diff options
-rw-r--r-- | include/linux/sched.h | 8 | ||||
-rw-r--r-- | kernel/sched_fair.c | 1131 |
2 files changed, 1139 insertions, 0 deletions
diff --git a/include/linux/sched.h b/include/linux/sched.h index d5084e7c48cf..90420321994f 100644 --- a/include/linux/sched.h +++ b/include/linux/sched.h | |||
@@ -1243,6 +1243,14 @@ static inline void idle_task_exit(void) {} | |||
1243 | 1243 | ||
1244 | extern void sched_idle_next(void); | 1244 | extern void sched_idle_next(void); |
1245 | 1245 | ||
1246 | extern unsigned int sysctl_sched_granularity; | ||
1247 | extern unsigned int sysctl_sched_wakeup_granularity; | ||
1248 | extern unsigned int sysctl_sched_batch_wakeup_granularity; | ||
1249 | extern unsigned int sysctl_sched_stat_granularity; | ||
1250 | extern unsigned int sysctl_sched_runtime_limit; | ||
1251 | extern unsigned int sysctl_sched_child_runs_first; | ||
1252 | extern unsigned int sysctl_sched_features; | ||
1253 | |||
1246 | #ifdef CONFIG_RT_MUTEXES | 1254 | #ifdef CONFIG_RT_MUTEXES |
1247 | extern int rt_mutex_getprio(struct task_struct *p); | 1255 | extern int rt_mutex_getprio(struct task_struct *p); |
1248 | extern void rt_mutex_setprio(struct task_struct *p, int prio); | 1256 | extern void rt_mutex_setprio(struct task_struct *p, int prio); |
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c new file mode 100644 index 000000000000..6971db0a7160 --- /dev/null +++ b/kernel/sched_fair.c | |||
@@ -0,0 +1,1131 @@ | |||
1 | /* | ||
2 | * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) | ||
3 | * | ||
4 | * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> | ||
5 | * | ||
6 | * Interactivity improvements by Mike Galbraith | ||
7 | * (C) 2007 Mike Galbraith <efault@gmx.de> | ||
8 | * | ||
9 | * Various enhancements by Dmitry Adamushko. | ||
10 | * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> | ||
11 | * | ||
12 | * Group scheduling enhancements by Srivatsa Vaddagiri | ||
13 | * Copyright IBM Corporation, 2007 | ||
14 | * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> | ||
15 | * | ||
16 | * Scaled math optimizations by Thomas Gleixner | ||
17 | * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> | ||
18 | */ | ||
19 | |||
20 | /* | ||
21 | * Preemption granularity: | ||
22 | * (default: 2 msec, units: nanoseconds) | ||
23 | * | ||
24 | * NOTE: this granularity value is not the same as the concept of | ||
25 | * 'timeslice length' - timeslices in CFS will typically be somewhat | ||
26 | * larger than this value. (to see the precise effective timeslice | ||
27 | * length of your workload, run vmstat and monitor the context-switches | ||
28 | * field) | ||
29 | * | ||
30 | * On SMP systems the value of this is multiplied by the log2 of the | ||
31 | * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way | ||
32 | * systems, 4x on 8-way systems, 5x on 16-way systems, etc.) | ||
33 | */ | ||
34 | unsigned int sysctl_sched_granularity __read_mostly = 2000000000ULL/HZ; | ||
35 | |||
36 | /* | ||
37 | * SCHED_BATCH wake-up granularity. | ||
38 | * (default: 10 msec, units: nanoseconds) | ||
39 | * | ||
40 | * This option delays the preemption effects of decoupled workloads | ||
41 | * and reduces their over-scheduling. Synchronous workloads will still | ||
42 | * have immediate wakeup/sleep latencies. | ||
43 | */ | ||
44 | unsigned int sysctl_sched_batch_wakeup_granularity __read_mostly = | ||
45 | 10000000000ULL/HZ; | ||
46 | |||
47 | /* | ||
48 | * SCHED_OTHER wake-up granularity. | ||
49 | * (default: 1 msec, units: nanoseconds) | ||
50 | * | ||
51 | * This option delays the preemption effects of decoupled workloads | ||
52 | * and reduces their over-scheduling. Synchronous workloads will still | ||
53 | * have immediate wakeup/sleep latencies. | ||
54 | */ | ||
55 | unsigned int sysctl_sched_wakeup_granularity __read_mostly = 1000000000ULL/HZ; | ||
56 | |||
57 | unsigned int sysctl_sched_stat_granularity __read_mostly; | ||
58 | |||
59 | /* | ||
60 | * Initialized in sched_init_granularity(): | ||
61 | */ | ||
62 | unsigned int sysctl_sched_runtime_limit __read_mostly; | ||
63 | |||
64 | /* | ||
65 | * Debugging: various feature bits | ||
66 | */ | ||
67 | enum { | ||
68 | SCHED_FEAT_FAIR_SLEEPERS = 1, | ||
69 | SCHED_FEAT_SLEEPER_AVG = 2, | ||
70 | SCHED_FEAT_SLEEPER_LOAD_AVG = 4, | ||
71 | SCHED_FEAT_PRECISE_CPU_LOAD = 8, | ||
72 | SCHED_FEAT_START_DEBIT = 16, | ||
73 | SCHED_FEAT_SKIP_INITIAL = 32, | ||
74 | }; | ||
75 | |||
76 | unsigned int sysctl_sched_features __read_mostly = | ||
77 | SCHED_FEAT_FAIR_SLEEPERS *1 | | ||
78 | SCHED_FEAT_SLEEPER_AVG *1 | | ||
79 | SCHED_FEAT_SLEEPER_LOAD_AVG *1 | | ||
80 | SCHED_FEAT_PRECISE_CPU_LOAD *1 | | ||
81 | SCHED_FEAT_START_DEBIT *1 | | ||
82 | SCHED_FEAT_SKIP_INITIAL *0; | ||
83 | |||
84 | extern struct sched_class fair_sched_class; | ||
85 | |||
86 | /************************************************************** | ||
87 | * CFS operations on generic schedulable entities: | ||
88 | */ | ||
89 | |||
90 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
