diff options
-rw-r--r-- | drivers/usb/Makefile | 1 | ||||
-rw-r--r-- | drivers/usb/host/Makefile | 1 | ||||
-rw-r--r-- | drivers/usb/host/hc_crisv10.c | 4550 | ||||
-rw-r--r-- | drivers/usb/host/hc_crisv10.h | 289 |
4 files changed, 0 insertions, 4841 deletions
diff --git a/drivers/usb/Makefile b/drivers/usb/Makefile index 8b7ff467d262..c1b0affae290 100644 --- a/drivers/usb/Makefile +++ b/drivers/usb/Makefile | |||
@@ -15,7 +15,6 @@ obj-$(CONFIG_USB_OHCI_HCD) += host/ | |||
15 | obj-$(CONFIG_USB_UHCI_HCD) += host/ | 15 | obj-$(CONFIG_USB_UHCI_HCD) += host/ |
16 | obj-$(CONFIG_USB_SL811_HCD) += host/ | 16 | obj-$(CONFIG_USB_SL811_HCD) += host/ |
17 | obj-$(CONFIG_USB_U132_HCD) += host/ | 17 | obj-$(CONFIG_USB_U132_HCD) += host/ |
18 | obj-$(CONFIG_ETRAX_USB_HOST) += host/ | ||
19 | obj-$(CONFIG_USB_OHCI_AT91) += host/ | 18 | obj-$(CONFIG_USB_OHCI_AT91) += host/ |
20 | 19 | ||
21 | obj-$(CONFIG_USB_ACM) += class/ | 20 | obj-$(CONFIG_USB_ACM) += class/ |
diff --git a/drivers/usb/host/Makefile b/drivers/usb/host/Makefile index a2e58c86849f..2ff396bd180f 100644 --- a/drivers/usb/host/Makefile +++ b/drivers/usb/host/Makefile | |||
@@ -15,4 +15,3 @@ obj-$(CONFIG_USB_UHCI_HCD) += uhci-hcd.o | |||
15 | obj-$(CONFIG_USB_SL811_HCD) += sl811-hcd.o | 15 | obj-$(CONFIG_USB_SL811_HCD) += sl811-hcd.o |
16 | obj-$(CONFIG_USB_SL811_CS) += sl811_cs.o | 16 | obj-$(CONFIG_USB_SL811_CS) += sl811_cs.o |
17 | obj-$(CONFIG_USB_U132_HCD) += u132-hcd.o | 17 | obj-$(CONFIG_USB_U132_HCD) += u132-hcd.o |
18 | obj-$(CONFIG_ETRAX_ARCH_V10) += hc_crisv10.o | ||
diff --git a/drivers/usb/host/hc_crisv10.c b/drivers/usb/host/hc_crisv10.c deleted file mode 100644 index 32f7caf24747..000000000000 --- a/drivers/usb/host/hc_crisv10.c +++ /dev/null | |||
@@ -1,4550 +0,0 @@ | |||
1 | /* | ||
2 | * usb-host.c: ETRAX 100LX USB Host Controller Driver (HCD) | ||
3 | * | ||
4 | * Copyright (c) 2002, 2003 Axis Communications AB. | ||
5 | */ | ||
6 | |||
7 | #include <linux/kernel.h> | ||
8 | #include <linux/delay.h> | ||
9 | #include <linux/ioport.h> | ||
10 | #include <linux/slab.h> | ||
11 | #include <linux/errno.h> | ||
12 | #include <linux/unistd.h> | ||
13 | #include <linux/interrupt.h> | ||
14 | #include <linux/init.h> | ||
15 | #include <linux/list.h> | ||
16 | #include <linux/spinlock.h> | ||
17 | |||
18 | #include <asm/uaccess.h> | ||
19 | #include <asm/io.h> | ||
20 | #include <asm/irq.h> | ||
21 | #include <asm/dma.h> | ||
22 | #include <asm/system.h> | ||
23 | #include <asm/arch/svinto.h> | ||
24 | |||
25 | #include <linux/usb.h> | ||
26 | /* Ugly include because we don't live with the other host drivers. */ | ||
27 | #include <../drivers/usb/core/hcd.h> | ||
28 | #include <../drivers/usb/core/usb.h> | ||
29 | |||
30 | #include "hc_crisv10.h" | ||
31 | |||
32 | #define ETRAX_USB_HC_IRQ USB_HC_IRQ_NBR | ||
33 | #define ETRAX_USB_RX_IRQ USB_DMA_RX_IRQ_NBR | ||
34 | #define ETRAX_USB_TX_IRQ USB_DMA_TX_IRQ_NBR | ||
35 | |||
36 | static const char *usb_hcd_version = "$Revision: 1.2 $"; | ||
37 | |||
38 | #undef KERN_DEBUG | ||
39 | #define KERN_DEBUG "" | ||
40 | |||
41 | |||
42 | #undef USB_DEBUG_RH | ||
43 | #undef USB_DEBUG_EPID | ||
44 | #undef USB_DEBUG_SB | ||
45 | #undef USB_DEBUG_DESC | ||
46 | #undef USB_DEBUG_URB | ||
47 | #undef USB_DEBUG_TRACE | ||
48 | #undef USB_DEBUG_BULK | ||
49 | #undef USB_DEBUG_CTRL | ||
50 | #undef USB_DEBUG_INTR | ||
51 | #undef USB_DEBUG_ISOC | ||
52 | |||
53 | #ifdef USB_DEBUG_RH | ||
54 | #define dbg_rh(format, arg...) printk(KERN_DEBUG __FILE__ ": (RH) " format "\n" , ## arg) | ||
55 | #else | ||
56 | #define dbg_rh(format, arg...) do {} while (0) | ||
57 | #endif | ||
58 | |||
59 | #ifdef USB_DEBUG_EPID | ||
60 | #define dbg_epid(format, arg...) printk(KERN_DEBUG __FILE__ ": (EPID) " format "\n" , ## arg) | ||
61 | #else | ||
62 | #define dbg_epid(format, arg...) do {} while (0) | ||
63 | #endif | ||
64 | |||
65 | #ifdef USB_DEBUG_SB | ||
66 | #define dbg_sb(format, arg...) printk(KERN_DEBUG __FILE__ ": (SB) " format "\n" , ## arg) | ||
67 | #else | ||
68 | #define dbg_sb(format, arg...) do {} while (0) | ||
69 | #endif | ||
70 | |||
71 | #ifdef USB_DEBUG_CTRL | ||
72 | #define dbg_ctrl(format, arg...) printk(KERN_DEBUG __FILE__ ": (CTRL) " format "\n" , ## arg) | ||
73 | #else | ||
74 | #define dbg_ctrl(format, arg...) do {} while (0) | ||
75 | #endif | ||
76 | |||
77 | #ifdef USB_DEBUG_BULK | ||
78 | #define dbg_bulk(format, arg...) printk(KERN_DEBUG __FILE__ ": (BULK) " format "\n" , ## arg) | ||
79 | #else | ||
80 | #define dbg_bulk(format, arg...) do {} while (0) | ||
81 | #endif | ||
82 | |||
83 | #ifdef USB_DEBUG_INTR | ||
84 | #define dbg_intr(format, arg...) printk(KERN_DEBUG __FILE__ ": (INTR) " format "\n" , ## arg) | ||
85 | #else | ||
86 | #define dbg_intr(format, arg...) do {} while (0) | ||
87 | #endif | ||
88 | |||
89 | #ifdef USB_DEBUG_ISOC | ||
90 | #define dbg_isoc(format, arg...) printk(KERN_DEBUG __FILE__ ": (ISOC) " format "\n" , ## arg) | ||
91 | #else | ||
92 | #define dbg_isoc(format, arg...) do {} while (0) | ||
93 | #endif | ||
94 | |||
95 | #ifdef USB_DEBUG_TRACE | ||
96 | #define DBFENTER (printk(": Entering: %s\n", __FUNCTION__)) | ||
97 | #define DBFEXIT (printk(": Exiting: %s\n", __FUNCTION__)) | ||
98 | #else | ||
99 | #define DBFENTER do {} while (0) | ||
100 | #define DBFEXIT do {} while (0) | ||
101 | #endif | ||
102 | |||
103 | #define usb_pipeslow(pipe) (((pipe) >> 26) & 1) | ||
104 | |||
105 | /*------------------------------------------------------------------- | ||
106 | Virtual Root Hub | ||
107 | -------------------------------------------------------------------*/ | ||
108 | |||
109 | static __u8 root_hub_dev_des[] = | ||
110 | { | ||
111 | 0x12, /* __u8 bLength; */ | ||
112 | 0x01, /* __u8 bDescriptorType; Device */ | ||
113 | 0x00, /* __le16 bcdUSB; v1.0 */ | ||
114 | 0x01, | ||
115 | 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ | ||
116 | 0x00, /* __u8 bDeviceSubClass; */ | ||
117 | 0x00, /* __u8 bDeviceProtocol; */ | ||
118 | 0x08, /* __u8 bMaxPacketSize0; 8 Bytes */ | ||
119 | 0x00, /* __le16 idVendor; */ | ||
120 | 0x00, | ||
121 | 0x00, /* __le16 idProduct; */ | ||
122 | 0x00, | ||
123 | 0x00, /* __le16 bcdDevice; */ | ||
124 | 0x00, | ||
125 | 0x00, /* __u8 iManufacturer; */ | ||
126 | 0x02, /* __u8 iProduct; */ | ||
127 | 0x01, /* __u8 iSerialNumber; */ | ||
128 | 0x01 /* __u8 bNumConfigurations; */ | ||
129 | }; | ||
130 | |||
131 | /* Configuration descriptor */ | ||
132 | static __u8 root_hub_config_des[] = | ||
133 | { | ||
134 | 0x09, /* __u8 bLength; */ | ||
135 | 0x02, /* __u8 bDescriptorType; Configuration */ | ||
136 | 0x19, /* __le16 wTotalLength; */ | ||
137 | 0x00, | ||
138 | 0x01, /* __u8 bNumInterfaces; */ | ||
139 | 0x01, /* __u8 bConfigurationValue; */ | ||
140 | 0x00, /* __u8 iConfiguration; */ | ||
141 | 0x40, /* __u8 bmAttributes; Bit 7: Bus-powered */ | ||
142 | 0x00, /* __u8 MaxPower; */ | ||
143 | |||
144 | /* interface */ | ||
145 | 0x09, /* __u8 if_bLength; */ | ||
146 | 0x04, /* __u8 if_bDescriptorType; Interface */ | ||
147 | 0x00, /* __u8 if_bInterfaceNumber; */ | ||
148 | 0x00, /* __u8 if_bAlternateSetting; */ | ||
149 | 0x01, /* __u8 if_bNumEndpoints; */ | ||
150 | 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ | ||
151 | 0x00, /* __u8 if_bInterfaceSubClass; */ | ||
152 | 0x00, /* __u8 if_bInterfaceProtocol; */ | ||
153 | 0x00, /* __u8 if_iInterface; */ | ||
154 | |||
155 | /* endpoint */ | ||
156 | 0x07, /* __u8 ep_bLength; */ | ||
157 | 0x05, /* __u8 ep_bDescriptorType; Endpoint */ | ||
158 | 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ | ||
159 | 0x03, /* __u8 ep_bmAttributes; Interrupt */ | ||
160 | 0x08, /* __le16 ep_wMaxPacketSize; 8 Bytes */ | ||
161 | 0x00, | ||
162 | 0xff /* __u8 ep_bInterval; 255 ms */ | ||
163 | }; | ||
164 | |||
165 | static __u8 root_hub_hub_des[] = | ||
166 | { | ||
167 | 0x09, /* __u8 bLength; */ | ||
168 | 0x29, /* __u8 bDescriptorType; Hub-descriptor */ | ||
169 | 0x02, /* __u8 bNbrPorts; */ | ||
170 | 0x00, /* __u16 wHubCharacteristics; */ | ||
171 | 0x00, | ||
172 | 0x01, /* __u8 bPwrOn2pwrGood; 2ms */ | ||
173 | 0x00, /* __u8 bHubContrCurrent; 0 mA */ | ||
174 | 0x00, /* __u8 DeviceRemovable; *** 7 Ports max *** */ | ||
175 | 0xff /* __u8 PortPwrCtrlMask; *** 7 ports max *** */ | ||
176 | }; | ||
177 | |||
178 | static DEFINE_TIMER(bulk_start_timer, NULL, 0, 0); | ||
179 | static DEFINE_TIMER(bulk_eot_timer, NULL, 0, 0); | ||
180 | |||
181 | /* We want the start timer to expire before the eot timer, because the former might start | ||
182 | traffic, thus making it unnecessary for the latter to time out. */ | ||
183 | #define BULK_START_TIMER_INTERVAL (HZ/10) /* 100 ms */ | ||
184 | #define BULK_EOT_TIMER_INTERVAL (HZ/10+2) /* 120 ms */ | ||
185 | |||
186 | #define OK(x) len = (x); dbg_rh("OK(%d): line: %d", x, __LINE__); break | ||
187 | #define CHECK_ALIGN(x) if (((__u32)(x)) & 0x00000003) \ | ||
188 | {panic("Alignment check (DWORD) failed at %s:%s:%d\n", __FILE__, __FUNCTION__, __LINE__);} | ||
189 | |||
190 | #define SLAB_FLAG (in_interrupt() ? GFP_ATOMIC : GFP_KERNEL) | ||
191 | #define KMALLOC_FLAG (in_interrupt() ? GFP_ATOMIC : GFP_KERNEL) | ||
192 | |||
193 | /* Most helpful debugging aid */ | ||
194 | #define assert(expr) ((void) ((expr) ? 0 : (err("assert failed at line %d",__LINE__)))) | ||
195 | |||
196 | /* Alternative assert define which stops after a failed assert. */ | ||
197 | /* | ||
198 | #define assert(expr) \ | ||
199 | { \ | ||
200 | if (!(expr)) { \ | ||
201 | err("assert failed at line %d",__LINE__); \ | ||
202 | while (1); \ | ||
203 | } \ | ||
204 | } | ||
205 | */ | ||
206 | |||
207 | |||
208 | /* FIXME: Should RX_BUF_SIZE be a config option, or maybe we should adjust it dynamically? | ||
209 | To adjust it dynamically we would have to get an interrupt when we reach the end | ||
210 | of the rx descriptor list, or when we get close to the end, and then allocate more | ||
211 | descriptors. */ | ||
212 | |||
213 | #define NBR_OF_RX_DESC 512 | ||
214 | #define RX_DESC_BUF_SIZE 1024 | ||
215 | #define RX_BUF_SIZE (NBR_OF_RX_DESC * RX_DESC_BUF_SIZE) | ||
216 | |||
217 | /* The number of epids is, among other things, used for pre-allocating | ||
218 | ctrl, bulk and isoc EP descriptors (one for each epid). | ||
219 | Assumed to be > 1 when initiating the DMA lists. */ | ||
220 | #define NBR_OF_EPIDS 32 | ||
221 | |||
222 | /* Support interrupt traffic intervals up to 128 ms. */ | ||
223 | #define MAX_INTR_INTERVAL 128 | ||
224 | |||
225 | /* If periodic traffic (intr or isoc) is to be used, then one entry in the EP table | ||
226 | must be "invalid". By this we mean that we shouldn't care about epid attentions | ||
227 | for this epid, or at least handle them differently from epid attentions for "valid" | ||
228 | epids. This define determines which one to use (don't change it). */ | ||
229 | #define INVALID_EPID 31 | ||
230 | /* A special epid for the bulk dummys. */ | ||
231 | #define DUMMY_EPID 30 | ||
232 | |||
233 | /* This is just a software cache for the valid entries in R_USB_EPT_DATA. */ | ||
234 | static __u32 epid_usage_bitmask; | ||
235 | |||
236 | /* A bitfield to keep information on in/out traffic is needed to uniquely identify | ||
237 | an endpoint on a device, since the most significant bit which indicates traffic | ||
238 | direction is lacking in the ep_id field (ETRAX epids can handle both in and | ||
239 | out traffic on endpoints that are otherwise identical). The USB framework, however, | ||
240 | relies on them to be handled separately. For example, bulk IN and OUT urbs cannot | ||
241 | be queued in the same list, since they would block each other. */ | ||
242 | static __u32 epid_out_traffic; | ||
243 | |||
244 | /* DMA IN cache bug. Align the DMA IN buffers to 32 bytes, i.e. a cache line. | ||
245 | Since RX_DESC_BUF_SIZE is 1024 is a multiple of 32, all rx buffers will be cache aligned. */ | ||
246 | static volatile unsigned char RxBuf[RX_BUF_SIZE] __attribute__ ((aligned (32))); | ||
247 | static volatile USB_IN_Desc_t RxDescList[NBR_OF_RX_DESC] __attribute__ ((aligned (4))); | ||
248 | |||
249 | /* Pointers into RxDescList. */ | ||
250 | static volatile USB_IN_Desc_t *myNextRxDesc; | ||
251 | static volatile USB_IN_Desc_t *myLastRxDesc; | ||
252 | static volatile USB_IN_Desc_t *myPrevRxDesc; | ||
253 | |||
254 | /* EP descriptors must be 32-bit aligned. */ | ||
255 | static volatile USB_EP_Desc_t TxCtrlEPList[NBR_OF_EPIDS] __attribute__ ((aligned (4))); | ||
256 | static volatile USB_EP_Desc_t TxBulkEPList[NBR_OF_EPIDS] __attribute__ ((aligned (4))); | ||
257 | /* After each enabled bulk EP (IN or OUT) we put two disabled EP descriptors with the eol flag set, | ||
258 | causing the DMA to stop the DMA channel. The first of these two has the intr flag set, which | ||
259 | gives us a dma8_sub0_descr interrupt. When we receive this, we advance the DMA one step in the | ||
260 | EP list and then restart the bulk channel, thus forcing a switch between bulk EP descriptors | ||
261 | in each frame. */ | ||
262 | static volatile USB_EP_Desc_t TxBulkDummyEPList[NBR_OF_EPIDS][2] __attribute__ ((aligned (4))); | ||
263 | |||
264 | static volatile USB_EP_Desc_t TxIsocEPList[NBR_OF_EPIDS] __attribute__ ((aligned (4))); | ||
265 | static volatile USB_SB_Desc_t TxIsocSB_zout __attribute__ ((aligned (4))); | ||
266 | |||
267 | static volatile USB_EP_Desc_t TxIntrEPList[MAX_INTR_INTERVAL] __attribute__ ((aligned (4))); | ||
268 | static volatile USB_SB_Desc_t TxIntrSB_zout __attribute__ ((aligned (4))); | ||
269 | |||
270 | /* A zout transfer makes a memory access at the address of its buf pointer, which means that setting | ||
271 | this buf pointer to 0 will cause an access to the flash. In addition to this, setting sw_len to 0 | ||
272 | results in a 16/32 bytes (depending on DMA burst size) transfer. Instead, we set it to 1, and point | ||
273 | it to this buffer. */ | ||
274 | static int zout_buffer[4] __attribute__ ((aligned (4))); | ||
275 | |||
276 | /* Cache for allocating new EP and SB descriptors. */ | ||
277 | static struct kmem_cache *usb_desc_cache; | ||
278 | |||
279 | /* Cache for the registers allocated in the top half. */ | ||
280 | static struct kmem_cache *top_half_reg_cache; | ||
281 | |||
282 | /* Cache for the data allocated in the isoc descr top half. */ | ||
283 | static struct kmem_cache *isoc_compl_cache; | ||
284 | |||
285 | static struct usb_bus *etrax_usb_bus; | ||
286 | |||
287 | /* This is a circular (double-linked) list of the active urbs for each epid. | ||
288 | The head is never removed, and new urbs are linked onto the list as | ||
289 | urb_entry_t elements. Don't reference urb_list directly; use the wrapper | ||
290 | functions instead. Note that working with these lists might require spinlock | ||
291 | protection. */ | ||
292 | static struct list_head urb_list[NBR_OF_EPIDS]; | ||
293 | |||
294 | /* Read about the need and usage of this lock in submit_ctrl_urb. */ | ||
295 | static spinlock_t urb_list_lock; | ||
296 | |||
297 | /* Used when unlinking asynchronously. */ | ||
298 | static struct list_head urb_unlink_list; | ||
299 | |||
300 | /* for returning string descriptors in UTF-16LE */ | ||
301 | static int ascii2utf (char *ascii, __u8 *utf, int utfmax) | ||
302 | { | ||
303 | int retval; | ||
304 | |||
305 | for (retval = 0; *ascii && utfmax > 1; utfmax -= 2, retval += 2) { | ||
306 | *utf++ = *ascii++ & 0x7f; | ||
307 | *utf++ = 0; | ||
308 | } | ||
309 | return retval; | ||
310 | } | ||
311 | |||
312 | static int usb_root_hub_string (int id, int serial, char *type, __u8 *data, int len) | ||
313 | { | ||
314 | char buf [30]; | ||
315 | |||
316 | // assert (len > (2 * (sizeof (buf) + 1))); | ||
317 | // assert (strlen (type) <= 8); | ||
318 | |||
319 | // language ids | ||
320 | if (id == 0) { | ||
321 | *data++ = 4; *data++ = 3; /* 4 bytes data */ | ||
322 | *data++ = 0; *data++ = 0; /* some language id */ | ||
323 | return 4; | ||
324 | |||
325 | // serial number | ||
326 | } else if (id == 1) { | ||
327 | sprintf (buf, "%x", serial); | ||
328 | |||
329 | // product description | ||
330 | } else if (id == 2) { | ||
331 | sprintf (buf, "USB %s Root Hub", type); | ||
332 | |||
333 | // id 3 == vendor description | ||
334 | |||
335 | // unsupported IDs --> "stall" | ||
336 | } else | ||
337 | return 0; | ||
338 | |||
339 | data [0] = 2 + ascii2utf (buf, data + 2, len - 2); | ||
340 | data [1] = 3; | ||
341 | return data [0]; | ||
342 | } | ||
343 | |||
344 | /* Wrappers around the list functions (include/linux/list.h). */ | ||
345 | |||
346 | static inline int urb_list_empty(int epid) | ||
347 | { | ||
348 | return list_empty(&urb_list[epid]); | ||
349 | } | ||
350 | |||
351 | /* Returns first urb for this epid, or NULL if list is empty. */ | ||
352 | static inline struct urb *urb_list_first(int epid) | ||
353 | { | ||
354 | struct urb *first_urb = 0; | ||
355 | |||
356 | if (!urb_list_empty(epid)) { | ||
357 | /* Get the first urb (i.e. head->next). */ | ||
358 | urb_entry_t *urb_entry = list_entry((&urb_list[epid])->next, urb_entry_t, list); | ||
359 | first_urb = urb_entry->urb; | ||
360 | } | ||
361 | return first_urb; | ||
362 | } | ||
363 | |||
364 | /* Adds an urb_entry last in the list for this epid. */ | ||
365 | static inline void urb_list_add(struct urb *urb, int epid) | ||
366 | { | ||
367 | urb_entry_t *urb_entry = kmalloc(sizeof(urb_entry_t), KMALLOC_FLAG); | ||
368 | assert(urb_entry); | ||
369 | |||
370 | urb_entry->urb = urb; | ||
371 | list_add_tail(&urb_entry->list, &urb_list[epid]); | ||
372 | } | ||
373 | |||
374 | /* Search through the list for an element that contains this urb. (The list | ||
375 | is expected to be short and the one we are about to delete will often be | ||
376 | the first in the list.) */ | ||
377 | static inline urb_entry_t *__urb_list_entry(struct urb *urb, int epid) | ||
378 | { | ||
379 | struct list_head *entry; | ||
380 | struct list_head *tmp; | ||
381 | urb_entry_t *urb_entry; | ||
382 | |||
383 | list_for_each_safe(entry, tmp, &urb_list[epid]) { | ||
384 | urb_entry = list_entry(entry, urb_entry_t, list); | ||
385 | assert(urb_entry); | ||
386 | assert(urb_entry->urb); | ||
387 | |||
388 | if (urb_entry->urb == urb) { | ||
389 | return urb_entry; | ||
390 | } | ||
391 | } | ||
392 | return 0; | ||
393 | } | ||
394 | |||
395 | /* Delete an urb from the list. */ | ||
396 | static inline void urb_list_del(struct urb *urb, int epid) | ||
397 | { | ||
398 | urb_entry_t *urb_entry = __urb_list_entry(urb, epid); | ||
399 | assert(urb_entry); | ||
400 | |||
401 | /* Delete entry and free. */ | ||
402 | list_del(&urb_entry->list); | ||
403 | kfree(urb_entry); | ||
404 | } | ||
405 | |||
406 | /* Move an urb to the end of the list. */ | ||
407 | static inline void urb_list_move_last(struct urb *urb, int epid) | ||
408 | { | ||
409 | urb_entry_t *urb_entry = __urb_list_entry(urb, epid); | ||
410 | assert(urb_entry); | ||
411 | |||
412 | list_move_tail(&urb_entry->list, &urb_list[epid]); | ||
413 | } | ||
414 | |||
415 | /* Get the next urb in the list. */ | ||
416 | static inline struct urb *urb_list_next(struct urb *urb, int epid) | ||
417 | { | ||
418 | urb_entry_t *urb_entry = __urb_list_entry(urb, epid); | ||
419 | |||
420 | assert(urb_entry); | ||
421 | |||
422 | if (urb_entry->list.next != &urb_list[epid]) { | ||
423 | struct list_head *elem = urb_entry->list.next; | ||
424 | urb_entry = list_entry(elem, urb_entry_t, list); | ||
425 | return urb_entry->urb; | ||
426 | } else { | ||
427 | return NULL; | ||
428 | } | ||
429 | } | ||
430 | |||
431 | |||
432 | |||
433 | /* For debug purposes only. */ | ||
434 | static inline void urb_list_dump(int epid) | ||
435 | { | ||
436 | struct list_head *entry; | ||
437 | struct list_head *tmp; | ||
438 | urb_entry_t *urb_entry; | ||
439 | int i = 0; | ||
440 | |||
441 | info("Dumping urb list for epid %d", epid); | ||
442 | |||
443 | list_for_each_safe(entry, tmp, &urb_list[epid]) { | ||
444 | urb_entry = list_entry(entry, urb_entry_t, list); | ||
445 | info(" entry %d, urb = 0x%lx", i, (unsigned long)urb_entry->urb); | ||
446 | } | ||
447 | } | ||
448 | |||
449 | static void init_rx_buffers(void); | ||
450 | static int etrax_rh_unlink_urb(struct urb *urb); | ||
451 | static void etrax_rh_send_irq(struct urb *urb); | ||
452 | static void etrax_rh_init_int_timer(struct urb *urb); | ||
453 | static void etrax_rh_int_timer_do(unsigned long ptr); | ||
454 | |||
455 | static int etrax_usb_setup_epid(struct urb *urb); | ||
456 | static int etrax_usb_lookup_epid(struct urb *urb); | ||
457 | static int etrax_usb_allocate_epid(void); | ||
458 | static void etrax_usb_free_epid(int epid); | ||
459 | |||
460 | static int etrax_remove_from_sb_list(struct urb *urb); | ||
461 | |||
462 | static void* etrax_usb_buffer_alloc(struct usb_bus* bus, size_t size, | ||
463 | unsigned mem_flags, dma_addr_t *dma); | ||
464 | static void etrax_usb_buffer_free(struct usb_bus *bus, size_t size, void *addr, dma_addr_t dma); | ||
465 | |||
466 | static void etrax_usb_add_to_bulk_sb_list(struct urb *urb, int epid); | ||
467 | static void etrax_usb_add_to_ctrl_sb_list(struct urb *urb, int epid); | ||
468 | static void etrax_usb_add_to_intr_sb_list(struct urb *urb, int epid); | ||
469 | static void etrax_usb_add_to_isoc_sb_list(struct urb *urb, int epid); | ||
470 | |||
471 | static int etrax_usb_submit_bulk_urb(struct urb *urb); | ||
472 | static int etrax_usb_submit_ctrl_urb(struct urb *urb); | ||
473 | static int etrax_usb_submit_intr_urb(struct urb *urb); | ||
474 | static int etrax_usb_submit_isoc_urb(struct urb *urb); | ||
475 | |||
476 | static int etrax_usb_submit_urb(struct urb *urb, unsigned mem_flags); | ||
477 | static int etrax_usb_unlink_urb(struct urb *urb, int status); | ||
478 | static int etrax_usb_get_frame_number(struct usb_device *usb_dev); | ||
479 | |||
480 | static irqreturn_t etrax_usb_tx_interrupt(int irq, void *vhc); | ||
481 | static irqreturn_t etrax_usb_rx_interrupt(int irq, void *vhc); | ||
482 | static irqreturn_t etrax_usb_hc_interrupt_top_half(int irq, void *vhc); | ||
483 | static void etrax_usb_hc_interrupt_bottom_half(void *data); | ||
484 | |||
485 | static void etrax_usb_isoc_descr_interrupt_bottom_half(void *data); | ||
486 | |||
487 | |||
488 | /* The following is a list of interrupt handlers for the host controller interrupts we use. | ||
489 | They are called from etrax_usb_hc_interrupt_bottom_half. */ | ||
490 | static void etrax_usb_hc_isoc_eof_interrupt(void); | ||
491 | static void etrax_usb_hc_bulk_eot_interrupt(int timer_induced); | ||
492 | static void etrax_usb_hc_epid_attn_interrupt(usb_interrupt_registers_t *reg); | ||
493 | static void etrax_usb_hc_port_status_interrupt(usb_interrupt_registers_t *reg); | ||
494 | static void etrax_usb_hc_ctl_status_interrupt(usb_interrupt_registers_t *reg); | ||
495 | |||
496 | static int etrax_rh_submit_urb (struct urb *urb); | ||
497 | |||
498 | /* Forward declaration needed because they are used in the rx interrupt routine. */ | ||
499 | static void etrax_usb_complete_urb(struct urb *urb, int status); | ||
500 | static void etrax_usb_complete_bulk_urb(struct urb *urb, int status); | ||
501 | static void etrax_usb_complete_ctrl_urb(struct urb *urb, int status); | ||
502 | static void etrax_usb_complete_intr_urb(struct urb *urb, int status); | ||
503 | static void etrax_usb_complete_isoc_urb(struct urb *urb, int status); | ||
504 | |||
505 | static int etrax_usb_hc_init(void); | ||
506 | static void etrax_usb_hc_cleanup(void); | ||
507 | |||
508 | static struct usb_operations etrax_usb_device_operations = | ||
509 | { | ||
510 | .get_frame_number = etrax_usb_get_frame_number, | ||
511 | .submit_urb = etrax_usb_submit_urb, | ||
512 | .unlink_urb = etrax_usb_unlink_urb, | ||
513 | .buffer_alloc = etrax_usb_buffer_alloc, | ||
514 | .buffer_free = etrax_usb_buffer_free | ||
515 | }; | ||
516 | |||
517 | /* Note that these functions are always available in their "__" variants, for use in | ||
518 | error situations. The "__" missing variants are controlled by the USB_DEBUG_DESC/ | ||
519 | USB_DEBUG_URB macros. */ | ||
520 | static void __dump_urb(struct urb* purb) | ||
521 | { | ||
522 | printk("\nurb :0x%08lx\n", (unsigned long)purb); | ||
523 | printk("dev :0x%08lx\n", (unsigned long)purb->dev); | ||
524 | printk("pipe :0x%08x\n", purb->pipe); | ||
525 | printk("status :%d\n", purb->status); | ||
526 | printk("transfer_flags :0x%08x\n", purb->transfer_flags); | ||
