diff options
-rw-r--r-- | Documentation/DocBook/libata.tmpl | 1072 | ||||
-rw-r--r-- | drivers/scsi/ahci.c | 31 | ||||
-rw-r--r-- | drivers/scsi/libata-core.c | 433 | ||||
-rw-r--r-- | drivers/scsi/libata-scsi.c | 491 | ||||
-rw-r--r-- | drivers/scsi/libata.h | 4 | ||||
-rw-r--r-- | drivers/scsi/sata_mv.c | 1142 | ||||
-rw-r--r-- | drivers/scsi/sata_nv.c | 2 | ||||
-rw-r--r-- | drivers/scsi/sata_promise.c | 6 | ||||
-rw-r--r-- | drivers/scsi/sata_sis.c | 2 | ||||
-rw-r--r-- | drivers/scsi/sata_uli.c | 2 | ||||
-rw-r--r-- | drivers/scsi/sata_via.c | 2 | ||||
-rw-r--r-- | include/linux/ata.h | 20 | ||||
-rw-r--r-- | include/linux/libata.h | 34 |
13 files changed, 2720 insertions, 521 deletions
diff --git a/Documentation/DocBook/libata.tmpl b/Documentation/DocBook/libata.tmpl index 375ae760dc1e..d260d92089ad 100644 --- a/Documentation/DocBook/libata.tmpl +++ b/Documentation/DocBook/libata.tmpl | |||
@@ -415,6 +415,362 @@ and other resources, etc. | |||
415 | </sect1> | 415 | </sect1> |
416 | </chapter> | 416 | </chapter> |
417 | 417 | ||
418 | <chapter id="libataEH"> | ||
419 | <title>Error handling</title> | ||
420 | |||
421 | <para> | ||
422 | This chapter describes how errors are handled under libata. | ||
423 | Readers are advised to read SCSI EH | ||
424 | (Documentation/scsi/scsi_eh.txt) and ATA exceptions doc first. | ||
425 | </para> | ||
426 | |||
427 | <sect1><title>Origins of commands</title> | ||
428 | <para> | ||
429 | In libata, a command is represented with struct ata_queued_cmd | ||
430 | or qc. qc's are preallocated during port initialization and | ||
431 | repetitively used for command executions. Currently only one | ||
432 | qc is allocated per port but yet-to-be-merged NCQ branch | ||
433 | allocates one for each tag and maps each qc to NCQ tag 1-to-1. | ||
434 | </para> | ||
435 | <para> | ||
436 | libata commands can originate from two sources - libata itself | ||
437 | and SCSI midlayer. libata internal commands are used for | ||
438 | initialization and error handling. All normal blk requests | ||
439 | and commands for SCSI emulation are passed as SCSI commands | ||
440 | through queuecommand callback of SCSI host template. | ||
441 | </para> | ||
442 | </sect1> | ||
443 | |||
444 | <sect1><title>How commands are issued</title> | ||
445 | |||
446 | <variablelist> | ||
447 | |||
448 | <varlistentry><term>Internal commands</term> | ||
449 | <listitem> | ||
450 | <para> | ||
451 | First, qc is allocated and initialized using | ||
452 | ata_qc_new_init(). Although ata_qc_new_init() doesn't | ||
453 | implement any wait or retry mechanism when qc is not | ||
454 | available, internal commands are currently issued only during | ||
455 | initialization and error recovery, so no other command is | ||
456 | active and allocation is guaranteed to succeed. | ||
457 | </para> | ||
458 | <para> | ||
459 | Once allocated qc's taskfile is initialized for the command to | ||
460 | be executed. qc currently has two mechanisms to notify | ||
461 | completion. One is via qc->complete_fn() callback and the | ||
462 | other is completion qc->waiting. qc->complete_fn() callback | ||
463 | is the asynchronous path used by normal SCSI translated | ||
464 | commands and qc->waiting is the synchronous (issuer sleeps in | ||
465 | process context) path used by internal commands. | ||
466 | </para> | ||
467 | <para> | ||
468 | Once initialization is complete, host_set lock is acquired | ||
469 | and the qc is issued. | ||
470 | </para> | ||
471 | </listitem> | ||
472 | </varlistentry> | ||
473 | |||
474 | <varlistentry><term>SCSI commands</term> | ||
475 | <listitem> | ||
476 | <para> | ||
477 | All libata drivers use ata_scsi_queuecmd() as | ||
478 | hostt->queuecommand callback. scmds can either be simulated | ||
479 | or translated. No qc is involved in processing a simulated | ||
480 | scmd. The result is computed right away and the scmd is | ||
481 | completed. | ||
482 | </para> | ||
483 | <para> | ||
484 | For a translated scmd, ata_qc_new_init() is invoked to | ||
485 | allocate a qc and the scmd is translated into the qc. SCSI | ||
486 | midlayer's completion notification function pointer is stored | ||
487 | into qc->scsidone. | ||
488 | </para> | ||
489 | <para> | ||
490 | qc->complete_fn() callback is used for completion | ||
491 | notification. ATA commands use ata_scsi_qc_complete() while | ||
492 | ATAPI commands use atapi_qc_complete(). Both functions end up | ||
493 | calling qc->scsidone to notify upper layer when the qc is | ||
494 | finished. After translation is completed, the qc is issued | ||
495 | with ata_qc_issue(). | ||
496 | </para> | ||
497 | <para> | ||
498 | Note that SCSI midlayer invokes hostt->queuecommand while | ||
499 | holding host_set lock, so all above occur while holding | ||
500 | host_set lock. | ||
501 | </para> | ||
502 | </listitem> | ||
503 | </varlistentry> | ||
504 | |||
505 | </variablelist> | ||
506 | </sect1> | ||
507 | |||
508 | <sect1><title>How commands are processed</title> | ||
509 | <para> | ||
510 | Depending on which protocol and which controller are used, | ||
511 | commands are processed differently. For the purpose of | ||
512 | discussion, a controller which uses taskfile interface and all | ||
513 | standard callbacks is assumed. | ||
514 | </para> | ||
515 | <para> | ||
516 | Currently 6 ATA command protocols are used. They can be | ||
517 | sorted into the following four categories according to how | ||
518 | they are processed. | ||
519 | </para> | ||
520 | |||
521 | <variablelist> | ||
522 | <varlistentry><term>ATA NO DATA or DMA</term> | ||
523 | <listitem> | ||
524 | <para> | ||
525 | ATA_PROT_NODATA and ATA_PROT_DMA fall into this category. | ||
526 | These types of commands don't require any software | ||
527 | intervention once issued. Device will raise interrupt on | ||
528 | completion. | ||
529 | </para> | ||
530 | </listitem> | ||
531 | </varlistentry> | ||
532 | |||
533 | <varlistentry><term>ATA PIO</term> | ||
534 | <listitem> | ||
535 | <para> | ||
536 | ATA_PROT_PIO is in this category. libata currently | ||
537 | implements PIO with polling. ATA_NIEN bit is set to turn | ||
538 | off interrupt and pio_task on ata_wq performs polling and | ||
539 | IO. | ||
540 | </para> | ||
541 | </listitem> | ||
542 | </varlistentry> | ||
543 | |||
544 | <varlistentry><term>ATAPI NODATA or DMA</term> | ||
545 | <listitem> | ||
546 | <para> | ||
547 | ATA_PROT_ATAPI_NODATA and ATA_PROT_ATAPI_DMA are in this | ||
548 | category. packet_task is used to poll BSY bit after | ||
549 | issuing PACKET command. Once BSY is turned off by the | ||
550 | device, packet_task transfers CDB and hands off processing | ||
551 | to interrupt handler. | ||
552 | </para> | ||
553 | </listitem> | ||
554 | </varlistentry> | ||
555 | |||
556 | <varlistentry><term>ATAPI PIO</term> | ||
557 | <listitem> | ||
558 | <para> | ||
559 | ATA_PROT_ATAPI is in this category. ATA_NIEN bit is set | ||
560 | and, as in ATAPI NODATA or DMA, packet_task submits cdb. | ||
561 | However, after submitting cdb, further processing (data | ||
562 | transfer) is handed off to pio_task. | ||
563 | </para> | ||
564 | </listitem> | ||
565 | </varlistentry> | ||
566 | </variablelist> | ||
567 | </sect1> | ||
568 | |||
569 | <sect1><title>How commands are completed</title> | ||
570 | <para> | ||
571 | Once issued, all qc's are either completed with | ||
572 | ata_qc_complete() or time out. For commands which are handled | ||
573 | by interrupts, ata_host_intr() invokes ata_qc_complete(), and, | ||
574 | for PIO tasks, pio_task invokes ata_qc_complete(). In error | ||
575 | cases, packet_task may also complete commands. | ||
576 | </para> | ||
577 | <para> | ||
578 | ata_qc_complete() does the following. | ||
579 | </para> | ||
580 | |||
581 | <orderedlist> | ||
582 | |||
583 | <listitem> | ||
584 | <para> | ||
585 | DMA memory is unmapped. | ||
586 | </para> | ||
587 | </listitem> | ||
588 | |||
589 | <listitem> | ||
590 | <para> | ||
591 | ATA_QCFLAG_ACTIVE is clared from qc->flags. | ||
592 | </para> | ||
593 | </listitem> | ||
594 | |||
595 | <listitem> | ||
596 | <para> | ||
597 | qc->complete_fn() callback is invoked. If the return value of | ||
598 | the callback is not zero. Completion is short circuited and | ||
599 | ata_qc_complete() returns. | ||
600 | </para> | ||
601 | </listitem> | ||
602 | |||
603 | <listitem> | ||
604 | <para> | ||
605 | __ata_qc_complete() is called, which does | ||
606 | <orderedlist> | ||
607 | |||
608 | <listitem> | ||
609 | <para> | ||
610 | qc->flags is cleared to zero. | ||
611 | </para> | ||
612 | </listitem> | ||
613 | |||
614 | <listitem> | ||
615 | <para> | ||
616 | ap->active_tag and qc->tag are poisoned. | ||
617 | </para> | ||
618 | </listitem> | ||
619 | |||
620 | <listitem> | ||
621 | <para> | ||
622 | qc->waiting is claread & completed (in that order). | ||
623 | </para> | ||
624 | </listitem> | ||
625 | |||
626 | <listitem> | ||
627 | <para> | ||
628 | qc is deallocated by clearing appropriate bit in ap->qactive. | ||
629 | </para> | ||
630 | </listitem> | ||
631 | |||
632 | </orderedlist> | ||
633 | </para> | ||
634 | </listitem> | ||
635 | |||
636 | </orderedlist> | ||
637 | |||
638 | <para> | ||
639 | So, it basically notifies upper layer and deallocates qc. One | ||
640 | exception is short-circuit path in #3 which is used by | ||
641 | atapi_qc_complete(). | ||
642 | </para> | ||
643 | <para> | ||
644 | For all non-ATAPI commands, whether it fails or not, almost | ||
645 | the same code path is taken and very little error handling | ||
646 | takes place. A qc is completed with success status if it | ||
647 | succeeded, with failed status otherwise. | ||
648 | </para> | ||
649 | <para> | ||
650 | However, failed ATAPI commands require more handling as | ||
651 | REQUEST SENSE is needed to acquire sense data. If an ATAPI | ||
652 | command fails, ata_qc_complete() is invoked with error status, | ||
653 | which in turn invokes atapi_qc_complete() via | ||
654 | qc->complete_fn() callback. | ||
655 | </para> | ||
656 | <para> | ||
657 | This makes atapi_qc_complete() set scmd->result to | ||
658 | SAM_STAT_CHECK_CONDITION, complete the scmd and return 1. As | ||
659 | the sense data is empty but scmd->result is CHECK CONDITION, | ||
660 | SCSI midlayer will invoke EH for the scmd, and returning 1 | ||
661 | makes ata_qc_complete() to return without deallocating the qc. | ||
662 | This leads us to ata_scsi_error() with partially completed qc. | ||
663 | </para> | ||
664 | |||
665 | </sect1> | ||
666 | |||
667 | <sect1><title>ata_scsi_error()</title> | ||
668 | <para> | ||
669 | ata_scsi_error() is the current hostt->eh_strategy_handler() | ||
670 | for libata. As discussed above, this will be entered in two | ||
671 | cases - timeout and ATAPI error completion. This function | ||
672 | calls low level libata driver's eng_timeout() callback, the | ||
673 | standard callback for which is ata_eng_timeout(). It checks | ||
674 | if a qc is active and calls ata_qc_timeout() on the qc if so. | ||
675 | Actual error handling occurs in ata_qc_timeout(). | ||
676 | </para> | ||
677 | <para> | ||
678 | If EH is invoked for timeout, ata_qc_timeout() stops BMDMA and | ||
679 | completes the qc. Note that as we're currently in EH, we | ||
680 | cannot call scsi_done. As described in SCSI EH doc, a | ||
681 | recovered scmd should be either retried with | ||
682 | scsi_queue_insert() or finished with scsi_finish_command(). | ||
683 | Here, we override qc->scsidone with scsi_finish_command() and | ||
684 | calls ata_qc_complete(). | ||
685 | </para> | ||
686 | <para> | ||
687 | If EH is invoked due to a failed ATAPI qc, the qc here is | ||
688 | completed but not deallocated. The purpose of this | ||
689 | half-completion is to use the qc as place holder to make EH | ||
690 | code reach this place. This is a bit hackish, but it works. | ||
691 | </para> | ||
692 | <para> | ||
693 | Once control reaches here, the qc is deallocated by invoking | ||
694 | __ata_qc_complete() explicitly. Then, internal qc for REQUEST | ||
695 | SENSE is issued. Once sense data is acquired, scmd is | ||
696 | finished by directly invoking scsi_finish_command() on the | ||
697 | scmd. Note that as we already have completed and deallocated | ||
698 | the qc which was associated with the scmd, we don't need | ||
699 | to/cannot call ata_qc_complete() again. | ||
700 | </para> | ||
701 | |||
702 | </sect1> | ||
703 | |||
704 | <sect1><title>Problems with the current EH</title> | ||
705 | |||
706 | <itemizedlist> | ||
707 | |||
708 | <listitem> | ||
709 | <para> | ||
710 | Error representation is too crude. Currently any and all | ||
711 | error conditions are represented with ATA STATUS and ERROR | ||
712 | registers. Errors which aren't ATA device errors are treated | ||
713 | as ATA device errors by setting ATA_ERR bit. Better error | ||
714 | descriptor which can properly represent ATA and other | ||
715 | errors/exceptions is needed. | ||
716 | </para> | ||
717 | </listitem> | ||
718 | |||
719 | <listitem> | ||
720 | <para> | ||
721 | When handling timeouts, no action is taken to make device | ||
722 | forget about the timed out command and ready for new commands. | ||
723 | </para> | ||
724 | </listitem> | ||
725 | |||
726 | <listitem> | ||
727 | <para> | ||
728 | EH handling via ata_scsi_error() is not properly protected | ||
729 | from usual command processing. On EH entrance, the device is | ||
730 | not in quiescent state. Timed out commands may succeed or | ||
731 | fail any time. pio_task and atapi_task may still be running. | ||
732 | </para> | ||
733 | </listitem> | ||
734 | |||
735 | <listitem> | ||
736 | <para> | ||
737 | Too weak error recovery. Devices / controllers causing HSM | ||
738 | mismatch errors and other errors quite often require reset to | ||
739 | return to known state. Also, advanced error handling is | ||
740 | necessary to support features like NCQ and hotplug. | ||
741 | </para> | ||
742 | </listitem> | ||
743 | |||
744 | <listitem> | ||
745 | <para> | ||
746 | ATA errors are directly handled in the interrupt handler and | ||
747 | PIO errors in pio_task. This is problematic for advanced | ||
748 | error handling for the following reasons. | ||
749 | </para> | ||
750 | <para> | ||
751 | First, advanced error handling often requires context and | ||
752 | internal qc execution. | ||
753 | </para> | ||
754 | <para> | ||
755 | Second, even a simple failure (say, CRC error) needs | ||
756 | information gathering and could trigger complex error handling | ||
757 | (say, resetting & reconfiguring). Having multiple code | ||
758 | paths to gather information, enter EH and trigger actions | ||
759 | makes life painful. | ||
760 | </para> | ||
761 | <para> | ||
762 | Third, scattered EH code makes implementing low level drivers | ||
763 | difficult. Low level drivers override libata callbacks. If | ||
764 | EH is scattered over several places, each affected callbacks | ||
765 | should perform its part of error handling. This can be error | ||
766 | prone and painful. | ||
767 | </para> | ||
768 | </listitem> | ||
769 | |||
770 | </itemizedlist> | ||
771 | </sect1> | ||
772 | </chapter> | ||
773 | |||
418 | <chapter id="libataExt"> | 774 | <chapter id="libataExt"> |
419 | <title>libata Library</title> | 775 | <title>libata Library</title> |
420 | !Edrivers/scsi/libata-core.c | 776 | !Edrivers/scsi/libata-core.c |
@@ -431,6 +787,722 @@ and other resources, etc. | |||
431 | !Idrivers/scsi/libata-scsi.c | 787 | !Idrivers/scsi/libata-scsi.c |
432 | </chapter> | 788 | </chapter> |
433 | 789 | ||
790 | <chapter id="ataExceptions"> | ||
791 | <title>ATA errors & exceptions</title> | ||
792 | |||
793 | <para> | ||
794 | This chapter tries to identify what error/exception conditions exist | ||
795 | for ATA/ATAPI devices and describe how they should be handled in | ||
796 | implementation-neutral way. | ||
797 | </para> | ||
798 | |||
799 | <para> | ||
800 | The term 'error' is used to describe conditions where either an | ||
801 | explicit error condition is reported from device or a command has | ||
802 | timed out. | ||
803 | </para> | ||
804 | |||
805 | <para> | ||
806 | The term 'exception' is either used to describe exceptional | ||
807 | conditions which are not errors (say, power or hotplug events), or | ||
808 | to describe both errors and non-error exceptional conditions. Where | ||
809 | explicit distinction between error and exception is necessary, the | ||
810 | term 'non-error exception' is used. | ||
811 | </para> | ||
812 | |||
813 | <sect1 id="excat"> | ||
814 | <title>Exception categories</title> | ||
815 | <para> | ||
816 | Exceptions are described primarily with respect to legacy | ||
817 | taskfile + bus master IDE interface. If a controller provides | ||
818 | other better mechanism for error reporting, mapping those into | ||
819 | categories described below shouldn't be difficult. | ||
820 | </para> | ||
821 | |||
822 | <para> | ||
823 | In the following sections, two recovery actions - reset and | ||
824 | reconfiguring transport - are mentioned. These are described | ||
825 | further in <xref linkend="exrec"/>. | ||
826 | </para> | ||
827 | |||
828 | <sect2 id="excatHSMviolation"> | ||
829 | <title>HSM violation</title> | ||
830 | <para> | ||
831 | This error is indicated when STATUS value doesn't match HSM | ||
832 | requirement during issuing or excution any ATA/ATAPI command. | ||
833 | </para> | ||
834 | |||
835 | <itemizedlist> | ||
836 | <title>Examples</title> | ||
837 | |||
838 | <listitem> | ||
839 | <para> | ||
840 | ATA_STATUS doesn't contain !BSY && DRDY && !DRQ while trying | ||
841 | to issue a command. | ||
842 | </para> | ||
843 | </listitem> | ||
844 | |||
845 | <listitem> | ||
846 | <para> | ||
847 | !BSY && !DRQ during PIO data transfer. | ||
848 | </para> | ||
849 | </listitem> | ||
850 | |||
851 | <listitem> | ||
852 | <para> | ||
853 | DRQ on command completion. | ||
854 | </para> | ||
855 | </listitem> | ||
856 | |||
857 | <listitem> | ||
858 | <para> | ||
859 | !BSY && ERR after CDB tranfer starts but before the | ||
860 | last byte of CDB is transferred. ATA/ATAPI standard states | ||
861 | that "The device shall not terminate the PACKET command | ||
862 | with an error before the last byte of the command packet has | ||
863 | been written" in the error outputs description of PACKET | ||
864 | command and the state diagram doesn't include such | ||
865 | transitions. | ||
866 | </para> | ||
867 | </listitem> | ||
868 | |||
869 | </itemizedlist> | ||
870 | |||
871 | <para> | ||
872 | In these cases, HSM is violated and not much information | ||
873 | regarding the error can be acquired from STATUS or ERROR | ||
874 | register. IOW, this error can be anything - driver bug, | ||
875 | faulty device, controller and/or cable. | ||
876 | </para> | ||
877 | |||
878 | <para> | ||
879 | As HSM is violated, reset is necessary to restore known state. | ||
880 | Reconfiguring transport for lower speed might be helpful too | ||
881 | as transmission errors sometimes cause this kind of errors. | ||
882 | </para> | ||
883 | </sect2> | ||
884 | |||
885 | <sect2 id="excatDevErr"> | ||
886 | <title>ATA/ATAPI device error (non-NCQ / non-CHECK CONDITION)</title> | ||
887 | |||
888 | <para> | ||
889 | These are errors detected and reported by ATA/ATAPI devices | ||
890 | indicating device problems. For this type of errors, STATUS | ||
891 | and ERROR register values are valid and describe error | ||
892 | condition. Note that some of ATA bus errors are detected by | ||
893 | ATA/ATAPI devices and reported using the same mechanism as | ||
894 | device errors. Those cases are described later in this | ||
895 | section. | ||
896 | </para> | ||
897 | |||
898 | <para> | ||
899 | For ATA commands, this type of errors are indicated by !BSY | ||
900 | && ERR during command execution and on completion. | ||
901 | </para> | ||
902 | |||
903 | <para>For ATAPI commands,</para> | ||
904 | |||
905 | <itemizedlist> | ||
906 | |||
907 | <listitem> | ||
908 | <para> | ||
909 | !BSY && ERR && ABRT right after issuing PACKET | ||
910 | indicates that PACKET command is not supported and falls in | ||
911 | this category. | ||
912 | </para> | ||
913 | </listitem> | ||
914 | |||
915 | <listitem> | ||
916 | <para> | ||
917 | !BSY && ERR(==CHK) && !ABRT after the last | ||
918 | byte of CDB is transferred indicates CHECK CONDITION and | ||
919 | doesn't fall in this category. | ||
920 | </para> | ||
921 | </listitem> | ||
922 | |||
923 | <listitem> | ||
924 | <para> | ||
925 | !BSY && ERR(==CHK) && ABRT after the last byte | ||
926 | of CDB is transferred *probably* indicates CHECK CONDITION and | ||
927 | doesn't fall in this category. | ||
928 | </para> | ||
929 | </listitem> | ||
930 | |||
931 | </itemizedlist> | ||
932 | |||
933 | <para> | ||
934 | Of errors detected as above, the followings are not ATA/ATAPI | ||
935 | device errors but ATA bus errors and should be handled | ||
936 | according to <xref linkend="excatATAbusErr"/>. | ||
937 | </para> | ||
938 | |||
939 | <variablelist> | ||
940 | |||
941 | <varlistentry> | ||
942 | <term>CRC error during data transfer</term> | ||
943 | <listitem> | ||
944 | <para> | ||
945 | This is indicated by ICRC bit in the ERROR register and | ||
946 | means that corruption occurred during data transfer. Upto | ||
947 | ATA/ATAPI-7, the standard specifies that this bit is only | ||
948 | applicable to UDMA transfers but ATA/ATAPI-8 draft revision | ||
949 | 1f says that the bit may be applicable to multiword DMA and | ||
950 | PIO. | ||
951 | </para> | ||
952 | </listitem> | ||
953 | </varlistentry> | ||
954 | |||
955 | <varlistentry> | ||
956 | <term>ABRT error during data transfer or on completion</term> | ||
957 | <listitem> | ||
958 | <para> | ||
959 | Upto ATA/ATAPI-7, the standard specifies that ABRT could be | ||
960 | set on ICRC errors and on cases where a device is not able | ||
961 | to complete a command. Combined with the fact that MWDMA | ||
962 | and PIO transfer errors aren't allowed to use ICRC bit upto | ||
963 | ATA/ATAPI-7, it seems to imply that ABRT bit alone could | ||
964 | indicate tranfer errors. | ||
965 | </para> | ||
966 | <para> | ||
967 | However, ATA/ATAPI-8 draft revision 1f removes the part | ||
968 | that ICRC errors can turn on ABRT. So, this is kind of | ||
969 | gray area. Some heuristics are needed here. | ||
970 | </para> | ||
971 | </listitem> | ||
972 | </varlistentry> | ||
973 | |||
974 | </variablelist> | ||
975 | |||
976 | <para> | ||
977 | ATA/ATAPI device errors can be further categorized as follows. | ||
978 | </para> | ||
979 | |||
980 | <variablelist> | ||
981 | |||
982 | <varlistentry> | ||
983 | <term>Media errors</term> | ||
984 | <listitem> | ||
985 | <para> | ||
986 | This is indicated by UNC bit in the ERROR register. ATA | ||
987 | devices reports UNC error only after certain number of | ||
988 | retries cannot recover the data, so there's nothing much | ||
989 | else to do other than notifying upper layer. | ||
990 | </para> | ||
991 | <para> | ||
992 | READ and WRITE commands report CHS or LBA of the first | ||
993 | failed sector but ATA/ATAPI standard specifies that the | ||
