aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--fs/nfs/iostat.h119
-rw-r--r--include/linux/nfs_iostat.h119
2 files changed, 132 insertions, 106 deletions
diff --git a/fs/nfs/iostat.h b/fs/nfs/iostat.h
index 6350ecbde589..2ec65e12bfed 100644
--- a/fs/nfs/iostat.h
+++ b/fs/nfs/iostat.h
@@ -5,135 +5,41 @@
5 * 5 *
6 * Copyright (C) 2005, 2006 Chuck Lever <cel@netapp.com> 6 * Copyright (C) 2005, 2006 Chuck Lever <cel@netapp.com>
7 * 7 *
8 * NFS client per-mount statistics provide information about the health of
9 * the NFS client and the health of each NFS mount point. Generally these
10 * are not for detailed problem diagnosis, but simply to indicate that there
11 * is a problem.
12 *
13 * These counters are not meant to be human-readable, but are meant to be
14 * integrated into system monitoring tools such as "sar" and "iostat". As
15 * such, the counters are sampled by the tools over time, and are never
16 * zeroed after a file system is mounted. Moving averages can be computed
17 * by the tools by taking the difference between two instantaneous samples
18 * and dividing that by the time between the samples.
19 */ 8 */
20 9
21#ifndef _NFS_IOSTAT 10#ifndef _NFS_IOSTAT
22#define _NFS_IOSTAT 11#define _NFS_IOSTAT
23 12
24#define NFS_IOSTAT_VERS "1.0"
25
26/*
27 * NFS byte counters
28 *
29 * 1. SERVER - the number of payload bytes read from or written to the
30 * server by the NFS client via an NFS READ or WRITE request.
31 *
32 * 2. NORMAL - the number of bytes read or written by applications via
33 * the read(2) and write(2) system call interfaces.
34 *
35 * 3. DIRECT - the number of bytes read or written from files opened
36 * with the O_DIRECT flag.
37 *
38 * These counters give a view of the data throughput into and out of the NFS
39 * client. Comparing the number of bytes requested by an application with the
40 * number of bytes the client requests from the server can provide an
41 * indication of client efficiency (per-op, cache hits, etc).
42 *
43 * These counters can also help characterize which access methods are in
44 * use. DIRECT by itself shows whether there is any O_DIRECT traffic.
45 * NORMAL + DIRECT shows how much data is going through the system call
46 * interface. A large amount of SERVER traffic without much NORMAL or
47 * DIRECT traffic shows that applications are using mapped files.
48 *
49 * NFS page counters
50 *
51 * These count the number of pages read or written via nfs_readpage(),
52 * nfs_readpages(), or their write equivalents.
53 */
54enum nfs_stat_bytecounters {
55 NFSIOS_NORMALREADBYTES = 0,
56 NFSIOS_NORMALWRITTENBYTES,
57 NFSIOS_DIRECTREADBYTES,
58 NFSIOS_DIRECTWRITTENBYTES,
59 NFSIOS_SERVERREADBYTES,
60 NFSIOS_SERVERWRITTENBYTES,
61 NFSIOS_READPAGES,
62 NFSIOS_WRITEPAGES,
63 __NFSIOS_BYTESMAX,
64};
65
66/*
67 * NFS event counters
68 *
69 * These counters provide a low-overhead way of monitoring client activity
70 * without enabling NFS trace debugging. The counters show the rate at
71 * which VFS requests are made, and how often the client invalidates its
72 * data and attribute caches. This allows system administrators to monitor
73 * such things as how close-to-open is working, and answer questions such
74 * as "why are there so many GETATTR requests on the wire?"
75 *
76 * They also count anamolous events such as short reads and writes, silly
77 * renames due to close-after-delete, and operations that change the size
78 * of a file (such operations can often be the source of data corruption
79 * if applications aren't using file locking properly).