527 | printk("transfer_buffer :0x%08lx\n", (unsigned long)purb->transfer_buffer); | ||
528 | printk("transfer_buffer_length:%d\n", purb->transfer_buffer_length); | ||
529 | printk("actual_length :%d\n", purb->actual_length); | ||
530 | printk("setup_packet :0x%08lx\n", (unsigned long)purb->setup_packet); | ||
531 | printk("start_frame :%d\n", purb->start_frame); | ||
532 | printk("number_of_packets :%d\n", purb->number_of_packets); | ||
533 | printk("interval :%d\n", purb->interval); | ||
534 | printk("error_count :%d\n", purb->error_count); | ||
535 | printk("context :0x%08lx\n", (unsigned long)purb->context); | ||
536 | printk("complete :0x%08lx\n\n", (unsigned long)purb->complete); | ||
537 | } | ||
538 | |||
539 | static void __dump_in_desc(volatile USB_IN_Desc_t *in) | ||
540 | { | ||
541 | printk("\nUSB_IN_Desc at 0x%08lx\n", (unsigned long)in); | ||
542 | printk(" sw_len : 0x%04x (%d)\n", in->sw_len, in->sw_len); | ||
543 | printk(" command : 0x%04x\n", in->command); | ||
544 | printk(" next : 0x%08lx\n", in->next); | ||
545 | printk(" buf : 0x%08lx\n", in->buf); | ||
546 | printk(" hw_len : 0x%04x (%d)\n", in->hw_len, in->hw_len); | ||
547 | printk(" status : 0x%04x\n\n", in->status); | ||
548 | } | ||
549 | |||
550 | static void __dump_sb_desc(volatile USB_SB_Desc_t *sb) | ||
551 | { | ||
552 | char tt = (sb->command & 0x30) >> 4; | ||
553 | char *tt_string; | ||
554 | |||
555 | switch (tt) { | ||
556 | case 0: | ||
557 | tt_string = "zout"; | ||
558 | break; | ||
559 | case 1: | ||
560 | tt_string = "in"; | ||
561 | break; | ||
562 | case 2: | ||
563 | tt_string = "out"; | ||
564 | break; | ||
565 | case 3: | ||
566 | tt_string = "setup"; | ||
567 | break; | ||
568 | default: | ||
569 | tt_string = "unknown (weird)"; | ||
570 | } | ||
571 | |||
572 | printk("\n USB_SB_Desc at 0x%08lx\n", (unsigned long)sb); | ||
573 | printk(" command : 0x%04x\n", sb->command); | ||
574 | printk(" rem : %d\n", (sb->command & 0x3f00) >> 8); | ||
575 | printk(" full : %d\n", (sb->command & 0x40) >> 6); | ||
576 | printk(" tt : %d (%s)\n", tt, tt_string); | ||
577 | printk(" intr : %d\n", (sb->command & 0x8) >> 3); | ||
578 | printk(" eot : %d\n", (sb->command & 0x2) >> 1); | ||
579 | printk(" eol : %d\n", sb->command & 0x1); | ||
580 | printk(" sw_len : 0x%04x (%d)\n", sb->sw_len, sb->sw_len); | ||
581 | printk(" next : 0x%08lx\n", sb->next); | ||
582 | printk(" buf : 0x%08lx\n\n", sb->buf); | ||
583 | } | ||
584 | |||
585 | |||
586 | static void __dump_ep_desc(volatile USB_EP_Desc_t *ep) | ||
587 | { | ||
588 | printk("\nUSB_EP_Desc at 0x%08lx\n", (unsigned long)ep); | ||
589 | printk(" command : 0x%04x\n", ep->command); | ||
590 | printk(" ep_id : %d\n", (ep->command & 0x1f00) >> 8); | ||
591 | printk(" enable : %d\n", (ep->command & 0x10) >> 4); | ||
592 | printk(" intr : %d\n", (ep->command & 0x8) >> 3); | ||
593 | printk(" eof : %d\n", (ep->command & 0x2) >> 1); | ||
594 | printk(" eol : %d\n", ep->command & 0x1); | ||
595 | printk(" hw_len : 0x%04x (%d)\n", ep->hw_len, ep->hw_len); | ||
596 | printk(" next : 0x%08lx\n", ep->next); | ||
597 | printk(" sub : 0x%08lx\n\n", ep->sub); | ||
598 | } | ||
599 | |||
600 | static inline void __dump_ep_list(int pipe_type) | ||
601 | { | ||
602 | volatile USB_EP_Desc_t *ep; | ||
603 | volatile USB_EP_Desc_t *first_ep; | ||
604 | volatile USB_SB_Desc_t *sb; | ||
605 | |||
606 | switch (pipe_type) | ||
607 | { | ||
608 | case PIPE_BULK: | ||
609 | first_ep = &TxBulkEPList[0]; | ||
610 | break; | ||
611 | case PIPE_CONTROL: | ||
612 | first_ep = &TxCtrlEPList[0]; | ||
613 | break; | ||
614 | case PIPE_INTERRUPT: | ||
615 | first_ep = &TxIntrEPList[0]; | ||
616 | break; | ||
617 | case PIPE_ISOCHRONOUS: | ||
618 | first_ep = &TxIsocEPList[0]; | ||
619 | break; | ||
620 | default: | ||
621 | warn("Cannot dump unknown traffic type"); | ||
622 | return; | ||
623 | } | ||
624 | ep = first_ep; | ||
625 | |||
626 | printk("\n\nDumping EP list...\n\n"); | ||
627 | |||
628 | do { | ||
629 | __dump_ep_desc(ep); | ||
630 | /* Cannot phys_to_virt on 0 as it turns into 80000000, which is != 0. */ | ||
631 | sb = ep->sub ? phys_to_virt(ep->sub) : 0; | ||
632 | while (sb) { | ||
633 | __dump_sb_desc(sb); | ||
634 | sb = sb->next ? phys_to_virt(sb->next) : 0; | ||
635 | } | ||
636 | ep = (volatile USB_EP_Desc_t *)(phys_to_virt(ep->next)); | ||
637 | |||
638 | } while (ep != first_ep); | ||
639 | } | ||
640 | |||
641 | static inline void __dump_ept_data(int epid) | ||
642 | { | ||
643 | unsigned long flags; | ||
644 | __u32 r_usb_ept_data; | ||
645 | |||
646 | if (epid < 0 || epid > 31) { | ||
647 | printk("Cannot dump ept data for invalid epid %d\n", epid); | ||
648 | return; | ||
649 | } | ||
650 | |||
651 | save_flags(flags); | ||
652 | cli(); | ||
653 | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); | ||
654 | nop(); | ||
655 | r_usb_ept_data = *R_USB_EPT_DATA; | ||
656 | restore_flags(flags); | ||
657 | |||
658 | printk("\nR_USB_EPT_DATA = 0x%x for epid %d :\n", r_usb_ept_data, epid); | ||
659 | if (r_usb_ept_data == 0) { | ||
660 | /* No need for more detailed printing. */ | ||
661 | return; | ||
662 | } | ||
663 | printk(" valid : %d\n", (r_usb_ept_data & 0x80000000) >> 31); | ||
664 | printk(" hold : %d\n", (r_usb_ept_data & 0x40000000) >> 30); | ||
665 | printk(" error_count_in : %d\n", (r_usb_ept_data & 0x30000000) >> 28); | ||
666 | printk(" t_in : %d\n", (r_usb_ept_data & 0x08000000) >> 27); | ||
667 | printk(" low_speed : %d\n", (r_usb_ept_data & 0x04000000) >> 26); | ||
668 | printk(" port : %d\n", (r_usb_ept_data & 0x03000000) >> 24); | ||
669 | printk(" error_code : %d\n", (r_usb_ept_data & 0x00c00000) >> 22); | ||
670 | printk(" t_out : %d\n", (r_usb_ept_data & 0x00200000) >> 21); | ||
671 | printk(" error_count_out : %d\n", (r_usb_ept_data & 0x00180000) >> 19); | ||
672 | printk(" max_len : %d\n", (r_usb_ept_data & 0x0003f800) >> 11); | ||
673 | printk(" ep : %d\n", (r_usb_ept_data & 0x00000780) >> 7); | ||
674 | printk(" dev : %d\n", (r_usb_ept_data & 0x0000003f)); | ||
675 | } | ||
676 | |||
677 | static inline void __dump_ept_data_list(void) | ||
678 | { | ||
679 | int i; | ||
680 | |||
681 | printk("Dumping the whole R_USB_EPT_DATA list\n"); | ||
682 | |||
683 | for (i = 0; i < 32; i++) { | ||
684 | __dump_ept_data(i); | ||
685 | } | ||
686 | } | ||
687 | #ifdef USB_DEBUG_DESC | ||
688 | #define dump_in_desc(...) __dump_in_desc(...) | ||
689 | #define dump_sb_desc(...) __dump_sb_desc(...) | ||
690 | #define dump_ep_desc(...) __dump_ep_desc(...) | ||
691 | #else | ||
692 | #define dump_in_desc(...) do {} while (0) | ||
693 | #define dump_sb_desc(...) do {} while (0) | ||
694 | #define dump_ep_desc(...) do {} while (0) | ||
695 | #endif | ||
696 | |||
697 | #ifdef USB_DEBUG_URB | ||
698 | #define dump_urb(x) __dump_urb(x) | ||
699 | #else | ||
700 | #define dump_urb(x) do {} while (0) | ||
701 | #endif | ||
702 | |||
703 | static void init_rx_buffers(void) | ||
704 | { | ||
705 | int i; | ||
706 | |||
707 | DBFENTER; | ||
708 | |||
709 | for (i = 0; i < (NBR_OF_RX_DESC - 1); i++) { | ||
710 | RxDescList[i].sw_len = RX_DESC_BUF_SIZE; | ||
711 | RxDescList[i].command = 0; | ||
712 | RxDescList[i].next = virt_to_phys(&RxDescList[i + 1]); | ||
713 | RxDescList[i].buf = virt_to_phys(RxBuf + (i * RX_DESC_BUF_SIZE)); | ||
714 | RxDescList[i].hw_len = 0; | ||
715 | RxDescList[i].status = 0; | ||
716 | |||
717 | /* DMA IN cache bug. (struct etrax_dma_descr has the same layout as USB_IN_Desc | ||
718 | for the relevant fields.) */ | ||
719 | prepare_rx_descriptor((struct etrax_dma_descr*)&RxDescList[i]); | ||
720 | |||
721 | } | ||
722 | |||
723 | RxDescList[i].sw_len = RX_DESC_BUF_SIZE; | ||
724 | RxDescList[i].command = IO_STATE(USB_IN_command, eol, yes); | ||
725 | RxDescList[i].next = virt_to_phys(&RxDescList[0]); | ||
726 | RxDescList[i].buf = virt_to_phys(RxBuf + (i * RX_DESC_BUF_SIZE)); | ||
727 | RxDescList[i].hw_len = 0; | ||
728 | RxDescList[i].status = 0; | ||
729 | |||
730 | myNextRxDesc = &RxDescList[0]; | ||
731 | myLastRxDesc = &RxDescList[NBR_OF_RX_DESC - 1]; | ||
732 | myPrevRxDesc = &RxDescList[NBR_OF_RX_DESC - 1]; | ||
733 | |||
734 | *R_DMA_CH9_FIRST = virt_to_phys(myNextRxDesc); | ||
735 | *R_DMA_CH9_CMD = IO_STATE(R_DMA_CH9_CMD, cmd, start); | ||
736 | |||
737 | DBFEXIT; | ||
738 | } | ||
739 | |||
740 | static void init_tx_bulk_ep(void) | ||
741 | { | ||
742 | int i; | ||
743 | |||
744 | DBFENTER; | ||
745 | |||
746 | for (i = 0; i < (NBR_OF_EPIDS - 1); i++) { | ||
747 | CHECK_ALIGN(&TxBulkEPList[i]); | ||
748 | TxBulkEPList[i].hw_len = 0; | ||
749 | TxBulkEPList[i].command = IO_FIELD(USB_EP_command, epid, i); | ||
750 | TxBulkEPList[i].sub = 0; | ||
751 | TxBulkEPList[i].next = virt_to_phys(&TxBulkEPList[i + 1]); | ||
752 | |||
753 | /* Initiate two EPs, disabled and with the eol flag set. No need for any | ||
754 | preserved epid. */ | ||
755 | |||
756 | /* The first one has the intr flag set so we get an interrupt when the DMA | ||
757 | channel is about to become disabled. */ | ||
758 | CHECK_ALIGN(&TxBulkDummyEPList[i][0]); | ||
759 | TxBulkDummyEPList[i][0].hw_len = 0; | ||
760 | TxBulkDummyEPList[i][0].command = (IO_FIELD(USB_EP_command, epid, DUMMY_EPID) | | ||
761 | IO_STATE(USB_EP_command, eol, yes) | | ||
762 | IO_STATE(USB_EP_command, intr, yes)); | ||
763 | TxBulkDummyEPList[i][0].sub = 0; | ||
764 | TxBulkDummyEPList[i][0].next = virt_to_phys(&TxBulkDummyEPList[i][1]); | ||
765 | |||
766 | /* The second one. */ | ||
767 | CHECK_ALIGN(&TxBulkDummyEPList[i][1]); | ||
768 | TxBulkDummyEPList[i][1].hw_len = 0; | ||
769 | TxBulkDummyEPList[i][1].command = (IO_FIELD(USB_EP_command, epid, DUMMY_EPID) | | ||
770 | IO_STATE(USB_EP_command, eol, yes)); | ||
771 | TxBulkDummyEPList[i][1].sub = 0; | ||
772 | /* The last dummy's next pointer is the same as the current EP's next pointer. */ | ||
773 | TxBulkDummyEPList[i][1].next = virt_to_phys(&TxBulkEPList[i + 1]); | ||
774 | } | ||
775 | |||
776 | /* Configure the last one. */ | ||
777 | CHECK_ALIGN(&TxBulkEPList[i]); | ||
778 | TxBulkEPList[i].hw_len = 0; | ||
779 | TxBulkEPList[i].command = (IO_STATE(USB_EP_command, eol, yes) | | ||
780 | IO_FIELD(USB_EP_command, epid, i)); | ||
781 | TxBulkEPList[i].sub = 0; | ||
782 | TxBulkEPList[i].next = virt_to_phys(&TxBulkEPList[0]); | ||
783 | |||
784 | /* No need configuring dummy EPs for the last one as it will never be used for | ||
785 | bulk traffic (i == INVALD_EPID at this point). */ | ||
786 | |||
787 | /* Set up to start on the last EP so we will enable it when inserting traffic | ||
788 | for the first time (imitating the situation where the DMA has stopped | ||
789 | because there was no more traffic). */ | ||
790 | *R_DMA_CH8_SUB0_EP = virt_to_phys(&TxBulkEPList[i]); | ||
791 | /* No point in starting the bulk channel yet. | ||
792 | *R_DMA_CH8_SUB0_CMD = IO_STATE(R_DMA_CH8_SUB0_CMD, cmd, start); */ | ||
793 | DBFEXIT; | ||
794 | } | ||
795 | |||
796 | static void init_tx_ctrl_ep(void) | ||
797 | { | ||
798 | int i; | ||
799 | |||
800 | DBFENTER; | ||
801 | |||
802 | for (i = 0; i < (NBR_OF_EPIDS - 1); i++) { | ||
803 | CHECK_ALIGN(&TxCtrlEPList[i]); | ||
804 | TxCtrlEPList[i].hw_len = 0; | ||
805 | TxCtrlEPList[i].command = IO_FIELD(USB_EP_command, epid, i); | ||
806 | TxCtrlEPList[i].sub = 0; | ||
807 | TxCtrlEPList[i].next = virt_to_phys(&TxCtrlEPList[i + 1]); | ||
808 | } | ||
809 | |||
810 | CHECK_ALIGN(&TxCtrlEPList[i]); | ||
811 | TxCtrlEPList[i].hw_len = 0; | ||
812 | TxCtrlEPList[i].command = (IO_STATE(USB_EP_command, eol, yes) | | ||
813 | IO_FIELD(USB_EP_command, epid, i)); | ||
814 | |||
815 | TxCtrlEPList[i].sub = 0; | ||
816 | TxCtrlEPList[i].next = virt_to_phys(&TxCtrlEPList[0]); | ||
817 | |||
818 | *R_DMA_CH8_SUB1_EP = virt_to_phys(&TxCtrlEPList[0]); | ||
819 | *R_DMA_CH8_SUB1_CMD = IO_STATE(R_DMA_CH8_SUB1_CMD, cmd, start); | ||
820 | |||
821 | DBFEXIT; | ||
822 | } | ||
823 | |||
824 | |||
825 | static void init_tx_intr_ep(void) | ||
826 | { | ||
827 | int i; | ||
828 | |||
829 | DBFENTER; | ||
830 | |||
831 | /* Read comment at zout_buffer declaration for an explanation to this. */ | ||
832 | TxIntrSB_zout.sw_len = 1; | ||
833 | TxIntrSB_zout.next = 0; | ||
834 | TxIntrSB_zout.buf = virt_to_phys(&zout_buffer[0]); | ||
835 | TxIntrSB_zout.command = (IO_FIELD(USB_SB_command, rem, 0) | | ||
836 | IO_STATE(USB_SB_command, tt, zout) | | ||
837 | IO_STATE(USB_SB_command, full, yes) | | ||
838 | IO_STATE(USB_SB_command, eot, yes) | | ||
839 | IO_STATE(USB_SB_command, eol, yes)); | ||
840 | |||
841 | for (i = 0; i < (MAX_INTR_INTERVAL - 1); i++) { | ||
842 | CHECK_ALIGN(&TxIntrEPList[i]); | ||
843 | TxIntrEPList[i].hw_len = 0; | ||
844 | TxIntrEPList[i].command = | ||
845 | (IO_STATE(USB_EP_command, eof, yes) | | ||
846 | IO_STATE(USB_EP_command, enable, yes) | | ||
847 | IO_FIELD(USB_EP_command, epid, INVALID_EPID)); | ||
848 | TxIntrEPList[i].sub = virt_to_phys(&TxIntrSB_zout); | ||
849 | TxIntrEPList[i].next = virt_to_phys(&TxIntrEPList[i + 1]); | ||
850 | } | ||
851 | |||
852 | CHECK_ALIGN(&TxIntrEPList[i]); | ||
853 | TxIntrEPList[i].hw_len = 0; | ||
854 | TxIntrEPList[i].command = | ||
855 | (IO_STATE(USB_EP_command, eof, yes) | | ||
856 | IO_STATE(USB_EP_command, eol, yes) | | ||
857 | IO_STATE(USB_EP_command, enable, yes) | | ||
858 | IO_FIELD(USB_EP_command, epid, INVALID_EPID)); | ||
859 | TxIntrEPList[i].sub = virt_to_phys(&TxIntrSB_zout); | ||
860 | TxIntrEPList[i].next = virt_to_phys(&TxIntrEPList[0]); | ||
861 | |||
862 | *R_DMA_CH8_SUB2_EP = virt_to_phys(&TxIntrEPList[0]); | ||
863 | *R_DMA_CH8_SUB2_CMD = IO_STATE(R_DMA_CH8_SUB2_CMD, cmd, start); | ||
864 | DBFEXIT; | ||
865 | } | ||
866 | |||
867 | static void init_tx_isoc_ep(void) | ||
868 | { | ||
869 | int i; | ||
870 | |||
871 | DBFENTER; | ||
872 | |||
873 | /* Read comment at zout_buffer declaration for an explanation to this. */ | ||
874 | TxIsocSB_zout.sw_len = 1; | ||
875 | TxIsocSB_zout.next = 0; | ||
876 | TxIsocSB_zout.buf = virt_to_phys(&zout_buffer[0]); | ||
877 | TxIsocSB_zout.command = (IO_FIELD(USB_SB_command, rem, 0) | | ||
878 | IO_STATE(USB_SB_command, tt, zout) | | ||
879 | IO_STATE(USB_SB_command, full, yes) | | ||
880 | IO_STATE(USB_SB_command, eot, yes) | | ||
881 | IO_STATE(USB_SB_command, eol, yes)); | ||
882 | |||
883 | /* The last isochronous EP descriptor is a dummy. */ | ||
884 | |||
885 | for (i = 0; i < (NBR_OF_EPIDS - 1); i++) { | ||
886 | CHECK_ALIGN(&TxIsocEPList[i]); | ||
887 | TxIsocEPList[i].hw_len = 0; | ||
888 | TxIsocEPList[i].command = IO_FIELD(USB_EP_command, epid, i); | ||
889 | TxIsocEPList[i].sub = 0; | ||
890 | TxIsocEPList[i].next = virt_to_phys(&TxIsocEPList[i + 1]); | ||
891 | } | ||
892 | |||
893 | CHECK_ALIGN(&TxIsocEPList[i]); | ||
894 | TxIsocEPList[i].hw_len = 0; | ||
895 | |||
896 | /* Must enable the last EP descr to get eof interrupt. */ | ||
897 | TxIsocEPList[i].command = (IO_STATE(USB_EP_command, enable, yes) | | ||
898 | IO_STATE(USB_EP_command, eof, yes) | | ||
899 | IO_STATE(USB_EP_command, eol, yes) | | ||
900 | IO_FIELD(USB_EP_command, epid, INVALID_EPID)); | ||
901 | TxIsocEPList[i].sub = virt_to_phys(&TxIsocSB_zout); | ||
902 | TxIsocEPList[i].next = virt_to_phys(&TxIsocEPList[0]); | ||
903 | |||
904 | *R_DMA_CH8_SUB3_EP = virt_to_phys(&TxIsocEPList[0]); | ||
905 | *R_DMA_CH8_SUB3_CMD = IO_STATE(R_DMA_CH8_SUB3_CMD, cmd, start); | ||
906 | |||
907 | DBFEXIT; | ||
908 | } | ||
909 | |||
910 | static void etrax_usb_unlink_intr_urb(struct urb *urb) | ||
911 | { | ||
912 | volatile USB_EP_Desc_t *first_ep; /* First EP in the list. */ | ||
913 | volatile USB_EP_Desc_t *curr_ep; /* Current EP, the iterator. */ | ||
914 | volatile USB_EP_Desc_t *next_ep; /* The EP after current. */ | ||
915 | volatile USB_EP_Desc_t *unlink_ep; /* The one we should remove from the list. */ | ||
916 | |||
917 | int epid; | ||
918 | |||
919 | /* Read 8.8.4 in Designer's Reference, "Removing an EP Descriptor from the List". */ | ||
920 | |||
921 | DBFENTER; | ||
922 | |||
923 | epid = ((etrax_urb_priv_t *)urb->hcpriv)->epid; | ||
924 | |||
925 | first_ep = &TxIntrEPList[0]; | ||
926 | curr_ep = first_ep; | ||
927 | |||
928 | |||
929 | /* Note that this loop removes all EP descriptors with this epid. This assumes | ||
930 | that all EP descriptors belong to the one and only urb for this epid. */ | ||
931 | |||
932 | do { | ||
933 | next_ep = (USB_EP_Desc_t *)phys_to_virt(curr_ep->next); | ||
934 | |||
935 | if (IO_EXTRACT(USB_EP_command, epid, next_ep->command) == epid) { | ||
936 | |||
937 | dbg_intr("Found EP to unlink for epid %d", epid); | ||
938 | |||
939 | /* This is the one we should unlink. */ | ||
940 | unlink_ep = next_ep; | ||
941 | |||
942 | /* Actually unlink the EP from the DMA list. */ | ||
943 | curr_ep->next = unlink_ep->next; | ||
944 | |||
945 | /* Wait until the DMA is no longer at this descriptor. */ | ||
946 | while (*R_DMA_CH8_SUB2_EP == virt_to_phys(unlink_ep)); | ||
947 | |||
948 | /* Now we are free to remove it and its SB descriptor. | ||
949 | Note that it is assumed here that there is only one sb in the | ||
950 | sb list for this ep. */ | ||
951 | kmem_cache_free(usb_desc_cache, phys_to_virt(unlink_ep->sub)); | ||
952 | kmem_cache_free(usb_desc_cache, (USB_EP_Desc_t *)unlink_ep); | ||
953 | } | ||
954 | |||
955 | curr_ep = phys_to_virt(curr_ep->next); | ||
956 | |||
957 | } while (curr_ep != first_ep); | ||
958 | urb->hcpriv = NULL; | ||
959 | } | ||
960 | |||
961 | void etrax_usb_do_intr_recover(int epid) | ||
962 | { | ||
963 | USB_EP_Desc_t *first_ep, *tmp_ep; | ||
964 | |||
965 | DBFENTER; | ||
966 | |||
967 | first_ep = (USB_EP_Desc_t *)phys_to_virt(*R_DMA_CH8_SUB2_EP); | ||
968 | tmp_ep = first_ep; | ||
969 | |||
970 | /* What this does is simply to walk the list of interrupt | ||
971 | ep descriptors and enable those that are disabled. */ | ||
972 | |||
973 | do { | ||
974 | if (IO_EXTRACT(USB_EP_command, epid, tmp_ep->command) == epid && | ||
975 | !(tmp_ep->command & IO_MASK(USB_EP_command, enable))) { | ||
976 | tmp_ep->command |= IO_STATE(USB_EP_command, enable, yes); | ||
977 | } | ||
978 | |||
979 | tmp_ep = (USB_EP_Desc_t *)phys_to_virt(tmp_ep->next); | ||
980 | |||
981 | } while (tmp_ep != first_ep); | ||
982 | |||
983 | |||
984 | DBFEXIT; | ||
985 | } | ||
986 | |||
987 | static int etrax_rh_unlink_urb (struct urb *urb) | ||
988 | { | ||
989 | etrax_hc_t *hc; | ||
990 | |||
991 | DBFENTER; | ||
992 | |||
993 | hc = urb->dev->bus->hcpriv; | ||
994 | |||
995 | if (hc->rh.urb == urb) { | ||
996 | hc->rh.send = 0; | ||
997 | del_timer(&hc->rh.rh_int_timer); | ||
998 | } | ||
999 | |||
1000 | DBFEXIT; | ||
1001 | return 0; | ||
1002 | } | ||
1003 | |||
1004 | static void etrax_rh_send_irq(struct urb *urb) | ||
1005 | { | ||
1006 | __u16 data = 0; | ||
1007 | etrax_hc_t *hc = urb->dev->bus->hcpriv; | ||
1008 | DBFENTER; | ||
1009 | |||
1010 | /* | ||
1011 | dbg_rh("R_USB_FM_NUMBER : 0x%08X", *R_USB_FM_NUMBER); | ||
1012 | dbg_rh("R_USB_FM_REMAINING: 0x%08X", *R_USB_FM_REMAINING); | ||
1013 | */ | ||
1014 | |||
1015 | data |= (hc->rh.wPortChange_1) ? (1 << 1) : 0; | ||
1016 | data |= (hc->rh.wPortChange_2) ? (1 << 2) : 0; | ||
1017 | |||
1018 | *((__u16 *)urb->transfer_buffer) = cpu_to_le16(data); | ||
1019 | /* FIXME: Why is actual_length set to 1 when data is 2 bytes? | ||
1020 | Since only 1 byte is used, why not declare data as __u8? */ | ||
1021 | urb->actual_length = 1; | ||
1022 | urb->status = 0; | ||
1023 | |||
1024 | if (hc->rh.send && urb->complete) { | ||
1025 | dbg_rh("wPortChange_1: 0x%04X", hc->rh.wPortChange_1); | ||
1026 | dbg_rh("wPortChange_2: 0x%04X", hc->rh.wPortChange_2); | ||
1027 | |||
1028 | urb->complete(urb, NULL); | ||
1029 | } | ||
1030 | |||
1031 | DBFEXIT; | ||
1032 | } | ||
1033 | |||
1034 | static void etrax_rh_init_int_timer(struct urb *urb) | ||
1035 | { | ||
1036 | etrax_hc_t *hc; | ||
1037 | |||
1038 | DBFENTER; | ||
1039 | |||
1040 | hc = urb->dev->bus->hcpriv; | ||
1041 | hc->rh.interval = urb->interval; | ||
1042 | init_timer(&hc->rh.rh_int_timer); | ||
1043 | hc->rh.rh_int_timer.function = etrax_rh_int_timer_do; | ||
1044 | hc->rh.rh_int_timer.data = (unsigned long)urb; | ||
1045 | /* FIXME: Is the jiffies resolution enough? All intervals < 10 ms will be mapped | ||
1046 | to 0, and the rest to the nearest lower 10 ms. */ | ||
1047 | hc->rh.rh_int_timer.expires = jiffies + ((HZ * hc->rh.interval) / 1000); | ||
1048 | add_timer(&hc->rh.rh_int_timer); | ||
1049 | |||
1050 | DBFEXIT; | ||
1051 | } | ||
1052 | |||
1053 | static void etrax_rh_int_timer_do(unsigned long ptr) | ||
1054 | { | ||
1055 | struct urb *urb; | ||
1056 | etrax_hc_t *hc; | ||
1057 | |||
1058 | DBFENTER; | ||
1059 | |||
1060 | urb = (struct urb*)ptr; | ||
1061 | hc = urb->dev->bus->hcpriv; | ||
1062 | |||
1063 | if (hc->rh.send) { | ||
1064 | etrax_rh_send_irq(urb); | ||
1065 | } | ||
1066 | |||
1067 | DBFEXIT; | ||
1068 | } | ||
1069 | |||
1070 | static int etrax_usb_setup_epid(struct urb *urb) | ||
1071 | { | ||
1072 | int epid; | ||
1073 | char devnum, endpoint, out_traffic, slow; | ||
1074 | int maxlen; | ||
1075 | unsigned long flags; | ||
1076 | |||
1077 | DBFENTER; | ||
1078 | |||
1079 | epid = etrax_usb_lookup_epid(urb); | ||
1080 | if ((epid != -1)){ | ||
1081 | /* An epid that fits this urb has been found. */ | ||
1082 | DBFEXIT; | ||
1083 | return epid; | ||
1084 | } | ||
1085 | |||
1086 | /* We must find and initiate a new epid for this urb. */ | ||
1087 | epid = etrax_usb_allocate_epid(); | ||
1088 | |||
1089 | if (epid == -1) { | ||
1090 | /* Failed to allocate a new epid. */ | ||
1091 | DBFEXIT; | ||
1092 | return epid; | ||
1093 | } | ||
1094 | |||
1095 | /* We now have a new epid to use. Initiate it. */ | ||
1096 | set_bit(epid, (void *)&epid_usage_bitmask); | ||
1097 | |||
1098 | devnum = usb_pipedevice(urb->pipe); | ||
1099 | endpoint = usb_pipeendpoint(urb->pipe); | ||
1100 | slow = usb_pipeslow(urb->pipe); | ||
1101 | maxlen = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)); | ||
1102 | if (usb_pipetype(urb->pipe) == PIPE_CONTROL) { | ||
1103 | /* We want both IN and OUT control traffic to be put on the same EP/SB list. */ | ||
1104 | out_traffic = 1; | ||
1105 | } else { | ||
1106 | out_traffic = usb_pipeout(urb->pipe); | ||
1107 | } | ||
1108 | |||
1109 | save_flags(flags); | ||
1110 | cli(); | ||
1111 | |||
1112 | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); | ||
1113 | nop(); | ||
1114 | |||
1115 | if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { | ||
1116 | *R_USB_EPT_DATA_ISO = IO_STATE(R_USB_EPT_DATA_ISO, valid, yes) | | ||
1117 | /* FIXME: Change any to the actual port? */ | ||
1118 | IO_STATE(R_USB_EPT_DATA_ISO, port, any) | | ||
1119 | IO_FIELD(R_USB_EPT_DATA_ISO, max_len, maxlen) | | ||
1120 | IO_FIELD(R_USB_EPT_DATA_ISO, ep, endpoint) | | ||
1121 | IO_FIELD(R_USB_EPT_DATA_ISO, dev, devnum); | ||
1122 | } else { | ||
1123 | *R_USB_EPT_DATA = IO_STATE(R_USB_EPT_DATA, valid, yes) | | ||
1124 | IO_FIELD(R_USB_EPT_DATA, low_speed, slow) | | ||
1125 | /* FIXME: Change any to the actual port? */ | ||
1126 | IO_STATE(R_USB_EPT_DATA, port, any) | | ||
1127 | IO_FIELD(R_USB_EPT_DATA, max_len, maxlen) | | ||
1128 | IO_FIELD(R_USB_EPT_DATA, ep, endpoint) | | ||
1129 | IO_FIELD(R_USB_EPT_DATA, dev, devnum); | ||
1130 | } | ||
1131 | |||
1132 | restore_flags(flags); | ||
1133 | |||
1134 | if (out_traffic) { | ||
1135 | set_bit(epid, (void *)&epid_out_traffic); | ||
1136 | } else { | ||
1137 | clear_bit(epid, (void *)&epid_out_traffic); | ||
1138 | } | ||
1139 | |||
1140 | dbg_epid("Setting up epid %d with devnum %d, endpoint %d and max_len %d (%s)", | ||
1141 | epid, devnum, endpoint, maxlen, out_traffic ? "OUT" : "IN"); | ||
1142 | |||
1143 | DBFEXIT; | ||
1144 | return epid; | ||
1145 | } | ||
1146 | |||
1147 | static void etrax_usb_free_epid(int epid) | ||
1148 | { | ||
1149 | unsigned long flags; | ||
1150 | |||
1151 | DBFENTER; | ||
1152 | |||
1153 | if (!test_bit(epid, (void *)&epid_usage_bitmask)) { | ||
1154 | warn("Trying to free unused epid %d", epid); | ||
1155 | DBFEXIT; | ||
1156 | return; | ||
1157 | } | ||
1158 | |||
1159 | save_flags(flags); | ||
1160 | cli(); | ||
1161 | |||
1162 | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); | ||
1163 | nop(); | ||
1164 | while (*R_USB_EPT_DATA & IO_MASK(R_USB_EPT_DATA, hold)); | ||
1165 | /* This will, among other things, set the valid field to 0. */ | ||
1166 | *R_USB_EPT_DATA = 0; | ||
1167 | restore_flags(flags); | ||
1168 | |||
1169 | clear_bit(epid, (void *)&epid_usage_bitmask); | ||
1170 | |||
1171 | |||
1172 | dbg_epid("Freed epid %d", epid); | ||
1173 | |||