994 | amount of transferred data on error completion is | ||
995 | indeterminate, so we cannot assume that sectors preceding | ||
996 | the failed sector have been transferred and thus cannot | ||
997 | complete those sectors successfully as SCSI does. | ||
998 | </para> | ||
999 | </listitem> | ||
1000 | </varlistentry> | ||
1001 | |||
1002 | <varlistentry> | ||
1003 | <term>Media changed / media change requested error</term> | ||
1004 | <listitem> | ||
1005 | <para> | ||
1006 | <<TODO: fill here>> | ||
1007 | </para> | ||
1008 | </listitem> | ||
1009 | </varlistentry> | ||
1010 | |||
1011 | <varlistentry><term>Address error</term> | ||
1012 | <listitem> | ||
1013 | <para> | ||
1014 | This is indicated by IDNF bit in the ERROR register. | ||
1015 | Report to upper layer. | ||
1016 | </para> | ||
1017 | </listitem> | ||
1018 | </varlistentry> | ||
1019 | |||
1020 | <varlistentry><term>Other errors</term> | ||
1021 | <listitem> | ||
1022 | <para> | ||
1023 | This can be invalid command or parameter indicated by ABRT | ||
1024 | ERROR bit or some other error condition. Note that ABRT | ||
1025 | bit can indicate a lot of things including ICRC and Address | ||
1026 | errors. Heuristics needed. | ||
1027 | </para> | ||
1028 | </listitem> | ||
1029 | </varlistentry> | ||
1030 | |||
1031 | </variablelist> | ||
1032 | |||
1033 | <para> | ||
1034 | Depending on commands, not all STATUS/ERROR bits are | ||
1035 | applicable. These non-applicable bits are marked with | ||
1036 | "na" in the output descriptions but upto ATA/ATAPI-7 | ||
1037 | no definition of "na" can be found. However, | ||
1038 | ATA/ATAPI-8 draft revision 1f describes "N/A" as | ||
1039 | follows. | ||
1040 | </para> | ||
1041 | |||
1042 | <blockquote> | ||
1043 | <variablelist> | ||
1044 | <varlistentry><term>3.2.3.3a N/A</term> | ||
1045 | <listitem> | ||
1046 | <para> | ||
1047 | A keyword the indicates a field has no defined value in | ||
1048 | this standard and should not be checked by the host or | ||
1049 | device. N/A fields should be cleared to zero. | ||
1050 | </para> | ||
1051 | </listitem> | ||
1052 | </varlistentry> | ||
1053 | </variablelist> | ||
1054 | </blockquote> | ||
1055 | |||
1056 | <para> | ||
1057 | So, it seems reasonable to assume that "na" bits are | ||
1058 | cleared to zero by devices and thus need no explicit masking. | ||
1059 | </para> | ||
1060 | |||
1061 | </sect2> | ||
1062 | |||
1063 | <sect2 id="excatATAPIcc"> | ||
1064 | <title>ATAPI device CHECK CONDITION</title> | ||
1065 | |||
1066 | <para> | ||
1067 | ATAPI device CHECK CONDITION error is indicated by set CHK bit | ||
1068 | (ERR bit) in the STATUS register after the last byte of CDB is | ||
1069 | transferred for a PACKET command. For this kind of errors, | ||
1070 | sense data should be acquired to gather information regarding | ||
1071 | the errors. REQUEST SENSE packet command should be used to | ||
1072 | acquire sense data. | ||
1073 | </para> | ||
1074 | |||
1075 | <para> | ||
1076 | Once sense data is acquired, this type of errors can be | ||
1077 | handled similary to other SCSI errors. Note that sense data | ||
1078 | may indicate ATA bus error (e.g. Sense Key 04h HARDWARE ERROR | ||
1079 | && ASC/ASCQ 47h/00h SCSI PARITY ERROR). In such | ||
1080 | cases, the error should be considered as an ATA bus error and | ||
1081 | handled according to <xref linkend="excatATAbusErr"/>. | ||
1082 | </para> | ||
1083 | |||
1084 | </sect2> | ||
1085 | |||
1086 | <sect2 id="excatNCQerr"> | ||
1087 | <title>ATA device error (NCQ)</title> | ||
1088 | |||
1089 | <para> | ||
1090 | NCQ command error is indicated by cleared BSY and set ERR bit | ||
1091 | during NCQ command phase (one or more NCQ commands | ||
1092 | outstanding). Although STATUS and ERROR registers will | ||
1093 | contain valid values describing the error, READ LOG EXT is | ||
1094 | required to clear the error condition, determine which command | ||
1095 | has failed and acquire more information. | ||
1096 | </para> | ||
1097 | |||
1098 | <para> | ||
1099 | READ LOG EXT Log Page 10h reports which tag has failed and | ||
1100 | taskfile register values describing the error. With this | ||
1101 | information the failed command can be handled as a normal ATA | ||
1102 | command error as in <xref linkend="excatDevErr"/> and all | ||
1103 | other in-flight commands must be retried. Note that this | ||
1104 | retry should not be counted - it's likely that commands | ||
1105 | retried this way would have completed normally if it were not | ||
1106 | for the failed command. | ||
1107 | </para> | ||
1108 | |||
1109 | <para> | ||
1110 | Note that ATA bus errors can be reported as ATA device NCQ | ||
1111 | errors. This should be handled as described in <xref | ||
1112 | linkend="excatATAbusErr"/>. | ||
1113 | </para> | ||
1114 | |||
1115 | <para> | ||
1116 | If READ LOG EXT Log Page 10h fails or reports NQ, we're | ||
1117 | thoroughly screwed. This condition should be treated | ||
1118 | according to <xref linkend="excatHSMviolation"/>. | ||
1119 | </para> | ||
1120 | |||
1121 | </sect2> | ||
1122 | |||
1123 | <sect2 id="excatATAbusErr"> | ||
1124 | <title>ATA bus error</title> | ||
1125 | |||
1126 | <para> | ||
1127 | ATA bus error means that data corruption occurred during | ||
1128 | transmission over ATA bus (SATA or PATA). This type of errors | ||
1129 | can be indicated by | ||
1130 | </para> | ||
1131 | |||
1132 | <itemizedlist> | ||
1133 | |||
1134 | <listitem> | ||
1135 | <para> | ||
1136 | ICRC or ABRT error as described in <xref linkend="excatDevErr"/>. | ||
1137 | </para> | ||
1138 | </listitem> | ||
1139 | |||
1140 | <listitem> | ||
1141 | <para> | ||
1142 | Controller-specific error completion with error information | ||
1143 | indicating transmission error. | ||
1144 | </para> | ||
1145 | </listitem> | ||
1146 | |||
1147 | <listitem> | ||
1148 | <para> | ||
1149 | On some controllers, command timeout. In this case, there may | ||
1150 | be a mechanism to determine that the timeout is due to | ||
1151 | transmission error. | ||
1152 | </para> | ||
1153 | </listitem> | ||
1154 | |||
1155 | <listitem> | ||
1156 | <para> | ||
1157 | Unknown/random errors, timeouts and all sorts of weirdities. | ||
1158 | </para> | ||
1159 | </listitem> | ||
1160 | |||
1161 | </itemizedlist> | ||
1162 | |||
1163 | <para> | ||
1164 | As described above, transmission errors can cause wide variety | ||
1165 | of symptoms ranging from device ICRC error to random device | ||
1166 | lockup, and, for many cases, there is no way to tell if an | ||
1167 | error condition is due to transmission error or not; | ||
1168 | therefore, it's necessary to employ some kind of heuristic | ||
1169 | when dealing with errors and timeouts. For example, | ||
1170 | encountering repetitive ABRT errors for known supported | ||
1171 | command is likely to indicate ATA bus error. | ||
1172 | </para> | ||
1173 | |||
1174 | <para> | ||
1175 | Once it's determined that ATA bus errors have possibly | ||
1176 | occurred, lowering ATA bus transmission speed is one of | ||
1177 | actions which may alleviate the problem. See <xref | ||
1178 | linkend="exrecReconf"/> for more information. | ||
1179 | </para> | ||
1180 | |||
1181 | </sect2> | ||
1182 | |||
1183 | <sect2 id="excatPCIbusErr"> | ||
1184 | <title>PCI bus error</title> | ||
1185 | |||
1186 | <para> | ||
1187 | Data corruption or other failures during transmission over PCI | ||
1188 | (or other system bus). For standard BMDMA, this is indicated | ||
1189 | by Error bit in the BMDMA Status register. This type of | ||
1190 | errors must be logged as it indicates something is very wrong | ||
1191 | with the system. Resetting host controller is recommended. | ||
1192 | </para> | ||
1193 | |||
1194 | </sect2> | ||
1195 | |||
1196 | <sect2 id="excatLateCompletion"> | ||
1197 | <title>Late completion</title> | ||
1198 | |||
1199 | <para> | ||
1200 | This occurs when timeout occurs and the timeout handler finds | ||
1201 | out that the timed out command has completed successfully or | ||
1202 | with error. This is usually caused by lost interrupts. This | ||
1203 | type of errors must be logged. Resetting host controller is | ||
1204 | recommended. | ||
1205 | </para> | ||
1206 | |||
1207 | </sect2> | ||
1208 | |||
1209 | <sect2 id="excatUnknown"> | ||
1210 | <title>Unknown error (timeout)</title> | ||
1211 | |||
1212 | <para> | ||
1213 | This is when timeout occurs and the command is still | ||
1214 | processing or the host and device are in unknown state. When | ||
1215 | this occurs, HSM could be in any valid or invalid state. To | ||
1216 | bring the device to known state and make it forget about the | ||
1217 | timed out command, resetting is necessary. The timed out | ||
1218 | command may be retried. | ||
1219 | </para> | ||
1220 | |||
1221 | <para> | ||
1222 | Timeouts can also be caused by transmission errors. Refer to | ||
1223 | <xref linkend="excatATAbusErr"/> for more details. | ||
1224 | </para> | ||
1225 | |||
1226 | </sect2> | ||
1227 | |||
1228 | <sect2 id="excatHoplugPM"> | ||
1229 | <title>Hotplug and power management exceptions</title> | ||
1230 | |||
1231 | <para> | ||
1232 | <<TODO: fill here>> | ||
1233 | </para> | ||
1234 | |||
1235 | </sect2> | ||
1236 | |||
1237 | </sect1> | ||
1238 | |||
1239 | <sect1 id="exrec"> | ||
1240 | <title>EH recovery actions</title> | ||
1241 | |||
1242 | <para> | ||
1243 | This section discusses several important recovery actions. | ||
1244 | </para> | ||
1245 | |||
1246 | <sect2 id="exrecClr"> | ||
1247 | <title>Clearing error condition</title> | ||
1248 | |||
1249 | <para> | ||
1250 | Many controllers require its error registers to be cleared by | ||
1251 | error handler. Different controllers may have different | ||
1252 | requirements. | ||
1253 | </para> | ||
1254 | |||
1255 | <para> | ||
1256 | For SATA, it's strongly recommended to clear at least SError | ||
1257 | register during error handling. | ||
1258 | </para> | ||
1259 | </sect2> | ||
1260 | |||
1261 | <sect2 id="exrecRst"> | ||
1262 | <title>Reset</title> | ||
1263 | |||
1264 | <para> | ||
1265 | During EH, resetting is necessary in the following cases. | ||
1266 | </para> | ||
1267 | |||
1268 | <itemizedlist> | ||
1269 | |||
1270 | <listitem> | ||
1271 | <para> | ||
1272 | HSM is in unknown or invalid state | ||
1273 | </para> | ||
1274 | </listitem> | ||
1275 | |||
1276 | <listitem> | ||
1277 | <para> | ||
1278 | HBA is in unknown or invalid state | ||
1279 | </para> | ||
1280 | </listitem> | ||
1281 | |||
1282 | <listitem> | ||
1283 | <para> | ||
1284 | EH needs to make HBA/device forget about in-flight commands | ||
1285 | </para> | ||
1286 | </listitem> | ||
1287 | |||
1288 | <listitem> | ||
1289 | <para> | ||
1290 | HBA/device behaves weirdly | ||
1291 | </para> | ||
1292 | </listitem> | ||
1293 | |||
1294 | </itemizedlist> | ||
1295 | |||
1296 | <para> | ||
1297 | Resetting during EH might be a good idea regardless of error | ||
1298 | condition to improve EH robustness. Whether to reset both or | ||
1299 | either one of HBA and device depends on situation but the | ||
1300 | following scheme is recommended. | ||
1301 | </para> | ||
1302 | |||
1303 | <itemizedlist> | ||
1304 | |||
1305 | <listitem> | ||
1306 | <para> | ||
1307 | When it's known that HBA is in ready state but ATA/ATAPI | ||
1308 | device in in unknown state, reset only device. | ||
1309 | </para> | ||
1310 | </listitem> | ||
1311 | |||
1312 | <listitem> | ||
1313 | <para> | ||
1314 | If HBA is in unknown state, reset both HBA and device. | ||
1315 | </para> | ||
1316 | </listitem> | ||
1317 | |||
1318 | </itemizedlist> | ||
1319 | |||
1320 | <para> | ||
1321 | HBA resetting is implementation specific. For a controller | ||
1322 | complying to taskfile/BMDMA PCI IDE, stopping active DMA | ||
1323 | transaction may be sufficient iff BMDMA state is the only HBA | ||
1324 | context. But even mostly taskfile/BMDMA PCI IDE complying | ||
1325 | controllers may have implementation specific requirements and | ||
1326 | mechanism to reset themselves. This must be addressed by | ||
1327 | specific drivers. | ||
1328 | </para> | ||
1329 | |||
1330 | <para> | ||
1331 | OTOH, ATA/ATAPI standard describes in detail ways to reset | ||
1332 | ATA/ATAPI devices. | ||
1333 | </para> | ||
1334 | |||
1335 | <variablelist> | ||
1336 | |||
1337 | <varlistentry><term>PATA hardware reset</term> | ||
1338 | <listitem> | ||
1339 | <para> | ||
1340 | This is hardware initiated device reset signalled with | ||
1341 | asserted PATA RESET- signal. There is no standard way to | ||
1342 | initiate hardware reset from software although some | ||
1343 | hardware provides registers that allow driver to directly | ||
1344 | tweak the RESET- signal. | ||
1345 | </para> | ||
1346 | </listitem> | ||
1347 | </varlistentry> | ||
1348 | |||
1349 | <varlistentry><term>Software reset</term> | ||
1350 | <listitem> | ||
1351 | <para> | ||
1352 | This is achieved by turning CONTROL SRST bit on for at | ||
1353 | least 5us. Both PATA and SATA support it but, in case of | ||
1354 | SATA, this may require controller-specific support as the | ||
1355 | second Register FIS to clear SRST should be transmitted | ||
1356 | while BSY bit is still set. Note that on PATA, this resets | ||
1357 | both master and slave devices on a channel. | ||
1358 | </para> | ||
1359 | </listitem> | ||
1360 | </varlistentry> | ||
1361 | |||
1362 | <varlistentry><term>EXECUTE DEVICE DIAGNOSTIC command</term> | ||
1363 | <listitem> | ||
1364 | <para> | ||
1365 | Although ATA/ATAPI standard doesn't describe exactly, EDD | ||
1366 | implies some level of resetting, possibly similar level | ||
1367 | with software reset. Host-side EDD protocol can be handled | ||
1368 | with normal command processing and most SATA controllers | ||
1369 | should be able to handle EDD's just like other commands. | ||
1370 | As in software reset, EDD affects both devices on a PATA | ||
1371 | bus. | ||
1372 | </para> | ||
1373 | <para> | ||
1374 | Although EDD does reset devices, this doesn't suit error | ||
1375 | handling as EDD cannot be issued while BSY is set and it's | ||
1376 | unclear how it will act when device is in unknown/weird | ||
1377 | state. | ||
1378 | </para> | ||
1379 | </listitem> | ||
1380 | </varlistentry> | ||
1381 | |||
1382 | <varlistentry><term>ATAPI DEVICE RESET command</term> | ||
1383 | <listitem> | ||
1384 | <para> | ||
1385 | This is very similar to software reset except that reset | ||
1386 | can be restricted to the selected device without affecting | ||
1387 | the other device sharing the cable. | ||
1388 | </para> | ||
1389 | </listitem> | ||
1390 | </varlistentry> | ||
1391 | |||
1392 | <varlistentry><term>SATA phy reset</term> | ||
1393 | <listitem> | ||
1394 | <para> | ||
1395 | This is the preferred way of resetting a SATA device. In | ||
1396 | effect, it's identical to PATA hardware reset. Note that | ||
1397 | this can be done with the standard SCR Control register. | ||
1398 | As such, it's usually easier to implement than software | ||
1399 | reset. | ||
1400 | </para> | ||
1401 | </listitem> | ||
1402 | </varlistentry> | ||
1403 | |||
1404 | </variablelist> | ||
1405 | |||
1406 | <para> | ||
1407 | One more thing to consider when resetting devices is that | ||
1408 | resetting clears certain configuration parameters and they | ||
1409 | need to be set to their previous or newly adjusted values | ||
1410 | after reset. | ||
1411 | </para> | ||
1412 | |||
1413 | <para> | ||
1414 | Parameters affected are. | ||
1415 | </para> | ||
1416 | |||
1417 | <itemizedlist> | ||
1418 | |||
1419 | <listitem> | ||
1420 | <para> | ||
1421 | CHS set up with INITIALIZE DEVICE PARAMETERS (seldomly used) | ||
1422 | </para> | ||
1423 | </listitem> | ||
1424 | |||
1425 | <listitem> | ||
1426 | <para> | ||
1427 | Parameters set with SET FEATURES including transfer mode setting | ||
1428 | </para> | ||
1429 | </listitem> | ||
1430 | |||
1431 | <listitem> | ||
1432 | <para> | ||
1433 | Block count set with SET MULTIPLE MODE | ||
1434 | </para> | ||
1435 | </listitem> | ||
1436 | |||
1437 | <listitem> | ||
1438 | <para> | ||
1439 | Other parameters (SET MAX, MEDIA LOCK...) | ||
1440 | </para> | ||
1441 | </listitem> | ||
1442 | |||
1443 | </itemizedlist> | ||
1444 | |||
1445 | <para> | ||
1446 | ATA/ATAPI standard specifies that some parameters must be | ||
1447 | maintained across hardware or software reset, but doesn't | ||
1448 | strictly specify all of them. Always reconfiguring needed | ||
1449 | parameters after reset is required for robustness. Note that | ||
1450 | this also applies when resuming from deep sleep (power-off). | ||
1451 | </para> | ||
1452 | |||
1453 | <para> | ||
1454 | Also, ATA/ATAPI standard requires that IDENTIFY DEVICE / | ||
1455 | IDENTIFY PACKET DEVICE is issued after any configuration | ||
1456 | parameter is updated or a hardware reset and the result used | ||
1457 | for further operation. OS driver is required to implement | ||
1458 | revalidation mechanism to support this. | ||
1459 | </para> | ||
1460 | |||
1461 | </sect2> | ||
1462 | |||
1463 | <sect2 id="exrecReconf"> | ||
1464 | <title>Reconfigure transport</title> | ||
1465 | |||
1466 | <para> | ||
1467 | For both PATA and SATA, a lot of corners are cut for cheap | ||
1468 | connectors, cables or controllers and it's quite common to see | ||
1469 | high transmission error rate. This can be mitigated by | ||
1470 | lowering transmission speed. | ||
1471 | </para> | ||
1472 | |||
1473 | <para> | ||
1474 | The following is a possible scheme Jeff Garzik suggested. | ||
1475 | </para> | ||
1476 | |||
1477 | <blockquote> | ||
1478 | <para> | ||
1479 | If more than $N (3?) transmission errors happen in 15 minutes, | ||
1480 | </para> | ||
1481 | <itemizedlist> | ||
1482 | <listitem> | ||
1483 | <para> | ||
1484 | if SATA, decrease SATA PHY speed. if speed cannot be decreased, | ||
1485 | </para> | ||
1486 | </listitem> | ||
1487 | <listitem> | ||
1488 | <para> | ||
1489 | decrease UDMA xfer speed. if at UDMA0, switch to PIO4, | ||
1490 | </para> | ||
1491 | </listitem> | ||
1492 | <listitem> | ||
1493 | <para> | ||
1494 | decrease PIO xfer speed. if at PIO3, complain, but continue | ||
1495 | </para> | ||
1496 | </listitem> | ||
1497 | </itemizedlist> | ||
1498 | </blockquote> | ||
1499 | |||
1500 | </sect2> | ||
1501 | |||
1502 | </sect1> | ||
1503 | |||
1504 | </chapter> | ||
1505 | |||
434 | <chapter id="PiixInt"> | 1506 | <chapter id="PiixInt"> |
435 | <title>ata_piix Internals</title> | 1507 | <title>ata_piix Internals</title> |
436 | !Idrivers/scsi/ata_piix.c | 1508 | !Idrivers/scsi/ata_piix.c |
diff --git a/drivers/scsi/ahci.c b/drivers/scsi/ahci.c index c2c8fa828e24..5ec866b00479 100644 --- a/drivers/scsi/ahci.c +++ b/drivers/scsi/ahci.c | |||
@@ -672,17 +672,36 @@ static irqreturn_t ahci_interrupt (int irq, void *dev_instance, struct pt_regs * | |||
672 | 672 | ||
673 | for (i = 0; i < host_set->n_ports; i++) { | 673 | for (i = 0; i < host_set->n_ports; i++) { |
674 | struct ata_port *ap; | 674 | struct ata_port *ap; |
675 | u32 tmp; | ||
676 | 675 | ||
677 | VPRINTK("port %u\n", i); | 676 | if (!(irq_stat & (1 << i))) |
677 | continue; | ||
678 | |||
678 | ap = host_set->ports[i]; | 679 | ap = host_set->ports[i]; |
679 | tmp = irq_stat & (1 << i); | 680 | if (ap) { |
680 | if (tmp && ap) { | ||
681 | struct ata_queued_cmd *qc; | 681 | struct ata_queued_cmd *qc; |
682 | qc = ata_qc_from_tag(ap, ap->active_tag); | 682 | qc = ata_qc_from_tag(ap, ap->active_tag); |
683 | if (ahci_host_intr(ap, qc)) | 683 | if (!ahci_host_intr(ap, qc)) |
684 | irq_ack |= (1 << i); | 684 | if (ata_ratelimit()) { |
685 | struct pci_dev *pdev = | ||
686 | to_pci_dev(ap->host_set->dev); | ||
687 | printk(KERN_WARNING | ||
688 | "ahci(%s): unhandled interrupt on port %u\n", | ||
689 | pci_name(pdev), i); | ||
690 | } | ||
691 | |||
692 | VPRINTK("port %u\n", i); | ||
693 | } else { | ||
694 | VPRINTK("port %u (no irq)\n", i); | ||
695 | if (ata_ratelimit()) { | ||
696 | struct pci_dev *pdev = | ||
697 | to_pci_dev(ap->host_set->dev); | ||
698 | printk(KERN_WARNING | ||
699 | "ahci(%s): interrupt on disabled port %u\n", | ||
700 | pci_name(pdev), i); | ||
701 | } | ||
685 | } | 702 | } |
703 | |||
704 | irq_ack |= (1 << i); | ||
686 | } | 705 | } |
687 | 706 | ||
688 | if (irq_ack) { | 707 | if (irq_ack) { |
diff --git a/drivers/scsi/libata-core.c b/drivers/scsi/libata-core.c index e5b01997117a..d568914c4344 100644 --- a/drivers/scsi/libata-core.c +++ b/drivers/scsi/libata-core.c | |||
@@ -48,6 +48,7 @@ | |||
48 | #include <linux/completion.h> | 48 | #include <linux/completion.h> |
49 | #include <linux/suspend.h> | 49 | #include <linux/suspend.h> |
50 | #include <linux/workqueue.h> | 50 | #include <linux/workqueue.h> |
51 | #include <linux/jiffies.h> | ||
51 | #include <scsi/scsi.h> | 52 | #include <scsi/scsi.h> |
52 | #include "scsi.h" | 53 | #include "scsi.h" |
53 | #include "scsi_priv.h" | 54 | #include "scsi_priv.h" |
@@ -62,6 +63,7 @@ | |||
62 | static unsigned int ata_busy_sleep (struct ata_port *ap, | 63 | static unsigned int ata_busy_sleep (struct ata_port *ap, |
63 | unsigned long tmout_pat, | 64 | unsigned long tmout_pat, |
64 | unsigned long tmout); | 65 | unsigned long tmout); |
66 | static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev); | ||
65 | static void ata_set_mode(struct ata_port *ap); | 67 | static void ata_set_mode(struct ata_port *ap); |
66 | static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev); | 68 | static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev); |
67 | static unsigned int ata_get_mode_mask(struct ata_port *ap, int shift); | 69 | static unsigned int ata_get_mode_mask(struct ata_port *ap, int shift); |
@@ -69,7 +71,6 @@ static int fgb(u32 bitmap); | |||
69 | static int ata_choose_xfer_mode(struct ata_port *ap, | 71 | static int ata_choose_xfer_mode(struct ata_port *ap, |
70 | u8 *xfer_mode_out, | 72 | u8 *xfer_mode_out, |
71 | unsigned int *xfer_shift_out); | 73 | unsigned int *xfer_shift_out); |
72 | static int ata_qc_complete_noop(struct ata_queued_cmd *qc, u8 drv_stat); | ||
73 | static void __ata_qc_complete(struct ata_queued_cmd *qc); | 74 | static void __ata_qc_complete(struct ata_queued_cmd *qc); |
74 | 75 | ||
75 | static unsigned int ata_unique_id = 1; | 76 | static unsigned int ata_unique_id = 1; |
@@ -1131,7 +1132,7 @@ static inline void ata_dump_id(struct ata_device *dev) | |||
1131 | static void ata_dev_identify(struct ata_port *ap, unsigned int device) | 1132 | static void ata_dev_identify(struct ata_port *ap, unsigned int device) |
1132 | { | 1133 | { |
1133 | struct ata_device *dev = &ap->device[device]; | 1134 | struct ata_device *dev = &ap->device[device]; |
1134 | unsigned int i; | 1135 | unsigned int major_version; |
1135 | u16 tmp; | 1136 | u16 tmp; |
1136 | unsigned long xfer_modes; | 1137 | unsigned long xfer_modes; |
1137 | u8 status; | 1138 | u8 status; |
@@ -1229,9 +1230,9 @@ retry: | |||
1229 | * common ATA, ATAPI feature tests | 1230 | * common ATA, ATAPI feature tests |
1230 | */ | 1231 | */ |
1231 | 1232 | ||
1232 | /* we require LBA and DMA support (bits 8 & 9 of word 49) */ | 1233 | /* we require DMA support (bits 8 of word 49) */ |
