diff options
-rw-r--r-- | arch/arm/plat-nomadik/include/plat/ste_dma40.h | 239 | ||||
-rw-r--r-- | drivers/dma/Kconfig | 7 | ||||
-rw-r--r-- | drivers/dma/Makefile | 1 | ||||
-rw-r--r-- | drivers/dma/ste_dma40.c | 2596 | ||||
-rw-r--r-- | drivers/dma/ste_dma40_ll.c | 454 | ||||
-rw-r--r-- | drivers/dma/ste_dma40_ll.h | 354 |
6 files changed, 3651 insertions, 0 deletions
diff --git a/arch/arm/plat-nomadik/include/plat/ste_dma40.h b/arch/arm/plat-nomadik/include/plat/ste_dma40.h new file mode 100644 index 000000000000..4d12ea4ca361 --- /dev/null +++ b/arch/arm/plat-nomadik/include/plat/ste_dma40.h | |||
@@ -0,0 +1,239 @@ | |||
1 | /* | ||
2 | * arch/arm/plat-nomadik/include/plat/ste_dma40.h | ||
3 | * | ||
4 | * Copyright (C) ST-Ericsson 2007-2010 | ||
5 | * License terms: GNU General Public License (GPL) version 2 | ||
6 | * Author: Per Friden <per.friden@stericsson.com> | ||
7 | * Author: Jonas Aaberg <jonas.aberg@stericsson.com> | ||
8 | */ | ||
9 | |||
10 | |||
11 | #ifndef STE_DMA40_H | ||
12 | #define STE_DMA40_H | ||
13 | |||
14 | #include <linux/dmaengine.h> | ||
15 | #include <linux/workqueue.h> | ||
16 | #include <linux/interrupt.h> | ||
17 | #include <linux/dmaengine.h> | ||
18 | |||
19 | /* dev types for memcpy */ | ||
20 | #define STEDMA40_DEV_DST_MEMORY (-1) | ||
21 | #define STEDMA40_DEV_SRC_MEMORY (-1) | ||
22 | |||
23 | /* | ||
24 | * Description of bitfields of channel_type variable is available in | ||
25 | * the info structure. | ||
26 | */ | ||
27 | |||
28 | /* Priority */ | ||
29 | #define STEDMA40_INFO_PRIO_TYPE_POS 2 | ||
30 | #define STEDMA40_HIGH_PRIORITY_CHANNEL (0x1 << STEDMA40_INFO_PRIO_TYPE_POS) | ||
31 | #define STEDMA40_LOW_PRIORITY_CHANNEL (0x2 << STEDMA40_INFO_PRIO_TYPE_POS) | ||
32 | |||
33 | /* Mode */ | ||
34 | #define STEDMA40_INFO_CH_MODE_TYPE_POS 6 | ||
35 | #define STEDMA40_CHANNEL_IN_PHY_MODE (0x1 << STEDMA40_INFO_CH_MODE_TYPE_POS) | ||
36 | #define STEDMA40_CHANNEL_IN_LOG_MODE (0x2 << STEDMA40_INFO_CH_MODE_TYPE_POS) | ||
37 | #define STEDMA40_CHANNEL_IN_OPER_MODE (0x3 << STEDMA40_INFO_CH_MODE_TYPE_POS) | ||
38 | |||
39 | /* Mode options */ | ||
40 | #define STEDMA40_INFO_CH_MODE_OPT_POS 8 | ||
41 | #define STEDMA40_PCHAN_BASIC_MODE (0x1 << STEDMA40_INFO_CH_MODE_OPT_POS) | ||
42 | #define STEDMA40_PCHAN_MODULO_MODE (0x2 << STEDMA40_INFO_CH_MODE_OPT_POS) | ||
43 | #define STEDMA40_PCHAN_DOUBLE_DST_MODE (0x3 << STEDMA40_INFO_CH_MODE_OPT_POS) | ||
44 | #define STEDMA40_LCHAN_SRC_PHY_DST_LOG (0x1 << STEDMA40_INFO_CH_MODE_OPT_POS) | ||
45 | #define STEDMA40_LCHAN_SRC_LOG_DST_PHS (0x2 << STEDMA40_INFO_CH_MODE_OPT_POS) | ||
46 | #define STEDMA40_LCHAN_SRC_LOG_DST_LOG (0x3 << STEDMA40_INFO_CH_MODE_OPT_POS) | ||
47 | |||
48 | /* Interrupt */ | ||
49 | #define STEDMA40_INFO_TIM_POS 10 | ||
50 | #define STEDMA40_NO_TIM_FOR_LINK (0x0 << STEDMA40_INFO_TIM_POS) | ||
51 | #define STEDMA40_TIM_FOR_LINK (0x1 << STEDMA40_INFO_TIM_POS) | ||
52 | |||
53 | /* End of channel_type configuration */ | ||
54 | |||
55 | #define STEDMA40_ESIZE_8_BIT 0x0 | ||
56 | #define STEDMA40_ESIZE_16_BIT 0x1 | ||
57 | #define STEDMA40_ESIZE_32_BIT 0x2 | ||
58 | #define STEDMA40_ESIZE_64_BIT 0x3 | ||
59 | |||
60 | /* The value 4 indicates that PEN-reg shall be set to 0 */ | ||
61 | #define STEDMA40_PSIZE_PHY_1 0x4 | ||
62 | #define STEDMA40_PSIZE_PHY_2 0x0 | ||
63 | #define STEDMA40_PSIZE_PHY_4 0x1 | ||
64 | #define STEDMA40_PSIZE_PHY_8 0x2 | ||
65 | #define STEDMA40_PSIZE_PHY_16 0x3 | ||
66 | |||
67 | /* | ||
68 | * The number of elements differ in logical and | ||
69 | * physical mode | ||
70 | */ | ||
71 | #define STEDMA40_PSIZE_LOG_1 STEDMA40_PSIZE_PHY_2 | ||
72 | #define STEDMA40_PSIZE_LOG_4 STEDMA40_PSIZE_PHY_4 | ||
73 | #define STEDMA40_PSIZE_LOG_8 STEDMA40_PSIZE_PHY_8 | ||
74 | #define STEDMA40_PSIZE_LOG_16 STEDMA40_PSIZE_PHY_16 | ||
75 | |||
76 | enum stedma40_flow_ctrl { | ||
77 | STEDMA40_NO_FLOW_CTRL, | ||
78 | STEDMA40_FLOW_CTRL, | ||
79 | }; | ||
80 | |||
81 | enum stedma40_endianess { | ||
82 | STEDMA40_LITTLE_ENDIAN, | ||
83 | STEDMA40_BIG_ENDIAN | ||
84 | }; | ||
85 | |||
86 | enum stedma40_periph_data_width { | ||
87 | STEDMA40_BYTE_WIDTH = STEDMA40_ESIZE_8_BIT, | ||
88 | STEDMA40_HALFWORD_WIDTH = STEDMA40_ESIZE_16_BIT, | ||
89 | STEDMA40_WORD_WIDTH = STEDMA40_ESIZE_32_BIT, | ||
90 | STEDMA40_DOUBLEWORD_WIDTH = STEDMA40_ESIZE_64_BIT | ||
91 | }; | ||
92 | |||
93 | struct stedma40_half_channel_info { | ||
94 | enum stedma40_endianess endianess; | ||
95 | enum stedma40_periph_data_width data_width; | ||
96 | int psize; | ||
97 | enum stedma40_flow_ctrl flow_ctrl; | ||
98 | }; | ||
99 | |||
100 | enum stedma40_xfer_dir { | ||
101 | STEDMA40_MEM_TO_MEM, | ||
102 | STEDMA40_MEM_TO_PERIPH, | ||
103 | STEDMA40_PERIPH_TO_MEM, | ||
104 | STEDMA40_PERIPH_TO_PERIPH | ||
105 | }; | ||
106 | |||
107 | |||
108 | /** | ||
109 | * struct stedma40_chan_cfg - Structure to be filled by client drivers. | ||
110 | * | ||
111 | * @dir: MEM 2 MEM, PERIPH 2 MEM , MEM 2 PERIPH, PERIPH 2 PERIPH | ||
112 | * @channel_type: priority, mode, mode options and interrupt configuration. | ||
113 | * @src_dev_type: Src device type | ||
114 | * @dst_dev_type: Dst device type | ||
115 | * @src_info: Parameters for dst half channel | ||
116 | * @dst_info: Parameters for dst half channel | ||
117 | * @pre_transfer_data: Data to be passed on to the pre_transfer() function. | ||
118 | * @pre_transfer: Callback used if needed before preparation of transfer. | ||
119 | * Only called if device is set. size of bytes to transfer | ||
120 | * (in case of multiple element transfer size is size of the first element). | ||
121 | * | ||
122 | * | ||
123 | * This structure has to be filled by the client drivers. | ||
124 | * It is recommended to do all dma configurations for clients in the machine. | ||
125 | * | ||
126 | */ | ||
127 | struct stedma40_chan_cfg { | ||
128 | enum stedma40_xfer_dir dir; | ||
129 | unsigned int channel_type; | ||
130 | int src_dev_type; | ||
131 | int dst_dev_type; | ||
132 | struct stedma40_half_channel_info src_info; | ||
133 | struct stedma40_half_channel_info dst_info; | ||
134 | void *pre_transfer_data; | ||
135 | int (*pre_transfer) (struct dma_chan *chan, | ||
136 | void *data, | ||
137 | int size); | ||
138 | }; | ||
139 | |||
140 | /** | ||
141 | * struct stedma40_platform_data - Configuration struct for the dma device. | ||
142 | * | ||
143 | * @dev_len: length of dev_tx and dev_rx | ||
144 | * @dev_tx: mapping between destination event line and io address | ||
145 | * @dev_rx: mapping between source event line and io address | ||
146 | * @memcpy: list of memcpy event lines | ||
147 | * @memcpy_len: length of memcpy | ||
148 | * @memcpy_conf_phy: default configuration of physical channel memcpy | ||
149 | * @memcpy_conf_log: default configuration of logical channel memcpy | ||
150 | * @llis_per_log: number of max linked list items per logical channel | ||
151 | * | ||
152 | */ | ||
153 | struct stedma40_platform_data { | ||
154 | u32 dev_len; | ||
155 | const dma_addr_t *dev_tx; | ||
156 | const dma_addr_t *dev_rx; | ||
157 | int *memcpy; | ||
158 | u32 memcpy_len; | ||
159 | struct stedma40_chan_cfg *memcpy_conf_phy; | ||
160 | struct stedma40_chan_cfg *memcpy_conf_log; | ||
161 | unsigned int llis_per_log; | ||
162 | }; | ||
163 | |||
164 | /** | ||
165 | * setdma40_set_psize() - Used for changing the package size of an | ||
166 | * already configured dma channel. | ||
167 | * | ||
168 | * @chan: dmaengine handle | ||
169 | * @src_psize: new package side for src. (STEDMA40_PSIZE*) | ||
170 | * @src_psize: new package side for dst. (STEDMA40_PSIZE*) | ||
171 | * | ||
172 | * returns 0 on ok, otherwise negative error number. | ||
173 | */ | ||
174 | int stedma40_set_psize(struct dma_chan *chan, | ||
175 | int src_psize, | ||
176 | int dst_psize); | ||
177 | |||
178 | /** | ||
179 | * stedma40_filter() - Provides stedma40_chan_cfg to the | ||
180 | * ste_dma40 dma driver via the dmaengine framework. | ||
181 | * does some checking of what's provided. | ||
182 | * | ||
183 | * Never directly called by client. It used by dmaengine. | ||
184 | * @chan: dmaengine handle. | ||
185 | * @data: Must be of type: struct stedma40_chan_cfg and is | ||
186 | * the configuration of the framework. | ||
187 | * | ||
188 | * | ||
189 | */ | ||
190 | |||
191 | bool stedma40_filter(struct dma_chan *chan, void *data); | ||
192 | |||
193 | /** | ||
194 | * stedma40_memcpy_sg() - extension of the dma framework, memcpy to/from | ||
195 | * scattergatter lists. | ||
196 | * | ||
197 | * @chan: dmaengine handle | ||
198 | * @sgl_dst: Destination scatter list | ||
199 | * @sgl_src: Source scatter list | ||
200 | * @sgl_len: The length of each scatterlist. Both lists must be of equal length | ||
201 | * and each element must match the corresponding element in the other scatter | ||
202 | * list. | ||
203 | * @flags: is actually enum dma_ctrl_flags. See dmaengine.h | ||
204 | */ | ||
205 | |||
206 | struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan, | ||
207 | struct scatterlist *sgl_dst, | ||
208 | struct scatterlist *sgl_src, | ||
209 | unsigned int sgl_len, | ||
210 | unsigned long flags); | ||
211 | |||
212 | /** | ||
213 | * stedma40_slave_mem() - Transfers a raw data buffer to or from a slave | ||
214 | * (=device) | ||
215 | * | ||
216 | * @chan: dmaengine handle | ||
217 | * @addr: source or destination physicall address. | ||
218 | * @size: bytes to transfer | ||
219 | * @direction: direction of transfer | ||
220 | * @flags: is actually enum dma_ctrl_flags. See dmaengine.h | ||
221 | */ | ||
222 | |||
223 | static inline struct | ||
224 | dma_async_tx_descriptor *stedma40_slave_mem(struct dma_chan *chan, | ||
225 | dma_addr_t addr, | ||
226 | unsigned int size, | ||
227 | enum dma_data_direction direction, | ||
228 | unsigned long flags) | ||
229 | { | ||
230 | struct scatterlist sg; | ||
231 | sg_init_table(&sg, 1); | ||
232 | sg.dma_address = addr; | ||
233 | sg.length = size; | ||
234 | |||
235 | return chan->device->device_prep_slave_sg(chan, &sg, 1, | ||
236 | direction, flags); | ||
237 | } | ||
238 | |||
239 | #endif | ||
diff --git a/drivers/dma/Kconfig b/drivers/dma/Kconfig index a2fcb2ead892..1b8877922fb0 100644 --- a/drivers/dma/Kconfig +++ b/drivers/dma/Kconfig | |||
@@ -141,6 +141,13 @@ config COH901318 | |||
141 | help | 141 | help |
142 | Enable support for ST-Ericsson COH 901 318 DMA. | 142 | Enable support for ST-Ericsson COH 901 318 DMA. |
143 | 143 | ||
144 | config STE_DMA40 | ||
145 | bool "ST-Ericsson DMA40 support" | ||
146 | depends on ARCH_U8500 | ||
147 | select DMA_ENGINE | ||
148 | help | ||
149 | Support for ST-Ericsson DMA40 controller | ||
150 | |||
144 | config AMCC_PPC440SPE_ADMA | 151 | config AMCC_PPC440SPE_ADMA |
145 | tristate "AMCC PPC440SPe ADMA support" | 152 | tristate "AMCC PPC440SPe ADMA support" |
146 | depends on 440SPe || 440SP | 153 | depends on 440SPe || 440SP |
diff --git a/drivers/dma/Makefile b/drivers/dma/Makefile index 40c627d8f73b..20881426c1ac 100644 --- a/drivers/dma/Makefile +++ b/drivers/dma/Makefile | |||
@@ -21,3 +21,4 @@ obj-$(CONFIG_SH_DMAE) += shdma.o | |||
21 | obj-$(CONFIG_COH901318) += coh901318.o coh901318_lli.o | 21 | obj-$(CONFIG_COH901318) += coh901318.o coh901318_lli.o |
22 | obj-$(CONFIG_AMCC_PPC440SPE_ADMA) += ppc4xx/ | 22 | obj-$(CONFIG_AMCC_PPC440SPE_ADMA) += ppc4xx/ |
23 | obj-$(CONFIG_TIMB_DMA) += timb_dma.o | 23 | obj-$(CONFIG_TIMB_DMA) += timb_dma.o |
24 | obj-$(CONFIG_STE_DMA40) += ste_dma40.o ste_dma40_ll.o | ||
diff --git a/drivers/dma/ste_dma40.c b/drivers/dma/ste_dma40.c new file mode 100644 index 000000000000..e4295a27672b --- /dev/null +++ b/drivers/dma/ste_dma40.c | |||
@@ -0,0 +1,2596 @@ | |||
1 | /* | ||
2 | * driver/dma/ste_dma40.c | ||
3 | * | ||
4 | * Copyright (C) ST-Ericsson 2007-2010 | ||
5 | * License terms: GNU General Public License (GPL) version 2 | ||
6 | * Author: Per Friden <per.friden@stericsson.com> | ||
7 | * Author: Jonas Aaberg <jonas.aberg@stericsson.com> | ||
8 | * | ||
9 | */ | ||
10 | |||
11 | #include <linux/kernel.h> | ||
12 | #include <linux/slab.h> | ||
13 | #include <linux/dmaengine.h> | ||
14 | #include <linux/platform_device.h> | ||
15 | #include <linux/clk.h> | ||
16 | #include <linux/delay.h> | ||
17 | |||
18 | #include <plat/ste_dma40.h> | ||
19 | |||
20 | #include "ste_dma40_ll.h" | ||
21 | |||
22 | #define D40_NAME "dma40" | ||
23 | |||
24 | #define D40_PHY_CHAN -1 | ||
25 | |||
26 | /* For masking out/in 2 bit channel positions */ | ||
27 | #define D40_CHAN_POS(chan) (2 * (chan / 2)) | ||
28 | #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan)) | ||
29 | |||
30 | /* Maximum iterations taken before giving up suspending a channel */ | ||
31 | #define D40_SUSPEND_MAX_IT 500 | ||
32 | |||
33 | #define D40_ALLOC_FREE (1 << 31) | ||
34 | #define D40_ALLOC_PHY (1 << 30) | ||
35 | #define D40_ALLOC_LOG_FREE 0 | ||
36 | |||
37 | /* The number of free d40_desc to keep in memory before starting | ||
38 | * to kfree() them */ | ||
39 | #define D40_DESC_CACHE_SIZE 50 | ||
40 | |||
41 | /* Hardware designer of the block */ | ||
42 | #define D40_PERIPHID2_DESIGNER 0x8 | ||
43 | |||
44 | /** | ||
45 | * enum 40_command - The different commands and/or statuses. | ||
46 | * | ||
47 | * @D40_DMA_STOP: DMA channel command STOP or status STOPPED, | ||
48 | * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN. | ||
49 | * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible. | ||
50 | * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED. | ||
51 | */ | ||
52 | enum d40_command { | ||
53 | D40_DMA_STOP = 0, | ||
54 | D40_DMA_RUN = 1, | ||
55 | D40_DMA_SUSPEND_REQ = 2, | ||
56 | D40_DMA_SUSPENDED = 3 | ||
57 | }; | ||
58 | |||
59 | /** | ||
60 | * struct d40_lli_pool - Structure for keeping LLIs in memory | ||
61 | * | ||
62 | * @base: Pointer to memory area when the pre_alloc_lli's are not large | ||
63 | * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if | ||
64 | * pre_alloc_lli is used. | ||
65 | * @size: The size in bytes of the memory at base or the size of pre_alloc_lli. | ||
66 | * @pre_alloc_lli: Pre allocated area for the most common case of transfers, | ||
67 | * one buffer to one buffer. | ||
68 | */ | ||
69 | struct d40_lli_pool { | ||
70 | void *base; | ||
71 | int size; | ||
72 | /* Space for dst and src, plus an extra for padding */ | ||
73 | u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)]; | ||
74 | }; | ||
75 | |||
76 | /** | ||
77 | * struct d40_desc - A descriptor is one DMA job. | ||
78 | * | ||
79 | * @lli_phy: LLI settings for physical channel. Both src and dst= | ||
80 | * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if | ||
81 | * lli_len equals one. | ||
82 | * @lli_log: Same as above but for logical channels. | ||
83 | * @lli_pool: The pool with two entries pre-allocated. | ||
84 | * @lli_len: Number of LLI's in lli_pool | ||
85 | * @lli_tcount: Number of LLIs processed in the transfer. When equals lli_len | ||
86 | * then this transfer job is done. | ||
87 | * @txd: DMA engine struct. Used for among other things for communication | ||
88 | * during a transfer. | ||
89 | * @node: List entry. | ||
90 | * @dir: The transfer direction of this job. | ||
91 | * @is_in_client_list: true if the client owns this descriptor. | ||
92 | * | ||
93 | * This descriptor is used for both logical and physical transfers. | ||
94 | */ | ||
95 | |||
96 | struct d40_desc { | ||
97 | /* LLI physical */ | ||
98 | struct d40_phy_lli_bidir lli_phy; | ||
99 | /* LLI logical */ | ||
100 | struct d40_log_lli_bidir lli_log; | ||
101 | |||
102 | struct d40_lli_pool lli_pool; | ||
103 | u32 lli_len; | ||
104 | u32 lli_tcount; | ||
105 | |||
106 | struct dma_async_tx_descriptor txd; | ||
107 | struct list_head node; | ||
108 | |||
109 | enum dma_data_direction dir; | ||
110 | bool is_in_client_list; | ||
111 | }; | ||
112 | |||
113 | /** | ||
114 | * struct d40_lcla_pool - LCLA pool settings and data. | ||
115 | * | ||
116 | * @base: The virtual address of LCLA. | ||
117 | * @phy: Physical base address of LCLA. | ||
118 | * @base_size: size of lcla. | ||
119 | * @lock: Lock to protect the content in this struct. | ||
120 | * @alloc_map: Mapping between physical channel and LCLA entries. | ||
121 | * @num_blocks: The number of entries of alloc_map. Equals to the | ||
122 | * number of physical channels. | ||
123 | */ | ||
124 | struct d40_lcla_pool { | ||
125 | void *base; | ||
126 | dma_addr_t phy; | ||
127 | resource_size_t base_size; | ||
128 | spinlock_t lock; | ||
129 | u32 *alloc_map; | ||