91 | |||
92 | /* cpu runqueue to which this cfs_rq is attached */ | ||
93 | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) | ||
94 | { | ||
95 | return cfs_rq->rq; | ||
96 | } | ||
97 | |||
98 | /* currently running entity (if any) on this cfs_rq */ | ||
99 | static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq) | ||
100 | { | ||
101 | return cfs_rq->curr; | ||
102 | } | ||
103 | |||
104 | /* An entity is a task if it doesn't "own" a runqueue */ | ||
105 | #define entity_is_task(se) (!se->my_q) | ||
106 | |||
107 | static inline void | ||
108 | set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
109 | { | ||
110 | cfs_rq->curr = se; | ||
111 | } | ||
112 | |||
113 | #else /* CONFIG_FAIR_GROUP_SCHED */ | ||
114 | |||
115 | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) | ||
116 | { | ||
117 | return container_of(cfs_rq, struct rq, cfs); | ||
118 | } | ||
119 | |||
120 | static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq) | ||
121 | { | ||
122 | struct rq *rq = rq_of(cfs_rq); | ||
123 | |||
124 | if (unlikely(rq->curr->sched_class != &fair_sched_class)) | ||
125 | return NULL; | ||
126 | |||
127 | return &rq->curr->se; | ||
128 | } | ||
129 | |||
130 | #define entity_is_task(se) 1 | ||
131 | |||
132 | static inline void | ||
133 | set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se) { } | ||
134 | |||
135 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | ||
136 | |||
137 | static inline struct task_struct *task_of(struct sched_entity *se) | ||
138 | { | ||
139 | return container_of(se, struct task_struct, se); | ||
140 | } | ||
141 | |||
142 | |||
143 | /************************************************************** | ||
144 | * Scheduling class tree data structure manipulation methods: | ||
145 | */ | ||
146 | |||
147 | /* | ||
148 | * Enqueue an entity into the rb-tree: | ||
149 | */ | ||
150 | static inline void | ||
151 | __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
152 | { | ||
153 | struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; | ||
154 | struct rb_node *parent = NULL; | ||
155 | struct sched_entity *entry; | ||
156 | s64 key = se->fair_key; | ||
157 | int leftmost = 1; | ||
158 | |||
159 | /* | ||
160 | * Find the right place in the rbtree: | ||
161 | */ | ||
162 | while (*link) { | ||
163 | parent = *link; | ||
164 | entry = rb_entry(parent, struct sched_entity, run_node); | ||
165 | /* | ||
166 | * We dont care about collisions. Nodes with | ||
167 | * the same key stay together. | ||
168 | */ | ||
169 | if (key - entry->fair_key < 0) { | ||
170 | link = &parent->rb_left; | ||
171 | } else { | ||
172 | link = &parent->rb_right; | ||
173 | leftmost = 0; | ||
174 | } | ||
175 | } | ||
176 | |||
177 | /* | ||
178 | * Maintain a cache of leftmost tree entries (it is frequently | ||
179 | * used): | ||
180 | */ | ||
181 | if (leftmost) | ||
182 | cfs_rq->rb_leftmost = &se->run_node; | ||
183 | |||
184 | rb_link_node(&se->run_node, parent, link); | ||
185 | rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); | ||
186 | update_load_add(&cfs_rq->load, se->load.weight); | ||
187 | cfs_rq->nr_running++; | ||
188 | se->on_rq = 1; | ||
189 | } | ||
190 | |||
191 | static inline void | ||
192 | __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
193 | { | ||
194 | if (cfs_rq->rb_leftmost == &se->run_node) | ||
195 | cfs_rq->rb_leftmost = rb_next(&se->run_node); | ||
196 | rb_erase(&se->run_node, &cfs_rq->tasks_timeline); | ||
197 | update_load_sub(&cfs_rq->load, se->load.weight); | ||
198 | cfs_rq->nr_running--; | ||
199 | se->on_rq = 0; | ||
200 | } | ||
201 | |||
202 | static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq) | ||
203 | { | ||
204 | return cfs_rq->rb_leftmost; | ||
205 | } | ||
206 | |||
207 | static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq) | ||
208 | { | ||
209 | return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node); | ||
210 | } | ||
211 | |||
212 | /************************************************************** | ||
213 | * Scheduling class statistics methods: | ||
214 | */ | ||
215 | |||
216 | /* | ||
217 | * We rescale the rescheduling granularity of tasks according to their | ||
218 | * nice level, but only linearly, not exponentially: | ||
219 | */ | ||
220 | static long | ||
221 | niced_granularity(struct sched_entity *curr, unsigned long granularity) | ||
222 | { | ||
223 | u64 tmp; | ||
224 | |||
225 | /* | ||
226 | * Negative nice levels get the same granularity as nice-0: | ||
227 | */ | ||
228 | if (likely(curr->load.weight >= NICE_0_LOAD)) | ||
229 | return granularity; | ||
230 | /* | ||
231 | * Positive nice level tasks get linearly finer | ||
232 | * granularity: | ||
233 | */ | ||
234 | tmp = curr->load.weight * (u64)granularity; | ||
235 | |||
236 | /* | ||
237 | * It will always fit into 'long': | ||
238 | */ | ||
239 | return (long) (tmp >> NICE_0_SHIFT); | ||
240 | } | ||
241 | |||
242 | static inline void | ||
243 | limit_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
244 | { | ||
