diff options
-rw-r--r-- | Documentation/hwmon/asc7621 | 296 | ||||
-rw-r--r-- | MAINTAINERS | 7 | ||||
-rw-r--r-- | drivers/hwmon/Kconfig | 13 | ||||
-rw-r--r-- | drivers/hwmon/Makefile | 1 | ||||
-rw-r--r-- | drivers/hwmon/asc7621.c | 1255 |
5 files changed, 1572 insertions, 0 deletions
diff --git a/Documentation/hwmon/asc7621 b/Documentation/hwmon/asc7621 new file mode 100644 index 000000000000..7287be7e1f21 --- /dev/null +++ b/Documentation/hwmon/asc7621 | |||
@@ -0,0 +1,296 @@ | |||
1 | Kernel driver asc7621 | ||
2 | ================== | ||
3 | |||
4 | Supported chips: | ||
5 | Andigilog aSC7621 and aSC7621a | ||
6 | Prefix: 'asc7621' | ||
7 | Addresses scanned: I2C 0x2c, 0x2d, 0x2e | ||
8 | Datasheet: http://www.fairview5.com/linux/asc7621/asc7621.pdf | ||
9 | |||
10 | Author: | ||
11 | George Joseph | ||
12 | |||
13 | Description provided by Dave Pivin @ Andigilog: | ||
14 | |||
15 | Andigilog has both the PECI and pre-PECI versions of the Heceta-6, as | ||
16 | Intel calls them. Heceta-6e has high frequency PWM and Heceta-6p has | ||
17 | added PECI and a 4th thermal zone. The Andigilog aSC7611 is the | ||
18 | Heceta-6e part and aSC7621 is the Heceta-6p part. They are both in | ||
19 | volume production, shipping to Intel and their subs. | ||
20 | |||
21 | We have enhanced both parts relative to the governing Intel | ||
22 | specification. First enhancement is temperature reading resolution. We | ||
23 | have used registers below 20h for vendor-specific functions in addition | ||
24 | to those in the Intel-specified vendor range. | ||
25 | |||
26 | Our conversion process produces a result that is reported as two bytes. | ||
27 | The fan speed control uses this finer value to produce a "step-less" fan | ||
28 | PWM output. These two bytes are "read-locked" to guarantee that once a | ||
29 | high or low byte is read, the other byte is locked-in until after the | ||
30 | next read of any register. So to get an atomic reading, read high or low | ||
31 | byte, then the very next read should be the opposite byte. Our data | ||
32 | sheet says 10-bits of resolution, although you may find the lower bits | ||
33 | are active, they are not necessarily reliable or useful externally. We | ||
34 | chose not to mask them. | ||
35 | |||
36 | We employ significant filtering that is user tunable as described in the | ||
37 | data sheet. Our temperature reports and fan PWM outputs are very smooth | ||
38 | when compared to the competition, in addition to the higher resolution | ||
39 | temperature reports. The smoother PWM output does not require user | ||
40 | intervention. | ||
41 | |||
42 | We offer GPIO features on the former VID pins. These are open-drain | ||
43 | outputs or inputs and may be used as general purpose I/O or as alarm | ||
44 | outputs that are based on temperature limits. These are in 19h and 1Ah. | ||
45 | |||
46 | We offer flexible mapping of temperature readings to thermal zones. Any | ||
47 | temperature may be mapped to any zone, which has a default assignment | ||
48 | that follows Intel's specs. | ||
49 | |||
50 | Since there is a fan to zone assignment that allows for the "hotter" of | ||
51 | a set of zones to control the PWM of an individual fan, but there is no | ||
52 | indication to the user, we have added an indicator that shows which zone | ||
53 | is currently controlling the PWM for a given fan. This is in register | ||
54 | 00h. | ||
55 | |||
56 | Both remote diode temperature readings may be given an offset value such | ||
57 | that the reported reading as well as the temperature used to determine | ||
58 | PWM may be offset for system calibration purposes. | ||
59 | |||
60 | PECI Extended configuration allows for having more than two domains per | ||
61 | PECI address and also provides an enabling function for each PECI | ||
62 | address. One could use our flexible zone assignment to have a zone | ||
63 | assigned to up to 4 PECI addresses. This is not possible in the default | ||
64 | Intel configuration. This would be useful in multi-CPU systems with | ||
65 | individual fans on each that would benefit from individual fan control. | ||
66 | This is in register 0Eh. | ||
67 | |||
68 | The tachometer measurement system is flexible and able to adapt to many | ||
69 | fan types. We can also support pulse-stretched PWM so that 3-wire fans | ||
70 | may be used. These characteristics are in registers 04h to 07h. | ||
71 | |||
72 | Finally, we have added a tach disable function that turns off the tach | ||
73 | measurement system for individual tachs in order to save power. That is | ||
74 | in register 75h. | ||
75 | |||
76 | -- | ||
77 | aSC7621 Product Description | ||
78 | |||
79 | The aSC7621 has a two wire digital interface compatible with SMBus 2.0. | ||
80 | Using a 10-bit ADC, the aSC7621 measures the temperature of two remote diode | ||
81 | connected transistors as well as its own die. Support for Platform | ||
82 | Environmental Control Interface (PECI) is included. | ||
83 | |||
84 | Using temperature information from these four zones, an automatic fan speed | ||
85 | control algorithm is employed to minimize acoustic impact while achieving | ||
86 | recommended CPU temperature under varying operational loads. | ||
87 | |||
88 | To set fan speed, the aSC7621 has three independent pulse width modulation | ||
89 | (PWM) outputs that are controlled by one, or a combination of three, | ||
90 | temperature zones. Both high- and low-frequency PWM ranges are supported. | ||
91 | |||
92 | The aSC7621 also includes a digital filter that can be invoked to smooth | ||
93 | temperature readings for better control of fan speed and minimum acoustic | ||
94 | impact. | ||
95 | |||
96 | The aSC7621 has tachometer inputs to measure fan speed on up to four fans. | ||
97 | Limit and status registers for all measured values are included to alert | ||
98 | the system host that any measurements are outside of programmed limits | ||
99 | via status registers. | ||
100 | |||
101 | System voltages of VCCP, 2.5V, 3.3V, 5.0V, and 12V motherboard power are | ||
102 | monitored efficiently with internal scaling resistors. | ||
103 | |||
104 | Features | ||
105 | - Supports PECI interface and monitors internal and remote thermal diodes | ||
106 | - 2-wire, SMBus 2.0 compliant, serial interface | ||
107 | - 10-bit ADC | ||
108 | - Monitors VCCP, 2.5V, 3.3V, 5.0V, and 12V motherboard/processor supplies | ||
109 | - Programmable autonomous fan control based on temperature readings | ||
110 | - Noise filtering of temperature reading for fan speed control | ||
111 | - 0.25C digital temperature sensor resolution | ||
112 | - 3 PWM fan speed control outputs for 2-, 3- or 4-wire fans and up to 4 fan | ||
113 | tachometer inputs | ||
114 | - Enhanced measured temperature to Temperature Zone assignment. | ||
115 | - Provides high and low PWM frequency ranges | ||
116 | - 3 GPIO pins for custom use | ||
117 | - 24-Lead QSOP package | ||
118 | |||
119 | Configuration Notes | ||
120 | =================== | ||
121 | |||
122 | Except where noted below, the sysfs entries created by this driver follow | ||
123 | the standards defined in "sysfs-interface". | ||
124 | |||
125 | temp1_source | ||
126 | 0 (default) peci_legacy = 0, Remote 1 Temperature | ||
127 | peci_legacy = 1, PECI Processor Temperature 0 | ||
128 | 1 Remote 1 Temperature | ||
129 | 2 Remote 2 Temperature | ||
130 | 3 Internal Temperature | ||
131 | 4 PECI Processor Temperature 0 | ||
132 | 5 PECI Processor Temperature 1 | ||
133 | 6 PECI Processor Temperature 2 | ||
134 | 7 PECI Processor Temperature 3 | ||
135 | |||
136 | temp2_source | ||
137 | 0 (default) Internal Temperature | ||
138 | 1 Remote 1 Temperature | ||
139 | 2 Remote 2 Temperature | ||
140 | 3 Internal Temperature | ||
141 | 4 PECI Processor Temperature 0 | ||
142 | 5 PECI Processor Temperature 1 | ||
143 | 6 PECI Processor Temperature 2 | ||