130 | int num_blocks; | ||
131 | }; | ||
132 | |||
133 | /** | ||
134 | * struct d40_phy_res - struct for handling eventlines mapped to physical | ||
135 | * channels. | ||
136 | * | ||
137 | * @lock: A lock protection this entity. | ||
138 | * @num: The physical channel number of this entity. | ||
139 | * @allocated_src: Bit mapped to show which src event line's are mapped to | ||
140 | * this physical channel. Can also be free or physically allocated. | ||
141 | * @allocated_dst: Same as for src but is dst. | ||
142 | * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as | ||
143 | * event line number. Both allocated_src and allocated_dst can not be | ||
144 | * allocated to a physical channel, since the interrupt handler has then | ||
145 | * no way of figure out which one the interrupt belongs to. | ||
146 | */ | ||
147 | struct d40_phy_res { | ||
148 | spinlock_t lock; | ||
149 | int num; | ||
150 | u32 allocated_src; | ||
151 | u32 allocated_dst; | ||
152 | }; | ||
153 | |||
154 | struct d40_base; | ||
155 | |||
156 | /** | ||
157 | * struct d40_chan - Struct that describes a channel. | ||
158 | * | ||
159 | * @lock: A spinlock to protect this struct. | ||
160 | * @log_num: The logical number, if any of this channel. | ||
161 | * @completed: Starts with 1, after first interrupt it is set to dma engine's | ||
162 | * current cookie. | ||
163 | * @pending_tx: The number of pending transfers. Used between interrupt handler | ||
164 | * and tasklet. | ||
165 | * @busy: Set to true when transfer is ongoing on this channel. | ||
166 | * @phy_chan: Pointer to physical channel which this instance runs on. | ||
167 | * @chan: DMA engine handle. | ||
168 | * @tasklet: Tasklet that gets scheduled from interrupt context to complete a | ||
169 | * transfer and call client callback. | ||
170 | * @client: Cliented owned descriptor list. | ||
171 | * @active: Active descriptor. | ||
172 | * @queue: Queued jobs. | ||
173 | * @free: List of free descripts, ready to be reused. | ||
174 | * @free_len: Number of descriptors in the free list. | ||
175 | * @dma_cfg: The client configuration of this dma channel. | ||
176 | * @base: Pointer to the device instance struct. | ||
177 | * @src_def_cfg: Default cfg register setting for src. | ||
178 | * @dst_def_cfg: Default cfg register setting for dst. | ||
179 | * @log_def: Default logical channel settings. | ||
180 | * @lcla: Space for one dst src pair for logical channel transfers. | ||
181 | * @lcpa: Pointer to dst and src lcpa settings. | ||
182 | * | ||
183 | * This struct can either "be" a logical or a physical channel. | ||
184 | */ | ||
185 | struct d40_chan { | ||
186 | spinlock_t lock; | ||
187 | int log_num; | ||
188 | /* ID of the most recent completed transfer */ | ||
189 | int completed; | ||
190 | int pending_tx; | ||
191 | bool busy; | ||
192 | struct d40_phy_res *phy_chan; | ||
193 | struct dma_chan chan; | ||
194 | struct tasklet_struct tasklet; | ||
195 | struct list_head client; | ||
196 | struct list_head active; | ||
197 | struct list_head queue; | ||
198 | struct list_head free; | ||
199 | int free_len; | ||
200 | struct stedma40_chan_cfg dma_cfg; | ||
201 | struct d40_base *base; | ||
202 | /* Default register configurations */ | ||
203 | u32 src_def_cfg; | ||
204 | u32 dst_def_cfg; | ||
205 | struct d40_def_lcsp log_def; | ||
206 | struct d40_lcla_elem lcla; | ||
207 | struct d40_log_lli_full *lcpa; | ||
208 | }; | ||
209 | |||
210 | /** | ||
211 | * struct d40_base - The big global struct, one for each probe'd instance. | ||
212 | * | ||
213 | * @interrupt_lock: Lock used to make sure one interrupt is handle a time. | ||
214 | * @execmd_lock: Lock for execute command usage since several channels share | ||
215 | * the same physical register. | ||
216 | * @dev: The device structure. | ||
217 | * @virtbase: The virtual base address of the DMA's register. | ||
218 | * @clk: Pointer to the DMA clock structure. | ||
219 | * @phy_start: Physical memory start of the DMA registers. | ||
220 | * @phy_size: Size of the DMA register map. | ||
221 | * @irq: The IRQ number. | ||
222 | * @num_phy_chans: The number of physical channels. Read from HW. This | ||
223 | * is the number of available channels for this driver, not counting "Secure | ||
224 | * mode" allocated physical channels. | ||
225 | * @num_log_chans: The number of logical channels. Calculated from | ||
226 | * num_phy_chans. | ||
227 | * @dma_both: dma_device channels that can do both memcpy and slave transfers. | ||
228 | * @dma_slave: dma_device channels that can do only do slave transfers. | ||
229 | * @dma_memcpy: dma_device channels that can do only do memcpy transfers. | ||
230 | * @phy_chans: Room for all possible physical channels in system. | ||
231 | * @log_chans: Room for all possible logical channels in system. | ||
232 | * @lookup_log_chans: Used to map interrupt number to logical channel. Points | ||
233 | * to log_chans entries. | ||
234 | * @lookup_phy_chans: Used to map interrupt number to physical channel. Points | ||
235 | * to phy_chans entries. | ||
236 | * @plat_data: Pointer to provided platform_data which is the driver | ||
237 | * configuration. | ||
238 | * @phy_res: Vector containing all physical channels. | ||
239 | * @lcla_pool: lcla pool settings and data. | ||
240 | * @lcpa_base: The virtual mapped address of LCPA. | ||
241 | * @phy_lcpa: The physical address of the LCPA. | ||
242 | * @lcpa_size: The size of the LCPA area. | ||
243 | */ | ||
244 | struct d40_base { | ||
245 | spinlock_t interrupt_lock; | ||
246 | spinlock_t execmd_lock; | ||
247 | struct device *dev; | ||
248 | void __iomem *virtbase; | ||
249 | struct clk *clk; | ||
250 | phys_addr_t phy_start; | ||
251 | resource_size_t phy_size; | ||
252 | int irq; | ||
253 | int num_phy_chans; | ||
254 | int num_log_chans; | ||
255 | struct dma_device dma_both; | ||
256 | struct dma_device dma_slave; | ||
257 | struct dma_device dma_memcpy; | ||
258 | struct d40_chan *phy_chans; | ||
259 | struct d40_chan *log_chans; | ||
260 | struct d40_chan **lookup_log_chans; | ||
261 | struct d40_chan **lookup_phy_chans; | ||
262 | struct stedma40_platform_data *plat_data; | ||
263 | /* Physical half channels */ | ||
264 | struct d40_phy_res *phy_res; | ||
265 | struct d40_lcla_pool lcla_pool; | ||
266 | void *lcpa_base; | ||
267 | dma_addr_t phy_lcpa; | ||
268 | resource_size_t lcpa_size; | ||
269 | }; | ||
270 | |||
271 | /** | ||
272 | * struct d40_interrupt_lookup - lookup table for interrupt handler | ||
273 | * | ||
274 | * @src: Interrupt mask register. | ||
275 | * @clr: Interrupt clear register. | ||
276 | * @is_error: true if this is an error interrupt. | ||
277 | * @offset: start delta in the lookup_log_chans in d40_base. If equals to | ||
278 | * D40_PHY_CHAN, the lookup_phy_chans shall be used instead. | ||
279 | */ | ||
280 | struct d40_interrupt_lookup { | ||
281 | u32 src; | ||
282 | u32 clr; | ||
283 | bool is_error; | ||
284 | int offset; | ||
285 | }; | ||
286 | |||
287 | /** | ||
288 | * struct d40_reg_val - simple lookup struct | ||
289 | * | ||
290 | * @reg: The register. | ||
291 | * @val: The value that belongs to the register in reg. | ||
292 | */ | ||
293 | struct d40_reg_val { | ||
294 | unsigned int reg; | ||
295 | unsigned int val; | ||
296 | }; | ||
297 | |||
298 | static int d40_pool_lli_alloc(struct d40_desc *d40d, | ||
299 | int lli_len, bool is_log) | ||
300 | { | ||
301 | u32 align; | ||
302 | void *base; | ||
303 | |||
304 | if (is_log) | ||
305 | align = sizeof(struct d40_log_lli); | ||
306 | else | ||
307 | align = sizeof(struct d40_phy_lli); | ||
308 | |||
309 | if (lli_len == 1) { | ||
310 | base = d40d->lli_pool.pre_alloc_lli; | ||
311 | d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli); | ||
312 | d40d->lli_pool.base = NULL; | ||
313 | } else { | ||
314 | d40d->lli_pool.size = ALIGN(lli_len * 2 * align, align); | ||
315 | |||
316 | base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT); | ||
317 | d40d->lli_pool.base = base; | ||
318 | |||
319 | if (d40d->lli_pool.base == NULL) | ||
320 | return -ENOMEM; | ||
321 | } | ||
322 | |||
323 | if (is_log) { | ||
324 | d40d->lli_log.src = PTR_ALIGN((struct d40_log_lli *) base, | ||
325 | align); | ||
326 | d40d->lli_log.dst = PTR_ALIGN(d40d->lli_log.src + lli_len, | ||
327 | align); | ||
328 | } else { | ||
329 | d40d->lli_phy.src = PTR_ALIGN((struct d40_phy_lli *)base, | ||
330 | align); | ||
331 | d40d->lli_phy.dst = PTR_ALIGN(d40d->lli_phy.src + lli_len, | ||
332 | align); | ||
333 | |||
334 | d40d->lli_phy.src_addr = virt_to_phys(d40d->lli_phy.src); | ||
335 | d40d->lli_phy.dst_addr = virt_to_phys(d40d->lli_phy.dst); | ||
336 | } | ||
337 | |||
338 | return 0; | ||
339 | } | ||
340 | |||
341 | static void d40_pool_lli_free(struct d40_desc *d40d) | ||
342 | { | ||
343 | kfree(d40d->lli_pool.base); | ||
344 | d40d->lli_pool.base = NULL; | ||
345 | d40d->lli_pool.size = 0; | ||
346 | d40d->lli_log.src = NULL; | ||
347 | d40d->lli_log.dst = NULL; | ||
348 | d40d->lli_phy.src = NULL; | ||
349 | d40d->lli_phy.dst = NULL; | ||
350 | d40d->lli_phy.src_addr = 0; | ||
351 | d40d->lli_phy.dst_addr = 0; | ||
352 | } | ||
353 | |||
354 | static dma_cookie_t d40_assign_cookie(struct d40_chan *d40c, | ||
355 | struct d40_desc *desc) | ||
356 | { | ||
357 | dma_cookie_t cookie = d40c->chan.cookie; | ||
358 | |||
359 | if (++cookie < 0) | ||
360 | cookie = 1; | ||
361 | |||
362 | d40c->chan.cookie = cookie; | ||
363 | desc->txd.cookie = cookie; | ||
364 | |||
365 | return cookie; | ||
366 | } | ||
367 | |||
368 | static void d40_desc_reset(struct d40_desc *d40d) | ||
369 | { | ||
370 | d40d->lli_tcount = 0; | ||
371 | } | ||
372 | |||
373 | static void d40_desc_remove(struct d40_desc *d40d) | ||
374 | { | ||
375 | list_del(&d40d->node); | ||
376 | } | ||
377 | |||
378 | static struct d40_desc *d40_desc_get(struct d40_chan *d40c) | ||
379 | { | ||
380 | struct d40_desc *desc; | ||
381 | struct d40_desc *d; | ||
382 | struct d40_desc *_d; | ||
383 | |||
384 | if (!list_empty(&d40c->client)) { | ||
385 | list_for_each_entry_safe(d, _d, &d40c->client, node) | ||
386 | if (async_tx_test_ack(&d->txd)) { | ||
387 | d40_pool_lli_free(d); | ||
388 | d40_desc_remove(d); | ||
389 | desc = d; | ||
390 | goto out; | ||
391 | } | ||
392 | } | ||
393 | |||
394 | if (list_empty(&d40c->free)) { | ||
395 | /* Alloc new desc because we're out of used ones */ | ||
396 | desc = kzalloc(sizeof(struct d40_desc), GFP_NOWAIT); | ||
397 | if (desc == NULL) | ||
398 | goto out; | ||
399 | INIT_LIST_HEAD(&desc->node); | ||
400 | } else { | ||
401 | /* Reuse an old desc. */ | ||
402 | desc = list_first_entry(&d40c->free, | ||
403 | struct d40_desc, | ||
404 | node); | ||
405 | list_del(&desc->node); | ||
406 | d40c->free_len--; | ||
407 | } | ||
408 | out: | ||
409 | return desc; | ||
410 | } | ||
411 | |||
412 | static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d) | ||
413 | { | ||
414 | if (d40c->free_len < D40_DESC_CACHE_SIZE) { | ||
415 | list_add_tail(&d40d->node, &d40c->free); | ||
416 | d40c->free_len++; | ||
417 | } else | ||
418 | kfree(d40d); | ||
419 | } | ||
420 | |||
421 | static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc) | ||
422 | { | ||
423 | list_add_tail(&desc->node, &d40c->active); | ||
424 | } | ||
425 | |||
426 | static struct d40_desc *d40_first_active_get(struct d40_chan *d40c) | ||
427 | { | ||
428 | struct d40_desc *d; | ||
429 | |||
430 | if (list_empty(&d40c->active)) | ||
431 | return NULL; | ||
432 | |||
433 | d = list_first_entry(&d40c->active, | ||
434 | struct d40_desc, | ||
435 | node); | ||
436 | return d; | ||
437 | } | ||
438 | |||
439 | static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc) | ||
440 | { | ||
441 | list_add_tail(&desc->node, &d40c->queue); | ||
442 | } | ||
443 | |||
444 | static struct d40_desc *d40_first_queued(struct d40_chan *d40c) | ||
445 | { | ||
446 | struct d40_desc *d; | ||
447 | |||
448 | if (list_empty(&d40c->queue)) | ||
449 | return NULL; | ||
450 | |||
451 | d = list_first_entry(&d40c->queue, | ||
452 | struct d40_desc, | ||
453 | node); | ||
454 | return d; | ||
455 | } | ||
456 | |||
457 | /* Support functions for logical channels */ | ||
458 | |||
459 | static int d40_lcla_id_get(struct d40_chan *d40c, | ||
460 | struct d40_lcla_pool *pool) | ||
461 | { | ||
462 | int src_id = 0; | ||
463 | int dst_id = 0; | ||
464 | struct d40_log_lli *lcla_lidx_base = | ||
465 | pool->base + d40c->phy_chan->num * 1024; | ||
466 | int i; | ||
467 | int lli_per_log = d40c->base->plat_data->llis_per_log; | ||
468 | |||
469 | if (d40c->lcla.src_id >= 0 && d40c->lcla.dst_id >= 0) | ||
470 | return 0; | ||
471 | |||
472 | if (pool->num_blocks > 32) | ||
473 | return -EINVAL; | ||
474 | |||
475 | spin_lock(&pool->lock); | ||
476 | |||
477 | for (i = 0; i < pool->num_blocks; i++) { | ||
478 | if (!(pool->alloc_map[d40c->phy_chan->num] & (0x1 << i))) { | ||
479 | pool->alloc_map[d40c->phy_chan->num] |= (0x1 << i); | ||
480 | break; | ||
481 | } | ||
482 | } | ||
483 | src_id = i; | ||
484 | if (src_id >= pool->num_blocks) | ||
485 | goto err; | ||
486 | |||
487 | for (; i < pool->num_blocks; i++) { | ||
488 | if (!(pool->alloc_map[d40c->phy_chan->num] & (0x1 << i))) { | ||
489 | pool->alloc_map[d40c->phy_chan->num] |= (0x1 << i); | ||
490 | break; | ||
491 | } | ||
492 | } | ||
493 | |||
494 | dst_id = i; | ||
495 | if (dst_id == src_id) | ||
496 | goto err; | ||
497 | |||
498 | d40c->lcla.src_id = src_id; | ||
499 | d40c->lcla.dst_id = dst_id; | ||
500 | d40c->lcla.dst = lcla_lidx_base + dst_id * lli_per_log + 1; | ||
501 | d40c->lcla.src = lcla_lidx_base + src_id * lli_per_log + 1; | ||
502 | |||
503 | |||
504 | spin_unlock(&pool->lock); | ||
505 | return 0; | ||
506 | err: | ||
507 | spin_unlock(&pool->lock); | ||
508 | return -EINVAL; | ||
509 | } | ||
510 | |||
511 | static void d40_lcla_id_put(struct d40_chan *d40c, | ||
512 | struct d40_lcla_pool *pool, | ||
513 | int id) | ||
514 | { | ||
515 | if (id < 0) | ||
516 | return; | ||
517 | |||
518 | d40c->lcla.src_id = -1; | ||
519 | d40c->lcla.dst_id = -1; | ||
520 | |||
521 | spin_lock(&pool->lock); | ||
522 | pool->alloc_map[d40c->phy_chan->num] &= (~(0x1 << id)); | ||
523 | spin_unlock(&pool->lock); | ||
524 | } | ||
525 | |||
526 | static int d40_channel_execute_command(struct d40_chan *d40c, | ||
527 | enum d40_command command) | ||
528 | { | ||
529 | int status, i; | ||
530 | void __iomem *active_reg; | ||
531 | int ret = 0; | ||
532 | unsigned long flags; | ||
533 | |||
534 | spin_lock_irqsave(&d40c->base->execmd_lock, flags); | ||
535 | |||
536 | if (d40c->phy_chan->num % 2 == 0) | ||
537 | active_reg = d40c->base->virtbase + D40_DREG_ACTIVE; | ||
538 | else | ||
539 | active_reg = d40c->base->virtbase + D40_DREG_ACTIVO; | ||
540 | |||
541 | if (command == D40_DMA_SUSPEND_REQ) { | ||
542 | status = (readl(active_reg) & | ||
543 | D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> | ||
544 | D40_CHAN_POS(d40c->phy_chan->num); | ||
545 | |||
546 | if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP) | ||
547 | goto done; | ||
548 | } | ||
549 | |||
550 | writel(command << D40_CHAN_POS(d40c->phy_chan->num), active_reg); | ||
551 | |||
552 | if (command == D40_DMA_SUSPEND_REQ) { | ||
553 | |||
554 | for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) { | ||
555 | status = (readl(active_reg) & | ||
556 | D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> | ||
557 | D40_CHAN_POS(d40c->phy_chan->num); | ||
558 | |||
559 | cpu_relax(); | ||
560 | /* | ||
561 | * Reduce the number of bus accesses while | ||
562 | * waiting for the DMA to suspend. | ||
563 | */ | ||
564 | udelay(3); | ||
565 | |||
566 | if (status == D40_DMA_STOP || | ||
567 | status == D40_DMA_SUSPENDED) | ||
568 | break; | ||
569 | } | ||
570 | |||
571 | if (i == D40_SUSPEND_MAX_IT) { | ||
572 | dev_err(&d40c->chan.dev->device, | ||
573 | "[%s]: unable to suspend the chl %d (log: %d) status %x\n", | ||
574 | __func__, d40c->phy_chan->num, d40c->log_num, | ||
575 | status); | ||
576 | dump_stack(); | ||
577 | ret = -EBUSY; | ||
578 | } | ||
579 | |||
580 | } | ||
581 | done: | ||
582 | spin_unlock_irqrestore(&d40c->base->execmd_lock, flags); | ||
583 | return ret; | ||
584 | } | ||
585 | |||
586 | static void d40_term_all(struct d40_chan *d40c) | ||
587 | { | ||
588 | struct d40_desc *d40d; | ||
589 | struct d40_desc *d; | ||
590 | struct d40_desc *_d; | ||
591 | |||
592 | /* Release active descriptors */ | ||
593 | while ((d40d = d40_first_active_get(d40c))) { | ||