1233 | if (!ata_id_has_dma(dev->id) || !ata_id_has_lba(dev->id)) { | 1234 | if (!ata_id_has_dma(dev->id)) { |
1234 | printk(KERN_DEBUG "ata%u: no dma/lba\n", ap->id); | 1235 | printk(KERN_DEBUG "ata%u: no dma\n", ap->id); |
1235 | goto err_out_nosup; | 1236 | goto err_out_nosup; |
1236 | } | 1237 | } |
1237 | 1238 | ||
@@ -1251,32 +1252,69 @@ retry: | |||
1251 | if (!ata_id_is_ata(dev->id)) /* sanity check */ | 1252 | if (!ata_id_is_ata(dev->id)) /* sanity check */ |
1252 | goto err_out_nosup; | 1253 | goto err_out_nosup; |
1253 | 1254 | ||
1255 | /* get major version */ | ||
1254 | tmp = dev->id[ATA_ID_MAJOR_VER]; | 1256 | tmp = dev->id[ATA_ID_MAJOR_VER]; |
1255 | for (i = 14; i >= 1; i--) | 1257 | for (major_version = 14; major_version >= 1; major_version--) |
1256 | if (tmp & (1 << i)) | 1258 | if (tmp & (1 << major_version)) |
1257 | break; | 1259 | break; |
1258 | 1260 | ||
1259 | /* we require at least ATA-3 */ | 1261 | /* |
1260 | if (i < 3) { | 1262 | * The exact sequence expected by certain pre-ATA4 drives is: |
1261 | printk(KERN_DEBUG "ata%u: no ATA-3\n", ap->id); | 1263 | * SRST RESET |
1262 | goto err_out_nosup; | 1264 | * IDENTIFY |
1263 | } | 1265 | * INITIALIZE DEVICE PARAMETERS |
1266 | * anything else.. | ||
1267 | * Some drives were very specific about that exact sequence. | ||
1268 | */ | ||
1269 | if (major_version < 4 || (!ata_id_has_lba(dev->id))) | ||
1270 | ata_dev_init_params(ap, dev); | ||
1271 | |||
1272 | if (ata_id_has_lba(dev->id)) { | ||
1273 | dev->flags |= ATA_DFLAG_LBA; | ||
1274 | |||
1275 | if (ata_id_has_lba48(dev->id)) { | ||
1276 | dev->flags |= ATA_DFLAG_LBA48; | ||
1277 | dev->n_sectors = ata_id_u64(dev->id, 100); | ||
1278 | } else { | ||
1279 | dev->n_sectors = ata_id_u32(dev->id, 60); | ||
1280 | } | ||
1281 | |||
1282 | /* print device info to dmesg */ | ||
1283 | printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors:%s\n", | ||
1284 | ap->id, device, | ||
1285 | major_version, | ||
1286 | ata_mode_string(xfer_modes), | ||
1287 | (unsigned long long)dev->n_sectors, | ||
1288 | dev->flags & ATA_DFLAG_LBA48 ? " LBA48" : " LBA"); | ||
1289 | } else { | ||
1290 | /* CHS */ | ||
1291 | |||
1292 | /* Default translation */ | ||
1293 | dev->cylinders = dev->id[1]; | ||
1294 | dev->heads = dev->id[3]; | ||
1295 | dev->sectors = dev->id[6]; | ||
1296 | dev->n_sectors = dev->cylinders * dev->heads * dev->sectors; | ||
1297 | |||
1298 | if (ata_id_current_chs_valid(dev->id)) { | ||
1299 | /* Current CHS translation is valid. */ | ||
1300 | dev->cylinders = dev->id[54]; | ||
1301 | dev->heads = dev->id[55]; | ||
1302 | dev->sectors = dev->id[56]; | ||
1303 | |||
1304 | dev->n_sectors = ata_id_u32(dev->id, 57); | ||
1305 | } | ||
1306 | |||
1307 | /* print device info to dmesg */ | ||
1308 | printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors: CHS %d/%d/%d\n", | ||
1309 | ap->id, device, | ||
1310 | major_version, | ||
1311 | ata_mode_string(xfer_modes), | ||
1312 | (unsigned long long)dev->n_sectors, | ||
1313 | (int)dev->cylinders, (int)dev->heads, (int)dev->sectors); | ||
1264 | 1314 | ||
1265 | if (ata_id_has_lba48(dev->id)) { | ||
1266 | dev->flags |= ATA_DFLAG_LBA48; | ||
1267 | dev->n_sectors = ata_id_u64(dev->id, 100); | ||
1268 | } else { | ||
1269 | dev->n_sectors = ata_id_u32(dev->id, 60); | ||
1270 | } | 1315 | } |
1271 | 1316 | ||
1272 | ap->host->max_cmd_len = 16; | 1317 | ap->host->max_cmd_len = 16; |
1273 | |||
1274 | /* print device info to dmesg */ | ||
1275 | printk(KERN_INFO "ata%u: dev %u ATA, max %s, %Lu sectors:%s\n", | ||
1276 | ap->id, device, | ||
1277 | ata_mode_string(xfer_modes), | ||
1278 | (unsigned long long)dev->n_sectors, | ||
1279 | dev->flags & ATA_DFLAG_LBA48 ? " lba48" : ""); | ||
1280 | } | 1318 | } |
1281 | 1319 | ||
1282 | /* ATAPI-specific feature tests */ | 1320 | /* ATAPI-specific feature tests */ |
@@ -2144,6 +2182,54 @@ static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev) | |||
2144 | } | 2182 | } |
2145 | 2183 | ||
2146 | /** | 2184 | /** |
2185 | * ata_dev_init_params - Issue INIT DEV PARAMS command | ||
2186 | * @ap: Port associated with device @dev | ||
2187 | * @dev: Device to which command will be sent | ||
2188 | * | ||
2189 | * LOCKING: | ||
2190 | */ | ||
2191 | |||
2192 | static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev) | ||
2193 | { | ||
2194 | DECLARE_COMPLETION(wait); | ||
2195 | struct ata_queued_cmd *qc; | ||
2196 | int rc; | ||
2197 | unsigned long flags; | ||
2198 | u16 sectors = dev->id[6]; | ||
2199 | u16 heads = dev->id[3]; | ||
2200 | |||
2201 | /* Number of sectors per track 1-255. Number of heads 1-16 */ | ||
2202 | if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) | ||
2203 | return; | ||
2204 | |||
2205 | /* set up init dev params taskfile */ | ||
2206 | DPRINTK("init dev params \n"); | ||
2207 | |||
2208 | qc = ata_qc_new_init(ap, dev); | ||
2209 | BUG_ON(qc == NULL); | ||
2210 | |||
2211 | qc->tf.command = ATA_CMD_INIT_DEV_PARAMS; | ||
2212 | qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; | ||
2213 | qc->tf.protocol = ATA_PROT_NODATA; | ||
2214 | qc->tf.nsect = sectors; | ||
2215 | qc->tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ | ||
2216 | |||
2217 | qc->waiting = &wait; | ||
2218 | qc->complete_fn = ata_qc_complete_noop; | ||
2219 | |||
2220 | spin_lock_irqsave(&ap->host_set->lock, flags); | ||
2221 | rc = ata_qc_issue(qc); | ||
2222 | spin_unlock_irqrestore(&ap->host_set->lock, flags); | ||
2223 | |||
2224 | if (rc) | ||
2225 | ata_port_disable(ap); | ||
2226 | else | ||
2227 | wait_for_completion(&wait); | ||
2228 | |||
2229 | DPRINTK("EXIT\n"); | ||
2230 | } | ||
2231 | |||
2232 | /** | ||
2147 | * ata_sg_clean - Unmap DMA memory associated with command | 2233 | * ata_sg_clean - Unmap DMA memory associated with command |
2148 | * @qc: Command containing DMA memory to be released | 2234 | * @qc: Command containing DMA memory to be released |
2149 | * | 2235 | * |
@@ -2425,20 +2511,20 @@ void ata_poll_qc_complete(struct ata_queued_cmd *qc, u8 drv_stat) | |||
2425 | static unsigned long ata_pio_poll(struct ata_port *ap) | 2511 | static unsigned long ata_pio_poll(struct ata_port *ap) |
2426 | { | 2512 | { |
2427 | u8 status; | 2513 | u8 status; |
2428 | unsigned int poll_state = PIO_ST_UNKNOWN; | 2514 | unsigned int poll_state = HSM_ST_UNKNOWN; |
2429 | unsigned int reg_state = PIO_ST_UNKNOWN; | 2515 | unsigned int reg_state = HSM_ST_UNKNOWN; |
2430 | const unsigned int tmout_state = PIO_ST_TMOUT; | 2516 | const unsigned int tmout_state = HSM_ST_TMOUT; |
2431 | 2517 | ||
2432 | switch (ap->pio_task_state) { | 2518 | switch (ap->hsm_task_state) { |
2433 | case PIO_ST: | 2519 | case HSM_ST: |
2434 | case PIO_ST_POLL: | 2520 | case HSM_ST_POLL: |
2435 | poll_state = PIO_ST_POLL; | 2521 | poll_state = HSM_ST_POLL; |
2436 | reg_state = PIO_ST; | 2522 | reg_state = HSM_ST; |
2437 | break; | 2523 | break; |
2438 | case PIO_ST_LAST: | 2524 | case HSM_ST_LAST: |
2439 | case PIO_ST_LAST_POLL: | 2525 | case HSM_ST_LAST_POLL: |
2440 | poll_state = PIO_ST_LAST_POLL; | 2526 | poll_state = HSM_ST_LAST_POLL; |
2441 | reg_state = PIO_ST_LAST; | 2527 | reg_state = HSM_ST_LAST; |
2442 | break; | 2528 | break; |
2443 | default: | 2529 | default: |
2444 | BUG(); | 2530 | BUG(); |
@@ -2448,14 +2534,14 @@ static unsigned long ata_pio_poll(struct ata_port *ap) | |||
2448 | status = ata_chk_status(ap); | 2534 | status = ata_chk_status(ap); |
2449 | if (status & ATA_BUSY) { | 2535 | if (status & ATA_BUSY) { |
2450 | if (time_after(jiffies, ap->pio_task_timeout)) { | 2536 | if (time_after(jiffies, ap->pio_task_timeout)) { |
2451 | ap->pio_task_state = tmout_state; | 2537 | ap->hsm_task_state = tmout_state; |
2452 | return 0; | 2538 | return 0; |
2453 | } | 2539 | } |
2454 | ap->pio_task_state = poll_state; | 2540 | ap->hsm_task_state = poll_state; |
2455 | return ATA_SHORT_PAUSE; | 2541 | return ATA_SHORT_PAUSE; |
2456 | } | 2542 | } |
2457 | 2543 | ||
2458 | ap->pio_task_state = reg_state; | 2544 | ap->hsm_task_state = reg_state; |
2459 | return 0; | 2545 | return 0; |
2460 | } | 2546 | } |
2461 | 2547 | ||
@@ -2480,14 +2566,14 @@ static int ata_pio_complete (struct ata_port *ap) | |||
2480 | * we enter, BSY will be cleared in a chk-status or two. If not, | 2566 | * we enter, BSY will be cleared in a chk-status or two. If not, |
2481 | * the drive is probably seeking or something. Snooze for a couple | 2567 | * the drive is probably seeking or something. Snooze for a couple |
2482 | * msecs, then chk-status again. If still busy, fall back to | 2568 | * msecs, then chk-status again. If still busy, fall back to |
2483 | * PIO_ST_POLL state. | 2569 | * HSM_ST_POLL state. |
2484 | */ | 2570 | */ |
2485 | drv_stat = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 10); | 2571 | drv_stat = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 10); |
2486 | if (drv_stat & (ATA_BUSY | ATA_DRQ)) { | 2572 | if (drv_stat & (ATA_BUSY | ATA_DRQ)) { |
2487 | msleep(2); | 2573 | msleep(2); |
2488 | drv_stat = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 10); | 2574 | drv_stat = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 10); |
2489 | if (drv_stat & (ATA_BUSY | ATA_DRQ)) { | 2575 | if (drv_stat & (ATA_BUSY | ATA_DRQ)) { |
2490 | ap->pio_task_state = PIO_ST_LAST_POLL; | 2576 | ap->hsm_task_state = HSM_ST_LAST_POLL; |
2491 | ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO; | 2577 | ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO; |
2492 | return 0; | 2578 | return 0; |
2493 | } | 2579 | } |
@@ -2495,14 +2581,14 @@ static int ata_pio_complete (struct ata_port *ap) | |||
2495 | 2581 | ||
2496 | drv_stat = ata_wait_idle(ap); | 2582 | drv_stat = ata_wait_idle(ap); |
2497 | if (!ata_ok(drv_stat)) { | 2583 | if (!ata_ok(drv_stat)) { |
2498 | ap->pio_task_state = PIO_ST_ERR; | 2584 | ap->hsm_task_state = HSM_ST_ERR; |
2499 | return 0; | 2585 | return 0; |
2500 | } | 2586 | } |
2501 | 2587 | ||
2502 | qc = ata_qc_from_tag(ap, ap->active_tag); | 2588 | qc = ata_qc_from_tag(ap, ap->active_tag); |
2503 | assert(qc != NULL); | 2589 | assert(qc != NULL); |
2504 | 2590 | ||
2505 | ap->pio_task_state = PIO_ST_IDLE; | 2591 | ap->hsm_task_state = HSM_ST_IDLE; |
2506 | 2592 | ||
2507 | ata_poll_qc_complete(qc, drv_stat); | 2593 | ata_poll_qc_complete(qc, drv_stat); |
2508 | 2594 | ||
@@ -2662,7 +2748,7 @@ static void ata_pio_sector(struct ata_queued_cmd *qc) | |||
2662 | unsigned char *buf; | 2748 | unsigned char *buf; |
2663 | 2749 | ||
2664 | if (qc->cursect == (qc->nsect - 1)) | 2750 | if (qc->cursect == (qc->nsect - 1)) |
2665 | ap->pio_task_state = PIO_ST_LAST; | 2751 | ap->hsm_task_state = HSM_ST_LAST; |
2666 | 2752 | ||
2667 | page = sg[qc->cursg].page; | 2753 | page = sg[qc->cursg].page; |
2668 | offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE; | 2754 | offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE; |
@@ -2712,7 +2798,7 @@ static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) | |||
2712 | unsigned int offset, count; | 2798 | unsigned int offset, count; |
2713 | 2799 | ||
2714 | if (qc->curbytes + bytes >= qc->nbytes) | 2800 | if (qc->curbytes + bytes >= qc->nbytes) |
2715 | ap->pio_task_state = PIO_ST_LAST; | 2801 | ap->hsm_task_state = HSM_ST_LAST; |
2716 | 2802 | ||
2717 | next_sg: | 2803 | next_sg: |
2718 | if (unlikely(qc->cursg >= qc->n_elem)) { | 2804 | if (unlikely(qc->cursg >= qc->n_elem)) { |
@@ -2734,7 +2820,7 @@ next_sg: | |||
2734 | for (i = 0; i < words; i++) | 2820 | for (i = 0; i < words; i++) |
2735 | ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write); | 2821 | ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write); |
2736 | 2822 | ||
2737 | ap->pio_task_state = PIO_ST_LAST; | 2823 | ap->hsm_task_state = HSM_ST_LAST; |
2738 | return; | 2824 | return; |
2739 | } | 2825 | } |
2740 | 2826 | ||
@@ -2815,7 +2901,7 @@ static void atapi_pio_bytes(struct ata_queued_cmd *qc) | |||
2815 | err_out: | 2901 | err_out: |
2816 | printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n", | 2902 | printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n", |
2817 | ap->id, dev->devno); | 2903 | ap->id, dev->devno); |
2818 | ap->pio_task_state = PIO_ST_ERR; | 2904 | ap->hsm_task_state = HSM_ST_ERR; |
2819 | } | 2905 | } |
2820 | 2906 | ||
2821 | /** | 2907 | /** |
@@ -2837,14 +2923,14 @@ static void ata_pio_block(struct ata_port *ap) | |||
2837 | * a chk-status or two. If not, the drive is probably seeking | 2923 | * a chk-status or two. If not, the drive is probably seeking |
2838 | * or something. Snooze for a couple msecs, then | 2924 | * or something. Snooze for a couple msecs, then |
2839 | * chk-status again. If still busy, fall back to | 2925 | * chk-status again. If still busy, fall back to |
2840 | * PIO_ST_POLL state. | 2926 | * HSM_ST_POLL state. |
2841 | */ | 2927 | */ |
2842 | status = ata_busy_wait(ap, ATA_BUSY, 5); | 2928 | status = ata_busy_wait(ap, ATA_BUSY, 5); |
2843 | if (status & ATA_BUSY) { | 2929 | if (status & ATA_BUSY) { |
2844 | msleep(2); | 2930 | msleep(2); |
2845 | status = ata_busy_wait(ap, ATA_BUSY, 10); | 2931 | status = ata_busy_wait(ap, ATA_BUSY, 10); |
2846 | if (status & ATA_BUSY) { | 2932 | if (status & ATA_BUSY) { |
2847 | ap->pio_task_state = PIO_ST_POLL; | 2933 | ap->hsm_task_state = HSM_ST_POLL; |
2848 | ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO; | 2934 | ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO; |
2849 | return; | 2935 | return; |
2850 | } | 2936 | } |
@@ -2856,7 +2942,7 @@ static void ata_pio_block(struct ata_port *ap) | |||
2856 | if (is_atapi_taskfile(&qc->tf)) { | 2942 | if (is_atapi_taskfile(&qc->tf)) { |
2857 | /* no more data to transfer or unsupported ATAPI command */ | 2943 | /* no more data to transfer or unsupported ATAPI command */ |
2858 | if ((status & ATA_DRQ) == 0) { | 2944 | if ((status & ATA_DRQ) == 0) { |
2859 | ap->pio_task_state = PIO_ST_LAST; | 2945 | ap->hsm_task_state = HSM_ST_LAST; |
2860 | return; | 2946 | return; |
2861 | } | 2947 | } |
2862 | 2948 | ||
@@ -2864,7 +2950,7 @@ static void ata_pio_block(struct ata_port *ap) | |||
2864 | } else { | 2950 | } else { |
2865 | /* handle BSY=0, DRQ=0 as error */ | 2951 | /* handle BSY=0, DRQ=0 as error */ |
2866 | if ((status & ATA_DRQ) == 0) { | 2952 | if ((status & ATA_DRQ) == 0) { |
2867 | ap->pio_task_state = PIO_ST_ERR; | 2953 | ap->hsm_task_state = HSM_ST_ERR; |
2868 | return; | 2954 | return; |
2869 | } | 2955 | } |
2870 | 2956 | ||
@@ -2884,7 +2970,7 @@ static void ata_pio_error(struct ata_port *ap) | |||
2884 | printk(KERN_WARNING "ata%u: PIO error, drv_stat 0x%x\n", | 2970 | printk(KERN_WARNING "ata%u: PIO error, drv_stat 0x%x\n", |
2885 | ap->id, drv_stat); | 2971 | ap->id, drv_stat); |
2886 | 2972 | ||
2887 | ap->pio_task_state = PIO_ST_IDLE; | 2973 | ap->hsm_task_state = HSM_ST_IDLE; |
2888 | 2974 | ||
2889 | ata_poll_qc_complete(qc, drv_stat | ATA_ERR); | 2975 | ata_poll_qc_complete(qc, drv_stat | ATA_ERR); |
2890 | } | 2976 | } |
@@ -2899,25 +2985,25 @@ fsm_start: | |||
2899 | timeout = 0; | 2985 | timeout = 0; |
2900 | qc_completed = 0; | 2986 | qc_completed = 0; |
2901 | 2987 | ||
2902 | switch (ap->pio_task_state) { | 2988 | switch (ap->hsm_task_state) { |
2903 | case PIO_ST_IDLE: | 2989 | case HSM_ST_IDLE: |
2904 | return; | 2990 | return; |
2905 | 2991 | ||
2906 | case PIO_ST: | 2992 | case HSM_ST: |
2907 | ata_pio_block(ap); | 2993 | ata_pio_block(ap); |
2908 | break; | 2994 | break; |
2909 | 2995 | ||
2910 | case PIO_ST_LAST: | 2996 | case HSM_ST_LAST: |
2911 | qc_completed = ata_pio_complete(ap); | 2997 | qc_completed = ata_pio_complete(ap); |
2912 | break; | 2998 | break; |
2913 | 2999 | ||
2914 | case PIO_ST_POLL: | 3000 | case HSM_ST_POLL: |
2915 | case PIO_ST_LAST_POLL: | 3001 | case HSM_ST_LAST_POLL: |
2916 | timeout = ata_pio_poll(ap); | 3002 | timeout = ata_pio_poll(ap); |
2917 | break; | 3003 | break; |
2918 | 3004 | ||
2919 | case PIO_ST_TMOUT: | 3005 | case HSM_ST_TMOUT: |
2920 | case PIO_ST_ERR: | 3006 | case HSM_ST_ERR: |
2921 | ata_pio_error(ap); | 3007 | ata_pio_error(ap); |
2922 | return; | 3008 | return; |
2923 | } | 3009 | } |
@@ -2928,52 +3014,6 @@ fsm_start: | |||
2928 | goto fsm_start; | 3014 | goto fsm_start; |
2929 | } | 3015 | } |
2930 | 3016 | ||
2931 | static void atapi_request_sense(struct ata_port *ap, struct ata_device *dev, | ||
2932 | struct scsi_cmnd *cmd) | ||
2933 | { | ||
2934 | DECLARE_COMPLETION(wait); | ||
2935 | struct ata_queued_cmd *qc; | ||
2936 | unsigned long flags; | ||
2937 | int rc; | ||
2938 | |||
2939 | DPRINTK("ATAPI request sense\n"); | ||
2940 | |||
2941 | qc = ata_qc_new_init(ap, dev); | ||
2942 | BUG_ON(qc == NULL); | ||
2943 | |||
2944 | /* FIXME: is this needed? */ | ||
2945 | memset(cmd->sense_buffer, 0, sizeof(cmd->sense_buffer)); | ||
2946 | |||
2947 | ata_sg_init_one(qc, cmd->sense_buffer, sizeof(cmd->sense_buffer)); | ||
2948 | qc->dma_dir = DMA_FROM_DEVICE; | ||
2949 | |||
2950 | memset(&qc->cdb, 0, ap->cdb_len); | ||
2951 | qc->cdb[0] = REQUEST_SENSE; | ||
2952 | qc->cdb[4] = SCSI_SENSE_BUFFERSIZE; | ||
2953 | |||
2954 | qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; | ||
2955 | qc->tf.command = ATA_CMD_PACKET; | ||
2956 | |||
2957 | qc->tf.protocol = ATA_PROT_ATAPI; | ||
2958 | qc->tf.lbam = (8 * 1024) & 0xff; | ||
2959 | qc->tf.lbah = (8 * 1024) >> 8; | ||
2960 | qc->nbytes = SCSI_SENSE_BUFFERSIZE; | ||
2961 | |||
2962 | qc->waiting = &wait; | ||
2963 | qc->complete_fn = ata_qc_complete_noop; | ||
2964 | |||
2965 | spin_lock_irqsave(&ap->host_set->lock, flags); | ||
2966 | rc = ata_qc_issue(qc); | ||
2967 | spin_unlock_irqrestore(&ap->host_set->lock, flags); | ||
2968 | |||
2969 | if (rc) | ||
2970 | ata_port_disable(ap); | ||
2971 | else | ||
2972 | wait_for_completion(&wait); | ||
2973 | |||
2974 | DPRINTK("EXIT\n"); | ||
2975 | } | ||
2976 | |||
2977 | /** | 3017 | /** |
2978 | * ata_qc_timeout - Handle timeout of queued command | 3018 | * ata_qc_timeout - Handle timeout of queued command |
2979 | * @qc: Command that timed out | 3019 | * @qc: Command that timed out |
@@ -3091,14 +3131,14 @@ void ata_eng_timeout(struct ata_port *ap) | |||
3091 | DPRINTK("ENTER\n"); | 3131 | DPRINTK("ENTER\n"); |
3092 | 3132 | ||
3093 | qc = ata_qc_from_tag(ap, ap->active_tag); | 3133 | qc = ata_qc_from_tag(ap, ap->active_tag); |
3094 | if (!qc) { | 3134 | if (qc) |
3135 | ata_qc_timeout(qc); | ||
3136 | else { | ||
3095 | printk(KERN_ERR "ata%u: BUG: timeout without command\n", | 3137 | printk(KERN_ERR "ata%u: BUG: timeout without command\n", |
3096 | ap->id); | 3138 | ap->id); |
3097 | goto out; | 3139 | goto out; |
3098 | } | 3140 | } |
3099 | 3141 | ||
3100 | ata_qc_timeout(qc); | ||
3101 | |||
3102 | out: | 3142 | out: |
3103 | DPRINTK("EXIT\n"); | 3143 | DPRINTK("EXIT\n"); |
3104 | } | 3144 | } |
@@ -3156,14 +3196,18 @@ struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap, | |||
3156 | 3196 | ||
3157 | ata_tf_init(ap, &qc->tf, dev->devno); | 3197 | ata_tf_init(ap, &qc->tf, dev->devno); |
3158 | 3198 | ||
3159 | if (dev->flags & ATA_DFLAG_LBA48) | 3199 | if (dev->flags & ATA_DFLAG_LBA) { |
3160 | qc->tf.flags |= ATA_TFLAG_LBA48; | 3200 | qc->tf.flags |= ATA_TFLAG_LBA; |
3201 | |||
3202 | if (dev->flags & ATA_DFLAG_LBA48) | ||
3203 | qc->tf.flags |= ATA_TFLAG_LBA48; | ||
3204 | } | ||
3161 | } | 3205 | } |
3162 | 3206 | ||
3163 | return qc; | 3207 | return qc; |
3164 | } | 3208 | } |
3165 | 3209 | ||
3166 | static int ata_qc_complete_noop(struct ata_queued_cmd *qc, u8 drv_stat) | 3210 | int ata_qc_complete_noop(struct ata_queued_cmd *qc, u8 drv_stat) |
3167 | { | 3211 | { |
3168 | return 0; | 3212 | return 0; |
3169 | } | 3213 | } |
@@ -3360,7 +3404,7 @@ int ata_qc_issue_prot(struct ata_queued_cmd *qc) | |||
3360 | case ATA_PROT_PIO: /* load tf registers, initiate polling pio */ | 3404 | case ATA_PROT_PIO: /* load tf registers, initiate polling pio */ |
3361 | ata_qc_set_polling(qc); | 3405 | ata_qc_set_polling(qc); |
3362 | ata_tf_to_host_nolock(ap, &qc->tf); | 3406 | ata_tf_to_host_nolock(ap, &qc->tf); |
3363 | ap->pio_task_state = PIO_ST; | 3407 | ap->hsm_task_state = HSM_ST; |
3364 | queue_work(ata_wq, &ap->pio_task); | 3408 | queue_work(ata_wq, &ap->pio_task); |
3365 | break; | 3409 | break; |
3366 | 3410 | ||
@@ -3586,7 +3630,7 @@ u8 ata_bmdma_status(struct ata_port *ap) | |||
3586 | void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr; | 3630 | void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr; |
3587 | host_stat = readb(mmio + ATA_DMA_STATUS); | 3631 | host_stat = readb(mmio + ATA_DMA_STATUS); |
3588 | } else | 3632 | } else |
3589 | host_stat = inb(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); | 3633 | host_stat = inb(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); |
3590 | return host_stat; | 3634 | return host_stat; |
3591 | } | 3635 | } |
3592 | 3636 | ||
@@ -3806,7 +3850,7 @@ static void atapi_packet_task(void *_data) | |||
3806 | ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1); | 3850 | ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1); |
3807 | 3851 | ||
3808 | /* PIO commands are handled by polling */ | 3852 | /* PIO commands are handled by polling */ |
3809 | ap->pio_task_state = PIO_ST; | 3853 | ap->hsm_task_state = HSM_ST; |
3810 | queue_work(ata_wq, &ap->pio_task); | 3854 | queue_work(ata_wq, &ap->pio_task); |
3811 | } | 3855 | } |
3812 | 3856 | ||
@@ -4113,7 +4157,7 @@ int ata_device_add(struct ata_probe_ent *ent) | |||
4113 | for (i = 0; i < count; i++) { | 4157 | for (i = 0; i < count; i++) { |
4114 | struct ata_port *ap = host_set->ports[i]; | 4158 | struct ata_port *ap = host_set->ports[i]; |
4115 | 4159 | ||
4116 | scsi_scan_host(ap->host); | 4160 | ata_scsi_scan_host(ap); |
4117 | } | 4161 | } |
4118 | 4162 | ||
4119 | dev_set_drvdata(dev, host_set); | 4163 | dev_set_drvdata(dev, host_set); |
@@ -4273,85 +4317,87 @@ void ata_pci_host_stop (struct ata_host_set *host_set) | |||
4273 | * ata_pci_init_native_mode - Initialize native-mode driver | 4317 | * ata_pci_init_native_mode - Initialize native-mode driver |
4274 | * @pdev: pci device to be initialized | 4318 | * @pdev: pci device to be initialized |
4275 | * @port: array[2] of pointers to port info structures. | 4319 | * @port: array[2] of pointers to port info structures. |
4320 | * @ports: bitmap of ports present | ||
4276 | * | 4321 | * |
4277 | * Utility function which allocates and initializes an | 4322 | * Utility function which allocates and initializes an |
4278 | * ata_probe_ent structure for a standard dual-port | 4323 | * ata_probe_ent structure for a standard dual-port |
4279 | * PIO-based IDE controller. The returned ata_probe_ent | 4324 | * PIO-based IDE controller. The returned ata_probe_ent |
4280 | * structure can be passed to ata_device_add(). The returned | 4325 | * structure can be passed to ata_device_add(). The returned |
4281 | * ata_probe_ent structure should then be freed with kfree(). | 4326 | * ata_probe_ent structure should then be freed with kfree(). |
4327 | * | ||
4328 | * The caller need only pass the address of the primary port, the | ||
4329 | * secondary will be deduced automatically. If the device has non | ||
4330 | * standard secondary port mappings this function can be called twice, | ||
