like my Microtek ScanMaker 630 scanner) want to transfer | ||
414 | * more data than requested. How much? Dunno. So ditch the bogus data into | ||
415 | * the sink, hoping the device will advance to the next phase sooner or later. | ||
416 | * | ||
417 | * -- Carsten | ||
418 | */ | ||
419 | |||
420 | static long oktag_eva_buffer[16]; /* The data sink */ | ||
421 | |||
422 | static void oktag_check_dma(void) | ||
423 | { | ||
424 | struct NCR_ESP *esp; | ||
425 | |||
426 | esp=current_esp; | ||
427 | if(!len) | ||
428 | { | ||
429 | address = oktag_eva_buffer; | ||
430 | len = 2; | ||
431 | /* esp_do_data sets them to zero like len */ | ||
432 | esp_write(current_esp->eregs->esp_tclow,2); | ||
433 | esp_write(current_esp->eregs->esp_tcmed,0); | ||
434 | } | ||
435 | } | ||
436 | |||
437 | static void dma_init_read(struct NCR_ESP *esp, __u32 vaddress, int length) | ||
438 | { | ||
439 | /* Zorro is noncached, everything else done using processor. */ | ||
440 | /* cache_clear(addr, length); */ | ||
441 | |||
442 | if(dma_on) | ||
443 | panic("dma_init_read while dma process is initialized/running!\n"); | ||
444 | direction = 0; | ||
445 | address = (long *) vaddress; | ||
446 | current_esp = esp; | ||
447 | len = length; | ||
448 | oktag_check_dma(); | ||
449 | dma_on = 1; | ||
450 | } | ||
451 | |||
452 | static void dma_init_write(struct NCR_ESP *esp, __u32 vaddress, int length) | ||
453 | { | ||
454 | /* cache_push(addr, length); */ | ||
455 | |||
456 | if(dma_on) | ||
457 | panic("dma_init_write while dma process is initialized/running!\n"); | ||
458 | direction = 1; | ||
459 | address = (long *) vaddress; | ||
460 | current_esp = esp; | ||
461 | len = length; | ||
462 | oktag_check_dma(); | ||
463 | dma_on = 1; | ||
464 | } | ||
465 | |||
466 | static void dma_ints_off(struct NCR_ESP *esp) | ||
467 | { | ||
468 | disable_irq(esp->irq); | ||
469 | } | ||
470 | |||
471 | static void dma_ints_on(struct NCR_ESP *esp) | ||
472 | { | ||
473 | enable_irq(esp->irq); | ||
474 | } | ||
475 | |||
476 | static int dma_irq_p(struct NCR_ESP *esp) | ||
477 | { | ||
478 | /* It's important to check the DMA IRQ bit in the correct way! */ | ||
479 | return (esp_read(esp->eregs->esp_status) & ESP_STAT_INTR); | ||
480 | } | ||
481 | |||
482 | static void dma_led_off(struct NCR_ESP *esp) | ||
483 | { | ||
484 | } | ||
485 | |||
486 | static void dma_led_on(struct NCR_ESP *esp) | ||
487 | { | ||
488 | } | ||
489 | |||
490 | static int dma_ports_p(struct NCR_ESP *esp) | ||
491 | { | ||
492 | return ((amiga_custom.intenar) & IF_PORTS); | ||
493 | } | ||
494 | |||
495 | static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write) | ||
496 | { | ||
497 | /* On the Sparc, DMA_ST_WRITE means "move data from device to memory" | ||
498 | * so when (write) is true, it actually means READ! | ||