594 | d40_desc_remove(d40d); | ||
595 | |||
596 | /* Return desc to free-list */ | ||
597 | d40_desc_free(d40c, d40d); | ||
598 | } | ||
599 | |||
600 | /* Release queued descriptors waiting for transfer */ | ||
601 | while ((d40d = d40_first_queued(d40c))) { | ||
602 | d40_desc_remove(d40d); | ||
603 | |||
604 | /* Return desc to free-list */ | ||
605 | d40_desc_free(d40c, d40d); | ||
606 | } | ||
607 | |||
608 | /* Release client owned descriptors */ | ||
609 | if (!list_empty(&d40c->client)) | ||
610 | list_for_each_entry_safe(d, _d, &d40c->client, node) { | ||
611 | d40_pool_lli_free(d); | ||
612 | d40_desc_remove(d); | ||
613 | /* Return desc to free-list */ | ||
614 | d40_desc_free(d40c, d40d); | ||
615 | } | ||
616 | |||
617 | d40_lcla_id_put(d40c, &d40c->base->lcla_pool, | ||
618 | d40c->lcla.src_id); | ||
619 | d40_lcla_id_put(d40c, &d40c->base->lcla_pool, | ||
620 | d40c->lcla.dst_id); | ||
621 | |||
622 | d40c->pending_tx = 0; | ||
623 | d40c->busy = false; | ||
624 | } | ||
625 | |||
626 | static void d40_config_set_event(struct d40_chan *d40c, bool do_enable) | ||
627 | { | ||
628 | u32 val; | ||
629 | unsigned long flags; | ||
630 | |||
631 | if (do_enable) | ||
632 | val = D40_ACTIVATE_EVENTLINE; | ||
633 | else | ||
634 | val = D40_DEACTIVATE_EVENTLINE; | ||
635 | |||
636 | spin_lock_irqsave(&d40c->phy_chan->lock, flags); | ||
637 | |||
638 | /* Enable event line connected to device (or memcpy) */ | ||
639 | if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) || | ||
640 | (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) { | ||
641 | u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type); | ||
642 | |||
643 | writel((val << D40_EVENTLINE_POS(event)) | | ||
644 | ~D40_EVENTLINE_MASK(event), | ||
645 | d40c->base->virtbase + D40_DREG_PCBASE + | ||
646 | d40c->phy_chan->num * D40_DREG_PCDELTA + | ||
647 | D40_CHAN_REG_SSLNK); | ||
648 | } | ||
649 | if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) { | ||
650 | u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type); | ||
651 | |||
652 | writel((val << D40_EVENTLINE_POS(event)) | | ||
653 | ~D40_EVENTLINE_MASK(event), | ||
654 | d40c->base->virtbase + D40_DREG_PCBASE + | ||
655 | d40c->phy_chan->num * D40_DREG_PCDELTA + | ||
656 | D40_CHAN_REG_SDLNK); | ||
657 | } | ||
658 | |||
659 | spin_unlock_irqrestore(&d40c->phy_chan->lock, flags); | ||
660 | } | ||
661 | |||
662 | static bool d40_chan_has_events(struct d40_chan *d40c) | ||
663 | { | ||
664 | u32 val = 0; | ||
665 | |||
666 | /* If SSLNK or SDLNK is zero all events are disabled */ | ||
667 | if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) || | ||
668 | (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) | ||
669 | val = readl(d40c->base->virtbase + D40_DREG_PCBASE + | ||
670 | d40c->phy_chan->num * D40_DREG_PCDELTA + | ||
671 | D40_CHAN_REG_SSLNK); | ||
672 | |||
673 | if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) | ||
674 | val = readl(d40c->base->virtbase + D40_DREG_PCBASE + | ||
675 | d40c->phy_chan->num * D40_DREG_PCDELTA + | ||
676 | D40_CHAN_REG_SDLNK); | ||
677 | return (bool) val; | ||
678 | } | ||
679 | |||
680 | static void d40_config_enable_lidx(struct d40_chan *d40c) | ||
681 | { | ||
682 | /* Set LIDX for lcla */ | ||
683 | writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) & | ||
684 | D40_SREG_ELEM_LOG_LIDX_MASK, | ||
685 | d40c->base->virtbase + D40_DREG_PCBASE + | ||
686 | d40c->phy_chan->num * D40_DREG_PCDELTA + D40_CHAN_REG_SDELT); | ||
687 | |||
688 | writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) & | ||
689 | D40_SREG_ELEM_LOG_LIDX_MASK, | ||
690 | d40c->base->virtbase + D40_DREG_PCBASE + | ||
691 | d40c->phy_chan->num * D40_DREG_PCDELTA + D40_CHAN_REG_SSELT); | ||
692 | } | ||
693 | |||
694 | static int d40_config_write(struct d40_chan *d40c) | ||
695 | { | ||
696 | u32 addr_base; | ||
697 | u32 var; | ||
698 | int res; | ||
699 | |||
700 | res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ); | ||
701 | if (res) | ||
702 | return res; | ||
703 | |||
704 | /* Odd addresses are even addresses + 4 */ | ||
705 | addr_base = (d40c->phy_chan->num % 2) * 4; | ||
706 | /* Setup channel mode to logical or physical */ | ||
707 | var = ((u32)(d40c->log_num != D40_PHY_CHAN) + 1) << | ||
708 | D40_CHAN_POS(d40c->phy_chan->num); | ||
709 | writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base); | ||
710 | |||
711 | /* Setup operational mode option register */ | ||
712 | var = ((d40c->dma_cfg.channel_type >> STEDMA40_INFO_CH_MODE_OPT_POS) & | ||
713 | 0x3) << D40_CHAN_POS(d40c->phy_chan->num); | ||
714 | |||
715 | writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base); | ||
716 | |||
717 | if (d40c->log_num != D40_PHY_CHAN) { | ||
718 | /* Set default config for CFG reg */ | ||
719 | writel(d40c->src_def_cfg, | ||
720 | d40c->base->virtbase + D40_DREG_PCBASE + | ||
721 | d40c->phy_chan->num * D40_DREG_PCDELTA + | ||
722 | D40_CHAN_REG_SSCFG); | ||
723 | writel(d40c->dst_def_cfg, | ||
724 | d40c->base->virtbase + D40_DREG_PCBASE + | ||
725 | d40c->phy_chan->num * D40_DREG_PCDELTA + | ||
726 | D40_CHAN_REG_SDCFG); | ||
727 | |||
728 | d40_config_enable_lidx(d40c); | ||
729 | } | ||
730 | return res; | ||
731 | } | ||
732 | |||
733 | static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d) | ||
734 | { | ||
735 | |||
736 | if (d40d->lli_phy.dst && d40d->lli_phy.src) { | ||
737 | d40_phy_lli_write(d40c->base->virtbase, | ||
738 | d40c->phy_chan->num, | ||
739 | d40d->lli_phy.dst, | ||
740 | d40d->lli_phy.src); | ||
741 | d40d->lli_tcount = d40d->lli_len; | ||
742 | } else if (d40d->lli_log.dst && d40d->lli_log.src) { | ||
743 | u32 lli_len; | ||
744 | struct d40_log_lli *src = d40d->lli_log.src; | ||
745 | struct d40_log_lli *dst = d40d->lli_log.dst; | ||
746 | |||
747 | src += d40d->lli_tcount; | ||
748 | dst += d40d->lli_tcount; | ||
749 | |||
750 | if (d40d->lli_len <= d40c->base->plat_data->llis_per_log) | ||
751 | lli_len = d40d->lli_len; | ||
752 | else | ||
753 | lli_len = d40c->base->plat_data->llis_per_log; | ||
754 | d40d->lli_tcount += lli_len; | ||
755 | d40_log_lli_write(d40c->lcpa, d40c->lcla.src, | ||
756 | d40c->lcla.dst, | ||
757 | dst, src, | ||
758 | d40c->base->plat_data->llis_per_log); | ||
759 | } | ||
760 | } | ||
761 | |||
762 | static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx) | ||
763 | { | ||
764 | struct d40_chan *d40c = container_of(tx->chan, | ||
765 | struct d40_chan, | ||
766 | chan); | ||
767 | struct d40_desc *d40d = container_of(tx, struct d40_desc, txd); | ||
768 | unsigned long flags; | ||
769 | |||
770 | spin_lock_irqsave(&d40c->lock, flags); | ||
771 | |||
772 | tx->cookie = d40_assign_cookie(d40c, d40d); | ||
773 | |||
774 | d40_desc_queue(d40c, d40d); | ||
775 | |||
776 | spin_unlock_irqrestore(&d40c->lock, flags); | ||
777 | |||
778 | return tx->cookie; | ||
779 | } | ||
780 | |||
781 | static int d40_start(struct d40_chan *d40c) | ||
782 | { | ||
783 | int err; | ||
784 | |||
785 | if (d40c->log_num != D40_PHY_CHAN) { | ||
786 | err = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ); | ||
787 | if (err) | ||
788 | return err; | ||
789 | d40_config_set_event(d40c, true); | ||
790 | } | ||
791 | |||
792 | err = d40_channel_execute_command(d40c, D40_DMA_RUN); | ||
793 | |||
794 | return err; | ||
795 | } | ||
796 | |||
797 | static struct d40_desc *d40_queue_start(struct d40_chan *d40c) | ||
798 | { | ||
799 | struct d40_desc *d40d; | ||
800 | int err; | ||
801 | |||
802 | /* Start queued jobs, if any */ | ||
803 | d40d = d40_first_queued(d40c); | ||
804 | |||
805 | if (d40d != NULL) { | ||
806 | d40c->busy = true; | ||
807 | |||
808 | /* Remove from queue */ | ||
809 | d40_desc_remove(d40d); | ||
810 | |||
811 | /* Add to active queue */ | ||
812 | d40_desc_submit(d40c, d40d); | ||
813 | |||
814 | /* Initiate DMA job */ | ||
815 | d40_desc_load(d40c, d40d); | ||
816 | |||
817 | /* Start dma job */ | ||
818 | err = d40_start(d40c); | ||
819 | |||
820 | if (err) | ||
821 | return NULL; | ||
822 | } | ||
823 | |||
824 | return d40d; | ||
825 | } | ||
826 | |||
827 | /* called from interrupt context */ | ||
828 | static void dma_tc_handle(struct d40_chan *d40c) | ||
829 | { | ||
830 | struct d40_desc *d40d; | ||
831 | |||
832 | if (!d40c->phy_chan) | ||
833 | return; | ||
834 | |||
835 | /* Get first active entry from list */ | ||
836 | d40d = d40_first_active_get(d40c); | ||
837 | |||
838 | if (d40d == NULL) | ||
839 | return; | ||
840 | |||
841 | if (d40d->lli_tcount < d40d->lli_len) { | ||
842 | |||
843 | d40_desc_load(d40c, d40d); | ||
844 | /* Start dma job */ | ||
845 | (void) d40_start(d40c); | ||
846 | return; | ||
847 | } | ||
848 | |||
849 | if (d40_queue_start(d40c) == NULL) | ||
850 | d40c->busy = false; | ||
851 | |||
852 | d40c->pending_tx++; | ||
853 | tasklet_schedule(&d40c->tasklet); | ||
854 | |||
855 | } | ||
856 | |||
857 | static void dma_tasklet(unsigned long data) | ||
858 | { | ||
859 | struct d40_chan *d40c = (struct d40_chan *) data; | ||
860 | struct d40_desc *d40d_fin; | ||
861 | unsigned long flags; | ||
862 | dma_async_tx_callback callback; | ||
863 | void *callback_param; | ||
864 | |||
865 | spin_lock_irqsave(&d40c->lock, flags); | ||
866 | |||
867 | /* Get first active entry from list */ | ||
868 | d40d_fin = d40_first_active_get(d40c); | ||
869 | |||
870 | if (d40d_fin == NULL) | ||
871 | goto err; | ||
872 | |||
873 | d40c->completed = d40d_fin->txd.cookie; | ||
874 | |||
875 | /* | ||
876 | * If terminating a channel pending_tx is set to zero. | ||
877 | * This prevents any finished active jobs to return to the client. | ||
878 | */ | ||
879 | if (d40c->pending_tx == 0) { | ||
880 | spin_unlock_irqrestore(&d40c->lock, flags); | ||
881 | return; | ||
882 | } | ||
883 | |||
884 | /* Callback to client */ | ||
885 | callback = d40d_fin->txd.callback; | ||
886 | callback_param = d40d_fin->txd.callback_param; | ||
887 | |||
888 | if (async_tx_test_ack(&d40d_fin->txd)) { | ||
889 | d40_pool_lli_free(d40d_fin); | ||
890 | d40_desc_remove(d40d_fin); | ||
891 | /* Return desc to free-list */ | ||
892 | d40_desc_free(d40c, d40d_fin); | ||
893 | } else { | ||
894 | d40_desc_reset(d40d_fin); | ||
895 | if (!d40d_fin->is_in_client_list) { | ||
896 | d40_desc_remove(d40d_fin); | ||
897 | list_add_tail(&d40d_fin->node, &d40c->client); | ||
898 | d40d_fin->is_in_client_list = true; | ||
899 | } | ||
900 | } | ||
901 | |||
902 | d40c->pending_tx--; | ||
903 | |||
904 | if (d40c->pending_tx) | ||
905 | tasklet_schedule(&d40c->tasklet); | ||
906 | |||
907 | spin_unlock_irqrestore(&d40c->lock, flags); | ||
908 | |||
909 | if (callback) | ||
910 | callback(callback_param); | ||
911 | |||
912 | return; | ||
913 | |||
914 | err: | ||
915 | /* Rescue manouver if receiving double interrupts */ | ||
916 | if (d40c->pending_tx > 0) | ||
917 | d40c->pending_tx--; | ||
918 | spin_unlock_irqrestore(&d40c->lock, flags); | ||
919 | } | ||
920 | |||
921 | static irqreturn_t d40_handle_interrupt(int irq, void *data) | ||
922 | { | ||
923 | static const struct d40_interrupt_lookup il[] = { | ||
924 | {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0}, | ||
925 | {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32}, | ||
926 | {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64}, | ||
927 | {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96}, | ||
928 | {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0}, | ||
929 | {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32}, | ||
930 | {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64}, | ||
931 | {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96}, | ||
932 | {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN}, | ||
933 | {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN}, | ||
934 | }; | ||
935 | |||
936 | int i; | ||
937 | u32 regs[ARRAY_SIZE(il)]; | ||
938 | u32 tmp; | ||
939 | u32 idx; | ||
940 | u32 row; | ||
941 | long chan = -1; | ||
942 | struct d40_chan *d40c; | ||
943 | unsigned long flags; | ||
944 | struct d40_base *base = data; | ||
945 | |||
946 | spin_lock_irqsave(&base->interrupt_lock, flags); | ||
947 | |||
948 | /* Read interrupt status of both logical and physical channels */ | ||
949 | for (i = 0; i < ARRAY_SIZE(il); i++) | ||
950 | regs[i] = readl(base->virtbase + il[i].src); | ||
951 | |||
952 | for (;;) { | ||
953 | |||
954 | chan = find_next_bit((unsigned long *)regs, | ||
955 | BITS_PER_LONG * ARRAY_SIZE(il), chan + 1); | ||
956 | |||
957 | /* No more set bits found? */ | ||
958 | if (chan == BITS_PER_LONG * ARRAY_SIZE(il)) | ||
959 | break; | ||
960 | |||
961 | row = chan / BITS_PER_LONG; | ||
962 | idx = chan & (BITS_PER_LONG - 1); | ||
963 | |||
964 | /* ACK interrupt */ | ||
965 | tmp = readl(base->virtbase + il[row].clr); | ||
966 | tmp |= 1 << idx; | ||
967 | writel(tmp, base->virtbase + il[row].clr); | ||
968 | |||
969 | if (il[row].offset == D40_PHY_CHAN) | ||
970 | d40c = base->lookup_phy_chans[idx]; | ||
971 | else | ||
972 | d40c = base->lookup_log_chans[il[row].offset + idx]; | ||
973 | spin_lock(&d40c->lock); | ||
974 | |||
975 | if (!il[row].is_error) | ||
976 | dma_tc_handle(d40c); | ||
977 | else | ||
978 | dev_err(base->dev, "[%s] IRQ chan: %ld offset %d idx %d\n", | ||
979 | __func__, chan, il[row].offset, idx); | ||
980 | |||
981 | spin_unlock(&d40c->lock); | ||
982 | } | ||
983 | |||
984 | spin_unlock_irqrestore(&base->interrupt_lock, flags); | ||
985 | |||
986 | return IRQ_HANDLED; | ||
987 | } | ||
988 | |||
989 | |||
990 | static int d40_validate_conf(struct d40_chan *d40c, | ||
991 | struct stedma40_chan_cfg *conf) | ||
992 | { | ||
993 | int res = 0; | ||
994 | u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type); | ||
995 | u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type); | ||
996 | bool is_log = (conf->channel_type & STEDMA40_CHANNEL_IN_OPER_MODE) | ||
997 | == STEDMA40_CHANNEL_IN_LOG_MODE; | ||
998 | |||
999 | if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH && | ||
1000 | dst_event_group == STEDMA40_DEV_DST_MEMORY) { | ||
1001 | dev_err(&d40c->chan.dev->device, "[%s] Invalid dst\n", | ||
1002 | __func__); | ||
1003 | res = -EINVAL; | ||
1004 | } | ||
1005 | |||
1006 | if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM && | ||
1007 | src_event_group == STEDMA40_DEV_SRC_MEMORY) { | ||
1008 | dev_err(&d40c->chan.dev->device, "[%s] Invalid src\n", | ||
1009 | __func__); | ||
1010 | res = -EINVAL; | ||
1011 | } | ||
1012 | |||
1013 | if (src_event_group == STEDMA40_DEV_SRC_MEMORY && | ||
1014 | dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) { | ||
1015 | dev_err(&d40c->chan.dev->device, | ||
1016 | "[%s] No event line\n", __func__); | ||
1017 | res = -EINVAL; | ||
1018 | } | ||
1019 | |||
1020 | if (conf->dir == STEDMA40_PERIPH_TO_PERIPH && | ||
1021 | (src_event_group != dst_event_group)) { | ||
1022 | dev_err(&d40c->chan.dev->device, | ||
1023 | "[%s] Invalid event group\n", __func__); | ||
1024 | res = -EINVAL; | ||
1025 | } | ||
1026 | |||
1027 | if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) { | ||
1028 | /* | ||
1029 | * DMAC HW supports it. Will be added to this driver, | ||
1030 | * in case any dma client requires it. | ||
1031 | */ | ||
1032 | dev_err(&d40c->chan.dev->device, | ||
1033 | "[%s] periph to periph not supported\n", | ||
1034 | __func__); | ||
1035 | res = -EINVAL; | ||
1036 | } | ||
1037 | |||
1038 | return res; | ||
1039 | } | ||
1040 | |||
1041 | static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src, | ||
1042 | int log_event_line) | ||
1043 | { | ||
1044 | unsigned long flags; | ||
1045 | spin_lock_irqsave(&phy->lock, flags); | ||
1046 | if (!log_event_line) { | ||
1047 | /* Physical interrupts are masked per physical full channel */ | ||
1048 | if (phy->allocated_src == D40_ALLOC_FREE && | ||
1049 | phy->allocated_dst == D40_ALLOC_FREE) { | ||
1050 | phy->allocated_dst = D40_ALLOC_PHY; | ||
1051 | phy->allocated_src = D40_ALLOC_PHY; | ||
1052 | goto found; | ||
1053 | } else | ||
1054 | goto not_found; | ||
1055 | } | ||
1056 | |||
1057 | /* Logical channel */ | ||
1058 | if (is_src) { | ||
1059 | if (phy->allocated_src == D40_ALLOC_PHY) | ||
1060 | goto not_found; | ||
1061 | |||
1062 | if (phy->allocated_src == D40_ALLOC_FREE) | ||
1063 | phy->allocated_src = D40_ALLOC_LOG_FREE; | ||
1064 | |||
1065 | if (!(phy->allocated_src & (1 << log_event_line))) { | ||
1066 | phy->allocated_src |= 1 << log_event_line; | ||
1067 | goto found; | ||
1068 | } else | ||
1069 | goto not_found; | ||
1070 | } else { | ||