4331 | * once for each interface. | ||
4282 | */ | 4332 | */ |
4283 | 4333 | ||
4284 | struct ata_probe_ent * | 4334 | struct ata_probe_ent * |
4285 | ata_pci_init_native_mode(struct pci_dev *pdev, struct ata_port_info **port) | 4335 | ata_pci_init_native_mode(struct pci_dev *pdev, struct ata_port_info **port, int ports) |
4286 | { | 4336 | { |
4287 | struct ata_probe_ent *probe_ent = | 4337 | struct ata_probe_ent *probe_ent = |
4288 | ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[0]); | 4338 | ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[0]); |
4339 | int p = 0; | ||
4340 | |||
4289 | if (!probe_ent) | 4341 | if (!probe_ent) |
4290 | return NULL; | 4342 | return NULL; |
4291 | 4343 | ||
4292 | probe_ent->n_ports = 2; | ||
4293 | probe_ent->irq = pdev->irq; | 4344 | probe_ent->irq = pdev->irq; |
4294 | probe_ent->irq_flags = SA_SHIRQ; | 4345 | probe_ent->irq_flags = SA_SHIRQ; |
4295 | 4346 | ||
4296 | probe_ent->port[0].cmd_addr = pci_resource_start(pdev, 0); | 4347 | if (ports & ATA_PORT_PRIMARY) { |
4297 | probe_ent->port[0].altstatus_addr = | 4348 | probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 0); |
4298 | probe_ent->port[0].ctl_addr = | 4349 | probe_ent->port[p].altstatus_addr = |
4299 | pci_resource_start(pdev, 1) | ATA_PCI_CTL_OFS; | 4350 | probe_ent->port[p].ctl_addr = |
4300 | probe_ent->port[0].bmdma_addr = pci_resource_start(pdev, 4); | 4351 | pci_resource_start(pdev, 1) | ATA_PCI_CTL_OFS; |
4301 | 4352 | probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4); | |
4302 | probe_ent->port[1].cmd_addr = pci_resource_start(pdev, 2); | 4353 | ata_std_ports(&probe_ent->port[p]); |
4303 | probe_ent->port[1].altstatus_addr = | 4354 | p++; |
4304 | probe_ent->port[1].ctl_addr = | 4355 | } |
4305 | pci_resource_start(pdev, 3) | ATA_PCI_CTL_OFS; | ||
4306 | probe_ent->port[1].bmdma_addr = pci_resource_start(pdev, 4) + 8; | ||
4307 | 4356 | ||
4308 | ata_std_ports(&probe_ent->port[0]); | 4357 | if (ports & ATA_PORT_SECONDARY) { |
4309 | ata_std_ports(&probe_ent->port[1]); | 4358 | probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 2); |
4359 | probe_ent->port[p].altstatus_addr = | ||
4360 | probe_ent->port[p].ctl_addr = | ||
4361 | pci_resource_start(pdev, 3) | ATA_PCI_CTL_OFS; | ||
4362 | probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4) + 8; | ||
4363 | ata_std_ports(&probe_ent->port[p]); | ||
4364 | p++; | ||
4365 | } | ||
4310 | 4366 | ||
4367 | probe_ent->n_ports = p; | ||
4311 | return probe_ent; | 4368 | return probe_ent; |
4312 | } | 4369 | } |
4313 | 4370 | ||
4314 | static struct ata_probe_ent * | 4371 | static struct ata_probe_ent *ata_pci_init_legacy_port(struct pci_dev *pdev, struct ata_port_info **port, int port_num) |
4315 | ata_pci_init_legacy_mode(struct pci_dev *pdev, struct ata_port_info **port, | ||
4316 | struct ata_probe_ent **ppe2) | ||
4317 | { | 4372 | { |
4318 | struct ata_probe_ent *probe_ent, *probe_ent2; | 4373 | struct ata_probe_ent *probe_ent; |
4319 | 4374 | ||
4320 | probe_ent = ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[0]); | 4375 | probe_ent = ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[0]); |
4321 | if (!probe_ent) | 4376 | if (!probe_ent) |
4322 | return NULL; | 4377 | return NULL; |
4323 | probe_ent2 = ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[1]); | ||
4324 | if (!probe_ent2) { | ||
4325 | kfree(probe_ent); | ||
4326 | return NULL; | ||
4327 | } | ||
4328 | 4378 | ||
4329 | probe_ent->n_ports = 1; | 4379 | |
4330 | probe_ent->irq = 14; | ||
4331 | |||
4332 | probe_ent->hard_port_no = 0; | ||
4333 | probe_ent->legacy_mode = 1; | 4380 | probe_ent->legacy_mode = 1; |
4334 | 4381 | probe_ent->n_ports = 1; | |
4335 | probe_ent2->n_ports = 1; | 4382 | probe_ent->hard_port_no = port_num; |
4336 | probe_ent2->irq = 15; | 4383 | |
4337 | 4384 | switch(port_num) | |
4338 | probe_ent2->hard_port_no = 1; | 4385 | { |
4339 | probe_ent2->legacy_mode = 1; | 4386 | case 0: |
4340 | 4387 | probe_ent->irq = 14; | |
4341 | probe_ent->port[0].cmd_addr = 0x1f0; | 4388 | probe_ent->port[0].cmd_addr = 0x1f0; |
4342 | probe_ent->port[0].altstatus_addr = | 4389 | probe_ent->port[0].altstatus_addr = |
4343 | probe_ent->port[0].ctl_addr = 0x3f6; | 4390 | probe_ent->port[0].ctl_addr = 0x3f6; |
4344 | probe_ent->port[0].bmdma_addr = pci_resource_start(pdev, 4); | 4391 | break; |
4345 | 4392 | case 1: | |
4346 | probe_ent2->port[0].cmd_addr = 0x170; | 4393 | probe_ent->irq = 15; |
4347 | probe_ent2->port[0].altstatus_addr = | 4394 | probe_ent->port[0].cmd_addr = 0x170; |
4348 | probe_ent2->port[0].ctl_addr = 0x376; | 4395 | probe_ent->port[0].altstatus_addr = |
4349 | probe_ent2->port[0].bmdma_addr = pci_resource_start(pdev, 4)+8; | 4396 | probe_ent->port[0].ctl_addr = 0x376; |
4350 | 4397 | break; | |
4398 | } | ||
4399 | probe_ent->port[0].bmdma_addr = pci_resource_start(pdev, 4) + 8 * port_num; | ||
4351 | ata_std_ports(&probe_ent->port[0]); | 4400 | ata_std_ports(&probe_ent->port[0]); |
4352 | ata_std_ports(&probe_ent2->port[0]); | ||
4353 | |||
4354 | *ppe2 = probe_ent2; | ||
4355 | return probe_ent; | 4401 | return probe_ent; |
4356 | } | 4402 | } |
4357 | 4403 | ||
@@ -4380,7 +4426,7 @@ ata_pci_init_legacy_mode(struct pci_dev *pdev, struct ata_port_info **port, | |||
4380 | int ata_pci_init_one (struct pci_dev *pdev, struct ata_port_info **port_info, | 4426 | int ata_pci_init_one (struct pci_dev *pdev, struct ata_port_info **port_info, |
4381 | unsigned int n_ports) | 4427 | unsigned int n_ports) |
4382 | { | 4428 | { |
4383 | struct ata_probe_ent *probe_ent, *probe_ent2 = NULL; | 4429 | struct ata_probe_ent *probe_ent = NULL, *probe_ent2 = NULL; |
4384 | struct ata_port_info *port[2]; | 4430 | struct ata_port_info *port[2]; |
4385 | u8 tmp8, mask; | 4431 | u8 tmp8, mask; |
4386 | unsigned int legacy_mode = 0; | 4432 | unsigned int legacy_mode = 0; |
@@ -4397,7 +4443,7 @@ int ata_pci_init_one (struct pci_dev *pdev, struct ata_port_info **port_info, | |||
4397 | 4443 | ||
4398 | if ((port[0]->host_flags & ATA_FLAG_NO_LEGACY) == 0 | 4444 | if ((port[0]->host_flags & ATA_FLAG_NO_LEGACY) == 0 |
4399 | && (pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) { | 4445 | && (pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) { |
4400 | /* TODO: support transitioning to native mode? */ | 4446 | /* TODO: What if one channel is in native mode ... */ |
4401 | pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8); | 4447 | pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8); |
4402 | mask = (1 << 2) | (1 << 0); | 4448 | mask = (1 << 2) | (1 << 0); |
4403 | if ((tmp8 & mask) != mask) | 4449 | if ((tmp8 & mask) != mask) |
@@ -4405,11 +4451,20 @@ int ata_pci_init_one (struct pci_dev *pdev, struct ata_port_info **port_info, | |||
4405 | } | 4451 | } |
4406 | 4452 | ||
4407 | /* FIXME... */ | 4453 | /* FIXME... */ |
4408 | if ((!legacy_mode) && (n_ports > 1)) { | 4454 | if ((!legacy_mode) && (n_ports > 2)) { |
4409 | printk(KERN_ERR "ata: BUG: native mode, n_ports > 1\n"); | 4455 | printk(KERN_ERR "ata: BUG: native mode, n_ports > 2\n"); |
4410 | return -EINVAL; | 4456 | n_ports = 2; |
4457 | /* For now */ | ||
4411 | } | 4458 | } |
4412 | 4459 | ||
4460 | /* FIXME: Really for ATA it isn't safe because the device may be | ||
4461 | multi-purpose and we want to leave it alone if it was already | ||
4462 | enabled. Secondly for shared use as Arjan says we want refcounting | ||
4463 | |||
4464 | Checking dev->is_enabled is insufficient as this is not set at | ||
4465 | boot for the primary video which is BIOS enabled | ||
4466 | */ | ||
4467 | |||
4413 | rc = pci_enable_device(pdev); | 4468 | rc = pci_enable_device(pdev); |
4414 | if (rc) | 4469 | if (rc) |
4415 | return rc; | 4470 | return rc; |
@@ -4420,6 +4475,7 @@ int ata_pci_init_one (struct pci_dev *pdev, struct ata_port_info **port_info, | |||
4420 | goto err_out; | 4475 | goto err_out; |
4421 | } | 4476 | } |
4422 | 4477 | ||
4478 | /* FIXME: Should use platform specific mappers for legacy port ranges */ | ||
4423 | if (legacy_mode) { | 4479 | if (legacy_mode) { |
4424 | if (!request_region(0x1f0, 8, "libata")) { | 4480 | if (!request_region(0x1f0, 8, "libata")) { |
4425 | struct resource *conflict, res; | 4481 | struct resource *conflict, res; |
@@ -4464,10 +4520,17 @@ int ata_pci_init_one (struct pci_dev *pdev, struct ata_port_info **port_info, | |||
4464 | goto err_out_regions; | 4520 | goto err_out_regions; |
4465 | 4521 | ||
4466 | if (legacy_mode) { | 4522 | if (legacy_mode) { |
4467 | probe_ent = ata_pci_init_legacy_mode(pdev, port, &probe_ent2); | 4523 | if (legacy_mode & (1 << 0)) |
4468 | } else | 4524 | probe_ent = ata_pci_init_legacy_port(pdev, port, 0); |
4469 | probe_ent = ata_pci_init_native_mode(pdev, port); | 4525 | if (legacy_mode & (1 << 1)) |
4470 | if (!probe_ent) { | 4526 | probe_ent2 = ata_pci_init_legacy_port(pdev, port, 1); |
4527 | } else { | ||
4528 | if (n_ports == 2) | ||
4529 | probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY | ATA_PORT_SECONDARY); | ||
4530 | else | ||
4531 | probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY); | ||
4532 | } | ||
4533 | if (!probe_ent && !probe_ent2) { | ||
4471 | rc = -ENOMEM; | 4534 | rc = -ENOMEM; |
4472 | goto err_out_regions; | 4535 | goto err_out_regions; |
4473 | } | 4536 | } |
@@ -4579,6 +4642,27 @@ static void __exit ata_exit(void) | |||
4579 | module_init(ata_init); | 4642 | module_init(ata_init); |
4580 | module_exit(ata_exit); | 4643 | module_exit(ata_exit); |
4581 | 4644 | ||
4645 | static unsigned long ratelimit_time; | ||
4646 | static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED; | ||
4647 | |||
4648 | int ata_ratelimit(void) | ||
4649 | { | ||
4650 | int rc; | ||
4651 | unsigned long flags; | ||
4652 | |||
4653 | spin_lock_irqsave(&ata_ratelimit_lock, flags); | ||
4654 | |||
4655 | if (time_after(jiffies, ratelimit_time)) { | ||
4656 | rc = 1; | ||
4657 | ratelimit_time = jiffies + (HZ/5); | ||
4658 | } else | ||
4659 | rc = 0; | ||
4660 | |||
4661 | spin_unlock_irqrestore(&ata_ratelimit_lock, flags); | ||
4662 | |||
4663 | return rc; | ||
4664 | } | ||
4665 | |||
4582 | /* | 4666 | /* |
4583 | * libata is essentially a library of internal helper functions for | 4667 | * libata is essentially a library of internal helper functions for |
4584 | * low-level ATA host controller drivers. As such, the API/ABI is | 4668 | * low-level ATA host controller drivers. As such, the API/ABI is |
@@ -4620,6 +4704,7 @@ EXPORT_SYMBOL_GPL(sata_phy_reset); | |||
4620 | EXPORT_SYMBOL_GPL(__sata_phy_reset); | 4704 | EXPORT_SYMBOL_GPL(__sata_phy_reset); |
4621 | EXPORT_SYMBOL_GPL(ata_bus_reset); | 4705 | EXPORT_SYMBOL_GPL(ata_bus_reset); |
4622 | EXPORT_SYMBOL_GPL(ata_port_disable); | 4706 | EXPORT_SYMBOL_GPL(ata_port_disable); |
4707 | EXPORT_SYMBOL_GPL(ata_ratelimit); | ||
4623 | EXPORT_SYMBOL_GPL(ata_scsi_ioctl); | 4708 | EXPORT_SYMBOL_GPL(ata_scsi_ioctl); |
4624 | EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); | 4709 | EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); |
4625 | EXPORT_SYMBOL_GPL(ata_scsi_error); | 4710 | EXPORT_SYMBOL_GPL(ata_scsi_error); |
diff --git a/drivers/scsi/libata-scsi.c b/drivers/scsi/libata-scsi.c index 104fd9a63e73..1c3a10fb3c44 100644 --- a/drivers/scsi/libata-scsi.c +++ b/drivers/scsi/libata-scsi.c | |||
@@ -225,7 +225,7 @@ void ata_to_sense_error(struct ata_queued_cmd *qc, u8 drv_stat) | |||
225 | }; | 225 | }; |
226 | int i = 0; | 226 | int i = 0; |
227 | 227 | ||
228 | cmd->result = SAM_STAT_CHECK_CONDITION; | 228 | cmd->result = (DRIVER_SENSE << 24) | SAM_STAT_CHECK_CONDITION; |
229 | 229 | ||
230 | /* | 230 | /* |
231 | * Is this an error we can process/parse | 231 | * Is this an error we can process/parse |
@@ -435,10 +435,21 @@ static unsigned int ata_scsi_start_stop_xlat(struct ata_queued_cmd *qc, | |||
435 | return 1; /* power conditions not supported */ | 435 | return 1; /* power conditions not supported */ |
436 | if (scsicmd[4] & 0x1) { | 436 | if (scsicmd[4] & 0x1) { |
437 | tf->nsect = 1; /* 1 sector, lba=0 */ | 437 | tf->nsect = 1; /* 1 sector, lba=0 */ |
438 | tf->lbah = 0x0; | 438 | |
439 | tf->lbam = 0x0; | 439 | if (qc->dev->flags & ATA_DFLAG_LBA) { |
440 | tf->lbal = 0x0; | 440 | qc->tf.flags |= ATA_TFLAG_LBA; |
441 | tf->device |= ATA_LBA; | 441 | |
442 | tf->lbah = 0x0; | ||
443 | tf->lbam = 0x0; | ||
444 | tf->lbal = 0x0; | ||
445 | tf->device |= ATA_LBA; | ||
446 | } else { | ||
447 | /* CHS */ | ||
448 | tf->lbal = 0x1; /* sect */ | ||
449 | tf->lbam = 0x0; /* cyl low */ | ||
450 | tf->lbah = 0x0; /* cyl high */ | ||
451 | } | ||
452 | |||
442 | tf->command = ATA_CMD_VERIFY; /* READ VERIFY */ | 453 | tf->command = ATA_CMD_VERIFY; /* READ VERIFY */ |
443 | } else { | 454 | } else { |
444 | tf->nsect = 0; /* time period value (0 implies now) */ | 455 | tf->nsect = 0; /* time period value (0 implies now) */ |
@@ -488,6 +499,99 @@ static unsigned int ata_scsi_flush_xlat(struct ata_queued_cmd *qc, u8 *scsicmd) | |||
488 | } | 499 | } |
489 | 500 | ||
490 | /** | 501 | /** |
502 | * scsi_6_lba_len - Get LBA and transfer length | ||
503 | * @scsicmd: SCSI command to translate | ||
504 | * | ||
505 | * Calculate LBA and transfer length for 6-byte commands. | ||
506 | * | ||
507 | * RETURNS: | ||
508 | * @plba: the LBA | ||
509 | * @plen: the transfer length | ||
510 | */ | ||
511 | |||
512 | static void scsi_6_lba_len(u8 *scsicmd, u64 *plba, u32 *plen) | ||
513 | { | ||
514 | u64 lba = 0; | ||
515 | u32 len = 0; | ||
516 | |||
517 | VPRINTK("six-byte command\n"); | ||
518 | |||
519 | lba |= ((u64)scsicmd[2]) << 8; | ||
520 | lba |= ((u64)scsicmd[3]); | ||
521 | |||
522 | len |= ((u32)scsicmd[4]); | ||
523 | |||
524 | *plba = lba; | ||
525 | *plen = len; | ||
526 | } | ||
527 | |||
528 | /** | ||
529 | * scsi_10_lba_len - Get LBA and transfer length | ||
530 | * @scsicmd: SCSI command to translate | ||
531 | * | ||
532 | * Calculate LBA and transfer length for 10-byte commands. | ||
533 | * | ||
534 | * RETURNS: | ||
535 | * @plba: the LBA | ||
536 | * @plen: the transfer length | ||
537 | */ | ||
538 | |||
539 | static void scsi_10_lba_len(u8 *scsicmd, u64 *plba, u32 *plen) | ||
540 | { | ||
541 | u64 lba = 0; | ||
542 | u32 len = 0; | ||
543 | |||
544 | VPRINTK("ten-byte command\n"); | ||
545 | |||
546 | lba |= ((u64)scsicmd[2]) << 24; | ||
547 | lba |= ((u64)scsicmd[3]) << 16; | ||
548 | lba |= ((u64)scsicmd[4]) << 8; | ||
549 | lba |= ((u64)scsicmd[5]); | ||
550 | |||
551 | len |= ((u32)scsicmd[7]) << 8; | ||
552 | len |= ((u32)scsicmd[8]); | ||
553 | |||
554 | *plba = lba; | ||
555 | *plen = len; | ||
556 | } | ||
557 | |||
558 | /** | ||
559 | * scsi_16_lba_len - Get LBA and transfer length | ||
560 | * @scsicmd: SCSI command to translate | ||
561 | * | ||
562 | * Calculate LBA and transfer length for 16-byte commands. | ||
563 | * | ||
564 | * RETURNS: | ||
565 | * @plba: the LBA | ||
566 | * @plen: the transfer length | ||
567 | */ | ||
568 | |||
569 | static void scsi_16_lba_len(u8 *scsicmd, u64 *plba, u32 *plen) | ||
570 | { | ||
571 | u64 lba = 0; | ||
572 | u32 len = 0; | ||
573 | |||
574 | VPRINTK("sixteen-byte command\n"); | ||
575 | |||
576 | lba |= ((u64)scsicmd[2]) << 56; | ||
577 | lba |= ((u64)scsicmd[3]) << 48; | ||
578 | lba |= ((u64)scsicmd[4]) << 40; | ||
579 | lba |= ((u64)scsicmd[5]) << 32; | ||
580 | lba |= ((u64)scsicmd[6]) << 24; | ||
581 | lba |= ((u64)scsicmd[7]) << 16; | ||
582 | lba |= ((u64)scsicmd[8]) << 8; | ||
583 | lba |= ((u64)scsicmd[9]); | ||
584 | |||
585 | len |= ((u32)scsicmd[10]) << 24; | ||
586 | len |= ((u32)scsicmd[11]) << 16; | ||
587 | len |= ((u32)scsicmd[12]) << 8; | ||
588 | len |= ((u32)scsicmd[13]); | ||
589 | |||
590 | *plba = lba; | ||
591 | *plen = len; | ||
592 | } | ||
593 | |||
594 | /** | ||
491 | * ata_scsi_verify_xlat - Translate SCSI VERIFY command into an ATA one | 595 | * ata_scsi_verify_xlat - Translate SCSI VERIFY command into an ATA one |
492 | * @qc: Storage for translated ATA taskfile | 596 | * @qc: Storage for translated ATA taskfile |
493 | * @scsicmd: SCSI command to translate | 597 | * @scsicmd: SCSI command to translate |
@@ -504,77 +608,86 @@ static unsigned int ata_scsi_flush_xlat(struct ata_queued_cmd *qc, u8 *scsicmd) | |||
504 | static unsigned int ata_scsi_verify_xlat(struct ata_queued_cmd *qc, u8 *scsicmd) | 608 | static unsigned int ata_scsi_verify_xlat(struct ata_queued_cmd *qc, u8 *scsicmd) |
505 | { | 609 | { |
506 | struct ata_taskfile *tf = &qc->tf; | 610 | struct ata_taskfile *tf = &qc->tf; |
611 | struct ata_device *dev = qc->dev; | ||
612 | unsigned int lba = tf->flags & ATA_TFLAG_LBA; | ||
507 | unsigned int lba48 = tf->flags & ATA_TFLAG_LBA48; | 613 | unsigned int lba48 = tf->flags & ATA_TFLAG_LBA48; |
508 | u64 dev_sectors = qc->dev->n_sectors; | 614 | u64 dev_sectors = qc->dev->n_sectors; |
509 | u64 sect = 0; | 615 | u64 block; |
510 | u32 n_sect = 0; | 616 | u32 n_block; |
511 | 617 | ||
512 | tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; | 618 | tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; |
513 | tf->protocol = ATA_PROT_NODATA; | 619 | tf->protocol = ATA_PROT_NODATA; |
514 | tf->device |= ATA_LBA; | ||
515 | |||
516 | if (scsicmd[0] == VERIFY) { | ||
517 | sect |= ((u64)scsicmd[2]) << 24; | ||
518 | sect |= ((u64)scsicmd[3]) << 16; | ||
519 | sect |= ((u64)scsicmd[4]) << 8; | ||
520 | sect |= ((u64)scsicmd[5]); | ||
521 | |||
522 | n_sect |= ((u32)scsicmd[7]) << 8; | ||
523 | n_sect |= ((u32)scsicmd[8]); | ||
524 | } | ||
525 | |||
526 | else if (scsicmd[0] == VERIFY_16) { | ||
527 | sect |= ((u64)scsicmd[2]) << 56; | ||
528 | sect |= ((u64)scsicmd[3]) << 48; | ||
529 | sect |= ((u64)scsicmd[4]) << 40; | ||
530 | sect |= ((u64)scsicmd[5]) << 32; | ||
531 | sect |= ((u64)scsicmd[6]) << 24; | ||
532 | sect |= ((u64)scsicmd[7]) << 16; | ||
533 | sect |= ((u64)scsicmd[8]) << 8; | ||
534 | sect |= ((u64)scsicmd[9]); | ||
535 | |||
536 | n_sect |= ((u32)scsicmd[10]) << 24; | ||
537 | n_sect |= ((u32)scsicmd[11]) << 16; | ||
538 | n_sect |= ((u32)scsicmd[12]) << 8; | ||
539 | n_sect |= ((u32)scsicmd[13]); | ||
540 | } | ||
541 | 620 | ||
621 | if (scsicmd[0] == VERIFY) | ||
622 | scsi_10_lba_len(scsicmd, &block, &n_block); | ||
623 | else if (scsicmd[0] == VERIFY_16) | ||
624 | scsi_16_lba_len(scsicmd, &block, &n_block); | ||
542 | else | 625 | else |
543 | return 1; | 626 | return 1; |
544 | 627 | ||
545 | if (!n_sect) | 628 | if (!n_block) |
546 | return 1; | 629 | return 1; |
547 | if (sect >= dev_sectors) | 630 | if (block >= dev_sectors) |
548 | return 1; | 631 | return 1; |
549 | if ((sect + n_sect) > dev_sectors) | 632 | if ((block + n_block) > dev_sectors) |
550 | return 1; | 633 | return 1; |
551 | if (lba48) { | 634 | if (lba48) { |
552 | if (n_sect > (64 * 1024)) | 635 | if (n_block > (64 * 1024)) |
553 | return 1; | 636 | return 1; |
554 | } else { | 637 | } else { |
555 | if (n_sect > 256) | 638 | if (n_block > 256) |
556 | return 1; | 639 | return 1; |
557 | } | 640 | } |
558 | 641 | ||
559 | if (lba48) { | 642 | if (lba) { |
560 | tf->command = ATA_CMD_VERIFY_EXT; | 643 | if (lba48) { |
644 | tf->command = ATA_CMD_VERIFY_EXT; | ||
561 | 645 | ||
562 | tf->hob_nsect = (n_sect >> 8) & 0xff; | 646 | tf->hob_nsect = (n_block >> 8) & 0xff; |
563 | 647 | ||
564 | tf->hob_lbah = (sect >> 40) & 0xff; | 648 | tf->hob_lbah = (block >> 40) & 0xff; |
565 | tf->hob_lbam = (sect >> 32) & 0xff; | 649 | tf->hob_lbam = (block >> 32) & 0xff; |
566 | tf->hob_lbal = (sect >> 24) & 0xff; | 650 | tf->hob_lbal = (block >> 24) & 0xff; |
567 | } else { | 651 | } else { |
568 | tf->command = ATA_CMD_VERIFY; | 652 | tf->command = ATA_CMD_VERIFY; |
569 | 653 | ||
570 | tf->device |= (sect >> 24) & 0xf; | 654 | tf->device |= (block >> 24) & 0xf; |
571 | } | 655 | } |
656 | |||
657 | tf->nsect = n_block & 0xff; | ||
572 | 658 | ||
573 | tf->nsect = n_sect & 0xff; | 659 | tf->lbah = (block >> 16) & 0xff; |
660 | tf->lbam = (block >> 8) & 0xff; | ||
661 | tf->lbal = block & 0xff; | ||
574 | 662 | ||
575 | tf->lbah = (sect >> 16) & 0xff; | 663 | tf->device |= ATA_LBA; |
576 | tf->lbam = (sect >> 8) & 0xff; | 664 | } else { |
577 | tf->lbal = sect & 0xff; | 665 | /* CHS */ |
666 | u32 sect, head, cyl, track; | ||
667 | |||
668 | /* Convert LBA to CHS */ | ||
669 | track = (u32)block / dev->sectors; | ||
670 | cyl = track / dev->heads; | ||
671 | head = track % dev->heads; | ||
672 | sect = (u32)block % dev->sectors + 1; | ||
673 | |||
674 | DPRINTK("block %u track %u cyl %u head %u sect %u\n", | ||
675 | (u32)block, track, cyl, head, sect); | ||
676 | |||
677 | /* Check whether the converted CHS can fit. | ||
678 | Cylinder: 0-65535 | ||
679 | Head: 0-15 | ||
680 | Sector: 1-255*/ | ||
681 | if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) | ||
682 | return 1; | ||
683 | |||
684 | tf->command = ATA_CMD_VERIFY; | ||
685 | tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ | ||
686 | tf->lbal = sect; | ||
687 | tf->lbam = cyl; | ||
688 | tf->lbah = cyl >> 8; | ||
689 | tf->device |= head; | ||
690 | } | ||
578 | 691 | ||
579 | return 0; | 692 | return 0; |
580 | } | 693 | } |
@@ -602,11 +715,14 @@ static unsigned int ata_scsi_verify_xlat(struct ata_queued_cmd *qc, u8 *scsicmd) | |||
602 | static unsigned int ata_scsi_rw_xlat(struct ata_queued_cmd *qc, u8 *scsicmd) | 715 | static unsigned int ata_scsi_rw_xlat(struct ata_queued_cmd *qc, u8 *scsicmd) |
603 | { | 716 | { |
604 | struct ata_taskfile *tf = &qc->tf; | 717 | struct ata_taskfile *tf = &qc->tf; |
718 | struct ata_device *dev = qc->dev; | ||
719 | unsigned int lba = tf->flags & ATA_TFLAG_LBA; | ||
605 | unsigned int lba48 = tf->flags & ATA_TFLAG_LBA48; | 720 | unsigned int lba48 = tf->flags & ATA_TFLAG_LBA48; |
721 | u64 block; | ||
722 | u32 n_block; | ||
606 | 723 | ||
607 | tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; | 724 | tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; |
608 | tf->protocol = qc->dev->xfer_protocol; | 725 | tf->protocol = qc->dev->xfer_protocol; |
609 | tf->device |= ATA_LBA; | ||
610 | 726 | ||
611 | if (scsicmd[0] == READ_10 || scsicmd[0] == READ_6 || | 727 | if (scsicmd[0] == READ_10 || scsicmd[0] == READ_6 || |
612 | scsicmd[0] == READ_16) { | 728 | scsicmd[0] == READ_16) { |
@@ -616,90 +732,102 @@ static unsigned int ata_scsi_rw_xlat(struct ata_queued_cmd *qc, u8 *scsicmd) | |||
616 | tf->flags |= ATA_TFLAG_WRITE; | 732 | tf->flags |= ATA_TFLAG_WRITE; |
617 | } | 733 | } |
618 | 734 | ||
619 | if (scsicmd[0] == READ_10 || scsicmd[0] == WRITE_10) { | 735 | /* Calculate the SCSI LBA and transfer length. */ |
620 | if (lba48) { | 736 | switch (scsicmd[0]) { |
621 | tf->hob_nsect = scsicmd[7]; | 737 | case READ_10: |
622 | tf->hob_lbal = scsicmd[2]; | 738 | case WRITE_10: |
623 | 739 | scsi_10_lba_len(scsicmd, &block, &n_block); | |
624 | qc->nsect = ((unsigned int)scsicmd[7] << 8) | | 740 | break; |
625 | scsicmd[8]; | 741 | case READ_6: |
626 | } else { | 742 | case WRITE_6: |
627 | /* if we don't support LBA48 addressing, the request | 743 | scsi_6_lba_len(scsicmd, &block, &n_block); |
628 | * -may- be too large. */ | ||
629 | if ((scsicmd[2] & 0xf0) || scsicmd[7]) | ||
630 | return 1; | ||
631 | 744 | ||
632 | /* stores LBA27:24 in lower 4 bits of device reg */ | 745 | /* for 6-byte r/w commands, transfer length 0 |
