diff options
| -rw-r--r-- | mm/percpu-vm.c | 451 | ||||
| -rw-r--r-- | mm/percpu.c | 452 |
2 files changed, 475 insertions, 428 deletions
diff --git a/mm/percpu-vm.c b/mm/percpu-vm.c new file mode 100644 index 000000000000..7d9c1d0ebd3f --- /dev/null +++ b/mm/percpu-vm.c | |||
| @@ -0,0 +1,451 @@ | |||
| 1 | /* | ||
| 2 | * mm/percpu-vm.c - vmalloc area based chunk allocation | ||
| 3 | * | ||
| 4 | * Copyright (C) 2010 SUSE Linux Products GmbH | ||
| 5 | * Copyright (C) 2010 Tejun Heo <tj@kernel.org> | ||
| 6 | * | ||
| 7 | * This file is released under the GPLv2. | ||
| 8 | * | ||
| 9 | * Chunks are mapped into vmalloc areas and populated page by page. | ||
| 10 | * This is the default chunk allocator. | ||
| 11 | */ | ||
| 12 | |||
| 13 | static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk, | ||
| 14 | unsigned int cpu, int page_idx) | ||
| 15 | { | ||
| 16 | /* must not be used on pre-mapped chunk */ | ||
| 17 | WARN_ON(chunk->immutable); | ||
| 18 | |||
| 19 | return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx)); | ||
| 20 | } | ||
| 21 | |||
| 22 | /** | ||
| 23 | * pcpu_get_pages_and_bitmap - get temp pages array and bitmap | ||
| 24 | * @chunk: chunk of interest | ||
| 25 | * @bitmapp: output parameter for bitmap | ||
| 26 | * @may_alloc: may allocate the array | ||
| 27 | * | ||
| 28 | * Returns pointer to array of pointers to struct page and bitmap, | ||
| 29 | * both of which can be indexed with pcpu_page_idx(). The returned | ||
| 30 | * array is cleared to zero and *@bitmapp is copied from | ||
| 31 | * @chunk->populated. Note that there is only one array and bitmap | ||
| 32 | * and access exclusion is the caller's responsibility. | ||
| 33 | * | ||
| 34 | * CONTEXT: | ||
| 35 | * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc. | ||
| 36 | * Otherwise, don't care. | ||
| 37 | * | ||
| 38 | * RETURNS: | ||
| 39 | * Pointer to temp pages array on success, NULL on failure. | ||
| 40 | */ | ||
| 41 | static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk, | ||
| 42 | unsigned long **bitmapp, | ||
| 43 | bool may_alloc) | ||
| 44 | { | ||
| 45 | static struct page **pages; | ||
| 46 | static unsigned long *bitmap; | ||
| 47 | size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]); | ||
| 48 | size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) * | ||
| 49 | sizeof(unsigned long); | ||
| 50 | |||
| 51 | if (!pages || !bitmap) { | ||
| 52 | if (may_alloc && !pages) | ||
| 53 | pages = pcpu_mem_alloc(pages_size); | ||
| 54 | if (may_alloc && !bitmap) | ||
| 55 | bitmap = pcpu_mem_alloc(bitmap_size); | ||
| 56 | if (!pages || !bitmap) | ||
| 57 | return NULL; | ||
| 58 | } | ||
| 59 | |||
| 60 | memset(pages, 0, pages_size); | ||
| 61 | bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages); | ||
| 62 | |||
| 63 | *bitmapp = bitmap; | ||
| 64 | return pages; | ||
| 65 | } | ||
| 66 | |||
| 67 | /** | ||
| 68 | * pcpu_free_pages - free pages which were allocated for @chunk | ||
| 69 | * @chunk: chunk pages were allocated for | ||
| 70 | * @pages: array of pages to be freed, indexed by pcpu_page_idx() | ||
| 71 | * @populated: populated bitmap | ||
| 72 | * @page_start: page index of the first page to be freed | ||
| 73 | * @page_end: page index of the last page to be freed + 1 | ||
| 74 | * | ||
| 75 | * Free pages [@page_start and @page_end) in @pages for all units. | ||
| 76 | * The pages were allocated for @chunk. | ||
| 77 | */ | ||
| 78 | static void pcpu_free_pages(struct pcpu_chunk *chunk, | ||
| 79 | struct page **pages, unsigned long *populated, | ||
| 80 | int page_start, int page_end) | ||
| 81 | { | ||
| 82 | unsigned int cpu; | ||
| 83 | int i; | ||
| 84 | |||
| 85 | for_each_possible_cpu(cpu) { | ||
| 86 | for (i = page_start; i < page_end; i++) { | ||
| 87 | struct page *page = pages[pcpu_page_idx(cpu, i)]; | ||
| 88 | |||
| 89 | if (page) | ||
| 90 | __free_page(page); | ||
| 91 | } | ||
| 92 | } | ||
| 93 | } | ||
| 94 | |||
| 95 | /** | ||
| 96 | * pcpu_alloc_pages - allocates pages for @chunk | ||
| 97 | * @chunk: target chunk | ||
| 98 | * @pages: array to put the allocated pages into, indexed by pcpu_page_idx() | ||
| 99 | * @populated: populated bitmap | ||
| 100 | * @page_start: page index of the first page to be allocated | ||
| 101 | * @page_end: page index of the last page to be allocated + 1 | ||
| 102 | * | ||
| 103 | * Allocate pages [@page_start,@page_end) into @pages for all units. | ||
| 104 | * The allocation is for @chunk. Percpu core doesn't care about the | ||
| 105 | * content of @pages and will pass it verbatim to pcpu_map_pages(). | ||
| 106 | */ | ||
| 107 | static int pcpu_alloc_pages(struct pcpu_chunk *chunk, | ||
| 108 | struct page **pages, unsigned long *populated, | ||
| 109 | int page_start, int page_end) | ||
| 110 | { | ||
| 111 | const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD; | ||
| 112 | unsigned int cpu; | ||
| 113 | int i; | ||
| 114 | |||
| 115 | for_each_possible_cpu(cpu) { | ||
| 116 | for (i = page_start; i < page_end; i++) { | ||