1071 | if (phy->allocated_dst == D40_ALLOC_PHY) | ||
1072 | goto not_found; | ||
1073 | |||
1074 | if (phy->allocated_dst == D40_ALLOC_FREE) | ||
1075 | phy->allocated_dst = D40_ALLOC_LOG_FREE; | ||
1076 | |||
1077 | if (!(phy->allocated_dst & (1 << log_event_line))) { | ||
1078 | phy->allocated_dst |= 1 << log_event_line; | ||
1079 | goto found; | ||
1080 | } else | ||
1081 | goto not_found; | ||
1082 | } | ||
1083 | |||
1084 | not_found: | ||
1085 | spin_unlock_irqrestore(&phy->lock, flags); | ||
1086 | return false; | ||
1087 | found: | ||
1088 | spin_unlock_irqrestore(&phy->lock, flags); | ||
1089 | return true; | ||
1090 | } | ||
1091 | |||
1092 | static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src, | ||
1093 | int log_event_line) | ||
1094 | { | ||
1095 | unsigned long flags; | ||
1096 | bool is_free = false; | ||
1097 | |||
1098 | spin_lock_irqsave(&phy->lock, flags); | ||
1099 | if (!log_event_line) { | ||
1100 | /* Physical interrupts are masked per physical full channel */ | ||
1101 | phy->allocated_dst = D40_ALLOC_FREE; | ||
1102 | phy->allocated_src = D40_ALLOC_FREE; | ||
1103 | is_free = true; | ||
1104 | goto out; | ||
1105 | } | ||
1106 | |||
1107 | /* Logical channel */ | ||
1108 | if (is_src) { | ||
1109 | phy->allocated_src &= ~(1 << log_event_line); | ||
1110 | if (phy->allocated_src == D40_ALLOC_LOG_FREE) | ||
1111 | phy->allocated_src = D40_ALLOC_FREE; | ||
1112 | } else { | ||
1113 | phy->allocated_dst &= ~(1 << log_event_line); | ||
1114 | if (phy->allocated_dst == D40_ALLOC_LOG_FREE) | ||
1115 | phy->allocated_dst = D40_ALLOC_FREE; | ||
1116 | } | ||
1117 | |||
1118 | is_free = ((phy->allocated_src | phy->allocated_dst) == | ||
1119 | D40_ALLOC_FREE); | ||
1120 | |||
1121 | out: | ||
1122 | spin_unlock_irqrestore(&phy->lock, flags); | ||
1123 | |||
1124 | return is_free; | ||
1125 | } | ||
1126 | |||
1127 | static int d40_allocate_channel(struct d40_chan *d40c) | ||
1128 | { | ||
1129 | int dev_type; | ||
1130 | int event_group; | ||
1131 | int event_line; | ||
1132 | struct d40_phy_res *phys; | ||
1133 | int i; | ||
1134 | int j; | ||
1135 | int log_num; | ||
1136 | bool is_src; | ||
1137 | bool is_log = (d40c->dma_cfg.channel_type & STEDMA40_CHANNEL_IN_OPER_MODE) | ||
1138 | == STEDMA40_CHANNEL_IN_LOG_MODE; | ||
1139 | |||
1140 | |||
1141 | phys = d40c->base->phy_res; | ||
1142 | |||
1143 | if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) { | ||
1144 | dev_type = d40c->dma_cfg.src_dev_type; | ||
1145 | log_num = 2 * dev_type; | ||
1146 | is_src = true; | ||
1147 | } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH || | ||
1148 | d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) { | ||
1149 | /* dst event lines are used for logical memcpy */ | ||
1150 | dev_type = d40c->dma_cfg.dst_dev_type; | ||
1151 | log_num = 2 * dev_type + 1; | ||
1152 | is_src = false; | ||
1153 | } else | ||
1154 | return -EINVAL; | ||
1155 | |||
1156 | event_group = D40_TYPE_TO_GROUP(dev_type); | ||
1157 | event_line = D40_TYPE_TO_EVENT(dev_type); | ||
1158 | |||
1159 | if (!is_log) { | ||
1160 | if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) { | ||
1161 | /* Find physical half channel */ | ||
1162 | for (i = 0; i < d40c->base->num_phy_chans; i++) { | ||
1163 | |||
1164 | if (d40_alloc_mask_set(&phys[i], is_src, 0)) | ||
1165 | goto found_phy; | ||
1166 | } | ||
1167 | } else | ||
1168 | for (j = 0; j < d40c->base->num_phy_chans; j += 8) { | ||
1169 | int phy_num = j + event_group * 2; | ||
1170 | for (i = phy_num; i < phy_num + 2; i++) { | ||
1171 | if (d40_alloc_mask_set(&phys[i], | ||
1172 | is_src, 0)) | ||
1173 | goto found_phy; | ||
1174 | } | ||
1175 | } | ||
1176 | return -EINVAL; | ||
1177 | found_phy: | ||
1178 | d40c->phy_chan = &phys[i]; | ||
1179 | d40c->log_num = D40_PHY_CHAN; | ||
1180 | goto out; | ||
1181 | } | ||
1182 | if (dev_type == -1) | ||
1183 | return -EINVAL; | ||
1184 | |||
1185 | /* Find logical channel */ | ||
1186 | for (j = 0; j < d40c->base->num_phy_chans; j += 8) { | ||
1187 | int phy_num = j + event_group * 2; | ||
1188 | /* | ||
1189 | * Spread logical channels across all available physical rather | ||
1190 | * than pack every logical channel at the first available phy | ||
1191 | * channels. | ||
1192 | */ | ||
1193 | if (is_src) { | ||
1194 | for (i = phy_num; i < phy_num + 2; i++) { | ||
1195 | if (d40_alloc_mask_set(&phys[i], is_src, | ||
1196 | event_line)) | ||
1197 | goto found_log; | ||
1198 | } | ||
1199 | } else { | ||
1200 | for (i = phy_num + 1; i >= phy_num; i--) { | ||
1201 | if (d40_alloc_mask_set(&phys[i], is_src, | ||
1202 | event_line)) | ||
1203 | goto found_log; | ||
1204 | } | ||
1205 | } | ||
1206 | } | ||
1207 | return -EINVAL; | ||
1208 | |||
1209 | found_log: | ||
1210 | d40c->phy_chan = &phys[i]; | ||
1211 | d40c->log_num = log_num; | ||
1212 | out: | ||
1213 | |||
1214 | if (is_log) | ||
1215 | d40c->base->lookup_log_chans[d40c->log_num] = d40c; | ||
1216 | else | ||
1217 | d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c; | ||
1218 | |||
1219 | return 0; | ||
1220 | |||
1221 | } | ||
1222 | |||
1223 | static int d40_config_chan(struct d40_chan *d40c, | ||
1224 | struct stedma40_chan_cfg *info) | ||
1225 | { | ||
1226 | |||
1227 | /* Fill in basic CFG register values */ | ||
1228 | d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg, | ||
1229 | &d40c->dst_def_cfg, d40c->log_num != D40_PHY_CHAN); | ||
1230 | |||
1231 | if (d40c->log_num != D40_PHY_CHAN) { | ||
1232 | d40_log_cfg(&d40c->dma_cfg, | ||
1233 | &d40c->log_def.lcsp1, &d40c->log_def.lcsp3); | ||
1234 | |||
1235 | if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) | ||
1236 | d40c->lcpa = d40c->base->lcpa_base + | ||
1237 | d40c->dma_cfg.src_dev_type * 32; | ||
1238 | else | ||
1239 | d40c->lcpa = d40c->base->lcpa_base + | ||
1240 | d40c->dma_cfg.dst_dev_type * 32 + 16; | ||
1241 | } | ||
1242 | |||
1243 | /* Write channel configuration to the DMA */ | ||
1244 | return d40_config_write(d40c); | ||
1245 | } | ||
1246 | |||
1247 | static int d40_config_memcpy(struct d40_chan *d40c) | ||
1248 | { | ||
1249 | dma_cap_mask_t cap = d40c->chan.device->cap_mask; | ||
1250 | |||
1251 | if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) { | ||
1252 | d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log; | ||
1253 | d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY; | ||
1254 | d40c->dma_cfg.dst_dev_type = d40c->base->plat_data-> | ||
1255 | memcpy[d40c->chan.chan_id]; | ||
1256 | |||
1257 | } else if (dma_has_cap(DMA_MEMCPY, cap) && | ||
1258 | dma_has_cap(DMA_SLAVE, cap)) { | ||
1259 | d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy; | ||
1260 | } else { | ||
1261 | dev_err(&d40c->chan.dev->device, "[%s] No memcpy\n", | ||
1262 | __func__); | ||
1263 | return -EINVAL; | ||
1264 | } | ||
1265 | |||
1266 | return 0; | ||
1267 | } | ||
1268 | |||
1269 | |||
1270 | static int d40_free_dma(struct d40_chan *d40c) | ||
1271 | { | ||
1272 | |||
1273 | int res = 0; | ||
1274 | u32 event, dir; | ||
1275 | struct d40_phy_res *phy = d40c->phy_chan; | ||
1276 | bool is_src; | ||
1277 | |||
1278 | /* Terminate all queued and active transfers */ | ||
1279 | d40_term_all(d40c); | ||
1280 | |||
1281 | if (phy == NULL) { | ||
1282 | dev_err(&d40c->chan.dev->device, "[%s] phy == null\n", | ||
1283 | __func__); | ||
1284 | return -EINVAL; | ||
1285 | } | ||
1286 | |||
1287 | if (phy->allocated_src == D40_ALLOC_FREE && | ||
1288 | phy->allocated_dst == D40_ALLOC_FREE) { | ||
1289 | dev_err(&d40c->chan.dev->device, "[%s] channel already free\n", | ||
1290 | __func__); | ||
1291 | return -EINVAL; | ||
1292 | } | ||
1293 | |||
1294 | |||
1295 | res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ); | ||
1296 | if (res) { | ||
1297 | dev_err(&d40c->chan.dev->device, "[%s] suspend\n", | ||
1298 | __func__); | ||
1299 | return res; | ||
1300 | } | ||
1301 | |||
1302 | if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH || | ||
1303 | d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) { | ||
1304 | event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type); | ||
1305 | dir = D40_CHAN_REG_SDLNK; | ||
1306 | is_src = false; | ||
1307 | } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) { | ||
1308 | event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type); | ||
1309 | dir = D40_CHAN_REG_SSLNK; | ||
1310 | is_src = true; | ||
1311 | } else { | ||
1312 | dev_err(&d40c->chan.dev->device, | ||
1313 | "[%s] Unknown direction\n", __func__); | ||
1314 | return -EINVAL; | ||
1315 | } | ||
1316 | |||
1317 | if (d40c->log_num != D40_PHY_CHAN) { | ||
1318 | /* | ||
1319 | * Release logical channel, deactivate the event line during | ||
1320 | * the time physical res is suspended. | ||
1321 | */ | ||
1322 | writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event)) & | ||
1323 | D40_EVENTLINE_MASK(event), | ||
1324 | d40c->base->virtbase + D40_DREG_PCBASE + | ||
1325 | phy->num * D40_DREG_PCDELTA + dir); | ||
1326 | |||
1327 | d40c->base->lookup_log_chans[d40c->log_num] = NULL; | ||
1328 | |||
1329 | /* | ||
1330 | * Check if there are more logical allocation | ||
1331 | * on this phy channel. | ||
1332 | */ | ||
1333 | if (!d40_alloc_mask_free(phy, is_src, event)) { | ||
1334 | /* Resume the other logical channels if any */ | ||
1335 | if (d40_chan_has_events(d40c)) { | ||
1336 | res = d40_channel_execute_command(d40c, | ||
1337 | D40_DMA_RUN); | ||
1338 | if (res) { | ||
1339 | dev_err(&d40c->chan.dev->device, | ||
1340 | "[%s] Executing RUN command\n", | ||
1341 | __func__); | ||
1342 | return res; | ||
1343 | } | ||
1344 | } | ||
1345 | return 0; | ||
1346 | } | ||
1347 | } else | ||
1348 | d40_alloc_mask_free(phy, is_src, 0); | ||
1349 | |||
1350 | /* Release physical channel */ | ||
1351 | res = d40_channel_execute_command(d40c, D40_DMA_STOP); | ||
1352 | if (res) { | ||
1353 | dev_err(&d40c->chan.dev->device, | ||
1354 | "[%s] Failed to stop channel\n", __func__); | ||
1355 | return res; | ||
1356 | } | ||
1357 | d40c->phy_chan = NULL; | ||
1358 | /* Invalidate channel type */ | ||
1359 | d40c->dma_cfg.channel_type = 0; | ||
1360 | d40c->base->lookup_phy_chans[phy->num] = NULL; | ||
1361 | |||
1362 | return 0; | ||
1363 | |||
1364 | |||
1365 | } | ||
1366 | |||
1367 | static int d40_pause(struct dma_chan *chan) | ||
1368 | { | ||
1369 | struct d40_chan *d40c = | ||
1370 | container_of(chan, struct d40_chan, chan); | ||
1371 | int res; | ||
1372 | |||
1373 | unsigned long flags; | ||
1374 | |||
1375 | spin_lock_irqsave(&d40c->lock, flags); | ||
1376 | |||
1377 | res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ); | ||
1378 | if (res == 0) { | ||
1379 | if (d40c->log_num != D40_PHY_CHAN) { | ||
1380 | d40_config_set_event(d40c, false); | ||
1381 | /* Resume the other logical channels if any */ | ||
1382 | if (d40_chan_has_events(d40c)) | ||
1383 | res = d40_channel_execute_command(d40c, | ||
1384 | D40_DMA_RUN); | ||
1385 | } | ||
1386 | } | ||
1387 | |||
1388 | spin_unlock_irqrestore(&d40c->lock, flags); | ||
1389 | return res; | ||
1390 | } | ||
1391 | |||
1392 | static bool d40_tx_is_linked(struct d40_chan *d40c) | ||
1393 | { | ||
1394 | bool is_link; | ||
1395 | |||
1396 | if (d40c->log_num != D40_PHY_CHAN) | ||
1397 | is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK; | ||
1398 | else | ||
1399 | is_link = readl(d40c->base->virtbase + D40_DREG_PCBASE + | ||
1400 | d40c->phy_chan->num * D40_DREG_PCDELTA + | ||
1401 | D40_CHAN_REG_SDLNK) & | ||
1402 | D40_SREG_LNK_PHYS_LNK_MASK; | ||
1403 | return is_link; | ||
1404 | } | ||
1405 | |||
1406 | static u32 d40_residue(struct d40_chan *d40c) | ||
1407 | { | ||
1408 | u32 num_elt; | ||
1409 | |||
1410 | if (d40c->log_num != D40_PHY_CHAN) | ||
1411 | num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK) | ||
1412 | >> D40_MEM_LCSP2_ECNT_POS; | ||
1413 | else | ||
1414 | num_elt = (readl(d40c->base->virtbase + D40_DREG_PCBASE + | ||
1415 | d40c->phy_chan->num * D40_DREG_PCDELTA + | ||
1416 | D40_CHAN_REG_SDELT) & | ||
1417 | D40_SREG_ELEM_PHY_ECNT_MASK) >> D40_SREG_ELEM_PHY_ECNT_POS; | ||
1418 | return num_elt * (1 << d40c->dma_cfg.dst_info.data_width); | ||
1419 | } | ||
1420 | |||
1421 | static int d40_resume(struct dma_chan *chan) | ||
1422 | { | ||
1423 | struct d40_chan *d40c = | ||
1424 | container_of(chan, struct d40_chan, chan); | ||
1425 | int res = 0; | ||
1426 | unsigned long flags; | ||
1427 | |||
1428 | spin_lock_irqsave(&d40c->lock, flags); | ||
1429 | |||
1430 | if (d40c->log_num != D40_PHY_CHAN) { | ||
1431 | res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ); | ||
1432 | if (res) | ||
1433 | goto out; | ||
1434 | |||
1435 | /* If bytes left to transfer or linked tx resume job */ | ||
1436 | if (d40_residue(d40c) || d40_tx_is_linked(d40c)) { | ||
1437 | d40_config_set_event(d40c, true); | ||
1438 | res = d40_channel_execute_command(d40c, D40_DMA_RUN); | ||
1439 | } | ||
1440 | } else if (d40_residue(d40c) || d40_tx_is_linked(d40c)) | ||
1441 | res = d40_channel_execute_command(d40c, D40_DMA_RUN); | ||
1442 | |||
1443 | out: | ||
1444 | spin_unlock_irqrestore(&d40c->lock, flags); | ||
1445 | return res; | ||
1446 | } | ||
1447 | |||
1448 | static u32 stedma40_residue(struct dma_chan *chan) | ||
1449 | { | ||
1450 | struct d40_chan *d40c = | ||
1451 | container_of(chan, struct d40_chan, chan); | ||
1452 | u32 bytes_left; | ||
1453 | unsigned long flags; | ||
1454 | |||
1455 | spin_lock_irqsave(&d40c->lock, flags); | ||
1456 | bytes_left = d40_residue(d40c); | ||
1457 | spin_unlock_irqrestore(&d40c->lock, flags); | ||
1458 | |||
1459 | return bytes_left; | ||
1460 | } | ||
1461 | |||
1462 | /* Public DMA functions in addition to the DMA engine framework */ | ||
1463 | |||
1464 | int stedma40_set_psize(struct dma_chan *chan, | ||
1465 | int src_psize, | ||
1466 | int dst_psize) | ||
1467 | { | ||
1468 | struct d40_chan *d40c = | ||
1469 | container_of(chan, struct d40_chan, chan); | ||
1470 | unsigned long flags; | ||
1471 | |||
1472 | spin_lock_irqsave(&d40c->lock, flags); | ||
1473 | |||
1474 | if (d40c->log_num != D40_PHY_CHAN) { | ||
1475 | d40c->log_def.lcsp1 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK; | ||
1476 | d40c->log_def.lcsp3 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK; | ||
1477 | d40c->log_def.lcsp1 |= src_psize << D40_MEM_LCSP1_SCFG_PSIZE_POS; | ||
1478 | d40c->log_def.lcsp3 |= dst_psize << D40_MEM_LCSP1_SCFG_PSIZE_POS; | ||
1479 | goto out; | ||
1480 | } | ||
1481 | |||
1482 | if (src_psize == STEDMA40_PSIZE_PHY_1) | ||
1483 | d40c->src_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS); | ||
1484 | else { | ||
1485 | d40c->src_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS; | ||
1486 | d40c->src_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 << | ||
1487 | D40_SREG_CFG_PSIZE_POS); | ||
1488 | d40c->src_def_cfg |= src_psize << D40_SREG_CFG_PSIZE_POS; | ||
1489 | } | ||
1490 | |||
1491 | if (dst_psize == STEDMA40_PSIZE_PHY_1) | ||
1492 | d40c->dst_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS); | ||
1493 | else { | ||
1494 | d40c->dst_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS; | ||
1495 | d40c->dst_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 << | ||
1496 | D40_SREG_CFG_PSIZE_POS); | ||
1497 | d40c->dst_def_cfg |= dst_psize << D40_SREG_CFG_PSIZE_POS; | ||
1498 | } | ||
1499 | out: | ||
1500 | spin_unlock_irqrestore(&d40c->lock, flags); | ||
1501 | return 0; | ||
1502 | } | ||
1503 | EXPORT_SYMBOL(stedma40_set_psize); | ||
1504 | |||
1505 | struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan, | ||
1506 | struct scatterlist *sgl_dst, | ||
1507 | struct scatterlist *sgl_src, | ||
1508 | unsigned int sgl_len, | ||
1509 | unsigned long flags) | ||
1510 | { | ||
1511 | int res; | ||
1512 | struct d40_desc *d40d; | ||
1513 | struct d40_chan *d40c = container_of(chan, struct d40_chan, | ||
1514 | chan); | ||
1515 | unsigned long flg; | ||
1516 | int lli_max = d40c->base->plat_data->llis_per_log; | ||
1517 | |||
1518 | |||
1519 | spin_lock_irqsave(&d40c->lock, flg); | ||
1520 | d40d = d40_desc_get(d40c); | ||
1521 | |||
1522 | if (d40d == NULL) | ||
1523 | goto err; | ||
1524 | |||
1525 | memset(d40d, 0, sizeof(struct d40_desc)); | ||
1526 | d40d->lli_len = sgl_len; | ||
1527 | |||
1528 | d40d->txd.flags = flags; | ||
1529 | |||
1530 | if (d40c->log_num != D40_PHY_CHAN) { | ||
1531 | if (sgl_len > 1) | ||
1532 | /* | ||
1533 | * Check if there is space available in lcla. If not, | ||
1534 | * split list into 1-length and run only in lcpa | ||