633 | tf->device |= scsicmd[2]; | 746 | * means 256 blocks of data, not 0 block. |
747 | */ | ||
748 | if (!n_block) | ||
749 | n_block = 256; | ||
750 | break; | ||
751 | case READ_16: | ||
752 | case WRITE_16: | ||
753 | scsi_16_lba_len(scsicmd, &block, &n_block); | ||
754 | break; | ||
755 | default: | ||
756 | DPRINTK("no-byte command\n"); | ||
757 | return 1; | ||
758 | } | ||
634 | 759 | ||
635 | qc->nsect = scsicmd[8]; | 760 | /* Check and compose ATA command */ |
636 | } | 761 | if (!n_block) |
762 | /* For 10-byte and 16-byte SCSI R/W commands, transfer | ||
763 | * length 0 means transfer 0 block of data. | ||
764 | * However, for ATA R/W commands, sector count 0 means | ||
765 | * 256 or 65536 sectors, not 0 sectors as in SCSI. | ||
766 | */ | ||
767 | return 1; | ||
637 | 768 | ||
638 | tf->nsect = scsicmd[8]; | 769 | if (lba) { |
639 | tf->lbal = scsicmd[5]; | 770 | if (lba48) { |
640 | tf->lbam = scsicmd[4]; | 771 | /* The request -may- be too large for LBA48. */ |
641 | tf->lbah = scsicmd[3]; | 772 | if ((block >> 48) || (n_block > 65536)) |
773 | return 1; | ||
642 | 774 | ||
643 | VPRINTK("ten-byte command\n"); | 775 | tf->hob_nsect = (n_block >> 8) & 0xff; |
644 | if (qc->nsect == 0) /* we don't support length==0 cmds */ | ||
645 | return 1; | ||
646 | return 0; | ||
647 | } | ||
648 | 776 | ||
649 | if (scsicmd[0] == READ_6 || scsicmd[0] == WRITE_6) { | 777 | tf->hob_lbah = (block >> 40) & 0xff; |
650 | qc->nsect = tf->nsect = scsicmd[4]; | 778 | tf->hob_lbam = (block >> 32) & 0xff; |
651 | if (!qc->nsect) { | 779 | tf->hob_lbal = (block >> 24) & 0xff; |
652 | qc->nsect = 256; | 780 | } else { |
653 | if (lba48) | 781 | /* LBA28 */ |
654 | tf->hob_nsect = 1; | ||
655 | } | ||
656 | 782 | ||
657 | tf->lbal = scsicmd[3]; | 783 | /* The request -may- be too large for LBA28. */ |
658 | tf->lbam = scsicmd[2]; | 784 | if ((block >> 28) || (n_block > 256)) |
659 | tf->lbah = scsicmd[1] & 0x1f; /* mask out reserved bits */ | 785 | return 1; |
660 | 786 | ||
661 | VPRINTK("six-byte command\n"); | 787 | tf->device |= (block >> 24) & 0xf; |
662 | return 0; | 788 | } |
663 | } | ||
664 | 789 | ||
665 | if (scsicmd[0] == READ_16 || scsicmd[0] == WRITE_16) { | 790 | qc->nsect = n_block; |
666 | /* rule out impossible LBAs and sector counts */ | 791 | tf->nsect = n_block & 0xff; |
667 | if (scsicmd[2] || scsicmd[3] || scsicmd[10] || scsicmd[11]) | ||
668 | return 1; | ||
669 | 792 | ||
670 | if (lba48) { | 793 | tf->lbah = (block >> 16) & 0xff; |
671 | tf->hob_nsect = scsicmd[12]; | 794 | tf->lbam = (block >> 8) & 0xff; |
672 | tf->hob_lbal = scsicmd[6]; | 795 | tf->lbal = block & 0xff; |
673 | tf->hob_lbam = scsicmd[5]; | ||
674 | tf->hob_lbah = scsicmd[4]; | ||
675 | 796 | ||
676 | qc->nsect = ((unsigned int)scsicmd[12] << 8) | | 797 | tf->device |= ATA_LBA; |
677 | scsicmd[13]; | 798 | } else { |
678 | } else { | 799 | /* CHS */ |
679 | /* once again, filter out impossible non-zero values */ | 800 | u32 sect, head, cyl, track; |
680 | if (scsicmd[4] || scsicmd[5] || scsicmd[12] || | ||
681 | (scsicmd[6] & 0xf0)) | ||
682 | return 1; | ||
683 | 801 | ||
684 | /* stores LBA27:24 in lower 4 bits of device reg */ | 802 | /* The request -may- be too large for CHS addressing. */ |
685 | tf->device |= scsicmd[6]; | 803 | if ((block >> 28) || (n_block > 256)) |
804 | return 1; | ||
686 | 805 | ||
687 | qc->nsect = scsicmd[13]; | 806 | /* Convert LBA to CHS */ |
688 | } | 807 | track = (u32)block / dev->sectors; |
808 | cyl = track / dev->heads; | ||
809 | head = track % dev->heads; | ||
810 | sect = (u32)block % dev->sectors + 1; | ||
689 | 811 | ||
690 | tf->nsect = scsicmd[13]; | 812 | DPRINTK("block %u track %u cyl %u head %u sect %u\n", |
691 | tf->lbal = scsicmd[9]; | 813 | (u32)block, track, cyl, head, sect); |
692 | tf->lbam = scsicmd[8]; | ||
693 | tf->lbah = scsicmd[7]; | ||
694 | 814 | ||
695 | VPRINTK("sixteen-byte command\n"); | 815 | /* Check whether the converted CHS can fit. |
696 | if (qc->nsect == 0) /* we don't support length==0 cmds */ | 816 | Cylinder: 0-65535 |
817 | Head: 0-15 | ||
818 | Sector: 1-255*/ | ||
819 | if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) | ||
697 | return 1; | 820 | return 1; |
698 | return 0; | 821 | |
822 | qc->nsect = n_block; | ||
823 | tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ | ||
824 | tf->lbal = sect; | ||
825 | tf->lbam = cyl; | ||
826 | tf->lbah = cyl >> 8; | ||
827 | tf->device |= head; | ||
699 | } | 828 | } |
700 | 829 | ||
701 | DPRINTK("no-byte command\n"); | 830 | return 0; |
702 | return 1; | ||
703 | } | 831 | } |
704 | 832 | ||
705 | static int ata_scsi_qc_complete(struct ata_queued_cmd *qc, u8 drv_stat) | 833 | static int ata_scsi_qc_complete(struct ata_queued_cmd *qc, u8 drv_stat) |
@@ -1246,10 +1374,20 @@ unsigned int ata_scsiop_read_cap(struct ata_scsi_args *args, u8 *rbuf, | |||
1246 | 1374 | ||
1247 | VPRINTK("ENTER\n"); | 1375 | VPRINTK("ENTER\n"); |
1248 | 1376 | ||
1249 | if (ata_id_has_lba48(args->id)) | 1377 | if (ata_id_has_lba(args->id)) { |
1250 | n_sectors = ata_id_u64(args->id, 100); | 1378 | if (ata_id_has_lba48(args->id)) |
1251 | else | 1379 | n_sectors = ata_id_u64(args->id, 100); |
1252 | n_sectors = ata_id_u32(args->id, 60); | 1380 | else |
1381 | n_sectors = ata_id_u32(args->id, 60); | ||
1382 | } else { | ||
1383 | /* CHS default translation */ | ||
1384 | n_sectors = args->id[1] * args->id[3] * args->id[6]; | ||
1385 | |||
1386 | if (ata_id_current_chs_valid(args->id)) | ||
1387 | /* CHS current translation */ | ||
1388 | n_sectors = ata_id_u32(args->id, 57); | ||
1389 | } | ||
1390 | |||
1253 | n_sectors--; /* ATA TotalUserSectors - 1 */ | 1391 | n_sectors--; /* ATA TotalUserSectors - 1 */ |
1254 | 1392 | ||
1255 | if (args->cmd->cmnd[0] == READ_CAPACITY) { | 1393 | if (args->cmd->cmnd[0] == READ_CAPACITY) { |
@@ -1330,7 +1468,7 @@ unsigned int ata_scsiop_report_luns(struct ata_scsi_args *args, u8 *rbuf, | |||
1330 | void ata_scsi_badcmd(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *), u8 asc, u8 ascq) | 1468 | void ata_scsi_badcmd(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *), u8 asc, u8 ascq) |
1331 | { | 1469 | { |
1332 | DPRINTK("ENTER\n"); | 1470 | DPRINTK("ENTER\n"); |
1333 | cmd->result = SAM_STAT_CHECK_CONDITION; | 1471 | cmd->result = (DRIVER_SENSE << 24) | SAM_STAT_CHECK_CONDITION; |
1334 | 1472 | ||
1335 | cmd->sense_buffer[0] = 0x70; | 1473 | cmd->sense_buffer[0] = 0x70; |
1336 | cmd->sense_buffer[2] = ILLEGAL_REQUEST; | 1474 | cmd->sense_buffer[2] = ILLEGAL_REQUEST; |
@@ -1341,19 +1479,79 @@ void ata_scsi_badcmd(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *), u8 | |||
1341 | done(cmd); | 1479 | done(cmd); |
1342 | } | 1480 | } |
1343 | 1481 | ||
1482 | void atapi_request_sense(struct ata_port *ap, struct ata_device *dev, | ||
1483 | struct scsi_cmnd *cmd) | ||
1484 | { | ||
1485 | DECLARE_COMPLETION(wait); | ||
1486 | struct ata_queued_cmd *qc; | ||
1487 | unsigned long flags; | ||
1488 | int rc; | ||
1489 | |||
1490 | DPRINTK("ATAPI request sense\n"); | ||
1491 | |||
1492 | qc = ata_qc_new_init(ap, dev); | ||
1493 | BUG_ON(qc == NULL); | ||
1494 | |||
1495 | /* FIXME: is this needed? */ | ||
1496 | memset(cmd->sense_buffer, 0, sizeof(cmd->sense_buffer)); | ||
1497 | |||
1498 | ata_sg_init_one(qc, cmd->sense_buffer, sizeof(cmd->sense_buffer)); | ||
1499 | qc->dma_dir = DMA_FROM_DEVICE; | ||
1500 | |||
1501 | memset(&qc->cdb, 0, ap->cdb_len); | ||
1502 | qc->cdb[0] = REQUEST_SENSE; | ||
1503 | qc->cdb[4] = SCSI_SENSE_BUFFERSIZE; | ||
1504 | |||
1505 | qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; | ||
1506 | qc->tf.command = ATA_CMD_PACKET; | ||
1507 | |||
1508 | qc->tf.protocol = ATA_PROT_ATAPI; | ||
1509 | qc->tf.lbam = (8 * 1024) & 0xff; | ||
1510 | qc->tf.lbah = (8 * 1024) >> 8; | ||
1511 | qc->nbytes = SCSI_SENSE_BUFFERSIZE; | ||
1512 | |||
1513 | qc->waiting = &wait; | ||
1514 | qc->complete_fn = ata_qc_complete_noop; | ||
1515 | |||
1516 | spin_lock_irqsave(&ap->host_set->lock, flags); | ||
1517 | rc = ata_qc_issue(qc); | ||
1518 | spin_unlock_irqrestore(&ap->host_set->lock, flags); | ||
1519 | |||
1520 | if (rc) | ||
1521 | ata_port_disable(ap); | ||
1522 | else | ||
1523 | wait_for_completion(&wait); | ||
1524 | |||
1525 | DPRINTK("EXIT\n"); | ||
1526 | } | ||
1527 | |||
1344 | static int atapi_qc_complete(struct ata_queued_cmd *qc, u8 drv_stat) | 1528 | static int atapi_qc_complete(struct ata_queued_cmd *qc, u8 drv_stat) |
1345 | { | 1529 | { |
1346 | struct scsi_cmnd *cmd = qc->scsicmd; | 1530 | struct scsi_cmnd *cmd = qc->scsicmd; |
1347 | 1531 | ||
1348 | if (unlikely(drv_stat & (ATA_ERR | ATA_BUSY | ATA_DRQ))) { | 1532 | VPRINTK("ENTER, drv_stat == 0x%x\n", drv_stat); |
1533 | |||
1534 | if (unlikely(drv_stat & (ATA_BUSY | ATA_DRQ))) | ||
1535 | ata_to_sense_error(qc, drv_stat); | ||
1536 | |||
1537 | else if (unlikely(drv_stat & ATA_ERR)) { | ||
1349 | DPRINTK("request check condition\n"); | 1538 | DPRINTK("request check condition\n"); |
1350 | 1539 | ||
1540 | /* FIXME: command completion with check condition | ||
1541 | * but no sense causes the error handler to run, | ||
1542 | * which then issues REQUEST SENSE, fills in the sense | ||
1543 | * buffer, and completes the command (for the second | ||
1544 | * time). We need to issue REQUEST SENSE some other | ||
1545 | * way, to avoid completing the command twice. | ||
1546 | */ | ||
1351 | cmd->result = SAM_STAT_CHECK_CONDITION; | 1547 | cmd->result = SAM_STAT_CHECK_CONDITION; |
1352 | 1548 | ||
1353 | qc->scsidone(cmd); | 1549 | qc->scsidone(cmd); |
1354 | 1550 | ||
1355 | return 1; | 1551 | return 1; |
1356 | } else { | 1552 | } |
1553 | |||
1554 | else { | ||
1357 | u8 *scsicmd = cmd->cmnd; | 1555 | u8 *scsicmd = cmd->cmnd; |
1358 | 1556 | ||
1359 | if (scsicmd[0] == INQUIRY) { | 1557 | if (scsicmd[0] == INQUIRY) { |
@@ -1361,15 +1559,30 @@ static int atapi_qc_complete(struct ata_queued_cmd *qc, u8 drv_stat) | |||
1361 | unsigned int buflen; | 1559 | unsigned int buflen; |
1362 | 1560 | ||
1363 | buflen = ata_scsi_rbuf_get(cmd, &buf); | 1561 | buflen = ata_scsi_rbuf_get(cmd, &buf); |
1364 | buf[2] = 0x5; | 1562 | |
1365 | buf[3] = (buf[3] & 0xf0) | 2; | 1563 | /* ATAPI devices typically report zero for their SCSI version, |
1564 | * and sometimes deviate from the spec WRT response data | ||
1565 | * format. If SCSI version is reported as zero like normal, | ||
1566 | * then we make the following fixups: 1) Fake MMC-5 version, | ||
1567 | * to indicate to the Linux scsi midlayer this is a modern | ||
1568 | * device. 2) Ensure response data format / ATAPI information | ||
1569 | * are always correct. | ||
1570 | */ | ||
1571 | /* FIXME: do we ever override EVPD pages and the like, with | ||
1572 | * this code? | ||
1573 | */ | ||
1574 | if (buf[2] == 0) { | ||
1575 | buf[2] = 0x5; | ||
1576 | buf[3] = 0x32; | ||
1577 | } | ||
1578 | |||
1366 | ata_scsi_rbuf_put(cmd, buf); | 1579 | ata_scsi_rbuf_put(cmd, buf); |
1367 | } | 1580 | } |
1581 | |||
1368 | cmd->result = SAM_STAT_GOOD; | 1582 | cmd->result = SAM_STAT_GOOD; |
1369 | } | 1583 | } |
1370 | 1584 | ||
1371 | qc->scsidone(cmd); | 1585 | qc->scsidone(cmd); |
1372 | |||
1373 | return 0; | 1586 | return 0; |
1374 | } | 1587 | } |
1375 | /** | 1588 | /** |
@@ -1678,3 +1891,19 @@ void ata_scsi_simulate(u16 *id, | |||
1678 | } | 1891 | } |
1679 | } | 1892 | } |
1680 | 1893 | ||
1894 | void ata_scsi_scan_host(struct ata_port *ap) | ||
1895 | { | ||
1896 | struct ata_device *dev; | ||
1897 | unsigned int i; | ||
1898 | |||
1899 | if (ap->flags & ATA_FLAG_PORT_DISABLED) | ||
1900 | return; | ||
1901 | |||
1902 | for (i = 0; i < ATA_MAX_DEVICES; i++) { | ||
1903 | dev = &ap->device[i]; | ||
1904 | |||
1905 | if (ata_dev_present(dev)) | ||
1906 | scsi_scan_target(&ap->host->shost_gendev, 0, i, 0, 0); | ||
1907 | } | ||
1908 | } | ||
1909 | |||
diff --git a/drivers/scsi/libata.h b/drivers/scsi/libata.h index d608b3a0f6fe..a4b55dc9c698 100644 --- a/drivers/scsi/libata.h +++ b/drivers/scsi/libata.h | |||
@@ -39,6 +39,7 @@ struct ata_scsi_args { | |||
39 | 39 | ||
40 | /* libata-core.c */ | 40 | /* libata-core.c */ |
41 | extern int atapi_enabled; | 41 | extern int atapi_enabled; |
42 | extern int ata_qc_complete_noop(struct ata_queued_cmd *qc, u8 drv_stat); | ||
42 | extern struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap, | 43 | extern struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap, |
43 | struct ata_device *dev); | 44 | struct ata_device *dev); |
44 | extern void ata_qc_free(struct ata_queued_cmd *qc); | 45 | extern void ata_qc_free(struct ata_queued_cmd *qc); |
@@ -51,6 +52,9 @@ extern void swap_buf_le16(u16 *buf, unsigned int buf_words); | |||
51 | 52 | ||
52 | 53 | ||
53 | /* libata-scsi.c */ | 54 | /* libata-scsi.c */ |
55 | extern void atapi_request_sense(struct ata_port *ap, struct ata_device *dev, | ||
56 | struct scsi_cmnd *cmd); | ||
57 | extern void ata_scsi_scan_host(struct ata_port *ap); | ||
54 | extern void ata_to_sense_error(struct ata_queued_cmd *qc, u8 drv_stat); | 58 | extern void ata_to_sense_error(struct ata_queued_cmd *qc, u8 drv_stat); |
55 | extern int ata_scsi_error(struct Scsi_Host *host); | 59 | extern int ata_scsi_error(struct Scsi_Host *host); |
56 | extern unsigned int ata_scsiop_inq_std(struct ata_scsi_args *args, u8 *rbuf, | 60 | extern unsigned int ata_scsiop_inq_std(struct ata_scsi_args *args, u8 *rbuf, |
diff --git a/drivers/scsi/sata_mv.c b/drivers/scsi/sata_mv.c index ea76fe44585e..d457f5673476 100644 --- a/drivers/scsi/sata_mv.c +++ b/drivers/scsi/sata_mv.c | |||
@@ -35,7 +35,7 @@ | |||
35 | #include <asm/io.h> | 35 | #include <asm/io.h> |
36 | 36 | ||
37 | #define DRV_NAME "sata_mv" | 37 | #define DRV_NAME "sata_mv" |
38 | #define DRV_VERSION "0.12" | 38 | #define DRV_VERSION "0.24" |
39 | 39 | ||
40 | enum { | 40 | enum { |
41 | /* BAR's are enumerated in terms of pci_resource_start() terms */ | 41 | /* BAR's are enumerated in terms of pci_resource_start() terms */ |
@@ -55,31 +55,61 @@ enum { | |||
55 | MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */ | 55 | MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */ |
56 | MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ, | 56 | MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ, |
57 | 57 | ||
58 | MV_Q_CT = 32, | 58 | MV_USE_Q_DEPTH = ATA_DEF_QUEUE, |
59 | MV_CRQB_SZ = 32, | ||
60 | MV_CRPB_SZ = 8, | ||
61 | 59 | ||
62 | MV_DMA_BOUNDARY = 0xffffffffU, | 60 | MV_MAX_Q_DEPTH = 32, |
63 | SATAHC_MASK = (~(MV_SATAHC_REG_SZ - 1)), | 61 | MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1, |
62 | |||
63 | /* CRQB needs alignment on a 1KB boundary. Size == 1KB | ||
64 | * CRPB needs alignment on a 256B boundary. Size == 256B | ||
65 | * SG count of 176 leads to MV_PORT_PRIV_DMA_SZ == 4KB | ||
66 | * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B | ||
67 | */ | ||
68 | MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH), | ||
69 | MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH), | ||
70 | MV_MAX_SG_CT = 176, | ||
71 | MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT), | ||
72 | MV_PORT_PRIV_DMA_SZ = (MV_CRQB_Q_SZ + MV_CRPB_Q_SZ + MV_SG_TBL_SZ), | ||
73 | |||
74 | /* Our DMA boundary is determined by an ePRD being unable to handle | ||
75 | * anything larger than 64KB | ||
76 | */ | ||
77 | MV_DMA_BOUNDARY = 0xffffU, | ||
64 | 78 | ||
65 | MV_PORTS_PER_HC = 4, | 79 | MV_PORTS_PER_HC = 4, |
66 | /* == (port / MV_PORTS_PER_HC) to determine HC from 0-7 port */ | 80 | /* == (port / MV_PORTS_PER_HC) to determine HC from 0-7 port */ |
67 | MV_PORT_HC_SHIFT = 2, | 81 | MV_PORT_HC_SHIFT = 2, |
68 | /* == (port % MV_PORTS_PER_HC) to determine port from 0-7 port */ | 82 | /* == (port % MV_PORTS_PER_HC) to determine hard port from 0-7 port */ |
69 | MV_PORT_MASK = 3, | 83 | MV_PORT_MASK = 3, |
70 | 84 | ||
71 | /* Host Flags */ | 85 | /* Host Flags */ |
72 | MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */ | 86 | MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */ |
73 | MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */ | 87 | MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */ |
74 | MV_FLAG_BDMA = (1 << 28), /* Basic DMA */ | 88 | MV_FLAG_GLBL_SFT_RST = (1 << 28), /* Global Soft Reset support */ |
89 | MV_COMMON_FLAGS = (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | | ||
90 | ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO), | ||
91 | MV_6XXX_FLAGS = (MV_FLAG_IRQ_COALESCE | | ||
92 | MV_FLAG_GLBL_SFT_RST), | ||
75 | 93 | ||
76 | chip_504x = 0, | 94 | chip_504x = 0, |
77 | chip_508x = 1, | 95 | chip_508x = 1, |
78 | chip_604x = 2, | 96 | chip_604x = 2, |
79 | chip_608x = 3, | 97 | chip_608x = 3, |
80 | 98 | ||
99 | CRQB_FLAG_READ = (1 << 0), | ||
100 | CRQB_TAG_SHIFT = 1, | ||
101 | CRQB_CMD_ADDR_SHIFT = 8, | ||
102 | CRQB_CMD_CS = (0x2 << 11), | ||
103 | CRQB_CMD_LAST = (1 << 15), | ||
104 | |||
105 | CRPB_FLAG_STATUS_SHIFT = 8, | ||
106 | |||
107 | EPRD_FLAG_END_OF_TBL = (1 << 31), | ||
108 | |||
81 | /* PCI interface registers */ | 109 | /* PCI interface registers */ |
82 | 110 | ||
111 | PCI_COMMAND_OFS = 0xc00, | ||
112 | |||
83 | PCI_MAIN_CMD_STS_OFS = 0xd30, | 113 | PCI_MAIN_CMD_STS_OFS = 0xd30, |
84 | STOP_PCI_MASTER = (1 << 2), | 114 | STOP_PCI_MASTER = (1 << 2), |
85 | PCI_MASTER_EMPTY = (1 << 3), | 115 | PCI_MASTER_EMPTY = (1 << 3), |
@@ -111,20 +141,13 @@ enum { | |||
111 | HC_CFG_OFS = 0, | 141 | HC_CFG_OFS = 0, |
112 | 142 | ||
113 | HC_IRQ_CAUSE_OFS = 0x14, | 143 | HC_IRQ_CAUSE_OFS = 0x14, |
114 | CRBP_DMA_DONE = (1 << 0), /* shift by port # */ | 144 | CRPB_DMA_DONE = (1 << 0), /* shift by port # */ |
115 | HC_IRQ_COAL = (1 << 4), /* IRQ coalescing */ | 145 | HC_IRQ_COAL = (1 << 4), /* IRQ coalescing */ |
116 | DEV_IRQ = (1 << 8), /* shift by port # */ | 146 | DEV_IRQ = (1 << 8), /* shift by port # */ |
117 | 147 | ||
118 | /* Shadow block registers */ | 148 | /* Shadow block registers */ |
119 | SHD_PIO_DATA_OFS = 0x100, | 149 | SHD_BLK_OFS = 0x100, |
120 | SHD_FEA_ERR_OFS = 0x104, | 150 | SHD_CTL_AST_OFS = 0x20, /* ofs from SHD_BLK_OFS */ |
121 | SHD_SECT_CNT_OFS = 0x108, | ||
122 | SHD_LBA_L_OFS = 0x10C, | ||
123 | SHD_LBA_M_OFS = 0x110, | ||
124 | SHD_LBA_H_OFS = 0x114, | ||
125 | SHD_DEV_HD_OFS = 0x118, | ||
126 | SHD_CMD_STA_OFS = 0x11C, | ||
127 | SHD_CTL_AST_OFS = 0x120, | ||
128 | 151 | ||
129 | /* SATA registers */ | 152 | /* SATA registers */ |
130 | SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */ | 153 | SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */ |
@@ -132,6 +155,11 @@ enum { | |||
132 | 155 | ||
133 | /* Port registers */ | 156 | /* Port registers */ |
134 | EDMA_CFG_OFS = 0, | 157 | EDMA_CFG_OFS = 0, |
158 | EDMA_CFG_Q_DEPTH = 0, /* queueing disabled */ | ||
159 | EDMA_CFG_NCQ = (1 << 5), | ||
160 | EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */ | ||
161 | EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */ | ||
162 | EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */ | ||
135 | 163 | ||
136 | EDMA_ERR_IRQ_CAUSE_OFS = 0x8, | 164 | EDMA_ERR_IRQ_CAUSE_OFS = 0x8, |
137 | EDMA_ERR_IRQ_MASK_OFS = 0xc, | 165 | EDMA_ERR_IRQ_MASK_OFS = 0xc, |
@@ -161,33 +189,85 @@ enum { | |||
161 | EDMA_ERR_LNK_DATA_TX | | 189 | EDMA_ERR_LNK_DATA_TX | |
162 | EDMA_ERR_TRANS_PROTO), | 190 | EDMA_ERR_TRANS_PROTO), |
163 | 191 | ||
192 | EDMA_REQ_Q_BASE_HI_OFS = 0x10, | ||
193 | EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */ | ||
194 | EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U, | ||
195 | |||
196 | EDMA_REQ_Q_OUT_PTR_OFS = 0x18, | ||
197 | EDMA_REQ_Q_PTR_SHIFT = 5, | ||
198 | |||
199 | EDMA_RSP_Q_BASE_HI_OFS = 0x1c, | ||
200 | EDMA_RSP_Q_IN_PTR_OFS = 0x20, | ||
201 | EDMA_RSP_Q_OUT_PTR_OFS = 0x24, /* also contains BASE_LO */ | ||
202 | EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U, | ||
203 | EDMA_RSP_Q_PTR_SHIFT = 3, | ||
204 | |||
164 | EDMA_CMD_OFS = 0x28, | 205 | EDMA_CMD_OFS = 0x28, |
165 | EDMA_EN = (1 << 0), | 206 | EDMA_EN = (1 << 0), |
166 | EDMA_DS = (1 << 1), | 207 | EDMA_DS = (1 << 1), |
167 | ATA_RST = (1 << 2), | 208 | ATA_RST = (1 << 2), |
168 | 209 | ||
169 | /* BDMA is 6xxx part only */ | 210 | /* Host private flags (hp_flags) */ |
170 | BDMA_CMD_OFS = 0x224, | 211 | MV_HP_FLAG_MSI = (1 << 0), |
171 | BDMA_START = (1 << 0), | ||
172 | 212 | ||
173 | MV_UNDEF = 0, | 213 | /* Port private flags (pp_flags) */ |
214 | MV_PP_FLAG_EDMA_EN = (1 << 0), | ||
215 | MV_PP_FLAG_EDMA_DS_ACT = (1 << 1), | ||
174 | }; | 216 | }; |
175 | 217 | ||
176 | struct mv_port_priv { | 218 | /* Command ReQuest Block: 32B */ |
219 | struct mv_crqb { | ||
220 | u32 sg_addr; | ||
221 | u32 sg_addr_hi; | ||
222 | u16 ctrl_flags; | ||
223 | u16 ata_cmd[11]; | ||
224 | }; | ||
177 | 225 | ||
226 | /* Command ResPonse Block: 8B */ | ||
227 | struct mv_crpb { | ||
228 | u16 id; | ||
229 | u16 flags; | ||
230 | u32 tmstmp; | ||
178 | }; | 231 | }; |
179 | 232 | ||
180 | struct mv_host_priv { | 233 | /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */ |
234 | struct mv_sg { | ||
235 | u32 addr; | ||
236 | u32 flags_size; | ||
237 | u32 addr_hi; | ||
238 | u32 reserved; | ||
239 | }; | ||
181 | 240 | ||
241 | struct mv_port_priv { | ||
242 | struct mv_crqb *crqb; | ||
243 | dma_addr_t crqb_dma; | ||
244 | struct mv_crpb *crpb; | ||
245 | dma_addr_t crpb_dma; | ||
246 | struct mv_sg *sg_tbl; | ||
247 | dma_addr_t sg_tbl_dma; | ||
248 | |||
249 | unsigned req_producer; /* cp of req_in_ptr */ | ||
250 | unsigned rsp_consumer; /* cp of rsp_out_ptr */ | ||
251 | u32 pp_flags; | ||
252 | }; | ||
253 | |||
254 | struct mv_host_priv { | ||
255 | u32 hp_flags; | ||
182 | }; | 256 | }; |
183 | 257 | ||
184 | static void mv_irq_clear(struct ata_port *ap); | 258 | static void mv_irq_clear(struct ata_port *ap); |
185 | static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in); | 259 | static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in); |
186 | static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val); | 260 | static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val); |
261 | static u8 mv_check_err(struct ata_port *ap); | ||
187 | static void mv_phy_reset(struct ata_port *ap); | 262 | static void mv_phy_reset(struct ata_port *ap); |
188 | static int mv_master_reset(void __iomem *mmio_base); | 263 | static void mv_host_stop(struct ata_host_set *host_set); |
264 | static int mv_port_start(struct ata_port *ap); | ||
265 | static void mv_port_stop(struct ata_port *ap); | ||
266 | static void mv_qc_prep(struct ata_queued_cmd *qc); | ||
267 | static int mv_qc_issue(struct ata_queued_cmd *qc); | ||
189 | static irqreturn_t mv_interrupt(int irq, void *dev_instance, | 268 | static irqreturn_t mv_interrupt(int irq, void *dev_instance, |
190 | struct pt_regs *regs); | 269 | struct pt_regs *regs); |
270 | static void mv_eng_timeout(struct ata_port *ap); | ||
191 | static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent); | 271 | static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent); |
192 | 272 | ||
193 | static Scsi_Host_Template mv_sht = { | 273 | static Scsi_Host_Template mv_sht = { |
@@ -196,13 +276,13 @@ static Scsi_Host_Template mv_sht = { | |||
196 | .ioctl = ata_scsi_ioctl, | 276 | .ioctl = ata_scsi_ioctl, |