245 | long limit = sysctl_sched_runtime_limit; | ||
246 | |||
247 | /* | ||
248 | * Niced tasks have the same history dynamic range as | ||
249 | * non-niced tasks: | ||
250 | */ | ||
251 | if (unlikely(se->wait_runtime > limit)) { | ||
252 | se->wait_runtime = limit; | ||
253 | schedstat_inc(se, wait_runtime_overruns); | ||
254 | schedstat_inc(cfs_rq, wait_runtime_overruns); | ||
255 | } | ||
256 | if (unlikely(se->wait_runtime < -limit)) { | ||
257 | se->wait_runtime = -limit; | ||
258 | schedstat_inc(se, wait_runtime_underruns); | ||
259 | schedstat_inc(cfs_rq, wait_runtime_underruns); | ||
260 | } | ||
261 | } | ||
262 | |||
263 | static inline void | ||
264 | __add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta) | ||
265 | { | ||
266 | se->wait_runtime += delta; | ||
267 | schedstat_add(se, sum_wait_runtime, delta); | ||
268 | limit_wait_runtime(cfs_rq, se); | ||
269 | } | ||
270 | |||
271 | static void | ||
272 | add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta) | ||
273 | { | ||
274 | schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime); | ||
275 | __add_wait_runtime(cfs_rq, se, delta); | ||
276 | schedstat_add(cfs_rq, wait_runtime, se->wait_runtime); | ||
277 | } | ||
278 | |||
279 | /* | ||
280 | * Update the current task's runtime statistics. Skip current tasks that | ||
281 | * are not in our scheduling class. | ||
282 | */ | ||
283 | static inline void | ||
284 | __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr, u64 now) | ||
285 | { | ||
286 | unsigned long delta, delta_exec, delta_fair; | ||
287 | long delta_mine; | ||
288 | struct load_weight *lw = &cfs_rq->load; | ||
289 | unsigned long load = lw->weight; | ||
290 | |||
291 | if (unlikely(!load)) | ||
292 | return; | ||
293 | |||
294 | delta_exec = curr->delta_exec; | ||
295 | #ifdef CONFIG_SCHEDSTATS | ||
296 | if (unlikely(delta_exec > curr->exec_max)) | ||
297 | curr->exec_max = delta_exec; | ||
298 | #endif | ||
299 | |||
300 | curr->sum_exec_runtime += delta_exec; | ||
301 | cfs_rq->exec_clock += delta_exec; | ||
302 | |||
303 | delta_fair = calc_delta_fair(delta_exec, lw); | ||
304 | delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw); | ||
305 | |||
306 | if (cfs_rq->sleeper_bonus > sysctl_sched_stat_granularity) { | ||
307 | delta = calc_delta_mine(cfs_rq->sleeper_bonus, | ||
308 | curr->load.weight, lw); | ||
309 | if (unlikely(delta > cfs_rq->sleeper_bonus)) | ||
310 | delta = cfs_rq->sleeper_bonus; | ||
311 | |||
312 | cfs_rq->sleeper_bonus -= delta; | ||
313 | delta_mine -= delta; | ||
314 | } | ||
315 | |||
316 | cfs_rq->fair_clock += delta_fair; | ||
317 | /* | ||
318 | * We executed delta_exec amount of time on the CPU, | ||
319 | * but we were only entitled to delta_mine amount of | ||
320 | * time during that period (if nr_running == 1 then | ||
321 | * the two values are equal) | ||
322 | * [Note: delta_mine - delta_exec is negative]: | ||
323 | */ | ||
324 | add_wait_runtime(cfs_rq, curr, delta_mine - delta_exec); | ||
325 | } | ||
326 | |||
327 | static void update_curr(struct cfs_rq *cfs_rq, u64 now) | ||
328 | { | ||
329 | struct sched_entity *curr = cfs_rq_curr(cfs_rq); | ||
330 | unsigned long delta_exec; | ||
331 | |||
332 | if (unlikely(!curr)) | ||
333 | return; | ||
334 | |||
335 | /* | ||
336 | * Get the amount of time the current task was running | ||
337 | * since the last time we changed load (this cannot | ||
338 | * overflow on 32 bits): | ||
339 | */ | ||
340 | delta_exec = (unsigned long)(now - curr->exec_start); | ||
341 | |||
342 | curr->delta_exec += delta_exec; | ||
343 | |||
344 | if (unlikely(curr->delta_exec > sysctl_sched_stat_granularity)) { | ||
345 | __update_curr(cfs_rq, curr, now); | ||
346 | curr->delta_exec = 0; | ||
347 | } | ||
348 | curr->exec_start = now; | ||
349 | } | ||
350 | |||
351 | static inline void | ||
352 | update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now) | ||
353 | { | ||
354 | se->wait_start_fair = cfs_rq->fair_clock; | ||
355 | se->wait_start = now; | ||
356 | } | ||
357 | |||
358 | /* | ||
359 | * We calculate fair deltas here, so protect against the random effects | ||
360 | * of a multiplication overflow by capping it to the runtime limit: | ||
361 | */ | ||
362 | #if BITS_PER_LONG == 32 | ||
363 | static inline unsigned long | ||
364 | calc_weighted(unsigned long delta, unsigned long weight, int shift) | ||
365 | { | ||
366 | u64 tmp = (u64)delta * weight >> shift; | ||
367 | |||
368 | if (unlikely(tmp > sysctl_sched_runtime_limit*2)) | ||
369 | return sysctl_sched_runtime_limit*2; | ||
370 | return tmp; | ||
371 | } | ||
372 | #else | ||
373 | static inline unsigned long | ||
374 | calc_weighted(unsigned long delta, unsigned long weight, int shift) | ||
375 | { | ||
376 | return delta * weight >> shift; | ||
377 | } | ||
378 | #endif | ||
379 | |||
380 | /* | ||
381 | * Task is being enqueued - update stats: | ||
382 | */ | ||
383 | static void | ||
384 | update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now) | ||
385 | { | ||
386 | s64 key; | ||
387 | |||
388 | /* | ||