144 | 7 PECI Processor Temperature 3 | ||
145 | |||
146 | temp3_source | ||
147 | 0 (default) Remote 2 Temperature | ||
148 | 1 Remote 1 Temperature | ||
149 | 2 Remote 2 Temperature | ||
150 | 3 Internal Temperature | ||
151 | 4 PECI Processor Temperature 0 | ||
152 | 5 PECI Processor Temperature 1 | ||
153 | 6 PECI Processor Temperature 2 | ||
154 | 7 PECI Processor Temperature 3 | ||
155 | |||
156 | temp4_source | ||
157 | 0 (default) peci_legacy = 0, PECI Processor Temperature 0 | ||
158 | peci_legacy = 1, Remote 1 Temperature | ||
159 | 1 Remote 1 Temperature | ||
160 | 2 Remote 2 Temperature | ||
161 | 3 Internal Temperature | ||
162 | 4 PECI Processor Temperature 0 | ||
163 | 5 PECI Processor Temperature 1 | ||
164 | 6 PECI Processor Temperature 2 | ||
165 | 7 PECI Processor Temperature 3 | ||
166 | |||
167 | temp[1-4]_smoothing_enable | ||
168 | temp[1-4]_smoothing_time | ||
169 | Smooths spikes in temp readings caused by noise. | ||
170 | Valid values in milliseconds are: | ||
171 | 35000 | ||
172 | 17600 | ||
173 | 11800 | ||
174 | 7000 | ||
175 | 4400 | ||
176 | 3000 | ||
177 | 1600 | ||
178 | 800 | ||
179 | |||
180 | temp[1-4]_crit | ||
181 | When the corresponding zone temperature reaches this value, | ||
182 | ALL pwm outputs will got to 100%. | ||
183 | |||
184 | temp[5-8]_input | ||
185 | temp[5-8]_enable | ||
186 | The aSC7621 can also read temperatures provided by the processor | ||
187 | via the PECI bus. Usually these are "core" temps and are relative | ||
188 | to the point where the automatic thermal control circuit starts | ||
189 | throttling. This means that these are usually negative numbers. | ||
190 | |||
191 | pwm[1-3]_enable | ||
192 | 0 Fan off. | ||
193 | 1 Fan on manual control. | ||
194 | 2 Fan on automatic control and will run at the minimum pwm | ||
195 | if the temperature for the zone is below the minimum. | ||
196 | 3 Fan on automatic control but will be off if the temperature | ||
197 | for the zone is below the minimum. | ||
198 | 4-254 Ignored. | ||
199 | 255 Fan on full. | ||
200 | |||
201 | pwm[1-3]_auto_channels | ||
202 | Bitmap as described in sysctl-interface with the following | ||
203 | exceptions... | ||
204 | Only the following combination of zones (and their corresponding masks) | ||
205 | are valid: | ||
206 | 1 | ||
207 | 2 | ||
208 | 3 | ||
209 | 2,3 | ||
210 | 1,2,3 | ||
211 | 4 | ||
212 | 1,2,3,4 | ||
213 | |||
214 | Special values: | ||
215 | 0 Disabled. | ||
216 | 16 Fan on manual control. | ||
217 | 31 Fan on full. | ||
218 | |||
219 | |||
220 | pwm[1-3]_invert | ||
221 | When set, inverts the meaning of pwm[1-3]. | ||
222 | i.e. when pwm = 0, the fan will be on full and | ||
223 | when pwm = 255 the fan will be off. | ||
224 | |||
225 | pwm[1-3]_freq | ||
226 | PWM frequency in Hz | ||
227 | Valid values in Hz are: | ||
228 | |||
229 | 10 | ||
230 | 15 | ||
231 | 23 | ||
232 | 30 (default) | ||
233 | 38 | ||
234 | 47 | ||
235 | 62 | ||
236 | 94 | ||
237 | 23000 | ||
238 | 24000 | ||
239 | 25000 | ||
240 | 26000 | ||
241 | 27000 | ||
242 | 28000 | ||
243 | 29000 | ||
244 | 30000 | ||
245 | |||
246 | Setting any other value will be ignored. | ||
247 | |||
248 | peci_enable | ||
249 | Enables or disables PECI | ||
250 | |||
251 | peci_avg | ||
252 | Input filter average time. | ||
253 | |||
254 | 0 0 Sec. (no Smoothing) (default) | ||
255 | 1 0.25 Sec. | ||
256 | 2 0.5 Sec. | ||
257 | 3 1.0 Sec. | ||
258 | 4 2.0 Sec. | ||
259 | 5 4.0 Sec. | ||
260 | 6 8.0 Sec. | ||
261 | 7 0.0 Sec. | ||
262 | |||
263 | peci_legacy | ||
264 | |||
265 | 0 Standard Mode (default) | ||
266 | Remote Diode 1 reading is associated with | ||
267 | Temperature Zone 1, PECI is associated with | ||
268 | Zone 4 | ||
269 | |||
270 | 1 Legacy Mode | ||
271 | PECI is associated with Temperature Zone 1, | ||
272 | Remote Diode 1 is associated with Zone 4 | ||
273 | |||
274 | peci_diode | ||
275 | Diode filter | ||
276 | |||
277 | 0 0.25 Sec. | ||
278 | 1 1.1 Sec. | ||
279 | 2 2.4 Sec. (default) | ||
280 | 3 3.4 Sec. | ||
281 | 4 5.0 Sec. | ||
282 | 5 6.8 Sec. | ||
283 | 6 10.2 Sec. | ||
284 | 7 16.4 Sec. | ||
285 | |||
286 | peci_4domain | ||
287 | Four domain enable | ||
288 | |||
289 | 0 1 or 2 Domains for enabled processors (default) | ||
290 | 1 3 or 4 Domains for enabled processors | ||
291 | |||
292 | peci_domain | ||
293 | Domain | ||
294 | |||
295 | 0 Processor contains a single domain (0) (default) | ||
296 | 1 Processor contains two domains (0,1) | ||
diff --git a/MAINTAINERS b/MAINTAINERS index bb6ec71f025b..d6cbddb57326 100644 --- a/MAINTAINERS +++ b/MAINTAINERS | |||
@@ -966,6 +966,13 @@ W: http://www.arm.linux.org.uk/ | |||
966 | S: Maintained | 966 | S: Maintained |
967 | F: arch/arm/vfp/ | 967 | F: arch/arm/vfp/ |
968 | 968 | ||
969 | ASC7621 HARDWARE MONITOR DRIVER | ||
970 | M: George Joseph <george.joseph@fairview5.com> | ||
971 | L: lm-sensors@lm-sensors.org | ||
972 | S: Maintained | ||
973 | F: Documentation/hwmon/asc7621 | ||
974 | F: drivers/hwmon/asc7621.c | ||
975 | |||
969 | ASUS ACPI EXTRAS DRIVER | 976 | ASUS ACPI EXTRAS DRIVER |
970 | M: Corentin Chary <corentincj@iksaif.net> | 977 | M: Corentin Chary <corentincj@iksaif.net> |
971 | M: Karol Kozimor <sziwan@users.sourceforge.net> | 978 | M: Karol Kozimor <sziwan@users.sourceforge.net> |
diff --git a/drivers/hwmon/Kconfig b/drivers/hwmon/Kconfig index 77d032fb813d..b6d65aa20825 100644 --- a/drivers/hwmon/Kconfig +++ b/drivers/hwmon/Kconfig | |||
@@ -226,6 +226,19 @@ config SENSORS_ADT7475 | |||
226 | This driver can also be build as a module. If so, the module | 226 | This driver can also be build as a module. If so, the module |
227 | will be called adt7475. | 227 | will be called adt7475. |
228 | 228 | ||
229 | config SENSORS_ASC7621 | ||
230 | tristate "Andigilog aSC7621" | ||
231 | depends on HWMON && I2C | ||
232 | help | ||
233 | If you say yes here you get support for the aSC7621 | ||
234 | family of SMBus sensors chip found on most Intel X48, X38, 975, | ||
235 | 965 and 945 desktop boards. Currently supported chips: | ||
236 | aSC7621 | ||
237 | aSC7621a | ||
238 | |||
239 | This driver can also be built as a module. If so, the module | ||
240 | will be called asc7621. | ||
241 | |||
229 | config SENSORS_K8TEMP | 242 | config SENSORS_K8TEMP |
230 | tristate "AMD Athlon64/FX or Opteron temperature sensor" | 243 | tristate "AMD Athlon64/FX or Opteron temperature sensor" |
231 | depends on X86 && PCI && EXPERIMENTAL | 244 | depends on X86 && PCI && EXPERIMENTAL |
diff --git a/drivers/hwmon/Makefile b/drivers/hwmon/Makefile index 5fe67bf961b3..865da80f2b90 100644 --- a/drivers/hwmon/Makefile +++ b/drivers/hwmon/Makefile | |||
@@ -36,6 +36,7 @@ obj-$(CONFIG_SENSORS_ADT7473) += adt7473.o | |||
36 | obj-$(CONFIG_SENSORS_ADT7475) += adt7475.o | 36 | obj-$(CONFIG_SENSORS_ADT7475) += adt7475.o |
37 | obj-$(CONFIG_SENSORS_APPLESMC) += applesmc.o | 37 | obj-$(CONFIG_SENSORS_APPLESMC) += applesmc.o |
38 | obj-$(CONFIG_SENSORS_AMS) += ams/ | 38 | obj-$(CONFIG_SENSORS_AMS) += ams/ |
39 | obj-$(CONFIG_SENSORS_ASC7621) += asc7621.o | ||
39 | obj-$(CONFIG_SENSORS_ATXP1) += atxp1.o | 40 | obj-$(CONFIG_SENSORS_ATXP1) += atxp1.o |
40 | obj-$(CONFIG_SENSORS_CORETEMP) += coretemp.o | 41 | obj-$(CONFIG_SENSORS_CORETEMP) += coretemp.o |
41 | obj-$(CONFIG_SENSORS_DME1737) += dme1737.o | 42 | obj-$(CONFIG_SENSORS_DME1737) += dme1737.o |
diff --git a/drivers/hwmon/asc7621.c b/drivers/hwmon/asc7621.c new file mode 100644 index 000000000000..7f948105d8ad --- /dev/null +++ b/drivers/hwmon/asc7621.c | |||
@@ -0,0 +1,1255 @@ | |||
1 | /* | ||
2 | * asc7621.c - Part of lm_sensors, Linux kernel modules for hardware monitoring | ||
3 | * Copyright (c) 2007, 2010 George Joseph <george.joseph@fairview5.com> | ||
4 | * | ||
5 | * This program is free software; you can redistribute it and/or modify | ||
6 | * it under the terms of the GNU General Public License as published by | ||
7 | * the Free Software Foundation; either version 2 of the License, or | ||
