diff options
| -rw-r--r-- | arch/ia64/include/asm/percpu.h | 5 | ||||
| -rw-r--r-- | mm/percpu-km.c | 104 | ||||
| -rw-r--r-- | mm/percpu-vm.c | 451 | ||||
| -rw-r--r-- | mm/percpu.c | 585 |
4 files changed, 671 insertions, 474 deletions
diff --git a/arch/ia64/include/asm/percpu.h b/arch/ia64/include/asm/percpu.h index f7c00a5e0e2b..1bd408265694 100644 --- a/arch/ia64/include/asm/percpu.h +++ b/arch/ia64/include/asm/percpu.h | |||
| @@ -39,7 +39,10 @@ extern void *per_cpu_init(void); | |||
| 39 | * On the positive side, using __ia64_per_cpu_var() instead of __get_cpu_var() is slightly | 39 | * On the positive side, using __ia64_per_cpu_var() instead of __get_cpu_var() is slightly |
| 40 | * more efficient. | 40 | * more efficient. |
| 41 | */ | 41 | */ |
| 42 | #define __ia64_per_cpu_var(var) var | 42 | #define __ia64_per_cpu_var(var) (*({ \ |
| 43 | __verify_pcpu_ptr(&(var)); \ | ||
| 44 | ((typeof(var) __kernel __force *)&(var)); \ | ||
| 45 | })) | ||
| 43 | 46 | ||
| 44 | #include <asm-generic/percpu.h> | 47 | #include <asm-generic/percpu.h> |
| 45 | 48 | ||
diff --git a/mm/percpu-km.c b/mm/percpu-km.c new file mode 100644 index 000000000000..df680855540a --- /dev/null +++ b/mm/percpu-km.c | |||
| @@ -0,0 +1,104 @@ | |||
| 1 | /* | ||
| 2 | * mm/percpu-km.c - kernel memory based chunk allocation | ||
| 3 | * | ||
| 4 | * Copyright (C) 2010 SUSE Linux Products GmbH | ||
| 5 | * Copyright (C) 2010 Tejun Heo <tj@kernel.org> | ||
| 6 | * | ||
| 7 | * This file is released under the GPLv2. | ||
| 8 | * | ||
| 9 | * Chunks are allocated as a contiguous kernel memory using gfp | ||
| 10 | * allocation. This is to be used on nommu architectures. | ||
| 11 | * | ||
| 12 | * To use percpu-km, | ||
| 13 | * | ||
| 14 | * - define CONFIG_NEED_PER_CPU_KM from the arch Kconfig. | ||
| 15 | * | ||
| 16 | * - CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK must not be defined. It's | ||
| 17 | * not compatible with PER_CPU_KM. EMBED_FIRST_CHUNK should work | ||
| 18 | * fine. | ||
| 19 | * | ||
| 20 | * - NUMA is not supported. When setting up the first chunk, | ||
| 21 | * @cpu_distance_fn should be NULL or report all CPUs to be nearer | ||
| 22 | * than or at LOCAL_DISTANCE. | ||
| 23 | * | ||
| 24 | * - It's best if the chunk size is power of two multiple of | ||
| 25 | * PAGE_SIZE. Because each chunk is allocated as a contiguous | ||
| 26 | * kernel memory block using alloc_pages(), memory will be wasted if | ||
| 27 | * chunk size is not aligned. percpu-km code will whine about it. | ||
| 28 | */ | ||
| 29 | |||
| 30 | #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK | ||
| 31 | #error "contiguous percpu allocation is incompatible with paged first chunk" | ||
| 32 | #endif | ||
| 33 | |||
| 34 | #include <linux/log2.h> | ||
| 35 | |||
| 36 | static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size) | ||
| 37 | { | ||
| 38 | /* noop */ | ||
| 39 | return 0; | ||
| 40 | } | ||
| 41 | |||
| 42 | static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size) | ||
| 43 | { | ||
| 44 | /* nada */ | ||
| 45 | } | ||
| 46 | |||