389 | * Are we enqueueing a waiting task? (for current tasks | ||
390 | * a dequeue/enqueue event is a NOP) | ||
391 | */ | ||
392 | if (se != cfs_rq_curr(cfs_rq)) | ||
393 | update_stats_wait_start(cfs_rq, se, now); | ||
394 | /* | ||
395 | * Update the key: | ||
396 | */ | ||
397 | key = cfs_rq->fair_clock; | ||
398 | |||
399 | /* | ||
400 | * Optimize the common nice 0 case: | ||
401 | */ | ||
402 | if (likely(se->load.weight == NICE_0_LOAD)) { | ||
403 | key -= se->wait_runtime; | ||
404 | } else { | ||
405 | u64 tmp; | ||
406 | |||
407 | if (se->wait_runtime < 0) { | ||
408 | tmp = -se->wait_runtime; | ||
409 | key += (tmp * se->load.inv_weight) >> | ||
410 | (WMULT_SHIFT - NICE_0_SHIFT); | ||
411 | } else { | ||
412 | tmp = se->wait_runtime; | ||
413 | key -= (tmp * se->load.weight) >> NICE_0_SHIFT; | ||
414 | } | ||
415 | } | ||
416 | |||
417 | se->fair_key = key; | ||
418 | } | ||
419 | |||
420 | /* | ||
421 | * Note: must be called with a freshly updated rq->fair_clock. | ||
422 | */ | ||
423 | static inline void | ||
424 | __update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now) | ||
425 | { | ||
426 | unsigned long delta_fair = se->delta_fair_run; | ||
427 | |||
428 | #ifdef CONFIG_SCHEDSTATS | ||
429 | { | ||
430 | s64 delta_wait = now - se->wait_start; | ||
431 | if (unlikely(delta_wait > se->wait_max)) | ||
432 | se->wait_max = delta_wait; | ||
433 | } | ||
434 | #endif | ||
435 | |||
436 | if (unlikely(se->load.weight != NICE_0_LOAD)) | ||
437 | delta_fair = calc_weighted(delta_fair, se->load.weight, | ||
438 | NICE_0_SHIFT); | ||
439 | |||
440 | add_wait_runtime(cfs_rq, se, delta_fair); | ||
441 | } | ||
442 | |||
443 | static void | ||
444 | update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now) | ||
445 | { | ||
446 | unsigned long delta_fair; | ||
447 | |||
448 | delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit), | ||
449 | (u64)(cfs_rq->fair_clock - se->wait_start_fair)); | ||
450 | |||
451 | se->delta_fair_run += delta_fair; | ||
452 | if (unlikely(abs(se->delta_fair_run) >= | ||
453 | sysctl_sched_stat_granularity)) { | ||
454 | __update_stats_wait_end(cfs_rq, se, now); | ||
455 | se->delta_fair_run = 0; | ||
456 | } | ||
457 | |||
458 | se->wait_start_fair = 0; | ||
459 | se->wait_start = 0; | ||
460 | } | ||
461 | |||
462 | static inline void | ||
463 | update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now) | ||
464 | { | ||
465 | update_curr(cfs_rq, now); | ||
466 | /* | ||
467 | * Mark the end of the wait period if dequeueing a | ||
468 | * waiting task: | ||
469 | */ | ||
470 | if (se != cfs_rq_curr(cfs_rq)) | ||
471 | update_stats_wait_end(cfs_rq, se, now); | ||
472 | } | ||
473 | |||
474 | /* | ||
475 | * We are picking a new current task - update its stats: | ||
476 | */ | ||
477 | static inline void | ||
478 | update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now) | ||
479 | { | ||
480 | /* | ||
481 | * We are starting a new run period: | ||
482 | */ | ||
483 | se->exec_start = now; | ||
484 | } | ||
485 | |||
486 | /* | ||
487 | * We are descheduling a task - update its stats: | ||
488 | */ | ||
489 | static inline void | ||
490 | update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now) | ||
491 | { | ||
492 | se->exec_start = 0; | ||
493 | } | ||
494 | |||
495 | /************************************************** | ||
496 | * Scheduling class queueing methods: | ||
497 | */ | ||
498 | |||
499 | static void | ||
500 | __enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now) | ||
501 | { | ||
502 | unsigned long load = cfs_rq->load.weight, delta_fair; | ||
503 | long prev_runtime; | ||
504 | |||
505 | if (sysctl_sched_features & SCHED_FEAT_SLEEPER_LOAD_AVG) | ||
506 | load = rq_of(cfs_rq)->cpu_load[2]; | ||
507 | |||
508 | delta_fair = se->delta_fair_sleep; | ||
509 | |||
510 | /* | ||
511 | * Fix up delta_fair with the effect of us running | ||
512 | * during the whole sleep period: | ||
513 | */ | ||
514 | if (sysctl_sched_features & SCHED_FEAT_SLEEPER_AVG) | ||
515 | delta_fair = div64_likely32((u64)delta_fair * load, | ||
516 | load + se->load.weight); | ||
517 | |||
518 | if (unlikely(se->load.weight != NICE_0_LOAD)) | ||
519 | delta_fair = calc_weighted(delta_fair, se->load.weight, | ||
520 | NICE_0_SHIFT); | ||
521 | |||
522 | prev_runtime = se->wait_runtime; | ||
523 | __add_wait_runtime(cfs_rq, se, delta_fair); | ||
524 | delta_fair = se->wait_runtime - prev_runtime; | ||
525 | |||
526 | /* | ||
527 | * Track the amount of bonus we've given to sleepers: | ||
528 | */ | ||
529 | cfs_rq->sleeper_bonus += delta_fair; | ||
530 | |||
531 | schedstat_add(cfs_rq, wait_runtime, se->wait_runtime); | ||
532 | } | ||
533 | |||
534 | static void | ||
535 | enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now) | ||
536 | { | ||
537 | struct task_struct *tsk = task_of(se); | ||
538 | unsigned long delta_fair; | ||
539 | |||
540 | if ((entity_is_task(se) && tsk->policy == SCHED_BATCH) || | ||
541 | !(sysctl_sched_features & SCHED_FEAT_FAIR_SLEEPERS)) | ||