1535 | * space. | ||
1536 | */ | ||
1537 | if (d40_lcla_id_get(d40c, | ||
1538 | &d40c->base->lcla_pool) != 0) | ||
1539 | lli_max = 1; | ||
1540 | |||
1541 | if (d40_pool_lli_alloc(d40d, sgl_len, true) < 0) { | ||
1542 | dev_err(&d40c->chan.dev->device, | ||
1543 | "[%s] Out of memory\n", __func__); | ||
1544 | goto err; | ||
1545 | } | ||
1546 | |||
1547 | (void) d40_log_sg_to_lli(d40c->lcla.src_id, | ||
1548 | sgl_src, | ||
1549 | sgl_len, | ||
1550 | d40d->lli_log.src, | ||
1551 | d40c->log_def.lcsp1, | ||
1552 | d40c->dma_cfg.src_info.data_width, | ||
1553 | flags & DMA_PREP_INTERRUPT, lli_max, | ||
1554 | d40c->base->plat_data->llis_per_log); | ||
1555 | |||
1556 | (void) d40_log_sg_to_lli(d40c->lcla.dst_id, | ||
1557 | sgl_dst, | ||
1558 | sgl_len, | ||
1559 | d40d->lli_log.dst, | ||
1560 | d40c->log_def.lcsp3, | ||
1561 | d40c->dma_cfg.dst_info.data_width, | ||
1562 | flags & DMA_PREP_INTERRUPT, lli_max, | ||
1563 | d40c->base->plat_data->llis_per_log); | ||
1564 | |||
1565 | |||
1566 | } else { | ||
1567 | if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) { | ||
1568 | dev_err(&d40c->chan.dev->device, | ||
1569 | "[%s] Out of memory\n", __func__); | ||
1570 | goto err; | ||
1571 | } | ||
1572 | |||
1573 | res = d40_phy_sg_to_lli(sgl_src, | ||
1574 | sgl_len, | ||
1575 | 0, | ||
1576 | d40d->lli_phy.src, | ||
1577 | d40d->lli_phy.src_addr, | ||
1578 | d40c->src_def_cfg, | ||
1579 | d40c->dma_cfg.src_info.data_width, | ||
1580 | d40c->dma_cfg.src_info.psize, | ||
1581 | true); | ||
1582 | |||
1583 | if (res < 0) | ||
1584 | goto err; | ||
1585 | |||
1586 | res = d40_phy_sg_to_lli(sgl_dst, | ||
1587 | sgl_len, | ||
1588 | 0, | ||
1589 | d40d->lli_phy.dst, | ||
1590 | d40d->lli_phy.dst_addr, | ||
1591 | d40c->dst_def_cfg, | ||
1592 | d40c->dma_cfg.dst_info.data_width, | ||
1593 | d40c->dma_cfg.dst_info.psize, | ||
1594 | true); | ||
1595 | |||
1596 | if (res < 0) | ||
1597 | goto err; | ||
1598 | |||
1599 | (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src, | ||
1600 | d40d->lli_pool.size, DMA_TO_DEVICE); | ||
1601 | } | ||
1602 | |||
1603 | dma_async_tx_descriptor_init(&d40d->txd, chan); | ||
1604 | |||
1605 | d40d->txd.tx_submit = d40_tx_submit; | ||
1606 | |||
1607 | spin_unlock_irqrestore(&d40c->lock, flg); | ||
1608 | |||
1609 | return &d40d->txd; | ||
1610 | err: | ||
1611 | spin_unlock_irqrestore(&d40c->lock, flg); | ||
1612 | return NULL; | ||
1613 | } | ||
1614 | EXPORT_SYMBOL(stedma40_memcpy_sg); | ||
1615 | |||
1616 | bool stedma40_filter(struct dma_chan *chan, void *data) | ||
1617 | { | ||
1618 | struct stedma40_chan_cfg *info = data; | ||
1619 | struct d40_chan *d40c = | ||
1620 | container_of(chan, struct d40_chan, chan); | ||
1621 | int err; | ||
1622 | |||
1623 | if (data) { | ||
1624 | err = d40_validate_conf(d40c, info); | ||
1625 | if (!err) | ||
1626 | d40c->dma_cfg = *info; | ||
1627 | } else | ||
1628 | err = d40_config_memcpy(d40c); | ||
1629 | |||
1630 | return err == 0; | ||
1631 | } | ||
1632 | EXPORT_SYMBOL(stedma40_filter); | ||
1633 | |||
1634 | /* DMA ENGINE functions */ | ||
1635 | static int d40_alloc_chan_resources(struct dma_chan *chan) | ||
1636 | { | ||
1637 | int err; | ||
1638 | unsigned long flags; | ||
1639 | struct d40_chan *d40c = | ||
1640 | container_of(chan, struct d40_chan, chan); | ||
1641 | |||
1642 | spin_lock_irqsave(&d40c->lock, flags); | ||
1643 | |||
1644 | d40c->completed = chan->cookie = 1; | ||
1645 | |||
1646 | /* | ||
1647 | * If no dma configuration is set (channel_type == 0) | ||
1648 | * use default configuration | ||
1649 | */ | ||
1650 | if (d40c->dma_cfg.channel_type == 0) { | ||
1651 | err = d40_config_memcpy(d40c); | ||
1652 | if (err) | ||
1653 | goto err_alloc; | ||
1654 | } | ||
1655 | |||
1656 | err = d40_allocate_channel(d40c); | ||
1657 | if (err) { | ||
1658 | dev_err(&d40c->chan.dev->device, | ||
1659 | "[%s] Failed to allocate channel\n", __func__); | ||
1660 | goto err_alloc; | ||
1661 | } | ||
1662 | |||
1663 | err = d40_config_chan(d40c, &d40c->dma_cfg); | ||
1664 | if (err) { | ||
1665 | dev_err(&d40c->chan.dev->device, | ||
1666 | "[%s] Failed to configure channel\n", | ||
1667 | __func__); | ||
1668 | goto err_config; | ||
1669 | } | ||
1670 | |||
1671 | spin_unlock_irqrestore(&d40c->lock, flags); | ||
1672 | return 0; | ||
1673 | |||
1674 | err_config: | ||
1675 | (void) d40_free_dma(d40c); | ||
1676 | err_alloc: | ||
1677 | spin_unlock_irqrestore(&d40c->lock, flags); | ||
1678 | dev_err(&d40c->chan.dev->device, | ||
1679 | "[%s] Channel allocation failed\n", __func__); | ||
1680 | return -EINVAL; | ||
1681 | } | ||
1682 | |||
1683 | static void d40_free_chan_resources(struct dma_chan *chan) | ||
1684 | { | ||
1685 | struct d40_chan *d40c = | ||
1686 | container_of(chan, struct d40_chan, chan); | ||
1687 | int err; | ||
1688 | unsigned long flags; | ||
1689 | |||
1690 | spin_lock_irqsave(&d40c->lock, flags); | ||
1691 | |||
1692 | err = d40_free_dma(d40c); | ||
1693 | |||
1694 | if (err) | ||
1695 | dev_err(&d40c->chan.dev->device, | ||
1696 | "[%s] Failed to free channel\n", __func__); | ||
1697 | spin_unlock_irqrestore(&d40c->lock, flags); | ||
1698 | } | ||
1699 | |||
1700 | static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan, | ||
1701 | dma_addr_t dst, | ||
1702 | dma_addr_t src, | ||
1703 | size_t size, | ||
1704 | unsigned long flags) | ||
1705 | { | ||
1706 | struct d40_desc *d40d; | ||
1707 | struct d40_chan *d40c = container_of(chan, struct d40_chan, | ||
1708 | chan); | ||
1709 | unsigned long flg; | ||
1710 | int err = 0; | ||
1711 | |||
1712 | spin_lock_irqsave(&d40c->lock, flg); | ||
1713 | d40d = d40_desc_get(d40c); | ||
1714 | |||
1715 | if (d40d == NULL) { | ||
1716 | dev_err(&d40c->chan.dev->device, | ||
1717 | "[%s] Descriptor is NULL\n", __func__); | ||
1718 | goto err; | ||
1719 | } | ||
1720 | |||
1721 | memset(d40d, 0, sizeof(struct d40_desc)); | ||
1722 | |||
1723 | d40d->txd.flags = flags; | ||
1724 | |||
1725 | dma_async_tx_descriptor_init(&d40d->txd, chan); | ||
1726 | |||
1727 | d40d->txd.tx_submit = d40_tx_submit; | ||
1728 | |||
1729 | if (d40c->log_num != D40_PHY_CHAN) { | ||
1730 | |||
1731 | if (d40_pool_lli_alloc(d40d, 1, true) < 0) { | ||
1732 | dev_err(&d40c->chan.dev->device, | ||
1733 | "[%s] Out of memory\n", __func__); | ||
1734 | goto err; | ||
1735 | } | ||
1736 | d40d->lli_len = 1; | ||
1737 | |||
1738 | d40_log_fill_lli(d40d->lli_log.src, | ||
1739 | src, | ||
1740 | size, | ||
1741 | 0, | ||
1742 | d40c->log_def.lcsp1, | ||
1743 | d40c->dma_cfg.src_info.data_width, | ||
1744 | true, true); | ||
1745 | |||
1746 | d40_log_fill_lli(d40d->lli_log.dst, | ||
1747 | dst, | ||
1748 | size, | ||
1749 | 0, | ||
1750 | d40c->log_def.lcsp3, | ||
1751 | d40c->dma_cfg.dst_info.data_width, | ||
1752 | true, true); | ||
1753 | |||
1754 | } else { | ||
1755 | |||
1756 | if (d40_pool_lli_alloc(d40d, 1, false) < 0) { | ||
1757 | dev_err(&d40c->chan.dev->device, | ||
1758 | "[%s] Out of memory\n", __func__); | ||
1759 | goto err; | ||
1760 | } | ||
1761 | |||
1762 | err = d40_phy_fill_lli(d40d->lli_phy.src, | ||
1763 | src, | ||
1764 | size, | ||
1765 | d40c->dma_cfg.src_info.psize, | ||
1766 | 0, | ||
1767 | d40c->src_def_cfg, | ||
1768 | true, | ||
1769 | d40c->dma_cfg.src_info.data_width, | ||
1770 | false); | ||
1771 | if (err) | ||
1772 | goto err_fill_lli; | ||
1773 | |||
1774 | err = d40_phy_fill_lli(d40d->lli_phy.dst, | ||
1775 | dst, | ||
1776 | size, | ||
1777 | d40c->dma_cfg.dst_info.psize, | ||
1778 | 0, | ||
1779 | d40c->dst_def_cfg, | ||
1780 | true, | ||
1781 | d40c->dma_cfg.dst_info.data_width, | ||
1782 | false); | ||
1783 | |||
1784 | if (err) | ||
1785 | goto err_fill_lli; | ||
1786 | |||
1787 | (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src, | ||
1788 | d40d->lli_pool.size, DMA_TO_DEVICE); | ||
1789 | } | ||
1790 | |||
1791 | spin_unlock_irqrestore(&d40c->lock, flg); | ||
1792 | return &d40d->txd; | ||
1793 | |||
1794 | err_fill_lli: | ||
1795 | dev_err(&d40c->chan.dev->device, | ||
1796 | "[%s] Failed filling in PHY LLI\n", __func__); | ||
1797 | d40_pool_lli_free(d40d); | ||
1798 | err: | ||
1799 | spin_unlock_irqrestore(&d40c->lock, flg); | ||
1800 | return NULL; | ||
1801 | } | ||
1802 | |||
1803 | static int d40_prep_slave_sg_log(struct d40_desc *d40d, | ||
1804 | struct d40_chan *d40c, | ||
1805 | struct scatterlist *sgl, | ||
1806 | unsigned int sg_len, | ||
1807 | enum dma_data_direction direction, | ||
1808 | unsigned long flags) | ||
1809 | { | ||
1810 | dma_addr_t dev_addr = 0; | ||
1811 | int total_size; | ||
1812 | int lli_max = d40c->base->plat_data->llis_per_log; | ||
1813 | |||
1814 | if (d40_pool_lli_alloc(d40d, sg_len, true) < 0) { | ||
1815 | dev_err(&d40c->chan.dev->device, | ||
1816 | "[%s] Out of memory\n", __func__); | ||
1817 | return -ENOMEM; | ||
1818 | } | ||
1819 | |||
1820 | d40d->lli_len = sg_len; | ||
1821 | d40d->lli_tcount = 0; | ||
1822 | |||
1823 | if (sg_len > 1) | ||
1824 | /* | ||
1825 | * Check if there is space available in lcla. | ||
1826 | * If not, split list into 1-length and run only | ||
1827 | * in lcpa space. | ||
1828 | */ | ||
1829 | if (d40_lcla_id_get(d40c, &d40c->base->lcla_pool) != 0) | ||
1830 | lli_max = 1; | ||
1831 | |||
1832 | if (direction == DMA_FROM_DEVICE) { | ||
1833 | dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type]; | ||
1834 | total_size = d40_log_sg_to_dev(&d40c->lcla, | ||
1835 | sgl, sg_len, | ||
1836 | &d40d->lli_log, | ||
1837 | &d40c->log_def, | ||
1838 | d40c->dma_cfg.src_info.data_width, | ||
1839 | d40c->dma_cfg.dst_info.data_width, | ||
1840 | direction, | ||
1841 | flags & DMA_PREP_INTERRUPT, | ||
1842 | dev_addr, lli_max, | ||
1843 | d40c->base->plat_data->llis_per_log); | ||
1844 | } else if (direction == DMA_TO_DEVICE) { | ||
1845 | dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type]; | ||
1846 | total_size = d40_log_sg_to_dev(&d40c->lcla, | ||
1847 | sgl, sg_len, | ||
1848 | &d40d->lli_log, | ||
1849 | &d40c->log_def, | ||
1850 | d40c->dma_cfg.src_info.data_width, | ||
1851 | d40c->dma_cfg.dst_info.data_width, | ||
1852 | direction, | ||
1853 | flags & DMA_PREP_INTERRUPT, | ||
1854 | dev_addr, lli_max, | ||
1855 | d40c->base->plat_data->llis_per_log); | ||
1856 | } else | ||
1857 | return -EINVAL; | ||
1858 | if (total_size < 0) | ||
1859 | return -EINVAL; | ||
1860 | |||
1861 | return 0; | ||
1862 | } | ||
1863 | |||
1864 | static int d40_prep_slave_sg_phy(struct d40_desc *d40d, | ||
1865 | struct d40_chan *d40c, | ||
1866 | struct scatterlist *sgl, | ||
1867 | unsigned int sgl_len, | ||
1868 | enum dma_data_direction direction, | ||
1869 | unsigned long flags) | ||
1870 | { | ||
1871 | dma_addr_t src_dev_addr; | ||
1872 | dma_addr_t dst_dev_addr; | ||
1873 | int res; | ||
1874 | |||
1875 | if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) { | ||
1876 | dev_err(&d40c->chan.dev->device, | ||
1877 | "[%s] Out of memory\n", __func__); | ||
1878 | return -ENOMEM; | ||
1879 | } | ||
1880 | |||
1881 | d40d->lli_len = sgl_len; | ||
1882 | d40d->lli_tcount = 0; | ||
1883 | |||
1884 | if (direction == DMA_FROM_DEVICE) { | ||
1885 | dst_dev_addr = 0; | ||
1886 | src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type]; | ||
1887 | } else if (direction == DMA_TO_DEVICE) { | ||
1888 | dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type]; | ||
1889 | src_dev_addr = 0; | ||
1890 | } else | ||
1891 | return -EINVAL; | ||
1892 | |||
1893 | res = d40_phy_sg_to_lli(sgl, | ||
1894 | sgl_len, | ||
1895 | src_dev_addr, | ||
1896 | d40d->lli_phy.src, | ||
1897 | d40d->lli_phy.src_addr, | ||
1898 | d40c->src_def_cfg, | ||
1899 | d40c->dma_cfg.src_info.data_width, | ||
1900 | d40c->dma_cfg.src_info.psize, | ||
1901 | true); | ||
1902 | if (res < 0) | ||
1903 | return res; | ||
1904 | |||
1905 | res = d40_phy_sg_to_lli(sgl, | ||
1906 | sgl_len, | ||
1907 | dst_dev_addr, | ||
1908 | d40d->lli_phy.dst, | ||
1909 | d40d->lli_phy.dst_addr, | ||
1910 | d40c->dst_def_cfg, | ||
1911 | d40c->dma_cfg.dst_info.data_width, | ||
1912 | d40c->dma_cfg.dst_info.psize, | ||
1913 | true); | ||
1914 | if (res < 0) | ||
1915 | return res; | ||
1916 | |||
1917 | (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src, | ||
1918 | d40d->lli_pool.size, DMA_TO_DEVICE); | ||
1919 | return 0; | ||
1920 | } | ||
1921 | |||
1922 | static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan, | ||
1923 | struct scatterlist *sgl, | ||
1924 | unsigned int sg_len, | ||
1925 | enum dma_data_direction direction, | ||
1926 | unsigned long flags) | ||
1927 | { | ||
1928 | struct d40_desc *d40d; | ||
1929 | struct d40_chan *d40c = container_of(chan, struct d40_chan, | ||
1930 | chan); | ||
1931 | unsigned long flg; | ||
1932 | int err; | ||
1933 | |||
1934 | if (d40c->dma_cfg.pre_transfer) | ||
1935 | d40c->dma_cfg.pre_transfer(chan, | ||
1936 | d40c->dma_cfg.pre_transfer_data, | ||
1937 | sg_dma_len(sgl)); | ||
1938 | |||
1939 | spin_lock_irqsave(&d40c->lock, flg); | ||
1940 | d40d = d40_desc_get(d40c); | ||
1941 | spin_unlock_irqrestore(&d40c->lock, flg); | ||
1942 | |||
1943 | if (d40d == NULL) | ||
1944 | return NULL; | ||
1945 | |||
1946 | memset(d40d, 0, sizeof(struct d40_desc)); | ||
1947 | |||
1948 | if (d40c->log_num != D40_PHY_CHAN) | ||
1949 | err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len, | ||
1950 | direction, flags); | ||
1951 | else | ||
1952 | err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len, | ||
1953 | direction, flags); | ||
1954 | if (err) { | ||
1955 | dev_err(&d40c->chan.dev->device, | ||
1956 | "[%s] Failed to prepare %s slave sg job: %d\n", | ||
1957 | __func__, | ||
1958 | d40c->log_num != D40_PHY_CHAN ? "log" : "phy", err); | ||
1959 | return NULL; | ||
1960 | } | ||
1961 | |||
1962 | d40d->txd.flags = flags; | ||
1963 | |||
1964 | dma_async_tx_descriptor_init(&d40d->txd, chan); | ||
1965 | |||
1966 | d40d->txd.tx_submit = d40_tx_submit; | ||
1967 | |||
1968 | return &d40d->txd; | ||
1969 | } | ||
1970 | |||
1971 | static enum dma_status d40_tx_status(struct dma_chan *chan, | ||
1972 | dma_cookie_t cookie, | ||
1973 | struct dma_tx_state *txstate) | ||
1974 | { | ||
1975 | struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); | ||
1976 | dma_cookie_t last_used; | ||
1977 | dma_cookie_t last_complete; | ||
1978 | int ret; | ||
1979 | |||
1980 | last_complete = d40c->completed; | ||
1981 | last_used = chan->cookie; | ||
1982 | |||
1983 | ret = dma_async_is_complete(cookie, last_complete, last_used); | ||
1984 | |||
1985 | if (txstate) { | ||
1986 | txstate->last = last_complete; | ||
1987 | txstate->used = last_used; | ||
1988 | txstate->residue = stedma40_residue(chan); | ||
1989 | } | ||
1990 | |||
1991 | return ret; | ||
1992 | } | ||
1993 | |||
1994 | static void d40_issue_pending(struct dma_chan *chan) | ||
1995 | { | ||
1996 | struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); | ||
1997 | unsigned long flags; | ||
1998 | |||
1999 | spin_lock_irqsave(&d40c->lock, flags); | ||
2000 | |||
2001 | /* Busy means that pending jobs are already being processed */ | ||
2002 | if (!d40c->busy) | ||
2003 | (void) d40_queue_start(d40c); | ||
2004 | |||
2005 | spin_unlock_irqrestore(&d40c->lock, flags); | ||
2006 | } | ||
2007 | |||
2008 | static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd) | ||
2009 | { | ||
2010 | unsigned long flags; | ||
2011 | struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); | ||
2012 | |||
2013 | switch (cmd) { | ||
2014 | case DMA_TERMINATE_ALL: | ||
2015 | spin_lock_irqsave(&d40c->lock, flags); | ||
2016 | d40_term_all(d40c); | ||
2017 | spin_unlock_irqrestore(&d40c->lock, flags); | ||
2018 | return 0; | ||
2019 | case DMA_PAUSE: | ||
2020 | return d40_pause(chan); | ||
2021 | case DMA_RESUME: | ||
2022 | return d40_resume(chan); | ||
2023 | } | ||
2024 | |||
2025 | /* Other commands are unimplemented */ | ||
2026 | return -ENXIO; | ||
2027 | } | ||
2028 | |||
2029 | /* Initialization functions */ | ||
2030 | |||
2031 | static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma, | ||
2032 | struct d40_chan *chans, int offset, | ||
2033 | int num_chans) | ||
2034 | { | ||
2035 | int i = 0; | ||
2036 | struct d40_chan *d40c; | ||
2037 | |||
2038 | INIT_LIST_HEAD(&dma->channels); | ||
2039 | |||
2040 | for (i = offset; i < offset + num_chans; i++) { | ||
2041 | d40c = &chans[i]; | ||
2042 | d40c->base = base; | ||
2043 | d40c->chan.device = dma; | ||
2044 | |||
2045 | /* Invalidate lcla element */ | ||
2046 | d40c->lcla.src_id = -1; | ||
2047 | d40c->lcla.dst_id = -1; | ||
2048 | |||