8 | * (at your option) any later version. | ||
9 | * | ||
10 | * This program is distributed in the hope that it will be useful, | ||
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
13 | * GNU General Public License for more details. | ||
14 | * | ||
15 | * You should have received a copy of the GNU General Public License | ||
16 | * along with this program; if not, write to the Free Software | ||
17 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | ||
18 | */ | ||
19 | |||
20 | #include <linux/module.h> | ||
21 | #include <linux/init.h> | ||
22 | #include <linux/slab.h> | ||
23 | #include <linux/jiffies.h> | ||
24 | #include <linux/i2c.h> | ||
25 | #include <linux/hwmon.h> | ||
26 | #include <linux/hwmon-sysfs.h> | ||
27 | #include <linux/err.h> | ||
28 | #include <linux/mutex.h> | ||
29 | |||
30 | /* Addresses to scan */ | ||
31 | static unsigned short normal_i2c[] = { | ||
32 | 0x2c, 0x2d, 0x2e, I2C_CLIENT_END | ||
33 | }; | ||
34 | |||
35 | enum asc7621_type { | ||
36 | asc7621, | ||
37 | asc7621a | ||
38 | }; | ||
39 | |||
40 | #define INTERVAL_HIGH (HZ + HZ / 2) | ||
41 | #define INTERVAL_LOW (1 * 60 * HZ) | ||
42 | #define PRI_NONE 0 | ||
43 | #define PRI_LOW 1 | ||
44 | #define PRI_HIGH 2 | ||
45 | #define FIRST_CHIP asc7621 | ||
46 | #define LAST_CHIP asc7621a | ||
47 | |||
48 | struct asc7621_chip { | ||
49 | char *name; | ||
50 | enum asc7621_type chip_type; | ||
51 | u8 company_reg; | ||
52 | u8 company_id; | ||
53 | u8 verstep_reg; | ||
54 | u8 verstep_id; | ||
55 | unsigned short *addresses; | ||
56 | }; | ||
57 | |||
58 | static struct asc7621_chip asc7621_chips[] = { | ||
59 | { | ||
60 | .name = "asc7621", | ||
61 | .chip_type = asc7621, | ||
62 | .company_reg = 0x3e, | ||
63 | .company_id = 0x61, | ||
64 | .verstep_reg = 0x3f, | ||
65 | .verstep_id = 0x6c, | ||
66 | .addresses = normal_i2c, | ||
67 | }, | ||
68 | { | ||
69 | .name = "asc7621a", | ||
70 | .chip_type = asc7621a, | ||
71 | .company_reg = 0x3e, | ||
72 | .company_id = 0x61, | ||
73 | .verstep_reg = 0x3f, | ||
74 | .verstep_id = 0x6d, | ||
75 | .addresses = normal_i2c, | ||
76 | }, | ||
77 | }; | ||
78 | |||
79 | /* | ||
80 | * Defines the highest register to be used, not the count. | ||
81 | * The actual count will probably be smaller because of gaps | ||
82 | * in the implementation (unused register locations). | ||
83 | * This define will safely set the array size of both the parameter | ||
84 | * and data arrays. | ||
85 | * This comes from the data sheet register description table. | ||
86 | */ | ||
87 | #define LAST_REGISTER 0xff | ||
88 | |||
89 | struct asc7621_data { | ||
90 | struct i2c_client client; | ||
91 | struct device *class_dev; | ||
92 | struct mutex update_lock; | ||
93 | int valid; /* !=0 if following fields are valid */ | ||
94 | unsigned long last_high_reading; /* In jiffies */ | ||
95 | unsigned long last_low_reading; /* In jiffies */ | ||
96 | /* | ||
97 | * Registers we care about occupy the corresponding index | ||
98 | * in the array. Registers we don't care about are left | ||
99 | * at 0. | ||
100 | */ | ||
101 | u8 reg[LAST_REGISTER + 1]; | ||
102 | }; | ||
103 | |||
104 | /* | ||
105 | * Macro to get the parent asc7621_param structure | ||
106 | * from a sensor_device_attribute passed into the | ||
107 | * show/store functions. | ||
108 | */ | ||
109 | #define to_asc7621_param(_sda) \ | ||
110 | container_of(_sda, struct asc7621_param, sda) | ||
111 | |||
112 | /* | ||
113 | * Each parameter to be retrieved needs an asc7621_param structure | ||
114 | * allocated. It contains the sensor_device_attribute structure | ||
115 | * and the control info needed to retrieve the value from the register map. | ||
116 | */ | ||
117 | struct asc7621_param { | ||
118 | struct sensor_device_attribute sda; | ||
119 | u8 priority; | ||
120 | u8 msb[3]; | ||
121 | u8 lsb[3]; | ||
122 | u8 mask[3]; | ||
123 | u8 shift[3]; | ||
124 | }; | ||
125 | |||
126 | /* | ||
127 | * This is the map that ultimately indicates whether we'll be | ||
128 | * retrieving a register value or not, and at what frequency. | ||
129 | */ | ||
130 | static u8 asc7621_register_priorities[255]; | ||
131 | |||
132 | static struct asc7621_data *asc7621_update_device(struct device *dev); | ||
133 | |||
134 | static inline u8 read_byte(struct i2c_client *client, u8 reg) | ||
135 | { | ||
136 | int res = i2c_smbus_read_byte_data(client, reg); | ||
137 | if (res < 0) { | ||
138 | dev_err(&client->dev, | ||
139 | "Unable to read from register 0x%02x.\n", reg); | ||
140 | return 0; | ||
141 | }; | ||
142 | return res & 0xff; | ||
143 | } | ||
144 | |||
145 | static inline int write_byte(struct i2c_client *client, u8 reg, u8 data) | ||
146 | { | ||
147 | int res = i2c_smbus_write_byte_data(client, reg, data); | ||
148 | if (res < 0) { | ||
149 | dev_err(&client->dev, | ||
150 | "Unable to write value 0x%02x to register 0x%02x.\n", | ||
151 | data, reg); | ||
152 | }; | ||
153 | return res; | ||
154 | } | ||
155 | |||
156 | /* | ||
157 | * Data Handlers | ||
158 | * Each function handles the formatting, storage | ||
159 | * and retrieval of like parameters. | ||
160 | */ | ||
161 | |||
162 | #define SETUP_SHOW_data_param(d, a) \ | ||
163 | struct sensor_device_attribute *sda = to_sensor_dev_attr(a); \ | ||
164 | struct asc7621_data *data = asc7621_update_device(d); \ | ||
165 | struct asc7621_param *param = to_asc7621_param(sda) | ||
166 | |||
167 | #define SETUP_STORE_data_param(d, a) \ | ||
168 | struct sensor_device_attribute *sda = to_sensor_dev_attr(a); \ | ||
169 | struct i2c_client *client = to_i2c_client(d); \ | ||
170 | struct asc7621_data *data = i2c_get_clientdata(client); \ | ||
171 | struct asc7621_param *param = to_asc7621_param(sda) | ||
172 | |||
173 | /* | ||
174 | * u8 is just what it sounds like...an unsigned byte with no | ||
175 | * special formatting. | ||
176 | */ | ||
177 | static ssize_t show_u8(struct device *dev, struct device_attribute *attr, | ||
178 | char *buf) | ||
179 | { | ||
180 | SETUP_SHOW_data_param(dev, attr); | ||
181 | |||
182 | return sprintf(buf, "%u\n", data->reg[param->msb[0]]); | ||
183 | } | ||
184 | |||
185 | static ssize_t store_u8(struct device *dev, struct device_attribute *attr, | ||
186 | const char *buf, size_t count) | ||
187 | { | ||
188 | SETUP_STORE_data_param(dev, attr); | ||
189 | long reqval; | ||
190 | |||
191 | if (strict_strtol(buf, 10, &reqval)) | ||
192 | return -EINVAL; | ||
193 | |||
194 | reqval = SENSORS_LIMIT(reqval, 0, 255); | ||
195 | |||
196 | mutex_lock(&data->update_lock); | ||
197 | data->reg[param->msb[0]] = reqval; | ||
198 | write_byte(client, param->msb[0], reqval); | ||
199 | mutex_unlock(&data->update_lock); | ||
200 | return count; | ||
201 | } | ||
202 | |||
203 | /* | ||
204 | * Many of the config values occupy only a few bits of a register. | ||
205 | */ | ||
206 | static ssize_t show_bitmask(struct device *dev, | ||
207 | struct device_attribute *attr, char *buf) | ||
208 | { | ||
209 | SETUP_SHOW_data_param(dev, attr); | ||
210 | |||
211 | return sprintf(buf, "%u\n", | ||
212 | (data->reg[param->msb[0]] >> param-> | ||
213 | shift[0]) & param->mask[0]); | ||
214 | } | ||
215 | |||
216 | static ssize_t store_bitmask(struct device *dev, | ||
217 | struct device_attribute *attr, | ||
218 | const char *buf, size_t count) | ||
219 | { | ||
220 | SETUP_STORE_data_param(dev, attr); | ||
221 | long reqval; | ||
222 | u8 currval; | ||
223 | |||
224 | if (strict_strtol(buf, 10, &reqval)) | ||
225 | return -EINVAL; | ||
226 | |||
227 | reqval = SENSORS_LIMIT(reqval, 0, param->mask[0]); | ||
228 | |||
229 | reqval = (reqval & param->mask[0]) << param->shift[0]; | ||
230 | |||
231 | mutex_lock(&data->update_lock); | ||
232 | currval = read_byte(client, param->msb[0]); | ||
233 | reqval |= (currval & ~(param->mask[0] << param->shift[0])); | ||
234 | data->reg[param->msb[0]] = reqval; | ||
235 | write_byte(client, param->msb[0], reqval); | ||