542 | return; | ||
543 | |||
544 | delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit), | ||
545 | (u64)(cfs_rq->fair_clock - se->sleep_start_fair)); | ||
546 | |||
547 | se->delta_fair_sleep += delta_fair; | ||
548 | if (unlikely(abs(se->delta_fair_sleep) >= | ||
549 | sysctl_sched_stat_granularity)) { | ||
550 | __enqueue_sleeper(cfs_rq, se, now); | ||
551 | se->delta_fair_sleep = 0; | ||
552 | } | ||
553 | |||
554 | se->sleep_start_fair = 0; | ||
555 | |||
556 | #ifdef CONFIG_SCHEDSTATS | ||
557 | if (se->sleep_start) { | ||
558 | u64 delta = now - se->sleep_start; | ||
559 | |||
560 | if ((s64)delta < 0) | ||
561 | delta = 0; | ||
562 | |||
563 | if (unlikely(delta > se->sleep_max)) | ||
564 | se->sleep_max = delta; | ||
565 | |||
566 | se->sleep_start = 0; | ||
567 | se->sum_sleep_runtime += delta; | ||
568 | } | ||
569 | if (se->block_start) { | ||
570 | u64 delta = now - se->block_start; | ||
571 | |||
572 | if ((s64)delta < 0) | ||
573 | delta = 0; | ||
574 | |||
575 | if (unlikely(delta > se->block_max)) | ||
576 | se->block_max = delta; | ||
577 | |||
578 | se->block_start = 0; | ||
579 | se->sum_sleep_runtime += delta; | ||
580 | } | ||
581 | #endif | ||
582 | } | ||
583 | |||
584 | static void | ||
585 | enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, | ||
586 | int wakeup, u64 now) | ||
587 | { | ||
588 | /* | ||
589 | * Update the fair clock. | ||
590 | */ | ||
591 | update_curr(cfs_rq, now); | ||
592 | |||
593 | if (wakeup) | ||
594 | enqueue_sleeper(cfs_rq, se, now); | ||
595 | |||
596 | update_stats_enqueue(cfs_rq, se, now); | ||
597 | __enqueue_entity(cfs_rq, se); | ||
598 | } | ||
599 | |||
600 | static void | ||
601 | dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, | ||
602 | int sleep, u64 now) | ||
603 | { | ||
604 | update_stats_dequeue(cfs_rq, se, now); | ||
605 | if (sleep) { | ||
606 | se->sleep_start_fair = cfs_rq->fair_clock; | ||
607 | #ifdef CONFIG_SCHEDSTATS | ||
608 | if (entity_is_task(se)) { | ||
609 | struct task_struct *tsk = task_of(se); | ||
610 | |||
611 | if (tsk->state & TASK_INTERRUPTIBLE) | ||
612 | se->sleep_start = now; | ||
613 | if (tsk->state & TASK_UNINTERRUPTIBLE) | ||
614 | se->block_start = now; | ||
615 | } | ||
616 | cfs_rq->wait_runtime -= se->wait_runtime; | ||
617 | #endif | ||
618 | } | ||
619 | __dequeue_entity(cfs_rq, se); | ||
620 | } | ||
621 | |||
622 | /* | ||
623 | * Preempt the current task with a newly woken task if needed: | ||
624 | */ | ||
625 | static void | ||
626 | __check_preempt_curr_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, | ||
627 | struct sched_entity *curr, unsigned long granularity) | ||
628 | { | ||
629 | s64 __delta = curr->fair_key - se->fair_key; | ||
630 | |||
631 | /* | ||
632 | * Take scheduling granularity into account - do not | ||
633 | * preempt the current task unless the best task has | ||
634 | * a larger than sched_granularity fairness advantage: | ||
635 | */ | ||
636 | if (__delta > niced_granularity(curr, granularity)) | ||
637 | resched_task(rq_of(cfs_rq)->curr); | ||
638 | } | ||
639 | |||
640 | static inline void | ||
641 | set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now) | ||
642 | { | ||
643 | /* | ||
644 | * Any task has to be enqueued before it get to execute on | ||
645 | * a CPU. So account for the time it spent waiting on the | ||
646 | * runqueue. (note, here we rely on pick_next_task() having | ||
647 | * done a put_prev_task_fair() shortly before this, which | ||
648 | * updated rq->fair_clock - used by update_stats_wait_end()) | ||
649 | */ | ||
650 | update_stats_wait_end(cfs_rq, se, now); | ||
651 | update_stats_curr_start(cfs_rq, se, now); | ||
652 | set_cfs_rq_curr(cfs_rq, se); | ||
653 | } | ||
654 | |||
655 | static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq, u64 now) | ||
656 | { | ||
657 | struct sched_entity *se = __pick_next_entity(cfs_rq); | ||
658 | |||
659 | set_next_entity(cfs_rq, se, now); | ||
660 | |||
661 | return se; | ||
662 | } | ||
663 | |||
664 | static void | ||
665 | put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev, u64 now) | ||
666 | { | ||
667 | /* | ||
668 | * If still on the runqueue then deactivate_task() | ||
669 | * was not called and update_curr() has to be done: | ||
670 | */ | ||
671 | if (prev->on_rq) | ||
672 | update_curr(cfs_rq, now); | ||
673 | |||
674 | update_stats_curr_end(cfs_rq, prev, now); | ||
675 | |||
676 | if (prev->on_rq) | ||
677 | update_stats_wait_start(cfs_rq, prev, now); | ||
678 | set_cfs_rq_curr(cfs_rq, NULL); | ||
679 | } | ||
680 | |||
681 | static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) | ||
682 | { | ||
683 | struct rq *rq = rq_of(cfs_rq); | ||
684 | struct sched_entity *next; | ||
685 | u64 now = __rq_clock(rq); | ||
686 | |||
687 | /* | ||
688 | * Dequeue and enqueue the task to update its | ||
689 | * position within the tree: | ||
690 | */ | ||
691 | dequeue_entity(cfs_rq, curr, 0, now); | ||
692 | enqueue_entity(cfs_rq, curr, 0, now); | ||
693 | |||
694 | /* | ||