2049 | spin_lock_init(&d40c->lock); | ||
2050 | |||
2051 | d40c->log_num = D40_PHY_CHAN; | ||
2052 | |||
2053 | INIT_LIST_HEAD(&d40c->free); | ||
2054 | INIT_LIST_HEAD(&d40c->active); | ||
2055 | INIT_LIST_HEAD(&d40c->queue); | ||
2056 | INIT_LIST_HEAD(&d40c->client); | ||
2057 | |||
2058 | d40c->free_len = 0; | ||
2059 | |||
2060 | tasklet_init(&d40c->tasklet, dma_tasklet, | ||
2061 | (unsigned long) d40c); | ||
2062 | |||
2063 | list_add_tail(&d40c->chan.device_node, | ||
2064 | &dma->channels); | ||
2065 | } | ||
2066 | } | ||
2067 | |||
2068 | static int __init d40_dmaengine_init(struct d40_base *base, | ||
2069 | int num_reserved_chans) | ||
2070 | { | ||
2071 | int err ; | ||
2072 | |||
2073 | d40_chan_init(base, &base->dma_slave, base->log_chans, | ||
2074 | 0, base->num_log_chans); | ||
2075 | |||
2076 | dma_cap_zero(base->dma_slave.cap_mask); | ||
2077 | dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask); | ||
2078 | |||
2079 | base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources; | ||
2080 | base->dma_slave.device_free_chan_resources = d40_free_chan_resources; | ||
2081 | base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy; | ||
2082 | base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg; | ||
2083 | base->dma_slave.device_tx_status = d40_tx_status; | ||
2084 | base->dma_slave.device_issue_pending = d40_issue_pending; | ||
2085 | base->dma_slave.device_control = d40_control; | ||
2086 | base->dma_slave.dev = base->dev; | ||
2087 | |||
2088 | err = dma_async_device_register(&base->dma_slave); | ||
2089 | |||
2090 | if (err) { | ||
2091 | dev_err(base->dev, | ||
2092 | "[%s] Failed to register slave channels\n", | ||
2093 | __func__); | ||
2094 | goto failure1; | ||
2095 | } | ||
2096 | |||
2097 | d40_chan_init(base, &base->dma_memcpy, base->log_chans, | ||
2098 | base->num_log_chans, base->plat_data->memcpy_len); | ||
2099 | |||
2100 | dma_cap_zero(base->dma_memcpy.cap_mask); | ||
2101 | dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask); | ||
2102 | |||
2103 | base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources; | ||
2104 | base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources; | ||
2105 | base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy; | ||
2106 | base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg; | ||
2107 | base->dma_memcpy.device_tx_status = d40_tx_status; | ||
2108 | base->dma_memcpy.device_issue_pending = d40_issue_pending; | ||
2109 | base->dma_memcpy.device_control = d40_control; | ||
2110 | base->dma_memcpy.dev = base->dev; | ||
2111 | /* | ||
2112 | * This controller can only access address at even | ||
2113 | * 32bit boundaries, i.e. 2^2 | ||
2114 | */ | ||
2115 | base->dma_memcpy.copy_align = 2; | ||
2116 | |||
2117 | err = dma_async_device_register(&base->dma_memcpy); | ||
2118 | |||
2119 | if (err) { | ||
2120 | dev_err(base->dev, | ||
2121 | "[%s] Failed to regsiter memcpy only channels\n", | ||
2122 | __func__); | ||
2123 | goto failure2; | ||
2124 | } | ||
2125 | |||
2126 | d40_chan_init(base, &base->dma_both, base->phy_chans, | ||
2127 | 0, num_reserved_chans); | ||
2128 | |||
2129 | dma_cap_zero(base->dma_both.cap_mask); | ||
2130 | dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask); | ||
2131 | dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask); | ||
2132 | |||
2133 | base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources; | ||
2134 | base->dma_both.device_free_chan_resources = d40_free_chan_resources; | ||
2135 | base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy; | ||
2136 | base->dma_both.device_prep_slave_sg = d40_prep_slave_sg; | ||
2137 | base->dma_both.device_tx_status = d40_tx_status; | ||
2138 | base->dma_both.device_issue_pending = d40_issue_pending; | ||
2139 | base->dma_both.device_control = d40_control; | ||
2140 | base->dma_both.dev = base->dev; | ||
2141 | base->dma_both.copy_align = 2; | ||
2142 | err = dma_async_device_register(&base->dma_both); | ||
2143 | |||
2144 | if (err) { | ||
2145 | dev_err(base->dev, | ||
2146 | "[%s] Failed to register logical and physical capable channels\n", | ||
2147 | __func__); | ||
2148 | goto failure3; | ||
2149 | } | ||
2150 | return 0; | ||
2151 | failure3: | ||
2152 | dma_async_device_unregister(&base->dma_memcpy); | ||
2153 | failure2: | ||
2154 | dma_async_device_unregister(&base->dma_slave); | ||
2155 | failure1: | ||
2156 | return err; | ||
2157 | } | ||
2158 | |||
2159 | /* Initialization functions. */ | ||
2160 | |||
2161 | static int __init d40_phy_res_init(struct d40_base *base) | ||
2162 | { | ||
2163 | int i; | ||
2164 | int num_phy_chans_avail = 0; | ||
2165 | u32 val[2]; | ||
2166 | int odd_even_bit = -2; | ||
2167 | |||
2168 | val[0] = readl(base->virtbase + D40_DREG_PRSME); | ||
2169 | val[1] = readl(base->virtbase + D40_DREG_PRSMO); | ||
2170 | |||
2171 | for (i = 0; i < base->num_phy_chans; i++) { | ||
2172 | base->phy_res[i].num = i; | ||
2173 | odd_even_bit += 2 * ((i % 2) == 0); | ||
2174 | if (((val[i % 2] >> odd_even_bit) & 3) == 1) { | ||
2175 | /* Mark security only channels as occupied */ | ||
2176 | base->phy_res[i].allocated_src = D40_ALLOC_PHY; | ||
2177 | base->phy_res[i].allocated_dst = D40_ALLOC_PHY; | ||
2178 | } else { | ||
2179 | base->phy_res[i].allocated_src = D40_ALLOC_FREE; | ||
2180 | base->phy_res[i].allocated_dst = D40_ALLOC_FREE; | ||
2181 | num_phy_chans_avail++; | ||
2182 | } | ||
2183 | spin_lock_init(&base->phy_res[i].lock); | ||
2184 | } | ||
2185 | dev_info(base->dev, "%d of %d physical DMA channels available\n", | ||
2186 | num_phy_chans_avail, base->num_phy_chans); | ||
2187 | |||
2188 | /* Verify settings extended vs standard */ | ||
2189 | val[0] = readl(base->virtbase + D40_DREG_PRTYP); | ||
2190 | |||
2191 | for (i = 0; i < base->num_phy_chans; i++) { | ||
2192 | |||
2193 | if (base->phy_res[i].allocated_src == D40_ALLOC_FREE && | ||
2194 | (val[0] & 0x3) != 1) | ||
2195 | dev_info(base->dev, | ||
2196 | "[%s] INFO: channel %d is misconfigured (%d)\n", | ||
2197 | __func__, i, val[0] & 0x3); | ||
2198 | |||
2199 | val[0] = val[0] >> 2; | ||
2200 | } | ||
2201 | |||
2202 | return num_phy_chans_avail; | ||
2203 | } | ||
2204 | |||
2205 | static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev) | ||
2206 | { | ||
2207 | static const struct d40_reg_val dma_id_regs[] = { | ||
2208 | /* Peripheral Id */ | ||
2209 | { .reg = D40_DREG_PERIPHID0, .val = 0x0040}, | ||
2210 | { .reg = D40_DREG_PERIPHID1, .val = 0x0000}, | ||
2211 | /* | ||
2212 | * D40_DREG_PERIPHID2 Depends on HW revision: | ||
2213 | * MOP500/HREF ED has 0x0008, | ||
2214 | * ? has 0x0018, | ||
2215 | * HREF V1 has 0x0028 | ||
2216 | */ | ||
2217 | { .reg = D40_DREG_PERIPHID3, .val = 0x0000}, | ||
2218 | |||
2219 | /* PCell Id */ | ||
2220 | { .reg = D40_DREG_CELLID0, .val = 0x000d}, | ||
2221 | { .reg = D40_DREG_CELLID1, .val = 0x00f0}, | ||
2222 | { .reg = D40_DREG_CELLID2, .val = 0x0005}, | ||
2223 | { .reg = D40_DREG_CELLID3, .val = 0x00b1} | ||
2224 | }; | ||
2225 | struct stedma40_platform_data *plat_data; | ||
2226 | struct clk *clk = NULL; | ||
2227 | void __iomem *virtbase = NULL; | ||
2228 | struct resource *res = NULL; | ||
2229 | struct d40_base *base = NULL; | ||
2230 | int num_log_chans = 0; | ||
2231 | int num_phy_chans; | ||
2232 | int i; | ||
2233 | |||
2234 | clk = clk_get(&pdev->dev, NULL); | ||
2235 | |||
2236 | if (IS_ERR(clk)) { | ||
2237 | dev_err(&pdev->dev, "[%s] No matching clock found\n", | ||
2238 | __func__); | ||
2239 | goto failure; | ||
2240 | } | ||
2241 | |||
2242 | clk_enable(clk); | ||
2243 | |||
2244 | /* Get IO for DMAC base address */ | ||
2245 | res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base"); | ||
2246 | if (!res) | ||
2247 | goto failure; | ||
2248 | |||
2249 | if (request_mem_region(res->start, resource_size(res), | ||
2250 | D40_NAME " I/O base") == NULL) | ||
2251 | goto failure; | ||
2252 | |||
2253 | virtbase = ioremap(res->start, resource_size(res)); | ||
2254 | if (!virtbase) | ||
2255 | goto failure; | ||
2256 | |||
2257 | /* HW version check */ | ||
2258 | for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) { | ||
2259 | if (dma_id_regs[i].val != | ||
2260 | readl(virtbase + dma_id_regs[i].reg)) { | ||
2261 | dev_err(&pdev->dev, | ||
2262 | "[%s] Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n", | ||
2263 | __func__, | ||
2264 | dma_id_regs[i].val, | ||
2265 | dma_id_regs[i].reg, | ||
2266 | readl(virtbase + dma_id_regs[i].reg)); | ||
2267 | goto failure; | ||
2268 | } | ||
2269 | } | ||
2270 | |||
2271 | i = readl(virtbase + D40_DREG_PERIPHID2); | ||
2272 | |||
2273 | if ((i & 0xf) != D40_PERIPHID2_DESIGNER) { | ||
2274 | dev_err(&pdev->dev, | ||
2275 | "[%s] Unknown designer! Got %x wanted %x\n", | ||
2276 | __func__, i & 0xf, D40_PERIPHID2_DESIGNER); | ||
2277 | goto failure; | ||
2278 | } | ||
2279 | |||
2280 | /* The number of physical channels on this HW */ | ||
2281 | num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4; | ||
2282 | |||
2283 | dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n", | ||
2284 | (i >> 4) & 0xf, res->start); | ||
2285 | |||
2286 | plat_data = pdev->dev.platform_data; | ||
2287 | |||
2288 | /* Count the number of logical channels in use */ | ||
2289 | for (i = 0; i < plat_data->dev_len; i++) | ||
2290 | if (plat_data->dev_rx[i] != 0) | ||
2291 | num_log_chans++; | ||
2292 | |||
2293 | for (i = 0; i < plat_data->dev_len; i++) | ||
2294 | if (plat_data->dev_tx[i] != 0) | ||
2295 | num_log_chans++; | ||
2296 | |||
2297 | base = kzalloc(ALIGN(sizeof(struct d40_base), 4) + | ||
2298 | (num_phy_chans + num_log_chans + plat_data->memcpy_len) * | ||
2299 | sizeof(struct d40_chan), GFP_KERNEL); | ||
2300 | |||
2301 | if (base == NULL) { | ||
2302 | dev_err(&pdev->dev, "[%s] Out of memory\n", __func__); | ||
2303 | goto failure; | ||
2304 | } | ||
2305 | |||
2306 | base->clk = clk; | ||
2307 | base->num_phy_chans = num_phy_chans; | ||
2308 | base->num_log_chans = num_log_chans; | ||
2309 | base->phy_start = res->start; | ||
2310 | base->phy_size = resource_size(res); | ||
2311 | base->virtbase = virtbase; | ||
2312 | base->plat_data = plat_data; | ||
2313 | base->dev = &pdev->dev; | ||
2314 | base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4); | ||
2315 | base->log_chans = &base->phy_chans[num_phy_chans]; | ||
2316 | |||
2317 | base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res), | ||
2318 | GFP_KERNEL); | ||
2319 | if (!base->phy_res) | ||
2320 | goto failure; | ||
2321 | |||
2322 | base->lookup_phy_chans = kzalloc(num_phy_chans * | ||
2323 | sizeof(struct d40_chan *), | ||
2324 | GFP_KERNEL); | ||
2325 | if (!base->lookup_phy_chans) | ||
2326 | goto failure; | ||
2327 | |||
2328 | if (num_log_chans + plat_data->memcpy_len) { | ||
2329 | /* | ||
2330 | * The max number of logical channels are event lines for all | ||
2331 | * src devices and dst devices | ||
2332 | */ | ||
2333 | base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 * | ||
2334 | sizeof(struct d40_chan *), | ||
2335 | GFP_KERNEL); | ||
2336 | if (!base->lookup_log_chans) | ||
2337 | goto failure; | ||
2338 | } | ||
2339 | base->lcla_pool.alloc_map = kzalloc(num_phy_chans * sizeof(u32), | ||
2340 | GFP_KERNEL); | ||
2341 | if (!base->lcla_pool.alloc_map) | ||
2342 | goto failure; | ||
2343 | |||
2344 | return base; | ||
2345 | |||
2346 | failure: | ||
2347 | if (clk) { | ||
2348 | clk_disable(clk); | ||
2349 | clk_put(clk); | ||
2350 | } | ||
2351 | if (virtbase) | ||
2352 | iounmap(virtbase); | ||
2353 | if (res) | ||
2354 | release_mem_region(res->start, | ||
2355 | resource_size(res)); | ||
2356 | if (virtbase) | ||
2357 | iounmap(virtbase); | ||
2358 | |||
2359 | if (base) { | ||
2360 | kfree(base->lcla_pool.alloc_map); | ||
2361 | kfree(base->lookup_log_chans); | ||
2362 | kfree(base->lookup_phy_chans); | ||
2363 | kfree(base->phy_res); | ||
2364 | kfree(base); | ||
2365 | } | ||
2366 | |||
2367 | return NULL; | ||
2368 | } | ||
2369 | |||
2370 | static void __init d40_hw_init(struct d40_base *base) | ||
2371 | { | ||
2372 | |||
2373 | static const struct d40_reg_val dma_init_reg[] = { | ||
2374 | /* Clock every part of the DMA block from start */ | ||
2375 | { .reg = D40_DREG_GCC, .val = 0x0000ff01}, | ||
2376 | |||
2377 | /* Interrupts on all logical channels */ | ||
2378 | { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF}, | ||
2379 | { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF}, | ||
2380 | { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF}, | ||
2381 | { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF}, | ||
2382 | { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF}, | ||
2383 | { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF}, | ||
2384 | { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF}, | ||
2385 | { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF}, | ||
2386 | { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF}, | ||
2387 | { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF}, | ||
2388 | { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF}, | ||
2389 | { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF} | ||
2390 | }; | ||
2391 | int i; | ||
2392 | u32 prmseo[2] = {0, 0}; | ||
2393 | u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF}; | ||
2394 | u32 pcmis = 0; | ||
2395 | u32 pcicr = 0; | ||
2396 | |||
2397 | for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++) | ||
2398 | writel(dma_init_reg[i].val, | ||
2399 | base->virtbase + dma_init_reg[i].reg); | ||
2400 | |||
2401 | /* Configure all our dma channels to default settings */ | ||
2402 | for (i = 0; i < base->num_phy_chans; i++) { | ||
2403 | |||
2404 | activeo[i % 2] = activeo[i % 2] << 2; | ||
2405 | |||
2406 | if (base->phy_res[base->num_phy_chans - i - 1].allocated_src | ||
2407 | == D40_ALLOC_PHY) { | ||
2408 | activeo[i % 2] |= 3; | ||
2409 | continue; | ||
2410 | } | ||
2411 | |||
2412 | /* Enable interrupt # */ | ||
2413 | pcmis = (pcmis << 1) | 1; | ||
2414 | |||
2415 | /* Clear interrupt # */ | ||
2416 | pcicr = (pcicr << 1) | 1; | ||
2417 | |||
2418 | /* Set channel to physical mode */ | ||
2419 | prmseo[i % 2] = prmseo[i % 2] << 2; | ||
2420 | prmseo[i % 2] |= 1; | ||
2421 | |||
2422 | } | ||
2423 | |||
2424 | writel(prmseo[1], base->virtbase + D40_DREG_PRMSE); | ||
2425 | writel(prmseo[0], base->virtbase + D40_DREG_PRMSO); | ||
2426 | writel(activeo[1], base->virtbase + D40_DREG_ACTIVE); | ||
2427 | writel(activeo[0], base->virtbase + D40_DREG_ACTIVO); | ||
2428 | |||
2429 | /* Write which interrupt to enable */ | ||
2430 | writel(pcmis, base->virtbase + D40_DREG_PCMIS); | ||
2431 | |||
2432 | /* Write which interrupt to clear */ | ||
2433 | writel(pcicr, base->virtbase + D40_DREG_PCICR); | ||
2434 | |||
2435 | } | ||
2436 | |||
2437 | static int __init d40_probe(struct platform_device *pdev) | ||
2438 | { | ||
2439 | int err; | ||
2440 | int ret = -ENOENT; | ||
2441 | struct d40_base *base; | ||
2442 | struct resource *res = NULL; | ||
2443 | int num_reserved_chans; | ||
2444 | u32 val; | ||
2445 | |||
2446 | base = d40_hw_detect_init(pdev); | ||
2447 | |||
2448 | if (!base) | ||
2449 | goto failure; | ||
2450 | |||
2451 | num_reserved_chans = d40_phy_res_init(base); | ||
2452 | |||
2453 | platform_set_drvdata(pdev, base); | ||
2454 | |||
2455 | spin_lock_init(&base->interrupt_lock); | ||
2456 | spin_lock_init(&base->execmd_lock); | ||
2457 | |||
2458 | /* Get IO for logical channel parameter address */ | ||
2459 | res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa"); | ||
2460 | if (!res) { | ||
2461 | ret = -ENOENT; | ||
2462 | dev_err(&pdev->dev, | ||
2463 | "[%s] No \"lcpa\" memory resource\n", | ||
2464 | __func__); | ||
2465 | goto failure; | ||
2466 | } | ||
2467 | base->lcpa_size = resource_size(res); | ||
2468 | base->phy_lcpa = res->start; | ||
2469 | |||
2470 | if (request_mem_region(res->start, resource_size(res), | ||
2471 | D40_NAME " I/O lcpa") == NULL) { | ||
2472 | ret = -EBUSY; | ||
2473 | dev_err(&pdev->dev, | ||
2474 | "[%s] Failed to request LCPA region 0x%x-0x%x\n", | ||
2475 | __func__, res->start, res->end); | ||
2476 | goto failure; | ||
2477 | } | ||
2478 | |||
2479 | /* We make use of ESRAM memory for this. */ | ||
2480 | val = readl(base->virtbase + D40_DREG_LCPA); | ||
2481 | if (res->start != val && val != 0) { | ||
2482 | dev_warn(&pdev->dev, | ||
2483 | "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n", | ||
2484 | __func__, val, res->start); | ||
2485 | } else | ||
2486 | writel(res->start, base->virtbase + D40_DREG_LCPA); | ||