1174 | DBFEXIT; | ||
1175 | } | ||
1176 | |||
1177 | static int etrax_usb_lookup_epid(struct urb *urb) | ||
1178 | { | ||
1179 | int i; | ||
1180 | __u32 data; | ||
1181 | char devnum, endpoint, slow, out_traffic; | ||
1182 | int maxlen; | ||
1183 | unsigned long flags; | ||
1184 | |||
1185 | DBFENTER; | ||
1186 | |||
1187 | devnum = usb_pipedevice(urb->pipe); | ||
1188 | endpoint = usb_pipeendpoint(urb->pipe); | ||
1189 | slow = usb_pipeslow(urb->pipe); | ||
1190 | maxlen = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)); | ||
1191 | if (usb_pipetype(urb->pipe) == PIPE_CONTROL) { | ||
1192 | /* We want both IN and OUT control traffic to be put on the same EP/SB list. */ | ||
1193 | out_traffic = 1; | ||
1194 | } else { | ||
1195 | out_traffic = usb_pipeout(urb->pipe); | ||
1196 | } | ||
1197 | |||
1198 | /* Step through att epids. */ | ||
1199 | for (i = 0; i < NBR_OF_EPIDS; i++) { | ||
1200 | if (test_bit(i, (void *)&epid_usage_bitmask) && | ||
1201 | test_bit(i, (void *)&epid_out_traffic) == out_traffic) { | ||
1202 | |||
1203 | save_flags(flags); | ||
1204 | cli(); | ||
1205 | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, i); | ||
1206 | nop(); | ||
1207 | |||
1208 | if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { | ||
1209 | data = *R_USB_EPT_DATA_ISO; | ||
1210 | restore_flags(flags); | ||
1211 | |||
1212 | if ((IO_MASK(R_USB_EPT_DATA_ISO, valid) & data) && | ||
1213 | (IO_EXTRACT(R_USB_EPT_DATA_ISO, dev, data) == devnum) && | ||
1214 | (IO_EXTRACT(R_USB_EPT_DATA_ISO, ep, data) == endpoint) && | ||
1215 | (IO_EXTRACT(R_USB_EPT_DATA_ISO, max_len, data) == maxlen)) { | ||
1216 | dbg_epid("Found epid %d for devnum %d, endpoint %d (%s)", | ||
1217 | i, devnum, endpoint, out_traffic ? "OUT" : "IN"); | ||
1218 | DBFEXIT; | ||
1219 | return i; | ||
1220 | } | ||
1221 | } else { | ||
1222 | data = *R_USB_EPT_DATA; | ||
1223 | restore_flags(flags); | ||
1224 | |||
1225 | if ((IO_MASK(R_USB_EPT_DATA, valid) & data) && | ||
1226 | (IO_EXTRACT(R_USB_EPT_DATA, dev, data) == devnum) && | ||
1227 | (IO_EXTRACT(R_USB_EPT_DATA, ep, data) == endpoint) && | ||
1228 | (IO_EXTRACT(R_USB_EPT_DATA, low_speed, data) == slow) && | ||
1229 | (IO_EXTRACT(R_USB_EPT_DATA, max_len, data) == maxlen)) { | ||
1230 | dbg_epid("Found epid %d for devnum %d, endpoint %d (%s)", | ||
1231 | i, devnum, endpoint, out_traffic ? "OUT" : "IN"); | ||
1232 | DBFEXIT; | ||
1233 | return i; | ||
1234 | } | ||
1235 | } | ||
1236 | } | ||
1237 | } | ||
1238 | |||
1239 | DBFEXIT; | ||
1240 | return -1; | ||
1241 | } | ||
1242 | |||
1243 | static int etrax_usb_allocate_epid(void) | ||
1244 | { | ||
1245 | int i; | ||
1246 | |||
1247 | DBFENTER; | ||
1248 | |||
1249 | for (i = 0; i < NBR_OF_EPIDS; i++) { | ||
1250 | if (!test_bit(i, (void *)&epid_usage_bitmask)) { | ||
1251 | dbg_epid("Found free epid %d", i); | ||
1252 | DBFEXIT; | ||
1253 | return i; | ||
1254 | } | ||
1255 | } | ||
1256 | |||
1257 | dbg_epid("Found no free epids"); | ||
1258 | DBFEXIT; | ||
1259 | return -1; | ||
1260 | } | ||
1261 | |||
1262 | static int etrax_usb_submit_urb(struct urb *urb, unsigned mem_flags) | ||
1263 | { | ||
1264 | etrax_hc_t *hc; | ||
1265 | int ret = -EINVAL; | ||
1266 | |||
1267 | DBFENTER; | ||
1268 | |||
1269 | if (!urb->dev || !urb->dev->bus) { | ||
1270 | return -ENODEV; | ||
1271 | } | ||
1272 | if (usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)) <= 0) { | ||
1273 | info("Submit urb to pipe with maxpacketlen 0, pipe 0x%X\n", urb->pipe); | ||
1274 | return -EMSGSIZE; | ||
1275 | } | ||
1276 | |||
1277 | if (urb->timeout) { | ||
1278 | /* FIXME. */ | ||
1279 | warn("urb->timeout specified, ignoring."); | ||
1280 | } | ||
1281 | |||
1282 | hc = (etrax_hc_t*)urb->dev->bus->hcpriv; | ||
1283 | |||
1284 | if (usb_pipedevice(urb->pipe) == hc->rh.devnum) { | ||
1285 | /* This request is for the Virtual Root Hub. */ | ||
1286 | ret = etrax_rh_submit_urb(urb); | ||
1287 | |||
1288 | } else if (usb_pipetype(urb->pipe) == PIPE_BULK) { | ||
1289 | |||
1290 | ret = etrax_usb_submit_bulk_urb(urb); | ||
1291 | |||
1292 | } else if (usb_pipetype(urb->pipe) == PIPE_CONTROL) { | ||
1293 | |||
1294 | ret = etrax_usb_submit_ctrl_urb(urb); | ||
1295 | |||
1296 | } else if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) { | ||
1297 | int bustime; | ||
1298 | |||
1299 | if (urb->bandwidth == 0) { | ||
1300 | bustime = usb_check_bandwidth(urb->dev, urb); | ||
1301 | if (bustime < 0) { | ||
1302 | ret = bustime; | ||
1303 | } else { | ||
1304 | ret = etrax_usb_submit_intr_urb(urb); | ||
1305 | if (ret == 0) | ||
1306 | usb_claim_bandwidth(urb->dev, urb, bustime, 0); | ||
1307 | } | ||
1308 | } else { | ||
1309 | /* Bandwidth already set. */ | ||
1310 | ret = etrax_usb_submit_intr_urb(urb); | ||
1311 | } | ||
1312 | |||
1313 | } else if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { | ||
1314 | int bustime; | ||
1315 | |||
1316 | if (urb->bandwidth == 0) { | ||
1317 | bustime = usb_check_bandwidth(urb->dev, urb); | ||
1318 | if (bustime < 0) { | ||
1319 | ret = bustime; | ||
1320 | } else { | ||
1321 | ret = etrax_usb_submit_isoc_urb(urb); | ||
1322 | if (ret == 0) | ||
1323 | usb_claim_bandwidth(urb->dev, urb, bustime, 0); | ||
1324 | } | ||
1325 | } else { | ||
1326 | /* Bandwidth already set. */ | ||
1327 | ret = etrax_usb_submit_isoc_urb(urb); | ||
1328 | } | ||
1329 | } | ||
1330 | |||
1331 | DBFEXIT; | ||
1332 | |||
1333 | if (ret != 0) | ||
1334 | printk("Submit URB error %d\n", ret); | ||
1335 | |||
1336 | return ret; | ||
1337 | } | ||
1338 | |||
1339 | static int etrax_usb_unlink_urb(struct urb *urb, int status) | ||
1340 | { | ||
1341 | etrax_hc_t *hc; | ||
1342 | etrax_urb_priv_t *urb_priv; | ||
1343 | int epid; | ||
1344 | unsigned int flags; | ||
1345 | |||
1346 | DBFENTER; | ||
1347 | |||
1348 | if (!urb) { | ||
1349 | return -EINVAL; | ||
1350 | } | ||
1351 | |||
1352 | /* Disable interrupts here since a descriptor interrupt for the isoc epid | ||
1353 | will modify the sb list. This could possibly be done more granular, but | ||
1354 | unlink_urb should not be used frequently anyway. | ||
1355 | */ | ||
1356 | |||
1357 | save_flags(flags); | ||
1358 | cli(); | ||
1359 | |||
1360 | if (!urb->dev || !urb->dev->bus) { | ||
1361 | restore_flags(flags); | ||
1362 | return -ENODEV; | ||
1363 | } | ||
1364 | if (!urb->hcpriv) { | ||
1365 | /* This happens if a device driver calls unlink on an urb that | ||
1366 | was never submitted (lazy driver) or if the urb was completed | ||
1367 | while unlink was being called. */ | ||
1368 | restore_flags(flags); | ||
1369 | return 0; | ||
1370 | } | ||
1371 | if (urb->transfer_flags & URB_ASYNC_UNLINK) { | ||
1372 | /* FIXME. */ | ||
1373 | /* If URB_ASYNC_UNLINK is set: | ||
1374 | unlink | ||
1375 | move to a separate urb list | ||
1376 | call complete at next sof with ECONNRESET | ||
1377 | |||
1378 | If not: | ||
1379 | wait 1 ms | ||
1380 | unlink | ||
1381 | call complete with ENOENT | ||
1382 | */ | ||
1383 | warn("URB_ASYNC_UNLINK set, ignoring."); | ||
1384 | } | ||
1385 | |||
1386 | /* One might think that urb->status = -EINPROGRESS would be a requirement for unlinking, | ||
1387 | but that doesn't work for interrupt and isochronous traffic since they are completed | ||
1388 | repeatedly, and urb->status is set then. That may in itself be a bug though. */ | ||
1389 | |||
1390 | hc = urb->dev->bus->hcpriv; | ||
1391 | urb_priv = (etrax_urb_priv_t *)urb->hcpriv; | ||
1392 | epid = urb_priv->epid; | ||
1393 | |||
1394 | /* Set the urb status (synchronous unlink). */ | ||
1395 | urb->status = -ENOENT; | ||
1396 | urb_priv->urb_state = UNLINK; | ||
1397 | |||
1398 | if (usb_pipedevice(urb->pipe) == hc->rh.devnum) { | ||
1399 | int ret; | ||
1400 | ret = etrax_rh_unlink_urb(urb); | ||
1401 | DBFEXIT; | ||
1402 | restore_flags(flags); | ||
1403 | return ret; | ||
1404 | |||
1405 | } else if (usb_pipetype(urb->pipe) == PIPE_BULK) { | ||
1406 | |||
1407 | dbg_bulk("Unlink of bulk urb (0x%lx)", (unsigned long)urb); | ||
1408 | |||
1409 | if (TxBulkEPList[epid].command & IO_MASK(USB_EP_command, enable)) { | ||
1410 | /* The EP was enabled, disable it and wait. */ | ||
1411 | TxBulkEPList[epid].command &= ~IO_MASK(USB_EP_command, enable); | ||
1412 | |||
1413 | /* Ah, the luxury of busy-wait. */ | ||
1414 | while (*R_DMA_CH8_SUB0_EP == virt_to_phys(&TxBulkEPList[epid])); | ||
1415 | } | ||
1416 | /* Kicking dummy list out of the party. */ | ||
1417 | TxBulkEPList[epid].next = virt_to_phys(&TxBulkEPList[(epid + 1) % NBR_OF_EPIDS]); | ||
1418 | |||
1419 | } else if (usb_pipetype(urb->pipe) == PIPE_CONTROL) { | ||
1420 | |||
1421 | dbg_ctrl("Unlink of ctrl urb (0x%lx)", (unsigned long)urb); | ||
1422 | |||
1423 | if (TxCtrlEPList[epid].command & IO_MASK(USB_EP_command, enable)) { | ||
1424 | /* The EP was enabled, disable it and wait. */ | ||
1425 | TxCtrlEPList[epid].command &= ~IO_MASK(USB_EP_command, enable); | ||
1426 | |||
1427 | /* Ah, the luxury of busy-wait. */ | ||
1428 | while (*R_DMA_CH8_SUB1_EP == virt_to_phys(&TxCtrlEPList[epid])); | ||
1429 | } | ||
1430 | |||
1431 | } else if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) { | ||
1432 | |||
1433 | dbg_intr("Unlink of intr urb (0x%lx)", (unsigned long)urb); | ||
1434 | |||
1435 | /* Separate function because it's a tad more complicated. */ | ||
1436 | etrax_usb_unlink_intr_urb(urb); | ||
1437 | |||
1438 | } else if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { | ||
1439 | |||
1440 | dbg_isoc("Unlink of isoc urb (0x%lx)", (unsigned long)urb); | ||
1441 | |||
1442 | if (TxIsocEPList[epid].command & IO_MASK(USB_EP_command, enable)) { | ||
1443 | /* The EP was enabled, disable it and wait. */ | ||
1444 | TxIsocEPList[epid].command &= ~IO_MASK(USB_EP_command, enable); | ||
1445 | |||
1446 | /* Ah, the luxury of busy-wait. */ | ||
1447 | while (*R_DMA_CH8_SUB3_EP == virt_to_phys(&TxIsocEPList[epid])); | ||
1448 | } | ||
1449 | } | ||
1450 | |||
1451 | /* Note that we need to remove the urb from the urb list *before* removing its SB | ||
1452 | descriptors. (This means that the isoc eof handler might get a null urb when we | ||
1453 | are unlinking the last urb.) */ | ||
1454 | |||
1455 | if (usb_pipetype(urb->pipe) == PIPE_BULK) { | ||
1456 | |||
1457 | urb_list_del(urb, epid); | ||
1458 | TxBulkEPList[epid].sub = 0; | ||
1459 | etrax_remove_from_sb_list(urb); | ||
1460 | |||
1461 | } else if (usb_pipetype(urb->pipe) == PIPE_CONTROL) { | ||
1462 | |||
1463 | urb_list_del(urb, epid); | ||
1464 | TxCtrlEPList[epid].sub = 0; | ||
1465 | etrax_remove_from_sb_list(urb); | ||
1466 | |||
1467 | } else if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) { | ||
1468 | |||
1469 | urb_list_del(urb, epid); | ||
1470 | /* Sanity check (should never happen). */ | ||
1471 | assert(urb_list_empty(epid)); | ||
1472 | |||
1473 | /* Release allocated bandwidth. */ | ||
1474 | usb_release_bandwidth(urb->dev, urb, 0); | ||
1475 | |||
1476 | } else if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { | ||
1477 | |||
1478 | if (usb_pipeout(urb->pipe)) { | ||
1479 | |||
1480 | USB_SB_Desc_t *iter_sb, *prev_sb, *next_sb; | ||
1481 | |||
1482 | if (__urb_list_entry(urb, epid)) { | ||
1483 | |||
1484 | urb_list_del(urb, epid); | ||
1485 | iter_sb = TxIsocEPList[epid].sub ? phys_to_virt(TxIsocEPList[epid].sub) : 0; | ||
1486 | prev_sb = 0; | ||
1487 | while (iter_sb && (iter_sb != urb_priv->first_sb)) { | ||
1488 | prev_sb = iter_sb; | ||
1489 | iter_sb = iter_sb->next ? phys_to_virt(iter_sb->next) : 0; | ||
1490 | } | ||
1491 | |||
1492 | if (iter_sb == 0) { | ||
1493 | /* Unlink of the URB currently being transmitted. */ | ||
1494 | prev_sb = 0; | ||
1495 | iter_sb = TxIsocEPList[epid].sub ? phys_to_virt(TxIsocEPList[epid].sub) : 0; | ||
1496 | } | ||
1497 | |||
1498 | while (iter_sb && (iter_sb != urb_priv->last_sb)) { | ||
1499 | iter_sb = iter_sb->next ? phys_to_virt(iter_sb->next) : 0; | ||
1500 | } | ||
1501 | if (iter_sb) { | ||
1502 | next_sb = iter_sb->next ? phys_to_virt(iter_sb->next) : 0; | ||
1503 | } else { | ||
1504 | /* This should only happen if the DMA has completed | ||
1505 | processing the SB list for this EP while interrupts | ||
1506 | are disabled. */ | ||
1507 | dbg_isoc("Isoc urb not found, already sent?"); | ||
1508 | next_sb = 0; | ||
1509 | } | ||
1510 | if (prev_sb) { | ||
1511 | prev_sb->next = next_sb ? virt_to_phys(next_sb) : 0; | ||
1512 | } else { | ||
1513 | TxIsocEPList[epid].sub = next_sb ? virt_to_phys(next_sb) : 0; | ||
1514 | } | ||
1515 | |||
1516 | etrax_remove_from_sb_list(urb); | ||
1517 | if (urb_list_empty(epid)) { | ||
1518 | TxIsocEPList[epid].sub = 0; | ||
1519 | dbg_isoc("Last isoc out urb epid %d", epid); | ||
1520 | } else if (next_sb || prev_sb) { | ||
1521 | dbg_isoc("Re-enable isoc out epid %d", epid); | ||
1522 | |||
1523 | TxIsocEPList[epid].hw_len = 0; | ||
1524 | TxIsocEPList[epid].command |= IO_STATE(USB_EP_command, enable, yes); | ||
1525 | } else { | ||
1526 | TxIsocEPList[epid].sub = 0; | ||
1527 | dbg_isoc("URB list non-empty and no SB list, EP disabled"); | ||
1528 | } | ||
1529 | } else { | ||
1530 | dbg_isoc("Urb 0x%p not found, completed already?", urb); | ||
1531 | } | ||
1532 | } else { | ||
1533 | |||
1534 | urb_list_del(urb, epid); | ||
1535 | |||
1536 | /* For in traffic there is only one SB descriptor for each EP even | ||
1537 | though there may be several urbs (all urbs point at the same SB). */ | ||
1538 | if (urb_list_empty(epid)) { | ||
1539 | /* No more urbs, remove the SB. */ | ||
1540 | TxIsocEPList[epid].sub = 0; | ||
1541 | etrax_remove_from_sb_list(urb); | ||
1542 | } else { | ||
1543 | TxIsocEPList[epid].hw_len = 0; | ||
1544 | TxIsocEPList[epid].command |= IO_STATE(USB_EP_command, enable, yes); | ||
1545 | } | ||
1546 | } | ||
1547 | /* Release allocated bandwidth. */ | ||
1548 | usb_release_bandwidth(urb->dev, urb, 1); | ||
1549 | } | ||
1550 | /* Free the epid if urb list is empty. */ | ||
1551 | if (urb_list_empty(epid)) { | ||
1552 | etrax_usb_free_epid(epid); | ||
1553 | } | ||
1554 | restore_flags(flags); | ||
1555 | |||
1556 | /* Must be done before calling completion handler. */ | ||
1557 | kfree(urb_priv); | ||
1558 | urb->hcpriv = 0; | ||
1559 | |||
1560 | if (urb->complete) { | ||
1561 | urb->complete(urb, NULL); | ||
1562 | } | ||
1563 | |||
1564 | DBFEXIT; | ||
1565 | return 0; | ||
1566 | } | ||
1567 | |||
1568 | static int etrax_usb_get_frame_number(struct usb_device *usb_dev) | ||
1569 | { | ||
1570 | DBFENTER; | ||
1571 | DBFEXIT; | ||
1572 | return (*R_USB_FM_NUMBER & 0x7ff); | ||
1573 | } | ||
1574 | |||
1575 | static irqreturn_t etrax_usb_tx_interrupt(int irq, void *vhc) | ||
1576 | { | ||
1577 | DBFENTER; | ||
1578 | |||
1579 | /* This interrupt handler could be used when unlinking EP descriptors. */ | ||
1580 | |||
1581 | if (*R_IRQ_READ2 & IO_MASK(R_IRQ_READ2, dma8_sub0_descr)) { | ||
1582 | USB_EP_Desc_t *ep; | ||
1583 | |||
1584 | //dbg_bulk("dma8_sub0_descr (BULK) intr."); | ||
1585 | |||
1586 | /* It should be safe clearing the interrupt here, since we don't expect to get a new | ||
1587 | one until we restart the bulk channel. */ | ||
1588 | *R_DMA_CH8_SUB0_CLR_INTR = IO_STATE(R_DMA_CH8_SUB0_CLR_INTR, clr_descr, do); | ||
1589 | |||
1590 | /* Wait while the DMA is running (though we don't expect it to be). */ | ||
1591 | while (*R_DMA_CH8_SUB0_CMD & IO_MASK(R_DMA_CH8_SUB0_CMD, cmd)); | ||
1592 | |||
1593 | /* Advance the DMA to the next EP descriptor. */ | ||
1594 | ep = (USB_EP_Desc_t *)phys_to_virt(*R_DMA_CH8_SUB0_EP); | ||
1595 | |||
1596 | //dbg_bulk("descr intr: DMA is at 0x%lx", (unsigned long)ep); | ||
1597 | |||
1598 | /* ep->next is already a physical address; no need for a virt_to_phys. */ | ||
1599 | *R_DMA_CH8_SUB0_EP = ep->next; | ||
1600 | |||
1601 | /* Start the DMA bulk channel again. */ | ||
1602 | *R_DMA_CH8_SUB0_CMD = IO_STATE(R_DMA_CH8_SUB0_CMD, cmd, start); | ||
1603 | } | ||
1604 | if (*R_IRQ_READ2 & IO_MASK(R_IRQ_READ2, dma8_sub1_descr)) { | ||
1605 | struct urb *urb; | ||
1606 | int epid; | ||
1607 | etrax_urb_priv_t *urb_priv; | ||
1608 | unsigned long int flags; | ||
1609 | |||
1610 | dbg_ctrl("dma8_sub1_descr (CTRL) intr."); | ||
1611 | *R_DMA_CH8_SUB1_CLR_INTR = IO_STATE(R_DMA_CH8_SUB1_CLR_INTR, clr_descr, do); | ||
1612 | |||
1613 | /* The complete callback gets called so we cli. */ | ||
1614 | save_flags(flags); | ||
1615 | cli(); | ||
1616 | |||
1617 | for (epid = 0; epid < NBR_OF_EPIDS - 1; epid++) { | ||
1618 | if ((TxCtrlEPList[epid].sub == 0) || | ||
1619 | (epid == DUMMY_EPID) || | ||
1620 | (epid == INVALID_EPID)) { | ||
1621 | /* Nothing here to see. */ | ||
1622 | continue; | ||
1623 | } | ||
1624 | |||
1625 | /* Get the first urb (if any). */ | ||
1626 | urb = urb_list_first(epid); | ||
1627 | |||
1628 | if (urb) { | ||
1629 | |||
1630 | /* Sanity check. */ | ||
1631 | assert(usb_pipetype(urb->pipe) == PIPE_CONTROL); | ||
1632 | |||
1633 | urb_priv = (etrax_urb_priv_t *)urb->hcpriv; | ||
1634 | assert(urb_priv); | ||
1635 | |||
1636 | if (urb_priv->urb_state == WAITING_FOR_DESCR_INTR) { | ||
1637 | assert(!(TxCtrlEPList[urb_priv->epid].command & IO_MASK(USB_EP_command, enable))); | ||
1638 | |||
1639 | etrax_usb_complete_urb(urb, 0); | ||
1640 | } | ||
1641 | } | ||
1642 | } | ||
1643 | restore_flags(flags); | ||
1644 | } | ||
1645 | if (*R_IRQ_READ2 & IO_MASK(R_IRQ_READ2, dma8_sub2_descr)) { | ||
1646 | dbg_intr("dma8_sub2_descr (INTR) intr."); | ||
1647 | *R_DMA_CH8_SUB2_CLR_INTR = IO_STATE(R_DMA_CH8_SUB2_CLR_INTR, clr_descr, do); | ||
1648 | } | ||
1649 | if (*R_IRQ_READ2 & IO_MASK(R_IRQ_READ2, dma8_sub3_descr)) { | ||
1650 | struct urb *urb; | ||
1651 | int epid; | ||
1652 | int epid_done; | ||
1653 | etrax_urb_priv_t *urb_priv; | ||
1654 | USB_SB_Desc_t *sb_desc; | ||
1655 | |||
1656 | usb_isoc_complete_data_t *comp_data = NULL; | ||
1657 | |||
1658 | /* One or more isoc out transfers are done. */ | ||
1659 | dbg_isoc("dma8_sub3_descr (ISOC) intr."); | ||
1660 | |||
1661 | /* For each isoc out EP search for the first sb_desc with the intr flag | ||
1662 | set. This descriptor must be the last packet from an URB. Then | ||
1663 | traverse the URB list for the EP until the URB with urb_priv->last_sb | ||
1664 | matching the intr-marked sb_desc is found. All URBs before this have | ||
1665 | been sent. | ||
1666 | */ | ||
1667 | |||
1668 | for (epid = 0; epid < NBR_OF_EPIDS - 1; epid++) { | ||
1669 | /* Skip past epids with no SB lists, epids used for in traffic, | ||
1670 | and special (dummy, invalid) epids. */ | ||
1671 | if ((TxIsocEPList[epid].sub == 0) || | ||
1672 | (test_bit(epid, (void *)&epid_out_traffic) == 0) || | ||
1673 | (epid == DUMMY_EPID) || | ||
1674 | (epid == INVALID_EPID)) { | ||
1675 | /* Nothing here to see. */ | ||
1676 | continue; | ||
1677 | } | ||
1678 | sb_desc = phys_to_virt(TxIsocEPList[epid].sub); | ||
1679 | |||
1680 | /* Find the last descriptor of the currently active URB for this ep. | ||
1681 | This is the first descriptor in the sub list marked for a descriptor | ||
1682 | interrupt. */ | ||
1683 | while (sb_desc && !IO_EXTRACT(USB_SB_command, intr, sb_desc->command)) { | ||
1684 | sb_desc = sb_desc->next ? phys_to_virt(sb_desc->next) : 0; | ||
1685 | } | ||
1686 | assert(sb_desc); | ||
1687 | |||
1688 | dbg_isoc("Check epid %d, sub 0x%p, SB 0x%p", | ||
1689 | epid, | ||
1690 | phys_to_virt(TxIsocEPList[epid].sub), | ||
1691 | sb_desc); | ||
1692 | |||
1693 | epid_done = 0; | ||
1694 | |||
1695 | /* Get the first urb (if any). */ | ||
1696 | urb = urb_list_first(epid); | ||
1697 | assert(urb); | ||
1698 | |||
1699 | while (urb && !epid_done) { | ||
1700 | |||
1701 | /* Sanity check. */ | ||
1702 | assert(usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS); | ||
1703 | |||
1704 | if (!usb_pipeout(urb->pipe)) { | ||
1705 | /* descr interrupts are generated only for out pipes. */ | ||
1706 | epid_done = 1; | ||
1707 | continue; | ||
1708 | } | ||
1709 | |||
1710 | urb_priv = (etrax_urb_priv_t *)urb->hcpriv; | ||
1711 | assert(urb_priv); | ||
1712 | |||
1713 | if (sb_desc != urb_priv->last_sb) { | ||
1714 | |||
1715 | /* This urb has been sent. */ | ||
1716 | dbg_isoc("out URB 0x%p sent", urb); | ||
1717 | |||
1718 | urb_priv->urb_state = TRANSFER_DONE; | ||
1719 | |||
1720 | } else if ((sb_desc == urb_priv->last_sb) && | ||
1721 | !(TxIsocEPList[epid].command & IO_MASK(USB_EP_command, enable))) { | ||
1722 | |||
1723 | assert((sb_desc->command & IO_MASK(USB_SB_command, eol)) == IO_STATE(USB_SB_command, eol, yes)); | ||
1724 | assert(sb_desc->next == 0); | ||
1725 | |||
1726 | dbg_isoc("out URB 0x%p last in list, epid disabled", urb); | ||
1727 | TxIsocEPList[epid].sub = 0; | ||
1728 | TxIsocEPList[epid].hw_len = 0; | ||
1729 | urb_priv->urb_state = TRANSFER_DONE; | ||
1730 | |||
1731 | epid_done = 1; | ||
1732 | |||
1733 | } else { | ||
1734 | epid_done = 1; | ||
1735 | } | ||
1736 | if (!epid_done) { | ||
1737 | urb = urb_list_next(urb, epid); | ||
1738 | } | ||
1739 | } | ||
1740 | |||
1741 | } | ||
1742 | |||
1743 | *R_DMA_CH8_SUB3_CLR_INTR = IO_STATE(R_DMA_CH8_SUB3_CLR_INTR, clr_descr, do); | ||
1744 | |||
1745 | comp_data = (usb_isoc_complete_data_t*)kmem_cache_alloc(isoc_compl_cache, GFP_ATOMIC); | ||
1746 | assert(comp_data != NULL); | ||
1747 | |||
1748 | INIT_WORK(&comp_data->usb_bh, etrax_usb_isoc_descr_interrupt_bottom_half, comp_data); | ||
1749 | schedule_work(&comp_data->usb_bh); | ||
1750 | } | ||
1751 | |||
1752 | DBFEXIT; | ||
1753 | return IRQ_HANDLED; | ||
1754 | } | ||
1755 | |||
1756 | static void etrax_usb_isoc_descr_interrupt_bottom_half(void *data) | ||
1757 | { | ||
1758 | usb_isoc_complete_data_t *comp_data = (usb_isoc_complete_data_t*)data; | ||
1759 | |||
1760 | struct urb *urb; | ||
1761 | int epid; | ||
1762 | int epid_done; | ||
1763 | etrax_urb_priv_t *urb_priv; | ||
1764 | |||
1765 | DBFENTER; | ||
1766 | |||
1767 | dbg_isoc("dma8_sub3_descr (ISOC) bottom half."); | ||
1768 | |||
1769 | for (epid = 0; epid < NBR_OF_EPIDS - 1; epid++) { | ||
1770 | unsigned long flags; | ||
1771 | |||
1772 | save_flags(flags); | ||
1773 | cli(); | ||
1774 | |||
1775 | epid_done = 0; | ||
1776 | |||
1777 | /* The descriptor interrupt handler has marked all transmitted isoch. out | ||
1778 | URBs with TRANSFER_DONE. Now we traverse all epids and for all that | ||
1779 | have isoch. out traffic traverse its URB list and complete the | ||
1780 | transmitted URB. | ||
1781 | */ | ||
1782 | |||
1783 | while (!epid_done) { | ||
1784 | |||
1785 | /* Get the first urb (if any). */ | ||
1786 | urb = urb_list_first(epid); | ||
1787 | if (urb == 0) { | ||
1788 | epid_done = 1; | ||
1789 | continue; | ||
1790 | } | ||
1791 | |||
1792 | if (usb_pipetype(urb->pipe) != PIPE_ISOCHRONOUS) { | ||
1793 | epid_done = 1; | ||
1794 | continue; | ||
1795 | } | ||
1796 | |||
1797 | if (!usb_pipeout(urb->pipe)) { | ||
1798 | /* descr interrupts are generated only for out pipes. */ | ||
1799 | epid_done = 1; | ||
1800 | continue; | ||
1801 | } | ||
1802 | |||
1803 | dbg_isoc("Check epid %d, SB 0x%p", epid, (char*)TxIsocEPList[epid].sub); | ||
1804 | |||
1805 | urb_priv = (etrax_urb_priv_t *)urb->hcpriv; | ||
1806 | assert(urb_priv); | ||
1807 | |||
1808 | if (urb_priv->urb_state == TRANSFER_DONE) { | ||
1809 | int i; | ||
1810 | struct usb_iso_packet_descriptor *packet; | ||
1811 | |||
1812 | /* This urb has been sent. */ | ||
1813 | dbg_isoc("Completing isoc out URB 0x%p", urb); | ||
1814 | |||
1815 | for (i = 0; i < urb->number_of_packets; i++) { | ||
1816 | packet = &urb->iso_frame_desc[i]; | ||
1817 | packet->status = 0; | ||
1818 | packet->actual_length = packet->length; | ||
1819 | } | ||
1820 | |||
1821 | etrax_usb_complete_isoc_urb(urb, 0); | ||
1822 | |||
1823 | if (urb_list_empty(epid)) { | ||
1824 | etrax_usb_free_epid(epid); | ||
1825 | epid_done = 1; | ||
1826 | } | ||
1827 | } else { | ||
1828 | epid_done = 1; | ||
1829 | } | ||
1830 | } | ||
1831 | restore_flags(flags); | ||
1832 | |||
1833 | } | ||
1834 | kmem_cache_free(isoc_compl_cache, comp_data); | ||
1835 | |||
1836 | DBFEXIT; | ||
1837 | } | ||
1838 | |||
1839 | |||
1840 | |||
1841 | static irqreturn_t etrax_usb_rx_interrupt(int irq, void *vhc) | ||
1842 | { | ||
1843 | struct urb *urb; | ||
1844 | etrax_urb_priv_t *urb_priv; | ||
1845 | int epid = 0; | ||
1846 | unsigned long flags; | ||
1847 | |||
1848 | /* Isoc diagnostics. */ | ||
1849 | static int curr_fm = 0; | ||
1850 | static int prev_fm = 0; | ||
1851 | |||
1852 | DBFENTER; | ||
1853 | |||
1854 | /* Clear this interrupt. */ | ||
1855 | *R_DMA_CH9_CLR_INTR = IO_STATE(R_DMA_CH9_CLR_INTR, clr_eop, do); | ||