| 117 | struct page **pagep = &pages[pcpu_page_idx(cpu, i)]; | ||
| 118 | |||
| 119 | *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0); | ||
| 120 | if (!*pagep) { | ||
| 121 | pcpu_free_pages(chunk, pages, populated, | ||
| 122 | page_start, page_end); | ||
| 123 | return -ENOMEM; | ||
| 124 | } | ||
| 125 | } | ||
| 126 | } | ||
| 127 | return 0; | ||
| 128 | } | ||
| 129 | |||
| 130 | /** | ||
| 131 | * pcpu_pre_unmap_flush - flush cache prior to unmapping | ||
| 132 | * @chunk: chunk the regions to be flushed belongs to | ||
| 133 | * @page_start: page index of the first page to be flushed | ||
| 134 | * @page_end: page index of the last page to be flushed + 1 | ||
| 135 | * | ||
| 136 | * Pages in [@page_start,@page_end) of @chunk are about to be | ||
| 137 | * unmapped. Flush cache. As each flushing trial can be very | ||
| 138 | * expensive, issue flush on the whole region at once rather than | ||
| 139 | * doing it for each cpu. This could be an overkill but is more | ||
| 140 | * scalable. | ||
| 141 | */ | ||
| 142 | static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk, | ||
| 143 | int page_start, int page_end) | ||
| 144 | { | ||
| 145 | flush_cache_vunmap( | ||
| 146 | pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), | ||
| 147 | pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); | ||
| 148 | } | ||
| 149 | |||
| 150 | static void __pcpu_unmap_pages(unsigned long addr, int nr_pages) | ||
| 151 | { | ||
| 152 | unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT); | ||
| 153 | } | ||
| 154 | |||
| 155 | /** | ||
| 156 | * pcpu_unmap_pages - unmap pages out of a pcpu_chunk | ||
| 157 | * @chunk: chunk of interest | ||
| 158 | * @pages: pages array which can be used to pass information to free | ||
| 159 | * @populated: populated bitmap | ||
| 160 | * @page_start: page index of the first page to unmap | ||
| 161 | * @page_end: page index of the last page to unmap + 1 | ||
| 162 | * | ||
| 163 | * For each cpu, unmap pages [@page_start,@page_end) out of @chunk. | ||
| 164 | * Corresponding elements in @pages were cleared by the caller and can | ||
| 165 | * be used to carry information to pcpu_free_pages() which will be | ||
| 166 | * called after all unmaps are finished. The caller should call | ||
| 167 | * proper pre/post flush functions. | ||
| 168 | */ | ||
| 169 | static void pcpu_unmap_pages(struct pcpu_chunk *chunk, | ||
| 170 | struct page **pages, unsigned long *populated, | ||
| 171 | int page_start, int page_end) | ||
| 172 | { | ||
| 173 | unsigned int cpu; | ||
| 174 | int i; | ||
| 175 | |||
| 176 | for_each_possible_cpu(cpu) { | ||
| 177 | for (i = page_start; i < page_end; i++) { | ||
| 178 | struct page *page; | ||
| 179 | |||
| 180 | page = pcpu_chunk_page(chunk, cpu, i); | ||
| 181 | WARN_ON(!page); | ||
| 182 | pages[pcpu_page_idx(cpu, i)] = page; | ||
| 183 | } | ||
| 184 | __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start), | ||
| 185 | page_end - page_start); | ||
| 186 | } | ||
| 187 | |||
| 188 | for (i = page_start; i < page_end; i++) | ||
| 189 | __clear_bit(i, populated); | ||
| 190 | } | ||
| 191 | |||
| 192 | /** | ||
| 193 | * pcpu_post_unmap_tlb_flush - flush TLB after unmapping | ||
| 194 | * @chunk: pcpu_chunk the regions to be flushed belong to | ||
| 195 | * @page_start: page index of the first page to be flushed | ||
| 196 | * @page_end: page index of the last page to be flushed + 1 | ||
| 197 | * | ||
| 198 | * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush | ||
| 199 | * TLB for the regions. This can be skipped if the area is to be | ||
| 200 | * returned to vmalloc as vmalloc will handle TLB flushing lazily. | ||
| 201 | * | ||
| 202 | * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once | ||
| 203 | * for the whole region. | ||
| 204 | */ | ||
| 205 | static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk, | ||
| 206 | int page_start, int page_end) | ||
| 207 | { | ||
| 208 | flush_tlb_kernel_range( | ||
| 209 | pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), | ||
| 210 | pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); | ||
| 211 | } | ||
| 212 | |||
| 213 | static int __pcpu_map_pages(unsigned long addr, struct page **pages, | ||
| 214 | int nr_pages) | ||
| 215 | { | ||
| 216 | return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT, | ||
| 217 | PAGE_KERNEL, pages); | ||
| 218 | } | ||
| 219 | |||
| 220 | /** | ||
| 221 | * pcpu_map_pages - map pages into a pcpu_chunk | ||
| 222 | * @chunk: chunk of interest | ||
| 223 | * @pages: pages array containing pages to be mapped | ||
| 224 | * @populated: populated bitmap | ||
| 225 | * @page_start: page index of the first page to map | ||
| 226 | * @page_end: page index of the last page to map + 1 | ||
| 227 | * | ||
| 228 | * For each cpu, map pages [@page_start,@page_end) into @chunk. The | ||
| 229 | * caller is responsible for calling pcpu_post_map_flush() after all | ||
| 230 | * mappings are complete. | ||
| 231 | * | ||