197 | .queuecommand = ata_scsi_queuecmd, | 277 | .queuecommand = ata_scsi_queuecmd, |
198 | .eh_strategy_handler = ata_scsi_error, | 278 | .eh_strategy_handler = ata_scsi_error, |
199 | .can_queue = ATA_DEF_QUEUE, | 279 | .can_queue = MV_USE_Q_DEPTH, |
200 | .this_id = ATA_SHT_THIS_ID, | 280 | .this_id = ATA_SHT_THIS_ID, |
201 | .sg_tablesize = MV_UNDEF, | 281 | .sg_tablesize = MV_MAX_SG_CT, |
202 | .max_sectors = ATA_MAX_SECTORS, | 282 | .max_sectors = ATA_MAX_SECTORS, |
203 | .cmd_per_lun = ATA_SHT_CMD_PER_LUN, | 283 | .cmd_per_lun = ATA_SHT_CMD_PER_LUN, |
204 | .emulated = ATA_SHT_EMULATED, | 284 | .emulated = ATA_SHT_EMULATED, |
205 | .use_clustering = MV_UNDEF, | 285 | .use_clustering = ATA_SHT_USE_CLUSTERING, |
206 | .proc_name = DRV_NAME, | 286 | .proc_name = DRV_NAME, |
207 | .dma_boundary = MV_DMA_BOUNDARY, | 287 | .dma_boundary = MV_DMA_BOUNDARY, |
208 | .slave_configure = ata_scsi_slave_config, | 288 | .slave_configure = ata_scsi_slave_config, |
@@ -216,15 +296,16 @@ static struct ata_port_operations mv_ops = { | |||
216 | .tf_load = ata_tf_load, | 296 | .tf_load = ata_tf_load, |
217 | .tf_read = ata_tf_read, | 297 | .tf_read = ata_tf_read, |
218 | .check_status = ata_check_status, | 298 | .check_status = ata_check_status, |
299 | .check_err = mv_check_err, | ||
219 | .exec_command = ata_exec_command, | 300 | .exec_command = ata_exec_command, |
220 | .dev_select = ata_std_dev_select, | 301 | .dev_select = ata_std_dev_select, |
221 | 302 | ||
222 | .phy_reset = mv_phy_reset, | 303 | .phy_reset = mv_phy_reset, |
223 | 304 | ||
224 | .qc_prep = ata_qc_prep, | 305 | .qc_prep = mv_qc_prep, |
225 | .qc_issue = ata_qc_issue_prot, | 306 | .qc_issue = mv_qc_issue, |
226 | 307 | ||
227 | .eng_timeout = ata_eng_timeout, | 308 | .eng_timeout = mv_eng_timeout, |
228 | 309 | ||
229 | .irq_handler = mv_interrupt, | 310 | .irq_handler = mv_interrupt, |
230 | .irq_clear = mv_irq_clear, | 311 | .irq_clear = mv_irq_clear, |
@@ -232,46 +313,39 @@ static struct ata_port_operations mv_ops = { | |||
232 | .scr_read = mv_scr_read, | 313 | .scr_read = mv_scr_read, |
233 | .scr_write = mv_scr_write, | 314 | .scr_write = mv_scr_write, |
234 | 315 | ||
235 | .port_start = ata_port_start, | 316 | .port_start = mv_port_start, |
236 | .port_stop = ata_port_stop, | 317 | .port_stop = mv_port_stop, |
237 | .host_stop = ata_host_stop, | 318 | .host_stop = mv_host_stop, |
238 | }; | 319 | }; |
239 | 320 | ||
240 | static struct ata_port_info mv_port_info[] = { | 321 | static struct ata_port_info mv_port_info[] = { |
241 | { /* chip_504x */ | 322 | { /* chip_504x */ |
242 | .sht = &mv_sht, | 323 | .sht = &mv_sht, |
243 | .host_flags = (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | | 324 | .host_flags = MV_COMMON_FLAGS, |
244 | ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO), | 325 | .pio_mask = 0x1f, /* pio0-4 */ |
245 | .pio_mask = 0x1f, /* pio4-0 */ | 326 | .udma_mask = 0, /* 0x7f (udma0-6 disabled for now) */ |
246 | .udma_mask = 0, /* 0x7f (udma6-0 disabled for now) */ | ||
247 | .port_ops = &mv_ops, | 327 | .port_ops = &mv_ops, |
248 | }, | 328 | }, |
249 | { /* chip_508x */ | 329 | { /* chip_508x */ |
250 | .sht = &mv_sht, | 330 | .sht = &mv_sht, |
251 | .host_flags = (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | | 331 | .host_flags = (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC), |
252 | ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO | | 332 | .pio_mask = 0x1f, /* pio0-4 */ |
253 | MV_FLAG_DUAL_HC), | 333 | .udma_mask = 0, /* 0x7f (udma0-6 disabled for now) */ |
254 | .pio_mask = 0x1f, /* pio4-0 */ | ||
255 | .udma_mask = 0, /* 0x7f (udma6-0 disabled for now) */ | ||
256 | .port_ops = &mv_ops, | 334 | .port_ops = &mv_ops, |
257 | }, | 335 | }, |
258 | { /* chip_604x */ | 336 | { /* chip_604x */ |
259 | .sht = &mv_sht, | 337 | .sht = &mv_sht, |
260 | .host_flags = (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | | 338 | .host_flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS), |
261 | ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO | | 339 | .pio_mask = 0x1f, /* pio0-4 */ |
262 | MV_FLAG_IRQ_COALESCE | MV_FLAG_BDMA), | 340 | .udma_mask = 0x7f, /* udma0-6 */ |
263 | .pio_mask = 0x1f, /* pio4-0 */ | ||
264 | .udma_mask = 0, /* 0x7f (udma6-0 disabled for now) */ | ||
265 | .port_ops = &mv_ops, | 341 | .port_ops = &mv_ops, |
266 | }, | 342 | }, |
267 | { /* chip_608x */ | 343 | { /* chip_608x */ |
268 | .sht = &mv_sht, | 344 | .sht = &mv_sht, |
269 | .host_flags = (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | | 345 | .host_flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS | |
270 | ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO | | 346 | MV_FLAG_DUAL_HC), |
271 | MV_FLAG_IRQ_COALESCE | MV_FLAG_DUAL_HC | | 347 | .pio_mask = 0x1f, /* pio0-4 */ |
272 | MV_FLAG_BDMA), | 348 | .udma_mask = 0x7f, /* udma0-6 */ |
273 | .pio_mask = 0x1f, /* pio4-0 */ | ||
274 | .udma_mask = 0, /* 0x7f (udma6-0 disabled for now) */ | ||
275 | .port_ops = &mv_ops, | 349 | .port_ops = &mv_ops, |
276 | }, | 350 | }, |
277 | }; | 351 | }; |
@@ -306,12 +380,6 @@ static inline void writelfl(unsigned long data, void __iomem *addr) | |||
306 | (void) readl(addr); /* flush to avoid PCI posted write */ | 380 | (void) readl(addr); /* flush to avoid PCI posted write */ |
307 | } | 381 | } |
308 | 382 | ||
309 | static inline void __iomem *mv_port_addr_to_hc_base(void __iomem *port_mmio) | ||
310 | { | ||
311 | return ((void __iomem *)((unsigned long)port_mmio & | ||
312 | (unsigned long)SATAHC_MASK)); | ||
313 | } | ||
314 | |||
315 | static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc) | 383 | static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc) |
316 | { | 384 | { |
317 | return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ)); | 385 | return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ)); |
@@ -329,24 +397,150 @@ static inline void __iomem *mv_ap_base(struct ata_port *ap) | |||
329 | return mv_port_base(ap->host_set->mmio_base, ap->port_no); | 397 | return mv_port_base(ap->host_set->mmio_base, ap->port_no); |
330 | } | 398 | } |
331 | 399 | ||
332 | static inline int mv_get_hc_count(unsigned long flags) | 400 | static inline int mv_get_hc_count(unsigned long hp_flags) |
333 | { | 401 | { |
334 | return ((flags & MV_FLAG_DUAL_HC) ? 2 : 1); | 402 | return ((hp_flags & MV_FLAG_DUAL_HC) ? 2 : 1); |
335 | } | 403 | } |
336 | 404 | ||
337 | static inline int mv_is_edma_active(struct ata_port *ap) | 405 | static void mv_irq_clear(struct ata_port *ap) |
406 | { | ||
407 | } | ||
408 | |||
409 | /** | ||
410 | * mv_start_dma - Enable eDMA engine | ||
411 | * @base: port base address | ||
412 | * @pp: port private data | ||
413 | * | ||
414 | * Verify the local cache of the eDMA state is accurate with an | ||
415 | * assert. | ||
416 | * | ||
417 | * LOCKING: | ||
418 | * Inherited from caller. | ||
419 | */ | ||
420 | static void mv_start_dma(void __iomem *base, struct mv_port_priv *pp) | ||
421 | { | ||
422 | if (!(MV_PP_FLAG_EDMA_EN & pp->pp_flags)) { | ||
423 | writelfl(EDMA_EN, base + EDMA_CMD_OFS); | ||
424 | pp->pp_flags |= MV_PP_FLAG_EDMA_EN; | ||
425 | } | ||
426 | assert(EDMA_EN & readl(base + EDMA_CMD_OFS)); | ||
427 | } | ||
428 | |||
429 | /** | ||
430 | * mv_stop_dma - Disable eDMA engine | ||
431 | * @ap: ATA channel to manipulate | ||
432 | * | ||
433 | * Verify the local cache of the eDMA state is accurate with an | ||
434 | * assert. | ||
435 | * | ||
436 | * LOCKING: | ||
437 | * Inherited from caller. | ||
438 | */ | ||
439 | static void mv_stop_dma(struct ata_port *ap) | ||
338 | { | 440 | { |
339 | void __iomem *port_mmio = mv_ap_base(ap); | 441 | void __iomem *port_mmio = mv_ap_base(ap); |
340 | return (EDMA_EN & readl(port_mmio + EDMA_CMD_OFS)); | 442 | struct mv_port_priv *pp = ap->private_data; |
443 | u32 reg; | ||
444 | int i; | ||
445 | |||
446 | if (MV_PP_FLAG_EDMA_EN & pp->pp_flags) { | ||
447 | /* Disable EDMA if active. The disable bit auto clears. | ||
448 | */ | ||
449 | writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS); | ||
450 | pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; | ||
451 | } else { | ||
452 | assert(!(EDMA_EN & readl(port_mmio + EDMA_CMD_OFS))); | ||
453 | } | ||
454 | |||
455 | /* now properly wait for the eDMA to stop */ | ||
456 | for (i = 1000; i > 0; i--) { | ||
457 | reg = readl(port_mmio + EDMA_CMD_OFS); | ||
458 | if (!(EDMA_EN & reg)) { | ||
459 | break; | ||
460 | } | ||
461 | udelay(100); | ||
462 | } | ||
463 | |||
464 | if (EDMA_EN & reg) { | ||
465 | printk(KERN_ERR "ata%u: Unable to stop eDMA\n", ap->id); | ||
466 | /* FIXME: Consider doing a reset here to recover */ | ||
467 | } | ||
341 | } | 468 | } |
342 | 469 | ||
343 | static inline int mv_port_bdma_capable(struct ata_port *ap) | 470 | #ifdef ATA_DEBUG |
471 | static void mv_dump_mem(void __iomem *start, unsigned bytes) | ||
344 | { | 472 | { |
345 | return (ap->flags & MV_FLAG_BDMA); | 473 | int b, w; |
474 | for (b = 0; b < bytes; ) { | ||
475 | DPRINTK("%p: ", start + b); | ||
476 | for (w = 0; b < bytes && w < 4; w++) { | ||
477 | printk("%08x ",readl(start + b)); | ||
478 | b += sizeof(u32); | ||
479 | } | ||
480 | printk("\n"); | ||
481 | } | ||
346 | } | 482 | } |
483 | #endif | ||
347 | 484 | ||
348 | static void mv_irq_clear(struct ata_port *ap) | 485 | static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes) |
486 | { | ||
487 | #ifdef ATA_DEBUG | ||
488 | int b, w; | ||
489 | u32 dw; | ||
490 | for (b = 0; b < bytes; ) { | ||
491 | DPRINTK("%02x: ", b); | ||
492 | for (w = 0; b < bytes && w < 4; w++) { | ||
493 | (void) pci_read_config_dword(pdev,b,&dw); | ||
494 | printk("%08x ",dw); | ||
495 | b += sizeof(u32); | ||
496 | } | ||
497 | printk("\n"); | ||
498 | } | ||
499 | #endif | ||
500 | } | ||
501 | static void mv_dump_all_regs(void __iomem *mmio_base, int port, | ||
502 | struct pci_dev *pdev) | ||
349 | { | 503 | { |
504 | #ifdef ATA_DEBUG | ||
505 | void __iomem *hc_base = mv_hc_base(mmio_base, | ||
506 | port >> MV_PORT_HC_SHIFT); | ||
507 | void __iomem *port_base; | ||
508 | int start_port, num_ports, p, start_hc, num_hcs, hc; | ||
509 | |||
510 | if (0 > port) { | ||
511 | start_hc = start_port = 0; | ||
512 | num_ports = 8; /* shld be benign for 4 port devs */ | ||
513 | num_hcs = 2; | ||
514 | } else { | ||
515 | start_hc = port >> MV_PORT_HC_SHIFT; | ||
516 | start_port = port; | ||
517 | num_ports = num_hcs = 1; | ||
518 | } | ||
519 | DPRINTK("All registers for port(s) %u-%u:\n", start_port, | ||
520 | num_ports > 1 ? num_ports - 1 : start_port); | ||
521 | |||
522 | if (NULL != pdev) { | ||
523 | DPRINTK("PCI config space regs:\n"); | ||
524 | mv_dump_pci_cfg(pdev, 0x68); | ||
525 | } | ||
526 | DPRINTK("PCI regs:\n"); | ||
527 | mv_dump_mem(mmio_base+0xc00, 0x3c); | ||
528 | mv_dump_mem(mmio_base+0xd00, 0x34); | ||
529 | mv_dump_mem(mmio_base+0xf00, 0x4); | ||
530 | mv_dump_mem(mmio_base+0x1d00, 0x6c); | ||
531 | for (hc = start_hc; hc < start_hc + num_hcs; hc++) { | ||
532 | hc_base = mv_hc_base(mmio_base, port >> MV_PORT_HC_SHIFT); | ||
533 | DPRINTK("HC regs (HC %i):\n", hc); | ||
534 | mv_dump_mem(hc_base, 0x1c); | ||
535 | } | ||
536 | for (p = start_port; p < start_port + num_ports; p++) { | ||
537 | port_base = mv_port_base(mmio_base, p); | ||
538 | DPRINTK("EDMA regs (port %i):\n",p); | ||
539 | mv_dump_mem(port_base, 0x54); | ||
540 | DPRINTK("SATA regs (port %i):\n",p); | ||
541 | mv_dump_mem(port_base+0x300, 0x60); | ||
542 | } | ||
543 | #endif | ||
350 | } | 544 | } |
351 | 545 | ||
352 | static unsigned int mv_scr_offset(unsigned int sc_reg_in) | 546 | static unsigned int mv_scr_offset(unsigned int sc_reg_in) |
@@ -389,30 +583,37 @@ static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val) | |||
389 | } | 583 | } |
390 | } | 584 | } |
391 | 585 | ||
392 | static int mv_master_reset(void __iomem *mmio_base) | 586 | /** |
587 | * mv_global_soft_reset - Perform the 6xxx global soft reset | ||
588 | * @mmio_base: base address of the HBA | ||
589 | * | ||
590 | * This routine only applies to 6xxx parts. | ||
591 | * | ||
592 | * LOCKING: | ||
593 | * Inherited from caller. | ||
594 | */ | ||
595 | static int mv_global_soft_reset(void __iomem *mmio_base) | ||
393 | { | 596 | { |
394 | void __iomem *reg = mmio_base + PCI_MAIN_CMD_STS_OFS; | 597 | void __iomem *reg = mmio_base + PCI_MAIN_CMD_STS_OFS; |
395 | int i, rc = 0; | 598 | int i, rc = 0; |
396 | u32 t; | 599 | u32 t; |
397 | 600 | ||
398 | VPRINTK("ENTER\n"); | ||
399 | |||
400 | /* Following procedure defined in PCI "main command and status | 601 | /* Following procedure defined in PCI "main command and status |
401 | * register" table. | 602 | * register" table. |
402 | */ | 603 | */ |
403 | t = readl(reg); | 604 | t = readl(reg); |
404 | writel(t | STOP_PCI_MASTER, reg); | 605 | writel(t | STOP_PCI_MASTER, reg); |
405 | 606 | ||
406 | for (i = 0; i < 100; i++) { | 607 | for (i = 0; i < 1000; i++) { |
407 | msleep(10); | 608 | udelay(1); |
408 | t = readl(reg); | 609 | t = readl(reg); |
409 | if (PCI_MASTER_EMPTY & t) { | 610 | if (PCI_MASTER_EMPTY & t) { |
410 | break; | 611 | break; |
411 | } | 612 | } |
412 | } | 613 | } |
413 | if (!(PCI_MASTER_EMPTY & t)) { | 614 | if (!(PCI_MASTER_EMPTY & t)) { |
414 | printk(KERN_ERR DRV_NAME "PCI master won't flush\n"); | 615 | printk(KERN_ERR DRV_NAME ": PCI master won't flush\n"); |
415 | rc = 1; /* broken HW? */ | 616 | rc = 1; |
416 | goto done; | 617 | goto done; |
417 | } | 618 | } |
418 | 619 | ||
@@ -425,39 +626,398 @@ static int mv_master_reset(void __iomem *mmio_base) | |||
425 | } while (!(GLOB_SFT_RST & t) && (i-- > 0)); | 626 | } while (!(GLOB_SFT_RST & t) && (i-- > 0)); |
426 | 627 | ||
427 | if (!(GLOB_SFT_RST & t)) { | 628 | if (!(GLOB_SFT_RST & t)) { |
428 | printk(KERN_ERR DRV_NAME "can't set global reset\n"); | 629 | printk(KERN_ERR DRV_NAME ": can't set global reset\n"); |
429 | rc = 1; /* broken HW? */ | 630 | rc = 1; |
430 | goto done; | 631 | goto done; |
431 | } | 632 | } |
432 | 633 | ||
433 | /* clear reset */ | 634 | /* clear reset and *reenable the PCI master* (not mentioned in spec) */ |
434 | i = 5; | 635 | i = 5; |
435 | do { | 636 | do { |
436 | writel(t & ~GLOB_SFT_RST, reg); | 637 | writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg); |
437 | t = readl(reg); | 638 | t = readl(reg); |
438 | udelay(1); | 639 | udelay(1); |
439 | } while ((GLOB_SFT_RST & t) && (i-- > 0)); | 640 | } while ((GLOB_SFT_RST & t) && (i-- > 0)); |
440 | 641 | ||
441 | if (GLOB_SFT_RST & t) { | 642 | if (GLOB_SFT_RST & t) { |
442 | printk(KERN_ERR DRV_NAME "can't clear global reset\n"); | 643 | printk(KERN_ERR DRV_NAME ": can't clear global reset\n"); |
443 | rc = 1; /* broken HW? */ | 644 | rc = 1; |
444 | } | 645 | } |
445 | 646 | done: | |
446 | done: | ||
447 | VPRINTK("EXIT, rc = %i\n", rc); | ||
448 | return rc; | 647 | return rc; |
449 | } | 648 | } |
450 | 649 | ||
451 | static void mv_err_intr(struct ata_port *ap) | 650 | /** |
651 | * mv_host_stop - Host specific cleanup/stop routine. | ||
652 | * @host_set: host data structure | ||
653 | * | ||
654 | * Disable ints, cleanup host memory, call general purpose | ||
655 | * host_stop. | ||
656 | * | ||
657 | * LOCKING: | ||
658 | * Inherited from caller. | ||
659 | */ | ||
660 | static void mv_host_stop(struct ata_host_set *host_set) | ||
452 | { | 661 | { |
453 | void __iomem *port_mmio; | 662 | struct mv_host_priv *hpriv = host_set->private_data; |
454 | u32 edma_err_cause, serr = 0; | 663 | struct pci_dev *pdev = to_pci_dev(host_set->dev); |
664 | |||
665 | if (hpriv->hp_flags & MV_HP_FLAG_MSI) { | ||
666 | pci_disable_msi(pdev); | ||
667 | } else { | ||
668 | pci_intx(pdev, 0); | ||
669 | } | ||
670 | kfree(hpriv); | ||
671 | ata_host_stop(host_set); | ||
672 | } | ||
673 | |||
674 | /** | ||
675 | * mv_port_start - Port specific init/start routine. | ||
676 | * @ap: ATA channel to manipulate | ||
677 | * | ||
678 | * Allocate and point to DMA memory, init port private memory, | ||
679 | * zero indices. | ||
680 | * | ||
681 | * LOCKING: | ||
682 | * Inherited from caller. | ||
683 | */ | ||
684 | static int mv_port_start(struct ata_port *ap) | ||
685 | { | ||
686 | struct device *dev = ap->host_set->dev; | ||
687 | struct mv_port_priv *pp; | ||
688 | void __iomem *port_mmio = mv_ap_base(ap); | ||
689 | void *mem; | ||
690 | dma_addr_t mem_dma; | ||
691 | |||
692 | pp = kmalloc(sizeof(*pp), GFP_KERNEL); | ||
693 | if (!pp) { | ||
694 | return -ENOMEM; | ||
695 | } | ||
696 | memset(pp, 0, sizeof(*pp)); | ||
697 | |||
698 | mem = dma_alloc_coherent(dev, MV_PORT_PRIV_DMA_SZ, &mem_dma, | ||
699 | GFP_KERNEL); | ||
700 | if (!mem) { | ||
701 | kfree(pp); | ||
702 | return -ENOMEM; | ||
703 | } | ||
704 | memset(mem, 0, MV_PORT_PRIV_DMA_SZ); | ||
705 | |||
706 | /* First item in chunk of DMA memory: | ||
707 | * 32-slot command request table (CRQB), 32 bytes each in size | ||
708 | */ | ||
709 | pp->crqb = mem; | ||
710 | pp->crqb_dma = mem_dma; | ||
711 | mem += MV_CRQB_Q_SZ; | ||
712 | mem_dma += MV_CRQB_Q_SZ; | ||
713 | |||
714 | /* Second item: | ||
715 | * 32-slot command response table (CRPB), 8 bytes each in size | ||
716 | */ | ||
717 | pp->crpb = mem; | ||
718 | pp->crpb_dma = mem_dma; | ||
719 | mem += MV_CRPB_Q_SZ; | ||
720 | mem_dma += MV_CRPB_Q_SZ; | ||
721 | |||
722 | /* Third item: | ||
723 | * Table of scatter-gather descriptors (ePRD), 16 bytes each | ||
724 | */ | ||
725 | pp->sg_tbl = mem; | ||
726 | pp->sg_tbl_dma = mem_dma; | ||
727 | |||
728 | writelfl(EDMA_CFG_Q_DEPTH | EDMA_CFG_RD_BRST_EXT | | ||
729 | EDMA_CFG_WR_BUFF_LEN, port_mmio + EDMA_CFG_OFS); | ||
730 | |||
731 | writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS); | ||
732 | writelfl(pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK, | ||
733 | port_mmio + EDMA_REQ_Q_IN_PTR_OFS); | ||
734 | |||
735 | writelfl(0, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS); | ||
736 | writelfl(0, port_mmio + EDMA_RSP_Q_IN_PTR_OFS); | ||
737 | |||
738 | writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS); | ||
739 | writelfl(pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK, | ||
740 | port_mmio + EDMA_RSP_Q_OUT_PTR_OFS); | ||
741 | |||
742 | pp->req_producer = pp->rsp_consumer = 0; | ||
743 | |||
744 | /* Don't turn on EDMA here...do it before DMA commands only. Else | ||
745 | * we'll be unable to send non-data, PIO, etc due to restricted access | ||
746 | * to shadow regs. | ||
747 | */ | ||
748 | ap->private_data = pp; | ||
749 | return 0; | ||
750 | } | ||
751 | |||
752 | /** | ||
753 | * mv_port_stop - Port specific cleanup/stop routine. | ||
754 | * @ap: ATA channel to manipulate | ||
755 | * | ||
756 | * Stop DMA, cleanup port memory. | ||
757 | * | ||
758 | * LOCKING: | ||
759 | * This routine uses the host_set lock to protect the DMA stop. | ||
760 | */ | ||
761 | static void mv_port_stop(struct ata_port *ap) | ||
762 | { | ||
763 | struct device *dev = ap->host_set->dev; | ||
764 | struct mv_port_priv *pp = ap->private_data; | ||
765 | unsigned long flags; | ||
766 | |||
767 | spin_lock_irqsave(&ap->host_set->lock, flags); | ||
768 | mv_stop_dma(ap); | ||
769 | spin_unlock_irqrestore(&ap->host_set->lock, flags); | ||
770 | |||
771 | ap->private_data = NULL; | ||
772 | dma_free_coherent(dev, MV_PORT_PRIV_DMA_SZ, pp->crpb, pp->crpb_dma); | ||
773 | kfree(pp); | ||
774 | } | ||
775 | |||
776 | /** | ||
777 | * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries | ||
778 | * @qc: queued command whose SG list to source from | ||
779 | * | ||
780 | * Populate the SG list and mark the last entry. | ||
781 | * | ||
782 | * LOCKING: | ||
783 | * Inherited from caller. | ||
784 | */ | ||
785 | static void mv_fill_sg(struct ata_queued_cmd *qc) | ||
786 | { | ||
787 | struct mv_port_priv *pp = qc->ap->private_data; | ||
788 | unsigned int i; | ||
789 | |||
790 | for (i = 0; i < qc->n_elem; i++) { | ||
791 | u32 sg_len; | ||
792 | dma_addr_t addr; | ||
793 | |||
794 | addr = sg_dma_address(&qc->sg[i]); | ||
795 | sg_len = sg_dma_len(&qc->sg[i]); | ||
796 | |||
797 | pp->sg_tbl[i].addr = cpu_to_le32(addr & 0xffffffff); | ||
798 | pp->sg_tbl[i].addr_hi = cpu_to_le32((addr >> 16) >> 16); | ||
799 | assert(0 == (sg_len & ~MV_DMA_BOUNDARY)); | ||
800 | pp->sg_tbl[i].flags_size = cpu_to_le32(sg_len); | ||
801 | } | ||
802 | if (0 < qc->n_elem) { | ||
803 | pp->sg_tbl[qc->n_elem - 1].flags_size |= EPRD_FLAG_END_OF_TBL; | ||
804 | } | ||
805 | } | ||
806 | |||
807 | static inline unsigned mv_inc_q_index(unsigned *index) | ||
808 | { | ||
809 | *index = (*index + 1) & MV_MAX_Q_DEPTH_MASK; | ||
810 | return *index; | ||
811 | } | ||
812 | |||
813 | static inline void mv_crqb_pack_cmd(u16 *cmdw, u8 data, u8 addr, unsigned last) | ||
814 | { | ||
815 | *cmdw = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS | | ||
816 | (last ? CRQB_CMD_LAST : 0); | ||
817 | } | ||
455 | 818 | ||
456 | /* bug here b/c we got an err int on a port we don't know about, | 819 | /** |
457 | * so there's no way to clear it | 820 | * mv_qc_prep - Host specific command preparation. |
821 | * @qc: queued command to prepare | ||
822 | * | ||
823 | * This routine simply redirects to the general purpose routine | ||
824 | * if command is not DMA. Else, it handles prep of the CRQB | ||
825 | * (command request block), does some sanity checking, and calls | ||
826 | * the SG load routine. | ||
827 | * | ||
828 | * LOCKING: | ||
829 | * Inherited from caller. | ||
830 | */ | ||
831 | static void mv_qc_prep(struct ata_queued_cmd *qc) | ||
832 | { | ||
833 | struct ata_port *ap = qc->ap; | ||
834 | struct mv_port_priv *pp = ap->private_data; | ||
835 | u16 *cw; | ||
836 | struct ata_taskfile *tf; | ||
837 | u16 flags = 0; | ||
838 | |||
839 | if (ATA_PROT_DMA != qc->tf.protocol) { | ||
840 | return; | ||
841 | } | ||
842 | |||
843 | /* the req producer index should be the same as we remember it */ | ||
844 | assert(((readl(mv_ap_base(qc->ap) + EDMA_REQ_Q_IN_PTR_OFS) >> | ||
845 | EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) == | ||
846 | pp->req_producer); | ||
847 | |||
848 | /* Fill in command request block | ||
458 | */ | 849 | */ |
459 | BUG_ON(NULL == ap); | 850 | if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { |
460 | port_mmio = mv_ap_base(ap); | 851 | flags |= CRQB_FLAG_READ; |
852 | } | ||
853 | assert(MV_MAX_Q_DEPTH > qc->tag); | ||
854 | flags |= qc->tag << CRQB_TAG_SHIFT; | ||
855 | |||
856 | pp->crqb[pp->req_producer].sg_addr = | ||
857 | cpu_to_le32(pp->sg_tbl_dma & 0xffffffff); | ||
858 | pp->crqb[pp->req_producer].sg_addr_hi = | ||
859 | cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16); | ||
860 | pp->crqb[pp->req_producer].ctrl_flags = cpu_to_le16(flags); | ||
861 | |||
862 | cw = &pp->crqb[pp->req_producer].ata_cmd[0]; | ||
863 | tf = &qc->tf; | ||
864 | |||
865 | /* Sadly, the CRQB cannot accomodate all registers--there are | ||
866 | * only 11 bytes...so we must pick and choose required | ||
867 | * registers based on the command. So, we drop feature and | ||
868 | * hob_feature for [RW] DMA commands, but they are needed for | ||
869 | * NCQ. NCQ will drop hob_nsect. | ||
870 | */ | ||
871 | switch (tf->command) { | ||
872 | case ATA_CMD_READ: | ||