499 | */ | ||
500 | if(write){ | ||
501 | dma_init_read(esp, addr, count); | ||
502 | } else { | ||
503 | dma_init_write(esp, addr, count); | ||
504 | } | ||
505 | } | ||
506 | |||
507 | /* | ||
508 | * IRQ entry when DMA transfer is ready to be started | ||
509 | */ | ||
510 | |||
511 | static void dma_irq_exit(struct NCR_ESP *esp) | ||
512 | { | ||
513 | #ifdef USE_BOTTOM_HALF | ||
514 | if(dma_on) | ||
515 | { | ||
516 | schedule_work(&tq_fake_dma); | ||
517 | } | ||
518 | #else | ||
519 | while(len && !dma_irq_p(esp)) | ||
520 | { | ||
521 | if(direction) | ||
522 | *paddress = *address++; | ||
523 | else | ||
524 | *address++ = *paddress; | ||
525 | len -= (sizeof(long)); | ||
526 | } | ||
527 | len = 0; | ||
528 | dma_on = 0; | ||
529 | #endif | ||
530 | } | ||
531 | |||
532 | /* | ||
533 | * IRQ entry when DMA has just finished | ||
534 | */ | ||
535 | |||
536 | static void dma_invalidate(struct NCR_ESP *esp) | ||
537 | { | ||
538 | } | ||
539 | |||
540 | /* | ||
541 | * Since the processor does the data transfer we have to use the custom | ||
542 | * mmu interface to pass the virtual address, not the physical. | ||
543 | */ | ||
544 | |||
545 | void dma_mmu_get_scsi_one(struct NCR_ESP *esp, Scsi_Cmnd *sp) | ||
546 | { | ||
547 | sp->SCp.ptr = | ||
548 | sp->request_buffer; | ||
549 | } | ||
550 | |||
551 | void dma_mmu_get_scsi_sgl(struct NCR_ESP *esp, Scsi_Cmnd *sp) | ||
552 | { | ||
553 | sp->SCp.ptr = sg_virt(sp->SCp.buffer); | ||
554 | } | ||
555 | |||
556 | void dma_mmu_release_scsi_one(struct NCR_ESP *esp, Scsi_Cmnd *sp) | ||
557 | { | ||
558 | } | ||
559 | |||
560 | void dma_mmu_release_scsi_sgl(struct NCR_ESP *esp, Scsi_Cmnd *sp) | ||
561 | { | ||
562 | } | ||
563 | |||
564 | void dma_advance_sg(Scsi_Cmnd *sp) | ||
565 | { | ||
566 | sp->SCp.ptr = sg_virt(sp->SCp.buffer); | ||
567 | } | ||
568 | |||
569 | |||
570 | #define HOSTS_C | ||
571 | |||
572 | int oktagon_esp_release(struct Scsi_Host *instance) | ||
573 | { | ||
574 | #ifdef MODULE | ||
575 | unsigned long address = (unsigned long)((struct NCR_ESP *)instance->hostdata)->edev; | ||
576 | esp_release(); | ||
577 | release_mem_region(address, sizeof(struct ESP_regs)); | ||
578 | free_irq(IRQ_AMIGA_PORTS, esp_intr); | ||
579 | unregister_reboot_notifier(&oktagon_notifier); | ||
580 | #endif | ||
581 | return 1; | ||
582 | } | ||
583 | |||
584 | |||
585 | static struct scsi_host_template driver_template = { | ||
586 | .proc_name = "esp-oktagon", | ||
587 | .proc_info = &esp_proc_info, | ||
588 | .name = "BSC Oktagon SCSI", | ||
589 | .detect = oktagon_esp_detect, | ||
590 | .slave_alloc = esp_slave_alloc, | ||
591 | .slave_destroy = esp_slave_destroy, | ||
592 | .release = oktagon_esp_release, | ||
593 | .queuecommand = esp_queue, | ||
594 | .eh_abort_handler = esp_abort, | ||
595 | .eh_bus_reset_handler = esp_reset, | ||