2487 | |||
2488 | base->lcpa_base = ioremap(res->start, resource_size(res)); | ||
2489 | if (!base->lcpa_base) { | ||
2490 | ret = -ENOMEM; | ||
2491 | dev_err(&pdev->dev, | ||
2492 | "[%s] Failed to ioremap LCPA region\n", | ||
2493 | __func__); | ||
2494 | goto failure; | ||
2495 | } | ||
2496 | /* Get IO for logical channel link address */ | ||
2497 | res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcla"); | ||
2498 | if (!res) { | ||
2499 | ret = -ENOENT; | ||
2500 | dev_err(&pdev->dev, | ||
2501 | "[%s] No \"lcla\" resource defined\n", | ||
2502 | __func__); | ||
2503 | goto failure; | ||
2504 | } | ||
2505 | |||
2506 | base->lcla_pool.base_size = resource_size(res); | ||
2507 | base->lcla_pool.phy = res->start; | ||
2508 | |||
2509 | if (request_mem_region(res->start, resource_size(res), | ||
2510 | D40_NAME " I/O lcla") == NULL) { | ||
2511 | ret = -EBUSY; | ||
2512 | dev_err(&pdev->dev, | ||
2513 | "[%s] Failed to request LCLA region 0x%x-0x%x\n", | ||
2514 | __func__, res->start, res->end); | ||
2515 | goto failure; | ||
2516 | } | ||
2517 | val = readl(base->virtbase + D40_DREG_LCLA); | ||
2518 | if (res->start != val && val != 0) { | ||
2519 | dev_warn(&pdev->dev, | ||
2520 | "[%s] Mismatch LCLA dma 0x%x, def 0x%x\n", | ||
2521 | __func__, val, res->start); | ||
2522 | } else | ||
2523 | writel(res->start, base->virtbase + D40_DREG_LCLA); | ||
2524 | |||
2525 | base->lcla_pool.base = ioremap(res->start, resource_size(res)); | ||
2526 | if (!base->lcla_pool.base) { | ||
2527 | ret = -ENOMEM; | ||
2528 | dev_err(&pdev->dev, | ||
2529 | "[%s] Failed to ioremap LCLA 0x%x-0x%x\n", | ||
2530 | __func__, res->start, res->end); | ||
2531 | goto failure; | ||
2532 | } | ||
2533 | |||
2534 | spin_lock_init(&base->lcla_pool.lock); | ||
2535 | |||
2536 | base->lcla_pool.num_blocks = base->num_phy_chans; | ||
2537 | |||
2538 | base->irq = platform_get_irq(pdev, 0); | ||
2539 | |||
2540 | ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base); | ||
2541 | |||
2542 | if (ret) { | ||
2543 | dev_err(&pdev->dev, "[%s] No IRQ defined\n", __func__); | ||
2544 | goto failure; | ||
2545 | } | ||
2546 | |||
2547 | err = d40_dmaengine_init(base, num_reserved_chans); | ||
2548 | if (err) | ||
2549 | goto failure; | ||
2550 | |||
2551 | d40_hw_init(base); | ||
2552 | |||
2553 | dev_info(base->dev, "initialized\n"); | ||
2554 | return 0; | ||
2555 | |||
2556 | failure: | ||
2557 | if (base) { | ||
2558 | if (base->virtbase) | ||
2559 | iounmap(base->virtbase); | ||
2560 | if (base->lcla_pool.phy) | ||
2561 | release_mem_region(base->lcla_pool.phy, | ||
2562 | base->lcla_pool.base_size); | ||
2563 | if (base->phy_lcpa) | ||
2564 | release_mem_region(base->phy_lcpa, | ||
2565 | base->lcpa_size); | ||
2566 | if (base->phy_start) | ||
2567 | release_mem_region(base->phy_start, | ||
2568 | base->phy_size); | ||
2569 | if (base->clk) { | ||
2570 | clk_disable(base->clk); | ||
2571 | clk_put(base->clk); | ||
2572 | } | ||
2573 | |||
2574 | kfree(base->lcla_pool.alloc_map); | ||
2575 | kfree(base->lookup_log_chans); | ||
2576 | kfree(base->lookup_phy_chans); | ||
2577 | kfree(base->phy_res); | ||
2578 | kfree(base); | ||
2579 | } | ||
2580 | |||
2581 | dev_err(&pdev->dev, "[%s] probe failed\n", __func__); | ||
2582 | return ret; | ||
2583 | } | ||
2584 | |||
2585 | static struct platform_driver d40_driver = { | ||
2586 | .driver = { | ||
2587 | .owner = THIS_MODULE, | ||
2588 | .name = D40_NAME, | ||
2589 | }, | ||
2590 | }; | ||
2591 | |||
2592 | int __init stedma40_init(void) | ||
2593 | { | ||
2594 | return platform_driver_probe(&d40_driver, d40_probe); | ||
2595 | } | ||
2596 | arch_initcall(stedma40_init); | ||
diff --git a/drivers/dma/ste_dma40_ll.c b/drivers/dma/ste_dma40_ll.c new file mode 100644 index 000000000000..561fdd8a80c1 --- /dev/null +++ b/drivers/dma/ste_dma40_ll.c | |||
@@ -0,0 +1,454 @@ | |||
1 | /* | ||
2 | * driver/dma/ste_dma40_ll.c | ||
3 | * | ||
4 | * Copyright (C) ST-Ericsson 2007-2010 | ||
5 | * License terms: GNU General Public License (GPL) version 2 | ||
6 | * Author: Per Friden <per.friden@stericsson.com> | ||
7 | * Author: Jonas Aaberg <jonas.aberg@stericsson.com> | ||
8 | */ | ||
9 | |||
10 | #include <linux/kernel.h> | ||
11 | #include <plat/ste_dma40.h> | ||
12 | |||
13 | #include "ste_dma40_ll.h" | ||
14 | |||
15 | /* Sets up proper LCSP1 and LCSP3 register for a logical channel */ | ||
16 | void d40_log_cfg(struct stedma40_chan_cfg *cfg, | ||
17 | u32 *lcsp1, u32 *lcsp3) | ||
18 | { | ||
19 | u32 l3 = 0; /* dst */ | ||
20 | u32 l1 = 0; /* src */ | ||
21 | |||
22 | /* src is mem? -> increase address pos */ | ||
23 | if (cfg->dir == STEDMA40_MEM_TO_PERIPH || | ||
24 | cfg->dir == STEDMA40_MEM_TO_MEM) | ||
25 | l1 |= 1 << D40_MEM_LCSP1_SCFG_INCR_POS; | ||
26 | |||
27 | /* dst is mem? -> increase address pos */ | ||
28 | if (cfg->dir == STEDMA40_PERIPH_TO_MEM || | ||
29 | cfg->dir == STEDMA40_MEM_TO_MEM) | ||
30 | l3 |= 1 << D40_MEM_LCSP3_DCFG_INCR_POS; | ||
31 | |||
32 | /* src is hw? -> master port 1 */ | ||
33 | if (cfg->dir == STEDMA40_PERIPH_TO_MEM || | ||
34 | cfg->dir == STEDMA40_PERIPH_TO_PERIPH) | ||
35 | l1 |= 1 << D40_MEM_LCSP1_SCFG_MST_POS; | ||
36 | |||
37 | /* dst is hw? -> master port 1 */ | ||
38 | if (cfg->dir == STEDMA40_MEM_TO_PERIPH || | ||
39 | cfg->dir == STEDMA40_PERIPH_TO_PERIPH) | ||
40 | l3 |= 1 << D40_MEM_LCSP3_DCFG_MST_POS; | ||
41 | |||
42 | l3 |= 1 << D40_MEM_LCSP3_DCFG_TIM_POS; | ||
43 | l3 |= 1 << D40_MEM_LCSP3_DCFG_EIM_POS; | ||
44 | l3 |= cfg->dst_info.psize << D40_MEM_LCSP3_DCFG_PSIZE_POS; | ||
45 | l3 |= cfg->dst_info.data_width << D40_MEM_LCSP3_DCFG_ESIZE_POS; | ||
46 | l3 |= 1 << D40_MEM_LCSP3_DTCP_POS; | ||
47 | |||
48 | l1 |= 1 << D40_MEM_LCSP1_SCFG_EIM_POS; | ||
49 | l1 |= cfg->src_info.psize << D40_MEM_LCSP1_SCFG_PSIZE_POS; | ||
50 | l1 |= cfg->src_info.data_width << D40_MEM_LCSP1_SCFG_ESIZE_POS; | ||
51 | l1 |= 1 << D40_MEM_LCSP1_STCP_POS; | ||
52 | |||
53 | *lcsp1 = l1; | ||
54 | *lcsp3 = l3; | ||
55 | |||
56 | } | ||
57 | |||
58 | /* Sets up SRC and DST CFG register for both logical and physical channels */ | ||
59 | void d40_phy_cfg(struct stedma40_chan_cfg *cfg, | ||
60 | u32 *src_cfg, u32 *dst_cfg, bool is_log) | ||
61 | { | ||
62 | u32 src = 0; | ||
63 | u32 dst = 0; | ||
64 | |||
65 | if (!is_log) { | ||
66 | /* Physical channel */ | ||
67 | if ((cfg->dir == STEDMA40_PERIPH_TO_MEM) || | ||
68 | (cfg->dir == STEDMA40_PERIPH_TO_PERIPH)) { | ||
69 | /* Set master port to 1 */ | ||
70 | src |= 1 << D40_SREG_CFG_MST_POS; | ||
71 | src |= D40_TYPE_TO_EVENT(cfg->src_dev_type); | ||
72 | |||
73 | if (cfg->src_info.flow_ctrl == STEDMA40_NO_FLOW_CTRL) | ||
74 | src |= 1 << D40_SREG_CFG_PHY_TM_POS; | ||
75 | else | ||
76 | src |= 3 << D40_SREG_CFG_PHY_TM_POS; | ||
77 | } | ||
78 | if ((cfg->dir == STEDMA40_MEM_TO_PERIPH) || | ||
79 | (cfg->dir == STEDMA40_PERIPH_TO_PERIPH)) { | ||
80 | /* Set master port to 1 */ | ||
81 | dst |= 1 << D40_SREG_CFG_MST_POS; | ||
82 | dst |= D40_TYPE_TO_EVENT(cfg->dst_dev_type); | ||
83 | |||
84 | if (cfg->dst_info.flow_ctrl == STEDMA40_NO_FLOW_CTRL) | ||
85 | dst |= 1 << D40_SREG_CFG_PHY_TM_POS; | ||
86 | else | ||
87 | dst |= 3 << D40_SREG_CFG_PHY_TM_POS; | ||
88 | } | ||
89 | /* Interrupt on end of transfer for destination */ | ||
90 | dst |= 1 << D40_SREG_CFG_TIM_POS; | ||
91 | |||
92 | /* Generate interrupt on error */ | ||
93 | src |= 1 << D40_SREG_CFG_EIM_POS; | ||
94 | dst |= 1 << D40_SREG_CFG_EIM_POS; | ||
95 | |||
96 | /* PSIZE */ | ||
97 | if (cfg->src_info.psize != STEDMA40_PSIZE_PHY_1) { | ||
98 | src |= 1 << D40_SREG_CFG_PHY_PEN_POS; | ||
99 | src |= cfg->src_info.psize << D40_SREG_CFG_PSIZE_POS; | ||
100 | } | ||
101 | if (cfg->dst_info.psize != STEDMA40_PSIZE_PHY_1) { | ||
102 | dst |= 1 << D40_SREG_CFG_PHY_PEN_POS; | ||
103 | dst |= cfg->dst_info.psize << D40_SREG_CFG_PSIZE_POS; | ||
104 | } | ||
105 | |||
106 | /* Element size */ | ||
107 | src |= cfg->src_info.data_width << D40_SREG_CFG_ESIZE_POS; | ||
108 | dst |= cfg->dst_info.data_width << D40_SREG_CFG_ESIZE_POS; | ||
109 | |||
110 | } else { | ||
111 | /* Logical channel */ | ||
112 | dst |= 1 << D40_SREG_CFG_LOG_GIM_POS; | ||
113 | src |= 1 << D40_SREG_CFG_LOG_GIM_POS; | ||
114 | } | ||
115 | |||
116 | if (cfg->channel_type & STEDMA40_HIGH_PRIORITY_CHANNEL) { | ||
117 | src |= 1 << D40_SREG_CFG_PRI_POS; | ||
118 | dst |= 1 << D40_SREG_CFG_PRI_POS; | ||
119 | } | ||
120 | |||
121 | src |= cfg->src_info.endianess << D40_SREG_CFG_LBE_POS; | ||
122 | dst |= cfg->dst_info.endianess << D40_SREG_CFG_LBE_POS; | ||
123 | |||
124 | *src_cfg = src; | ||
125 | *dst_cfg = dst; | ||
126 | } | ||
127 | |||
128 | int d40_phy_fill_lli(struct d40_phy_lli *lli, | ||
129 | dma_addr_t data, | ||
130 | u32 data_size, | ||
131 | int psize, | ||
132 | dma_addr_t next_lli, | ||
133 | u32 reg_cfg, | ||
134 | bool term_int, | ||
135 | u32 data_width, | ||
136 | bool is_device) | ||
137 | { | ||
138 | int num_elems; | ||
139 | |||
140 | if (psize == STEDMA40_PSIZE_PHY_1) | ||
141 | num_elems = 1; | ||
142 | else | ||
143 | num_elems = 2 << psize; | ||
144 | |||
145 | /* | ||
146 | * Size is 16bit. data_width is 8, 16, 32 or 64 bit | ||
147 | * Block large than 64 KiB must be split. | ||
148 | */ | ||
149 | if (data_size > (0xffff << data_width)) | ||
150 | return -EINVAL; | ||
151 | |||
152 | /* Must be aligned */ | ||
153 | if (!IS_ALIGNED(data, 0x1 << data_width)) | ||
154 | return -EINVAL; | ||
155 | |||
156 | /* Transfer size can't be smaller than (num_elms * elem_size) */ | ||
157 | if (data_size < num_elems * (0x1 << data_width)) | ||
158 | return -EINVAL; | ||
159 | |||
160 | /* The number of elements. IE now many chunks */ | ||
161 | lli->reg_elt = (data_size >> data_width) << D40_SREG_ELEM_PHY_ECNT_POS; | ||
162 | |||
163 | /* | ||
164 | * Distance to next element sized entry. | ||
165 | * Usually the size of the element unless you want gaps. | ||
166 | */ | ||
167 | if (!is_device) | ||
168 | lli->reg_elt |= (0x1 << data_width) << | ||
169 | D40_SREG_ELEM_PHY_EIDX_POS; | ||
170 | |||
171 | /* Where the data is */ | ||
172 | lli->reg_ptr = data; | ||
173 | lli->reg_cfg = reg_cfg; | ||
174 | |||
175 | /* If this scatter list entry is the last one, no next link */ | ||
176 | if (next_lli == 0) | ||
177 | lli->reg_lnk = 0x1 << D40_SREG_LNK_PHY_TCP_POS; | ||
178 | else | ||
179 | lli->reg_lnk = next_lli; | ||
180 | |||
181 | /* Set/clear interrupt generation on this link item.*/ | ||
182 | if (term_int) | ||
183 | lli->reg_cfg |= 0x1 << D40_SREG_CFG_TIM_POS; | ||
184 | else | ||
185 | lli->reg_cfg &= ~(0x1 << D40_SREG_CFG_TIM_POS); | ||
186 | |||
187 | /* Post link */ | ||
188 | lli->reg_lnk |= 0 << D40_SREG_LNK_PHY_PRE_POS; | ||
189 | |||
190 | return 0; | ||
191 | } | ||
192 | |||
193 | int d40_phy_sg_to_lli(struct scatterlist *sg, | ||
194 | int sg_len, | ||
195 | dma_addr_t target, | ||
196 | struct d40_phy_lli *lli, | ||
197 | dma_addr_t lli_phys, | ||
198 | u32 reg_cfg, | ||
199 | u32 data_width, | ||
200 | int psize, | ||
201 | bool term_int) | ||
202 | { | ||
203 | int total_size = 0; | ||
204 | int i; | ||
205 | struct scatterlist *current_sg = sg; | ||
206 | dma_addr_t next_lli_phys; | ||
207 | dma_addr_t dst; | ||
208 | int err = 0; | ||
209 | |||
210 | for_each_sg(sg, current_sg, sg_len, i) { | ||
211 | |||
212 | total_size += sg_dma_len(current_sg); | ||
213 | |||
214 | /* If this scatter list entry is the last one, no next link */ | ||
215 | if (sg_len - 1 == i) | ||
216 | next_lli_phys = 0; | ||
217 | else | ||
218 | next_lli_phys = ALIGN(lli_phys + (i + 1) * | ||
219 | sizeof(struct d40_phy_lli), | ||
220 | D40_LLI_ALIGN); | ||
221 | |||
222 | if (target) | ||
223 | dst = target; | ||
224 | else | ||
225 | dst = sg_phys(current_sg); | ||
226 | |||
227 | err = d40_phy_fill_lli(&lli[i], | ||
228 | dst, | ||
229 | sg_dma_len(current_sg), | ||
230 | psize, | ||
231 | next_lli_phys, | ||
232 | reg_cfg, | ||
233 | !next_lli_phys, | ||
234 | data_width, | ||
235 | target == dst); | ||
236 | if (err) | ||
237 | goto err; | ||
238 | } | ||
239 | |||
240 | return total_size; | ||
241 | err: | ||
242 | return err; | ||
243 | } | ||
244 | |||
245 | |||
246 | void d40_phy_lli_write(void __iomem *virtbase, | ||
247 | u32 phy_chan_num, | ||
248 | struct d40_phy_lli *lli_dst, | ||
249 | struct d40_phy_lli *lli_src) | ||
250 | { | ||
251 | |||
252 | writel(lli_src->reg_cfg, virtbase + D40_DREG_PCBASE + | ||
253 | phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SSCFG); | ||
254 | writel(lli_src->reg_elt, virtbase + D40_DREG_PCBASE + | ||
255 | phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SSELT); | ||
256 | writel(lli_src->reg_ptr, virtbase + D40_DREG_PCBASE + | ||
257 | phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SSPTR); | ||
258 | writel(lli_src->reg_lnk, virtbase + D40_DREG_PCBASE + | ||
259 | phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SSLNK); | ||
260 | |||
261 | writel(lli_dst->reg_cfg, virtbase + D40_DREG_PCBASE + | ||
262 | phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SDCFG); | ||
263 | writel(lli_dst->reg_elt, virtbase + D40_DREG_PCBASE + | ||
264 | phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SDELT); | ||
265 | writel(lli_dst->reg_ptr, virtbase + D40_DREG_PCBASE + | ||
266 | phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SDPTR); | ||
267 | writel(lli_dst->reg_lnk, virtbase + D40_DREG_PCBASE + | ||
268 | phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SDLNK); | ||
269 | |||
270 | } | ||
271 | |||
272 | /* DMA logical lli operations */ | ||
273 | |||
274 | void d40_log_fill_lli(struct d40_log_lli *lli, | ||
275 | dma_addr_t data, u32 data_size, | ||
276 | u32 lli_next_off, u32 reg_cfg, | ||
277 | u32 data_width, | ||
278 | bool term_int, bool addr_inc) | ||
279 | { | ||
280 | lli->lcsp13 = reg_cfg; | ||
281 | |||
282 | /* The number of elements to transfer */ | ||
283 | lli->lcsp02 = ((data_size >> data_width) << | ||
284 | D40_MEM_LCSP0_ECNT_POS) & D40_MEM_LCSP0_ECNT_MASK; | ||
285 | /* 16 LSBs address of the current element */ | ||
286 | lli->lcsp02 |= data & D40_MEM_LCSP0_SPTR_MASK; | ||
287 | /* 16 MSBs address of the current element */ | ||
288 | lli->lcsp13 |= data & D40_MEM_LCSP1_SPTR_MASK; | ||
289 | |||
290 | if (addr_inc) | ||
291 | lli->lcsp13 |= D40_MEM_LCSP1_SCFG_INCR_MASK; | ||
292 | |||
293 | lli->lcsp13 |= D40_MEM_LCSP3_DTCP_MASK; | ||
294 | /* If this scatter list entry is the last one, no next link */ | ||
295 | lli->lcsp13 |= (lli_next_off << D40_MEM_LCSP1_SLOS_POS) & | ||
296 | D40_MEM_LCSP1_SLOS_MASK; | ||
297 | |||
298 | if (term_int) | ||
299 | lli->lcsp13 |= D40_MEM_LCSP1_SCFG_TIM_MASK; | ||
300 | else | ||
301 | lli->lcsp13 &= ~D40_MEM_LCSP1_SCFG_TIM_MASK; | ||
302 | } | ||
303 | |||
304 | int d40_log_sg_to_dev(struct d40_lcla_elem *lcla, | ||
305 | struct scatterlist *sg, | ||
306 | int sg_len, | ||
307 | struct d40_log_lli_bidir *lli, | ||
308 | struct d40_def_lcsp *lcsp, | ||
309 | u32 src_data_width, | ||
310 | u32 dst_data_width, | ||
311 | enum dma_data_direction direction, | ||
312 | bool term_int, dma_addr_t dev_addr, int max_len, | ||
313 | int llis_per_log) | ||
314 | { | ||
315 | int total_size = 0; | ||
316 | struct scatterlist *current_sg = sg; | ||
317 | int i; | ||
318 | u32 next_lli_off_dst; | ||
319 | u32 next_lli_off_src; | ||
320 | |||
321 | next_lli_off_src = 0; | ||
322 | next_lli_off_dst = 0; | ||
323 | |||
324 | for_each_sg(sg, current_sg, sg_len, i) { | ||
325 | total_size += sg_dma_len(current_sg); | ||
326 | |||
327 | /* | ||
328 | * If this scatter list entry is the last one or | ||
329 | * max length, terminate link. | ||
330 | */ | ||
331 | if (sg_len - 1 == i || ((i+1) % max_len == 0)) { | ||
332 | next_lli_off_src = 0; | ||
333 | next_lli_off_dst = 0; | ||
334 | } else { | ||
335 | if (next_lli_off_dst == 0 && | ||
336 | next_lli_off_src == 0) { | ||
337 | /* The first lli will be at next_lli_off */ | ||
338 | next_lli_off_dst = (lcla->dst_id * | ||
339 | llis_per_log + 1); | ||
340 | next_lli_off_src = (lcla->src_id * | ||
341 | llis_per_log + 1); | ||
342 | } else { | ||
343 | next_lli_off_dst++; | ||
344 | next_lli_off_src++; | ||
345 | } | ||
346 | } | ||
347 | |||
348 | if (direction == DMA_TO_DEVICE) { | ||
349 | d40_log_fill_lli(&lli->src[i], | ||
350 | sg_phys(current_sg), | ||
351 | sg_dma_len(current_sg), | ||
352 | next_lli_off_src, | ||
353 | lcsp->lcsp1, src_data_width, | ||
354 | term_int && !next_lli_off_src, | ||
355 | true); | ||
356 | d40_log_fill_lli(&lli->dst[i], | ||
357 | dev_addr, | ||