695 | * Reschedule if another task tops the current one. | ||
696 | */ | ||
697 | next = __pick_next_entity(cfs_rq); | ||
698 | if (next == curr) | ||
699 | return; | ||
700 | |||
701 | __check_preempt_curr_fair(cfs_rq, next, curr, sysctl_sched_granularity); | ||
702 | } | ||
703 | |||
704 | /************************************************** | ||
705 | * CFS operations on tasks: | ||
706 | */ | ||
707 | |||
708 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
709 | |||
710 | /* Walk up scheduling entities hierarchy */ | ||
711 | #define for_each_sched_entity(se) \ | ||
712 | for (; se; se = se->parent) | ||
713 | |||
714 | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) | ||
715 | { | ||
716 | return p->se.cfs_rq; | ||
717 | } | ||
718 | |||
719 | /* runqueue on which this entity is (to be) queued */ | ||
720 | static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) | ||
721 | { | ||
722 | return se->cfs_rq; | ||
723 | } | ||
724 | |||
725 | /* runqueue "owned" by this group */ | ||
726 | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) | ||
727 | { | ||
728 | return grp->my_q; | ||
729 | } | ||
730 | |||
731 | /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on | ||
732 | * another cpu ('this_cpu') | ||
733 | */ | ||
734 | static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu) | ||
735 | { | ||
736 | /* A later patch will take group into account */ | ||
737 | return &cpu_rq(this_cpu)->cfs; | ||
738 | } | ||
739 | |||
740 | /* Iterate thr' all leaf cfs_rq's on a runqueue */ | ||
741 | #define for_each_leaf_cfs_rq(rq, cfs_rq) \ | ||
742 | list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) | ||
743 | |||
744 | /* Do the two (enqueued) tasks belong to the same group ? */ | ||
745 | static inline int is_same_group(struct task_struct *curr, struct task_struct *p) | ||
746 | { | ||
747 | if (curr->se.cfs_rq == p->se.cfs_rq) | ||
748 | return 1; | ||
749 | |||
750 | return 0; | ||
751 | } | ||
752 | |||
753 | #else /* CONFIG_FAIR_GROUP_SCHED */ | ||
754 | |||
755 | #define for_each_sched_entity(se) \ | ||
756 | for (; se; se = NULL) | ||
757 | |||
758 | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) | ||
759 | { | ||
760 | return &task_rq(p)->cfs; | ||
761 | } | ||
762 | |||
763 | static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) | ||
764 | { | ||
765 | struct task_struct *p = task_of(se); | ||
766 | struct rq *rq = task_rq(p); | ||
767 | |||
768 | return &rq->cfs; | ||
769 | } | ||
770 | |||
771 | /* runqueue "owned" by this group */ | ||
772 | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) | ||
773 | { | ||
774 | return NULL; | ||
775 | } | ||
776 | |||
777 | static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu) | ||
778 | { | ||
779 | return &cpu_rq(this_cpu)->cfs; | ||
780 | } | ||
781 | |||
782 | #define for_each_leaf_cfs_rq(rq, cfs_rq) \ | ||
783 | for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) | ||
784 | |||
785 | static inline int is_same_group(struct task_struct *curr, struct task_struct *p) | ||
786 | { | ||
787 | return 1; | ||
788 | } | ||
789 | |||
790 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | ||
791 | |||
792 | /* | ||
793 | * The enqueue_task method is called before nr_running is | ||
794 | * increased. Here we update the fair scheduling stats and | ||
795 | * then put the task into the rbtree: | ||
796 | */ | ||
797 | static void | ||
798 | enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup, u64 now) | ||
799 | { | ||
800 | struct cfs_rq *cfs_rq; | ||
801 | struct sched_entity *se = &p->se; | ||
802 | |||
803 | for_each_sched_entity(se) { | ||
804 | if (se->on_rq) | ||
805 | break; | ||
806 | cfs_rq = cfs_rq_of(se); | ||
807 | enqueue_entity(cfs_rq, se, wakeup, now); | ||
808 | } | ||
809 | } | ||
810 | |||
811 | /* | ||
812 | * The dequeue_task method is called before nr_running is | ||
813 | * decreased. We remove the task from the rbtree and | ||
814 | * update the fair scheduling stats: | ||
815 | */ | ||
816 | static void | ||
817 | dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep, u64 now) | ||
818 | { | ||
819 | struct cfs_rq *cfs_rq; | ||
820 | struct sched_entity *se = &p->se; | ||
821 | |||
822 | for_each_sched_entity(se) { | ||
823 | cfs_rq = cfs_rq_of(se); | ||
824 | dequeue_entity(cfs_rq, se, sleep, now); | ||
825 | /* Don't dequeue parent if it has other entities besides us */ | ||
826 | if (cfs_rq->load.weight) | ||
827 | break; | ||
828 | } | ||
829 | } | ||
830 | |||
831 | /* | ||
832 | * sched_yield() support is very simple - we dequeue and enqueue | ||
833 | */ | ||
834 | static void yield_task_fair(struct rq *rq, struct task_struct *p) | ||
835 | { | ||
836 | struct cfs_rq *cfs_rq = task_cfs_rq(p); | ||
837 | u64 now = __rq_clock(rq); | ||
838 | |||
839 | /* | ||
840 | * Dequeue and enqueue the task to update its | ||
841 | * position within the tree: | ||
842 | */ | ||
843 | dequeue_entity(cfs_rq, &p->se, 0, now); | ||
844 | enqueue_entity(cfs_rq, &p->se, 0, now); | ||
845 | } | ||
846 | |||
847 | /* | ||