80 */
81enum nfs_stat_eventcounters {
82 NFSIOS_INODEREVALIDATE = 0,
83 NFSIOS_DENTRYREVALIDATE,
84 NFSIOS_DATAINVALIDATE,
85 NFSIOS_ATTRINVALIDATE,
86 NFSIOS_VFSOPEN,
87 NFSIOS_VFSLOOKUP,
88 NFSIOS_VFSACCESS,
89 NFSIOS_VFSUPDATEPAGE,
90 NFSIOS_VFSREADPAGE,
91 NFSIOS_VFSREADPAGES,
92 NFSIOS_VFSWRITEPAGE,
93 NFSIOS_VFSWRITEPAGES,
94 NFSIOS_VFSGETDENTS,
95 NFSIOS_VFSSETATTR,
96 NFSIOS_VFSFLUSH,
97 NFSIOS_VFSFSYNC,
98 NFSIOS_VFSLOCK,
99 NFSIOS_VFSRELEASE,
100 NFSIOS_CONGESTIONWAIT,
101 NFSIOS_SETATTRTRUNC,
102 NFSIOS_EXTENDWRITE,
103 NFSIOS_SILLYRENAME,
104 NFSIOS_SHORTREAD,
105 NFSIOS_SHORTWRITE,
106 NFSIOS_DELAY,
107 __NFSIOS_COUNTSMAX,
108};
109
110#ifdef __KERNEL__
111
112#include <linux/percpu.h> 13#include <linux/percpu.h>
113#include <linux/cache.h> 14#include <linux/cache.h>
15#include <linux/nfs_iostat.h>
114 16
115struct nfs_iostats { 17struct nfs_iostats {
116 unsigned long long bytes[__NFSIOS_BYTESMAX]; 18 unsigned long long bytes[__NFSIOS_BYTESMAX];
117 unsigned long events[__NFSIOS_COUNTSMAX]; 19 unsigned long events[__NFSIOS_COUNTSMAX];
118} ____cacheline_aligned; 20} ____cacheline_aligned;
119 21
120static inline void nfs_inc_server_stats(struct nfs_server *server, enum nfs_stat_eventcounters stat) 22static inline void nfs_inc_server_stats(struct nfs_server *server,
23 enum nfs_stat_eventcounters stat)
121{ 24{
122 struct nfs_iostats *iostats; 25 struct nfs_iostats *iostats;
123 int cpu; 26 int cpu;
124 27
125 cpu = get_cpu(); 28 cpu = get_cpu();
126 iostats = per_cpu_ptr(server->io_stats, cpu); 29 iostats = per_cpu_ptr(server->io_stats, cpu);
127 iostats->events[stat] ++; 30 iostats->events[stat]++;
128 put_cpu_no_resched(); 31 put_cpu_no_resched();
129} 32}
130 33
131static inline void nfs_inc_stats(struct inode *inode, enum nfs_stat_eventcounters stat) 34static inline void nfs_inc_stats(struct inode *inode,
35 enum nfs_stat_eventcounters stat)
132{ 36{
133 nfs_inc_server_stats(NFS_SERVER(inode), stat); 37 nfs_inc_server_stats(NFS_SERVER(inode), stat);
134} 38}
135 39
136static inline void nfs_add_server_stats(struct nfs_server *server, enum nfs_stat_bytecounters stat, unsigned long addend) 40static inline void nfs_add_server_stats(struct nfs_server *server,
41 enum nfs_stat_bytecounters stat,
42 unsigned long addend)
137{ 43{
138 struct nfs_iostats *iostats; 44 struct nfs_iostats *iostats;
139 int cpu; 45 int cpu;
@@ -144,7 +50,9 @@ static inline void nfs_add_server_stats(struct nfs_server *server, enum nfs_stat
144 put_cpu_no_resched(); 50 put_cpu_no_resched();
145} 51}
146 52
147static inline void nfs_add_stats(struct inode *inode, enum nfs_stat_bytecounters stat, unsigned long addend) 53static inline void nfs_add_stats(struct inode *inode,
54 enum nfs_stat_bytecounters stat,
55 unsigned long addend)
148{ 56{
149 nfs_add_server_stats(NFS_SERVER(inode), stat, addend); 57 nfs_add_server_stats(NFS_SERVER(inode), stat, addend);
150} 58}
@@ -160,5 +68,4 @@ static inline void nfs_free_iostats(struct nfs_iostats *stats)
160 free_percpu(stats); 68 free_percpu(stats);
161} 69}
162 70
163#endif 71#endif /* _NFS_IOSTAT */
164#endif
diff --git a/include/linux/nfs_iostat.h b/include/linux/nfs_iostat.h
new file mode 100644
index 000000000000..1cb9a3fed2b3
--- /dev/null
+++ b/include/linux/nfs_iostat.h
@@ -0,0 +1,119 @@
1/*
2 * User-space visible declarations for NFS client per-mount
3 * point statistics
4 *
5 * Copyright (C) 2005, 2006 Chuck Lever <cel@netapp.com>
6 *
7 * NFS client per-mount statistics provide information about the
8 * health of the NFS client and the health of each NFS mount point.
9 * Generally these are not for detailed problem diagnosis, but
10 * simply to indicate that there is a problem.