873 | case ATA_CMD_READ_EXT: | ||
874 | case ATA_CMD_WRITE: | ||
875 | case ATA_CMD_WRITE_EXT: | ||
876 | mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0); | ||
877 | break; | ||
878 | #ifdef LIBATA_NCQ /* FIXME: remove this line when NCQ added */ | ||
879 | case ATA_CMD_FPDMA_READ: | ||
880 | case ATA_CMD_FPDMA_WRITE: | ||
881 | mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0); | ||
882 | mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0); | ||
883 | break; | ||
884 | #endif /* FIXME: remove this line when NCQ added */ | ||
885 | default: | ||
886 | /* The only other commands EDMA supports in non-queued and | ||
887 | * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none | ||
888 | * of which are defined/used by Linux. If we get here, this | ||
889 | * driver needs work. | ||
890 | * | ||
891 | * FIXME: modify libata to give qc_prep a return value and | ||
892 | * return error here. | ||
893 | */ | ||
894 | BUG_ON(tf->command); | ||
895 | break; | ||
896 | } | ||
897 | mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0); | ||
898 | mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0); | ||
899 | mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0); | ||
900 | mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0); | ||
901 | mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0); | ||
902 | mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0); | ||
903 | mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0); | ||
904 | mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0); | ||
905 | mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */ | ||
906 | |||
907 | if (!(qc->flags & ATA_QCFLAG_DMAMAP)) { | ||
908 | return; | ||
909 | } | ||
910 | mv_fill_sg(qc); | ||
911 | } | ||
912 | |||
913 | /** | ||
914 | * mv_qc_issue - Initiate a command to the host | ||
915 | * @qc: queued command to start | ||
916 | * | ||
917 | * This routine simply redirects to the general purpose routine | ||
918 | * if command is not DMA. Else, it sanity checks our local | ||
919 | * caches of the request producer/consumer indices then enables | ||
920 | * DMA and bumps the request producer index. | ||
921 | * | ||
922 | * LOCKING: | ||
923 | * Inherited from caller. | ||
924 | */ | ||
925 | static int mv_qc_issue(struct ata_queued_cmd *qc) | ||
926 | { | ||
927 | void __iomem *port_mmio = mv_ap_base(qc->ap); | ||
928 | struct mv_port_priv *pp = qc->ap->private_data; | ||
929 | u32 in_ptr; | ||
930 | |||
931 | if (ATA_PROT_DMA != qc->tf.protocol) { | ||
932 | /* We're about to send a non-EDMA capable command to the | ||
933 | * port. Turn off EDMA so there won't be problems accessing | ||
934 | * shadow block, etc registers. | ||
935 | */ | ||
936 | mv_stop_dma(qc->ap); | ||
937 | return ata_qc_issue_prot(qc); | ||
938 | } | ||
939 | |||
940 | in_ptr = readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS); | ||
941 | |||
942 | /* the req producer index should be the same as we remember it */ | ||
943 | assert(((in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) == | ||
944 | pp->req_producer); | ||
945 | /* until we do queuing, the queue should be empty at this point */ | ||
946 | assert(((in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) == | ||
947 | ((readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS) >> | ||
948 | EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK)); | ||
949 | |||
950 | mv_inc_q_index(&pp->req_producer); /* now incr producer index */ | ||
951 | |||
952 | mv_start_dma(port_mmio, pp); | ||
953 | |||
954 | /* and write the request in pointer to kick the EDMA to life */ | ||
955 | in_ptr &= EDMA_REQ_Q_BASE_LO_MASK; | ||
956 | in_ptr |= pp->req_producer << EDMA_REQ_Q_PTR_SHIFT; | ||
957 | writelfl(in_ptr, port_mmio + EDMA_REQ_Q_IN_PTR_OFS); | ||
958 | |||
959 | return 0; | ||
960 | } | ||
961 | |||
962 | /** | ||
963 | * mv_get_crpb_status - get status from most recently completed cmd | ||
964 | * @ap: ATA channel to manipulate | ||
965 | * | ||
966 | * This routine is for use when the port is in DMA mode, when it | ||
967 | * will be using the CRPB (command response block) method of | ||
968 | * returning command completion information. We assert indices | ||
969 | * are good, grab status, and bump the response consumer index to | ||
970 | * prove that we're up to date. | ||
971 | * | ||
972 | * LOCKING: | ||
973 | * Inherited from caller. | ||
974 | */ | ||
975 | static u8 mv_get_crpb_status(struct ata_port *ap) | ||
976 | { | ||
977 | void __iomem *port_mmio = mv_ap_base(ap); | ||
978 | struct mv_port_priv *pp = ap->private_data; | ||
979 | u32 out_ptr; | ||
980 | |||
981 | out_ptr = readl(port_mmio + EDMA_RSP_Q_OUT_PTR_OFS); | ||
982 | |||
983 | /* the response consumer index should be the same as we remember it */ | ||
984 | assert(((out_ptr >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) == | ||
985 | pp->rsp_consumer); | ||
986 | |||
987 | /* increment our consumer index... */ | ||
988 | pp->rsp_consumer = mv_inc_q_index(&pp->rsp_consumer); | ||
989 | |||
990 | /* and, until we do NCQ, there should only be 1 CRPB waiting */ | ||
991 | assert(((readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS) >> | ||
992 | EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) == | ||
993 | pp->rsp_consumer); | ||
994 | |||
995 | /* write out our inc'd consumer index so EDMA knows we're caught up */ | ||
996 | out_ptr &= EDMA_RSP_Q_BASE_LO_MASK; | ||
997 | out_ptr |= pp->rsp_consumer << EDMA_RSP_Q_PTR_SHIFT; | ||
998 | writelfl(out_ptr, port_mmio + EDMA_RSP_Q_OUT_PTR_OFS); | ||
999 | |||
1000 | /* Return ATA status register for completed CRPB */ | ||
1001 | return (pp->crpb[pp->rsp_consumer].flags >> CRPB_FLAG_STATUS_SHIFT); | ||
1002 | } | ||
1003 | |||
1004 | /** | ||
1005 | * mv_err_intr - Handle error interrupts on the port | ||
1006 | * @ap: ATA channel to manipulate | ||
1007 | * | ||
1008 | * In most cases, just clear the interrupt and move on. However, | ||
1009 | * some cases require an eDMA reset, which is done right before | ||
1010 | * the COMRESET in mv_phy_reset(). The SERR case requires a | ||
1011 | * clear of pending errors in the SATA SERROR register. Finally, | ||
1012 | * if the port disabled DMA, update our cached copy to match. | ||
1013 | * | ||
1014 | * LOCKING: | ||
1015 | * Inherited from caller. | ||
1016 | */ | ||
1017 | static void mv_err_intr(struct ata_port *ap) | ||
1018 | { | ||
1019 | void __iomem *port_mmio = mv_ap_base(ap); | ||
1020 | u32 edma_err_cause, serr = 0; | ||
461 | 1021 | ||
462 | edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS); | 1022 | edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS); |
463 | 1023 | ||
@@ -465,8 +1025,12 @@ static void mv_err_intr(struct ata_port *ap) | |||
465 | serr = scr_read(ap, SCR_ERROR); | 1025 | serr = scr_read(ap, SCR_ERROR); |
466 | scr_write_flush(ap, SCR_ERROR, serr); | 1026 | scr_write_flush(ap, SCR_ERROR, serr); |
467 | } | 1027 | } |
468 | DPRINTK("port %u error; EDMA err cause: 0x%08x SERR: 0x%08x\n", | 1028 | if (EDMA_ERR_SELF_DIS & edma_err_cause) { |
469 | ap->port_no, edma_err_cause, serr); | 1029 | struct mv_port_priv *pp = ap->private_data; |
1030 | pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; | ||
1031 | } | ||
1032 | DPRINTK(KERN_ERR "ata%u: port error; EDMA err cause: 0x%08x " | ||
1033 | "SERR: 0x%08x\n", ap->id, edma_err_cause, serr); | ||
470 | 1034 | ||
471 | /* Clear EDMA now that SERR cleanup done */ | 1035 | /* Clear EDMA now that SERR cleanup done */ |
472 | writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS); | 1036 | writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS); |
@@ -477,7 +1041,21 @@ static void mv_err_intr(struct ata_port *ap) | |||
477 | } | 1041 | } |
478 | } | 1042 | } |
479 | 1043 | ||
480 | /* Handle any outstanding interrupts in a single SATAHC | 1044 | /** |
1045 | * mv_host_intr - Handle all interrupts on the given host controller | ||
1046 | * @host_set: host specific structure | ||
1047 | * @relevant: port error bits relevant to this host controller | ||
1048 | * @hc: which host controller we're to look at | ||
1049 | * | ||
1050 | * Read then write clear the HC interrupt status then walk each | ||
1051 | * port connected to the HC and see if it needs servicing. Port | ||
1052 | * success ints are reported in the HC interrupt status reg, the | ||
1053 | * port error ints are reported in the higher level main | ||
1054 | * interrupt status register and thus are passed in via the | ||
1055 | * 'relevant' argument. | ||
1056 | * | ||
1057 | * LOCKING: | ||
1058 | * Inherited from caller. | ||
481 | */ | 1059 | */ |
482 | static void mv_host_intr(struct ata_host_set *host_set, u32 relevant, | 1060 | static void mv_host_intr(struct ata_host_set *host_set, u32 relevant, |
483 | unsigned int hc) | 1061 | unsigned int hc) |
@@ -487,8 +1065,8 @@ static void mv_host_intr(struct ata_host_set *host_set, u32 relevant, | |||
487 | struct ata_port *ap; | 1065 | struct ata_port *ap; |
488 | struct ata_queued_cmd *qc; | 1066 | struct ata_queued_cmd *qc; |
489 | u32 hc_irq_cause; | 1067 | u32 hc_irq_cause; |
490 | int shift, port, port0, hard_port; | 1068 | int shift, port, port0, hard_port, handled; |
491 | u8 ata_status; | 1069 | u8 ata_status = 0; |
492 | 1070 | ||
493 | if (hc == 0) { | 1071 | if (hc == 0) { |
494 | port0 = 0; | 1072 | port0 = 0; |
@@ -499,7 +1077,7 @@ static void mv_host_intr(struct ata_host_set *host_set, u32 relevant, | |||
499 | /* we'll need the HC success int register in most cases */ | 1077 | /* we'll need the HC success int register in most cases */ |
500 | hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS); | 1078 | hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS); |
501 | if (hc_irq_cause) { | 1079 | if (hc_irq_cause) { |
502 | writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS); | 1080 | writelfl(~hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS); |
503 | } | 1081 | } |
504 | 1082 | ||
505 | VPRINTK("ENTER, hc%u relevant=0x%08x HC IRQ cause=0x%08x\n", | 1083 | VPRINTK("ENTER, hc%u relevant=0x%08x HC IRQ cause=0x%08x\n", |
@@ -508,35 +1086,38 @@ static void mv_host_intr(struct ata_host_set *host_set, u32 relevant, | |||
508 | for (port = port0; port < port0 + MV_PORTS_PER_HC; port++) { | 1086 | for (port = port0; port < port0 + MV_PORTS_PER_HC; port++) { |
509 | ap = host_set->ports[port]; | 1087 | ap = host_set->ports[port]; |
510 | hard_port = port & MV_PORT_MASK; /* range 0-3 */ | 1088 | hard_port = port & MV_PORT_MASK; /* range 0-3 */ |
511 | ata_status = 0xffU; | 1089 | handled = 0; /* ensure ata_status is set if handled++ */ |
512 | 1090 | ||
513 | if (((CRBP_DMA_DONE | DEV_IRQ) << hard_port) & hc_irq_cause) { | 1091 | if ((CRPB_DMA_DONE << hard_port) & hc_irq_cause) { |
514 | BUG_ON(NULL == ap); | 1092 | /* new CRPB on the queue; just one at a time until NCQ |
515 | /* rcv'd new resp, basic DMA complete, or ATA IRQ */ | 1093 | */ |
516 | /* This is needed to clear the ATA INTRQ. | 1094 | ata_status = mv_get_crpb_status(ap); |
517 | * FIXME: don't read the status reg in EDMA mode! | 1095 | handled++; |
1096 | } else if ((DEV_IRQ << hard_port) & hc_irq_cause) { | ||
1097 | /* received ATA IRQ; read the status reg to clear INTRQ | ||
518 | */ | 1098 | */ |
519 | ata_status = readb((void __iomem *) | 1099 | ata_status = readb((void __iomem *) |
520 | ap->ioaddr.status_addr); | 1100 | ap->ioaddr.status_addr); |
1101 | handled++; | ||
521 | } | 1102 | } |
522 | 1103 | ||
523 | shift = port * 2; | 1104 | shift = port << 1; /* (port * 2) */ |
524 | if (port >= MV_PORTS_PER_HC) { | 1105 | if (port >= MV_PORTS_PER_HC) { |
525 | shift++; /* skip bit 8 in the HC Main IRQ reg */ | 1106 | shift++; /* skip bit 8 in the HC Main IRQ reg */ |
526 | } | 1107 | } |
527 | if ((PORT0_ERR << shift) & relevant) { | 1108 | if ((PORT0_ERR << shift) & relevant) { |
528 | mv_err_intr(ap); | 1109 | mv_err_intr(ap); |
529 | /* FIXME: smart to OR in ATA_ERR? */ | 1110 | /* OR in ATA_ERR to ensure libata knows we took one */ |
530 | ata_status = readb((void __iomem *) | 1111 | ata_status = readb((void __iomem *) |
531 | ap->ioaddr.status_addr) | ATA_ERR; | 1112 | ap->ioaddr.status_addr) | ATA_ERR; |
1113 | handled++; | ||
532 | } | 1114 | } |
533 | 1115 | ||
534 | if (ap) { | 1116 | if (handled && ap) { |
535 | qc = ata_qc_from_tag(ap, ap->active_tag); | 1117 | qc = ata_qc_from_tag(ap, ap->active_tag); |
536 | if (NULL != qc) { | 1118 | if (NULL != qc) { |
537 | VPRINTK("port %u IRQ found for qc, " | 1119 | VPRINTK("port %u IRQ found for qc, " |
538 | "ata_status 0x%x\n", port,ata_status); | 1120 | "ata_status 0x%x\n", port,ata_status); |
539 | BUG_ON(0xffU == ata_status); | ||
540 | /* mark qc status appropriately */ | 1121 | /* mark qc status appropriately */ |
541 | ata_qc_complete(qc, ata_status); | 1122 | ata_qc_complete(qc, ata_status); |
542 | } | 1123 | } |
@@ -545,17 +1126,30 @@ static void mv_host_intr(struct ata_host_set *host_set, u32 relevant, | |||
545 | VPRINTK("EXIT\n"); | 1126 | VPRINTK("EXIT\n"); |
546 | } | 1127 | } |
547 | 1128 | ||
1129 | /** | ||
1130 | * mv_interrupt - | ||
1131 | * @irq: unused | ||
1132 | * @dev_instance: private data; in this case the host structure | ||
1133 | * @regs: unused | ||
1134 | * | ||
1135 | * Read the read only register to determine if any host | ||
1136 | * controllers have pending interrupts. If so, call lower level | ||
1137 | * routine to handle. Also check for PCI errors which are only | ||
1138 | * reported here. | ||
1139 | * | ||
1140 | * LOCKING: | ||
1141 | * This routine holds the host_set lock while processing pending | ||
1142 | * interrupts. | ||
1143 | */ | ||
548 | static irqreturn_t mv_interrupt(int irq, void *dev_instance, | 1144 | static irqreturn_t mv_interrupt(int irq, void *dev_instance, |
549 | struct pt_regs *regs) | 1145 | struct pt_regs *regs) |
550 | { | 1146 | { |
551 | struct ata_host_set *host_set = dev_instance; | 1147 | struct ata_host_set *host_set = dev_instance; |
552 | unsigned int hc, handled = 0, n_hcs; | 1148 | unsigned int hc, handled = 0, n_hcs; |
553 | void __iomem *mmio; | 1149 | void __iomem *mmio = host_set->mmio_base; |
554 | u32 irq_stat; | 1150 | u32 irq_stat; |
555 | 1151 | ||
556 | mmio = host_set->mmio_base; | ||
557 | irq_stat = readl(mmio + HC_MAIN_IRQ_CAUSE_OFS); | 1152 | irq_stat = readl(mmio + HC_MAIN_IRQ_CAUSE_OFS); |
558 | n_hcs = mv_get_hc_count(host_set->ports[0]->flags); | ||
559 | 1153 | ||
560 | /* check the cases where we either have nothing pending or have read | 1154 | /* check the cases where we either have nothing pending or have read |
561 | * a bogus register value which can indicate HW removal or PCI fault | 1155 | * a bogus register value which can indicate HW removal or PCI fault |
@@ -564,64 +1158,105 @@ static irqreturn_t mv_interrupt(int irq, void *dev_instance, | |||
564 | return IRQ_NONE; | 1158 | return IRQ_NONE; |
565 | } | 1159 | } |
566 | 1160 | ||
1161 | n_hcs = mv_get_hc_count(host_set->ports[0]->flags); | ||
567 | spin_lock(&host_set->lock); | 1162 | spin_lock(&host_set->lock); |
568 | 1163 | ||
569 | for (hc = 0; hc < n_hcs; hc++) { | 1164 | for (hc = 0; hc < n_hcs; hc++) { |
570 | u32 relevant = irq_stat & (HC0_IRQ_PEND << (hc * HC_SHIFT)); | 1165 | u32 relevant = irq_stat & (HC0_IRQ_PEND << (hc * HC_SHIFT)); |
571 | if (relevant) { | 1166 | if (relevant) { |
572 | mv_host_intr(host_set, relevant, hc); | 1167 | mv_host_intr(host_set, relevant, hc); |
573 | handled = 1; | 1168 | handled++; |
574 | } | 1169 | } |
575 | } | 1170 | } |
576 | if (PCI_ERR & irq_stat) { | 1171 | if (PCI_ERR & irq_stat) { |
577 | /* FIXME: these are all masked by default, but still need | 1172 | printk(KERN_ERR DRV_NAME ": PCI ERROR; PCI IRQ cause=0x%08x\n", |
578 | * to recover from them properly. | 1173 | readl(mmio + PCI_IRQ_CAUSE_OFS)); |
579 | */ | ||
580 | } | ||
581 | 1174 | ||
1175 | DPRINTK("All regs @ PCI error\n"); | ||
1176 | mv_dump_all_regs(mmio, -1, to_pci_dev(host_set->dev)); | ||
1177 | |||
1178 | writelfl(0, mmio + PCI_IRQ_CAUSE_OFS); | ||
1179 | handled++; | ||
1180 | } | ||
582 | spin_unlock(&host_set->lock); | 1181 | spin_unlock(&host_set->lock); |
583 | 1182 | ||
584 | return IRQ_RETVAL(handled); | 1183 | return IRQ_RETVAL(handled); |
585 | } | 1184 | } |
586 | 1185 | ||
1186 | /** | ||
1187 | * mv_check_err - Return the error shadow register to caller. | ||
1188 | * @ap: ATA channel to manipulate | ||
1189 | * | ||
1190 | * Marvell requires DMA to be stopped before accessing shadow | ||
1191 | * registers. So we do that, then return the needed register. | ||
1192 | * | ||
1193 | * LOCKING: | ||
1194 | * Inherited from caller. FIXME: protect mv_stop_dma with lock? | ||
1195 | */ | ||
1196 | static u8 mv_check_err(struct ata_port *ap) | ||
1197 | { | ||
1198 | mv_stop_dma(ap); /* can't read shadow regs if DMA on */ | ||
1199 | return readb((void __iomem *) ap->ioaddr.error_addr); | ||
1200 | } | ||
1201 | |||
1202 | /** | ||
1203 | * mv_phy_reset - Perform eDMA reset followed by COMRESET | ||
1204 | * @ap: ATA channel to manipulate | ||
1205 | * | ||
1206 | * Part of this is taken from __sata_phy_reset and modified to | ||
1207 | * not sleep since this routine gets called from interrupt level. | ||
1208 | * | ||
1209 | * LOCKING: | ||
1210 | * Inherited from caller. This is coded to safe to call at | ||
1211 | * interrupt level, i.e. it does not sleep. | ||
1212 | */ | ||
587 | static void mv_phy_reset(struct ata_port *ap) | 1213 | static void mv_phy_reset(struct ata_port *ap) |
588 | { | 1214 | { |
589 | void __iomem *port_mmio = mv_ap_base(ap); | 1215 | void __iomem *port_mmio = mv_ap_base(ap); |
590 | struct ata_taskfile tf; | 1216 | struct ata_taskfile tf; |
591 | struct ata_device *dev = &ap->device[0]; | 1217 | struct ata_device *dev = &ap->device[0]; |
592 | u32 edma = 0, bdma; | 1218 | unsigned long timeout; |
593 | 1219 | ||
594 | VPRINTK("ENTER, port %u, mmio 0x%p\n", ap->port_no, port_mmio); | 1220 | VPRINTK("ENTER, port %u, mmio 0x%p\n", ap->port_no, port_mmio); |
595 | 1221 | ||
596 | edma = readl(port_mmio + EDMA_CMD_OFS); | 1222 | mv_stop_dma(ap); |
597 | if (EDMA_EN & edma) { | ||
598 | /* disable EDMA if active */ | ||
599 | edma &= ~EDMA_EN; | ||
600 | writelfl(edma | EDMA_DS, port_mmio + EDMA_CMD_OFS); | ||
601 | udelay(1); | ||
602 | } else if (mv_port_bdma_capable(ap) && | ||
603 | (bdma = readl(port_mmio + BDMA_CMD_OFS)) & BDMA_START) { | ||
604 | /* disable BDMA if active */ | ||
605 | writelfl(bdma & ~BDMA_START, port_mmio + BDMA_CMD_OFS); | ||
606 | } | ||
607 | 1223 | ||
608 | writelfl(edma | ATA_RST, port_mmio + EDMA_CMD_OFS); | 1224 | writelfl(ATA_RST, port_mmio + EDMA_CMD_OFS); |
609 | udelay(25); /* allow reset propagation */ | 1225 | udelay(25); /* allow reset propagation */ |
610 | 1226 | ||
611 | /* Spec never mentions clearing the bit. Marvell's driver does | 1227 | /* Spec never mentions clearing the bit. Marvell's driver does |
612 | * clear the bit, however. | 1228 | * clear the bit, however. |
613 | */ | 1229 | */ |
614 | writelfl(edma & ~ATA_RST, port_mmio + EDMA_CMD_OFS); | 1230 | writelfl(0, port_mmio + EDMA_CMD_OFS); |
615 | 1231 | ||
616 | VPRINTK("Done. Now calling __sata_phy_reset()\n"); | 1232 | VPRINTK("S-regs after ATA_RST: SStat 0x%08x SErr 0x%08x " |
1233 | "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS), | ||
1234 | mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL)); | ||
617 | 1235 | ||
618 | /* proceed to init communications via the scr_control reg */ | 1236 | /* proceed to init communications via the scr_control reg */ |
619 | __sata_phy_reset(ap); | 1237 | scr_write_flush(ap, SCR_CONTROL, 0x301); |
1238 | mdelay(1); | ||
1239 | scr_write_flush(ap, SCR_CONTROL, 0x300); | ||
1240 | timeout = jiffies + (HZ * 1); | ||
1241 | do { | ||
1242 | mdelay(10); | ||
1243 | if ((scr_read(ap, SCR_STATUS) & 0xf) != 1) | ||
1244 | break; | ||
1245 | } while (time_before(jiffies, timeout)); | ||
620 | 1246 | ||
621 | if (ap->flags & ATA_FLAG_PORT_DISABLED) { | 1247 | VPRINTK("S-regs after PHY wake: SStat 0x%08x SErr 0x%08x " |
622 | VPRINTK("Port disabled pre-sig. Exiting.\n"); | 1248 | "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS), |
1249 | mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL)); | ||
1250 | |||
1251 | if (sata_dev_present(ap)) { | ||
1252 | ata_port_probe(ap); | ||
1253 | } else { | ||
1254 | printk(KERN_INFO "ata%u: no device found (phy stat %08x)\n", | ||
1255 | ap->id, scr_read(ap, SCR_STATUS)); | ||
1256 | ata_port_disable(ap); | ||
623 | return; | 1257 | return; |
624 | } | 1258 | } |
1259 | ap->cbl = ATA_CBL_SATA; | ||
625 | 1260 | ||
626 | tf.lbah = readb((void __iomem *) ap->ioaddr.lbah_addr); | 1261 | tf.lbah = readb((void __iomem *) ap->ioaddr.lbah_addr); |
627 | tf.lbam = readb((void __iomem *) ap->ioaddr.lbam_addr); | 1262 | tf.lbam = readb((void __iomem *) ap->ioaddr.lbam_addr); |
@@ -636,37 +1271,118 @@ static void mv_phy_reset(struct ata_port *ap) | |||
636 | VPRINTK("EXIT\n"); | 1271 | VPRINTK("EXIT\n"); |
637 | } | 1272 | } |
638 | 1273 | ||
639 | static void mv_port_init(struct ata_ioports *port, unsigned long base) | 1274 | /** |
1275 | * mv_eng_timeout - Routine called by libata when SCSI times out I/O | ||
1276 | * @ap: ATA channel to manipulate | ||
1277 | * | ||
1278 | * Intent is to clear all pending error conditions, reset the | ||
1279 | * chip/bus, fail the command, and move on. | ||
1280 | * | ||
1281 | * LOCKING: | ||
1282 | * This routine holds the host_set lock while failing the command. | ||
1283 | */ | ||
1284 | static void mv_eng_timeout(struct ata_port *ap) | ||
1285 | { | ||
1286 | struct ata_queued_cmd *qc; | ||
1287 | unsigned long flags; | ||
1288 | |||
1289 | printk(KERN_ERR "ata%u: Entering mv_eng_timeout\n",ap->id); | ||
1290 | DPRINTK("All regs @ start of eng_timeout\n"); | ||
1291 | mv_dump_all_regs(ap->host_set->mmio_base, ap->port_no, | ||
1292 | to_pci_dev(ap->host_set->dev)); | ||
1293 | |||
1294 | qc = ata_qc_from_tag(ap, ap->active_tag); | ||
1295 | printk(KERN_ERR "mmio_base %p ap %p qc %p scsi_cmnd %p &cmnd %p\n", | ||
1296 | ap->host_set->mmio_base, ap, qc, qc->scsicmd, | ||
1297 | &qc->scsicmd->cmnd); | ||
1298 | |||
1299 | mv_err_intr(ap); | ||
1300 | mv_phy_reset(ap); | ||
1301 | |||
1302 | if (!qc) { | ||
1303 | printk(KERN_ERR "ata%u: BUG: timeout without command\n", | ||
1304 | ap->id); | ||
1305 | } else { | ||
1306 | /* hack alert! We cannot use the supplied completion | ||
1307 | * function from inside the ->eh_strategy_handler() thread. | ||
1308 | * libata is the only user of ->eh_strategy_handler() in | ||
1309 | * any kernel, so the default scsi_done() assumes it is | ||
1310 | * not being called from the SCSI EH. | ||
1311 | */ | ||
1312 | spin_lock_irqsave(&ap->host_set->lock, flags); | ||
1313 | qc->scsidone = scsi_finish_command; | ||
1314 | ata_qc_complete(qc, ATA_ERR); | ||
1315 | spin_unlock_irqrestore(&ap->host_set->lock, flags); | ||
1316 | } | ||
1317 | } | ||
1318 | |||
1319 | /** | ||
1320 | * mv_port_init - Perform some early initialization on a single port. | ||
1321 | * @port: libata data structure storing shadow register addresses | ||
1322 | * @port_mmio: base address of the port | ||
1323 | * | ||
1324 | * Initialize shadow register mmio addresses, clear outstanding | ||