848 | * Preempt the current task with a newly woken task if needed: | ||
849 | */ | ||
850 | static void check_preempt_curr_fair(struct rq *rq, struct task_struct *p) | ||
851 | { | ||
852 | struct task_struct *curr = rq->curr; | ||
853 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); | ||
854 | unsigned long gran; | ||
855 | |||
856 | if (unlikely(rt_prio(p->prio))) { | ||
857 | update_curr(cfs_rq, rq_clock(rq)); | ||
858 | resched_task(curr); | ||
859 | return; | ||
860 | } | ||
861 | |||
862 | gran = sysctl_sched_wakeup_granularity; | ||
863 | /* | ||
864 | * Batch tasks prefer throughput over latency: | ||
865 | */ | ||
866 | if (unlikely(p->policy == SCHED_BATCH)) | ||
867 | gran = sysctl_sched_batch_wakeup_granularity; | ||
868 | |||
869 | if (is_same_group(curr, p)) | ||
870 | __check_preempt_curr_fair(cfs_rq, &p->se, &curr->se, gran); | ||
871 | } | ||
872 | |||
873 | static struct task_struct *pick_next_task_fair(struct rq *rq, u64 now) | ||
874 | { | ||
875 | struct cfs_rq *cfs_rq = &rq->cfs; | ||
876 | struct sched_entity *se; | ||
877 | |||
878 | if (unlikely(!cfs_rq->nr_running)) | ||
879 | return NULL; | ||
880 | |||
881 | do { | ||
882 | se = pick_next_entity(cfs_rq, now); | ||
883 | cfs_rq = group_cfs_rq(se); | ||
884 | } while (cfs_rq); | ||
885 | |||
886 | return task_of(se); | ||
887 | } | ||
888 | |||
889 | /* | ||
890 | * Account for a descheduled task: | ||
891 | */ | ||
892 | static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, u64 now) | ||
893 | { | ||
894 | struct sched_entity *se = &prev->se; | ||
895 | struct cfs_rq *cfs_rq; | ||
896 | |||
897 | for_each_sched_entity(se) { | ||
898 | cfs_rq = cfs_rq_of(se); | ||
899 | put_prev_entity(cfs_rq, se, now); | ||
900 | } | ||
901 | } | ||
902 | |||
903 | /************************************************** | ||
904 | * Fair scheduling class load-balancing methods: | ||
905 | */ | ||
906 | |||
907 | /* | ||
908 | * Load-balancing iterator. Note: while the runqueue stays locked | ||
909 | * during the whole iteration, the current task might be | ||
910 | * dequeued so the iterator has to be dequeue-safe. Here we | ||
911 | * achieve that by always pre-iterating before returning | ||
912 | * the current task: | ||
913 | */ | ||
914 | static inline struct task_struct * | ||
915 | __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr) | ||
916 | { | ||
917 | struct task_struct *p; | ||
918 | |||
919 | if (!curr) | ||
920 | return NULL; | ||
921 | |||
922 | p = rb_entry(curr, struct task_struct, se.run_node); | ||
923 | cfs_rq->rb_load_balance_curr = rb_next(curr); | ||
924 | |||
925 | return p; | ||
926 | } | ||
927 | |||
928 | static struct task_struct *load_balance_start_fair(void *arg) | ||
929 | { | ||
930 | struct cfs_rq *cfs_rq = arg; | ||
931 | |||
932 | return __load_balance_iterator(cfs_rq, first_fair(cfs_rq)); | ||
933 | } | ||
934 | |||
935 | static struct task_struct *load_balance_next_fair(void *arg) | ||
936 | { | ||
937 | struct cfs_rq *cfs_rq = arg; | ||
938 | |||
939 | return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr); | ||
940 | } | ||
941 | |||
942 | static int cfs_rq_best_prio(struct cfs_rq *cfs_rq) | ||
943 | { | ||
944 | struct sched_entity *curr; | ||
945 | struct task_struct *p; | ||
946 | |||
947 | if (!cfs_rq->nr_running) | ||
948 | return MAX_PRIO; | ||
949 | |||
950 | curr = __pick_next_entity(cfs_rq); | ||
951 | p = task_of(curr); | ||
952 | |||
953 | return p->prio; | ||
954 | } | ||
955 | |||
956 | static int | ||
957 | load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
958 | unsigned long max_nr_move, unsigned long max_load_move, | ||
959 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
960 | int *all_pinned, unsigned long *total_load_moved) | ||
961 | { | ||
962 | struct cfs_rq *busy_cfs_rq; | ||
963 | unsigned long load_moved, total_nr_moved = 0, nr_moved; | ||
964 | long rem_load_move = max_load_move; | ||
965 | struct rq_iterator cfs_rq_iterator; | ||
966 | |||
967 | cfs_rq_iterator.start = load_balance_start_fair; | ||
968 | cfs_rq_iterator.next = load_balance_next_fair; | ||
969 | |||
970 | for_each_leaf_cfs_rq(busiest, busy_cfs_rq) { | ||
971 | struct cfs_rq *this_cfs_rq; | ||
972 | long imbalance; | ||
973 | unsigned long maxload; | ||
974 | int this_best_prio, best_prio, best_prio_seen = 0; | ||
975 | |||
976 | this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu); | ||
977 | |||
978 | imbalance = busy_cfs_rq->load.weight - | ||
979 | this_cfs_rq->load.weight; | ||
980 | /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */ | ||
981 | if (imbalance <= 0) | ||
982 | continue; | ||
983 | |||
984 | /* Don't pull more than imbalance/2 */ | ||
985 | imbalance /= 2; | ||
986 | maxload = min(rem_load_move, imbalance); | ||
987 | |||
988 | this_best_prio = cfs_rq_best_prio(this_cfs_rq); | ||
989 | best_prio = cfs_rq_best_prio(busy_cfs_rq); | ||
990 | |||
991 | /* | ||
992 | * Enable handling of the case where there is more than one task | ||
993 | * with the best priority. If the current running task is one | ||