| 232 | * This function is responsible for setting corresponding bits in | ||
| 233 | * @chunk->populated bitmap and whatever is necessary for reverse | ||
| 234 | * lookup (addr -> chunk). | ||
| 235 | */ | ||
| 236 | static int pcpu_map_pages(struct pcpu_chunk *chunk, | ||
| 237 | struct page **pages, unsigned long *populated, | ||
| 238 | int page_start, int page_end) | ||
| 239 | { | ||
| 240 | unsigned int cpu, tcpu; | ||
| 241 | int i, err; | ||
| 242 | |||
| 243 | for_each_possible_cpu(cpu) { | ||
| 244 | err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start), | ||
| 245 | &pages[pcpu_page_idx(cpu, page_start)], | ||
| 246 | page_end - page_start); | ||
| 247 | if (err < 0) | ||
| 248 | goto err; | ||
| 249 | } | ||
| 250 | |||
| 251 | /* mapping successful, link chunk and mark populated */ | ||
| 252 | for (i = page_start; i < page_end; i++) { | ||
| 253 | for_each_possible_cpu(cpu) | ||
| 254 | pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)], | ||
| 255 | chunk); | ||
| 256 | __set_bit(i, populated); | ||
| 257 | } | ||
| 258 | |||
| 259 | return 0; | ||
| 260 | |||
| 261 | err: | ||
| 262 | for_each_possible_cpu(tcpu) { | ||
| 263 | if (tcpu == cpu) | ||
| 264 | break; | ||
| 265 | __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start), | ||
| 266 | page_end - page_start); | ||
| 267 | } | ||
| 268 | return err; | ||
| 269 | } | ||
| 270 | |||
| 271 | /** | ||
| 272 | * pcpu_post_map_flush - flush cache after mapping | ||
| 273 | * @chunk: pcpu_chunk the regions to be flushed belong to | ||
| 274 | * @page_start: page index of the first page to be flushed | ||
| 275 | * @page_end: page index of the last page to be flushed + 1 | ||
| 276 | * | ||
| 277 | * Pages [@page_start,@page_end) of @chunk have been mapped. Flush | ||
| 278 | * cache. | ||
| 279 | * | ||
| 280 | * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once | ||
| 281 | * for the whole region. | ||
| 282 | */ | ||
| 283 | static void pcpu_post_map_flush(struct pcpu_chunk *chunk, | ||
| 284 | int page_start, int page_end) | ||
| 285 | { | ||
| 286 | flush_cache_vmap( | ||
| 287 | pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), | ||
| 288 | pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); | ||
| 289 | } | ||
| 290 | |||
| 291 | /** | ||
| 292 | * pcpu_populate_chunk - populate and map an area of a pcpu_chunk | ||
| 293 | * @chunk: chunk of interest | ||
| 294 | * @off: offset to the area to populate | ||
| 295 | * @size: size of the area to populate in bytes | ||
| 296 | * | ||
| 297 | * For each cpu, populate and map pages [@page_start,@page_end) into | ||
| 298 | * @chunk. The area is cleared on return. | ||
| 299 | * | ||
| 300 | * CONTEXT: | ||
| 301 | * pcpu_alloc_mutex, does GFP_KERNEL allocation. | ||
| 302 | */ | ||
| 303 | static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size) | ||
| 304 | { | ||
| 305 | int page_start = PFN_DOWN(off); | ||
| 306 | int page_end = PFN_UP(off + size); | ||
| 307 | int free_end = page_start, unmap_end = page_start; | ||
| 308 | struct page **pages; | ||
| 309 | unsigned long *populated; | ||
| 310 | unsigned int cpu; | ||
| 311 | int rs, re, rc; | ||
| 312 | |||
| 313 | /* quick path, check whether all pages are already there */ | ||
| 314 | rs = page_start; | ||
| 315 | pcpu_next_pop(chunk, &rs, &re, page_end); | ||
| 316 | if (rs == page_start && re == page_end) | ||
| 317 | goto clear; | ||
| 318 | |||
| 319 | /* need to allocate and map pages, this chunk can't be immutable */ | ||
| 320 | WARN_ON(chunk->immutable); | ||
| 321 | |||
| 322 | pages = pcpu_get_pages_and_bitmap(chunk, &populated, true); | ||
| 323 | if (!pages) | ||
| 324 | return -ENOMEM; | ||
| 325 | |||
| 326 | /* alloc and map */ | ||
| 327 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { | ||
| 328 | rc = pcpu_alloc_pages(chunk, pages, populated, rs, re); | ||
| 329 | if (rc) | ||
| 330 | goto err_free; | ||
| 331 | free_end = re; | ||
| 332 | } | ||
| 333 | |||
| 334 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { | ||
| 335 | rc = pcpu_map_pages(chunk, pages, populated, rs, re); | ||
| 336 | if (rc) | ||
| 337 | goto err_unmap; | ||
| 338 | unmap_end = re; | ||
| 339 | } | ||
| 340 | pcpu_post_map_flush(chunk, page_start, page_end); | ||
| 341 | |||
| 342 | /* commit new bitmap */ | ||
| 343 | bitmap_copy(chunk->populated, populated, pcpu_unit_pages); | ||
| 344 | clear: | ||
| 345 | for_each_possible_cpu(cpu) | ||
| 346 | memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); | ||
| 347 | return 0; | ||
| 348 | |||
| 349 | err_unmap: | ||
| 350 | pcpu_pre_unmap_flush(chunk, page_start, unmap_end); | ||
| 351 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end) | ||
| 352 | pcpu_unmap_pages(chunk, pages, populated, rs, re); | ||
| 353 | pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end); | ||
| 354 | err_free: | ||
| 355 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end) | ||
| 356 | pcpu_free_pages(chunk, pages, populated, rs, re); | ||
| 357 | return rc; | ||
