diff options
| -rw-r--r-- | drivers/edac/amd64_edac.c | 173 |
1 files changed, 173 insertions, 0 deletions
diff --git a/drivers/edac/amd64_edac.c b/drivers/edac/amd64_edac.c index 5ec44a440d65..24c031f79756 100644 --- a/drivers/edac/amd64_edac.c +++ b/drivers/edac/amd64_edac.c | |||
| @@ -1013,3 +1013,176 @@ static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt) | |||
| 1013 | return type; | 1013 | return type; |
| 1014 | } | 1014 | } |
| 1015 | 1015 | ||
| 1016 | /* | ||
| 1017 | * Read the DRAM Configuration Low register. It differs between CG, D & E revs | ||
| 1018 | * and the later RevF memory controllers (DDR vs DDR2) | ||
| 1019 | * | ||
| 1020 | * Return: | ||
| 1021 | * number of memory channels in operation | ||
| 1022 | * Pass back: | ||
| 1023 | * contents of the DCL0_LOW register | ||
| 1024 | */ | ||
| 1025 | static int k8_early_channel_count(struct amd64_pvt *pvt) | ||
| 1026 | { | ||
| 1027 | int flag, err = 0; | ||
| 1028 | |||
| 1029 | err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0); | ||
| 1030 | if (err) | ||
| 1031 | return err; | ||
| 1032 | |||
| 1033 | if ((boot_cpu_data.x86_model >> 4) >= OPTERON_CPU_REV_F) { | ||
| 1034 | /* RevF (NPT) and later */ | ||
| 1035 | flag = pvt->dclr0 & F10_WIDTH_128; | ||
| 1036 | } else { | ||
| 1037 | /* RevE and earlier */ | ||
| 1038 | flag = pvt->dclr0 & REVE_WIDTH_128; | ||
| 1039 | } | ||
| 1040 | |||
| 1041 | /* not used */ | ||
| 1042 | pvt->dclr1 = 0; | ||
| 1043 | |||
| 1044 | return (flag) ? 2 : 1; | ||
| 1045 | } | ||
| 1046 | |||
| 1047 | /* extract the ERROR ADDRESS for the K8 CPUs */ | ||
| 1048 | static u64 k8_get_error_address(struct mem_ctl_info *mci, | ||
| 1049 | struct amd64_error_info_regs *info) | ||
| 1050 | { | ||
| 1051 | return (((u64) (info->nbeah & 0xff)) << 32) + | ||
| 1052 | (info->nbeal & ~0x03); | ||
| 1053 | } | ||
| 1054 | |||
| 1055 | /* | ||
| 1056 | * Read the Base and Limit registers for K8 based Memory controllers; extract | ||
| 1057 | * fields from the 'raw' reg into separate data fields | ||
| 1058 | * | ||
| 1059 | * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN | ||
| 1060 | */ | ||
| 1061 | static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram) | ||
| 1062 | { | ||
| 1063 | u32 low; | ||
| 1064 | u32 off = dram << 3; /* 8 bytes between DRAM entries */ | ||
| 1065 | int err; | ||
| 1066 | |||
| 1067 | err = pci_read_config_dword(pvt->addr_f1_ctl, | ||
| 1068 | K8_DRAM_BASE_LOW + off, &low); | ||
| 1069 | if (err) | ||
| 1070 | debugf0("Reading K8_DRAM_BASE_LOW failed\n"); | ||
| 1071 | |||
| 1072 | /* Extract parts into separate data entries */ | ||
| 1073 | pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8; | ||
| 1074 | pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7; | ||
| 1075 | pvt->dram_rw_en[dram] = (low & 0x3); | ||
| 1076 | |||
| 1077 | err = pci_read_config_dword(pvt->addr_f1_ctl, | ||
| 1078 | K8_DRAM_LIMIT_LOW + off, &low); | ||
| 1079 | if (err) | ||
| 1080 | debugf0("Reading K8_DRAM_LIMIT_LOW failed\n"); | ||
| 1081 | |||
| 1082 | /* | ||
| 1083 | * Extract parts into separate data entries. Limit is the HIGHEST memory | ||
| 1084 | * location of the region, so lower 24 bits need to be all ones | ||
| 1085 | */ | ||
| 1086 | pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF; | ||
| 1087 | pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7; | ||
| 1088 | pvt->dram_DstNode[dram] = (low & 0x7); | ||
| 1089 | } | ||
| 1090 | |||
| 1091 | static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, | ||
| 1092 | struct amd64_error_info_regs *info, | ||
| 1093 | u64 SystemAddress) | ||
| 1094 | { | ||
| 1095 | struct mem_ctl_info *src_mci; | ||
| 1096 | unsigned short syndrome; | ||
| 1097 | int channel, csrow; | ||
| 1098 | u32 page, offset; | ||
| 1099 | |||