236 | mutex_unlock(&data->update_lock); | ||
237 | return count; | ||
238 | } | ||
239 | |||
240 | /* | ||
241 | * 16 bit fan rpm values | ||
242 | * reported by the device as the number of 11.111us periods (90khz) | ||
243 | * between full fan rotations. Therefore... | ||
244 | * RPM = (90000 * 60) / register value | ||
245 | */ | ||
246 | static ssize_t show_fan16(struct device *dev, | ||
247 | struct device_attribute *attr, char *buf) | ||
248 | { | ||
249 | SETUP_SHOW_data_param(dev, attr); | ||
250 | u16 regval; | ||
251 | |||
252 | mutex_lock(&data->update_lock); | ||
253 | regval = (data->reg[param->msb[0]] << 8) | data->reg[param->lsb[0]]; | ||
254 | mutex_unlock(&data->update_lock); | ||
255 | |||
256 | return sprintf(buf, "%u\n", | ||
257 | (regval == 0 ? -1 : (regval) == | ||
258 | 0xffff ? 0 : 5400000 / regval)); | ||
259 | } | ||
260 | |||
261 | static ssize_t store_fan16(struct device *dev, | ||
262 | struct device_attribute *attr, const char *buf, | ||
263 | size_t count) | ||
264 | { | ||
265 | SETUP_STORE_data_param(dev, attr); | ||
266 | long reqval; | ||
267 | |||
268 | if (strict_strtol(buf, 10, &reqval)) | ||
269 | return -EINVAL; | ||
270 | |||
271 | reqval = | ||
272 | (SENSORS_LIMIT((reqval) <= 0 ? 0 : 5400000 / (reqval), 0, 65534)); | ||
273 | |||
274 | mutex_lock(&data->update_lock); | ||
275 | data->reg[param->msb[0]] = (reqval >> 8) & 0xff; | ||
276 | data->reg[param->lsb[0]] = reqval & 0xff; | ||
277 | write_byte(client, param->msb[0], data->reg[param->msb[0]]); | ||
278 | write_byte(client, param->lsb[0], data->reg[param->lsb[0]]); | ||
279 | mutex_unlock(&data->update_lock); | ||
280 | |||
281 | return count; | ||
282 | } | ||
283 | |||
284 | /* | ||
285 | * Voltages are scaled in the device so that the nominal voltage | ||
286 | * is 3/4ths of the 0-255 range (i.e. 192). | ||
287 | * If all voltages are 'normal' then all voltage registers will | ||
288 | * read 0xC0. This doesn't help us if we don't have a point of refernce. | ||
289 | * The data sheet however provides us with the full scale value for each | ||
290 | * which is stored in in_scaling. The sda->index parameter value provides | ||
291 | * the index into in_scaling. | ||
292 | * | ||
293 | * NOTE: The chip expects the first 2 inputs be 2.5 and 2.25 volts | ||
294 | * respectively. That doesn't mean that's what the motherboard provides. :) | ||
295 | */ | ||
296 | |||
297 | static int asc7621_in_scaling[] = { | ||
298 | 3320, 3000, 4380, 6640, 16000 | ||
299 | }; | ||
300 | |||
301 | static ssize_t show_in10(struct device *dev, struct device_attribute *attr, | ||
302 | char *buf) | ||
303 | { | ||
304 | SETUP_SHOW_data_param(dev, attr); | ||
305 | u16 regval; | ||
306 | u8 nr = sda->index; | ||
307 | |||
308 | mutex_lock(&data->update_lock); | ||
309 | regval = (data->reg[param->msb[0]] * asc7621_in_scaling[nr]) / 256; | ||
310 | |||
311 | /* The LSB value is a 2-bit scaling of the MSB's LSbit value. | ||
312 | * I.E. If the maximim voltage for this input is 6640 millivolts then | ||
313 | * a MSB register value of 0 = 0mv and 255 = 6640mv. | ||
314 | * A 1 step change therefore represents 25.9mv (6640 / 256). | ||
315 | * The extra 2-bits therefore represent increments of 6.48mv. | ||
316 | */ | ||
317 | regval += ((asc7621_in_scaling[nr] / 256) / 4) * | ||
318 | (data->reg[param->lsb[0]] >> 6); | ||
319 | |||
320 | mutex_unlock(&data->update_lock); | ||
321 | |||
322 | return sprintf(buf, "%u\n", regval); | ||
323 | } | ||
324 | |||
325 | /* 8 bit voltage values (the mins and maxs) */ | ||
326 | static ssize_t show_in8(struct device *dev, struct device_attribute *attr, | ||
327 | char *buf) | ||
328 | { | ||
329 | SETUP_SHOW_data_param(dev, attr); | ||
330 | u8 nr = sda->index; | ||
331 | |||
332 | return sprintf(buf, "%u\n", | ||
333 | ((data->reg[param->msb[0]] * | ||
334 | asc7621_in_scaling[nr]) / 256)); | ||
335 | } | ||
336 | |||
337 | static ssize_t store_in8(struct device *dev, struct device_attribute *attr, | ||
338 | const char *buf, size_t count) | ||
339 | { | ||
340 | SETUP_STORE_data_param(dev, attr); | ||
341 | long reqval; | ||
342 | u8 nr = sda->index; | ||
343 | |||
344 | if (strict_strtol(buf, 10, &reqval)) | ||
345 | return -EINVAL; | ||
346 | |||
347 | reqval = SENSORS_LIMIT(reqval, 0, asc7621_in_scaling[nr]); | ||
348 | |||
349 | reqval = (reqval * 255 + 128) / asc7621_in_scaling[nr]; | ||
350 | |||
351 | mutex_lock(&data->update_lock); | ||
352 | data->reg[param->msb[0]] = reqval; | ||
353 | write_byte(client, param->msb[0], reqval); | ||
354 | mutex_unlock(&data->update_lock); | ||
355 | |||
356 | return count; | ||
357 | } | ||
358 | |||
359 | static ssize_t show_temp8(struct device *dev, | ||
360 | struct device_attribute *attr, char *buf) | ||
361 | { | ||
362 | SETUP_SHOW_data_param(dev, attr); | ||
363 | |||
364 | return sprintf(buf, "%d\n", ((s8) data->reg[param->msb[0]]) * 1000); | ||
365 | } | ||
366 | |||
367 | static ssize_t store_temp8(struct device *dev, | ||
368 | struct device_attribute *attr, const char *buf, | ||
369 | size_t count) | ||
370 | { | ||
371 | SETUP_STORE_data_param(dev, attr); | ||
372 | long reqval; | ||
373 | s8 temp; | ||
374 | |||
375 | if (strict_strtol(buf, 10, &reqval)) | ||
376 | return -EINVAL; | ||
377 | |||
378 | reqval = SENSORS_LIMIT(reqval, -127000, 127000); | ||
379 | |||
380 | temp = reqval / 1000; | ||
381 | |||
382 | mutex_lock(&data->update_lock); | ||
383 | data->reg[param->msb[0]] = temp; | ||
384 | write_byte(client, param->msb[0], temp); | ||
385 | mutex_unlock(&data->update_lock); | ||
386 | return count; | ||
387 | } | ||
388 | |||
389 | /* | ||
390 | * Temperatures that occupy 2 bytes always have the whole | ||
391 | * number of degrees in the MSB with some part of the LSB | ||
392 | * indicating fractional degrees. | ||
393 | */ | ||
394 | |||
395 | /* mmmmmmmm.llxxxxxx */ | ||
396 | static ssize_t show_temp10(struct device *dev, | ||
397 | struct device_attribute *attr, char *buf) | ||
398 | { | ||
399 | SETUP_SHOW_data_param(dev, attr); | ||
400 | u8 msb, lsb; | ||
401 | int temp; | ||
402 | |||
403 | mutex_lock(&data->update_lock); | ||
404 | msb = data->reg[param->msb[0]]; | ||
405 | lsb = (data->reg[param->lsb[0]] >> 6) & 0x03; | ||
406 | temp = (((s8) msb) * 1000) + (lsb * 250); | ||
407 | mutex_unlock(&data->update_lock); | ||
408 | |||
409 | return sprintf(buf, "%d\n", temp); | ||
410 | } | ||
411 | |||
412 | /* mmmmmm.ll */ | ||
413 | static ssize_t show_temp62(struct device *dev, | ||
414 | struct device_attribute *attr, char *buf) | ||
415 | { | ||
416 | SETUP_SHOW_data_param(dev, attr); | ||
417 | u8 regval = data->reg[param->msb[0]]; | ||
418 | int temp = ((s8) (regval & 0xfc) * 1000) + ((regval & 0x03) * 250); | ||
419 | |||
420 | return sprintf(buf, "%d\n", temp); | ||
421 | } | ||
422 | |||
423 | static ssize_t store_temp62(struct device *dev, | ||
424 | struct device_attribute *attr, const char *buf, | ||
425 | size_t count) | ||
426 | { | ||
427 | SETUP_STORE_data_param(dev, attr); | ||
428 | long reqval, i, f; | ||
429 | s8 temp; | ||
430 | |||
431 | if (strict_strtol(buf, 10, &reqval)) | ||
432 | return -EINVAL; | ||
433 | |||
434 | reqval = SENSORS_LIMIT(reqval, -32000, 31750); | ||
435 | i = reqval / 1000; | ||
436 | f = reqval - (i * 1000); | ||
437 | temp = i << 2; | ||
438 | temp |= f / 250; | ||
439 | |||
440 | mutex_lock(&data->update_lock); | ||
441 | data->reg[param->msb[0]] = temp; | ||
442 | write_byte(client, param->msb[0], temp); | ||
443 | mutex_unlock(&data->update_lock); | ||
444 | return count; | ||
445 | } | ||
446 | |||
447 | /* | ||
448 | * The aSC7621 doesn't provide an "auto_point2". Instead, you | ||
449 | * specify the auto_point1 and a range. To keep with the sysfs | ||
450 | * hwmon specs, we synthesize the auto_point_2 from them. | ||
451 | */ | ||
452 | |||
453 | static u32 asc7621_range_map[] = { | ||
454 | 2000, 2500, 3330, 4000, 5000, 6670, 8000, 10000, | ||