596 | .can_queue = 7, | ||
597 | .this_id = 7, | ||
598 | .sg_tablesize = SG_ALL, | ||
599 | .cmd_per_lun = 1, | ||
600 | .use_clustering = ENABLE_CLUSTERING | ||
601 | }; | ||
602 | |||
603 | |||
604 | #include "scsi_module.c" | ||
605 | |||
606 | MODULE_LICENSE("GPL"); | ||
diff --git a/drivers/scsi/oktagon_io.S b/drivers/scsi/oktagon_io.S deleted file mode 100644 index 8a7340b02707..000000000000 --- a/drivers/scsi/oktagon_io.S +++ /dev/null | |||
@@ -1,194 +0,0 @@ | |||
1 | /* -*- mode: asm -*- | ||
2 | * Due to problems while transferring data I've put these routines as assembly | ||
3 | * code. | ||
4 | * Since I'm no PPC assembler guru, the code is just the assembler version of | ||
5 | |||
6 | int oktag_to_io(long *paddr,long *addr,long len) | ||
7 | { | ||
8 | long *addr2 = addr; | ||
9 | for(len=(len+sizeof(long)-1)/sizeof(long);len--;) | ||
10 | *paddr = *addr2++; | ||
11 | return addr2 - addr; | ||
12 | } | ||
13 | |||
14 | int oktag_from_io(long *addr,long *paddr,long len) | ||
15 | { | ||
16 | long *addr2 = addr; | ||
17 | for(len=(len+sizeof(long)-1)/sizeof(long);len--;) | ||
18 | *addr2++ = *paddr; | ||
19 | return addr2 - addr; | ||
20 | } | ||
21 | |||
22 | * assembled using gcc -O2 -S, with two exception catch points where data | ||
23 | * is moved to/from the IO register. | ||
24 | */ | ||
25 | |||
26 | |||
27 | #ifdef CONFIG_APUS | ||
28 | |||
29 | .file "oktagon_io.c" | ||
30 | |||
31 | gcc2_compiled.: | ||
32 | /* | ||
33 | .section ".text" | ||
34 | */ | ||
35 | .align 2 | ||
36 | .globl oktag_to_io | ||
37 | .type oktag_to_io,@function | ||
38 | oktag_to_io: | ||
39 | addi 5,5,3 | ||
40 | srwi 5,5,2 | ||
41 | cmpwi 1,5,0 | ||
42 | mr 9,3 | ||
43 | mr 3,4 | ||
44 | addi 5,5,-1 | ||
45 | bc 12,6,.L3 | ||
46 | .L5: | ||
47 | cmpwi 1,5,0 | ||
48 | lwz 0,0(3) | ||
49 | addi 3,3,4 | ||
50 | addi 5,5,-1 | ||
51 | exp1: stw 0,0(9) | ||
52 | bc 4,6,.L5 | ||
53 | .L3: | ||
54 | ret1: subf 3,4,3 | ||
55 | srawi 3,3,2 | ||
56 | blr | ||
57 | .Lfe1: | ||
58 | .size oktag_to_io,.Lfe1-oktag_to_io | ||
59 | .align 2 | ||
60 | .globl oktag_from_io | ||
61 | .type oktag_from_io,@function | ||
62 | oktag_from_io: | ||
63 | addi 5,5,3 | ||
64 | srwi 5,5,2 | ||
65 | cmpwi 1,5,0 | ||
66 | mr 9,3 | ||
67 | addi 5,5,-1 | ||
68 | bc 12,6,.L9 | ||
69 | .L11: | ||
70 | cmpwi 1,5,0 | ||
71 | exp2: lwz 0,0(4) | ||
72 | addi 5,5,-1 | ||
73 | stw 0,0(3) | ||
74 | addi 3,3,4 | ||
75 | bc 4,6,.L11 | ||
76 | .L9: | ||
77 | ret2: subf 3,9,3 | ||
78 | srawi 3,3,2 | ||
79 | blr | ||
80 | .Lfe2: | ||
81 | .size oktag_from_io,.Lfe2-oktag_from_io | ||
82 | .ident "GCC: (GNU) egcs-2.90.29 980515 (egcs-1.0.3 release)" | ||
83 | |||
84 | /* | ||
85 | * Exception table. | ||
86 | * Second longword shows where to jump when an exception at the addr the first | ||
87 | * longword is pointing to is caught. | ||