994 | * of those with prio==best_prio we know it won't be moved | ||
995 | * and therefore it's safe to override the skip (based on load) | ||
996 | * of any task we find with that prio. | ||
997 | */ | ||
998 | if (cfs_rq_curr(busy_cfs_rq) == &busiest->curr->se) | ||
999 | best_prio_seen = 1; | ||
1000 | |||
1001 | /* pass busy_cfs_rq argument into | ||
1002 | * load_balance_[start|next]_fair iterators | ||
1003 | */ | ||
1004 | cfs_rq_iterator.arg = busy_cfs_rq; | ||
1005 | nr_moved = balance_tasks(this_rq, this_cpu, busiest, | ||
1006 | max_nr_move, maxload, sd, idle, all_pinned, | ||
1007 | &load_moved, this_best_prio, best_prio, | ||
1008 | best_prio_seen, &cfs_rq_iterator); | ||
1009 | |||
1010 | total_nr_moved += nr_moved; | ||
1011 | max_nr_move -= nr_moved; | ||
1012 | rem_load_move -= load_moved; | ||
1013 | |||
1014 | if (max_nr_move <= 0 || rem_load_move <= 0) | ||
1015 | break; | ||
1016 | } | ||
1017 | |||
1018 | *total_load_moved = max_load_move - rem_load_move; | ||
1019 | |||
1020 | return total_nr_moved; | ||
1021 | } | ||
1022 | |||
1023 | /* | ||
1024 | * scheduler tick hitting a task of our scheduling class: | ||
1025 | */ | ||
1026 | static void task_tick_fair(struct rq *rq, struct task_struct *curr) | ||
1027 | { | ||
1028 | struct cfs_rq *cfs_rq; | ||
1029 | struct sched_entity *se = &curr->se; | ||
1030 | |||
1031 | for_each_sched_entity(se) { | ||
1032 | cfs_rq = cfs_rq_of(se); | ||
1033 | entity_tick(cfs_rq, se); | ||
1034 | } | ||
1035 | } | ||
1036 | |||
1037 | /* | ||
1038 | * Share the fairness runtime between parent and child, thus the | ||
1039 | * total amount of pressure for CPU stays equal - new tasks | ||
1040 | * get a chance to run but frequent forkers are not allowed to | ||
1041 | * monopolize the CPU. Note: the parent runqueue is locked, | ||
1042 | * the child is not running yet. | ||
1043 | */ | ||
1044 | static void task_new_fair(struct rq *rq, struct task_struct *p) | ||
1045 | { | ||
1046 | struct cfs_rq *cfs_rq = task_cfs_rq(p); | ||
1047 | struct sched_entity *se = &p->se; | ||
1048 | u64 now = rq_clock(rq); | ||
1049 | |||
1050 | sched_info_queued(p); | ||
1051 | |||
1052 | update_stats_enqueue(cfs_rq, se, now); | ||
1053 | /* | ||
1054 | * Child runs first: we let it run before the parent | ||
1055 | * until it reschedules once. We set up the key so that | ||
1056 | * it will preempt the parent: | ||
1057 | */ | ||
1058 | p->se.fair_key = current->se.fair_key - | ||
1059 | niced_granularity(&rq->curr->se, sysctl_sched_granularity) - 1; | ||
1060 | /* | ||
1061 | * The first wait is dominated by the child-runs-first logic, | ||
1062 | * so do not credit it with that waiting time yet: | ||
1063 | */ | ||
1064 | if (sysctl_sched_features & SCHED_FEAT_SKIP_INITIAL) | ||
1065 | p->se.wait_start_fair = 0; | ||
1066 | |||
1067 | /* | ||
1068 | * The statistical average of wait_runtime is about | ||
1069 | * -granularity/2, so initialize the task with that: | ||
1070 | */ | ||
1071 | if (sysctl_sched_features & SCHED_FEAT_START_DEBIT) | ||
1072 | p->se.wait_runtime = -(sysctl_sched_granularity / 2); | ||
1073 | |||
1074 | __enqueue_entity(cfs_rq, se); | ||
1075 | inc_nr_running(p, rq, now); | ||
1076 | } | ||
1077 | |||
1078 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
1079 | /* Account for a task changing its policy or group. | ||
1080 | * | ||
1081 | * This routine is mostly called to set cfs_rq->curr field when a task | ||
1082 | * migrates between groups/classes. | ||
1083 | */ | ||
1084 | static void set_curr_task_fair(struct rq *rq) | ||
1085 | { | ||
1086 | struct task_struct *curr = rq->curr; | ||
1087 | struct sched_entity *se = &curr->se; | ||
1088 | u64 now = rq_clock(rq); | ||
1089 | struct cfs_rq *cfs_rq; | ||
1090 | |||
1091 | for_each_sched_entity(se) { | ||
1092 | cfs_rq = cfs_rq_of(se); | ||
1093 | set_next_entity(cfs_rq, se, now); | ||
1094 | } | ||
1095 | } | ||
1096 | #else | ||
1097 | static void set_curr_task_fair(struct rq *rq) | ||
1098 | { | ||
1099 | } | ||
1100 | #endif | ||
1101 | |||
1102 | /* | ||
1103 | * All the scheduling class methods: | ||
1104 | */ | ||
1105 | struct sched_class fair_sched_class __read_mostly = { | ||
1106 | .enqueue_task = enqueue_task_fair, | ||
1107 | .dequeue_task = dequeue_task_fair, | ||
1108 | .yield_task = yield_task_fair, | ||
1109 | |||
1110 | .check_preempt_curr = check_preempt_curr_fair, | ||
1111 | |||
1112 | .pick_next_task = pick_next_task_fair, | ||
1113 | .put_prev_task = put_prev_task_fair, | ||
1114 | |||
1115 | .load_balance = load_balance_fair, | ||
1116 | |||
1117 | .set_curr_task = set_curr_task_fair, | ||
1118 | .task_tick = task_tick_fair, | ||
1119 | .task_new = task_new_fair, | ||
1120 | }; | ||
1121 | |||
1122 | #ifdef CONFIG_SCHED_DEBUG | ||
1123 | void print_cfs_stats(struct seq_file *m, int cpu, u64 now) | ||
1124 | { | ||
1125 | struct rq *rq = cpu_rq(cpu); | ||
1126 | struct cfs_rq *cfs_rq; | ||
1127 | |||
1128 | for_each_leaf_cfs_rq(rq, cfs_rq) | ||
1129 | print_cfs_rq(m, cpu, cfs_rq, now); | ||
1130 | } | ||
1131 | #endif | ||