| 358 | } | ||
| 359 | |||
| 360 | /** | ||
| 361 | * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk | ||
| 362 | * @chunk: chunk to depopulate | ||
| 363 | * @off: offset to the area to depopulate | ||
| 364 | * @size: size of the area to depopulate in bytes | ||
| 365 | * @flush: whether to flush cache and tlb or not | ||
| 366 | * | ||
| 367 | * For each cpu, depopulate and unmap pages [@page_start,@page_end) | ||
| 368 | * from @chunk. If @flush is true, vcache is flushed before unmapping | ||
| 369 | * and tlb after. | ||
| 370 | * | ||
| 371 | * CONTEXT: | ||
| 372 | * pcpu_alloc_mutex. | ||
| 373 | */ | ||
| 374 | static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size) | ||
| 375 | { | ||
| 376 | int page_start = PFN_DOWN(off); | ||
| 377 | int page_end = PFN_UP(off + size); | ||
| 378 | struct page **pages; | ||
| 379 | unsigned long *populated; | ||
| 380 | int rs, re; | ||
| 381 | |||
| 382 | /* quick path, check whether it's empty already */ | ||
| 383 | rs = page_start; | ||
| 384 | pcpu_next_unpop(chunk, &rs, &re, page_end); | ||
| 385 | if (rs == page_start && re == page_end) | ||
| 386 | return; | ||
| 387 | |||
| 388 | /* immutable chunks can't be depopulated */ | ||
| 389 | WARN_ON(chunk->immutable); | ||
| 390 | |||
| 391 | /* | ||
| 392 | * If control reaches here, there must have been at least one | ||
| 393 | * successful population attempt so the temp pages array must | ||
| 394 | * be available now. | ||
| 395 | */ | ||
| 396 | pages = pcpu_get_pages_and_bitmap(chunk, &populated, false); | ||
| 397 | BUG_ON(!pages); | ||
| 398 | |||
| 399 | /* unmap and free */ | ||
| 400 | pcpu_pre_unmap_flush(chunk, page_start, page_end); | ||
| 401 | |||
| 402 | pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) | ||
| 403 | pcpu_unmap_pages(chunk, pages, populated, rs, re); | ||
| 404 | |||
| 405 | /* no need to flush tlb, vmalloc will handle it lazily */ | ||
| 406 | |||
| 407 | pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) | ||
| 408 | pcpu_free_pages(chunk, pages, populated, rs, re); | ||
| 409 | |||
| 410 | /* commit new bitmap */ | ||
| 411 | bitmap_copy(chunk->populated, populated, pcpu_unit_pages); | ||
| 412 | } | ||
| 413 | |||
| 414 | static struct pcpu_chunk *pcpu_create_chunk(void) | ||
| 415 | { | ||
| 416 | struct pcpu_chunk *chunk; | ||
| 417 | struct vm_struct **vms; | ||
| 418 | |||
| 419 | chunk = pcpu_alloc_chunk(); | ||
| 420 | if (!chunk) | ||
| 421 | return NULL; | ||
| 422 | |||
| 423 | vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes, | ||
| 424 | pcpu_nr_groups, pcpu_atom_size, GFP_KERNEL); | ||
| 425 | if (!vms) { | ||
| 426 | pcpu_free_chunk(chunk); | ||
| 427 | return NULL; | ||
| 428 | } | ||
| 429 | |||
| 430 | chunk->data = vms; | ||
| 431 | chunk->base_addr = vms[0]->addr - pcpu_group_offsets[0]; | ||
| 432 | return chunk; | ||
| 433 | } | ||
| 434 | |||
| 435 | static void pcpu_destroy_chunk(struct pcpu_chunk *chunk) | ||
| 436 | { | ||
| 437 | if (chunk && chunk->data) | ||
| 438 | pcpu_free_vm_areas(chunk->data, pcpu_nr_groups); | ||
| 439 | pcpu_free_chunk(chunk); | ||
| 440 | } | ||
| 441 | |||
| 442 | static struct page *pcpu_addr_to_page(void *addr) | ||
| 443 | { | ||
| 444 | return vmalloc_to_page(addr); | ||
| 445 | } | ||
| 446 | |||
| 447 | static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai) | ||
| 448 | { | ||
| 449 | /* no extra restriction */ | ||
| 450 | return 0; | ||
| 451 | } | ||
diff --git a/mm/percpu.c b/mm/percpu.c index b403d7c02c67..15f680430671 100644 --- a/mm/percpu.c +++ b/mm/percpu.c | |||
| @@ -236,15 +236,6 @@ static unsigned long __maybe_unused pcpu_chunk_addr(struct pcpu_chunk *chunk, | |||
| 236 | (page_idx << PAGE_SHIFT); | 236 | (page_idx << PAGE_SHIFT); |
| 237 | } | 237 | } |
| 238 | 238 | ||
| 239 | static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk, | ||
| 240 | unsigned int cpu, int page_idx) | ||
| 241 | { | ||
| 242 | /* must not be used on pre-mapped chunk */ | ||
| 243 | WARN_ON(chunk->immutable); | ||
| 244 | |||
| 245 | return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx)); | ||
| 246 | } | ||
| 247 | |||
| 248 | static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk, | 239 | static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk, |
| 249 | int *rs, int *re, int end) | 240 | int *rs, int *re, int end) |
| 250 | { | 241 | { |
| @@ -641,425 +632,29 @@ static void pcpu_free_chunk(struct pcpu_chunk *chunk) | |||
| 641 | kfree(chunk); | 632 | kfree(chunk); |
| 642 | } | 633 | } |
| 643 | 634 | ||
| 644 | /** | 635 | /* |
| 645 | * pcpu_get_pages_and_bitmap - get temp pages array and bitmap | 636 | * Chunk management implementation. |
| 646 | * @chunk: chunk of interest | 637 | * |
| 647 | * @bitmapp: output parameter for bitmap | 638 | * To allow different implementations, chunk alloc/free and |
| 648 | * @may_alloc: may allocate the array | 639 | * [de]population are implemented in a separate file which is pulled |
| 649 | * | 640 | * into this file and compiled together. The following functions |