88 | */ | ||
89 | |||
90 | .section __ex_table,"a" | ||
91 | .align 2 | ||
92 | oktagon_except: | ||
93 | .long exp1,ret1 | ||
94 | .long exp2,ret2 | ||
95 | |||
96 | #else | ||
97 | |||
98 | /* | ||
99 | The code which follows is for 680x0 based assembler and is meant for | ||
100 | Linux/m68k. It was created by cross compiling the code using the | ||
101 | instructions given above. I then added the four labels used in the | ||
102 | exception handler table at the bottom of this file. | ||
103 | - Kevin <kcozens@interlog.com> | ||
104 | */ | ||
105 | |||
106 | #ifdef CONFIG_AMIGA | ||
107 | |||
108 | .file "oktagon_io.c" | ||
109 | .version "01.01" | ||
110 | gcc2_compiled.: | ||
111 | .text | ||
112 | .align 2 | ||
113 | .globl oktag_to_io | ||
114 | .type oktag_to_io,@function | ||
115 | oktag_to_io: | ||
116 | link.w %a6,#0 | ||
117 | move.l %d2,-(%sp) | ||
118 | move.l 8(%a6),%a1 | ||
119 | move.l 12(%a6),%d1 | ||
120 | move.l %d1,%a0 | ||
121 | move.l 16(%a6),%d0 | ||
122 | addq.l #3,%d0 | ||
123 | lsr.l #2,%d0 | ||
124 | subq.l #1,%d0 | ||
125 | moveq.l #-1,%d2 | ||
126 | cmp.l %d0,%d2 | ||
127 | jbeq .L3 | ||
128 | .L5: | ||
129 | exp1: | ||
130 | move.l (%a0)+,(%a1) | ||
131 | dbra %d0,.L5 | ||
132 | clr.w %d0 | ||
133 | subq.l #1,%d0 | ||
134 | jbcc .L5 | ||
135 | .L3: | ||
136 | ret1: | ||
137 | move.l %a0,%d0 | ||
138 | sub.l %d1,%d0 | ||
139 | asr.l #2,%d0 | ||
140 | move.l -4(%a6),%d2 | ||
141 | unlk %a6 | ||
142 | rts | ||
143 | |||
144 | .Lfe1: | ||
145 | .size oktag_to_io,.Lfe1-oktag_to_io | ||
146 | .align 2 | ||
147 | .globl oktag_from_io | ||
148 | .type oktag_from_io,@function | ||
149 | oktag_from_io: | ||
150 | link.w %a6,#0 | ||
151 | move.l %d2,-(%sp) | ||
152 | move.l 8(%a6),%d1 | ||
153 | move.l 12(%a6),%a1 | ||
154 | move.l %d1,%a0 | ||
155 | move.l 16(%a6),%d0 | ||
156 | addq.l #3,%d0 | ||
157 | lsr.l #2,%d0 | ||
158 | subq.l #1,%d0 | ||
159 | moveq.l #-1,%d2 | ||
160 | cmp.l %d0,%d2 | ||
161 | jbeq .L9 | ||
162 | .L11: | ||
163 | exp2: | ||
164 | move.l (%a1),(%a0)+ | ||
165 | dbra %d0,.L11 | ||
166 | clr.w %d0 | ||
167 | subq.l #1,%d0 | ||
168 | jbcc .L11 | ||
169 | .L9: | ||
170 | ret2: | ||
171 | move.l %a0,%d0 | ||
172 | sub.l %d1,%d0 | ||
173 | asr.l #2,%d0 | ||
174 | move.l -4(%a6),%d2 | ||
175 | unlk %a6 | ||
176 | rts | ||
177 | .Lfe2: | ||
178 | .size oktag_from_io,.Lfe2-oktag_from_io | ||
179 | .ident "GCC: (GNU) 2.7.2.1" | ||
180 | |||
181 | /* | ||
182 | * Exception table. | ||
183 | * Second longword shows where to jump when an exception at the addr the first | ||
184 | * longword is pointing to is caught. | ||
185 | */ | ||
186 | |||
187 | .section __ex_table,"a" | ||
188 | .align 2 | ||
189 | oktagon_except: | ||
190 | .long exp1,ret1 | ||
191 | .long exp2,ret2 | ||
192 | |||
193 | #endif | ||
194 | #endif | ||