11 *
12 * These counters are not meant to be human-readable, but are meant
13 * to be integrated into system monitoring tools such as "sar" and
14 * "iostat". As such, the counters are sampled by the tools over
15 * time, and are never zeroed after a file system is mounted.
16 * Moving averages can be computed by the tools by taking the
17 * difference between two instantaneous samples and dividing that
18 * by the time between the samples.
19 */
20
21#ifndef _LINUX_NFS_IOSTAT
22#define _LINUX_NFS_IOSTAT
23
24#define NFS_IOSTAT_VERS "1.0"
25
26/*
27 * NFS byte counters
28 *
29 * 1. SERVER - the number of payload bytes read from or written
30 * to the server by the NFS client via an NFS READ or WRITE
31 * request.
32 *
33 * 2. NORMAL - the number of bytes read or written by applications
34 * via the read(2) and write(2) system call interfaces.
35 *
36 * 3. DIRECT - the number of bytes read or written from files
37 * opened with the O_DIRECT flag.
38 *
39 * These counters give a view of the data throughput into and out
40 * of the NFS client. Comparing the number of bytes requested by
41 * an application with the number of bytes the client requests from
42 * the server can provide an indication of client efficiency
43 * (per-op, cache hits, etc).
44 *
45 * These counters can also help characterize which access methods
46 * are in use. DIRECT by itself shows whether there is any O_DIRECT
47 * traffic. NORMAL + DIRECT shows how much data is going through
48 * the system call interface. A large amount of SERVER traffic
49 * without much NORMAL or DIRECT traffic shows that applications
50 * are using mapped files.
51 *
52 * NFS page counters
53 *
54 * These count the number of pages read or written via nfs_readpage(),
55 * nfs_readpages(), or their write equivalents.
56 *
57 * NB: When adding new byte counters, please include the measured
58 * units in the name of each byte counter to help users of this
59 * interface determine what exactly is being counted.
60 */
61enum nfs_stat_bytecounters {
62 NFSIOS_NORMALREADBYTES = 0,
63 NFSIOS_NORMALWRITTENBYTES,
64 NFSIOS_DIRECTREADBYTES,
65 NFSIOS_DIRECTWRITTENBYTES,
66 NFSIOS_SERVERREADBYTES,
67 NFSIOS_SERVERWRITTENBYTES,
68 NFSIOS_READPAGES,
69 NFSIOS_WRITEPAGES,
70 __NFSIOS_BYTESMAX,
71};
72
73/*
74 * NFS event counters
75 *
76 * These counters provide a low-overhead way of monitoring client
77 * activity without enabling NFS trace debugging. The counters
78 * show the rate at which VFS requests are made, and how often the
79 * client invalidates its data and attribute caches. This allows
80 * system administrators to monitor such things as how close-to-open
81 * is working, and answer questions such as "why are there so many
82 * GETATTR requests on the wire?"
83 *
84 * They also count anamolous events such as short reads and writes,
85 * silly renames due to close-after-delete, and operations that
86 * change the size of a file (such operations can often be the
87 * source of data corruption if applications aren't using file
88 * locking properly).
89 */
90enum nfs_stat_eventcounters {
91 NFSIOS_INODEREVALIDATE = 0,
92 NFSIOS_DENTRYREVALIDATE,
93 NFSIOS_DATAINVALIDATE,
94 NFSIOS_ATTRINVALIDATE,
95 NFSIOS_VFSOPEN,
96 NFSIOS_VFSLOOKUP,
97 NFSIOS_VFSACCESS,
98 NFSIOS_VFSUPDATEPAGE,
99 NFSIOS_VFSREADPAGE,
100 NFSIOS_VFSREADPAGES,
101 NFSIOS_VFSWRITEPAGE,
102 NFSIOS_VFSWRITEPAGES,
103 NFSIOS_VFSGETDENTS,
104 NFSIOS_VFSSETATTR,
105 NFSIOS_VFSFLUSH,
106 NFSIOS_VFSFSYNC,
107 NFSIOS_VFSLOCK,
108 NFSIOS_VFSRELEASE,
109 NFSIOS_CONGESTIONWAIT,
110 NFSIOS_SETATTRTRUNC,
111 NFSIOS_EXTENDWRITE,
112 NFSIOS_SILLYRENAME,
113 NFSIOS_SHORTREAD,
114 NFSIOS_SHORTWRITE,
115 NFSIOS_DELAY,
116 __NFSIOS_COUNTSMAX,
117};
118
119#endif /* _LINUX_NFS_IOSTAT */