| 650 | * Returns pointer to array of pointers to struct page and bitmap, | 641 | * should be implemented. |
| 651 | * both of which can be indexed with pcpu_page_idx(). The returned | 642 | * |
| 652 | * array is cleared to zero and *@bitmapp is copied from | 643 | * pcpu_populate_chunk - populate the specified range of a chunk |
| 653 | * @chunk->populated. Note that there is only one array and bitmap | 644 | * pcpu_depopulate_chunk - depopulate the specified range of a chunk |
| 654 | * and access exclusion is the caller's responsibility. | 645 | * pcpu_create_chunk - create a new chunk |
| 655 | * | 646 | * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop |
| 656 | * CONTEXT: | 647 | * pcpu_addr_to_page - translate address to physical address |
| 657 | * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc. | 648 | * pcpu_verify_alloc_info - check alloc_info is acceptable during init |
| 658 | * Otherwise, don't care. | ||
| 659 | * | ||
| 660 | * RETURNS: | ||
| 661 | * Pointer to temp pages array on success, NULL on failure. | ||
| 662 | */ | ||
| 663 | static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk, | ||
| 664 | unsigned long **bitmapp, | ||
| 665 | bool may_alloc) | ||
| 666 | { | ||
| 667 | static struct page **pages; | ||
| 668 | static unsigned long *bitmap; | ||
| 669 | size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]); | ||
| 670 | size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) * | ||
| 671 | sizeof(unsigned long); | ||
| 672 | |||
| 673 | if (!pages || !bitmap) { | ||
| 674 | if (may_alloc && !pages) | ||
| 675 | pages = pcpu_mem_alloc(pages_size); | ||
| 676 | if (may_alloc && !bitmap) | ||
| 677 | bitmap = pcpu_mem_alloc(bitmap_size); | ||
| 678 | if (!pages || !bitmap) | ||
| 679 | return NULL; | ||
| 680 | } | ||
| 681 | |||
| 682 | memset(pages, 0, pages_size); | ||
| 683 | bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages); | ||
| 684 | |||
| 685 | *bitmapp = bitmap; | ||
| 686 | return pages; | ||
| 687 | } | ||
| 688 | |||
| 689 | /** | ||
| 690 | * pcpu_free_pages - free pages which were allocated for @chunk | ||
| 691 | * @chunk: chunk pages were allocated for | ||
| 692 | * @pages: array of pages to be freed, indexed by pcpu_page_idx() | ||
| 693 | * @populated: populated bitmap | ||
| 694 | * @page_start: page index of the first page to be freed | ||
| 695 | * @page_end: page index of the last page to be freed + 1 | ||
| 696 | * | ||
| 697 | * Free pages [@page_start and @page_end) in @pages for all units. | ||
| 698 | * The pages were allocated for @chunk. | ||
| 699 | */ | ||
| 700 | static void pcpu_free_pages(struct pcpu_chunk *chunk, | ||
| 701 | struct page **pages, unsigned long *populated, | ||
| 702 | int page_start, int page_end) | ||
| 703 | { | ||
| 704 | unsigned int cpu; | ||
| 705 | int i; | ||
| 706 | |||
| 707 | for_each_possible_cpu(cpu) { | ||
| 708 | for (i = page_start; i < page_end; i++) { | ||
| 709 | struct page *page = pages[pcpu_page_idx(cpu, i)]; | ||
| 710 | |||
| 711 | if (page) | ||
| 712 | __free_page(page); | ||
| 713 | } | ||
| 714 | } | ||
| 715 | } | ||
| 716 | |||
| 717 | /** | ||
| 718 | * pcpu_alloc_pages - allocates pages for @chunk | ||
| 719 | * @chunk: target chunk | ||
| 720 | * @pages: array to put the allocated pages into, indexed by pcpu_page_idx() | ||
| 721 | * @populated: populated bitmap | ||
| 722 | * @page_start: page index of the first page to be allocated | ||
| 723 | * @page_end: page index of the last page to be allocated + 1 | ||
| 724 | * | ||
| 725 | * Allocate pages [@page_start,@page_end) into @pages for all units. | ||
| 726 | * The allocation is for @chunk. Percpu core doesn't care about the | ||
| 727 | * content of @pages and will pass it verbatim to pcpu_map_pages(). | ||
| 728 | */ | ||
| 729 | static int pcpu_alloc_pages(struct pcpu_chunk *chunk, | ||
| 730 | struct page **pages, unsigned long *populated, | ||
| 731 | int page_start, int page_end) | ||
| 732 | { | ||
| 733 | const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD; | ||
| 734 | unsigned int cpu; | ||
| 735 | int i; | ||
| 736 | |||
| 737 | for_each_possible_cpu(cpu) { | ||
| 738 | for (i = page_start; i < page_end; i++) { | ||
| 739 | struct page **pagep = &pages[pcpu_page_idx(cpu, i)]; | ||
| 740 | |||
| 741 | *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0); | ||
| 742 | if (!*pagep) { | ||
| 743 | pcpu_free_pages(chunk, pages, populated, | ||
| 744 | page_start, page_end); | ||
| 745 | return -ENOMEM; | ||
| 746 | } | ||
| 747 | } | ||
| 748 | } | ||
| 749 | return 0; | ||
| 750 | } | ||
| 751 | |||
| 752 | /** | ||
| 753 | * pcpu_pre_unmap_flush - flush cache prior to unmapping | ||
| 754 | * @chunk: chunk the regions to be flushed belongs to | ||
| 755 | * @page_start: page index of the first page to be flushed | ||
| 756 | * @page_end: page index of the last page to be flushed + 1 | ||
| 757 | * | ||
| 758 | * Pages in [@page_start,@page_end) of @chunk are about to be | ||