455 | 13330, 16000, 20000, 26670, 32000, 40000, 53330, 80000, | ||
456 | }; | ||
457 | |||
458 | static ssize_t show_ap2_temp(struct device *dev, | ||
459 | struct device_attribute *attr, char *buf) | ||
460 | { | ||
461 | SETUP_SHOW_data_param(dev, attr); | ||
462 | long auto_point1; | ||
463 | u8 regval; | ||
464 | int temp; | ||
465 | |||
466 | mutex_lock(&data->update_lock); | ||
467 | auto_point1 = ((s8) data->reg[param->msb[1]]) * 1000; | ||
468 | regval = | ||
469 | ((data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]); | ||
470 | temp = auto_point1 + asc7621_range_map[SENSORS_LIMIT(regval, 0, 15)]; | ||
471 | mutex_unlock(&data->update_lock); | ||
472 | |||
473 | return sprintf(buf, "%d\n", temp); | ||
474 | |||
475 | } | ||
476 | |||
477 | static ssize_t store_ap2_temp(struct device *dev, | ||
478 | struct device_attribute *attr, | ||
479 | const char *buf, size_t count) | ||
480 | { | ||
481 | SETUP_STORE_data_param(dev, attr); | ||
482 | long reqval, auto_point1; | ||
483 | int i; | ||
484 | u8 currval, newval = 0; | ||
485 | |||
486 | if (strict_strtol(buf, 10, &reqval)) | ||
487 | return -EINVAL; | ||
488 | |||
489 | mutex_lock(&data->update_lock); | ||
490 | auto_point1 = data->reg[param->msb[1]] * 1000; | ||
491 | reqval = SENSORS_LIMIT(reqval, auto_point1 + 2000, auto_point1 + 80000); | ||
492 | |||
493 | for (i = ARRAY_SIZE(asc7621_range_map) - 1; i >= 0; i--) { | ||
494 | if (reqval >= auto_point1 + asc7621_range_map[i]) { | ||
495 | newval = i; | ||
496 | break; | ||
497 | } | ||
498 | } | ||
499 | |||
500 | newval = (newval & param->mask[0]) << param->shift[0]; | ||
501 | currval = read_byte(client, param->msb[0]); | ||
502 | newval |= (currval & ~(param->mask[0] << param->shift[0])); | ||
503 | data->reg[param->msb[0]] = newval; | ||
504 | write_byte(client, param->msb[0], newval); | ||
505 | mutex_unlock(&data->update_lock); | ||
506 | return count; | ||
507 | } | ||
508 | |||
509 | static ssize_t show_pwm_ac(struct device *dev, | ||
510 | struct device_attribute *attr, char *buf) | ||
511 | { | ||
512 | SETUP_SHOW_data_param(dev, attr); | ||
513 | u8 config, altbit, regval; | ||
514 | u8 map[] = { | ||
515 | 0x01, 0x02, 0x04, 0x1f, 0x00, 0x06, 0x07, 0x10, | ||
516 | 0x08, 0x0f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f | ||
517 | }; | ||
518 | |||
519 | mutex_lock(&data->update_lock); | ||
520 | config = (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]; | ||
521 | altbit = (data->reg[param->msb[1]] >> param->shift[1]) & param->mask[1]; | ||
522 | regval = config | (altbit << 3); | ||
523 | mutex_unlock(&data->update_lock); | ||
524 | |||
525 | return sprintf(buf, "%u\n", map[SENSORS_LIMIT(regval, 0, 15)]); | ||
526 | } | ||
527 | |||
528 | static ssize_t store_pwm_ac(struct device *dev, | ||
529 | struct device_attribute *attr, | ||
530 | const char *buf, size_t count) | ||
531 | { | ||
532 | SETUP_STORE_data_param(dev, attr); | ||
533 | unsigned long reqval; | ||
534 | u8 currval, config, altbit, newval; | ||
535 | u16 map[] = { | ||
536 | 0x04, 0x00, 0x01, 0xff, 0x02, 0xff, 0x05, 0x06, | ||
537 | 0x08, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x0f, | ||
538 | 0x07, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
539 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03, | ||
540 | }; | ||
541 | |||
542 | if (strict_strtoul(buf, 10, &reqval)) | ||
543 | return -EINVAL; | ||
544 | |||
545 | if (reqval > 31) | ||
546 | return -EINVAL; | ||
547 | |||
548 | reqval = map[reqval]; | ||
549 | if (reqval == 0xff) | ||
550 | return -EINVAL; | ||
551 | |||
552 | config = reqval & 0x07; | ||
553 | altbit = (reqval >> 3) & 0x01; | ||
554 | |||
555 | config = (config & param->mask[0]) << param->shift[0]; | ||
556 | altbit = (altbit & param->mask[1]) << param->shift[1]; | ||
557 | |||
558 | mutex_lock(&data->update_lock); | ||
559 | currval = read_byte(client, param->msb[0]); | ||
560 | newval = config | (currval & ~(param->mask[0] << param->shift[0])); | ||
561 | newval = altbit | (newval & ~(param->mask[1] << param->shift[1])); | ||
562 | data->reg[param->msb[0]] = newval; | ||
563 | write_byte(client, param->msb[0], newval); | ||
564 | mutex_unlock(&data->update_lock); | ||
565 | return count; | ||
566 | } | ||
567 | |||
568 | static ssize_t show_pwm_enable(struct device *dev, | ||
569 | struct device_attribute *attr, char *buf) | ||
570 | { | ||
571 | SETUP_SHOW_data_param(dev, attr); | ||
572 | u8 config, altbit, minoff, val, newval; | ||
573 | |||
574 | mutex_lock(&data->update_lock); | ||
575 | config = (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]; | ||
576 | altbit = (data->reg[param->msb[1]] >> param->shift[1]) & param->mask[1]; | ||
577 | minoff = (data->reg[param->msb[2]] >> param->shift[2]) & param->mask[2]; | ||
578 | mutex_unlock(&data->update_lock); | ||
579 | |||
580 | val = config | (altbit << 3); | ||
581 | newval = 0; | ||
582 | |||
583 | if (val == 3 || val >= 10) | ||
584 | newval = 255; | ||
585 | else if (val == 4) | ||
586 | newval = 0; | ||
587 | else if (val == 7) | ||
588 | newval = 1; | ||
589 | else if (minoff == 1) | ||
590 | newval = 2; | ||
591 | else | ||
592 | newval = 3; | ||
593 | |||
594 | return sprintf(buf, "%u\n", newval); | ||
595 | } | ||
596 | |||
597 | static ssize_t store_pwm_enable(struct device *dev, | ||
598 | struct device_attribute *attr, | ||
599 | const char *buf, size_t count) | ||
600 | { | ||
601 | SETUP_STORE_data_param(dev, attr); | ||
602 | long reqval; | ||
603 | u8 currval, config, altbit, newval, minoff = 255; | ||
604 | |||
605 | if (strict_strtol(buf, 10, &reqval)) | ||
606 | return -EINVAL; | ||
607 | |||
608 | switch (reqval) { | ||
609 | case 0: | ||
610 | newval = 0x04; | ||
611 | break; | ||
612 | case 1: | ||
613 | newval = 0x07; | ||
614 | break; | ||
615 | case 2: | ||
616 | newval = 0x00; | ||
617 | minoff = 1; | ||
618 | break; | ||
619 | case 3: | ||
620 | newval = 0x00; | ||
621 | minoff = 0; | ||
622 | break; | ||
623 | case 255: | ||
624 | newval = 0x03; | ||
625 | break; | ||
626 | default: | ||
627 | return -EINVAL; | ||
628 | } | ||
629 | |||
630 | config = newval & 0x07; | ||
631 | altbit = (newval >> 3) & 0x01; | ||
632 | |||
633 | mutex_lock(&data->update_lock); | ||
634 | config = (config & param->mask[0]) << param->shift[0]; | ||
635 | altbit = (altbit & param->mask[1]) << param->shift[1]; | ||
636 | currval = read_byte(client, param->msb[0]); | ||
637 | newval = config | (currval & ~(param->mask[0] << param->shift[0])); | ||
638 | newval = altbit | (newval & ~(param->mask[1] << param->shift[1])); | ||
639 | data->reg[param->msb[0]] = newval; | ||
640 | write_byte(client, param->msb[0], newval); | ||
641 | if (minoff < 255) { | ||
642 | minoff = (minoff & param->mask[2]) << param->shift[2]; | ||
643 | currval = read_byte(client, param->msb[2]); | ||
644 | newval = | ||
645 | minoff | (currval & ~(param->mask[2] << param->shift[2])); | ||
646 | data->reg[param->msb[2]] = newval; | ||
647 | write_byte(client, param->msb[2], newval); | ||
648 | } | ||
649 | mutex_unlock(&data->update_lock); | ||
650 | return count; | ||
651 | } | ||
652 | |||
653 | static u32 asc7621_pwm_freq_map[] = { | ||
654 | 10, 15, 23, 30, 38, 47, 62, 94, | ||
655 | 23000, 24000, 25000, 26000, 27000, 28000, 29000, 30000 | ||
656 | }; | ||
657 | |||
658 | static ssize_t show_pwm_freq(struct device *dev, | ||
659 | struct device_attribute *attr, char *buf) | ||
660 | { | ||
661 | SETUP_SHOW_data_param(dev, attr); | ||
662 | u8 regval = | ||
663 | (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]; | ||
664 | |||
665 | regval = SENSORS_LIMIT(regval, 0, 15); | ||
666 | |||
667 | return sprintf(buf, "%u\n", asc7621_pwm_freq_map[regval]); | ||
668 | } | ||
669 | |||
670 | static ssize_t store_pwm_freq(struct device *dev, | ||
671 | struct device_attribute *attr, | ||
672 | const char *buf, size_t count) | ||
673 | { | ||
674 | SETUP_STORE_data_param(dev, attr); | ||