1856 | |||
1857 | /* Note that this while loop assumes that all packets span only | ||
1858 | one rx descriptor. */ | ||
1859 | |||
1860 | /* The reason we cli here is that we call the driver's callback functions. */ | ||
1861 | save_flags(flags); | ||
1862 | cli(); | ||
1863 | |||
1864 | while (myNextRxDesc->status & IO_MASK(USB_IN_status, eop)) { | ||
1865 | |||
1866 | epid = IO_EXTRACT(USB_IN_status, epid, myNextRxDesc->status); | ||
1867 | urb = urb_list_first(epid); | ||
1868 | |||
1869 | //printk("eop for epid %d, first urb 0x%lx\n", epid, (unsigned long)urb); | ||
1870 | |||
1871 | if (!urb) { | ||
1872 | err("No urb for epid %d in rx interrupt", epid); | ||
1873 | __dump_ept_data(epid); | ||
1874 | goto skip_out; | ||
1875 | } | ||
1876 | |||
1877 | /* Note that we cannot indescriminately assert(usb_pipein(urb->pipe)) since | ||
1878 | ctrl pipes are not. */ | ||
1879 | |||
1880 | if (myNextRxDesc->status & IO_MASK(USB_IN_status, error)) { | ||
1881 | __u32 r_usb_ept_data; | ||
1882 | int no_error = 0; | ||
1883 | |||
1884 | assert(test_bit(epid, (void *)&epid_usage_bitmask)); | ||
1885 | |||
1886 | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); | ||
1887 | nop(); | ||
1888 | if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { | ||
1889 | r_usb_ept_data = *R_USB_EPT_DATA_ISO; | ||
1890 | |||
1891 | if ((r_usb_ept_data & IO_MASK(R_USB_EPT_DATA_ISO, valid)) && | ||
1892 | (IO_EXTRACT(R_USB_EPT_DATA_ISO, error_code, r_usb_ept_data) == 0) && | ||
1893 | (myNextRxDesc->status & IO_MASK(USB_IN_status, nodata))) { | ||
1894 | /* Not an error, just a failure to receive an expected iso | ||
1895 | in packet in this frame. This is not documented | ||
1896 | in the designers reference. | ||
1897 | */ | ||
1898 | no_error++; | ||
1899 | } else { | ||
1900 | warn("R_USB_EPT_DATA_ISO for epid %d = 0x%x", epid, r_usb_ept_data); | ||
1901 | } | ||
1902 | } else { | ||
1903 | r_usb_ept_data = *R_USB_EPT_DATA; | ||
1904 | warn("R_USB_EPT_DATA for epid %d = 0x%x", epid, r_usb_ept_data); | ||
1905 | } | ||
1906 | |||
1907 | if (!no_error){ | ||
1908 | warn("error in rx desc->status, epid %d, first urb = 0x%lx", | ||
1909 | epid, (unsigned long)urb); | ||
1910 | __dump_in_desc(myNextRxDesc); | ||
1911 | |||
1912 | warn("R_USB_STATUS = 0x%x", *R_USB_STATUS); | ||
1913 | |||
1914 | /* Check that ept was disabled when error occurred. */ | ||
1915 | switch (usb_pipetype(urb->pipe)) { | ||
1916 | case PIPE_BULK: | ||
1917 | assert(!(TxBulkEPList[epid].command & IO_MASK(USB_EP_command, enable))); | ||
1918 | break; | ||
1919 | case PIPE_CONTROL: | ||
1920 | assert(!(TxCtrlEPList[epid].command & IO_MASK(USB_EP_command, enable))); | ||
1921 | break; | ||
1922 | case PIPE_INTERRUPT: | ||
1923 | assert(!(TxIntrEPList[epid].command & IO_MASK(USB_EP_command, enable))); | ||
1924 | break; | ||
1925 | case PIPE_ISOCHRONOUS: | ||
1926 | assert(!(TxIsocEPList[epid].command & IO_MASK(USB_EP_command, enable))); | ||
1927 | break; | ||
1928 | default: | ||
1929 | warn("etrax_usb_rx_interrupt: bad pipetype %d in urb 0x%p", | ||
1930 | usb_pipetype(urb->pipe), | ||
1931 | urb); | ||
1932 | } | ||
1933 | etrax_usb_complete_urb(urb, -EPROTO); | ||
1934 | goto skip_out; | ||
1935 | } | ||
1936 | } | ||
1937 | |||
1938 | urb_priv = (etrax_urb_priv_t *)urb->hcpriv; | ||
1939 | assert(urb_priv); | ||
1940 | |||
1941 | if ((usb_pipetype(urb->pipe) == PIPE_BULK) || | ||
1942 | (usb_pipetype(urb->pipe) == PIPE_CONTROL) || | ||
1943 | (usb_pipetype(urb->pipe) == PIPE_INTERRUPT)) { | ||
1944 | |||
1945 | if (myNextRxDesc->status & IO_MASK(USB_IN_status, nodata)) { | ||
1946 | /* We get nodata for empty data transactions, and the rx descriptor's | ||
1947 | hw_len field is not valid in that case. No data to copy in other | ||
1948 | words. */ | ||
1949 | } else { | ||
1950 | /* Make sure the data fits in the buffer. */ | ||
1951 | assert(urb_priv->rx_offset + myNextRxDesc->hw_len | ||
1952 | <= urb->transfer_buffer_length); | ||
1953 | |||
1954 | memcpy(urb->transfer_buffer + urb_priv->rx_offset, | ||
1955 | phys_to_virt(myNextRxDesc->buf), myNextRxDesc->hw_len); | ||
1956 | urb_priv->rx_offset += myNextRxDesc->hw_len; | ||
1957 | } | ||
1958 | |||
1959 | if (myNextRxDesc->status & IO_MASK(USB_IN_status, eot)) { | ||
1960 | if ((usb_pipetype(urb->pipe) == PIPE_CONTROL) && | ||
1961 | ((TxCtrlEPList[urb_priv->epid].command & IO_MASK(USB_EP_command, enable)) == | ||
1962 | IO_STATE(USB_EP_command, enable, yes))) { | ||
1963 | /* The EP is still enabled, so the OUT packet used to ack | ||
1964 | the in data is probably not processed yet. If the EP | ||
1965 | sub pointer has not moved beyond urb_priv->last_sb mark | ||
1966 | it for a descriptor interrupt and complete the urb in | ||
1967 | the descriptor interrupt handler. | ||
1968 | */ | ||
1969 | USB_SB_Desc_t *sub = TxCtrlEPList[urb_priv->epid].sub ? phys_to_virt(TxCtrlEPList[urb_priv->epid].sub) : 0; | ||
1970 | |||
1971 | while ((sub != NULL) && (sub != urb_priv->last_sb)) { | ||
1972 | sub = sub->next ? phys_to_virt(sub->next) : 0; | ||
1973 | } | ||
1974 | if (sub != NULL) { | ||
1975 | /* The urb has not been fully processed. */ | ||
1976 | urb_priv->urb_state = WAITING_FOR_DESCR_INTR; | ||
1977 | } else { | ||
1978 | warn("(CTRL) epid enabled and urb (0x%p) processed, ep->sub=0x%p", urb, (char*)TxCtrlEPList[urb_priv->epid].sub); | ||
1979 | etrax_usb_complete_urb(urb, 0); | ||
1980 | } | ||
1981 | } else { | ||
1982 | etrax_usb_complete_urb(urb, 0); | ||
1983 | } | ||
1984 | } | ||
1985 | |||
1986 | } else if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { | ||
1987 | |||
1988 | struct usb_iso_packet_descriptor *packet; | ||
1989 | |||
1990 | if (urb_priv->urb_state == UNLINK) { | ||
1991 | info("Ignoring rx data for urb being unlinked."); | ||
1992 | goto skip_out; | ||
1993 | } else if (urb_priv->urb_state == NOT_STARTED) { | ||
1994 | info("What? Got rx data for urb that isn't started?"); | ||
1995 | goto skip_out; | ||
1996 | } | ||
1997 | |||
1998 | packet = &urb->iso_frame_desc[urb_priv->isoc_packet_counter]; | ||
1999 | packet->status = 0; | ||
2000 | |||
2001 | if (myNextRxDesc->status & IO_MASK(USB_IN_status, nodata)) { | ||
2002 | /* We get nodata for empty data transactions, and the rx descriptor's | ||
2003 | hw_len field is not valid in that case. We copy 0 bytes however to | ||
2004 | stay in synch. */ | ||
2005 | packet->actual_length = 0; | ||
2006 | } else { | ||
2007 | packet->actual_length = myNextRxDesc->hw_len; | ||
2008 | /* Make sure the data fits in the buffer. */ | ||
2009 | assert(packet->actual_length <= packet->length); | ||
2010 | memcpy(urb->transfer_buffer + packet->offset, | ||
2011 | phys_to_virt(myNextRxDesc->buf), packet->actual_length); | ||
2012 | } | ||
2013 | |||
2014 | /* Increment the packet counter. */ | ||
2015 | urb_priv->isoc_packet_counter++; | ||
2016 | |||
2017 | /* Note that we don't care about the eot field in the rx descriptor's status. | ||
2018 | It will always be set for isoc traffic. */ | ||
2019 | if (urb->number_of_packets == urb_priv->isoc_packet_counter) { | ||
2020 | |||
2021 | /* Out-of-synch diagnostics. */ | ||
2022 | curr_fm = (*R_USB_FM_NUMBER & 0x7ff); | ||
2023 | if (((prev_fm + urb_priv->isoc_packet_counter) % (0x7ff + 1)) != curr_fm) { | ||
2024 | /* This test is wrong, if there is more than one isoc | ||
2025 | in endpoint active it will always calculate wrong | ||
2026 | since prev_fm is shared by all endpoints. | ||
2027 | |||
2028 | FIXME Make this check per URB using urb->start_frame. | ||
2029 | */ | ||
2030 | dbg_isoc("Out of synch? Previous frame = %d, current frame = %d", | ||
2031 | prev_fm, curr_fm); | ||
2032 | |||
2033 | } | ||
2034 | prev_fm = curr_fm; | ||
2035 | |||
2036 | /* Complete the urb with status OK. */ | ||
2037 | etrax_usb_complete_isoc_urb(urb, 0); | ||
2038 | } | ||
2039 | } | ||
2040 | |||
2041 | skip_out: | ||
2042 | |||
2043 | /* DMA IN cache bug. Flush the DMA IN buffer from the cache. (struct etrax_dma_descr | ||
2044 | has the same layout as USB_IN_Desc for the relevant fields.) */ | ||
2045 | prepare_rx_descriptor((struct etrax_dma_descr*)myNextRxDesc); | ||
2046 | |||
2047 | myPrevRxDesc = myNextRxDesc; | ||
2048 | myPrevRxDesc->command |= IO_MASK(USB_IN_command, eol); | ||
2049 | myLastRxDesc->command &= ~IO_MASK(USB_IN_command, eol); | ||
2050 | myLastRxDesc = myPrevRxDesc; | ||
2051 | |||
2052 | myNextRxDesc->status = 0; | ||
2053 | myNextRxDesc = phys_to_virt(myNextRxDesc->next); | ||
2054 | } | ||
2055 | |||
2056 | restore_flags(flags); | ||
2057 | |||
2058 | DBFEXIT; | ||
2059 | |||
2060 | return IRQ_HANDLED; | ||
2061 | } | ||
2062 | |||
2063 | |||
2064 | /* This function will unlink the SB descriptors associated with this urb. */ | ||
2065 | static int etrax_remove_from_sb_list(struct urb *urb) | ||
2066 | { | ||
2067 | USB_SB_Desc_t *next_sb, *first_sb, *last_sb; | ||
2068 | etrax_urb_priv_t *urb_priv; | ||
2069 | int i = 0; | ||
2070 | |||
2071 | DBFENTER; | ||
2072 | |||
2073 | urb_priv = (etrax_urb_priv_t *)urb->hcpriv; | ||
2074 | assert(urb_priv); | ||
2075 | |||
2076 | /* Just a sanity check. Since we don't fiddle with the DMA list the EP descriptor | ||
2077 | doesn't really need to be disabled, it's just that we expect it to be. */ | ||
2078 | if (usb_pipetype(urb->pipe) == PIPE_BULK) { | ||
2079 | assert(!(TxBulkEPList[urb_priv->epid].command & IO_MASK(USB_EP_command, enable))); | ||
2080 | } else if (usb_pipetype(urb->pipe) == PIPE_CONTROL) { | ||
2081 | assert(!(TxCtrlEPList[urb_priv->epid].command & IO_MASK(USB_EP_command, enable))); | ||
2082 | } | ||
2083 | |||
2084 | first_sb = urb_priv->first_sb; | ||
2085 | last_sb = urb_priv->last_sb; | ||
2086 | |||
2087 | assert(first_sb); | ||
2088 | assert(last_sb); | ||
2089 | |||
2090 | while (first_sb != last_sb) { | ||
2091 | next_sb = (USB_SB_Desc_t *)phys_to_virt(first_sb->next); | ||
2092 | kmem_cache_free(usb_desc_cache, first_sb); | ||
2093 | first_sb = next_sb; | ||
2094 | i++; | ||
2095 | } | ||
2096 | kmem_cache_free(usb_desc_cache, last_sb); | ||
2097 | i++; | ||
2098 | dbg_sb("%d SB descriptors freed", i); | ||
2099 | /* Compare i with urb->number_of_packets for Isoc traffic. | ||
2100 | Should be same when calling unlink_urb */ | ||
2101 | |||
2102 | DBFEXIT; | ||
2103 | |||
2104 | return i; | ||
2105 | } | ||
2106 | |||
2107 | static int etrax_usb_submit_bulk_urb(struct urb *urb) | ||
2108 | { | ||
2109 | int epid; | ||
2110 | int empty; | ||
2111 | unsigned long flags; | ||
2112 | etrax_urb_priv_t *urb_priv; | ||
2113 | |||
2114 | DBFENTER; | ||
2115 | |||
2116 | /* Epid allocation, empty check and list add must be protected. | ||
2117 | Read about this in etrax_usb_submit_ctrl_urb. */ | ||
2118 | |||
2119 | spin_lock_irqsave(&urb_list_lock, flags); | ||
2120 | epid = etrax_usb_setup_epid(urb); | ||
2121 | if (epid == -1) { | ||
2122 | DBFEXIT; | ||
2123 | spin_unlock_irqrestore(&urb_list_lock, flags); | ||
2124 | return -ENOMEM; | ||
2125 | } | ||
2126 | empty = urb_list_empty(epid); | ||
2127 | urb_list_add(urb, epid); | ||
2128 | spin_unlock_irqrestore(&urb_list_lock, flags); | ||
2129 | |||
2130 | dbg_bulk("Adding bulk %s urb 0x%lx to %s list, epid %d", | ||
2131 | usb_pipein(urb->pipe) ? "IN" : "OUT", (unsigned long)urb, empty ? "empty" : "", epid); | ||
2132 | |||
2133 | /* Mark the urb as being in progress. */ | ||
2134 | urb->status = -EINPROGRESS; | ||
2135 | |||
2136 | /* Setup the hcpriv data. */ | ||
2137 | urb_priv = kzalloc(sizeof(etrax_urb_priv_t), KMALLOC_FLAG); | ||
2138 | assert(urb_priv != NULL); | ||
2139 | /* This sets rx_offset to 0. */ | ||
2140 | urb_priv->urb_state = NOT_STARTED; | ||
2141 | urb->hcpriv = urb_priv; | ||
2142 | |||
2143 | if (empty) { | ||
2144 | etrax_usb_add_to_bulk_sb_list(urb, epid); | ||
2145 | } | ||
2146 | |||
2147 | DBFEXIT; | ||
2148 | |||
2149 | return 0; | ||
2150 | } | ||
2151 | |||
2152 | static void etrax_usb_add_to_bulk_sb_list(struct urb *urb, int epid) | ||
2153 | { | ||
2154 | USB_SB_Desc_t *sb_desc; | ||
2155 | etrax_urb_priv_t *urb_priv = (etrax_urb_priv_t *)urb->hcpriv; | ||
2156 | unsigned long flags; | ||
2157 | char maxlen; | ||
2158 | |||
2159 | DBFENTER; | ||
2160 | |||
2161 | dbg_bulk("etrax_usb_add_to_bulk_sb_list, urb 0x%lx", (unsigned long)urb); | ||
2162 | |||
2163 | maxlen = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)); | ||
2164 | |||
2165 | sb_desc = kmem_cache_zalloc(usb_desc_cache, SLAB_FLAG); | ||
2166 | assert(sb_desc != NULL); | ||
2167 | |||
2168 | |||
2169 | if (usb_pipeout(urb->pipe)) { | ||
2170 | |||
2171 | dbg_bulk("Grabbing bulk OUT, urb 0x%lx, epid %d", (unsigned long)urb, epid); | ||
2172 | |||
2173 | /* This is probably a sanity check of the bulk transaction length | ||
2174 | not being larger than 64 kB. */ | ||
2175 | if (urb->transfer_buffer_length > 0xffff) { | ||
2176 | panic("urb->transfer_buffer_length > 0xffff"); | ||
2177 | } | ||
2178 | |||
2179 | sb_desc->sw_len = urb->transfer_buffer_length; | ||
2180 | |||
2181 | /* The rem field is don't care if it's not a full-length transfer, so setting | ||
2182 | it shouldn't hurt. Also, rem isn't used for OUT traffic. */ | ||
2183 | sb_desc->command = (IO_FIELD(USB_SB_command, rem, 0) | | ||
2184 | IO_STATE(USB_SB_command, tt, out) | | ||
2185 | IO_STATE(USB_SB_command, eot, yes) | | ||
2186 | IO_STATE(USB_SB_command, eol, yes)); | ||
2187 | |||
2188 | /* The full field is set to yes, even if we don't actually check that this is | ||
2189 | a full-length transfer (i.e., that transfer_buffer_length % maxlen = 0). | ||
2190 | Setting full prevents the USB controller from sending an empty packet in | ||
2191 | that case. However, if URB_ZERO_PACKET was set we want that. */ | ||
2192 | if (!(urb->transfer_flags & URB_ZERO_PACKET)) { | ||
2193 | sb_desc->command |= IO_STATE(USB_SB_command, full, yes); | ||
2194 | } | ||
2195 | |||
2196 | sb_desc->buf = virt_to_phys(urb->transfer_buffer); | ||
2197 | sb_desc->next = 0; | ||
2198 | |||
2199 | } else if (usb_pipein(urb->pipe)) { | ||
2200 | |||
2201 | dbg_bulk("Grabbing bulk IN, urb 0x%lx, epid %d", (unsigned long)urb, epid); | ||
2202 | |||
2203 | sb_desc->sw_len = urb->transfer_buffer_length ? | ||
2204 | (urb->transfer_buffer_length - 1) / maxlen + 1 : 0; | ||
2205 | |||
2206 | /* The rem field is don't care if it's not a full-length transfer, so setting | ||
2207 | it shouldn't hurt. */ | ||
2208 | sb_desc->command = | ||
2209 | (IO_FIELD(USB_SB_command, rem, | ||
2210 | urb->transfer_buffer_length % maxlen) | | ||
2211 | IO_STATE(USB_SB_command, tt, in) | | ||
2212 | IO_STATE(USB_SB_command, eot, yes) | | ||
2213 | IO_STATE(USB_SB_command, eol, yes)); | ||
2214 | |||
2215 | sb_desc->buf = 0; | ||
2216 | sb_desc->next = 0; | ||
2217 | } | ||
2218 | |||
2219 | urb_priv->first_sb = sb_desc; | ||
2220 | urb_priv->last_sb = sb_desc; | ||
2221 | urb_priv->epid = epid; | ||
2222 | |||
2223 | urb->hcpriv = urb_priv; | ||
2224 | |||
2225 | /* Reset toggle bits and reset error count. */ | ||
2226 | save_flags(flags); | ||
2227 | cli(); | ||
2228 | |||
2229 | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); | ||
2230 | nop(); | ||
2231 | |||
2232 | /* FIXME: Is this a special case since the hold field is checked, | ||
2233 | or should we check hold in a lot of other cases as well? */ | ||
2234 | if (*R_USB_EPT_DATA & IO_MASK(R_USB_EPT_DATA, hold)) { | ||
2235 | panic("Hold was set in %s", __FUNCTION__); | ||
2236 | } | ||
2237 | |||
2238 | /* Reset error counters (regardless of which direction this traffic is). */ | ||
2239 | *R_USB_EPT_DATA &= | ||
2240 | ~(IO_MASK(R_USB_EPT_DATA, error_count_in) | | ||
2241 | IO_MASK(R_USB_EPT_DATA, error_count_out)); | ||
2242 | |||
2243 | /* Software must preset the toggle bits. */ | ||
2244 | if (usb_pipeout(urb->pipe)) { | ||
2245 | char toggle = | ||
2246 | usb_gettoggle(urb->dev, usb_pipeendpoint(urb->pipe), usb_pipeout(urb->pipe)); | ||
2247 | *R_USB_EPT_DATA &= ~IO_MASK(R_USB_EPT_DATA, t_out); | ||
2248 | *R_USB_EPT_DATA |= IO_FIELD(R_USB_EPT_DATA, t_out, toggle); | ||
2249 | } else { | ||
2250 | char toggle = | ||
2251 | usb_gettoggle(urb->dev, usb_pipeendpoint(urb->pipe), usb_pipeout(urb->pipe)); | ||
2252 | *R_USB_EPT_DATA &= ~IO_MASK(R_USB_EPT_DATA, t_in); | ||
2253 | *R_USB_EPT_DATA |= IO_FIELD(R_USB_EPT_DATA, t_in, toggle); | ||
2254 | } | ||
2255 | |||
2256 | /* Assert that the EP descriptor is disabled. */ | ||
2257 | assert(!(TxBulkEPList[epid].command & IO_MASK(USB_EP_command, enable))); | ||
2258 | |||
2259 | /* The reason we set the EP's sub pointer directly instead of | ||
2260 | walking the SB list and linking it last in the list is that we only | ||
2261 | have one active urb at a time (the rest are queued). */ | ||
2262 | |||
2263 | /* Note that we cannot have interrupts running when we have set the SB descriptor | ||
2264 | but the EP is not yet enabled. If a bulk eot happens for another EP, we will | ||
2265 | find this EP disabled and with a SB != 0, which will make us think that it's done. */ | ||
2266 | TxBulkEPList[epid].sub = virt_to_phys(sb_desc); | ||
2267 | TxBulkEPList[epid].hw_len = 0; | ||
2268 | /* Note that we don't have to fill in the ep_id field since this | ||
2269 | was done when we allocated the EP descriptors in init_tx_bulk_ep. */ | ||
2270 | |||
2271 | /* Check if the dummy list is already with us (if several urbs were queued). */ | ||
2272 | if (TxBulkEPList[epid].next != virt_to_phys(&TxBulkDummyEPList[epid][0])) { | ||
2273 | |||
2274 | dbg_bulk("Inviting dummy list to the party for urb 0x%lx, epid %d", | ||
2275 | (unsigned long)urb, epid); | ||
2276 | |||
2277 | /* The last EP in the dummy list already has its next pointer set to | ||
2278 | TxBulkEPList[epid].next. */ | ||
2279 | |||
2280 | /* We don't need to check if the DMA is at this EP or not before changing the | ||
2281 | next pointer, since we will do it in one 32-bit write (EP descriptors are | ||
2282 | 32-bit aligned). */ | ||
2283 | TxBulkEPList[epid].next = virt_to_phys(&TxBulkDummyEPList[epid][0]); | ||
2284 | } | ||
2285 | /* Enable the EP descr. */ | ||
2286 | dbg_bulk("Enabling bulk EP for urb 0x%lx, epid %d", (unsigned long)urb, epid); | ||
2287 | TxBulkEPList[epid].command |= IO_STATE(USB_EP_command, enable, yes); | ||
2288 | |||
2289 | /* Everything is set up, safe to enable interrupts again. */ | ||
2290 | restore_flags(flags); | ||
2291 | |||
2292 | /* If the DMA bulk channel isn't running, we need to restart it if it | ||
2293 | has stopped at the last EP descriptor (DMA stopped because there was | ||
2294 | no more traffic) or if it has stopped at a dummy EP with the intr flag | ||
2295 | set (DMA stopped because we were too slow in inserting new traffic). */ | ||
2296 | if (!(*R_DMA_CH8_SUB0_CMD & IO_MASK(R_DMA_CH8_SUB0_CMD, cmd))) { | ||
2297 | |||
2298 | USB_EP_Desc_t *ep; | ||
2299 | ep = (USB_EP_Desc_t *)phys_to_virt(*R_DMA_CH8_SUB0_EP); | ||
2300 | dbg_bulk("DMA channel not running in add"); | ||
2301 | dbg_bulk("DMA is at 0x%lx", (unsigned long)ep); | ||
2302 | |||
2303 | if (*R_DMA_CH8_SUB0_EP == virt_to_phys(&TxBulkEPList[NBR_OF_EPIDS - 1]) || | ||
2304 | (ep->command & 0x8) >> 3) { | ||
2305 | *R_DMA_CH8_SUB0_CMD = IO_STATE(R_DMA_CH8_SUB0_CMD, cmd, start); | ||
2306 | /* Update/restart the bulk start timer since we just started the channel. */ | ||
2307 | mod_timer(&bulk_start_timer, jiffies + BULK_START_TIMER_INTERVAL); | ||
2308 | /* Update/restart the bulk eot timer since we just inserted traffic. */ | ||
2309 | mod_timer(&bulk_eot_timer, jiffies + BULK_EOT_TIMER_INTERVAL); | ||
2310 | } | ||
2311 | } | ||
2312 | |||
2313 | DBFEXIT; | ||
2314 | } | ||
2315 | |||
2316 | static void etrax_usb_complete_bulk_urb(struct urb *urb, int status) | ||
2317 | { | ||
2318 | etrax_urb_priv_t *urb_priv = (etrax_urb_priv_t *)urb->hcpriv; | ||
2319 | int epid = urb_priv->epid; | ||
2320 | unsigned long flags; | ||
2321 | |||
2322 | DBFENTER; | ||
2323 | |||
2324 | if (status) | ||
2325 | warn("Completing bulk urb with status %d.", status); | ||
2326 | |||
2327 | dbg_bulk("Completing bulk urb 0x%lx for epid %d", (unsigned long)urb, epid); | ||
2328 | |||
2329 | /* Update the urb list. */ | ||
2330 | urb_list_del(urb, epid); | ||
2331 | |||
2332 | /* For an IN pipe, we always set the actual length, regardless of whether there was | ||
2333 | an error or not (which means the device driver can use the data if it wants to). */ | ||
2334 | if (usb_pipein(urb->pipe)) { | ||
2335 | urb->actual_length = urb_priv->rx_offset; | ||
2336 | } else { | ||
2337 | /* Set actual_length for OUT urbs also; the USB mass storage driver seems | ||
2338 | to want that. We wouldn't know of any partial writes if there was an error. */ | ||
2339 | if (status == 0) { | ||
2340 | urb->actual_length = urb->transfer_buffer_length; | ||
2341 | } else { | ||
2342 | urb->actual_length = 0; | ||
2343 | } | ||
2344 | } | ||
2345 | |||
2346 | /* FIXME: Is there something of the things below we shouldn't do if there was an error? | ||
2347 | Like, maybe we shouldn't toggle the toggle bits, or maybe we shouldn't insert more traffic. */ | ||
2348 | |||
2349 | save_flags(flags); | ||
2350 | cli(); | ||
2351 | |||
2352 | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); | ||
2353 | nop(); | ||
2354 | |||
2355 | /* We need to fiddle with the toggle bits because the hardware doesn't do it for us. */ | ||
2356 | if (usb_pipeout(urb->pipe)) { | ||
2357 | char toggle = | ||
2358 | IO_EXTRACT(R_USB_EPT_DATA, t_out, *R_USB_EPT_DATA); | ||
2359 | usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), | ||
2360 | usb_pipeout(urb->pipe), toggle); | ||
2361 | } else { | ||
2362 | char toggle = | ||
2363 | IO_EXTRACT(R_USB_EPT_DATA, t_in, *R_USB_EPT_DATA); | ||
2364 | usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), | ||
2365 | usb_pipeout(urb->pipe), toggle); | ||
2366 | } | ||
2367 | restore_flags(flags); | ||
2368 | |||
2369 | /* Remember to free the SBs. */ | ||
2370 | etrax_remove_from_sb_list(urb); | ||
2371 | kfree(urb_priv); | ||
2372 | urb->hcpriv = 0; | ||
2373 | |||
2374 | /* If there are any more urb's in the list we'd better start sending */ | ||
2375 | if (!urb_list_empty(epid)) { | ||
2376 | |||
2377 | struct urb *new_urb; | ||
2378 | |||
2379 | /* Get the first urb. */ | ||
2380 | new_urb = urb_list_first(epid); | ||
2381 | assert(new_urb); | ||
2382 | |||
2383 | dbg_bulk("More bulk for epid %d", epid); | ||
2384 | |||
2385 | etrax_usb_add_to_bulk_sb_list(new_urb, epid); | ||
2386 | } | ||
2387 | |||
2388 | urb->status = status; | ||
2389 | |||
2390 | /* We let any non-zero status from the layer above have precedence. */ | ||
2391 | if (status == 0) { | ||
2392 | /* URB_SHORT_NOT_OK means that short reads (shorter than the endpoint's max length) | ||
2393 | is to be treated as an error. */ | ||
2394 | if (urb->transfer_flags & URB_SHORT_NOT_OK) { | ||
2395 | if (usb_pipein(urb->pipe) && | ||
2396 | (urb->actual_length != | ||
2397 | usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)))) { | ||
2398 | urb->status = -EREMOTEIO; | ||
2399 | } | ||
2400 | } | ||
2401 | } | ||
2402 | |||
2403 | if (urb->complete) { | ||
2404 | urb->complete(urb, NULL); | ||
2405 | } | ||
2406 | |||
2407 | if (urb_list_empty(epid)) { | ||
2408 | /* This means that this EP is now free, deconfigure it. */ | ||
2409 | etrax_usb_free_epid(epid); | ||
2410 | |||
2411 | /* No more traffic; time to clean up. | ||
2412 | Must set sub pointer to 0, since we look at the sub pointer when handling | ||
2413 | the bulk eot interrupt. */ | ||
2414 | |||
2415 | dbg_bulk("No bulk for epid %d", epid); | ||
2416 | |||
2417 | TxBulkEPList[epid].sub = 0; | ||
2418 | |||
2419 | /* Unlink the dummy list. */ | ||
2420 | |||
2421 | dbg_bulk("Kicking dummy list out of party for urb 0x%lx, epid %d", | ||
2422 | (unsigned long)urb, epid); | ||
2423 | |||
2424 | /* No need to wait for the DMA before changing the next pointer. | ||
2425 | The modulo NBR_OF_EPIDS isn't actually necessary, since we will never use | ||
2426 | the last one (INVALID_EPID) for actual traffic. */ | ||
2427 | TxBulkEPList[epid].next = | ||
2428 | virt_to_phys(&TxBulkEPList[(epid + 1) % NBR_OF_EPIDS]); | ||
2429 | } | ||
2430 | |||
2431 | DBFEXIT; | ||
2432 | } | ||
2433 | |||
2434 | static int etrax_usb_submit_ctrl_urb(struct urb *urb) | ||
2435 | { | ||
2436 | int epid; | ||
2437 | int empty; | ||
2438 | unsigned long flags; | ||
2439 | etrax_urb_priv_t *urb_priv; | ||
2440 | |||
2441 | DBFENTER; | ||
2442 | |||