| 1100 | /* Extract the syndrome parts and form a 16-bit syndrome */ | ||
| 1101 | syndrome = EXTRACT_HIGH_SYNDROME(info->nbsl) << 8; | ||
| 1102 | syndrome |= EXTRACT_LOW_SYNDROME(info->nbsh); | ||
| 1103 | |||
| 1104 | /* CHIPKILL enabled */ | ||
| 1105 | if (info->nbcfg & K8_NBCFG_CHIPKILL) { | ||
| 1106 | channel = get_channel_from_ecc_syndrome(syndrome); | ||
| 1107 | if (channel < 0) { | ||
| 1108 | /* | ||
| 1109 | * Syndrome didn't map, so we don't know which of the | ||
| 1110 | * 2 DIMMs is in error. So we need to ID 'both' of them | ||
| 1111 | * as suspect. | ||
| 1112 | */ | ||
| 1113 | amd64_mc_printk(mci, KERN_WARNING, | ||
| 1114 | "unknown syndrome 0x%x - possible error " | ||
| 1115 | "reporting race\n", syndrome); | ||
| 1116 | edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); | ||
| 1117 | return; | ||
| 1118 | } | ||
| 1119 | } else { | ||
| 1120 | /* | ||
| 1121 | * non-chipkill ecc mode | ||
| 1122 | * | ||
| 1123 | * The k8 documentation is unclear about how to determine the | ||
| 1124 | * channel number when using non-chipkill memory. This method | ||
| 1125 | * was obtained from email communication with someone at AMD. | ||
| 1126 | * (Wish the email was placed in this comment - norsk) | ||
| 1127 | */ | ||
| 1128 | channel = ((SystemAddress & BIT(3)) != 0); | ||
| 1129 | } | ||
| 1130 | |||
| 1131 | /* | ||
| 1132 | * Find out which node the error address belongs to. This may be | ||
| 1133 | * different from the node that detected the error. | ||
| 1134 | */ | ||
| 1135 | src_mci = find_mc_by_sys_addr(mci, SystemAddress); | ||
| 1136 | if (src_mci) { | ||
| 1137 | amd64_mc_printk(mci, KERN_ERR, | ||
| 1138 | "failed to map error address 0x%lx to a node\n", | ||
| 1139 | (unsigned long)SystemAddress); | ||
| 1140 | edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); | ||
| 1141 | return; | ||
| 1142 | } | ||
| 1143 | |||
| 1144 | /* Now map the SystemAddress to a CSROW */ | ||
| 1145 | csrow = sys_addr_to_csrow(src_mci, SystemAddress); | ||
| 1146 | if (csrow < 0) { | ||
| 1147 | edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR); | ||
| 1148 | } else { | ||
| 1149 | error_address_to_page_and_offset(SystemAddress, &page, &offset); | ||
| 1150 | |||
| 1151 | edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow, | ||
| 1152 | channel, EDAC_MOD_STR); | ||
| 1153 | } | ||
| 1154 | } | ||
| 1155 | |||
| 1156 | /* | ||
| 1157 | * determrine the number of PAGES in for this DIMM's size based on its DRAM | ||
| 1158 | * Address Mapping. | ||
| 1159 | * | ||
| 1160 | * First step is to calc the number of bits to shift a value of 1 left to | ||
| 1161 | * indicate show many pages. Start with the DBAM value as the starting bits, | ||
| 1162 | * then proceed to adjust those shift bits, based on CPU rev and the table. | ||
| 1163 | * See BKDG on the DBAM | ||
| 1164 | */ | ||
| 1165 | static int k8_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map) | ||
| 1166 | { | ||
| 1167 | int nr_pages; | ||
| 1168 | |||
| 1169 | if (pvt->ext_model >= OPTERON_CPU_REV_F) { | ||
| 1170 | nr_pages = 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT); | ||
| 1171 | } else { | ||
| 1172 | /* | ||
| 1173 | * RevE and less section; this line is tricky. It collapses the | ||
| 1174 | * table used by RevD and later to one that matches revisions CG | ||
| 1175 | * and earlier. | ||
| 1176 | */ | ||
| 1177 | dram_map -= (pvt->ext_model >= OPTERON_CPU_REV_D) ? | ||
| 1178 | (dram_map > 8 ? 4 : (dram_map > 5 ? | ||
| 1179 | 3 : (dram_map > 2 ? 1 : 0))) : 0; | ||
| 1180 | |||
| 1181 | /* 25 shift is 32MiB minimum DIMM size in RevE and prior */ | ||
| 1182 | nr_pages = 1 << (dram_map + 25 - PAGE_SHIFT); | ||
| 1183 | } | ||
| 1184 | |||
| 1185 | return nr_pages; | ||
| 1186 | } | ||
| 1187 | |||
| 1188 | |||