675 | unsigned long reqval; | ||
676 | u8 currval, newval = 255; | ||
677 | int i; | ||
678 | |||
679 | if (strict_strtoul(buf, 10, &reqval)) | ||
680 | return -EINVAL; | ||
681 | |||
682 | for (i = 0; i < ARRAY_SIZE(asc7621_pwm_freq_map); i++) { | ||
683 | if (reqval == asc7621_pwm_freq_map[i]) { | ||
684 | newval = i; | ||
685 | break; | ||
686 | } | ||
687 | } | ||
688 | if (newval == 255) | ||
689 | return -EINVAL; | ||
690 | |||
691 | newval = (newval & param->mask[0]) << param->shift[0]; | ||
692 | |||
693 | mutex_lock(&data->update_lock); | ||
694 | currval = read_byte(client, param->msb[0]); | ||
695 | newval |= (currval & ~(param->mask[0] << param->shift[0])); | ||
696 | data->reg[param->msb[0]] = newval; | ||
697 | write_byte(client, param->msb[0], newval); | ||
698 | mutex_unlock(&data->update_lock); | ||
699 | return count; | ||
700 | } | ||
701 | |||
702 | static u32 asc7621_pwm_auto_spinup_map[] = { | ||
703 | 0, 100, 250, 400, 700, 1000, 2000, 4000 | ||
704 | }; | ||
705 | |||
706 | static ssize_t show_pwm_ast(struct device *dev, | ||
707 | struct device_attribute *attr, char *buf) | ||
708 | { | ||
709 | SETUP_SHOW_data_param(dev, attr); | ||
710 | u8 regval = | ||
711 | (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]; | ||
712 | |||
713 | regval = SENSORS_LIMIT(regval, 0, 7); | ||
714 | |||
715 | return sprintf(buf, "%u\n", asc7621_pwm_auto_spinup_map[regval]); | ||
716 | |||
717 | } | ||
718 | |||
719 | static ssize_t store_pwm_ast(struct device *dev, | ||
720 | struct device_attribute *attr, | ||
721 | const char *buf, size_t count) | ||
722 | { | ||
723 | SETUP_STORE_data_param(dev, attr); | ||
724 | long reqval; | ||
725 | u8 currval, newval = 255; | ||
726 | u32 i; | ||
727 | |||
728 | if (strict_strtol(buf, 10, &reqval)) | ||
729 | return -EINVAL; | ||
730 | |||
731 | for (i = 0; i < ARRAY_SIZE(asc7621_pwm_auto_spinup_map); i++) { | ||
732 | if (reqval == asc7621_pwm_auto_spinup_map[i]) { | ||
733 | newval = i; | ||
734 | break; | ||
735 | } | ||
736 | } | ||
737 | if (newval == 255) | ||
738 | return -EINVAL; | ||
739 | |||
740 | newval = (newval & param->mask[0]) << param->shift[0]; | ||
741 | |||
742 | mutex_lock(&data->update_lock); | ||
743 | currval = read_byte(client, param->msb[0]); | ||
744 | newval |= (currval & ~(param->mask[0] << param->shift[0])); | ||
745 | data->reg[param->msb[0]] = newval; | ||
746 | write_byte(client, param->msb[0], newval); | ||
747 | mutex_unlock(&data->update_lock); | ||
748 | return count; | ||
749 | } | ||
750 | |||
751 | static u32 asc7621_temp_smoothing_time_map[] = { | ||
752 | 35000, 17600, 11800, 7000, 4400, 3000, 1600, 800 | ||
753 | }; | ||
754 | |||
755 | static ssize_t show_temp_st(struct device *dev, | ||
756 | struct device_attribute *attr, char *buf) | ||
757 | { | ||
758 | SETUP_SHOW_data_param(dev, attr); | ||
759 | u8 regval = | ||
760 | (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]; | ||
761 | regval = SENSORS_LIMIT(regval, 0, 7); | ||
762 | |||
763 | return sprintf(buf, "%u\n", asc7621_temp_smoothing_time_map[regval]); | ||
764 | } | ||
765 | |||
766 | static ssize_t store_temp_st(struct device *dev, | ||
767 | struct device_attribute *attr, | ||
768 | const char *buf, size_t count) | ||
769 | { | ||
770 | SETUP_STORE_data_param(dev, attr); | ||
771 | long reqval; | ||
772 | u8 currval, newval = 255; | ||
773 | u32 i; | ||
774 | |||
775 | if (strict_strtol(buf, 10, &reqval)) | ||
776 | return -EINVAL; | ||
777 | |||
778 | for (i = 0; i < ARRAY_SIZE(asc7621_temp_smoothing_time_map); i++) { | ||
779 | if (reqval == asc7621_temp_smoothing_time_map[i]) { | ||
780 | newval = i; | ||
781 | break; | ||
782 | } | ||
783 | } | ||
784 | |||
785 | if (newval == 255) | ||
786 | return -EINVAL; | ||
787 | |||
788 | newval = (newval & param->mask[0]) << param->shift[0]; | ||
789 | |||
790 | mutex_lock(&data->update_lock); | ||
791 | currval = read_byte(client, param->msb[0]); | ||
792 | newval |= (currval & ~(param->mask[0] << param->shift[0])); | ||
793 | data->reg[param->msb[0]] = newval; | ||
794 | write_byte(client, param->msb[0], newval); | ||
795 | mutex_unlock(&data->update_lock); | ||
796 | return count; | ||
797 | } | ||
798 | |||
799 | /* | ||
800 | * End of data handlers | ||
801 | * | ||
802 | * These defines do nothing more than make the table easier | ||
803 | * to read when wrapped at column 80. | ||
804 | */ | ||
805 | |||
806 | /* | ||
807 | * Creates a variable length array inititalizer. | ||
808 | * VAA(1,3,5,7) would produce {1,3,5,7} | ||
809 | */ | ||
810 | #define VAA(args...) {args} | ||
811 | |||
812 | #define PREAD(name, n, pri, rm, rl, m, s, r) \ | ||
813 | {.sda = SENSOR_ATTR(name, S_IRUGO, show_##r, NULL, n), \ | ||
814 | .priority = pri, .msb[0] = rm, .lsb[0] = rl, .mask[0] = m, \ | ||
815 | .shift[0] = s,} | ||
816 | |||
817 | #define PWRITE(name, n, pri, rm, rl, m, s, r) \ | ||
818 | {.sda = SENSOR_ATTR(name, S_IRUGO | S_IWUSR, show_##r, store_##r, n), \ | ||
819 | .priority = pri, .msb[0] = rm, .lsb[0] = rl, .mask[0] = m, \ | ||
820 | .shift[0] = s,} | ||
821 | |||
822 | /* | ||
823 | * PWRITEM assumes that the initializers for the .msb, .lsb, .mask and .shift | ||
824 | * were created using the VAA macro. | ||
825 | */ | ||
826 | #define PWRITEM(name, n, pri, rm, rl, m, s, r) \ | ||
827 | {.sda = SENSOR_ATTR(name, S_IRUGO | S_IWUSR, show_##r, store_##r, n), \ | ||
828 | .priority = pri, .msb = rm, .lsb = rl, .mask = m, .shift = s,} | ||
829 | |||
830 | static struct asc7621_param asc7621_params[] = { | ||
831 | PREAD(in0_input, 0, PRI_HIGH, 0x20, 0x13, 0, 0, in10), | ||
832 | PREAD(in1_input, 1, PRI_HIGH, 0x21, 0x18, 0, 0, in10), | ||
833 | PREAD(in2_input, 2, PRI_HIGH, 0x22, 0x11, 0, 0, in10), | ||
834 | PREAD(in3_input, 3, PRI_HIGH, 0x23, 0x12, 0, 0, in10), | ||
835 | PREAD(in4_input, 4, PRI_HIGH, 0x24, 0x14, 0, 0, in10), | ||
836 | |||
837 | PWRITE(in0_min, 0, PRI_LOW, 0x44, 0, 0, 0, in8), | ||
838 | PWRITE(in1_min, 1, PRI_LOW, 0x46, 0, 0, 0, in8), | ||
839 | PWRITE(in2_min, 2, PRI_LOW, 0x48, 0, 0, 0, in8), | ||
840 | PWRITE(in3_min, 3, PRI_LOW, 0x4a, 0, 0, 0, in8), | ||
841 | PWRITE(in4_min, 4, PRI_LOW, 0x4c, 0, 0, 0, in8), | ||
842 | |||
843 | PWRITE(in0_max, 0, PRI_LOW, 0x45, 0, 0, 0, in8), | ||
844 | PWRITE(in1_max, 1, PRI_LOW, 0x47, 0, 0, 0, in8), | ||
845 | PWRITE(in2_max, 2, PRI_LOW, 0x49, 0, 0, 0, in8), | ||
846 | PWRITE(in3_max, 3, PRI_LOW, 0x4b, 0, 0, 0, in8), | ||
847 | PWRITE(in4_max, 4, PRI_LOW, 0x4d, 0, 0, 0, in8), | ||
848 | |||
849 | PREAD(in0_alarm, 0, PRI_LOW, 0x41, 0, 0x01, 0, bitmask), | ||
850 | PREAD(in1_alarm, 1, PRI_LOW, 0x41, 0, 0x01, 1, bitmask), | ||
851 | PREAD(in2_alarm, 2, PRI_LOW, 0x41, 0, 0x01, 2, bitmask), | ||
852 | PREAD(in3_alarm, 3, PRI_LOW, 0x41, 0, 0x01, 3, bitmask), | ||
853 | PREAD(in4_alarm, 4, PRI_LOW, 0x42, 0, 0x01, 0, bitmask), | ||
854 | |||
855 | PREAD(fan1_input, 0, PRI_HIGH, 0x29, 0x28, 0, 0, fan16), | ||
856 | PREAD(fan2_input, 1, PRI_HIGH, 0x2b, 0x2a, 0, 0, fan16), | ||
857 | PREAD(fan3_input, 2, PRI_HIGH, 0x2d, 0x2c, 0, 0, fan16), | ||
858 | PREAD(fan4_input, 3, PRI_HIGH, 0x2f, 0x2e, 0, 0, fan16), | ||
859 | |||
860 | PWRITE(fan1_min, 0, PRI_LOW, 0x55, 0x54, 0, 0, fan16), | ||
861 | PWRITE(fan2_min, 1, PRI_LOW, 0x57, 0x56, 0, 0, fan16), | ||
862 | PWRITE(fan3_min, 2, PRI_LOW, 0x59, 0x58, 0, 0, fan16), | ||
863 | PWRITE(fan4_min, 3, PRI_LOW, 0x5b, 0x5a, 0, 0, fan16), | ||
864 | |||
865 | PREAD(fan1_alarm, 0, PRI_LOW, 0x42, 0, 0x01, 0, bitmask), | ||
866 | PREAD(fan2_alarm, 1, PRI_LOW, 0x42, 0, 0x01, 1, bitmask), | ||
867 | PREAD(fan3_alarm, 2, PRI_LOW, 0x42, 0, 0x01, 2, bitmask), | ||
868 | PREAD(fan4_alarm, 3, PRI_LOW, 0x42, 0, 0x01, 3, bitmask), | ||
869 | |||
870 | PREAD(temp1_input, 0, PRI_HIGH, 0x25, 0x10, 0, 0, temp10), | ||
871 | PREAD(temp2_input, 1, PRI_HIGH, 0x26, 0x15, 0, 0, temp10), | ||
872 | PREAD(temp3_input, 2, PRI_HIGH, 0x27, 0x16, 0, 0, temp10), | ||