2443 | /* FIXME: Return -ENXIO if there is already a queued urb for this endpoint? */ | ||
2444 | |||
2445 | /* Epid allocation, empty check and list add must be protected. | ||
2446 | |||
2447 | Epid allocation because if we find an existing epid for this endpoint an urb might be | ||
2448 | completed (emptying the list) before we add the new urb to the list, causing the epid | ||
2449 | to be de-allocated. We would then start the transfer with an invalid epid -> epid attn. | ||
2450 | |||
2451 | Empty check and add because otherwise we might conclude that the list is not empty, | ||
2452 | after which it becomes empty before we add the new urb to the list, causing us not to | ||
2453 | insert the new traffic into the SB list. */ | ||
2454 | |||
2455 | spin_lock_irqsave(&urb_list_lock, flags); | ||
2456 | epid = etrax_usb_setup_epid(urb); | ||
2457 | if (epid == -1) { | ||
2458 | spin_unlock_irqrestore(&urb_list_lock, flags); | ||
2459 | DBFEXIT; | ||
2460 | return -ENOMEM; | ||
2461 | } | ||
2462 | empty = urb_list_empty(epid); | ||
2463 | urb_list_add(urb, epid); | ||
2464 | spin_unlock_irqrestore(&urb_list_lock, flags); | ||
2465 | |||
2466 | dbg_ctrl("Adding ctrl urb 0x%lx to %s list, epid %d", | ||
2467 | (unsigned long)urb, empty ? "empty" : "", epid); | ||
2468 | |||
2469 | /* Mark the urb as being in progress. */ | ||
2470 | urb->status = -EINPROGRESS; | ||
2471 | |||
2472 | /* Setup the hcpriv data. */ | ||
2473 | urb_priv = kzalloc(sizeof(etrax_urb_priv_t), KMALLOC_FLAG); | ||
2474 | assert(urb_priv != NULL); | ||
2475 | /* This sets rx_offset to 0. */ | ||
2476 | urb_priv->urb_state = NOT_STARTED; | ||
2477 | urb->hcpriv = urb_priv; | ||
2478 | |||
2479 | if (empty) { | ||
2480 | etrax_usb_add_to_ctrl_sb_list(urb, epid); | ||
2481 | } | ||
2482 | |||
2483 | DBFEXIT; | ||
2484 | |||
2485 | return 0; | ||
2486 | } | ||
2487 | |||
2488 | static void etrax_usb_add_to_ctrl_sb_list(struct urb *urb, int epid) | ||
2489 | { | ||
2490 | USB_SB_Desc_t *sb_desc_setup; | ||
2491 | USB_SB_Desc_t *sb_desc_data; | ||
2492 | USB_SB_Desc_t *sb_desc_status; | ||
2493 | |||
2494 | etrax_urb_priv_t *urb_priv = (etrax_urb_priv_t *)urb->hcpriv; | ||
2495 | |||
2496 | unsigned long flags; | ||
2497 | char maxlen; | ||
2498 | |||
2499 | DBFENTER; | ||
2500 | |||
2501 | maxlen = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)); | ||
2502 | |||
2503 | sb_desc_setup = (USB_SB_Desc_t*)kmem_cache_alloc(usb_desc_cache, SLAB_FLAG); | ||
2504 | assert(sb_desc_setup != NULL); | ||
2505 | sb_desc_status = (USB_SB_Desc_t*)kmem_cache_alloc(usb_desc_cache, SLAB_FLAG); | ||
2506 | assert(sb_desc_status != NULL); | ||
2507 | |||
2508 | /* Initialize the mandatory setup SB descriptor (used only in control transfers) */ | ||
2509 | sb_desc_setup->sw_len = 8; | ||
2510 | sb_desc_setup->command = (IO_FIELD(USB_SB_command, rem, 0) | | ||
2511 | IO_STATE(USB_SB_command, tt, setup) | | ||
2512 | IO_STATE(USB_SB_command, full, yes) | | ||
2513 | IO_STATE(USB_SB_command, eot, yes)); | ||
2514 | |||
2515 | sb_desc_setup->buf = virt_to_phys(urb->setup_packet); | ||
2516 | |||
2517 | if (usb_pipeout(urb->pipe)) { | ||
2518 | dbg_ctrl("Transfer for epid %d is OUT", epid); | ||
2519 | |||
2520 | /* If this Control OUT transfer has an optional data stage we add an OUT token | ||
2521 | before the mandatory IN (status) token, hence the reordered SB list */ | ||
2522 | |||
2523 | sb_desc_setup->next = virt_to_phys(sb_desc_status); | ||
2524 | if (urb->transfer_buffer) { | ||
2525 | |||
2526 | dbg_ctrl("This OUT transfer has an extra data stage"); | ||
2527 | |||
2528 | sb_desc_data = (USB_SB_Desc_t*)kmem_cache_alloc(usb_desc_cache, SLAB_FLAG); | ||
2529 | assert(sb_desc_data != NULL); | ||
2530 | |||
2531 | sb_desc_setup->next = virt_to_phys(sb_desc_data); | ||
2532 | |||
2533 | sb_desc_data->sw_len = urb->transfer_buffer_length; | ||
2534 | sb_desc_data->command = (IO_STATE(USB_SB_command, tt, out) | | ||
2535 | IO_STATE(USB_SB_command, full, yes) | | ||
2536 | IO_STATE(USB_SB_command, eot, yes)); | ||
2537 | sb_desc_data->buf = virt_to_phys(urb->transfer_buffer); | ||
2538 | sb_desc_data->next = virt_to_phys(sb_desc_status); | ||
2539 | } | ||
2540 | |||
2541 | sb_desc_status->sw_len = 1; | ||
2542 | sb_desc_status->command = (IO_FIELD(USB_SB_command, rem, 0) | | ||
2543 | IO_STATE(USB_SB_command, tt, in) | | ||
2544 | IO_STATE(USB_SB_command, eot, yes) | | ||
2545 | IO_STATE(USB_SB_command, intr, yes) | | ||
2546 | IO_STATE(USB_SB_command, eol, yes)); | ||
2547 | |||
2548 | sb_desc_status->buf = 0; | ||
2549 | sb_desc_status->next = 0; | ||
2550 | |||
2551 | } else if (usb_pipein(urb->pipe)) { | ||
2552 | |||
2553 | dbg_ctrl("Transfer for epid %d is IN", epid); | ||
2554 | dbg_ctrl("transfer_buffer_length = %d", urb->transfer_buffer_length); | ||
2555 | dbg_ctrl("rem is calculated to %d", urb->transfer_buffer_length % maxlen); | ||
2556 | |||
2557 | sb_desc_data = (USB_SB_Desc_t*)kmem_cache_alloc(usb_desc_cache, SLAB_FLAG); | ||
2558 | assert(sb_desc_data != NULL); | ||
2559 | |||
2560 | sb_desc_setup->next = virt_to_phys(sb_desc_data); | ||
2561 | |||
2562 | sb_desc_data->sw_len = urb->transfer_buffer_length ? | ||
2563 | (urb->transfer_buffer_length - 1) / maxlen + 1 : 0; | ||
2564 | dbg_ctrl("sw_len got %d", sb_desc_data->sw_len); | ||
2565 | |||
2566 | sb_desc_data->command = | ||
2567 | (IO_FIELD(USB_SB_command, rem, | ||
2568 | urb->transfer_buffer_length % maxlen) | | ||
2569 | IO_STATE(USB_SB_command, tt, in) | | ||
2570 | IO_STATE(USB_SB_command, eot, yes)); | ||
2571 | |||
2572 | sb_desc_data->buf = 0; | ||
2573 | sb_desc_data->next = virt_to_phys(sb_desc_status); | ||
2574 | |||
2575 | /* Read comment at zout_buffer declaration for an explanation to this. */ | ||
2576 | sb_desc_status->sw_len = 1; | ||
2577 | sb_desc_status->command = (IO_FIELD(USB_SB_command, rem, 0) | | ||
2578 | IO_STATE(USB_SB_command, tt, zout) | | ||
2579 | IO_STATE(USB_SB_command, full, yes) | | ||
2580 | IO_STATE(USB_SB_command, eot, yes) | | ||
2581 | IO_STATE(USB_SB_command, intr, yes) | | ||
2582 | IO_STATE(USB_SB_command, eol, yes)); | ||
2583 | |||
2584 | sb_desc_status->buf = virt_to_phys(&zout_buffer[0]); | ||
2585 | sb_desc_status->next = 0; | ||
2586 | } | ||
2587 | |||
2588 | urb_priv->first_sb = sb_desc_setup; | ||
2589 | urb_priv->last_sb = sb_desc_status; | ||
2590 | urb_priv->epid = epid; | ||
2591 | |||
2592 | urb_priv->urb_state = STARTED; | ||
2593 | |||
2594 | /* Reset toggle bits and reset error count, remember to di and ei */ | ||
2595 | /* Warning: it is possible that this locking doesn't work with bottom-halves */ | ||
2596 | |||
2597 | save_flags(flags); | ||
2598 | cli(); | ||
2599 | |||
2600 | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); | ||
2601 | nop(); | ||
2602 | if (*R_USB_EPT_DATA & IO_MASK(R_USB_EPT_DATA, hold)) { | ||
2603 | panic("Hold was set in %s", __FUNCTION__); | ||
2604 | } | ||
2605 | |||
2606 | |||
2607 | /* FIXME: Compare with etrax_usb_add_to_bulk_sb_list where the toggle bits | ||
2608 | are set to a specific value. Why the difference? Read "Transfer and Toggle Bits | ||
2609 | in Designer's Reference, p. 8 - 11. */ | ||
2610 | *R_USB_EPT_DATA &= | ||
2611 | ~(IO_MASK(R_USB_EPT_DATA, error_count_in) | | ||
2612 | IO_MASK(R_USB_EPT_DATA, error_count_out) | | ||
2613 | IO_MASK(R_USB_EPT_DATA, t_in) | | ||
2614 | IO_MASK(R_USB_EPT_DATA, t_out)); | ||
2615 | |||
2616 | /* Since we use the rx interrupt to complete ctrl urbs, we can enable interrupts now | ||
2617 | (i.e. we don't check the sub pointer on an eot interrupt like we do for bulk traffic). */ | ||
2618 | restore_flags(flags); | ||
2619 | |||
2620 | /* Assert that the EP descriptor is disabled. */ | ||
2621 | assert(!(TxCtrlEPList[epid].command & IO_MASK(USB_EP_command, enable))); | ||
2622 | |||
2623 | /* Set up and enable the EP descriptor. */ | ||
2624 | TxCtrlEPList[epid].sub = virt_to_phys(sb_desc_setup); | ||
2625 | TxCtrlEPList[epid].hw_len = 0; | ||
2626 | TxCtrlEPList[epid].command |= IO_STATE(USB_EP_command, enable, yes); | ||
2627 | |||
2628 | /* We start the DMA sub channel without checking if it's running or not, because: | ||
2629 | 1) If it's already running, issuing the start command is a nop. | ||
2630 | 2) We avoid a test-and-set race condition. */ | ||
2631 | *R_DMA_CH8_SUB1_CMD = IO_STATE(R_DMA_CH8_SUB1_CMD, cmd, start); | ||
2632 | |||
2633 | DBFEXIT; | ||
2634 | } | ||
2635 | |||
2636 | static void etrax_usb_complete_ctrl_urb(struct urb *urb, int status) | ||
2637 | { | ||
2638 | etrax_urb_priv_t *urb_priv = (etrax_urb_priv_t *)urb->hcpriv; | ||
2639 | int epid = urb_priv->epid; | ||
2640 | |||
2641 | DBFENTER; | ||
2642 | |||
2643 | if (status) | ||
2644 | warn("Completing ctrl urb with status %d.", status); | ||
2645 | |||
2646 | dbg_ctrl("Completing ctrl epid %d, urb 0x%lx", epid, (unsigned long)urb); | ||
2647 | |||
2648 | /* Remove this urb from the list. */ | ||
2649 | urb_list_del(urb, epid); | ||
2650 | |||
2651 | /* For an IN pipe, we always set the actual length, regardless of whether there was | ||
2652 | an error or not (which means the device driver can use the data if it wants to). */ | ||
2653 | if (usb_pipein(urb->pipe)) { | ||
2654 | urb->actual_length = urb_priv->rx_offset; | ||
2655 | } | ||
2656 | |||
2657 | /* FIXME: Is there something of the things below we shouldn't do if there was an error? | ||
2658 | Like, maybe we shouldn't insert more traffic. */ | ||
2659 | |||
2660 | /* Remember to free the SBs. */ | ||
2661 | etrax_remove_from_sb_list(urb); | ||
2662 | kfree(urb_priv); | ||
2663 | urb->hcpriv = 0; | ||
2664 | |||
2665 | /* If there are any more urbs in the list we'd better start sending. */ | ||
2666 | if (!urb_list_empty(epid)) { | ||
2667 | struct urb *new_urb; | ||
2668 | |||
2669 | /* Get the first urb. */ | ||
2670 | new_urb = urb_list_first(epid); | ||
2671 | assert(new_urb); | ||
2672 | |||
2673 | dbg_ctrl("More ctrl for epid %d, first urb = 0x%lx", epid, (unsigned long)new_urb); | ||
2674 | |||
2675 | etrax_usb_add_to_ctrl_sb_list(new_urb, epid); | ||
2676 | } | ||
2677 | |||
2678 | urb->status = status; | ||
2679 | |||
2680 | /* We let any non-zero status from the layer above have precedence. */ | ||
2681 | if (status == 0) { | ||
2682 | /* URB_SHORT_NOT_OK means that short reads (shorter than the endpoint's max length) | ||
2683 | is to be treated as an error. */ | ||
2684 | if (urb->transfer_flags & URB_SHORT_NOT_OK) { | ||
2685 | if (usb_pipein(urb->pipe) && | ||
2686 | (urb->actual_length != | ||
2687 | usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)))) { | ||
2688 | urb->status = -EREMOTEIO; | ||
2689 | } | ||
2690 | } | ||
2691 | } | ||
2692 | |||
2693 | if (urb->complete) { | ||
2694 | urb->complete(urb, NULL); | ||
2695 | } | ||
2696 | |||
2697 | if (urb_list_empty(epid)) { | ||
2698 | /* No more traffic. Time to clean up. */ | ||
2699 | etrax_usb_free_epid(epid); | ||
2700 | /* Must set sub pointer to 0. */ | ||
2701 | dbg_ctrl("No ctrl for epid %d", epid); | ||
2702 | TxCtrlEPList[epid].sub = 0; | ||
2703 | } | ||
2704 | |||
2705 | DBFEXIT; | ||
2706 | } | ||
2707 | |||
2708 | static int etrax_usb_submit_intr_urb(struct urb *urb) | ||
2709 | { | ||
2710 | |||
2711 | int epid; | ||
2712 | |||
2713 | DBFENTER; | ||
2714 | |||
2715 | if (usb_pipeout(urb->pipe)) { | ||
2716 | /* Unsupported transfer type. | ||
2717 | We don't support interrupt out traffic. (If we do, we can't support | ||
2718 | intervals for neither in or out traffic, but are forced to schedule all | ||
2719 | interrupt traffic in one frame.) */ | ||
2720 | return -EINVAL; | ||
2721 | } | ||
2722 | |||
2723 | epid = etrax_usb_setup_epid(urb); | ||
2724 | if (epid == -1) { | ||
2725 | DBFEXIT; | ||
2726 | return -ENOMEM; | ||
2727 | } | ||
2728 | |||
2729 | if (!urb_list_empty(epid)) { | ||
2730 | /* There is already a queued urb for this endpoint. */ | ||
2731 | etrax_usb_free_epid(epid); | ||
2732 | return -ENXIO; | ||
2733 | } | ||
2734 | |||
2735 | urb->status = -EINPROGRESS; | ||
2736 | |||
2737 | dbg_intr("Add intr urb 0x%lx, to list, epid %d", (unsigned long)urb, epid); | ||
2738 | |||
2739 | urb_list_add(urb, epid); | ||
2740 | etrax_usb_add_to_intr_sb_list(urb, epid); | ||
2741 | |||
2742 | return 0; | ||
2743 | |||
2744 | DBFEXIT; | ||
2745 | } | ||
2746 | |||
2747 | static void etrax_usb_add_to_intr_sb_list(struct urb *urb, int epid) | ||
2748 | { | ||
2749 | |||
2750 | volatile USB_EP_Desc_t *tmp_ep; | ||
2751 | volatile USB_EP_Desc_t *first_ep; | ||
2752 | |||
2753 | char maxlen; | ||
2754 | int interval; | ||
2755 | int i; | ||
2756 | |||
2757 | etrax_urb_priv_t *urb_priv; | ||
2758 | |||
2759 | DBFENTER; | ||
2760 | |||
2761 | maxlen = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)); | ||
2762 | interval = urb->interval; | ||
2763 | |||
2764 | urb_priv = kzalloc(sizeof(etrax_urb_priv_t), KMALLOC_FLAG); | ||
2765 | assert(urb_priv != NULL); | ||
2766 | urb->hcpriv = urb_priv; | ||
2767 | |||
2768 | first_ep = &TxIntrEPList[0]; | ||
2769 | |||
2770 | /* Round of the interval to 2^n, it is obvious that this code favours | ||
2771 | smaller numbers, but that is actually a good thing */ | ||
2772 | /* FIXME: The "rounding error" for larger intervals will be quite | ||
2773 | large. For in traffic this shouldn't be a problem since it will only | ||
2774 | mean that we "poll" more often. */ | ||
2775 | for (i = 0; interval; i++) { | ||
2776 | interval = interval >> 1; | ||
2777 | } | ||
2778 | interval = 1 << (i - 1); | ||
2779 | |||
2780 | dbg_intr("Interval rounded to %d", interval); | ||
2781 | |||
2782 | tmp_ep = first_ep; | ||
2783 | i = 0; | ||
2784 | do { | ||
2785 | if (tmp_ep->command & IO_MASK(USB_EP_command, eof)) { | ||
2786 | if ((i % interval) == 0) { | ||
2787 | /* Insert the traffic ep after tmp_ep */ | ||
2788 | USB_EP_Desc_t *ep_desc; | ||
2789 | USB_SB_Desc_t *sb_desc; | ||
2790 | |||
2791 | dbg_intr("Inserting EP for epid %d", epid); | ||
2792 | |||
2793 | ep_desc = (USB_EP_Desc_t *) | ||
2794 | kmem_cache_alloc(usb_desc_cache, SLAB_FLAG); | ||
2795 | sb_desc = (USB_SB_Desc_t *) | ||
2796 | kmem_cache_alloc(usb_desc_cache, SLAB_FLAG); | ||
2797 | assert(ep_desc != NULL); | ||
2798 | CHECK_ALIGN(ep_desc); | ||
2799 | assert(sb_desc != NULL); | ||
2800 | |||
2801 | ep_desc->sub = virt_to_phys(sb_desc); | ||
2802 | ep_desc->hw_len = 0; | ||
2803 | ep_desc->command = (IO_FIELD(USB_EP_command, epid, epid) | | ||
2804 | IO_STATE(USB_EP_command, enable, yes)); | ||
2805 | |||
2806 | |||
2807 | /* Round upwards the number of packets of size maxlen | ||
2808 | that this SB descriptor should receive. */ | ||
2809 | sb_desc->sw_len = urb->transfer_buffer_length ? | ||
2810 | (urb->transfer_buffer_length - 1) / maxlen + 1 : 0; | ||
2811 | sb_desc->next = 0; | ||
2812 | sb_desc->buf = 0; | ||
2813 | sb_desc->command = | ||
2814 | (IO_FIELD(USB_SB_command, rem, urb->transfer_buffer_length % maxlen) | | ||
2815 | IO_STATE(USB_SB_command, tt, in) | | ||
2816 | IO_STATE(USB_SB_command, eot, yes) | | ||
2817 | IO_STATE(USB_SB_command, eol, yes)); | ||
2818 | |||
2819 | ep_desc->next = tmp_ep->next; | ||
2820 | tmp_ep->next = virt_to_phys(ep_desc); | ||
2821 | } | ||
2822 | i++; | ||
2823 | } | ||
2824 | tmp_ep = (USB_EP_Desc_t *)phys_to_virt(tmp_ep->next); | ||
2825 | } while (tmp_ep != first_ep); | ||
2826 | |||
2827 | |||
2828 | /* Note that first_sb/last_sb doesn't apply to interrupt traffic. */ | ||
2829 | urb_priv->epid = epid; | ||
2830 | |||
2831 | /* We start the DMA sub channel without checking if it's running or not, because: | ||
2832 | 1) If it's already running, issuing the start command is a nop. | ||
2833 | 2) We avoid a test-and-set race condition. */ | ||
2834 | *R_DMA_CH8_SUB2_CMD = IO_STATE(R_DMA_CH8_SUB2_CMD, cmd, start); | ||
2835 | |||
2836 | DBFEXIT; | ||
2837 | } | ||
2838 | |||
2839 | |||
2840 | |||
2841 | static void etrax_usb_complete_intr_urb(struct urb *urb, int status) | ||
2842 | { | ||
2843 | etrax_urb_priv_t *urb_priv = (etrax_urb_priv_t *)urb->hcpriv; | ||
2844 | int epid = urb_priv->epid; | ||
2845 | |||
2846 | DBFENTER; | ||
2847 | |||
2848 | if (status) | ||
2849 | warn("Completing intr urb with status %d.", status); | ||
2850 | |||
2851 | dbg_intr("Completing intr epid %d, urb 0x%lx", epid, (unsigned long)urb); | ||
2852 | |||
2853 | urb->status = status; | ||
2854 | urb->actual_length = urb_priv->rx_offset; | ||
2855 | |||
2856 | dbg_intr("interrupt urb->actual_length = %d", urb->actual_length); | ||
2857 | |||
2858 | /* We let any non-zero status from the layer above have precedence. */ | ||
2859 | if (status == 0) { | ||
2860 | /* URB_SHORT_NOT_OK means that short reads (shorter than the endpoint's max length) | ||
2861 | is to be treated as an error. */ | ||
2862 | if (urb->transfer_flags & URB_SHORT_NOT_OK) { | ||
2863 | if (urb->actual_length != | ||
2864 | usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe))) { | ||
2865 | urb->status = -EREMOTEIO; | ||
2866 | } | ||
2867 | } | ||
2868 | } | ||
2869 | |||
2870 | /* The driver will resubmit the URB so we need to remove it first */ | ||
2871 | etrax_usb_unlink_urb(urb, 0); | ||
2872 | if (urb->complete) { | ||
2873 | urb->complete(urb, NULL); | ||
2874 | } | ||
2875 | |||
2876 | DBFEXIT; | ||
2877 | } | ||
2878 | |||
2879 | |||
2880 | static int etrax_usb_submit_isoc_urb(struct urb *urb) | ||
2881 | { | ||
2882 | int epid; | ||
2883 | unsigned long flags; | ||
2884 | |||
2885 | DBFENTER; | ||
2886 | |||
2887 | dbg_isoc("Submitting isoc urb = 0x%lx", (unsigned long)urb); | ||
2888 | |||
2889 | /* Epid allocation, empty check and list add must be protected. | ||
2890 | Read about this in etrax_usb_submit_ctrl_urb. */ | ||
2891 | |||
2892 | spin_lock_irqsave(&urb_list_lock, flags); | ||
2893 | /* Is there an active epid for this urb ? */ | ||
2894 | epid = etrax_usb_setup_epid(urb); | ||
2895 | if (epid == -1) { | ||
2896 | DBFEXIT; | ||
2897 | spin_unlock_irqrestore(&urb_list_lock, flags); | ||
2898 | return -ENOMEM; | ||
2899 | } | ||
2900 | |||
2901 | /* Ok, now we got valid endpoint, lets insert some traffic */ | ||
2902 | |||
2903 | urb->status = -EINPROGRESS; | ||
2904 | |||
2905 | /* Find the last urb in the URB_List and add this urb after that one. | ||
2906 | Also add the traffic, that is do an etrax_usb_add_to_isoc_sb_list. This | ||
2907 | is important to make this in "real time" since isochronous traffic is | ||
2908 | time sensitive. */ | ||
2909 | |||
2910 | dbg_isoc("Adding isoc urb to (possibly empty) list"); | ||
2911 | urb_list_add(urb, epid); | ||
2912 | etrax_usb_add_to_isoc_sb_list(urb, epid); | ||
2913 | spin_unlock_irqrestore(&urb_list_lock, flags); | ||
2914 | |||
2915 | DBFEXIT; | ||
2916 | |||
2917 | return 0; | ||
2918 | } | ||
2919 | |||
2920 | static void etrax_usb_check_error_isoc_ep(const int epid) | ||
2921 | { | ||
2922 | unsigned long int flags; | ||
2923 | int error_code; | ||
2924 | __u32 r_usb_ept_data; | ||
2925 | |||
2926 | /* We can't read R_USB_EPID_ATTN here since it would clear the iso_eof, | ||
2927 | bulk_eot and epid_attn interrupts. So we just check the status of | ||
2928 | the epid without testing if for it in R_USB_EPID_ATTN. */ | ||
2929 | |||
2930 | |||
2931 | save_flags(flags); | ||
2932 | cli(); | ||
2933 | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); | ||
2934 | nop(); | ||
2935 | /* Note that although there are separate R_USB_EPT_DATA and R_USB_EPT_DATA_ISO | ||
2936 | registers, they are located at the same address and are of the same size. | ||
2937 | In other words, this read should be ok for isoc also. */ | ||
2938 | r_usb_ept_data = *R_USB_EPT_DATA; | ||
2939 | restore_flags(flags); | ||
2940 | |||
2941 | error_code = IO_EXTRACT(R_USB_EPT_DATA_ISO, error_code, r_usb_ept_data); | ||
2942 | |||
2943 | if (r_usb_ept_data & IO_MASK(R_USB_EPT_DATA, hold)) { | ||
2944 | warn("Hold was set for epid %d.", epid); | ||
2945 | return; | ||
2946 | } | ||
2947 | |||
2948 | if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA_ISO, error_code, no_error)) { | ||
2949 | |||
2950 | /* This indicates that the SB list of the ept was completed before | ||
2951 | new data was appended to it. This is not an error, but indicates | ||
2952 | large system or USB load and could possibly cause trouble for | ||
2953 | very timing sensitive USB device drivers so we log it. | ||
2954 | */ | ||
2955 | info("Isoc. epid %d disabled with no error", epid); | ||
2956 | return; | ||
2957 | |||
2958 | } else if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA_ISO, error_code, stall)) { | ||
2959 | /* Not really a protocol error, just says that the endpoint gave | ||
2960 | a stall response. Note that error_code cannot be stall for isoc. */ | ||
2961 | panic("Isoc traffic cannot stall"); | ||
2962 | |||
2963 | } else if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA_ISO, error_code, bus_error)) { | ||
2964 | /* Two devices responded to a transaction request. Must be resolved | ||
2965 | by software. FIXME: Reset ports? */ | ||
2966 | panic("Bus error for epid %d." | ||
2967 | " Two devices responded to transaction request", | ||
2968 | epid); | ||
2969 | |||
2970 | } else if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA, error_code, buffer_error)) { | ||
2971 | /* DMA overrun or underrun. */ | ||
2972 | warn("Buffer overrun/underrun for epid %d. DMA too busy?", epid); | ||
2973 | |||
2974 | /* It seems that error_code = buffer_error in | ||
2975 | R_USB_EPT_DATA/R_USB_EPT_DATA_ISO and ourun = yes in R_USB_STATUS | ||
2976 | are the same error. */ | ||
2977 | } | ||
2978 | } | ||
2979 | |||
2980 | |||
2981 | static void etrax_usb_add_to_isoc_sb_list(struct urb *urb, int epid) | ||
2982 | { | ||
2983 | |||
2984 | int i = 0; | ||
2985 | |||
2986 | etrax_urb_priv_t *urb_priv; | ||
2987 | USB_SB_Desc_t *prev_sb_desc, *next_sb_desc, *temp_sb_desc; | ||
2988 | |||
2989 | DBFENTER; | ||
2990 | |||
2991 | prev_sb_desc = next_sb_desc = temp_sb_desc = NULL; | ||
2992 | |||
2993 | urb_priv = kzalloc(sizeof(etrax_urb_priv_t), GFP_ATOMIC); | ||
2994 | assert(urb_priv != NULL); | ||
2995 | |||
2996 | urb->hcpriv = urb_priv; | ||
2997 | urb_priv->epid = epid; | ||
2998 | |||
2999 | if (usb_pipeout(urb->pipe)) { | ||
3000 | |||
3001 | if (urb->number_of_packets == 0) panic("etrax_usb_add_to_isoc_sb_list 0 packets\n"); | ||
3002 | |||
3003 | dbg_isoc("Transfer for epid %d is OUT", epid); | ||
3004 | dbg_isoc("%d packets in URB", urb->number_of_packets); | ||
3005 | |||
3006 | /* Create one SB descriptor for each packet and link them together. */ | ||
3007 | for (i = 0; i < urb->number_of_packets; i++) { | ||
3008 | if (!urb->iso_frame_desc[i].length) | ||
3009 | continue; | ||
3010 | |||
3011 | next_sb_desc = (USB_SB_Desc_t*)kmem_cache_alloc(usb_desc_cache, GFP_ATOMIC); | ||
3012 | assert(next_sb_desc != NULL); | ||
3013 | |||
3014 | if (urb->iso_frame_desc[i].length > 0) { | ||
3015 | |||
3016 | next_sb_desc->command = (IO_STATE(USB_SB_command, tt, out) | | ||
3017 | IO_STATE(USB_SB_command, eot, yes)); | ||
3018 | |||
3019 | next_sb_desc->sw_len = urb->iso_frame_desc[i].length; | ||
3020 | next_sb_desc->buf = virt_to_phys((char*)urb->transfer_buffer + urb->iso_frame_desc[i].offset); | ||
3021 | |||
3022 | /* Check if full length transfer. */ | ||
3023 | if (urb->iso_frame_desc[i].length == | ||
3024 | usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe))) { | ||
3025 | next_sb_desc->command |= IO_STATE(USB_SB_command, full, yes); | ||
3026 | } | ||
3027 | } else { | ||
3028 | dbg_isoc("zero len packet"); | ||
3029 | next_sb_desc->command = (IO_FIELD(USB_SB_command, rem, 0) | | ||
3030 | IO_STATE(USB_SB_command, tt, zout) | | ||
3031 | IO_STATE(USB_SB_command, eot, yes) | | ||
3032 | IO_STATE(USB_SB_command, full, yes)); | ||
3033 | |||
3034 | next_sb_desc->sw_len = 1; | ||
3035 | next_sb_desc->buf = virt_to_phys(&zout_buffer[0]); | ||
3036 | } | ||
3037 | |||
3038 | /* First SB descriptor that belongs to this urb */ | ||
3039 | if (i == 0) | ||
3040 | urb_priv->first_sb = next_sb_desc; | ||
3041 | else | ||
3042 | prev_sb_desc->next = virt_to_phys(next_sb_desc); | ||
3043 | |||
3044 | prev_sb_desc = next_sb_desc; | ||
3045 | } | ||
3046 | |||
3047 | next_sb_desc->command |= (IO_STATE(USB_SB_command, intr, yes) | | ||
3048 | IO_STATE(USB_SB_command, eol, yes)); | ||
3049 | next_sb_desc->next = 0; | ||
3050 | urb_priv->last_sb = next_sb_desc; | ||
3051 | |||
3052 | } else if (usb_pipein(urb->pipe)) { | ||
3053 | |||
3054 | dbg_isoc("Transfer for epid %d is IN", epid); | ||
3055 | dbg_isoc("transfer_buffer_length = %d", urb->transfer_buffer_length); | ||