| 759 | * unmapped. Flush cache. As each flushing trial can be very | ||
| 760 | * expensive, issue flush on the whole region at once rather than | ||
| 761 | * doing it for each cpu. This could be an overkill but is more | ||
| 762 | * scalable. | ||
| 763 | */ | ||
| 764 | static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk, | ||
| 765 | int page_start, int page_end) | ||
| 766 | { | ||
| 767 | flush_cache_vunmap( | ||
| 768 | pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), | ||
| 769 | pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); | ||
| 770 | } | ||
| 771 | |||
| 772 | static void __pcpu_unmap_pages(unsigned long addr, int nr_pages) | ||
| 773 | { | ||
| 774 | unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT); | ||
| 775 | } | ||
| 776 | |||
| 777 | /** | ||
| 778 | * pcpu_unmap_pages - unmap pages out of a pcpu_chunk | ||
| 779 | * @chunk: chunk of interest | ||
| 780 | * @pages: pages array which can be used to pass information to free | ||
| 781 | * @populated: populated bitmap | ||
| 782 | * @page_start: page index of the first page to unmap | ||
| 783 | * @page_end: page index of the last page to unmap + 1 | ||
| 784 | * | ||
| 785 | * For each cpu, unmap pages [@page_start,@page_end) out of @chunk. | ||
| 786 | * Corresponding elements in @pages were cleared by the caller and can | ||
| 787 | * be used to carry information to pcpu_free_pages() which will be | ||
| 788 | * called after all unmaps are finished. The caller should call | ||
| 789 | * proper pre/post flush functions. | ||
| 790 | */ | ||
| 791 | static void pcpu_unmap_pages(struct pcpu_chunk *chunk, | ||
| 792 | struct page **pages, unsigned long *populated, | ||
| 793 | int page_start, int page_end) | ||
| 794 | { | ||
| 795 | unsigned int cpu; | ||
| 796 | int i; | ||
| 797 | |||
| 798 | for_each_possible_cpu(cpu) { | ||
| 799 | for (i = page_start; i < page_end; i++) { | ||
| 800 | struct page *page; | ||
| 801 | |||
| 802 | page = pcpu_chunk_page(chunk, cpu, i); | ||
| 803 | WARN_ON(!page); | ||
| 804 | pages[pcpu_page_idx(cpu, i)] = page; | ||
| 805 | } | ||
| 806 | __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start), | ||
| 807 | page_end - page_start); | ||
| 808 | } | ||
| 809 | |||
| 810 | for (i = page_start; i < page_end; i++) | ||
| 811 | __clear_bit(i, populated); | ||
| 812 | } | ||
| 813 | |||
| 814 | /** | ||
| 815 | * pcpu_post_unmap_tlb_flush - flush TLB after unmapping | ||
| 816 | * @chunk: pcpu_chunk the regions to be flushed belong to | ||
| 817 | * @page_start: page index of the first page to be flushed | ||
| 818 | * @page_end: page index of the last page to be flushed + 1 | ||
| 819 | * | ||
| 820 | * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush | ||
| 821 | * TLB for the regions. This can be skipped if the area is to be | ||
| 822 | * returned to vmalloc as vmalloc will handle TLB flushing lazily. | ||
| 823 | * | ||
| 824 | * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once | ||
| 825 | * for the whole region. | ||
| 826 | */ | ||
| 827 | static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk, | ||
| 828 | int page_start, int page_end) | ||
| 829 | { | ||
| 830 | flush_tlb_kernel_range( | ||
| 831 | pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), | ||
| 832 | pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); | ||
| 833 | } | ||
| 834 | |||
| 835 | static int __pcpu_map_pages(unsigned long addr, struct page **pages, | ||
| 836 | int nr_pages) | ||
| 837 | { | ||
| 838 | return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT, | ||
| 839 | PAGE_KERNEL, pages); | ||
| 840 | } | ||
| 841 | |||
| 842 | /** | ||
| 843 | * pcpu_map_pages - map pages into a pcpu_chunk | ||
| 844 | * @chunk: chunk of interest | ||
| 845 | * @pages: pages array containing pages to be mapped | ||
| 846 | * @populated: populated bitmap | ||
| 847 | * @page_start: page index of the first page to map | ||
| 848 | * @page_end: page index of the last page to map + 1 | ||
| 849 | * | ||
| 850 | * For each cpu, map pages [@page_start,@page_end) into @chunk. The | ||
| 851 | * caller is responsible for calling pcpu_post_map_flush() after all | ||
| 852 | * mappings are complete. | ||
| 853 | * | ||
| 854 | * This function is responsible for setting corresponding bits in | ||
| 855 | * @chunk->populated bitmap and whatever is necessary for reverse | ||
| 856 | * lookup (addr -> chunk). | ||
| 857 | */ | ||
| 858 | static int pcpu_map_pages(struct pcpu_chunk *chunk, | ||
| 859 | struct page **pages, unsigned long *populated, | ||
| 860 | int page_start, int page_end) | ||
| 861 | { | ||
| 862 | unsigned int cpu, tcpu; | ||
| 863 | int i, err; | ||
| 864 | |||
| 865 | for_each_possible_cpu(cpu) { | ||
| 866 | err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start), | ||
| 867 | &pages[pcpu_page_idx(cpu, page_start)], | ||
| 868 | page_end - page_start); | ||
| 869 | if (err < 0) | ||
| 870 | goto err; | ||
| 871 | } | ||
| 872 | |||
| 873 | /* mapping successful, link chunk and mark populated */ | ||