873 | PREAD(temp4_input, 3, PRI_HIGH, 0x33, 0x17, 0, 0, temp10), | ||
874 | PREAD(temp5_input, 4, PRI_HIGH, 0xf7, 0xf6, 0, 0, temp10), | ||
875 | PREAD(temp6_input, 5, PRI_HIGH, 0xf9, 0xf8, 0, 0, temp10), | ||
876 | PREAD(temp7_input, 6, PRI_HIGH, 0xfb, 0xfa, 0, 0, temp10), | ||
877 | PREAD(temp8_input, 7, PRI_HIGH, 0xfd, 0xfc, 0, 0, temp10), | ||
878 | |||
879 | PWRITE(temp1_min, 0, PRI_LOW, 0x4e, 0, 0, 0, temp8), | ||
880 | PWRITE(temp2_min, 1, PRI_LOW, 0x50, 0, 0, 0, temp8), | ||
881 | PWRITE(temp3_min, 2, PRI_LOW, 0x52, 0, 0, 0, temp8), | ||
882 | PWRITE(temp4_min, 3, PRI_LOW, 0x34, 0, 0, 0, temp8), | ||
883 | |||
884 | PWRITE(temp1_max, 0, PRI_LOW, 0x4f, 0, 0, 0, temp8), | ||
885 | PWRITE(temp2_max, 1, PRI_LOW, 0x51, 0, 0, 0, temp8), | ||
886 | PWRITE(temp3_max, 2, PRI_LOW, 0x53, 0, 0, 0, temp8), | ||
887 | PWRITE(temp4_max, 3, PRI_LOW, 0x35, 0, 0, 0, temp8), | ||
888 | |||
889 | PREAD(temp1_alarm, 0, PRI_LOW, 0x41, 0, 0x01, 4, bitmask), | ||
890 | PREAD(temp2_alarm, 1, PRI_LOW, 0x41, 0, 0x01, 5, bitmask), | ||
891 | PREAD(temp3_alarm, 2, PRI_LOW, 0x41, 0, 0x01, 6, bitmask), | ||
892 | PREAD(temp4_alarm, 3, PRI_LOW, 0x43, 0, 0x01, 0, bitmask), | ||
893 | |||
894 | PWRITE(temp1_source, 0, PRI_LOW, 0x02, 0, 0x07, 4, bitmask), | ||
895 | PWRITE(temp2_source, 1, PRI_LOW, 0x02, 0, 0x07, 0, bitmask), | ||
896 | PWRITE(temp3_source, 2, PRI_LOW, 0x03, 0, 0x07, 4, bitmask), | ||
897 | PWRITE(temp4_source, 3, PRI_LOW, 0x03, 0, 0x07, 0, bitmask), | ||
898 | |||
899 | PWRITE(temp1_smoothing_enable, 0, PRI_LOW, 0x62, 0, 0x01, 3, bitmask), | ||
900 | PWRITE(temp2_smoothing_enable, 1, PRI_LOW, 0x63, 0, 0x01, 7, bitmask), | ||
901 | PWRITE(temp3_smoothing_enable, 2, PRI_LOW, 0x64, 0, 0x01, 3, bitmask), | ||
902 | PWRITE(temp4_smoothing_enable, 3, PRI_LOW, 0x3c, 0, 0x01, 3, bitmask), | ||
903 | |||
904 | PWRITE(temp1_smoothing_time, 0, PRI_LOW, 0x62, 0, 0x07, 0, temp_st), | ||
905 | PWRITE(temp2_smoothing_time, 1, PRI_LOW, 0x63, 0, 0x07, 4, temp_st), | ||
906 | PWRITE(temp3_smoothing_time, 2, PRI_LOW, 0x63, 0, 0x07, 0, temp_st), | ||
907 | PWRITE(temp4_smoothing_time, 3, PRI_LOW, 0x3c, 0, 0x07, 0, temp_st), | ||
908 | |||
909 | PWRITE(temp1_auto_point1_temp_hyst, 0, PRI_LOW, 0x6d, 0, 0x0f, 4, | ||
910 | bitmask), | ||
911 | PWRITE(temp2_auto_point1_temp_hyst, 1, PRI_LOW, 0x6d, 0, 0x0f, 0, | ||
912 | bitmask), | ||
913 | PWRITE(temp3_auto_point1_temp_hyst, 2, PRI_LOW, 0x6e, 0, 0x0f, 4, | ||
914 | bitmask), | ||
915 | PWRITE(temp4_auto_point1_temp_hyst, 3, PRI_LOW, 0x6e, 0, 0x0f, 0, | ||
916 | bitmask), | ||
917 | |||
918 | PREAD(temp1_auto_point2_temp_hyst, 0, PRI_LOW, 0x6d, 0, 0x0f, 4, | ||
919 | bitmask), | ||
920 | PREAD(temp2_auto_point2_temp_hyst, 1, PRI_LOW, 0x6d, 0, 0x0f, 0, | ||
921 | bitmask), | ||
922 | PREAD(temp3_auto_point2_temp_hyst, 2, PRI_LOW, 0x6e, 0, 0x0f, 4, | ||
923 | bitmask), | ||
924 | PREAD(temp4_auto_point2_temp_hyst, 3, PRI_LOW, 0x6e, 0, 0x0f, 0, | ||
925 | bitmask), | ||
926 | |||
927 | PWRITE(temp1_auto_point1_temp, 0, PRI_LOW, 0x67, 0, 0, 0, temp8), | ||
928 | PWRITE(temp2_auto_point1_temp, 1, PRI_LOW, 0x68, 0, 0, 0, temp8), | ||
929 | PWRITE(temp3_auto_point1_temp, 2, PRI_LOW, 0x69, 0, 0, 0, temp8), | ||
930 | PWRITE(temp4_auto_point1_temp, 3, PRI_LOW, 0x3b, 0, 0, 0, temp8), | ||
931 | |||
932 | PWRITEM(temp1_auto_point2_temp, 0, PRI_LOW, VAA(0x5f, 0x67), VAA(0), | ||
933 | VAA(0x0f), VAA(4), ap2_temp), | ||
934 | PWRITEM(temp2_auto_point2_temp, 1, PRI_LOW, VAA(0x60, 0x68), VAA(0), | ||
935 | VAA(0x0f), VAA(4), ap2_temp), | ||
936 | PWRITEM(temp3_auto_point2_temp, 2, PRI_LOW, VAA(0x61, 0x69), VAA(0), | ||
937 | VAA(0x0f), VAA(4), ap2_temp), | ||
938 | PWRITEM(temp4_auto_point2_temp, 3, PRI_LOW, VAA(0x3c, 0x3b), VAA(0), | ||
939 | VAA(0x0f), VAA(4), ap2_temp), | ||
940 | |||
941 | PWRITE(temp1_crit, 0, PRI_LOW, 0x6a, 0, 0, 0, temp8), | ||
942 | PWRITE(temp2_crit, 1, PRI_LOW, 0x6b, 0, 0, 0, temp8), | ||
943 | PWRITE(temp3_crit, 2, PRI_LOW, 0x6c, 0, 0, 0, temp8), | ||
944 | PWRITE(temp4_crit, 3, PRI_LOW, 0x3d, 0, 0, 0, temp8), | ||
945 | |||
946 | PWRITE(temp5_enable, 4, PRI_LOW, 0x0e, 0, 0x01, 0, bitmask), | ||
947 | PWRITE(temp6_enable, 5, PRI_LOW, 0x0e, 0, 0x01, 1, bitmask), | ||
948 | PWRITE(temp7_enable, 6, PRI_LOW, 0x0e, 0, 0x01, 2, bitmask), | ||
949 | PWRITE(temp8_enable, 7, PRI_LOW, 0x0e, 0, 0x01, 3, bitmask), | ||
950 | |||
951 | PWRITE(remote1_offset, 0, PRI_LOW, 0x1c, 0, 0, 0, temp62), | ||
952 | PWRITE(remote2_offset, 1, PRI_LOW, 0x1d, 0, 0, 0, temp62), | ||
953 | |||
954 | PWRITE(pwm1, 0, PRI_HIGH, 0x30, 0, 0, 0, u8), | ||
955 | PWRITE(pwm2, 1, PRI_HIGH, 0x31, 0, 0, 0, u8), | ||
956 | PWRITE(pwm3, 2, PRI_HIGH, 0x32, 0, 0, 0, u8), | ||
957 | |||
958 | PWRITE(pwm1_invert, 0, PRI_LOW, 0x5c, 0, 0x01, 4, bitmask), | ||
959 | PWRITE(pwm2_invert, 1, PRI_LOW, 0x5d, 0, 0x01, 4, bitmask), | ||
960 | PWRITE(pwm3_invert, 2, PRI_LOW, 0x5e, 0, 0x01, 4, bitmask), | ||
961 | |||
962 | PWRITEM(pwm1_enable, 0, PRI_LOW, VAA(0x5c, 0x5c, 0x62), VAA(0, 0, 0), | ||
963 | VAA(0x07, 0x01, 0x01), VAA(5, 3, 5), pwm_enable), | ||
964 | PWRITEM(pwm2_enable, 1, PRI_LOW, VAA(0x5d, 0x5d, 0x62), VAA(0, 0, 0), | ||
965 | VAA(0x07, 0x01, 0x01), VAA(5, 3, 6), pwm_enable), | ||
966 | PWRITEM(pwm3_enable, 2, PRI_LOW, VAA(0x5e, 0x5e, 0x62), VAA(0, 0, 0), | ||
967 | VAA(0x07, 0x01, 0x01), VAA(5, 3, 7), pwm_enable), | ||
968 | |||
969 | PWRITEM(pwm1_auto_channels, 0, PRI_LOW, VAA(0x5c, 0x5c), VAA(0, 0), | ||
970 | VAA(0x07, 0x01), VAA(5, 3), pwm_ac), | ||
971 | PWRITEM(pwm2_auto_channels, 1, PRI_LOW, VAA(0x5d, 0x5d), VAA(0, 0), | ||
972 | VAA(0x07, 0x01), VAA(5, 3), pwm_ac), | ||
973 | PWRITEM(pwm3_auto_channels, 2, PRI_LOW, VAA(0x5e, 0x5e), VAA(0, 0), | ||
974 | VAA(0x07, 0x01), VAA(5, 3), pwm_ac), | ||
975 | |||
976 | PWRITE(pwm1_auto_point1_pwm, 0, PRI_LOW, 0x64, 0, 0, 0, u8), | ||
977 | PWRITE(pwm2_auto_point1_pwm, 1, PRI_LOW, 0x65, 0, 0, 0, u8), | ||
978 | PWRITE(pwm3_auto_point1_pwm, 2, PRI_LOW, 0x66, 0, 0, 0, u8), | ||
979 | |||
980 | PWRITE(pwm1_auto_point2_pwm, 0, PRI_LOW, 0x38, 0, 0, 0, u8), | ||
981 | PWRITE(pwm2_auto_point2_pwm, 1, PRI_LOW, 0x39, 0, 0, 0, u8), | ||
982 | PWRITE(pwm3_auto_point2_pwm, 2, PRI_LOW, 0x3a, 0, 0, 0, u8), | ||
983 | |||
984 | PWRITE(pwm1_freq, 0, PRI_LOW, 0x5f, 0, 0x0f, 0, pwm_freq), | ||
985 | PWRITE(pwm2_freq, 1, PRI_LOW, 0x60, 0, 0x0f, 0, pwm_freq), | ||
986 | PWRITE(pwm3_freq, 2, PRI_LOW, 0x61, 0, 0x0f, 0, pwm_freq), | ||
987 | |||
988 | PREAD(pwm1_auto_zone_assigned, 0, PRI_LOW, 0, 0, 0x03, 2, bitmask), | ||
989 | PREAD(pwm2_auto_zone_assigned, 1, PRI_LOW, 0, 0, 0x03, 4, bitmask), | ||
990 | PREAD(pwm3_auto_zone_assigned, 2, PRI_LOW, 0, 0, 0x03, 6, bitmask), | ||
991 | |||
992 | PWRITE(pwm1_auto_spinup_time, 0, PRI_LOW, 0x5c, 0, 0x07, 0, pwm_ast), | ||
993 | PWRITE(pwm2_auto_spinup_time, 1, PRI_LOW, 0x5d, 0, 0x07, 0, pwm_ast), | ||
994 | PWRITE(pwm3_auto_spinup_time, 2, PRI_LOW, 0x5e, 0, 0x07, 0, pwm_ast), | ||
995 | |||
996 | PWRITE(peci_enable, 0, PRI_LOW, 0x40, 0, 0x01, 4, bitmask), | ||
997 | PWRITE(peci_avg, 0, PRI_LOW, 0x36, 0, 0x07, 0, bitmask), | ||
998 | PWRITE(peci_domain, 0, PRI_LOW, 0x36, 0, 0x01, 3, bitmask), | ||
999 | PWRITE(peci_legacy, 0, PRI_LOW, 0x36, 0, 0x01, 4, bitmask), | ||
1000 | PWRITE(peci_diode, 0, PRI_LOW, 0x0e, 0, 0x07, 4, bitmask), | ||
1001 | PWRITE(peci_4domain, 0, PRI_LOW, 0x0e, 0, 0x01, 4, bitmask), | ||
1002 | |||
1003 | }; | ||
1004 | |||
1005 | static struct asc7621_data *asc7621_update_device(struct device *dev) | ||
1006 | { | ||
1007 | struct i2c_client *client = to_i2c_client(dev); | ||
1008 | struct asc7621_data *data = i2c_get_clientdata(client); | ||
1009 | int i; | ||
1010 | |||
1011 | /* | ||
1012 | * The asc7621 chips guarantee consistent reads of multi-byte values | ||
1013 | * regardless of the order of the reads. No special logic is needed | ||
1014 | * so we can just read the registers in whatever order they appear | ||
1015 | * in the asc7621_params array. | ||
1016 | */ | ||
1017 | |||
1018 | mutex_lock(&data->update_lock); | ||
1019 | |||