3056 | dbg_isoc("rem is calculated to %d", urb->iso_frame_desc[urb->number_of_packets - 1].length); | ||
3057 | |||
3058 | /* Note that in descriptors for periodic traffic are not consumed. This means that | ||
3059 | the USB controller never propagates in the SB list. In other words, if there already | ||
3060 | is an SB descriptor in the list for this EP we don't have to do anything. */ | ||
3061 | if (TxIsocEPList[epid].sub == 0) { | ||
3062 | dbg_isoc("Isoc traffic not already running, allocating SB"); | ||
3063 | |||
3064 | next_sb_desc = (USB_SB_Desc_t*)kmem_cache_alloc(usb_desc_cache, GFP_ATOMIC); | ||
3065 | assert(next_sb_desc != NULL); | ||
3066 | |||
3067 | next_sb_desc->command = (IO_STATE(USB_SB_command, tt, in) | | ||
3068 | IO_STATE(USB_SB_command, eot, yes) | | ||
3069 | IO_STATE(USB_SB_command, eol, yes)); | ||
3070 | |||
3071 | next_sb_desc->next = 0; | ||
3072 | next_sb_desc->sw_len = 1; /* Actual number of packets is not relevant | ||
3073 | for periodic in traffic as long as it is more | ||
3074 | than zero. Set to 1 always. */ | ||
3075 | next_sb_desc->buf = 0; | ||
3076 | |||
3077 | /* The rem field is don't care for isoc traffic, so we don't set it. */ | ||
3078 | |||
3079 | /* Only one SB descriptor that belongs to this urb. */ | ||
3080 | urb_priv->first_sb = next_sb_desc; | ||
3081 | urb_priv->last_sb = next_sb_desc; | ||
3082 | |||
3083 | } else { | ||
3084 | |||
3085 | dbg_isoc("Isoc traffic already running, just setting first/last_sb"); | ||
3086 | |||
3087 | /* Each EP for isoc in will have only one SB descriptor, setup when submitting the | ||
3088 | already active urb. Note that even though we may have several first_sb/last_sb | ||
3089 | pointing at the same SB descriptor, they are freed only once (when the list has | ||
3090 | become empty). */ | ||
3091 | urb_priv->first_sb = phys_to_virt(TxIsocEPList[epid].sub); | ||
3092 | urb_priv->last_sb = phys_to_virt(TxIsocEPList[epid].sub); | ||
3093 | return; | ||
3094 | } | ||
3095 | |||
3096 | } | ||
3097 | |||
3098 | /* Find the spot to insert this urb and add it. */ | ||
3099 | if (TxIsocEPList[epid].sub == 0) { | ||
3100 | /* First SB descriptor inserted in this list (in or out). */ | ||
3101 | dbg_isoc("Inserting SB desc first in list"); | ||
3102 | TxIsocEPList[epid].hw_len = 0; | ||
3103 | TxIsocEPList[epid].sub = virt_to_phys(urb_priv->first_sb); | ||
3104 | |||
3105 | } else { | ||
3106 | /* Isochronous traffic is already running, insert new traffic last (only out). */ | ||
3107 | dbg_isoc("Inserting SB desc last in list"); | ||
3108 | temp_sb_desc = phys_to_virt(TxIsocEPList[epid].sub); | ||
3109 | while ((temp_sb_desc->command & IO_MASK(USB_SB_command, eol)) != | ||
3110 | IO_STATE(USB_SB_command, eol, yes)) { | ||
3111 | assert(temp_sb_desc->next); | ||
3112 | temp_sb_desc = phys_to_virt(temp_sb_desc->next); | ||
3113 | } | ||
3114 | dbg_isoc("Appending list on desc 0x%p", temp_sb_desc); | ||
3115 | |||
3116 | /* Next pointer must be set before eol is removed. */ | ||
3117 | temp_sb_desc->next = virt_to_phys(urb_priv->first_sb); | ||
3118 | /* Clear the previous end of list flag since there is a new in the | ||
3119 | added SB descriptor list. */ | ||
3120 | temp_sb_desc->command &= ~IO_MASK(USB_SB_command, eol); | ||
3121 | |||
3122 | if (!(TxIsocEPList[epid].command & IO_MASK(USB_EP_command, enable))) { | ||
3123 | /* 8.8.5 in Designer's Reference says we should check for and correct | ||
3124 | any errors in the EP here. That should not be necessary if epid_attn | ||
3125 | is handled correctly, so we assume all is ok. */ | ||
3126 | dbg_isoc("EP disabled"); | ||
3127 | etrax_usb_check_error_isoc_ep(epid); | ||
3128 | |||
3129 | /* The SB list was exhausted. */ | ||
3130 | if (virt_to_phys(urb_priv->last_sb) != TxIsocEPList[epid].sub) { | ||
3131 | /* The new sublist did not get processed before the EP was | ||
3132 | disabled. Setup the EP again. */ | ||
3133 | dbg_isoc("Set EP sub to new list"); | ||
3134 | TxIsocEPList[epid].hw_len = 0; | ||
3135 | TxIsocEPList[epid].sub = virt_to_phys(urb_priv->first_sb); | ||
3136 | } | ||
3137 | } | ||
3138 | } | ||
3139 | |||
3140 | if (urb->transfer_flags & URB_ISO_ASAP) { | ||
3141 | /* The isoc transfer should be started as soon as possible. The start_frame | ||
3142 | field is a return value if URB_ISO_ASAP was set. Comparing R_USB_FM_NUMBER | ||
3143 | with a USB Chief trace shows that the first isoc IN token is sent 2 frames | ||
3144 | later. I'm not sure how this affects usage of the start_frame field by the | ||
3145 | device driver, or how it affects things when USB_ISO_ASAP is not set, so | ||
3146 | therefore there's no compensation for the 2 frame "lag" here. */ | ||
3147 | urb->start_frame = (*R_USB_FM_NUMBER & 0x7ff); | ||
3148 | TxIsocEPList[epid].command |= IO_STATE(USB_EP_command, enable, yes); | ||
3149 | urb_priv->urb_state = STARTED; | ||
3150 | dbg_isoc("URB_ISO_ASAP set, urb->start_frame set to %d", urb->start_frame); | ||
3151 | } else { | ||
3152 | /* Not started yet. */ | ||
3153 | urb_priv->urb_state = NOT_STARTED; | ||
3154 | dbg_isoc("urb_priv->urb_state set to NOT_STARTED"); | ||
3155 | } | ||
3156 | |||
3157 | /* We start the DMA sub channel without checking if it's running or not, because: | ||
3158 | 1) If it's already running, issuing the start command is a nop. | ||
3159 | 2) We avoid a test-and-set race condition. */ | ||
3160 | *R_DMA_CH8_SUB3_CMD = IO_STATE(R_DMA_CH8_SUB3_CMD, cmd, start); | ||
3161 | |||
3162 | DBFEXIT; | ||
3163 | } | ||
3164 | |||
3165 | static void etrax_usb_complete_isoc_urb(struct urb *urb, int status) | ||
3166 | { | ||
3167 | etrax_urb_priv_t *urb_priv = (etrax_urb_priv_t *)urb->hcpriv; | ||
3168 | int epid = urb_priv->epid; | ||
3169 | int auto_resubmit = 0; | ||
3170 | |||
3171 | DBFENTER; | ||
3172 | dbg_isoc("complete urb 0x%p, status %d", urb, status); | ||
3173 | |||
3174 | if (status) | ||
3175 | warn("Completing isoc urb with status %d.", status); | ||
3176 | |||
3177 | if (usb_pipein(urb->pipe)) { | ||
3178 | int i; | ||
3179 | |||
3180 | /* Make that all isoc packets have status and length set before | ||
3181 | completing the urb. */ | ||
3182 | for (i = urb_priv->isoc_packet_counter; i < urb->number_of_packets; i++) { | ||
3183 | urb->iso_frame_desc[i].actual_length = 0; | ||
3184 | urb->iso_frame_desc[i].status = -EPROTO; | ||
3185 | } | ||
3186 | |||
3187 | urb_list_del(urb, epid); | ||
3188 | |||
3189 | if (!list_empty(&urb_list[epid])) { | ||
3190 | ((etrax_urb_priv_t *)(urb_list_first(epid)->hcpriv))->urb_state = STARTED; | ||
3191 | } else { | ||
3192 | unsigned long int flags; | ||
3193 | if (TxIsocEPList[epid].command & IO_MASK(USB_EP_command, enable)) { | ||
3194 | /* The EP was enabled, disable it and wait. */ | ||
3195 | TxIsocEPList[epid].command &= ~IO_MASK(USB_EP_command, enable); | ||
3196 | |||
3197 | /* Ah, the luxury of busy-wait. */ | ||
3198 | while (*R_DMA_CH8_SUB3_EP == virt_to_phys(&TxIsocEPList[epid])); | ||
3199 | } | ||
3200 | |||
3201 | etrax_remove_from_sb_list(urb); | ||
3202 | TxIsocEPList[epid].sub = 0; | ||
3203 | TxIsocEPList[epid].hw_len = 0; | ||
3204 | |||
3205 | save_flags(flags); | ||
3206 | cli(); | ||
3207 | etrax_usb_free_epid(epid); | ||
3208 | restore_flags(flags); | ||
3209 | } | ||
3210 | |||
3211 | urb->hcpriv = 0; | ||
3212 | kfree(urb_priv); | ||
3213 | |||
3214 | /* Release allocated bandwidth. */ | ||
3215 | usb_release_bandwidth(urb->dev, urb, 0); | ||
3216 | } else if (usb_pipeout(urb->pipe)) { | ||
3217 | int freed_descr; | ||
3218 | |||
3219 | dbg_isoc("Isoc out urb complete 0x%p", urb); | ||
3220 | |||
3221 | /* Update the urb list. */ | ||
3222 | urb_list_del(urb, epid); | ||
3223 | |||
3224 | freed_descr = etrax_remove_from_sb_list(urb); | ||
3225 | dbg_isoc("freed %d descriptors of %d packets", freed_descr, urb->number_of_packets); | ||
3226 | assert(freed_descr == urb->number_of_packets); | ||
3227 | urb->hcpriv = 0; | ||
3228 | kfree(urb_priv); | ||
3229 | |||
3230 | /* Release allocated bandwidth. */ | ||
3231 | usb_release_bandwidth(urb->dev, urb, 0); | ||
3232 | } | ||
3233 | |||
3234 | urb->status = status; | ||
3235 | if (urb->complete) { | ||
3236 | urb->complete(urb, NULL); | ||
3237 | } | ||
3238 | |||
3239 | if (auto_resubmit) { | ||
3240 | /* Check that urb was not unlinked by the complete callback. */ | ||
3241 | if (__urb_list_entry(urb, epid)) { | ||
3242 | /* Move this one down the list. */ | ||
3243 | urb_list_move_last(urb, epid); | ||
3244 | |||
3245 | /* Mark the now first urb as started (may already be). */ | ||
3246 | ((etrax_urb_priv_t *)(urb_list_first(epid)->hcpriv))->urb_state = STARTED; | ||
3247 | |||
3248 | /* Must set this to 0 since this urb is still active after | ||
3249 | completion. */ | ||
3250 | urb_priv->isoc_packet_counter = 0; | ||
3251 | } else { | ||
3252 | warn("(ISOC) automatic resubmit urb 0x%p removed by complete.", urb); | ||
3253 | } | ||
3254 | } | ||
3255 | |||
3256 | DBFEXIT; | ||
3257 | } | ||
3258 | |||
3259 | static void etrax_usb_complete_urb(struct urb *urb, int status) | ||
3260 | { | ||
3261 | switch (usb_pipetype(urb->pipe)) { | ||
3262 | case PIPE_BULK: | ||
3263 | etrax_usb_complete_bulk_urb(urb, status); | ||
3264 | break; | ||
3265 | case PIPE_CONTROL: | ||
3266 | etrax_usb_complete_ctrl_urb(urb, status); | ||
3267 | break; | ||
3268 | case PIPE_INTERRUPT: | ||
3269 | etrax_usb_complete_intr_urb(urb, status); | ||
3270 | break; | ||
3271 | case PIPE_ISOCHRONOUS: | ||
3272 | etrax_usb_complete_isoc_urb(urb, status); | ||
3273 | break; | ||
3274 | default: | ||
3275 | err("Unknown pipetype"); | ||
3276 | } | ||
3277 | } | ||
3278 | |||
3279 | |||
3280 | |||
3281 | static irqreturn_t etrax_usb_hc_interrupt_top_half(int irq, void *vhc) | ||
3282 | { | ||
3283 | usb_interrupt_registers_t *reg; | ||
3284 | unsigned long flags; | ||
3285 | __u32 irq_mask; | ||
3286 | __u8 status; | ||
3287 | __u32 epid_attn; | ||
3288 | __u16 port_status_1; | ||
3289 | __u16 port_status_2; | ||
3290 | __u32 fm_number; | ||
3291 | |||
3292 | DBFENTER; | ||
3293 | |||
3294 | /* Read critical registers into local variables, do kmalloc afterwards. */ | ||
3295 | save_flags(flags); | ||
3296 | cli(); | ||
3297 | |||
3298 | irq_mask = *R_USB_IRQ_MASK_READ; | ||
3299 | /* Reading R_USB_STATUS clears the ctl_status interrupt. Note that R_USB_STATUS | ||
3300 | must be read before R_USB_EPID_ATTN since reading the latter clears the | ||
3301 | ourun and perror fields of R_USB_STATUS. */ | ||
3302 | status = *R_USB_STATUS; | ||
3303 | |||
3304 | /* Reading R_USB_EPID_ATTN clears the iso_eof, bulk_eot and epid_attn interrupts. */ | ||
3305 | epid_attn = *R_USB_EPID_ATTN; | ||
3306 | |||
3307 | /* Reading R_USB_RH_PORT_STATUS_1 and R_USB_RH_PORT_STATUS_2 clears the | ||
3308 | port_status interrupt. */ | ||
3309 | port_status_1 = *R_USB_RH_PORT_STATUS_1; | ||
3310 | port_status_2 = *R_USB_RH_PORT_STATUS_2; | ||
3311 | |||
3312 | /* Reading R_USB_FM_NUMBER clears the sof interrupt. */ | ||
3313 | /* Note: the lower 11 bits contain the actual frame number, sent with each sof. */ | ||
3314 | fm_number = *R_USB_FM_NUMBER; | ||
3315 | |||
3316 | restore_flags(flags); | ||
3317 | |||
3318 | reg = (usb_interrupt_registers_t *)kmem_cache_alloc(top_half_reg_cache, GFP_ATOMIC); | ||
3319 | |||
3320 | assert(reg != NULL); | ||
3321 | |||
3322 | reg->hc = (etrax_hc_t *)vhc; | ||
3323 | |||
3324 | /* Now put register values into kmalloc'd area. */ | ||
3325 | reg->r_usb_irq_mask_read = irq_mask; | ||
3326 | reg->r_usb_status = status; | ||
3327 | reg->r_usb_epid_attn = epid_attn; | ||
3328 | reg->r_usb_rh_port_status_1 = port_status_1; | ||
3329 | reg->r_usb_rh_port_status_2 = port_status_2; | ||
3330 | reg->r_usb_fm_number = fm_number; | ||
3331 | |||
3332 | INIT_WORK(®->usb_bh, etrax_usb_hc_interrupt_bottom_half, reg); | ||
3333 | schedule_work(®->usb_bh); | ||
3334 | |||
3335 | DBFEXIT; | ||
3336 | |||
3337 | return IRQ_HANDLED; | ||
3338 | } | ||
3339 | |||
3340 | static void etrax_usb_hc_interrupt_bottom_half(void *data) | ||
3341 | { | ||
3342 | usb_interrupt_registers_t *reg = (usb_interrupt_registers_t *)data; | ||
3343 | __u32 irq_mask = reg->r_usb_irq_mask_read; | ||
3344 | |||
3345 | DBFENTER; | ||
3346 | |||
3347 | /* Interrupts are handled in order of priority. */ | ||
3348 | if (irq_mask & IO_MASK(R_USB_IRQ_MASK_READ, epid_attn)) { | ||
3349 | etrax_usb_hc_epid_attn_interrupt(reg); | ||
3350 | } | ||
3351 | if (irq_mask & IO_MASK(R_USB_IRQ_MASK_READ, port_status)) { | ||
3352 | etrax_usb_hc_port_status_interrupt(reg); | ||
3353 | } | ||
3354 | if (irq_mask & IO_MASK(R_USB_IRQ_MASK_READ, ctl_status)) { | ||
3355 | etrax_usb_hc_ctl_status_interrupt(reg); | ||
3356 | } | ||
3357 | if (irq_mask & IO_MASK(R_USB_IRQ_MASK_READ, iso_eof)) { | ||
3358 | etrax_usb_hc_isoc_eof_interrupt(); | ||
3359 | } | ||
3360 | if (irq_mask & IO_MASK(R_USB_IRQ_MASK_READ, bulk_eot)) { | ||
3361 | /* Update/restart the bulk start timer since obviously the channel is running. */ | ||
3362 | mod_timer(&bulk_start_timer, jiffies + BULK_START_TIMER_INTERVAL); | ||
3363 | /* Update/restart the bulk eot timer since we just received an bulk eot interrupt. */ | ||
3364 | mod_timer(&bulk_eot_timer, jiffies + BULK_EOT_TIMER_INTERVAL); | ||
3365 | |||
3366 | etrax_usb_hc_bulk_eot_interrupt(0); | ||
3367 | } | ||
3368 | |||
3369 | kmem_cache_free(top_half_reg_cache, reg); | ||
3370 | |||
3371 | DBFEXIT; | ||
3372 | } | ||
3373 | |||
3374 | |||
3375 | void etrax_usb_hc_isoc_eof_interrupt(void) | ||
3376 | { | ||
3377 | struct urb *urb; | ||
3378 | etrax_urb_priv_t *urb_priv; | ||
3379 | int epid; | ||
3380 | unsigned long flags; | ||
3381 | |||
3382 | DBFENTER; | ||
3383 | |||
3384 | /* Do not check the invalid epid (it has a valid sub pointer). */ | ||
3385 | for (epid = 0; epid < NBR_OF_EPIDS - 1; epid++) { | ||
3386 | |||
3387 | /* Do not check the invalid epid (it has a valid sub pointer). */ | ||
3388 | if ((epid == DUMMY_EPID) || (epid == INVALID_EPID)) | ||
3389 | continue; | ||
3390 | |||
3391 | /* Disable interrupts to block the isoc out descriptor interrupt handler | ||
3392 | from being called while the isoc EPID list is being checked. | ||
3393 | */ | ||
3394 | save_flags(flags); | ||
3395 | cli(); | ||
3396 | |||
3397 | if (TxIsocEPList[epid].sub == 0) { | ||
3398 | /* Nothing here to see. */ | ||
3399 | restore_flags(flags); | ||
3400 | continue; | ||
3401 | } | ||
3402 | |||
3403 | /* Get the first urb (if any). */ | ||
3404 | urb = urb_list_first(epid); | ||
3405 | if (urb == 0) { | ||
3406 | warn("Ignoring NULL urb"); | ||
3407 | restore_flags(flags); | ||
3408 | continue; | ||
3409 | } | ||
3410 | if (usb_pipein(urb->pipe)) { | ||
3411 | |||
3412 | /* Sanity check. */ | ||
3413 | assert(usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS); | ||
3414 | |||
3415 | urb_priv = (etrax_urb_priv_t *)urb->hcpriv; | ||
3416 | assert(urb_priv); | ||
3417 | |||
3418 | if (urb_priv->urb_state == NOT_STARTED) { | ||
3419 | |||
3420 | /* If ASAP is not set and urb->start_frame is the current frame, | ||
3421 | start the transfer. */ | ||
3422 | if (!(urb->transfer_flags & URB_ISO_ASAP) && | ||
3423 | (urb->start_frame == (*R_USB_FM_NUMBER & 0x7ff))) { | ||
3424 | |||
3425 | dbg_isoc("Enabling isoc IN EP descr for epid %d", epid); | ||
3426 | TxIsocEPList[epid].command |= IO_STATE(USB_EP_command, enable, yes); | ||
3427 | |||
3428 | /* This urb is now active. */ | ||
3429 | urb_priv->urb_state = STARTED; | ||
3430 | continue; | ||
3431 | } | ||
3432 | } | ||
3433 | } | ||
3434 | restore_flags(flags); | ||
3435 | } | ||
3436 | |||
3437 | DBFEXIT; | ||
3438 | |||
3439 | } | ||
3440 | |||
3441 | void etrax_usb_hc_bulk_eot_interrupt(int timer_induced) | ||
3442 | { | ||
3443 | int epid; | ||
3444 | |||
3445 | /* The technique is to run one urb at a time, wait for the eot interrupt at which | ||
3446 | point the EP descriptor has been disabled. */ | ||
3447 | |||
3448 | DBFENTER; | ||
3449 | dbg_bulk("bulk eot%s", timer_induced ? ", called by timer" : ""); | ||
3450 | |||
3451 | for (epid = 0; epid < NBR_OF_EPIDS; epid++) { | ||
3452 | |||
3453 | if (!(TxBulkEPList[epid].command & IO_MASK(USB_EP_command, enable)) && | ||
3454 | (TxBulkEPList[epid].sub != 0)) { | ||
3455 | |||
3456 | struct urb *urb; | ||
3457 | etrax_urb_priv_t *urb_priv; | ||
3458 | unsigned long flags; | ||
3459 | __u32 r_usb_ept_data; | ||
3460 | |||
3461 | /* Found a disabled EP descriptor which has a non-null sub pointer. | ||
3462 | Verify that this ctrl EP descriptor got disabled no errors. | ||
3463 | FIXME: Necessary to check error_code? */ | ||
3464 | dbg_bulk("for epid %d?", epid); | ||
3465 | |||
3466 | /* Get the first urb. */ | ||
3467 | urb = urb_list_first(epid); | ||
3468 | |||
3469 | /* FIXME: Could this happen for valid reasons? Why did it disappear? Because of | ||
3470 | wrong unlinking? */ | ||
3471 | if (!urb) { | ||
3472 | warn("NULL urb for epid %d", epid); | ||
3473 | continue; | ||
3474 | } | ||
3475 | |||
3476 | assert(urb); | ||
3477 | urb_priv = (etrax_urb_priv_t *)urb->hcpriv; | ||
3478 | assert(urb_priv); | ||
3479 | |||
3480 | /* Sanity checks. */ | ||
3481 | assert(usb_pipetype(urb->pipe) == PIPE_BULK); | ||
3482 | if (phys_to_virt(TxBulkEPList[epid].sub) != urb_priv->last_sb) { | ||
3483 | err("bulk endpoint got disabled before reaching last sb"); | ||
3484 | } | ||
3485 | |||
3486 | /* For bulk IN traffic, there seems to be a race condition between | ||
3487 | between the bulk eot and eop interrupts, or rather an uncertainty regarding | ||
3488 | the order in which they happen. Normally we expect the eop interrupt from | ||
3489 | DMA channel 9 to happen before the eot interrupt. | ||
3490 | |||
3491 | Therefore, we complete the bulk IN urb in the rx interrupt handler instead. */ | ||
3492 | |||
3493 | if (usb_pipein(urb->pipe)) { | ||
3494 | dbg_bulk("in urb, continuing"); | ||
3495 | continue; | ||
3496 | } | ||
3497 | |||
3498 | save_flags(flags); | ||
3499 | cli(); | ||
3500 | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); | ||
3501 | nop(); | ||
3502 | r_usb_ept_data = *R_USB_EPT_DATA; | ||
3503 | restore_flags(flags); | ||
3504 | |||
3505 | if (IO_EXTRACT(R_USB_EPT_DATA, error_code, r_usb_ept_data) == | ||
3506 | IO_STATE_VALUE(R_USB_EPT_DATA, error_code, no_error)) { | ||
3507 | /* This means that the endpoint has no error, is disabled | ||
3508 | and had inserted traffic, i.e. transfer successfully completed. */ | ||
3509 | etrax_usb_complete_bulk_urb(urb, 0); | ||
3510 | } else { | ||
3511 | /* Shouldn't happen. We expect errors to be caught by epid attention. */ | ||
3512 | err("Found disabled bulk EP desc, error_code != no_error"); | ||
3513 | } | ||
3514 | } | ||
3515 | } | ||
3516 | |||
3517 | /* Normally, we should find (at least) one disabled EP descriptor with a valid sub pointer. | ||
3518 | However, because of the uncertainty in the deliverance of the eop/eot interrupts, we may | ||
3519 | not. Also, we might find two disabled EPs when handling an eot interrupt, and then find | ||
3520 | none the next time. */ | ||
3521 | |||
3522 | DBFEXIT; | ||
3523 | |||
3524 | } | ||
3525 | |||
3526 | void etrax_usb_hc_epid_attn_interrupt(usb_interrupt_registers_t *reg) | ||
3527 | { | ||
3528 | /* This function handles the epid attention interrupt. There are a variety of reasons | ||
3529 | for this interrupt to happen (Designer's Reference, p. 8 - 22 for the details): | ||
3530 | |||
3531 | invalid ep_id - Invalid epid in an EP (EP disabled). | ||
3532 | stall - Not strictly an error condition (EP disabled). | ||
3533 | 3rd error - Three successive transaction errors (EP disabled). | ||
3534 | buffer ourun - Buffer overrun or underrun (EP disabled). | ||
3535 | past eof1 - Intr or isoc transaction proceeds past EOF1. | ||
3536 | near eof - Intr or isoc transaction would not fit inside the frame. | ||
3537 | zout transfer - If zout transfer for a bulk endpoint (EP disabled). | ||
3538 | setup transfer - If setup transfer for a non-ctrl endpoint (EP disabled). */ | ||
3539 | |||
3540 | int epid; | ||
3541 | |||
3542 | |||
3543 | DBFENTER; | ||
3544 | |||
3545 | assert(reg != NULL); | ||
3546 | |||
3547 | /* Note that we loop through all epids. We still want to catch errors for | ||
3548 | the invalid one, even though we might handle them differently. */ | ||
3549 | for (epid = 0; epid < NBR_OF_EPIDS; epid++) { | ||
3550 | |||
3551 | if (test_bit(epid, (void *)®->r_usb_epid_attn)) { | ||
3552 | |||
3553 | struct urb *urb; | ||
3554 | __u32 r_usb_ept_data; | ||
3555 | unsigned long flags; | ||
3556 | int error_code; | ||
3557 | |||
3558 | save_flags(flags); | ||
3559 | cli(); | ||
3560 | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); | ||
3561 | nop(); | ||
3562 | /* Note that although there are separate R_USB_EPT_DATA and R_USB_EPT_DATA_ISO | ||
3563 | registers, they are located at the same address and are of the same size. | ||
3564 | In other words, this read should be ok for isoc also. */ | ||
3565 | r_usb_ept_data = *R_USB_EPT_DATA; | ||
3566 | restore_flags(flags); | ||
3567 | |||
3568 | /* First some sanity checks. */ | ||
3569 | if (epid == INVALID_EPID) { | ||
3570 | /* FIXME: What if it became disabled? Could seriously hurt interrupt | ||
3571 | traffic. (Use do_intr_recover.) */ | ||
3572 | warn("Got epid_attn for INVALID_EPID (%d).", epid); | ||
3573 | err("R_USB_EPT_DATA = 0x%x", r_usb_ept_data); | ||
3574 | err("R_USB_STATUS = 0x%x", reg->r_usb_status); | ||
3575 | continue; | ||
3576 | } else if (epid == DUMMY_EPID) { | ||
3577 | /* We definitely don't care about these ones. Besides, they are | ||
3578 | always disabled, so any possible disabling caused by the | ||
3579 | epid attention interrupt is irrelevant. */ | ||
3580 | warn("Got epid_attn for DUMMY_EPID (%d).", epid); | ||
3581 | continue; | ||
3582 | } | ||
3583 | |||
3584 | /* Get the first urb in the urb list for this epid. We blatantly assume | ||
3585 | that only the first urb could have caused the epid attention. | ||
3586 | (For bulk and ctrl, only one urb is active at any one time. For intr | ||
3587 | and isoc we remove them once they are completed.) */ | ||
3588 | urb = urb_list_first(epid); | ||
3589 | |||
3590 | if (urb == NULL) { | ||
3591 | err("Got epid_attn for epid %i with no urb.", epid); | ||
3592 | err("R_USB_EPT_DATA = 0x%x", r_usb_ept_data); | ||
3593 | err("R_USB_STATUS = 0x%x", reg->r_usb_status); | ||
3594 | continue; | ||
3595 | } | ||
3596 | |||
3597 | switch (usb_pipetype(urb->pipe)) { | ||
3598 | case PIPE_BULK: | ||
3599 | warn("Got epid attn for bulk endpoint, epid %d", epid); | ||
3600 | break; | ||
3601 | case PIPE_CONTROL: | ||
3602 | warn("Got epid attn for control endpoint, epid %d", epid); | ||
3603 | break; | ||
3604 | case PIPE_INTERRUPT: | ||
3605 | warn("Got epid attn for interrupt endpoint, epid %d", epid); | ||
3606 | break; | ||
3607 | case PIPE_ISOCHRONOUS: | ||
3608 | warn("Got epid attn for isochronous endpoint, epid %d", epid); | ||
3609 | break; | ||
3610 | } | ||
3611 | |||
3612 | if (usb_pipetype(urb->pipe) != PIPE_ISOCHRONOUS) { | ||
3613 | if (r_usb_ept_data & IO_MASK(R_USB_EPT_DATA, hold)) { | ||
3614 | warn("Hold was set for epid %d.", epid); | ||
3615 | continue; | ||
3616 | } | ||
3617 | } | ||
3618 | |||
3619 | /* Even though error_code occupies bits 22 - 23 in both R_USB_EPT_DATA and | ||
3620 | R_USB_EPT_DATA_ISOC, we separate them here so we don't forget in other places. */ | ||
3621 | if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { | ||
3622 | error_code = IO_EXTRACT(R_USB_EPT_DATA_ISO, error_code, r_usb_ept_data); | ||
3623 | } else { | ||
3624 | error_code = IO_EXTRACT(R_USB_EPT_DATA, error_code, r_usb_ept_data); | ||
3625 | } | ||
3626 | |||
3627 | /* Using IO_STATE_VALUE on R_USB_EPT_DATA should be ok for isoc also. */ | ||
3628 | if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA, error_code, no_error)) { | ||
3629 | |||
3630 | /* Isoc traffic doesn't have error_count_in/error_count_out. */ | ||
3631 | if ((usb_pipetype(urb->pipe) != PIPE_ISOCHRONOUS) && | ||
3632 | (IO_EXTRACT(R_USB_EPT_DATA, error_count_in, r_usb_ept_data) == 3 || | ||
3633 | IO_EXTRACT(R_USB_EPT_DATA, error_count_out, r_usb_ept_data) == 3)) { | ||
3634 | /* 3rd error. */ | ||
3635 | warn("3rd error for epid %i", epid); | ||
3636 | etrax_usb_complete_urb(urb, -EPROTO); | ||
3637 | |||
3638 | } else if (reg->r_usb_status & IO_MASK(R_USB_STATUS, perror)) { | ||
3639 | |||
3640 | warn("Perror for epid %d", epid); | ||
3641 | |||