1325 | * interrupts on the port, and unmask interrupts for the future | ||
1326 | * start of the port. | ||
1327 | * | ||
1328 | * LOCKING: | ||
1329 | * Inherited from caller. | ||
1330 | */ | ||
1331 | static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio) | ||
640 | { | 1332 | { |
641 | /* PIO related setup */ | 1333 | unsigned long shd_base = (unsigned long) port_mmio + SHD_BLK_OFS; |
642 | port->data_addr = base + SHD_PIO_DATA_OFS; | 1334 | unsigned serr_ofs; |
643 | port->error_addr = port->feature_addr = base + SHD_FEA_ERR_OFS; | 1335 | |
644 | port->nsect_addr = base + SHD_SECT_CNT_OFS; | 1336 | /* PIO related setup |
645 | port->lbal_addr = base + SHD_LBA_L_OFS; | 1337 | */ |
646 | port->lbam_addr = base + SHD_LBA_M_OFS; | 1338 | port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA); |
647 | port->lbah_addr = base + SHD_LBA_H_OFS; | 1339 | port->error_addr = |
648 | port->device_addr = base + SHD_DEV_HD_OFS; | 1340 | port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR); |
649 | port->status_addr = port->command_addr = base + SHD_CMD_STA_OFS; | 1341 | port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT); |
650 | port->altstatus_addr = port->ctl_addr = base + SHD_CTL_AST_OFS; | 1342 | port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL); |
651 | /* unused */ | 1343 | port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM); |
1344 | port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH); | ||
1345 | port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE); | ||
1346 | port->status_addr = | ||
1347 | port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS); | ||
1348 | /* special case: control/altstatus doesn't have ATA_REG_ address */ | ||
1349 | port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS; | ||
1350 | |||
1351 | /* unused: */ | ||
652 | port->cmd_addr = port->bmdma_addr = port->scr_addr = 0; | 1352 | port->cmd_addr = port->bmdma_addr = port->scr_addr = 0; |
653 | 1353 | ||
1354 | /* Clear any currently outstanding port interrupt conditions */ | ||
1355 | serr_ofs = mv_scr_offset(SCR_ERROR); | ||
1356 | writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs); | ||
1357 | writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS); | ||
1358 | |||
654 | /* unmask all EDMA error interrupts */ | 1359 | /* unmask all EDMA error interrupts */ |
655 | writel(~0, (void __iomem *)base + EDMA_ERR_IRQ_MASK_OFS); | 1360 | writelfl(~0, port_mmio + EDMA_ERR_IRQ_MASK_OFS); |
656 | 1361 | ||
657 | VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n", | 1362 | VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n", |
658 | readl((void __iomem *)base + EDMA_CFG_OFS), | 1363 | readl(port_mmio + EDMA_CFG_OFS), |
659 | readl((void __iomem *)base + EDMA_ERR_IRQ_CAUSE_OFS), | 1364 | readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS), |
660 | readl((void __iomem *)base + EDMA_ERR_IRQ_MASK_OFS)); | 1365 | readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS)); |
661 | } | 1366 | } |
662 | 1367 | ||
1368 | /** | ||
1369 | * mv_host_init - Perform some early initialization of the host. | ||
1370 | * @probe_ent: early data struct representing the host | ||
1371 | * | ||
1372 | * If possible, do an early global reset of the host. Then do | ||
1373 | * our port init and clear/unmask all/relevant host interrupts. | ||
1374 | * | ||
1375 | * LOCKING: | ||
1376 | * Inherited from caller. | ||
1377 | */ | ||
663 | static int mv_host_init(struct ata_probe_ent *probe_ent) | 1378 | static int mv_host_init(struct ata_probe_ent *probe_ent) |
664 | { | 1379 | { |
665 | int rc = 0, n_hc, port, hc; | 1380 | int rc = 0, n_hc, port, hc; |
666 | void __iomem *mmio = probe_ent->mmio_base; | 1381 | void __iomem *mmio = probe_ent->mmio_base; |
667 | void __iomem *port_mmio; | 1382 | void __iomem *port_mmio; |
668 | 1383 | ||
669 | if (mv_master_reset(probe_ent->mmio_base)) { | 1384 | if ((MV_FLAG_GLBL_SFT_RST & probe_ent->host_flags) && |
1385 | mv_global_soft_reset(probe_ent->mmio_base)) { | ||
670 | rc = 1; | 1386 | rc = 1; |
671 | goto done; | 1387 | goto done; |
672 | } | 1388 | } |
@@ -676,17 +1392,27 @@ static int mv_host_init(struct ata_probe_ent *probe_ent) | |||
676 | 1392 | ||
677 | for (port = 0; port < probe_ent->n_ports; port++) { | 1393 | for (port = 0; port < probe_ent->n_ports; port++) { |
678 | port_mmio = mv_port_base(mmio, port); | 1394 | port_mmio = mv_port_base(mmio, port); |
679 | mv_port_init(&probe_ent->port[port], (unsigned long)port_mmio); | 1395 | mv_port_init(&probe_ent->port[port], port_mmio); |
680 | } | 1396 | } |
681 | 1397 | ||
682 | for (hc = 0; hc < n_hc; hc++) { | 1398 | for (hc = 0; hc < n_hc; hc++) { |
683 | VPRINTK("HC%i: HC config=0x%08x HC IRQ cause=0x%08x\n", hc, | 1399 | void __iomem *hc_mmio = mv_hc_base(mmio, hc); |
684 | readl(mv_hc_base(mmio, hc) + HC_CFG_OFS), | 1400 | |
685 | readl(mv_hc_base(mmio, hc) + HC_IRQ_CAUSE_OFS)); | 1401 | VPRINTK("HC%i: HC config=0x%08x HC IRQ cause " |
1402 | "(before clear)=0x%08x\n", hc, | ||
1403 | readl(hc_mmio + HC_CFG_OFS), | ||
1404 | readl(hc_mmio + HC_IRQ_CAUSE_OFS)); | ||
1405 | |||
1406 | /* Clear any currently outstanding hc interrupt conditions */ | ||
1407 | writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS); | ||
686 | } | 1408 | } |
687 | 1409 | ||
688 | writel(~HC_MAIN_MASKED_IRQS, mmio + HC_MAIN_IRQ_MASK_OFS); | 1410 | /* Clear any currently outstanding host interrupt conditions */ |
689 | writel(PCI_UNMASK_ALL_IRQS, mmio + PCI_IRQ_MASK_OFS); | 1411 | writelfl(0, mmio + PCI_IRQ_CAUSE_OFS); |
1412 | |||
1413 | /* and unmask interrupt generation for host regs */ | ||
1414 | writelfl(PCI_UNMASK_ALL_IRQS, mmio + PCI_IRQ_MASK_OFS); | ||
1415 | writelfl(~HC_MAIN_MASKED_IRQS, mmio + HC_MAIN_IRQ_MASK_OFS); | ||
690 | 1416 | ||
691 | VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x " | 1417 | VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x " |
692 | "PCI int cause/mask=0x%08x/0x%08x\n", | 1418 | "PCI int cause/mask=0x%08x/0x%08x\n", |
@@ -694,11 +1420,53 @@ static int mv_host_init(struct ata_probe_ent *probe_ent) | |||
694 | readl(mmio + HC_MAIN_IRQ_MASK_OFS), | 1420 | readl(mmio + HC_MAIN_IRQ_MASK_OFS), |
695 | readl(mmio + PCI_IRQ_CAUSE_OFS), | 1421 | readl(mmio + PCI_IRQ_CAUSE_OFS), |
696 | readl(mmio + PCI_IRQ_MASK_OFS)); | 1422 | readl(mmio + PCI_IRQ_MASK_OFS)); |
697 | 1423 | done: | |
698 | done: | ||
699 | return rc; | 1424 | return rc; |
700 | } | 1425 | } |
701 | 1426 | ||
1427 | /** | ||
1428 | * mv_print_info - Dump key info to kernel log for perusal. | ||
1429 | * @probe_ent: early data struct representing the host | ||
1430 | * | ||
1431 | * FIXME: complete this. | ||
1432 | * | ||
1433 | * LOCKING: | ||
1434 | * Inherited from caller. | ||
1435 | */ | ||
1436 | static void mv_print_info(struct ata_probe_ent *probe_ent) | ||
1437 | { | ||
1438 | struct pci_dev *pdev = to_pci_dev(probe_ent->dev); | ||
1439 | struct mv_host_priv *hpriv = probe_ent->private_data; | ||
1440 | u8 rev_id, scc; | ||
1441 | const char *scc_s; | ||
1442 | |||
1443 | /* Use this to determine the HW stepping of the chip so we know | ||
1444 | * what errata to workaround | ||
1445 | */ | ||
1446 | pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id); | ||
1447 | |||
1448 | pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc); | ||
1449 | if (scc == 0) | ||
1450 | scc_s = "SCSI"; | ||
1451 | else if (scc == 0x01) | ||
1452 | scc_s = "RAID"; | ||
1453 | else | ||
1454 | scc_s = "unknown"; | ||
1455 | |||
1456 | printk(KERN_INFO DRV_NAME | ||
1457 | "(%s) %u slots %u ports %s mode IRQ via %s\n", | ||
1458 | pci_name(pdev), (unsigned)MV_MAX_Q_DEPTH, probe_ent->n_ports, | ||
1459 | scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx"); | ||
1460 | } | ||
1461 | |||
1462 | /** | ||
1463 | * mv_init_one - handle a positive probe of a Marvell host | ||
1464 | * @pdev: PCI device found | ||
1465 | * @ent: PCI device ID entry for the matched host | ||
1466 | * | ||
1467 | * LOCKING: | ||
1468 | * Inherited from caller. | ||
1469 | */ | ||
702 | static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) | 1470 | static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) |
703 | { | 1471 | { |
704 | static int printed_version = 0; | 1472 | static int printed_version = 0; |
@@ -706,16 +1474,12 @@ static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) | |||
706 | struct mv_host_priv *hpriv; | 1474 | struct mv_host_priv *hpriv; |
707 | unsigned int board_idx = (unsigned int)ent->driver_data; | 1475 | unsigned int board_idx = (unsigned int)ent->driver_data; |
708 | void __iomem *mmio_base; | 1476 | void __iomem *mmio_base; |
709 | int pci_dev_busy = 0; | 1477 | int pci_dev_busy = 0, rc; |
710 | int rc; | ||
711 | 1478 | ||
712 | if (!printed_version++) { | 1479 | if (!printed_version++) { |
713 | printk(KERN_DEBUG DRV_NAME " version " DRV_VERSION "\n"); | 1480 | printk(KERN_INFO DRV_NAME " version " DRV_VERSION "\n"); |
714 | } | 1481 | } |
715 | 1482 | ||
716 | VPRINTK("ENTER for PCI Bus:Slot.Func=%u:%u.%u\n", pdev->bus->number, | ||
717 | PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); | ||
718 | |||
719 | rc = pci_enable_device(pdev); | 1483 | rc = pci_enable_device(pdev); |
720 | if (rc) { | 1484 | if (rc) { |
721 | return rc; | 1485 | return rc; |
@@ -727,8 +1491,6 @@ static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) | |||
727 | goto err_out; | 1491 | goto err_out; |
728 | } | 1492 | } |
729 | 1493 | ||
730 | pci_intx(pdev, 1); | ||
731 | |||
732 | probe_ent = kmalloc(sizeof(*probe_ent), GFP_KERNEL); | 1494 | probe_ent = kmalloc(sizeof(*probe_ent), GFP_KERNEL); |
733 | if (probe_ent == NULL) { | 1495 | if (probe_ent == NULL) { |
734 | rc = -ENOMEM; | 1496 | rc = -ENOMEM; |
@@ -739,8 +1501,7 @@ static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) | |||
739 | probe_ent->dev = pci_dev_to_dev(pdev); | 1501 | probe_ent->dev = pci_dev_to_dev(pdev); |
740 | INIT_LIST_HEAD(&probe_ent->node); | 1502 | INIT_LIST_HEAD(&probe_ent->node); |
741 | 1503 | ||
742 | mmio_base = ioremap_nocache(pci_resource_start(pdev, MV_PRIMARY_BAR), | 1504 | mmio_base = pci_iomap(pdev, MV_PRIMARY_BAR, 0); |
743 | pci_resource_len(pdev, MV_PRIMARY_BAR)); | ||
744 | if (mmio_base == NULL) { | 1505 | if (mmio_base == NULL) { |
745 | rc = -ENOMEM; | 1506 | rc = -ENOMEM; |
746 | goto err_out_free_ent; | 1507 | goto err_out_free_ent; |
@@ -769,37 +1530,40 @@ static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) | |||
769 | if (rc) { | 1530 | if (rc) { |
770 | goto err_out_hpriv; | 1531 | goto err_out_hpriv; |
771 | } | 1532 | } |
772 | /* mv_print_info(probe_ent); */ | ||
773 | 1533 | ||
774 | { | 1534 | /* Enable interrupts */ |
775 | int b, w; | 1535 | if (pci_enable_msi(pdev) == 0) { |
776 | u32 dw[4]; /* hold a line of 16b */ | 1536 | hpriv->hp_flags |= MV_HP_FLAG_MSI; |
777 | VPRINTK("PCI config space:\n"); | 1537 | } else { |
778 | for (b = 0; b < 0x40; ) { | 1538 | pci_intx(pdev, 1); |
779 | for (w = 0; w < 4; w++) { | ||
780 | (void) pci_read_config_dword(pdev,b,&dw[w]); | ||
781 | b += sizeof(*dw); | ||
782 | } | ||
783 | VPRINTK("%08x %08x %08x %08x\n", | ||
784 | dw[0],dw[1],dw[2],dw[3]); | ||
785 | } | ||
786 | } | 1539 | } |
787 | 1540 | ||
788 | /* FIXME: check ata_device_add return value */ | 1541 | mv_dump_pci_cfg(pdev, 0x68); |
789 | ata_device_add(probe_ent); | 1542 | mv_print_info(probe_ent); |
790 | kfree(probe_ent); | 1543 | |
1544 | if (ata_device_add(probe_ent) == 0) { | ||
1545 | rc = -ENODEV; /* No devices discovered */ | ||
1546 | goto err_out_dev_add; | ||
1547 | } | ||
791 | 1548 | ||
1549 | kfree(probe_ent); | ||
792 | return 0; | 1550 | return 0; |
793 | 1551 | ||
794 | err_out_hpriv: | 1552 | err_out_dev_add: |
1553 | if (MV_HP_FLAG_MSI & hpriv->hp_flags) { | ||
1554 | pci_disable_msi(pdev); | ||
1555 | } else { | ||
1556 | pci_intx(pdev, 0); | ||
1557 | } | ||
1558 | err_out_hpriv: | ||
795 | kfree(hpriv); | 1559 | kfree(hpriv); |
796 | err_out_iounmap: | 1560 | err_out_iounmap: |
797 | iounmap(mmio_base); | 1561 | pci_iounmap(pdev, mmio_base); |
798 | err_out_free_ent: | 1562 | err_out_free_ent: |
799 | kfree(probe_ent); | 1563 | kfree(probe_ent); |
800 | err_out_regions: | 1564 | err_out_regions: |
801 | pci_release_regions(pdev); | 1565 | pci_release_regions(pdev); |
802 | err_out: | 1566 | err_out: |
803 | if (!pci_dev_busy) { | 1567 | if (!pci_dev_busy) { |
804 | pci_disable_device(pdev); | 1568 | pci_disable_device(pdev); |
805 | } | 1569 | } |
diff --git a/drivers/scsi/sata_nv.c b/drivers/scsi/sata_nv.c index c05653c7779d..749ff92d8c63 100644 --- a/drivers/scsi/sata_nv.c +++ b/drivers/scsi/sata_nv.c | |||
@@ -405,7 +405,7 @@ static int nv_init_one (struct pci_dev *pdev, const struct pci_device_id *ent) | |||
405 | rc = -ENOMEM; | 405 | rc = -ENOMEM; |
406 | 406 | ||
407 | ppi = &nv_port_info; | 407 | ppi = &nv_port_info; |
408 | probe_ent = ata_pci_init_native_mode(pdev, &ppi); | 408 | probe_ent = ata_pci_init_native_mode(pdev, &ppi, ATA_PORT_PRIMARY | ATA_PORT_SECONDARY); |
409 | if (!probe_ent) | 409 | if (!probe_ent) |
410 | goto err_out_regions; | 410 | goto err_out_regions; |
411 | 411 | ||
diff --git a/drivers/scsi/sata_promise.c b/drivers/scsi/sata_promise.c index 538ad727bd2e..def7e0d9dacb 100644 --- a/drivers/scsi/sata_promise.c +++ b/drivers/scsi/sata_promise.c | |||
@@ -438,11 +438,11 @@ static inline unsigned int pdc_host_intr( struct ata_port *ap, | |||
438 | break; | 438 | break; |
439 | 439 | ||
440 | default: | 440 | default: |
441 | ap->stats.idle_irq++; | 441 | ap->stats.idle_irq++; |
442 | break; | 442 | break; |
443 | } | 443 | } |
444 | 444 | ||
445 | return handled; | 445 | return handled; |
446 | } | 446 | } |
447 | 447 | ||
448 | static void pdc_irq_clear(struct ata_port *ap) | 448 | static void pdc_irq_clear(struct ata_port *ap) |
diff --git a/drivers/scsi/sata_sis.c b/drivers/scsi/sata_sis.c index b227e51d12f4..0761a3234fcf 100644 --- a/drivers/scsi/sata_sis.c +++ b/drivers/scsi/sata_sis.c | |||
@@ -263,7 +263,7 @@ static int sis_init_one (struct pci_dev *pdev, const struct pci_device_id *ent) | |||
263 | goto err_out_regions; | 263 | goto err_out_regions; |
264 | 264 | ||
265 | ppi = &sis_port_info; | 265 | ppi = &sis_port_info; |
266 | probe_ent = ata_pci_init_native_mode(pdev, &ppi); | 266 | probe_ent = ata_pci_init_native_mode(pdev, &ppi, ATA_PORT_PRIMARY | ATA_PORT_SECONDARY); |
267 | if (!probe_ent) { | 267 | if (!probe_ent) { |
268 | rc = -ENOMEM; | 268 | rc = -ENOMEM; |
269 | goto err_out_regions; | 269 | goto err_out_regions; |
diff --git a/drivers/scsi/sata_uli.c b/drivers/scsi/sata_uli.c index 4c9fb8b71be1..9c06f2abe7f7 100644 --- a/drivers/scsi/sata_uli.c +++ b/drivers/scsi/sata_uli.c | |||
@@ -202,7 +202,7 @@ static int uli_init_one (struct pci_dev *pdev, const struct pci_device_id *ent) | |||
202 | goto err_out_regions; | 202 | goto err_out_regions; |
203 | 203 | ||
204 | ppi = &uli_port_info; | 204 | ppi = &uli_port_info; |
205 | probe_ent = ata_pci_init_native_mode(pdev, &ppi); | 205 | probe_ent = ata_pci_init_native_mode(pdev, &ppi, ATA_PORT_PRIMARY | ATA_PORT_SECONDARY); |
206 | if (!probe_ent) { | 206 | if (!probe_ent) { |
207 | rc = -ENOMEM; | 207 | rc = -ENOMEM; |
208 | goto err_out_regions; | 208 | goto err_out_regions; |
diff --git a/drivers/scsi/sata_via.c b/drivers/scsi/sata_via.c index 128b996b07b7..565872479b9a 100644 --- a/drivers/scsi/sata_via.c +++ b/drivers/scsi/sata_via.c | |||
@@ -212,7 +212,7 @@ static struct ata_probe_ent *vt6420_init_probe_ent(struct pci_dev *pdev) | |||
212 | struct ata_probe_ent *probe_ent; | 212 | struct ata_probe_ent *probe_ent; |
213 | struct ata_port_info *ppi = &svia_port_info; | 213 | struct ata_port_info *ppi = &svia_port_info; |
214 | 214 | ||
215 | probe_ent = ata_pci_init_native_mode(pdev, &ppi); | 215 | probe_ent = ata_pci_init_native_mode(pdev, &ppi, ATA_PORT_PRIMARY | ATA_PORT_SECONDARY); |
216 | if (!probe_ent) | 216 | if (!probe_ent) |
217 | return NULL; | 217 | return NULL; |
218 | 218 | ||
diff --git a/include/linux/ata.h b/include/linux/ata.h index a5b74efab067..ecb7346d0c16 100644 --- a/include/linux/ata.h +++ b/include/linux/ata.h | |||
@@ -132,6 +132,7 @@ enum { | |||
132 | ATA_CMD_PACKET = 0xA0, | 132 | ATA_CMD_PACKET = 0xA0, |
133 | ATA_CMD_VERIFY = 0x40, | 133 | ATA_CMD_VERIFY = 0x40, |
134 | ATA_CMD_VERIFY_EXT = 0x42, | 134 | ATA_CMD_VERIFY_EXT = 0x42, |
135 | ATA_CMD_INIT_DEV_PARAMS = 0x91, | ||
135 | 136 | ||
136 | /* SETFEATURES stuff */ | 137 | /* SETFEATURES stuff */ |
137 | SETFEATURES_XFER = 0x03, | 138 | SETFEATURES_XFER = 0x03, |
@@ -146,14 +147,14 @@ enum { | |||
146 | XFER_MW_DMA_2 = 0x22, | 147 | XFER_MW_DMA_2 = 0x22, |
147 | XFER_MW_DMA_1 = 0x21, | 148 | XFER_MW_DMA_1 = 0x21, |
148 | XFER_MW_DMA_0 = 0x20, | 149 | XFER_MW_DMA_0 = 0x20, |
150 | XFER_SW_DMA_2 = 0x12, | ||
151 | XFER_SW_DMA_1 = 0x11, | ||
152 | XFER_SW_DMA_0 = 0x10, | ||
149 | XFER_PIO_4 = 0x0C, | 153 | XFER_PIO_4 = 0x0C, |
150 | XFER_PIO_3 = 0x0B, | 154 | XFER_PIO_3 = 0x0B, |
151 | XFER_PIO_2 = 0x0A, | 155 | XFER_PIO_2 = 0x0A, |
152 | XFER_PIO_1 = 0x09, | 156 | XFER_PIO_1 = 0x09, |
153 | XFER_PIO_0 = 0x08, | 157 | XFER_PIO_0 = 0x08, |
154 | XFER_SW_DMA_2 = 0x12, | ||
155 | XFER_SW_DMA_1 = 0x11, | ||
156 | XFER_SW_DMA_0 = 0x10, | ||
157 | XFER_PIO_SLOW = 0x00, | 158 | XFER_PIO_SLOW = 0x00, |
158 | 159 | ||
159 | /* ATAPI stuff */ | 160 | /* ATAPI stuff */ |
@@ -181,6 +182,7 @@ enum { | |||
181 | ATA_TFLAG_ISADDR = (1 << 1), /* enable r/w to nsect/lba regs */ | 182 | ATA_TFLAG_ISADDR = (1 << 1), /* enable r/w to nsect/lba regs */ |
182 | ATA_TFLAG_DEVICE = (1 << 2), /* enable r/w to device reg */ | 183 | ATA_TFLAG_DEVICE = (1 << 2), /* enable r/w to device reg */ |
183 | ATA_TFLAG_WRITE = (1 << 3), /* data dir: host->dev==1 (write) */ | 184 | ATA_TFLAG_WRITE = (1 << 3), /* data dir: host->dev==1 (write) */ |
185 | ATA_TFLAG_LBA = (1 << 4), /* enable LBA */ | ||
184 | }; | 186 | }; |
185 | 187 | ||
186 | enum ata_tf_protocols { | 188 | enum ata_tf_protocols { |
@@ -250,6 +252,18 @@ struct ata_taskfile { | |||
250 | ((u64) (id)[(n) + 1] << 16) | \ | 252 | ((u64) (id)[(n) + 1] << 16) | \ |
251 | ((u64) (id)[(n) + 0]) ) | 253 | ((u64) (id)[(n) + 0]) ) |
252 | 254 | ||
255 | static inline int ata_id_current_chs_valid(u16 *id) | ||
256 | { | ||
257 | /* For ATA-1 devices, if the INITIALIZE DEVICE PARAMETERS command | ||
258 | has not been issued to the device then the values of | ||
259 | id[54] to id[56] are vendor specific. */ | ||
260 | return (id[53] & 0x01) && /* Current translation valid */ | ||
261 | id[54] && /* cylinders in current translation */ | ||
262 | id[55] && /* heads in current translation */ | ||
263 | id[55] <= 16 && | ||
264 | id[56]; /* sectors in current translation */ | ||
265 | } | ||
266 | |||
253 | static inline int atapi_cdb_len(u16 *dev_id) | 267 | static inline int atapi_cdb_len(u16 *dev_id) |
254 | { | 268 | { |
255 | u16 tmp = dev_id[0] & 0x3; | 269 | u16 tmp = dev_id[0] & 0x3; |
diff --git a/include/linux/libata.h b/include/linux/libata.h index ceee1fc42c60..7929cfc9318d 100644 --- a/include/linux/libata.h +++ b/include/linux/libata.h | |||
@@ -97,6 +97,7 @@ enum { | |||
97 | ATA_DFLAG_LBA48 = (1 << 0), /* device supports LBA48 */ | 97 | ATA_DFLAG_LBA48 = (1 << 0), /* device supports LBA48 */ |
98 | ATA_DFLAG_PIO = (1 << 1), /* device currently in PIO mode */ | 98 | ATA_DFLAG_PIO = (1 << 1), /* device currently in PIO mode */ |
99 | ATA_DFLAG_LOCK_SECTORS = (1 << 2), /* don't adjust max_sectors */ | 99 | ATA_DFLAG_LOCK_SECTORS = (1 << 2), /* don't adjust max_sectors */ |
100 | ATA_DFLAG_LBA = (1 << 3), /* device supports LBA */ | ||
100 | 101 | ||
101 | ATA_DEV_UNKNOWN = 0, /* unknown device */ | 102 | ATA_DEV_UNKNOWN = 0, /* unknown device */ |
102 | ATA_DEV_ATA = 1, /* ATA device */ | 103 | ATA_DEV_ATA = 1, /* ATA device */ |
@@ -154,17 +155,21 @@ enum { | |||
154 | ATA_SHIFT_UDMA = 0, | 155 | ATA_SHIFT_UDMA = 0, |
155 | ATA_SHIFT_MWDMA = 8, | 156 | ATA_SHIFT_MWDMA = 8, |
156 | ATA_SHIFT_PIO = 11, | 157 | ATA_SHIFT_PIO = 11, |
158 | |||
159 | /* Masks for port functions */ | ||
160 | ATA_PORT_PRIMARY = (1 << 0), | ||
161 | ATA_PORT_SECONDARY = (1 << 1), | ||
157 | }; | 162 | }; |
158 | 163 | ||
159 | enum pio_task_states { | 164 | enum hsm_task_states { |
160 | PIO_ST_UNKNOWN, | 165 | HSM_ST_UNKNOWN, |
161 | PIO_ST_IDLE, | 166 | HSM_ST_IDLE, |
162 | PIO_ST_POLL, | 167 | HSM_ST_POLL, |
163 | PIO_ST_TMOUT, | 168 | HSM_ST_TMOUT, |
164 | PIO_ST, | 169 | HSM_ST, |
165 | PIO_ST_LAST, | 170 | HSM_ST_LAST, |
166 | PIO_ST_LAST_POLL, | 171 | HSM_ST_LAST_POLL, |
167 | PIO_ST_ERR, | 172 | HSM_ST_ERR, |
168 | }; | 173 | }; |
169 | 174 | ||
170 | /* forward declarations */ | 175 | /* forward declarations */ |
@@ -282,6 +287,11 @@ struct ata_device { | |||
282 | u8 xfer_protocol; /* taskfile xfer protocol */ | 287 | u8 xfer_protocol; /* taskfile xfer protocol */ |
283 | u8 read_cmd; /* opcode to use on read */ | 288 | u8 read_cmd; /* opcode to use on read */ |
284 | u8 write_cmd; /* opcode to use on write */ | 289 | u8 write_cmd; /* opcode to use on write */ |
290 | |||
291 | /* for CHS addressing */ | ||
292 | u16 cylinders; /* Number of cylinders */ | ||
293 | u16 heads; /* Number of heads */ | ||
294 | u16 sectors; /* Number of sectors per track */ | ||
285 | }; | 295 | }; |
286 | 296 | ||
287 | struct ata_port { | 297 | struct ata_port { |
@@ -319,7 +329,7 @@ struct ata_port { | |||
319 | struct work_struct packet_task; | 329 | struct work_struct packet_task; |
320 | 330 | ||
321 | struct work_struct pio_task; | 331 | struct work_struct pio_task; |
322 | unsigned int pio_task_state; | 332 | unsigned int hsm_task_state; |
323 | unsigned long pio_task_timeout; | 333 | unsigned long pio_task_timeout; |
324 | 334 | ||
325 | void *private_data; | 335 | void *private_data; |
@@ -400,6 +410,8 @@ extern int ata_scsi_queuecmd(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmn | |||
400 | extern int ata_scsi_error(struct Scsi_Host *host); | 410 | extern int ata_scsi_error(struct Scsi_Host *host); |
401 | extern int ata_scsi_release(struct Scsi_Host *host); | 411 | extern int ata_scsi_release(struct Scsi_Host *host); |
402 | extern unsigned int ata_host_intr(struct ata_port *ap, struct ata_queued_cmd *qc); | 412 | extern unsigned int ata_host_intr(struct ata_port *ap, struct ata_queued_cmd *qc); |
413 | extern int ata_ratelimit(void); | ||
414 | |||
403 | /* | 415 | /* |
404 | * Default driver ops implementations | 416 | * Default driver ops implementations |
405 | */ | 417 | */ |
@@ -452,7 +464,7 @@ struct pci_bits { | |||
452 | 464 | ||
453 | extern void ata_pci_host_stop (struct ata_host_set *host_set); | 465 | extern void ata_pci_host_stop (struct ata_host_set *host_set); |
454 | extern struct ata_probe_ent * | 466 | extern struct ata_probe_ent * |
455 | ata_pci_init_native_mode(struct pci_dev *pdev, struct ata_port_info **port); | 467 | ata_pci_init_native_mode(struct pci_dev *pdev, struct ata_port_info **port, int portmask); |
456 | extern int pci_test_config_bits(struct pci_dev *pdev, struct pci_bits *bits); | 468 | extern int pci_test_config_bits(struct pci_dev *pdev, struct pci_bits *bits); |
457 | 469 | ||
458 | #endif /* CONFIG_PCI */ | 470 | #endif /* CONFIG_PCI */ |