1020 | /* Read all the high priority registers */ | ||
1021 | |||
1022 | if (!data->valid || | ||
1023 | time_after(jiffies, data->last_high_reading + INTERVAL_HIGH)) { | ||
1024 | |||
1025 | for (i = 0; i < ARRAY_SIZE(asc7621_register_priorities); i++) { | ||
1026 | if (asc7621_register_priorities[i] == PRI_HIGH) { | ||
1027 | data->reg[i] = | ||
1028 | i2c_smbus_read_byte_data(client, i) & 0xff; | ||
1029 | } | ||
1030 | } | ||
1031 | data->last_high_reading = jiffies; | ||
1032 | }; /* last_reading */ | ||
1033 | |||
1034 | /* Read all the low priority registers. */ | ||
1035 | |||
1036 | if (!data->valid || | ||
1037 | time_after(jiffies, data->last_low_reading + INTERVAL_LOW)) { | ||
1038 | |||
1039 | for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) { | ||
1040 | if (asc7621_register_priorities[i] == PRI_LOW) { | ||
1041 | data->reg[i] = | ||
1042 | i2c_smbus_read_byte_data(client, i) & 0xff; | ||
1043 | } | ||
1044 | } | ||
1045 | data->last_low_reading = jiffies; | ||
1046 | }; /* last_reading */ | ||
1047 | |||
1048 | data->valid = 1; | ||
1049 | |||
1050 | mutex_unlock(&data->update_lock); | ||
1051 | |||
1052 | return data; | ||
1053 | } | ||
1054 | |||
1055 | /* | ||
1056 | * Standard detection and initialization below | ||
1057 | * | ||
1058 | * Helper function that checks if an address is valid | ||
1059 | * for a particular chip. | ||
1060 | */ | ||
1061 | |||
1062 | static inline int valid_address_for_chip(int chip_type, int address) | ||
1063 | { | ||
1064 | int i; | ||
1065 | |||
1066 | for (i = 0; asc7621_chips[chip_type].addresses[i] != I2C_CLIENT_END; | ||
1067 | i++) { | ||
1068 | if (asc7621_chips[chip_type].addresses[i] == address) | ||
1069 | return 1; | ||
1070 | } | ||
1071 | return 0; | ||
1072 | } | ||
1073 | |||
1074 | static void asc7621_init_client(struct i2c_client *client) | ||
1075 | { | ||
1076 | int value; | ||
1077 | |||
1078 | /* Warn if part was not "READY" */ | ||
1079 | |||
1080 | value = read_byte(client, 0x40); | ||
1081 | |||
1082 | if (value & 0x02) { | ||
1083 | dev_err(&client->dev, | ||
1084 | "Client (%d,0x%02x) config is locked.\n", | ||
1085 | i2c_adapter_id(client->adapter), client->addr); | ||
1086 | }; | ||
1087 | if (!(value & 0x04)) { | ||
1088 | dev_err(&client->dev, "Client (%d,0x%02x) is not ready.\n", | ||
1089 | i2c_adapter_id(client->adapter), client->addr); | ||
1090 | }; | ||
1091 | |||
1092 | /* | ||
1093 | * Start monitoring | ||
1094 | * | ||
1095 | * Try to clear LOCK, Set START, save everything else | ||
1096 | */ | ||
1097 | value = (value & ~0x02) | 0x01; | ||
1098 | write_byte(client, 0x40, value & 0xff); | ||
1099 | |||
1100 | } | ||
1101 | |||
1102 | static int | ||
1103 | asc7621_probe(struct i2c_client *client, const struct i2c_device_id *id) | ||
1104 | { | ||
1105 | struct asc7621_data *data; | ||
1106 | int i, err; | ||
1107 | |||
1108 | if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA)) | ||
1109 | return -EIO; | ||
1110 | |||
1111 | data = kzalloc(sizeof(struct asc7621_data), GFP_KERNEL); | ||
1112 | if (data == NULL) | ||
1113 | return -ENOMEM; | ||
1114 | |||
1115 | i2c_set_clientdata(client, data); | ||
1116 | data->valid = 0; | ||
1117 | mutex_init(&data->update_lock); | ||
1118 | |||
1119 | /* Initialize the asc7621 chip */ | ||
1120 | asc7621_init_client(client); | ||
1121 | |||
1122 | /* Create the sysfs entries */ | ||
1123 | for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) { | ||
1124 | err = | ||
1125 | device_create_file(&client->dev, | ||
1126 | &(asc7621_params[i].sda.dev_attr)); | ||
1127 | if (err) | ||
1128 | goto exit_remove; | ||
1129 | } | ||
1130 | |||
1131 | data->class_dev = hwmon_device_register(&client->dev); | ||
1132 | if (IS_ERR(data->class_dev)) { | ||
1133 | err = PTR_ERR(data->class_dev); | ||
1134 | goto exit_remove; | ||
1135 | } | ||
1136 | |||
1137 | return 0; | ||
1138 | |||
1139 | exit_remove: | ||
1140 | for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) { | ||
1141 | device_remove_file(&client->dev, | ||
1142 | &(asc7621_params[i].sda.dev_attr)); | ||
1143 | } | ||
1144 | |||
1145 | i2c_set_clientdata(client, NULL); | ||
1146 | kfree(data); | ||
1147 | return err; | ||
1148 | } | ||
1149 | |||
1150 | static int asc7621_detect(struct i2c_client *client, | ||
1151 | struct i2c_board_info *info) | ||
1152 | { | ||
1153 | struct i2c_adapter *adapter = client->adapter; | ||
1154 | int company, verstep, chip_index; | ||
1155 | struct device *dev; | ||
1156 | |||
1157 | dev = &client->dev; | ||
1158 | |||
1159 | if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) | ||
1160 | return -ENODEV; | ||
1161 | |||
1162 | for (chip_index = FIRST_CHIP; chip_index <= LAST_CHIP; chip_index++) { | ||
1163 | |||
1164 | if (!valid_address_for_chip(chip_index, client->addr)) | ||
1165 | continue; | ||
1166 | |||
1167 | company = read_byte(client, | ||
1168 | asc7621_chips[chip_index].company_reg); | ||
1169 | verstep = read_byte(client, | ||
1170 | asc7621_chips[chip_index].verstep_reg); | ||
1171 | |||
1172 | if (company == asc7621_chips[chip_index].company_id && | ||
1173 | verstep == asc7621_chips[chip_index].verstep_id) { | ||
1174 | strlcpy(client->name, asc7621_chips[chip_index].name, | ||
1175 | I2C_NAME_SIZE); | ||
1176 | strlcpy(info->type, asc7621_chips[chip_index].name, | ||
1177 | I2C_NAME_SIZE); | ||
1178 | |||
1179 | dev_info(&adapter->dev, "Matched %s\n", | ||
1180 | asc7621_chips[chip_index].name); | ||
1181 | return 0; | ||
1182 | } | ||
1183 | } | ||
1184 | |||
1185 | return -ENODEV; | ||
1186 | } | ||
1187 | |||
1188 | static int asc7621_remove(struct i2c_client *client) | ||
1189 | { | ||
1190 | struct asc7621_data *data = i2c_get_clientdata(client); | ||
1191 | int i; | ||
1192 | |||
1193 | hwmon_device_unregister(data->class_dev); | ||
1194 | |||
1195 | for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) { | ||
1196 | device_remove_file(&client->dev, | ||
1197 | &(asc7621_params[i].sda.dev_attr)); | ||
1198 | } | ||
1199 | |||
1200 | i2c_set_clientdata(client, NULL); | ||
1201 | kfree(data); | ||
1202 | return 0; | ||
1203 | } | ||
1204 | |||
1205 | static const struct i2c_device_id asc7621_id[] = { | ||
1206 | {"asc7621", asc7621}, | ||
1207 | {"asc7621a", asc7621a}, | ||
1208 | {}, | ||
1209 | }; | ||
1210 | |||
1211 | MODULE_DEVICE_TABLE(i2c, asc7621_id); | ||
1212 | |||
1213 | static struct i2c_driver asc7621_driver = { | ||
1214 | .class = I2C_CLASS_HWMON, | ||
1215 | .driver = { | ||
1216 | .name = "asc7621", | ||
1217 | }, | ||
1218 | .probe = asc7621_probe, | ||
1219 | .remove = asc7621_remove, | ||
1220 | .id_table = asc7621_id, | ||
1221 | .detect = asc7621_detect, | ||
1222 | .address_list = normal_i2c, | ||
1223 | }; | ||
1224 | |||
1225 | static int __init sm_asc7621_init(void) | ||
1226 | { | ||
1227 | int i, j; | ||
1228 | /* | ||
1229 | * Collect all the registers needed into a single array. | ||
1230 | * This way, if a register isn't actually used for anything, | ||
1231 | * we don't retrieve it. | ||
1232 | */ | ||
1233 | |||
1234 | for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) { | ||
1235 | for (j = 0; j < ARRAY_SIZE(asc7621_params[i].msb); j++) | ||
1236 | asc7621_register_priorities[asc7621_params[i].msb[j]] = | ||
1237 | asc7621_params[i].priority; | ||
1238 | for (j = 0; j < ARRAY_SIZE(asc7621_params[i].lsb); j++) | ||
1239 | asc7621_register_priorities[asc7621_params[i].lsb[j]] = | ||
1240 | asc7621_params[i].priority; | ||
1241 | } | ||
1242 | return i2c_add_driver(&asc7621_driver); | ||
1243 | } | ||
1244 | |||
1245 | static void __exit sm_asc7621_exit(void) | ||
1246 | { | ||
1247 | i2c_del_driver(&asc7621_driver); | ||
1248 | } | ||
1249 | |||
1250 | MODULE_LICENSE("GPL"); | ||
1251 | MODULE_AUTHOR("George Joseph"); | ||
1252 | MODULE_DESCRIPTION("Andigilog aSC7621 and aSC7621a driver"); | ||
1253 | |||
1254 | module_init(sm_asc7621_init); | ||
1255 | module_exit(sm_asc7621_exit); | ||