3642 | if (!(r_usb_ept_data & IO_MASK(R_USB_EPT_DATA, valid))) { | ||
3643 | /* invalid ep_id */ | ||
3644 | panic("Perror because of invalid epid." | ||
3645 | " Deconfigured too early?"); | ||
3646 | } else { | ||
3647 | /* past eof1, near eof, zout transfer, setup transfer */ | ||
3648 | |||
3649 | /* Dump the urb and the relevant EP descriptor list. */ | ||
3650 | |||
3651 | __dump_urb(urb); | ||
3652 | __dump_ept_data(epid); | ||
3653 | __dump_ep_list(usb_pipetype(urb->pipe)); | ||
3654 | |||
3655 | panic("Something wrong with DMA descriptor contents." | ||
3656 | " Too much traffic inserted?"); | ||
3657 | } | ||
3658 | } else if (reg->r_usb_status & IO_MASK(R_USB_STATUS, ourun)) { | ||
3659 | /* buffer ourun */ | ||
3660 | panic("Buffer overrun/underrun for epid %d. DMA too busy?", epid); | ||
3661 | } | ||
3662 | |||
3663 | } else if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA, error_code, stall)) { | ||
3664 | /* Not really a protocol error, just says that the endpoint gave | ||
3665 | a stall response. Note that error_code cannot be stall for isoc. */ | ||
3666 | if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { | ||
3667 | panic("Isoc traffic cannot stall"); | ||
3668 | } | ||
3669 | |||
3670 | warn("Stall for epid %d", epid); | ||
3671 | etrax_usb_complete_urb(urb, -EPIPE); | ||
3672 | |||
3673 | } else if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA, error_code, bus_error)) { | ||
3674 | /* Two devices responded to a transaction request. Must be resolved | ||
3675 | by software. FIXME: Reset ports? */ | ||
3676 | panic("Bus error for epid %d." | ||
3677 | " Two devices responded to transaction request", | ||
3678 | epid); | ||
3679 | |||
3680 | } else if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA, error_code, buffer_error)) { | ||
3681 | /* DMA overrun or underrun. */ | ||
3682 | warn("Buffer overrun/underrun for epid %d. DMA too busy?", epid); | ||
3683 | |||
3684 | /* It seems that error_code = buffer_error in | ||
3685 | R_USB_EPT_DATA/R_USB_EPT_DATA_ISO and ourun = yes in R_USB_STATUS | ||
3686 | are the same error. */ | ||
3687 | etrax_usb_complete_urb(urb, -EPROTO); | ||
3688 | } | ||
3689 | } | ||
3690 | } | ||
3691 | |||
3692 | DBFEXIT; | ||
3693 | |||
3694 | } | ||
3695 | |||
3696 | void etrax_usb_bulk_start_timer_func(unsigned long dummy) | ||
3697 | { | ||
3698 | |||
3699 | /* We might enable an EP descriptor behind the current DMA position when it's about | ||
3700 | to decide that there are no more bulk traffic and it should stop the bulk channel. | ||
3701 | Therefore we periodically check if the bulk channel is stopped and there is an | ||
3702 | enabled bulk EP descriptor, in which case we start the bulk channel. */ | ||
3703 | dbg_bulk("bulk_start_timer timed out."); | ||
3704 | |||
3705 | if (!(*R_DMA_CH8_SUB0_CMD & IO_MASK(R_DMA_CH8_SUB0_CMD, cmd))) { | ||
3706 | int epid; | ||
3707 | |||
3708 | dbg_bulk("Bulk DMA channel not running."); | ||
3709 | |||
3710 | for (epid = 0; epid < NBR_OF_EPIDS; epid++) { | ||
3711 | if (TxBulkEPList[epid].command & IO_MASK(USB_EP_command, enable)) { | ||
3712 | dbg_bulk("Found enabled EP for epid %d, starting bulk channel.\n", | ||
3713 | epid); | ||
3714 | *R_DMA_CH8_SUB0_CMD = IO_STATE(R_DMA_CH8_SUB0_CMD, cmd, start); | ||
3715 | |||
3716 | /* Restart the bulk eot timer since we just started the bulk channel. */ | ||
3717 | mod_timer(&bulk_eot_timer, jiffies + BULK_EOT_TIMER_INTERVAL); | ||
3718 | |||
3719 | /* No need to search any further. */ | ||
3720 | break; | ||
3721 | } | ||
3722 | } | ||
3723 | } else { | ||
3724 | dbg_bulk("Bulk DMA channel running."); | ||
3725 | } | ||
3726 | } | ||
3727 | |||
3728 | void etrax_usb_hc_port_status_interrupt(usb_interrupt_registers_t *reg) | ||
3729 | { | ||
3730 | etrax_hc_t *hc = reg->hc; | ||
3731 | __u16 r_usb_rh_port_status_1 = reg->r_usb_rh_port_status_1; | ||
3732 | __u16 r_usb_rh_port_status_2 = reg->r_usb_rh_port_status_2; | ||
3733 | |||
3734 | DBFENTER; | ||
3735 | |||
3736 | /* The Etrax RH does not include a wPortChange register, so this has to be handled in software | ||
3737 | (by saving the old port status value for comparison when the port status interrupt happens). | ||
3738 | See section 11.16.2.6.2 in the USB 1.1 spec for details. */ | ||
3739 | |||
3740 | dbg_rh("hc->rh.prev_wPortStatus_1 = 0x%x", hc->rh.prev_wPortStatus_1); | ||
3741 | dbg_rh("hc->rh.prev_wPortStatus_2 = 0x%x", hc->rh.prev_wPortStatus_2); | ||
3742 | dbg_rh("r_usb_rh_port_status_1 = 0x%x", r_usb_rh_port_status_1); | ||
3743 | dbg_rh("r_usb_rh_port_status_2 = 0x%x", r_usb_rh_port_status_2); | ||
3744 | |||
3745 | /* C_PORT_CONNECTION is set on any transition. */ | ||
3746 | hc->rh.wPortChange_1 |= | ||
3747 | ((r_usb_rh_port_status_1 & (1 << RH_PORT_CONNECTION)) != | ||
3748 | (hc->rh.prev_wPortStatus_1 & (1 << RH_PORT_CONNECTION))) ? | ||
3749 | (1 << RH_PORT_CONNECTION) : 0; | ||
3750 | |||
3751 | hc->rh.wPortChange_2 |= | ||
3752 | ((r_usb_rh_port_status_2 & (1 << RH_PORT_CONNECTION)) != | ||
3753 | (hc->rh.prev_wPortStatus_2 & (1 << RH_PORT_CONNECTION))) ? | ||
3754 | (1 << RH_PORT_CONNECTION) : 0; | ||
3755 | |||
3756 | /* C_PORT_ENABLE is _only_ set on a one to zero transition, i.e. when | ||
3757 | the port is disabled, not when it's enabled. */ | ||
3758 | hc->rh.wPortChange_1 |= | ||
3759 | ((hc->rh.prev_wPortStatus_1 & (1 << RH_PORT_ENABLE)) | ||
3760 | && !(r_usb_rh_port_status_1 & (1 << RH_PORT_ENABLE))) ? | ||
3761 | (1 << RH_PORT_ENABLE) : 0; | ||
3762 | |||
3763 | hc->rh.wPortChange_2 |= | ||
3764 | ((hc->rh.prev_wPortStatus_2 & (1 << RH_PORT_ENABLE)) | ||
3765 | && !(r_usb_rh_port_status_2 & (1 << RH_PORT_ENABLE))) ? | ||
3766 | (1 << RH_PORT_ENABLE) : 0; | ||
3767 | |||
3768 | /* C_PORT_SUSPEND is set to one when the device has transitioned out | ||
3769 | of the suspended state, i.e. when suspend goes from one to zero. */ | ||
3770 | hc->rh.wPortChange_1 |= | ||
3771 | ((hc->rh.prev_wPortStatus_1 & (1 << RH_PORT_SUSPEND)) | ||
3772 | && !(r_usb_rh_port_status_1 & (1 << RH_PORT_SUSPEND))) ? | ||
3773 | (1 << RH_PORT_SUSPEND) : 0; | ||
3774 | |||
3775 | hc->rh.wPortChange_2 |= | ||
3776 | ((hc->rh.prev_wPortStatus_2 & (1 << RH_PORT_SUSPEND)) | ||
3777 | && !(r_usb_rh_port_status_2 & (1 << RH_PORT_SUSPEND))) ? | ||
3778 | (1 << RH_PORT_SUSPEND) : 0; | ||
3779 | |||
3780 | |||
3781 | /* C_PORT_RESET is set when reset processing on this port is complete. */ | ||
3782 | hc->rh.wPortChange_1 |= | ||
3783 | ((hc->rh.prev_wPortStatus_1 & (1 << RH_PORT_RESET)) | ||
3784 | && !(r_usb_rh_port_status_1 & (1 << RH_PORT_RESET))) ? | ||
3785 | (1 << RH_PORT_RESET) : 0; | ||
3786 | |||
3787 | hc->rh.wPortChange_2 |= | ||
3788 | ((hc->rh.prev_wPortStatus_2 & (1 << RH_PORT_RESET)) | ||
3789 | && !(r_usb_rh_port_status_2 & (1 << RH_PORT_RESET))) ? | ||
3790 | (1 << RH_PORT_RESET) : 0; | ||
3791 | |||
3792 | /* Save the new values for next port status change. */ | ||
3793 | hc->rh.prev_wPortStatus_1 = r_usb_rh_port_status_1; | ||
3794 | hc->rh.prev_wPortStatus_2 = r_usb_rh_port_status_2; | ||
3795 | |||
3796 | dbg_rh("hc->rh.wPortChange_1 set to 0x%x", hc->rh.wPortChange_1); | ||
3797 | dbg_rh("hc->rh.wPortChange_2 set to 0x%x", hc->rh.wPortChange_2); | ||
3798 | |||
3799 | DBFEXIT; | ||
3800 | |||
3801 | } | ||
3802 | |||
3803 | void etrax_usb_hc_ctl_status_interrupt(usb_interrupt_registers_t *reg) | ||
3804 | { | ||
3805 | DBFENTER; | ||
3806 | |||
3807 | /* FIXME: What should we do if we get ourun or perror? Dump the EP and SB | ||
3808 | list for the corresponding epid? */ | ||
3809 | if (reg->r_usb_status & IO_MASK(R_USB_STATUS, ourun)) { | ||
3810 | panic("USB controller got ourun."); | ||
3811 | } | ||
3812 | if (reg->r_usb_status & IO_MASK(R_USB_STATUS, perror)) { | ||
3813 | |||
3814 | /* Before, etrax_usb_do_intr_recover was called on this epid if it was | ||
3815 | an interrupt pipe. I don't see how re-enabling all EP descriptors | ||
3816 | will help if there was a programming error. */ | ||
3817 | panic("USB controller got perror."); | ||
3818 | } | ||
3819 | |||
3820 | if (reg->r_usb_status & IO_MASK(R_USB_STATUS, device_mode)) { | ||
3821 | /* We should never operate in device mode. */ | ||
3822 | panic("USB controller in device mode."); | ||
3823 | } | ||
3824 | |||
3825 | /* These if-statements could probably be nested. */ | ||
3826 | if (reg->r_usb_status & IO_MASK(R_USB_STATUS, host_mode)) { | ||
3827 | info("USB controller in host mode."); | ||
3828 | } | ||
3829 | if (reg->r_usb_status & IO_MASK(R_USB_STATUS, started)) { | ||
3830 | info("USB controller started."); | ||
3831 | } | ||
3832 | if (reg->r_usb_status & IO_MASK(R_USB_STATUS, running)) { | ||
3833 | info("USB controller running."); | ||
3834 | } | ||
3835 | |||
3836 | DBFEXIT; | ||
3837 | |||
3838 | } | ||
3839 | |||
3840 | |||
3841 | static int etrax_rh_submit_urb(struct urb *urb) | ||
3842 | { | ||
3843 | struct usb_device *usb_dev = urb->dev; | ||
3844 | etrax_hc_t *hc = usb_dev->bus->hcpriv; | ||
3845 | unsigned int pipe = urb->pipe; | ||
3846 | struct usb_ctrlrequest *cmd = (struct usb_ctrlrequest *) urb->setup_packet; | ||
3847 | void *data = urb->transfer_buffer; | ||
3848 | int leni = urb->transfer_buffer_length; | ||
3849 | int len = 0; | ||
3850 | int stat = 0; | ||
3851 | |||
3852 | __u16 bmRType_bReq; | ||
3853 | __u16 wValue; | ||
3854 | __u16 wIndex; | ||
3855 | __u16 wLength; | ||
3856 | |||
3857 | DBFENTER; | ||
3858 | |||
3859 | /* FIXME: What is this interrupt urb that is sent to the root hub? */ | ||
3860 | if (usb_pipetype (pipe) == PIPE_INTERRUPT) { | ||
3861 | dbg_rh("Root-Hub submit IRQ: every %d ms", urb->interval); | ||
3862 | hc->rh.urb = urb; | ||
3863 | hc->rh.send = 1; | ||
3864 | /* FIXME: We could probably remove this line since it's done | ||
3865 | in etrax_rh_init_int_timer. (Don't remove it from | ||
3866 | etrax_rh_init_int_timer though.) */ | ||
3867 | hc->rh.interval = urb->interval; | ||
3868 | etrax_rh_init_int_timer(urb); | ||
3869 | DBFEXIT; | ||
3870 | |||
3871 | return 0; | ||
3872 | } | ||
3873 | |||
3874 | bmRType_bReq = cmd->bRequestType | (cmd->bRequest << 8); | ||
3875 | wValue = le16_to_cpu(cmd->wValue); | ||
3876 | wIndex = le16_to_cpu(cmd->wIndex); | ||
3877 | wLength = le16_to_cpu(cmd->wLength); | ||
3878 | |||
3879 | dbg_rh("bmRType_bReq : 0x%04x (%d)", bmRType_bReq, bmRType_bReq); | ||
3880 | dbg_rh("wValue : 0x%04x (%d)", wValue, wValue); | ||
3881 | dbg_rh("wIndex : 0x%04x (%d)", wIndex, wIndex); | ||
3882 | dbg_rh("wLength : 0x%04x (%d)", wLength, wLength); | ||
3883 | |||
3884 | switch (bmRType_bReq) { | ||
3885 | |||
3886 | /* Request Destination: | ||
3887 | without flags: Device, | ||
3888 | RH_INTERFACE: interface, | ||
3889 | RH_ENDPOINT: endpoint, | ||
3890 | RH_CLASS means HUB here, | ||
3891 | RH_OTHER | RH_CLASS almost ever means HUB_PORT here | ||
3892 | */ | ||
3893 | |||
3894 | case RH_GET_STATUS: | ||
3895 | *(__u16 *) data = cpu_to_le16 (1); | ||
3896 | OK (2); | ||
3897 | |||
3898 | case RH_GET_STATUS | RH_INTERFACE: | ||
3899 | *(__u16 *) data = cpu_to_le16 (0); | ||
3900 | OK (2); | ||
3901 | |||
3902 | case RH_GET_STATUS | RH_ENDPOINT: | ||
3903 | *(__u16 *) data = cpu_to_le16 (0); | ||
3904 | OK (2); | ||
3905 | |||
3906 | case RH_GET_STATUS | RH_CLASS: | ||
3907 | *(__u32 *) data = cpu_to_le32 (0); | ||
3908 | OK (4); /* hub power ** */ | ||
3909 | |||
3910 | case RH_GET_STATUS | RH_OTHER | RH_CLASS: | ||
3911 | if (wIndex == 1) { | ||
3912 | *((__u16*)data) = cpu_to_le16(hc->rh.prev_wPortStatus_1); | ||
3913 | *((__u16*)data + 1) = cpu_to_le16(hc->rh.wPortChange_1); | ||
3914 | } else if (wIndex == 2) { | ||
3915 | *((__u16*)data) = cpu_to_le16(hc->rh.prev_wPortStatus_2); | ||
3916 | *((__u16*)data + 1) = cpu_to_le16(hc->rh.wPortChange_2); | ||
3917 | } else { | ||
3918 | dbg_rh("RH_GET_STATUS whith invalid wIndex!"); | ||
3919 | OK(0); | ||
3920 | } | ||
3921 | |||
3922 | OK(4); | ||
3923 | |||
3924 | case RH_CLEAR_FEATURE | RH_ENDPOINT: | ||
3925 | switch (wValue) { | ||
3926 | case (RH_ENDPOINT_STALL): | ||
3927 | OK (0); | ||
3928 | } | ||
3929 | break; | ||
3930 | |||
3931 | case RH_CLEAR_FEATURE | RH_CLASS: | ||
3932 | switch (wValue) { | ||
3933 | case (RH_C_HUB_OVER_CURRENT): | ||
3934 | OK (0); /* hub power over current ** */ | ||
3935 | } | ||
3936 | break; | ||
3937 | |||
3938 | case RH_CLEAR_FEATURE | RH_OTHER | RH_CLASS: | ||
3939 | switch (wValue) { | ||
3940 | case (RH_PORT_ENABLE): | ||
3941 | if (wIndex == 1) { | ||
3942 | |||
3943 | dbg_rh("trying to do disable port 1"); | ||
3944 | |||
3945 | *R_USB_PORT1_DISABLE = IO_STATE(R_USB_PORT1_DISABLE, disable, yes); | ||
3946 | |||
3947 | while (hc->rh.prev_wPortStatus_1 & | ||
3948 | IO_STATE(R_USB_RH_PORT_STATUS_1, enabled, yes)); | ||
3949 | *R_USB_PORT1_DISABLE = IO_STATE(R_USB_PORT1_DISABLE, disable, no); | ||
3950 | dbg_rh("Port 1 is disabled"); | ||
3951 | |||
3952 | } else if (wIndex == 2) { | ||
3953 | |||
3954 | dbg_rh("trying to do disable port 2"); | ||
3955 | |||
3956 | *R_USB_PORT2_DISABLE = IO_STATE(R_USB_PORT2_DISABLE, disable, yes); | ||
3957 | |||
3958 | while (hc->rh.prev_wPortStatus_2 & | ||
3959 | IO_STATE(R_USB_RH_PORT_STATUS_2, enabled, yes)); | ||
3960 | *R_USB_PORT2_DISABLE = IO_STATE(R_USB_PORT2_DISABLE, disable, no); | ||
3961 | dbg_rh("Port 2 is disabled"); | ||
3962 | |||
3963 | } else { | ||
3964 | dbg_rh("RH_CLEAR_FEATURE->RH_PORT_ENABLE " | ||
3965 | "with invalid wIndex == %d!", wIndex); | ||
3966 | } | ||
3967 | |||
3968 | OK (0); | ||
3969 | case (RH_PORT_SUSPEND): | ||
3970 | /* Opposite to suspend should be resume, so we'll do a resume. */ | ||
3971 | /* FIXME: USB 1.1, 11.16.2.2 says: | ||
3972 | "Clearing the PORT_SUSPEND feature causes a host-initiated resume | ||
3973 | on the specified port. If the port is not in the Suspended state, | ||
3974 | the hub should treat this request as a functional no-operation." | ||
3975 | Shouldn't we check if the port is in a suspended state before | ||
3976 | resuming? */ | ||
3977 | |||
3978 | /* Make sure the controller isn't busy. */ | ||
3979 | while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy)); | ||
3980 | |||
3981 | if (wIndex == 1) { | ||
3982 | *R_USB_COMMAND = | ||
3983 | IO_STATE(R_USB_COMMAND, port_sel, port1) | | ||
3984 | IO_STATE(R_USB_COMMAND, port_cmd, resume) | | ||
3985 | IO_STATE(R_USB_COMMAND, ctrl_cmd, nop); | ||
3986 | } else if (wIndex == 2) { | ||
3987 | *R_USB_COMMAND = | ||
3988 | IO_STATE(R_USB_COMMAND, port_sel, port2) | | ||
3989 | IO_STATE(R_USB_COMMAND, port_cmd, resume) | | ||
3990 | IO_STATE(R_USB_COMMAND, ctrl_cmd, nop); | ||
3991 | } else { | ||
3992 | dbg_rh("RH_CLEAR_FEATURE->RH_PORT_SUSPEND " | ||
3993 | "with invalid wIndex == %d!", wIndex); | ||
3994 | } | ||
3995 | |||
3996 | OK (0); | ||
3997 | case (RH_PORT_POWER): | ||
3998 | OK (0); /* port power ** */ | ||
3999 | case (RH_C_PORT_CONNECTION): | ||
4000 | if (wIndex == 1) { | ||
4001 | hc->rh.wPortChange_1 &= ~(1 << RH_PORT_CONNECTION); | ||
4002 | } else if (wIndex == 2) { | ||
4003 | hc->rh.wPortChange_2 &= ~(1 << RH_PORT_CONNECTION); | ||
4004 | } else { | ||
4005 | dbg_rh("RH_CLEAR_FEATURE->RH_C_PORT_CONNECTION " | ||
4006 | "with invalid wIndex == %d!", wIndex); | ||
4007 | } | ||
4008 | |||
4009 | OK (0); | ||
4010 | case (RH_C_PORT_ENABLE): | ||
4011 | if (wIndex == 1) { | ||
4012 | hc->rh.wPortChange_1 &= ~(1 << RH_PORT_ENABLE); | ||
4013 | } else if (wIndex == 2) { | ||
4014 | hc->rh.wPortChange_2 &= ~(1 << RH_PORT_ENABLE); | ||
4015 | } else { | ||
4016 | dbg_rh("RH_CLEAR_FEATURE->RH_C_PORT_ENABLE " | ||
4017 | "with invalid wIndex == %d!", wIndex); | ||
4018 | } | ||
4019 | OK (0); | ||
4020 | case (RH_C_PORT_SUSPEND): | ||
4021 | /*** WR_RH_PORTSTAT(RH_PS_PSSC); */ | ||
4022 | OK (0); | ||
4023 | case (RH_C_PORT_OVER_CURRENT): | ||
4024 | OK (0); /* port power over current ** */ | ||
4025 | case (RH_C_PORT_RESET): | ||
4026 | if (wIndex == 1) { | ||
4027 | hc->rh.wPortChange_1 &= ~(1 << RH_PORT_RESET); | ||
4028 | } else if (wIndex == 2) { | ||
4029 | hc->rh.wPortChange_2 &= ~(1 << RH_PORT_RESET); | ||
4030 | } else { | ||
4031 | dbg_rh("RH_CLEAR_FEATURE->RH_C_PORT_RESET " | ||
4032 | "with invalid index == %d!", wIndex); | ||
4033 | } | ||
4034 | |||
4035 | OK (0); | ||
4036 | |||
4037 | } | ||
4038 | break; | ||
4039 | |||
4040 | case RH_SET_FEATURE | RH_OTHER | RH_CLASS: | ||
4041 | switch (wValue) { | ||
4042 | case (RH_PORT_SUSPEND): | ||
4043 | |||
4044 | /* Make sure the controller isn't busy. */ | ||
4045 | while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy)); | ||
4046 | |||
4047 | if (wIndex == 1) { | ||
4048 | *R_USB_COMMAND = | ||
4049 | IO_STATE(R_USB_COMMAND, port_sel, port1) | | ||
4050 | IO_STATE(R_USB_COMMAND, port_cmd, suspend) | | ||
4051 | IO_STATE(R_USB_COMMAND, ctrl_cmd, nop); | ||
4052 | } else if (wIndex == 2) { | ||
4053 | *R_USB_COMMAND = | ||
4054 | IO_STATE(R_USB_COMMAND, port_sel, port2) | | ||
4055 | IO_STATE(R_USB_COMMAND, port_cmd, suspend) | | ||
4056 | IO_STATE(R_USB_COMMAND, ctrl_cmd, nop); | ||
4057 | } else { | ||
4058 | dbg_rh("RH_SET_FEATURE->RH_PORT_SUSPEND " | ||
4059 | "with invalid wIndex == %d!", wIndex); | ||
4060 | } | ||
4061 | |||
4062 | OK (0); | ||
4063 | case (RH_PORT_RESET): | ||
4064 | if (wIndex == 1) { | ||
4065 | |||
4066 | port_1_reset: | ||
4067 | dbg_rh("Doing reset of port 1"); | ||
4068 | |||
4069 | /* Make sure the controller isn't busy. */ | ||
4070 | while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy)); | ||
4071 | |||
4072 | *R_USB_COMMAND = | ||
4073 | IO_STATE(R_USB_COMMAND, port_sel, port1) | | ||
4074 | IO_STATE(R_USB_COMMAND, port_cmd, reset) | | ||
4075 | IO_STATE(R_USB_COMMAND, ctrl_cmd, nop); | ||
4076 | |||
4077 | /* We must wait at least 10 ms for the device to recover. | ||
4078 | 15 ms should be enough. */ | ||
4079 | udelay(15000); | ||
4080 | |||
4081 | /* Wait for reset bit to go low (should be done by now). */ | ||
4082 | while (hc->rh.prev_wPortStatus_1 & | ||
4083 | IO_STATE(R_USB_RH_PORT_STATUS_1, reset, yes)); | ||
4084 | |||
4085 | /* If the port status is | ||
4086 | 1) connected and enabled then there is a device and everything is fine | ||
4087 | 2) neither connected nor enabled then there is no device, also fine | ||
4088 | 3) connected and not enabled then we try again | ||
4089 | (Yes, there are other port status combinations besides these.) */ | ||
4090 | |||
4091 | if ((hc->rh.prev_wPortStatus_1 & | ||
4092 | IO_STATE(R_USB_RH_PORT_STATUS_1, connected, yes)) && | ||
4093 | (hc->rh.prev_wPortStatus_1 & | ||
4094 | IO_STATE(R_USB_RH_PORT_STATUS_1, enabled, no))) { | ||
4095 | dbg_rh("Connected device on port 1, but port not enabled?" | ||
4096 | " Trying reset again."); | ||
4097 | goto port_2_reset; | ||
4098 | } | ||
4099 | |||
4100 | /* Diagnostic printouts. */ | ||
4101 | if ((hc->rh.prev_wPortStatus_1 & | ||
4102 | IO_STATE(R_USB_RH_PORT_STATUS_1, connected, no)) && | ||
4103 | (hc->rh.prev_wPortStatus_1 & | ||
4104 | IO_STATE(R_USB_RH_PORT_STATUS_1, enabled, no))) { | ||
4105 | dbg_rh("No connected device on port 1"); | ||
4106 | } else if ((hc->rh.prev_wPortStatus_1 & | ||
4107 | IO_STATE(R_USB_RH_PORT_STATUS_1, connected, yes)) && | ||
4108 | (hc->rh.prev_wPortStatus_1 & | ||
4109 | IO_STATE(R_USB_RH_PORT_STATUS_1, enabled, yes))) { | ||
4110 | dbg_rh("Connected device on port 1, port 1 enabled"); | ||
4111 | } | ||
4112 | |||
4113 | } else if (wIndex == 2) { | ||
4114 | |||
4115 | port_2_reset: | ||
4116 | dbg_rh("Doing reset of port 2"); | ||
4117 | |||
4118 | /* Make sure the controller isn't busy. */ | ||
4119 | while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy)); | ||
4120 | |||
4121 | /* Issue the reset command. */ | ||
4122 | *R_USB_COMMAND = | ||
4123 | IO_STATE(R_USB_COMMAND, port_sel, port2) | | ||
4124 | IO_STATE(R_USB_COMMAND, port_cmd, reset) | | ||
4125 | IO_STATE(R_USB_COMMAND, ctrl_cmd, nop); | ||
4126 | |||
4127 | /* We must wait at least 10 ms for the device to recover. | ||
4128 | 15 ms should be enough. */ | ||
4129 | udelay(15000); | ||
4130 | |||
4131 | /* Wait for reset bit to go low (should be done by now). */ | ||
4132 | while (hc->rh.prev_wPortStatus_2 & | ||
4133 | IO_STATE(R_USB_RH_PORT_STATUS_2, reset, yes)); | ||
4134 | |||
4135 | /* If the port status is | ||
4136 | 1) connected and enabled then there is a device and everything is fine | ||
4137 | 2) neither connected nor enabled then there is no device, also fine | ||
4138 | 3) connected and not enabled then we try again | ||
4139 | (Yes, there are other port status combinations besides these.) */ | ||
4140 | |||
4141 | if ((hc->rh.prev_wPortStatus_2 & | ||
4142 | IO_STATE(R_USB_RH_PORT_STATUS_2, connected, yes)) && | ||
4143 | (hc->rh.prev_wPortStatus_2 & | ||
4144 | IO_STATE(R_USB_RH_PORT_STATUS_2, enabled, no))) { | ||
4145 | dbg_rh("Connected device on port 2, but port not enabled?" | ||
4146 | " Trying reset again."); | ||
4147 | goto port_2_reset; | ||
4148 | } | ||
4149 | |||
4150 | /* Diagnostic printouts. */ | ||
4151 | if ((hc->rh.prev_wPortStatus_2 & | ||
4152 | IO_STATE(R_USB_RH_PORT_STATUS_2, connected, no)) && | ||
4153 | (hc->rh.prev_wPortStatus_2 & | ||
4154 | IO_STATE(R_USB_RH_PORT_STATUS_2, enabled, no))) { | ||
4155 | dbg_rh("No connected device on port 2"); | ||
4156 | } else if ((hc->rh.prev_wPortStatus_2 & | ||
4157 | IO_STATE(R_USB_RH_PORT_STATUS_2, connected, yes)) && | ||
4158 | (hc->rh.prev_wPortStatus_2 & | ||
4159 | IO_STATE(R_USB_RH_PORT_STATUS_2, enabled, yes))) { | ||
4160 | dbg_rh("Connected device on port 2, port 2 enabled"); | ||
4161 | } | ||
4162 | |||
4163 | } else { | ||
4164 | dbg_rh("RH_SET_FEATURE->RH_PORT_RESET with invalid wIndex = %d", wIndex); | ||
4165 | } | ||
4166 | |||
4167 | /* Make sure the controller isn't busy. */ | ||
4168 | while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy)); | ||
4169 | |||
4170 | /* If all enabled ports were disabled the host controller goes down into | ||
4171 | started mode, so we need to bring it back into the running state. | ||
4172 | (This is safe even if it's already in the running state.) */ | ||
4173 | *R_USB_COMMAND = | ||
4174 | IO_STATE(R_USB_COMMAND, port_sel, nop) | | ||
4175 | IO_STATE(R_USB_COMMAND, port_cmd, reset) | | ||
4176 | IO_STATE(R_USB_COMMAND, ctrl_cmd, host_run); | ||
4177 | |||
4178 | dbg_rh("...Done"); | ||
4179 | OK(0); | ||
4180 | |||
4181 | case (RH_PORT_POWER): | ||
4182 | OK (0); /* port power ** */ | ||
4183 | case (RH_PORT_ENABLE): | ||
4184 | /* There is no port enable command in the host controller, so if the | ||
4185 | port is already enabled, we do nothing. If not, we reset the port | ||
4186 | (with an ugly goto). */ | ||
4187 | |||
4188 | if (wIndex == 1) { | ||
4189 | if (hc->rh.prev_wPortStatus_1 & | ||
4190 | IO_STATE(R_USB_RH_PORT_STATUS_1, enabled, no)) { | ||
4191 | goto port_1_reset; | ||
4192 | } | ||
4193 | } else if (wIndex == 2) { | ||
4194 | if (hc->rh.prev_wPortStatus_2 & | ||
4195 | IO_STATE(R_USB_RH_PORT_STATUS_2, enabled, no)) { | ||
4196 | goto port_2_reset; | ||
4197 | } | ||
4198 | } else { | ||
4199 | dbg_rh("RH_SET_FEATURE->RH_GET_STATUS with invalid wIndex = %d", wIndex); | ||
4200 | } | ||
4201 | OK (0); | ||
4202 | } | ||
4203 | break; | ||
4204 | |||
4205 | case RH_SET_ADDRESS: | ||
4206 | hc->rh.devnum = wValue; | ||
4207 | dbg_rh("RH address set to: %d", hc->rh.devnum); | ||
4208 | OK (0); | ||
4209 | |||
4210 | case RH_GET_DESCRIPTOR: | ||
4211 | switch ((wValue & 0xff00) >> 8) { | ||
4212 | case (0x01): /* device descriptor */ | ||
4213 | len = min_t(unsigned int, leni, min_t(unsigned int, sizeof (root_hub_dev_des), wLength)); | ||
4214 | memcpy (data, root_hub_dev_des, len); | ||
4215 | OK (len); | ||
4216 | case (0x02): /* configuration descriptor */ | ||
4217 | len = min_t(unsigned int, leni, min_t(unsigned int, sizeof (root_hub_config_des), wLength)); | ||
4218 | memcpy (data, root_hub_config_des, len); | ||
4219 | OK (len); | ||
4220 | case (0x03): /* string descriptors */ | ||
4221 | len = usb_root_hub_string (wValue & 0xff, | ||
4222 | 0xff, "ETRAX 100LX", | ||
4223 | data, wLength); | ||
4224 | if (len > 0) { | ||
4225 | OK(min(leni, len)); | ||
4226 | } else { | ||
4227 | stat = -EPIPE; | ||
4228 | } | ||
4229 | |||
4230 | } | ||
4231 | break; | ||
4232 | |||
4233 | case RH_GET_DESCRIPTOR | RH_CLASS: | ||
4234 | root_hub_hub_des[2] = hc->rh.numports; | ||
4235 | len = min_t(unsigned int, leni, min_t(unsigned int, sizeof (root_hub_hub_des), wLength)); | ||
4236 | memcpy (data, root_hub_hub_des, len); | ||
4237 | OK (len); | ||
4238 | |||
4239 | case RH_GET_CONFIGURATION: | ||