| 874 | for (i = page_start; i < page_end; i++) { | ||
| 875 | for_each_possible_cpu(cpu) | ||
| 876 | pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)], | ||
| 877 | chunk); | ||
| 878 | __set_bit(i, populated); | ||
| 879 | } | ||
| 880 | |||
| 881 | return 0; | ||
| 882 | |||
| 883 | err: | ||
| 884 | for_each_possible_cpu(tcpu) { | ||
| 885 | if (tcpu == cpu) | ||
| 886 | break; | ||
| 887 | __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start), | ||
| 888 | page_end - page_start); | ||
| 889 | } | ||
| 890 | return err; | ||
| 891 | } | ||
| 892 | |||
| 893 | /** | ||
| 894 | * pcpu_post_map_flush - flush cache after mapping | ||
| 895 | * @chunk: pcpu_chunk the regions to be flushed belong to | ||
| 896 | * @page_start: page index of the first page to be flushed | ||
| 897 | * @page_end: page index of the last page to be flushed + 1 | ||
| 898 | * | ||
| 899 | * Pages [@page_start,@page_end) of @chunk have been mapped. Flush | ||
| 900 | * cache. | ||
| 901 | * | ||
| 902 | * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once | ||
| 903 | * for the whole region. | ||
| 904 | */ | ||
| 905 | static void pcpu_post_map_flush(struct pcpu_chunk *chunk, | ||
| 906 | int page_start, int page_end) | ||
| 907 | { | ||
| 908 | flush_cache_vmap( | ||
| 909 | pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), | ||
| 910 | pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); | ||
| 911 | } | ||
| 912 | |||
| 913 | /** | ||
| 914 | * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk | ||
| 915 | * @chunk: chunk to depopulate | ||
| 916 | * @off: offset to the area to depopulate | ||
| 917 | * @size: size of the area to depopulate in bytes | ||
| 918 | * @flush: whether to flush cache and tlb or not | ||
| 919 | * | ||
| 920 | * For each cpu, depopulate and unmap pages [@page_start,@page_end) | ||
| 921 | * from @chunk. If @flush is true, vcache is flushed before unmapping | ||
| 922 | * and tlb after. | ||
| 923 | * | ||
| 924 | * CONTEXT: | ||
| 925 | * pcpu_alloc_mutex. | ||
| 926 | */ | ||
| 927 | static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size) | ||
| 928 | { | ||
| 929 | int page_start = PFN_DOWN(off); | ||
| 930 | int page_end = PFN_UP(off + size); | ||
| 931 | struct page **pages; | ||
| 932 | unsigned long *populated; | ||
| 933 | int rs, re; | ||
| 934 | |||
| 935 | /* quick path, check whether it's empty already */ | ||
| 936 | rs = page_start; | ||
| 937 | pcpu_next_unpop(chunk, &rs, &re, page_end); | ||
| 938 | if (rs == page_start && re == page_end) | ||
| 939 | return; | ||
| 940 | |||
| 941 | /* immutable chunks can't be depopulated */ | ||
| 942 | WARN_ON(chunk->immutable); | ||
| 943 | |||
| 944 | /* | ||
| 945 | * If control reaches here, there must have been at least one | ||
| 946 | * successful population attempt so the temp pages array must | ||
| 947 | * be available now. | ||
| 948 | */ | ||
| 949 | pages = pcpu_get_pages_and_bitmap(chunk, &populated, false); | ||
| 950 | BUG_ON(!pages); | ||
| 951 | |||
| 952 | /* unmap and free */ | ||
| 953 | pcpu_pre_unmap_flush(chunk, page_start, page_end); | ||
| 954 | |||
| 955 | pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) | ||
| 956 | pcpu_unmap_pages(chunk, pages, populated, rs, re); | ||
| 957 | |||
| 958 | /* no need to flush tlb, vmalloc will handle it lazily */ | ||
| 959 | |||
| 960 | pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) | ||
| 961 | pcpu_free_pages(chunk, pages, populated, rs, re); | ||
| 962 | |||
| 963 | /* commit new bitmap */ | ||
| 964 | bitmap_copy(chunk->populated, populated, pcpu_unit_pages); | ||
| 965 | } | ||
| 966 | |||
| 967 | /** | ||
| 968 | * pcpu_populate_chunk - populate and map an area of a pcpu_chunk | ||
| 969 | * @chunk: chunk of interest | ||
| 970 | * @off: offset to the area to populate | ||
| 971 | * @size: size of the area to populate in bytes | ||
| 972 | * | ||
| 973 | * For each cpu, populate and map pages [@page_start,@page_end) into | ||
| 974 | * @chunk. The area is cleared on return. | ||
| 975 | * | ||
| 976 | * CONTEXT: | ||
| 977 | * pcpu_alloc_mutex, does GFP_KERNEL allocation. | ||
| 978 | */ | 649 | */ |
| 979 | static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size) | 650 | static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size); |
| 980 | { | 651 | static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size); |
| 981 | int page_start = PFN_DOWN(off); | 652 | static struct pcpu_chunk *pcpu_create_chunk(void); |
| 982 | int page_end = PFN_UP(off + size); | 653 | static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); |
| 983 | int free_end = page_start, unmap_end = page_start; | 654 | static struct page *pcpu_addr_to_page(void *addr); |
| 984 | struct page **pages; | 655 | static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); |
| 985 | unsigned long *populated; | ||
| 986 | unsigned int cpu; | ||
| 987 | int rs, re, rc; | ||
| 988 | |||
| 989 | /* quick path, check whether all pages are already there */ | ||