358 | sg_dma_len(current_sg), | ||
359 | next_lli_off_dst, | ||
360 | lcsp->lcsp3, dst_data_width, | ||
361 | /* No next == terminal interrupt */ | ||
362 | term_int && !next_lli_off_dst, | ||
363 | false); | ||
364 | } else { | ||
365 | d40_log_fill_lli(&lli->dst[i], | ||
366 | sg_phys(current_sg), | ||
367 | sg_dma_len(current_sg), | ||
368 | next_lli_off_dst, | ||
369 | lcsp->lcsp3, dst_data_width, | ||
370 | /* No next == terminal interrupt */ | ||
371 | term_int && !next_lli_off_dst, | ||
372 | true); | ||
373 | d40_log_fill_lli(&lli->src[i], | ||
374 | dev_addr, | ||
375 | sg_dma_len(current_sg), | ||
376 | next_lli_off_src, | ||
377 | lcsp->lcsp1, src_data_width, | ||
378 | term_int && !next_lli_off_src, | ||
379 | false); | ||
380 | } | ||
381 | } | ||
382 | return total_size; | ||
383 | } | ||
384 | |||
385 | int d40_log_sg_to_lli(int lcla_id, | ||
386 | struct scatterlist *sg, | ||
387 | int sg_len, | ||
388 | struct d40_log_lli *lli_sg, | ||
389 | u32 lcsp13, /* src or dst*/ | ||
390 | u32 data_width, | ||
391 | bool term_int, int max_len, int llis_per_log) | ||
392 | { | ||
393 | int total_size = 0; | ||
394 | struct scatterlist *current_sg = sg; | ||
395 | int i; | ||
396 | u32 next_lli_off = 0; | ||
397 | |||
398 | for_each_sg(sg, current_sg, sg_len, i) { | ||
399 | total_size += sg_dma_len(current_sg); | ||
400 | |||
401 | /* | ||
402 | * If this scatter list entry is the last one or | ||
403 | * max length, terminate link. | ||
404 | */ | ||
405 | if (sg_len - 1 == i || ((i+1) % max_len == 0)) | ||
406 | next_lli_off = 0; | ||
407 | else { | ||
408 | if (next_lli_off == 0) | ||
409 | /* The first lli will be at next_lli_off */ | ||
410 | next_lli_off = lcla_id * llis_per_log + 1; | ||
411 | else | ||
412 | next_lli_off++; | ||
413 | } | ||
414 | |||
415 | d40_log_fill_lli(&lli_sg[i], | ||
416 | sg_phys(current_sg), | ||
417 | sg_dma_len(current_sg), | ||
418 | next_lli_off, | ||
419 | lcsp13, data_width, | ||
420 | term_int && !next_lli_off, | ||
421 | true); | ||
422 | } | ||
423 | return total_size; | ||
424 | } | ||
425 | |||
426 | void d40_log_lli_write(struct d40_log_lli_full *lcpa, | ||
427 | struct d40_log_lli *lcla_src, | ||
428 | struct d40_log_lli *lcla_dst, | ||
429 | struct d40_log_lli *lli_dst, | ||
430 | struct d40_log_lli *lli_src, | ||
431 | int llis_per_log) | ||
432 | { | ||
433 | u32 slos = 0; | ||
434 | u32 dlos = 0; | ||
435 | int i; | ||
436 | |||
437 | lcpa->lcsp0 = lli_src->lcsp02; | ||
438 | lcpa->lcsp1 = lli_src->lcsp13; | ||
439 | lcpa->lcsp2 = lli_dst->lcsp02; | ||
440 | lcpa->lcsp3 = lli_dst->lcsp13; | ||
441 | |||
442 | slos = lli_src->lcsp13 & D40_MEM_LCSP1_SLOS_MASK; | ||
443 | dlos = lli_dst->lcsp13 & D40_MEM_LCSP3_DLOS_MASK; | ||
444 | |||
445 | for (i = 0; (i < llis_per_log) && slos && dlos; i++) { | ||
446 | writel(lli_src[i+1].lcsp02, &lcla_src[i].lcsp02); | ||
447 | writel(lli_src[i+1].lcsp13, &lcla_src[i].lcsp13); | ||
448 | writel(lli_dst[i+1].lcsp02, &lcla_dst[i].lcsp02); | ||
449 | writel(lli_dst[i+1].lcsp13, &lcla_dst[i].lcsp13); | ||
450 | |||
451 | slos = lli_src[i+1].lcsp13 & D40_MEM_LCSP1_SLOS_MASK; | ||
452 | dlos = lli_dst[i+1].lcsp13 & D40_MEM_LCSP3_DLOS_MASK; | ||
453 | } | ||
454 | } | ||
diff --git a/drivers/dma/ste_dma40_ll.h b/drivers/dma/ste_dma40_ll.h new file mode 100644 index 000000000000..2029280cb332 --- /dev/null +++ b/drivers/dma/ste_dma40_ll.h | |||
@@ -0,0 +1,354 @@ | |||
1 | /* | ||
2 | * driver/dma/ste_dma40_ll.h | ||
3 | * | ||
4 | * Copyright (C) ST-Ericsson 2007-2010 | ||
5 | * License terms: GNU General Public License (GPL) version 2 | ||
6 | * Author: Per Friden <per.friden@stericsson.com> | ||
7 | * Author: Jonas Aaberg <jonas.aberg@stericsson.com> | ||
8 | */ | ||
9 | #ifndef STE_DMA40_LL_H | ||
10 | #define STE_DMA40_LL_H | ||
11 | |||
12 | #define D40_DREG_PCBASE 0x400 | ||
13 | #define D40_DREG_PCDELTA (8 * 4) | ||
14 | #define D40_LLI_ALIGN 16 /* LLI alignment must be 16 bytes. */ | ||
15 | |||
16 | #define D40_TYPE_TO_GROUP(type) (type / 16) | ||
17 | #define D40_TYPE_TO_EVENT(type) (type % 16) | ||
18 | |||
19 | /* Most bits of the CFG register are the same in log as in phy mode */ | ||
20 | #define D40_SREG_CFG_MST_POS 15 | ||
21 | #define D40_SREG_CFG_TIM_POS 14 | ||
22 | #define D40_SREG_CFG_EIM_POS 13 | ||
23 | #define D40_SREG_CFG_LOG_INCR_POS 12 | ||
24 | #define D40_SREG_CFG_PHY_PEN_POS 12 | ||
25 | #define D40_SREG_CFG_PSIZE_POS 10 | ||
26 | #define D40_SREG_CFG_ESIZE_POS 8 | ||
27 | #define D40_SREG_CFG_PRI_POS 7 | ||
28 | #define D40_SREG_CFG_LBE_POS 6 | ||
29 | #define D40_SREG_CFG_LOG_GIM_POS 5 | ||
30 | #define D40_SREG_CFG_LOG_MFU_POS 4 | ||
31 | #define D40_SREG_CFG_PHY_TM_POS 4 | ||
32 | #define D40_SREG_CFG_PHY_EVTL_POS 0 | ||
33 | |||
34 | |||
35 | /* Standard channel parameters - basic mode (element register) */ | ||
36 | #define D40_SREG_ELEM_PHY_ECNT_POS 16 | ||
37 | #define D40_SREG_ELEM_PHY_EIDX_POS 0 | ||
38 | |||
39 | #define D40_SREG_ELEM_PHY_ECNT_MASK (0xFFFF << D40_SREG_ELEM_PHY_ECNT_POS) | ||
40 | |||
41 | /* Standard channel parameters - basic mode (Link register) */ | ||
42 | #define D40_SREG_LNK_PHY_TCP_POS 0 | ||
43 | #define D40_SREG_LNK_PHY_LMP_POS 1 | ||
44 | #define D40_SREG_LNK_PHY_PRE_POS 2 | ||
45 | /* | ||
46 | * Source destination link address. Contains the | ||
47 | * 29-bit byte word aligned address of the reload area. | ||
48 | */ | ||
49 | #define D40_SREG_LNK_PHYS_LNK_MASK 0xFFFFFFF8UL | ||
50 | |||
51 | /* Standard basic channel logical mode */ | ||
52 | |||
53 | /* Element register */ | ||
54 | #define D40_SREG_ELEM_LOG_ECNT_POS 16 | ||
55 | #define D40_SREG_ELEM_LOG_LIDX_POS 8 | ||
56 | #define D40_SREG_ELEM_LOG_LOS_POS 1 | ||
57 | #define D40_SREG_ELEM_LOG_TCP_POS 0 | ||
58 | |||
59 | #define D40_SREG_ELEM_LOG_LIDX_MASK (0xFF << D40_SREG_ELEM_LOG_LIDX_POS) | ||
60 | |||
61 | /* Link register */ | ||
62 | #define D40_DEACTIVATE_EVENTLINE 0x0 | ||
63 | #define D40_ACTIVATE_EVENTLINE 0x1 | ||
64 | #define D40_EVENTLINE_POS(i) (2 * i) | ||
65 | #define D40_EVENTLINE_MASK(i) (0x3 << D40_EVENTLINE_POS(i)) | ||
66 | |||
67 | /* Standard basic channel logical params in memory */ | ||
68 | |||
69 | /* LCSP0 */ | ||
70 | #define D40_MEM_LCSP0_ECNT_POS 16 | ||
71 | #define D40_MEM_LCSP0_SPTR_POS 0 | ||
72 | |||
73 | #define D40_MEM_LCSP0_ECNT_MASK (0xFFFF << D40_MEM_LCSP0_ECNT_POS) | ||
74 | #define D40_MEM_LCSP0_SPTR_MASK (0xFFFF << D40_MEM_LCSP0_SPTR_POS) | ||
75 | |||
76 | /* LCSP1 */ | ||
77 | #define D40_MEM_LCSP1_SPTR_POS 16 | ||
78 | #define D40_MEM_LCSP1_SCFG_MST_POS 15 | ||
79 | #define D40_MEM_LCSP1_SCFG_TIM_POS 14 | ||
80 | #define D40_MEM_LCSP1_SCFG_EIM_POS 13 | ||
81 | #define D40_MEM_LCSP1_SCFG_INCR_POS 12 | ||
82 | #define D40_MEM_LCSP1_SCFG_PSIZE_POS 10 | ||
83 | #define D40_MEM_LCSP1_SCFG_ESIZE_POS 8 | ||
84 | #define D40_MEM_LCSP1_SLOS_POS 1 | ||
85 | #define D40_MEM_LCSP1_STCP_POS 0 | ||
86 | |||
87 | #define D40_MEM_LCSP1_SPTR_MASK (0xFFFF << D40_MEM_LCSP1_SPTR_POS) | ||
88 | #define D40_MEM_LCSP1_SCFG_TIM_MASK (0x1 << D40_MEM_LCSP1_SCFG_TIM_POS) | ||
89 | #define D40_MEM_LCSP1_SCFG_INCR_MASK (0x1 << D40_MEM_LCSP1_SCFG_INCR_POS) | ||
90 | #define D40_MEM_LCSP1_SCFG_PSIZE_MASK (0x3 << D40_MEM_LCSP1_SCFG_PSIZE_POS) | ||
91 | #define D40_MEM_LCSP1_SLOS_MASK (0x7F << D40_MEM_LCSP1_SLOS_POS) | ||
92 | #define D40_MEM_LCSP1_STCP_MASK (0x1 << D40_MEM_LCSP1_STCP_POS) | ||
93 | |||
94 | /* LCSP2 */ | ||
95 | #define D40_MEM_LCSP2_ECNT_POS 16 | ||
96 | |||
97 | #define D40_MEM_LCSP2_ECNT_MASK (0xFFFF << D40_MEM_LCSP2_ECNT_POS) | ||
98 | |||
99 | /* LCSP3 */ | ||
100 | #define D40_MEM_LCSP3_DCFG_MST_POS 15 | ||
101 | #define D40_MEM_LCSP3_DCFG_TIM_POS 14 | ||
102 | #define D40_MEM_LCSP3_DCFG_EIM_POS 13 | ||
103 | #define D40_MEM_LCSP3_DCFG_INCR_POS 12 | ||
104 | #define D40_MEM_LCSP3_DCFG_PSIZE_POS 10 | ||
105 | #define D40_MEM_LCSP3_DCFG_ESIZE_POS 8 | ||
106 | #define D40_MEM_LCSP3_DLOS_POS 1 | ||
107 | #define D40_MEM_LCSP3_DTCP_POS 0 | ||
108 | |||
109 | #define D40_MEM_LCSP3_DLOS_MASK (0x7F << D40_MEM_LCSP3_DLOS_POS) | ||
110 | #define D40_MEM_LCSP3_DTCP_MASK (0x1 << D40_MEM_LCSP3_DTCP_POS) | ||
111 | |||
112 | |||
113 | /* Standard channel parameter register offsets */ | ||
114 | #define D40_CHAN_REG_SSCFG 0x00 | ||
115 | #define D40_CHAN_REG_SSELT 0x04 | ||
116 | #define D40_CHAN_REG_SSPTR 0x08 | ||
117 | #define D40_CHAN_REG_SSLNK 0x0C | ||
118 | #define D40_CHAN_REG_SDCFG 0x10 | ||
119 | #define D40_CHAN_REG_SDELT 0x14 | ||
120 | #define D40_CHAN_REG_SDPTR 0x18 | ||
121 | #define D40_CHAN_REG_SDLNK 0x1C | ||
122 | |||
123 | /* DMA Register Offsets */ | ||
124 | #define D40_DREG_GCC 0x000 | ||
125 | #define D40_DREG_PRTYP 0x004 | ||
126 | #define D40_DREG_PRSME 0x008 | ||
127 | #define D40_DREG_PRSMO 0x00C | ||
128 | #define D40_DREG_PRMSE 0x010 | ||
129 | #define D40_DREG_PRMSO 0x014 | ||
130 | #define D40_DREG_PRMOE 0x018 | ||
131 | #define D40_DREG_PRMOO 0x01C | ||
132 | #define D40_DREG_LCPA 0x020 | ||
133 | #define D40_DREG_LCLA 0x024 | ||
134 | #define D40_DREG_ACTIVE 0x050 | ||
135 | #define D40_DREG_ACTIVO 0x054 | ||
136 | #define D40_DREG_FSEB1 0x058 | ||
137 | #define D40_DREG_FSEB2 0x05C | ||
138 | #define D40_DREG_PCMIS 0x060 | ||
139 | #define D40_DREG_PCICR 0x064 | ||
140 | #define D40_DREG_PCTIS 0x068 | ||
141 | #define D40_DREG_PCEIS 0x06C | ||
142 | #define D40_DREG_LCMIS0 0x080 | ||
143 | #define D40_DREG_LCMIS1 0x084 | ||
144 | #define D40_DREG_LCMIS2 0x088 | ||
145 | #define D40_DREG_LCMIS3 0x08C | ||
146 | #define D40_DREG_LCICR0 0x090 | ||
147 | #define D40_DREG_LCICR1 0x094 | ||
148 | #define D40_DREG_LCICR2 0x098 | ||
149 | #define D40_DREG_LCICR3 0x09C | ||
150 | #define D40_DREG_LCTIS0 0x0A0 | ||
151 | #define D40_DREG_LCTIS1 0x0A4 | ||
152 | #define D40_DREG_LCTIS2 0x0A8 | ||
153 | #define D40_DREG_LCTIS3 0x0AC | ||
154 | #define D40_DREG_LCEIS0 0x0B0 | ||
155 | #define D40_DREG_LCEIS1 0x0B4 | ||
156 | #define D40_DREG_LCEIS2 0x0B8 | ||
157 | #define D40_DREG_LCEIS3 0x0BC | ||
158 | #define D40_DREG_STFU 0xFC8 | ||
159 | #define D40_DREG_ICFG 0xFCC | ||
160 | #define D40_DREG_PERIPHID0 0xFE0 | ||
161 | #define D40_DREG_PERIPHID1 0xFE4 | ||
162 | #define D40_DREG_PERIPHID2 0xFE8 | ||
163 | #define D40_DREG_PERIPHID3 0xFEC | ||
164 | #define D40_DREG_CELLID0 0xFF0 | ||
165 | #define D40_DREG_CELLID1 0xFF4 | ||
166 | #define D40_DREG_CELLID2 0xFF8 | ||
167 | #define D40_DREG_CELLID3 0xFFC | ||
168 | |||
169 | /* LLI related structures */ | ||
170 | |||
171 | /** | ||
172 | * struct d40_phy_lli - The basic configration register for each physical | ||
173 | * channel. | ||
174 | * | ||
175 | * @reg_cfg: The configuration register. | ||
176 | * @reg_elt: The element register. | ||
177 | * @reg_ptr: The pointer register. | ||
178 | * @reg_lnk: The link register. | ||
179 | * | ||
180 | * These registers are set up for both physical and logical transfers | ||
181 | * Note that the bit in each register means differently in logical and | ||
182 | * physical(standard) mode. | ||
183 | * | ||
184 | * This struct must be 16 bytes aligned, and only contain physical registers | ||
185 | * since it will be directly accessed by the DMA. | ||
186 | */ | ||
187 | struct d40_phy_lli { | ||
188 | u32 reg_cfg; | ||
189 | u32 reg_elt; | ||
190 | u32 reg_ptr; | ||
191 | u32 reg_lnk; | ||
192 | }; | ||
193 | |||
194 | /** | ||
195 | * struct d40_phy_lli_bidir - struct for a transfer. | ||
196 | * | ||
197 | * @src: Register settings for src channel. | ||
198 | * @dst: Register settings for dst channel. | ||
199 | * @dst_addr: Physical destination address. | ||
200 | * @src_addr: Physical source address. | ||
201 | * | ||
202 | * All DMA transfers have a source and a destination. | ||
203 | */ | ||
204 | |||
205 | struct d40_phy_lli_bidir { | ||
206 | struct d40_phy_lli *src; | ||
207 | struct d40_phy_lli *dst; | ||
208 | dma_addr_t dst_addr; | ||
209 | dma_addr_t src_addr; | ||
210 | }; | ||
211 | |||
212 | |||
213 | /** | ||
214 | * struct d40_log_lli - logical lli configuration | ||
215 | * | ||
216 | * @lcsp02: Either maps to register lcsp0 if src or lcsp2 if dst. | ||
217 | * @lcsp13: Either maps to register lcsp1 if src or lcsp3 if dst. | ||
218 | * | ||
219 | * This struct must be 8 bytes aligned since it will be accessed directy by | ||
220 | * the DMA. Never add any none hw mapped registers to this struct. | ||
221 | */ | ||
222 | |||
223 | struct d40_log_lli { | ||
224 | u32 lcsp02; | ||
225 | u32 lcsp13; | ||
226 | }; | ||
227 | |||
228 | /** | ||
229 | * struct d40_log_lli_bidir - For both src and dst | ||
230 | * | ||
231 | * @src: pointer to src lli configuration. | ||
232 | * @dst: pointer to dst lli configuration. | ||
233 | * | ||
234 | * You always have a src and a dst when doing DMA transfers. | ||
235 | */ | ||
236 | |||
237 | struct d40_log_lli_bidir { | ||
238 | struct d40_log_lli *src; | ||
239 | struct d40_log_lli *dst; | ||
240 | }; | ||
241 | |||
242 | /** | ||
243 | * struct d40_log_lli_full - LCPA layout | ||
244 | * | ||
245 | * @lcsp0: Logical Channel Standard Param 0 - Src. | ||
246 | * @lcsp1: Logical Channel Standard Param 1 - Src. | ||
247 | * @lcsp2: Logical Channel Standard Param 2 - Dst. | ||
248 | * @lcsp3: Logical Channel Standard Param 3 - Dst. | ||
249 | * | ||
250 | * This struct maps to LCPA physical memory layout. Must map to | ||
251 | * the hw. | ||
252 | */ | ||
253 | struct d40_log_lli_full { | ||
254 | u32 lcsp0; | ||
255 | u32 lcsp1; | ||
256 | u32 lcsp2; | ||
257 | u32 lcsp3; | ||
258 | }; | ||
259 | |||
260 | /** | ||
261 | * struct d40_def_lcsp - Default LCSP1 and LCSP3 settings | ||
262 | * | ||
263 | * @lcsp3: The default configuration for dst. | ||
264 | * @lcsp1: The default configuration for src. | ||
265 | */ | ||
266 | struct d40_def_lcsp { | ||
267 | u32 lcsp3; | ||
268 | u32 lcsp1; | ||
269 | }; | ||
270 | |||
271 | /** | ||
272 | * struct d40_lcla_elem - Info for one LCA element. | ||
273 | * | ||
274 | * @src_id: logical channel src id | ||
275 | * @dst_id: logical channel dst id | ||
276 | * @src: LCPA formated src parameters | ||
277 | * @dst: LCPA formated dst parameters | ||
278 | * | ||
279 | */ | ||
280 | struct d40_lcla_elem { | ||
281 | int src_id; | ||
282 | int dst_id; | ||
283 | struct d40_log_lli *src; | ||
284 | struct d40_log_lli *dst; | ||
285 | }; | ||
286 | |||
287 | /* Physical channels */ | ||
288 | |||
289 | void d40_phy_cfg(struct stedma40_chan_cfg *cfg, | ||
290 | u32 *src_cfg, u32 *dst_cfg, bool is_log); | ||
291 | |||
292 | void d40_log_cfg(struct stedma40_chan_cfg *cfg, | ||
293 | u32 *lcsp1, u32 *lcsp2); | ||
294 | |||
295 | int d40_phy_sg_to_lli(struct scatterlist *sg, | ||
296 | int sg_len, | ||
297 | dma_addr_t target, | ||
298 | struct d40_phy_lli *lli, | ||
299 | dma_addr_t lli_phys, | ||
300 | u32 reg_cfg, | ||
301 | u32 data_width, | ||
302 | int psize, | ||
303 | bool term_int); | ||
304 | |||
305 | int d40_phy_fill_lli(struct d40_phy_lli *lli, | ||
306 | dma_addr_t data, | ||
307 | u32 data_size, | ||
308 | int psize, | ||
309 | dma_addr_t next_lli, | ||
310 | u32 reg_cfg, | ||
311 | bool term_int, | ||
312 | u32 data_width, | ||
313 | bool is_device); | ||
314 | |||
315 | void d40_phy_lli_write(void __iomem *virtbase, | ||
316 | u32 phy_chan_num, | ||
317 | struct d40_phy_lli *lli_dst, | ||
318 | struct d40_phy_lli *lli_src); | ||
319 | |||
320 | /* Logical channels */ | ||
321 | |||
322 | void d40_log_fill_lli(struct d40_log_lli *lli, | ||
323 | dma_addr_t data, u32 data_size, | ||
324 | u32 lli_next_off, u32 reg_cfg, | ||
325 | u32 data_width, | ||
326 | bool term_int, bool addr_inc); | ||
327 | |||
328 | int d40_log_sg_to_dev(struct d40_lcla_elem *lcla, | ||
329 | struct scatterlist *sg, | ||
330 | int sg_len, | ||
331 | struct d40_log_lli_bidir *lli, | ||
332 | struct d40_def_lcsp *lcsp, | ||
333 | u32 src_data_width, | ||
334 | u32 dst_data_width, | ||
335 | enum dma_data_direction direction, | ||
336 | bool term_int, dma_addr_t dev_addr, int max_len, | ||
337 | int llis_per_log); | ||
338 | |||
339 | void d40_log_lli_write(struct d40_log_lli_full *lcpa, | ||
340 | struct d40_log_lli *lcla_src, | ||
341 | struct d40_log_lli *lcla_dst, | ||
342 | struct d40_log_lli *lli_dst, | ||
343 | struct d40_log_lli *lli_src, | ||
344 | int llis_per_log); | ||
345 | |||
346 | int d40_log_sg_to_lli(int lcla_id, | ||
347 | struct scatterlist *sg, | ||
348 | int sg_len, | ||
349 | struct d40_log_lli *lli_sg, | ||
350 | u32 lcsp13, /* src or dst*/ | ||
351 | u32 data_width, | ||
352 | bool term_int, int max_len, int llis_per_log); | ||
353 | |||
354 | #endif /* STE_DMA40_LLI_H */ | ||