4240 | *(__u8 *) data = 0x01; | ||
4241 | OK (1); | ||
4242 | |||
4243 | case RH_SET_CONFIGURATION: | ||
4244 | OK (0); | ||
4245 | |||
4246 | default: | ||
4247 | stat = -EPIPE; | ||
4248 | } | ||
4249 | |||
4250 | urb->actual_length = len; | ||
4251 | urb->status = stat; | ||
4252 | urb->dev = NULL; | ||
4253 | if (urb->complete) { | ||
4254 | urb->complete(urb, NULL); | ||
4255 | } | ||
4256 | DBFEXIT; | ||
4257 | |||
4258 | return 0; | ||
4259 | } | ||
4260 | |||
4261 | static void | ||
4262 | etrax_usb_bulk_eot_timer_func(unsigned long dummy) | ||
4263 | { | ||
4264 | /* Because of a race condition in the top half, we might miss a bulk eot. | ||
4265 | This timer "simulates" a bulk eot if we don't get one for a while, hopefully | ||
4266 | correcting the situation. */ | ||
4267 | dbg_bulk("bulk_eot_timer timed out."); | ||
4268 | etrax_usb_hc_bulk_eot_interrupt(1); | ||
4269 | } | ||
4270 | |||
4271 | static void* | ||
4272 | etrax_usb_buffer_alloc(struct usb_bus* bus, size_t size, | ||
4273 | unsigned mem_flags, dma_addr_t *dma) | ||
4274 | { | ||
4275 | return kmalloc(size, mem_flags); | ||
4276 | } | ||
4277 | |||
4278 | static void | ||
4279 | etrax_usb_buffer_free(struct usb_bus *bus, size_t size, void *addr, dma_addr_t dma) | ||
4280 | { | ||
4281 | kfree(addr); | ||
4282 | } | ||
4283 | |||
4284 | |||
4285 | static struct device fake_device; | ||
4286 | |||
4287 | static int __init etrax_usb_hc_init(void) | ||
4288 | { | ||
4289 | static etrax_hc_t *hc; | ||
4290 | struct usb_bus *bus; | ||
4291 | struct usb_device *usb_rh; | ||
4292 | int i; | ||
4293 | |||
4294 | DBFENTER; | ||
4295 | |||
4296 | info("ETRAX 100LX USB-HCD %s (c) 2001-2003 Axis Communications AB\n", usb_hcd_version); | ||
4297 | |||
4298 | hc = kmalloc(sizeof(etrax_hc_t), GFP_KERNEL); | ||
4299 | assert(hc != NULL); | ||
4300 | |||
4301 | /* We use kmem_cache_* to make sure that all DMA desc. are dword aligned */ | ||
4302 | /* Note that we specify sizeof(USB_EP_Desc_t) as the size, but also allocate | ||
4303 | SB descriptors from this cache. This is ok since sizeof(USB_EP_Desc_t) == | ||
4304 | sizeof(USB_SB_Desc_t). */ | ||
4305 | |||
4306 | usb_desc_cache = kmem_cache_create("usb_desc_cache", sizeof(USB_EP_Desc_t), 0, | ||
4307 | SLAB_HWCACHE_ALIGN, 0, 0); | ||
4308 | assert(usb_desc_cache != NULL); | ||
4309 | |||
4310 | top_half_reg_cache = kmem_cache_create("top_half_reg_cache", | ||
4311 | sizeof(usb_interrupt_registers_t), | ||
4312 | 0, SLAB_HWCACHE_ALIGN, 0, 0); | ||
4313 | assert(top_half_reg_cache != NULL); | ||
4314 | |||
4315 | isoc_compl_cache = kmem_cache_create("isoc_compl_cache", | ||
4316 | sizeof(usb_isoc_complete_data_t), | ||
4317 | 0, SLAB_HWCACHE_ALIGN, 0, 0); | ||
4318 | assert(isoc_compl_cache != NULL); | ||
4319 | |||
4320 | etrax_usb_bus = bus = usb_alloc_bus(&etrax_usb_device_operations); | ||
4321 | hc->bus = bus; | ||
4322 | bus->bus_name="ETRAX 100LX"; | ||
4323 | bus->hcpriv = hc; | ||
4324 | |||
4325 | /* Initialize RH to the default address. | ||
4326 | And make sure that we have no status change indication */ | ||
4327 | hc->rh.numports = 2; /* The RH has two ports */ | ||
4328 | hc->rh.devnum = 1; | ||
4329 | hc->rh.wPortChange_1 = 0; | ||
4330 | hc->rh.wPortChange_2 = 0; | ||
4331 | |||
4332 | /* Also initate the previous values to zero */ | ||
4333 | hc->rh.prev_wPortStatus_1 = 0; | ||
4334 | hc->rh.prev_wPortStatus_2 = 0; | ||
4335 | |||
4336 | /* Initialize the intr-traffic flags */ | ||
4337 | /* FIXME: This isn't used. (Besides, the error field isn't initialized.) */ | ||
4338 | hc->intr.sleeping = 0; | ||
4339 | hc->intr.wq = NULL; | ||
4340 | |||
4341 | epid_usage_bitmask = 0; | ||
4342 | epid_out_traffic = 0; | ||
4343 | |||
4344 | /* Mark the invalid epid as being used. */ | ||
4345 | set_bit(INVALID_EPID, (void *)&epid_usage_bitmask); | ||
4346 | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, INVALID_EPID); | ||
4347 | nop(); | ||
4348 | /* The valid bit should still be set ('invalid' is in our world; not the hardware's). */ | ||
4349 | *R_USB_EPT_DATA = (IO_STATE(R_USB_EPT_DATA, valid, yes) | | ||
4350 | IO_FIELD(R_USB_EPT_DATA, max_len, 1)); | ||
4351 | |||
4352 | /* Mark the dummy epid as being used. */ | ||
4353 | set_bit(DUMMY_EPID, (void *)&epid_usage_bitmask); | ||
4354 | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, DUMMY_EPID); | ||
4355 | nop(); | ||
4356 | *R_USB_EPT_DATA = (IO_STATE(R_USB_EPT_DATA, valid, no) | | ||
4357 | IO_FIELD(R_USB_EPT_DATA, max_len, 1)); | ||
4358 | |||
4359 | /* Initialize the urb list by initiating a head for each list. */ | ||
4360 | for (i = 0; i < NBR_OF_EPIDS; i++) { | ||
4361 | INIT_LIST_HEAD(&urb_list[i]); | ||
4362 | } | ||
4363 | spin_lock_init(&urb_list_lock); | ||
4364 | |||
4365 | INIT_LIST_HEAD(&urb_unlink_list); | ||
4366 | |||
4367 | |||
4368 | /* Initiate the bulk start timer. */ | ||
4369 | init_timer(&bulk_start_timer); | ||
4370 | bulk_start_timer.expires = jiffies + BULK_START_TIMER_INTERVAL; | ||
4371 | bulk_start_timer.function = etrax_usb_bulk_start_timer_func; | ||
4372 | add_timer(&bulk_start_timer); | ||
4373 | |||
4374 | |||
4375 | /* Initiate the bulk eot timer. */ | ||
4376 | init_timer(&bulk_eot_timer); | ||
4377 | bulk_eot_timer.expires = jiffies + BULK_EOT_TIMER_INTERVAL; | ||
4378 | bulk_eot_timer.function = etrax_usb_bulk_eot_timer_func; | ||
4379 | add_timer(&bulk_eot_timer); | ||
4380 | |||
4381 | /* Set up the data structures for USB traffic. Note that this must be done before | ||
4382 | any interrupt that relies on sane DMA list occurrs. */ | ||
4383 | init_rx_buffers(); | ||
4384 | init_tx_bulk_ep(); | ||
4385 | init_tx_ctrl_ep(); | ||
4386 | init_tx_intr_ep(); | ||
4387 | init_tx_isoc_ep(); | ||
4388 | |||
4389 | device_initialize(&fake_device); | ||
4390 | kobject_set_name(&fake_device.kobj, "etrax_usb"); | ||
4391 | kobject_add(&fake_device.kobj); | ||
4392 | kobject_uevent(&fake_device.kobj, KOBJ_ADD); | ||
4393 | hc->bus->controller = &fake_device; | ||
4394 | usb_register_bus(hc->bus); | ||
4395 | |||
4396 | *R_IRQ_MASK2_SET = | ||
4397 | /* Note that these interrupts are not used. */ | ||
4398 | IO_STATE(R_IRQ_MASK2_SET, dma8_sub0_descr, set) | | ||
4399 | /* Sub channel 1 (ctrl) descr. interrupts are used. */ | ||
4400 | IO_STATE(R_IRQ_MASK2_SET, dma8_sub1_descr, set) | | ||
4401 | IO_STATE(R_IRQ_MASK2_SET, dma8_sub2_descr, set) | | ||
4402 | /* Sub channel 3 (isoc) descr. interrupts are used. */ | ||
4403 | IO_STATE(R_IRQ_MASK2_SET, dma8_sub3_descr, set); | ||
4404 | |||
4405 | /* Note that the dma9_descr interrupt is not used. */ | ||
4406 | *R_IRQ_MASK2_SET = | ||
4407 | IO_STATE(R_IRQ_MASK2_SET, dma9_eop, set) | | ||
4408 | IO_STATE(R_IRQ_MASK2_SET, dma9_descr, set); | ||
4409 | |||
4410 | /* FIXME: Enable iso_eof only when isoc traffic is running. */ | ||
4411 | *R_USB_IRQ_MASK_SET = | ||
4412 | IO_STATE(R_USB_IRQ_MASK_SET, iso_eof, set) | | ||
4413 | IO_STATE(R_USB_IRQ_MASK_SET, bulk_eot, set) | | ||
4414 | IO_STATE(R_USB_IRQ_MASK_SET, epid_attn, set) | | ||
4415 | IO_STATE(R_USB_IRQ_MASK_SET, port_status, set) | | ||
4416 | IO_STATE(R_USB_IRQ_MASK_SET, ctl_status, set); | ||
4417 | |||
4418 | |||
4419 | if (request_irq(ETRAX_USB_HC_IRQ, etrax_usb_hc_interrupt_top_half, 0, | ||
4420 | "ETRAX 100LX built-in USB (HC)", hc)) { | ||
4421 | err("Could not allocate IRQ %d for USB", ETRAX_USB_HC_IRQ); | ||
4422 | etrax_usb_hc_cleanup(); | ||
4423 | DBFEXIT; | ||
4424 | return -1; | ||
4425 | } | ||
4426 | |||
4427 | if (request_irq(ETRAX_USB_RX_IRQ, etrax_usb_rx_interrupt, 0, | ||
4428 | "ETRAX 100LX built-in USB (Rx)", hc)) { | ||
4429 | err("Could not allocate IRQ %d for USB", ETRAX_USB_RX_IRQ); | ||
4430 | etrax_usb_hc_cleanup(); | ||
4431 | DBFEXIT; | ||
4432 | return -1; | ||
4433 | } | ||
4434 | |||
4435 | if (request_irq(ETRAX_USB_TX_IRQ, etrax_usb_tx_interrupt, 0, | ||
4436 | "ETRAX 100LX built-in USB (Tx)", hc)) { | ||
4437 | err("Could not allocate IRQ %d for USB", ETRAX_USB_TX_IRQ); | ||
4438 | etrax_usb_hc_cleanup(); | ||
4439 | DBFEXIT; | ||
4440 | return -1; | ||
4441 | } | ||
4442 | |||
4443 | /* R_USB_COMMAND: | ||
4444 | USB commands in host mode. The fields in this register should all be | ||
4445 | written to in one write. Do not read-modify-write one field at a time. A | ||
4446 | write to this register will trigger events in the USB controller and an | ||
4447 | incomplete command may lead to unpredictable results, and in worst case | ||
4448 | even to a deadlock in the controller. | ||
4449 | (Note however that the busy field is read-only, so no need to write to it.) */ | ||
4450 | |||
4451 | /* Check the busy bit before writing to R_USB_COMMAND. */ | ||
4452 | |||
4453 | while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy)); | ||
4454 | |||
4455 | /* Reset the USB interface. */ | ||
4456 | *R_USB_COMMAND = | ||
4457 | IO_STATE(R_USB_COMMAND, port_sel, nop) | | ||
4458 | IO_STATE(R_USB_COMMAND, port_cmd, reset) | | ||
4459 | IO_STATE(R_USB_COMMAND, ctrl_cmd, reset); | ||
4460 | |||
4461 | /* Designer's Reference, p. 8 - 10 says we should Initate R_USB_FM_PSTART to 0x2A30 (10800), | ||
4462 | to guarantee that control traffic gets 10% of the bandwidth, and periodic transfer may | ||
4463 | allocate the rest (90%). This doesn't work though. Read on for a lenghty explanation. | ||
4464 | |||
4465 | While there is a difference between rev. 2 and rev. 3 of the ETRAX 100LX regarding the NAK | ||
4466 | behaviour, it doesn't solve this problem. What happens is that a control transfer will not | ||
4467 | be interrupted in its data stage when PSTART happens (the point at which periodic traffic | ||
4468 | is started). Thus, if PSTART is set to 10800 and its IN or OUT token is NAKed until just before | ||
4469 | PSTART happens, it will continue the IN/OUT transfer as long as it's ACKed. After it's done, | ||
4470 | there may be too little time left for an isochronous transfer, causing an epid attention | ||
4471 | interrupt due to perror. The work-around for this is to let the control transfers run at the | ||
4472 | end of the frame instead of at the beginning, and will be interrupted just fine if it doesn't | ||
4473 | fit into the frame. However, since there will *always* be a control transfer at the beginning | ||
4474 | of the frame, regardless of what we set PSTART to, that transfer might be a 64-byte transfer | ||
4475 | which consumes up to 15% of the frame, leaving only 85% for periodic traffic. The solution to | ||
4476 | this would be to 'dummy allocate' 5% of the frame with the usb_claim_bandwidth function to make | ||
4477 | sure that the periodic transfers that are inserted will always fit in the frame. | ||
4478 | |||
4479 | The idea was suggested that a control transfer could be split up into several 8 byte transfers, | ||
4480 | so that it would be interrupted by PSTART, but since this can't be done for an IN transfer this | ||
4481 | hasn't been implemented. | ||
4482 | |||
4483 | The value 11960 is chosen to be just after the SOF token, with a couple of bit times extra | ||
4484 | for possible bit stuffing. */ | ||
4485 | |||
4486 | *R_USB_FM_PSTART = IO_FIELD(R_USB_FM_PSTART, value, 11960); | ||
4487 | |||
4488 | #ifdef CONFIG_ETRAX_USB_HOST_PORT1 | ||
4489 | *R_USB_PORT1_DISABLE = IO_STATE(R_USB_PORT1_DISABLE, disable, no); | ||
4490 | #endif | ||
4491 | |||
4492 | #ifdef CONFIG_ETRAX_USB_HOST_PORT2 | ||
4493 | *R_USB_PORT2_DISABLE = IO_STATE(R_USB_PORT2_DISABLE, disable, no); | ||
4494 | #endif | ||
4495 | |||
4496 | while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy)); | ||
4497 | |||
4498 | /* Configure the USB interface as a host controller. */ | ||
4499 | *R_USB_COMMAND = | ||
4500 | IO_STATE(R_USB_COMMAND, port_sel, nop) | | ||
4501 | IO_STATE(R_USB_COMMAND, port_cmd, reset) | | ||
4502 | IO_STATE(R_USB_COMMAND, ctrl_cmd, host_config); | ||
4503 | |||
4504 | /* Note: Do not reset any ports here. Await the port status interrupts, to have a controlled | ||
4505 | sequence of resetting the ports. If we reset both ports now, and there are devices | ||
4506 | on both ports, we will get a bus error because both devices will answer the set address | ||
4507 | request. */ | ||
4508 | |||
4509 | while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy)); | ||
4510 | |||
4511 | /* Start processing of USB traffic. */ | ||
4512 | *R_USB_COMMAND = | ||
4513 | IO_STATE(R_USB_COMMAND, port_sel, nop) | | ||
4514 | IO_STATE(R_USB_COMMAND, port_cmd, reset) | | ||
4515 | IO_STATE(R_USB_COMMAND, ctrl_cmd, host_run); | ||
4516 | |||
4517 | while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy)); | ||
4518 | |||
4519 | usb_rh = usb_alloc_dev(NULL, hc->bus, 0); | ||
4520 | hc->bus->root_hub = usb_rh; | ||
4521 | usb_rh->state = USB_STATE_ADDRESS; | ||
4522 | usb_rh->speed = USB_SPEED_FULL; | ||
4523 | usb_rh->devnum = 1; | ||
4524 | hc->bus->devnum_next = 2; | ||
4525 | usb_rh->ep0.desc.wMaxPacketSize = __const_cpu_to_le16(64); | ||
4526 | usb_get_device_descriptor(usb_rh, USB_DT_DEVICE_SIZE); | ||
4527 | usb_new_device(usb_rh); | ||
4528 | |||
4529 | DBFEXIT; | ||
4530 | |||
4531 | return 0; | ||
4532 | } | ||
4533 | |||
4534 | static void etrax_usb_hc_cleanup(void) | ||
4535 | { | ||
4536 | DBFENTER; | ||
4537 | |||
4538 | free_irq(ETRAX_USB_HC_IRQ, NULL); | ||
4539 | free_irq(ETRAX_USB_RX_IRQ, NULL); | ||
4540 | free_irq(ETRAX_USB_TX_IRQ, NULL); | ||
4541 | |||
4542 | usb_deregister_bus(etrax_usb_bus); | ||
4543 | |||
4544 | /* FIXME: call kmem_cache_destroy here? */ | ||
4545 | |||
4546 | DBFEXIT; | ||
4547 | } | ||
4548 | |||
4549 | module_init(etrax_usb_hc_init); | ||
4550 | module_exit(etrax_usb_hc_cleanup); | ||
diff --git a/drivers/usb/host/hc_crisv10.h b/drivers/usb/host/hc_crisv10.h deleted file mode 100644 index 62f77111d418..000000000000 --- a/drivers/usb/host/hc_crisv10.h +++ /dev/null | |||
@@ -1,289 +0,0 @@ | |||
1 | #ifndef __LINUX_ETRAX_USB_H | ||
2 | #define __LINUX_ETRAX_USB_H | ||
3 | |||
4 | #include <linux/types.h> | ||
5 | #include <linux/list.h> | ||
6 | |||
7 | typedef struct USB_IN_Desc { | ||
8 | volatile __u16 sw_len; | ||
9 | volatile __u16 command; | ||
10 | volatile unsigned long next; | ||
11 | volatile unsigned long buf; | ||
12 | volatile __u16 hw_len; | ||
13 | volatile __u16 status; | ||
14 | } USB_IN_Desc_t; | ||
15 | |||
16 | typedef struct USB_SB_Desc { | ||
17 | volatile __u16 sw_len; | ||
18 | volatile __u16 command; | ||
19 | volatile unsigned long next; | ||
20 | volatile unsigned long buf; | ||
21 | __u32 dummy; | ||
22 | } USB_SB_Desc_t; | ||
23 | |||
24 | typedef struct USB_EP_Desc { | ||
25 | volatile __u16 hw_len; | ||
26 | volatile __u16 command; | ||
27 | volatile unsigned long sub; | ||
28 | volatile unsigned long next; | ||
29 | __u32 dummy; | ||
30 | } USB_EP_Desc_t; | ||
31 | |||
32 | struct virt_root_hub { | ||
33 | int devnum; | ||
34 | void *urb; | ||
35 | void *int_addr; | ||
36 | int send; | ||
37 | int interval; | ||
38 | int numports; | ||
39 | struct timer_list rh_int_timer; | ||
40 | volatile __u16 wPortChange_1; | ||
41 | volatile __u16 wPortChange_2; | ||
42 | volatile __u16 prev_wPortStatus_1; | ||
43 | volatile __u16 prev_wPortStatus_2; | ||
44 | }; | ||
45 | |||
46 | struct etrax_usb_intr_traffic { | ||
47 | int sleeping; | ||
48 | int error; | ||
49 | struct wait_queue *wq; | ||
50 | }; | ||
51 | |||
52 | typedef struct etrax_usb_hc { | ||
53 | struct usb_bus *bus; | ||
54 | struct virt_root_hub rh; | ||
55 | struct etrax_usb_intr_traffic intr; | ||
56 | } etrax_hc_t; | ||
57 | |||
58 | typedef enum { | ||
59 | STARTED, | ||
60 | NOT_STARTED, | ||
61 | UNLINK, | ||
62 | TRANSFER_DONE, | ||
63 | WAITING_FOR_DESCR_INTR | ||
64 | } etrax_usb_urb_state_t; | ||
65 | |||
66 | |||
67 | |||
68 | typedef struct etrax_usb_urb_priv { | ||
69 | /* The first_sb field is used for freeing all SB descriptors belonging | ||
70 | to an urb. The corresponding ep descriptor's sub pointer cannot be | ||
71 | used for this since the DMA advances the sub pointer as it processes | ||
72 | the sb list. */ | ||
73 | USB_SB_Desc_t *first_sb; | ||
74 | /* The last_sb field referes to the last SB descriptor that belongs to | ||
75 | this urb. This is important to know so we can free the SB descriptors | ||
76 | that ranges between first_sb and last_sb. */ | ||
77 | USB_SB_Desc_t *last_sb; | ||
78 | |||
79 | /* The rx_offset field is used in ctrl and bulk traffic to keep track | ||
80 | of the offset in the urb's transfer_buffer where incoming data should be | ||
81 | copied to. */ | ||
82 | __u32 rx_offset; | ||
83 | |||
84 | /* Counter used in isochronous transfers to keep track of the | ||
85 | number of packets received/transmitted. */ | ||
86 | __u32 isoc_packet_counter; | ||
87 | |||
88 | /* This field is used to pass information about the urb's current state between | ||
89 | the various interrupt handlers (thus marked volatile). */ | ||
90 | volatile etrax_usb_urb_state_t urb_state; | ||
91 | |||
92 | /* Connection between the submitted urb and ETRAX epid number */ | ||
93 | __u8 epid; | ||
94 | |||
95 | /* The rx_data_list field is used for periodic traffic, to hold | ||
96 | received data for later processing in the the complete_urb functions, | ||
97 | where the data us copied to the urb's transfer_buffer. Basically, we | ||
98 | use this intermediate storage because we don't know when it's safe to | ||
99 | reuse the transfer_buffer (FIXME?). */ | ||
100 | struct list_head rx_data_list; | ||
101 | } etrax_urb_priv_t; | ||
102 | |||
103 | /* This struct is for passing data from the top half to the bottom half. */ | ||
104 | typedef struct usb_interrupt_registers | ||
105 | { | ||
106 | etrax_hc_t *hc; | ||
107 | __u32 r_usb_epid_attn; | ||
108 | __u8 r_usb_status; | ||
109 | __u16 r_usb_rh_port_status_1; | ||
110 | __u16 r_usb_rh_port_status_2; | ||
111 | __u32 r_usb_irq_mask_read; | ||
112 | __u32 r_usb_fm_number; | ||
113 | struct work_struct usb_bh; | ||
114 | } usb_interrupt_registers_t; | ||
115 | |||
116 | /* This struct is for passing data from the isoc top half to the isoc bottom half. */ | ||
117 | typedef struct usb_isoc_complete_data | ||
118 | { | ||
119 | struct urb *urb; | ||
120 | struct work_struct usb_bh; | ||
121 | } usb_isoc_complete_data_t; | ||
122 | |||
123 | /* This struct holds data we get from the rx descriptors for DMA channel 9 | ||
124 | for periodic traffic (intr and isoc). */ | ||
125 | typedef struct rx_data | ||
126 | { | ||
127 | void *data; | ||
128 | int length; | ||
129 | struct list_head list; | ||
130 | } rx_data_t; | ||
131 | |||
132 | typedef struct urb_entry | ||
133 | { | ||
134 | struct urb *urb; | ||
135 | struct list_head list; | ||
136 | } urb_entry_t; | ||
137 | |||
138 | /* --------------------------------------------------------------------------- | ||
139 | Virtual Root HUB | ||
140 | ------------------------------------------------------------------------- */ | ||
141 | /* destination of request */ | ||
142 | #define RH_INTERFACE 0x01 | ||
143 | #define RH_ENDPOINT 0x02 | ||
144 | #define RH_OTHER 0x03 | ||
145 | |||
146 | #define RH_CLASS 0x20 | ||
147 | #define RH_VENDOR 0x40 | ||
148 | |||
149 | /* Requests: bRequest << 8 | bmRequestType */ | ||
150 | #define RH_GET_STATUS 0x0080 | ||
151 | #define RH_CLEAR_FEATURE 0x0100 | ||
152 | #define RH_SET_FEATURE 0x0300 | ||
153 | #define RH_SET_ADDRESS 0x0500 | ||
154 | #define RH_GET_DESCRIPTOR 0x0680 | ||
155 | #define RH_SET_DESCRIPTOR 0x0700 | ||
156 | #define RH_GET_CONFIGURATION 0x0880 | ||
157 | #define RH_SET_CONFIGURATION 0x0900 | ||
158 | #define RH_GET_STATE 0x0280 | ||
159 | #define RH_GET_INTERFACE 0x0A80 | ||
160 | #define RH_SET_INTERFACE 0x0B00 | ||
161 | #define RH_SYNC_FRAME 0x0C80 | ||
162 | /* Our Vendor Specific Request */ | ||
163 | #define RH_SET_EP 0x2000 | ||
164 | |||
165 | |||
166 | /* Hub port features */ | ||
167 | #define RH_PORT_CONNECTION 0x00 | ||
168 | #define RH_PORT_ENABLE 0x01 | ||
169 | #define RH_PORT_SUSPEND 0x02 | ||
170 | #define RH_PORT_OVER_CURRENT 0x03 | ||
171 | #define RH_PORT_RESET 0x04 | ||
172 | #define RH_PORT_POWER 0x08 | ||
173 | #define RH_PORT_LOW_SPEED 0x09 | ||
174 | #define RH_C_PORT_CONNECTION 0x10 | ||
175 | #define RH_C_PORT_ENABLE 0x11 | ||
176 | #define RH_C_PORT_SUSPEND 0x12 | ||
177 | #define RH_C_PORT_OVER_CURRENT 0x13 | ||
178 | #define RH_C_PORT_RESET 0x14 | ||
179 | |||
180 | /* Hub features */ | ||
181 | #define RH_C_HUB_LOCAL_POWER 0x00 | ||
182 | #define RH_C_HUB_OVER_CURRENT 0x01 | ||
183 | |||
184 | #define RH_DEVICE_REMOTE_WAKEUP 0x00 | ||
185 | #define RH_ENDPOINT_STALL 0x01 | ||
186 | |||
187 | /* Our Vendor Specific feature */ | ||
188 | #define RH_REMOVE_EP 0x00 | ||
189 | |||
190 | |||
191 | #define RH_ACK 0x01 | ||
192 | #define RH_REQ_ERR -1 | ||
193 | #define RH_NACK 0x00 | ||
194 | |||
195 | /* Field definitions for */ | ||
196 | |||
197 | #define USB_IN_command__eol__BITNR 0 /* command macros */ | ||
198 | #define USB_IN_command__eol__WIDTH 1 | ||
199 | #define USB_IN_command__eol__no 0 | ||
200 | #define USB_IN_command__eol__yes 1 | ||
201 | |||
202 | #define USB_IN_command__intr__BITNR 3 | ||
203 | #define USB_IN_command__intr__WIDTH 1 | ||
204 | #define USB_IN_command__intr__no 0 | ||
205 | #define USB_IN_command__intr__yes 1 | ||
206 | |||
207 | #define USB_IN_status__eop__BITNR 1 /* status macros. */ | ||
208 | #define USB_IN_status__eop__WIDTH 1 | ||
209 | #define USB_IN_status__eop__no 0 | ||
210 | #define USB_IN_status__eop__yes 1 | ||
211 | |||
212 | #define USB_IN_status__eot__BITNR 5 | ||
213 | #define USB_IN_status__eot__WIDTH 1 | ||
214 | #define USB_IN_status__eot__no 0 | ||
215 | #define USB_IN_status__eot__yes 1 | ||
216 | |||
217 | #define USB_IN_status__error__BITNR 6 | ||
218 | #define USB_IN_status__error__WIDTH 1 | ||
219 | #define USB_IN_status__error__no 0 | ||
220 | #define USB_IN_status__error__yes 1 | ||
221 | |||
222 | #define USB_IN_status__nodata__BITNR 7 | ||
223 | #define USB_IN_status__nodata__WIDTH 1 | ||
224 | #define USB_IN_status__nodata__no 0 | ||
225 | #define USB_IN_status__nodata__yes 1 | ||
226 | |||
227 | #define USB_IN_status__epid__BITNR 8 | ||
228 | #define USB_IN_status__epid__WIDTH 5 | ||
229 | |||
230 | #define USB_EP_command__eol__BITNR 0 | ||
231 | #define USB_EP_command__eol__WIDTH 1 | ||
232 | #define USB_EP_command__eol__no 0 | ||
233 | #define USB_EP_command__eol__yes 1 | ||
234 | |||
235 | #define USB_EP_command__eof__BITNR 1 | ||
236 | #define USB_EP_command__eof__WIDTH 1 | ||
237 | #define USB_EP_command__eof__no 0 | ||
238 | #define USB_EP_command__eof__yes 1 | ||
239 | |||
240 | #define USB_EP_command__intr__BITNR 3 | ||
241 | #define USB_EP_command__intr__WIDTH 1 | ||
242 | #define USB_EP_command__intr__no 0 | ||
243 | #define USB_EP_command__intr__yes 1 | ||
244 | |||
245 | #define USB_EP_command__enable__BITNR 4 | ||
246 | #define USB_EP_command__enable__WIDTH 1 | ||
247 | #define USB_EP_command__enable__no 0 | ||
248 | #define USB_EP_command__enable__yes 1 | ||
249 | |||
250 | #define USB_EP_command__hw_valid__BITNR 5 | ||
251 | #define USB_EP_command__hw_valid__WIDTH 1 | ||
252 | #define USB_EP_command__hw_valid__no 0 | ||
253 | #define USB_EP_command__hw_valid__yes 1 | ||
254 | |||
255 | #define USB_EP_command__epid__BITNR 8 | ||
256 | #define USB_EP_command__epid__WIDTH 5 | ||
257 | |||
258 | #define USB_SB_command__eol__BITNR 0 /* command macros. */ | ||
259 | #define USB_SB_command__eol__WIDTH 1 | ||
260 | #define USB_SB_command__eol__no 0 | ||
261 | #define USB_SB_command__eol__yes 1 | ||
262 | |||
263 | #define USB_SB_command__eot__BITNR 1 | ||
264 | #define USB_SB_command__eot__WIDTH 1 | ||
265 | #define USB_SB_command__eot__no 0 | ||
266 | #define USB_SB_command__eot__yes 1 | ||
267 | |||
268 | #define USB_SB_command__intr__BITNR 3 | ||
269 | #define USB_SB_command__intr__WIDTH 1 | ||
270 | #define USB_SB_command__intr__no 0 | ||
271 | #define USB_SB_command__intr__yes 1 | ||
272 | |||
273 | #define USB_SB_command__tt__BITNR 4 | ||
274 | #define USB_SB_command__tt__WIDTH 2 | ||
275 | #define USB_SB_command__tt__zout 0 | ||
276 | #define USB_SB_command__tt__in 1 | ||
277 | #define USB_SB_command__tt__out 2 | ||
278 | #define USB_SB_command__tt__setup 3 | ||
279 | |||
280 | |||
281 | #define USB_SB_command__rem__BITNR 8 | ||
282 | #define USB_SB_command__rem__WIDTH 6 | ||
283 | |||
284 | #define USB_SB_command__full__BITNR 6 | ||
285 | #define USB_SB_command__full__WIDTH 1 | ||
286 | #define USB_SB_command__full__no 0 | ||
287 | #define USB_SB_command__full__yes 1 | ||
288 | |||
289 | #endif | ||