| 990 | rs = page_start; | ||
| 991 | pcpu_next_pop(chunk, &rs, &re, page_end); | ||
| 992 | if (rs == page_start && re == page_end) | ||
| 993 | goto clear; | ||
| 994 | |||
| 995 | /* need to allocate and map pages, this chunk can't be immutable */ | ||
| 996 | WARN_ON(chunk->immutable); | ||
| 997 | |||
| 998 | pages = pcpu_get_pages_and_bitmap(chunk, &populated, true); | ||
| 999 | if (!pages) | ||
| 1000 | return -ENOMEM; | ||
| 1001 | |||
| 1002 | /* alloc and map */ | ||
| 1003 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { | ||
| 1004 | rc = pcpu_alloc_pages(chunk, pages, populated, rs, re); | ||
| 1005 | if (rc) | ||
| 1006 | goto err_free; | ||
| 1007 | free_end = re; | ||
| 1008 | } | ||
| 1009 | |||
| 1010 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { | ||
| 1011 | rc = pcpu_map_pages(chunk, pages, populated, rs, re); | ||
| 1012 | if (rc) | ||
| 1013 | goto err_unmap; | ||
| 1014 | unmap_end = re; | ||
| 1015 | } | ||
| 1016 | pcpu_post_map_flush(chunk, page_start, page_end); | ||
| 1017 | |||
| 1018 | /* commit new bitmap */ | ||
| 1019 | bitmap_copy(chunk->populated, populated, pcpu_unit_pages); | ||
| 1020 | clear: | ||
| 1021 | for_each_possible_cpu(cpu) | ||
| 1022 | memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); | ||
| 1023 | return 0; | ||
| 1024 | |||
| 1025 | err_unmap: | ||
| 1026 | pcpu_pre_unmap_flush(chunk, page_start, unmap_end); | ||
| 1027 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end) | ||
| 1028 | pcpu_unmap_pages(chunk, pages, populated, rs, re); | ||
| 1029 | pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end); | ||
| 1030 | err_free: | ||
| 1031 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end) | ||
| 1032 | pcpu_free_pages(chunk, pages, populated, rs, re); | ||
| 1033 | return rc; | ||
| 1034 | } | ||
| 1035 | 656 | ||
| 1036 | static void pcpu_destroy_chunk(struct pcpu_chunk *chunk) | 657 | #include "percpu-vm.c" |
| 1037 | { | ||
| 1038 | if (chunk && chunk->data) | ||
| 1039 | pcpu_free_vm_areas(chunk->data, pcpu_nr_groups); | ||
| 1040 | pcpu_free_chunk(chunk); | ||
| 1041 | } | ||
| 1042 | |||
| 1043 | static struct pcpu_chunk *pcpu_create_chunk(void) | ||
| 1044 | { | ||
| 1045 | struct pcpu_chunk *chunk; | ||
| 1046 | struct vm_struct **vms; | ||
| 1047 | |||
| 1048 | chunk = pcpu_alloc_chunk(); | ||
| 1049 | if (!chunk) | ||
| 1050 | return NULL; | ||
| 1051 | |||
| 1052 | vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes, | ||
| 1053 | pcpu_nr_groups, pcpu_atom_size, GFP_KERNEL); | ||
| 1054 | if (!vms) { | ||
| 1055 | pcpu_free_chunk(chunk); | ||
| 1056 | return NULL; | ||
| 1057 | } | ||
| 1058 | |||
| 1059 | chunk->data = vms; | ||
| 1060 | chunk->base_addr = vms[0]->addr - pcpu_group_offsets[0]; | ||
| 1061 | return chunk; | ||
| 1062 | } | ||
| 1063 | 658 | ||
| 1064 | /** | 659 | /** |
| 1065 | * pcpu_chunk_addr_search - determine chunk containing specified address | 660 | * pcpu_chunk_addr_search - determine chunk containing specified address |
| @@ -1086,7 +681,7 @@ static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) | |||
| 1086 | * there's no need to worry about preemption or cpu hotplug. | 681 | * there's no need to worry about preemption or cpu hotplug. |
| 1087 | */ | 682 | */ |
| 1088 | addr += pcpu_unit_offsets[raw_smp_processor_id()]; | 683 | addr += pcpu_unit_offsets[raw_smp_processor_id()]; |
| 1089 | return pcpu_get_page_chunk(vmalloc_to_page(addr)); | 684 | return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); |
| 1090 | } | 685 | } |
| 1091 | 686 | ||
| 1092 | /** | 687 | /** |
| @@ -1386,7 +981,7 @@ phys_addr_t per_cpu_ptr_to_phys(void *addr) | |||
| 1386 | else | 981 | else |
| 1387 | return page_to_phys(vmalloc_to_page(addr)); | 982 | return page_to_phys(vmalloc_to_page(addr)); |
| 1388 | } else | 983 | } else |
| 1389 | return page_to_phys(vmalloc_to_page(addr)); | 984 | return page_to_phys(pcpu_addr_to_page(addr)); |
| 1390 | } | 985 | } |
| 1391 | 986 | ||
| 1392 | static inline size_t pcpu_calc_fc_sizes(size_t static_size, | 987 | static inline size_t pcpu_calc_fc_sizes(size_t static_size, |
| @@ -1758,6 +1353,7 @@ int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, | |||
| 1758 | PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); | 1353 | PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); |
| 1759 | PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK); | 1354 | PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK); |
| 1760 | PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); | 1355 | PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); |
| 1356 | PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); | ||
| 1761 | 1357 | ||
| 1762 | /* process group information and build config tables accordingly */ | 1358 | /* process group information and build config tables accordingly */ |
| 1763 | group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0])); | 1359 | group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0])); |