| 47 | static struct pcpu_chunk *pcpu_create_chunk(void) | ||
| 48 | { | ||
| 49 | const int nr_pages = pcpu_group_sizes[0] >> PAGE_SHIFT; | ||
| 50 | struct pcpu_chunk *chunk; | ||
| 51 | struct page *pages; | ||
| 52 | int i; | ||
| 53 | |||
| 54 | chunk = pcpu_alloc_chunk(); | ||
| 55 | if (!chunk) | ||
| 56 | return NULL; | ||
| 57 | |||
| 58 | pages = alloc_pages(GFP_KERNEL, order_base_2(nr_pages)); | ||
| 59 | if (!pages) { | ||
| 60 | pcpu_free_chunk(chunk); | ||
| 61 | return NULL; | ||
| 62 | } | ||
| 63 | |||
| 64 | for (i = 0; i < nr_pages; i++) | ||
| 65 | pcpu_set_page_chunk(nth_page(pages, i), chunk); | ||
| 66 | |||
| 67 | chunk->data = pages; | ||
| 68 | chunk->base_addr = page_address(pages) - pcpu_group_offsets[0]; | ||
| 69 | return chunk; | ||
| 70 | } | ||
| 71 | |||
| 72 | static void pcpu_destroy_chunk(struct pcpu_chunk *chunk) | ||
| 73 | { | ||
| 74 | const int nr_pages = pcpu_group_sizes[0] >> PAGE_SHIFT; | ||
| 75 | |||
| 76 | if (chunk && chunk->data) | ||
| 77 | __free_pages(chunk->data, order_base_2(nr_pages)); | ||
| 78 | pcpu_free_chunk(chunk); | ||
| 79 | } | ||
| 80 | |||
| 81 | static struct page *pcpu_addr_to_page(void *addr) | ||
| 82 | { | ||
| 83 | return virt_to_page(addr); | ||
| 84 | } | ||
| 85 | |||
| 86 | static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai) | ||
| 87 | { | ||
| 88 | size_t nr_pages, alloc_pages; | ||
| 89 | |||
| 90 | /* all units must be in a single group */ | ||
| 91 | if (ai->nr_groups != 1) { | ||
| 92 | printk(KERN_CRIT "percpu: can't handle more than one groups\n"); | ||
| 93 | return -EINVAL; | ||
| 94 | } | ||
| 95 | |||
| 96 | nr_pages = (ai->groups[0].nr_units * ai->unit_size) >> PAGE_SHIFT; | ||
| 97 | alloc_pages = roundup_pow_of_two(nr_pages); | ||
| 98 | |||
| 99 | if (alloc_pages > nr_pages) | ||
| 100 | printk(KERN_WARNING "percpu: wasting %zu pages per chunk\n", | ||
| 101 | alloc_pages - nr_pages); | ||
| 102 | |||
| 103 | return 0; | ||
| 104 | } | ||
diff --git a/mm/percpu-vm.c b/mm/percpu-vm.c new file mode 100644 index 000000000000..7d9c1d0ebd3f --- /dev/null +++ b/mm/percpu-vm.c | |||
| @@ -0,0 +1,451 @@ | |||
| 1 | /* | ||
| 2 | * mm/percpu-vm.c - vmalloc area based chunk allocation | ||
| 3 | * | ||
| 4 | * Copyright (C) 2010 SUSE Linux Products GmbH | ||
| 5 | * Copyright (C) 2010 Tejun Heo <tj@kernel.org> | ||
| 6 | * | ||
| 7 | * This file is released under the GPLv2. | ||
| 8 | * | ||
| 9 | * Chunks are mapped into vmalloc areas and populated page by page. | ||
| 10 | * This is the default chunk allocator. | ||
| 11 | */ | ||
| 12 | |||
| 13 | static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk, | ||
| 14 | unsigned int cpu, int page_idx) | ||
| 15 | { | ||
| 16 | /* must not be used on pre-mapped chunk */ | ||
| 17 | WARN_ON(chunk->immutable); | ||
| 18 | |||
| 19 | return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx)); | ||
| 20 | } | ||
| 21 | |||
| 22 | /** | ||
| 23 | * pcpu_get_pages_and_bitmap - get temp pages array and bitmap | ||
| 24 | * @chunk: chunk of interest | ||
| 25 | * @bitmapp: output parameter for bitmap | ||
| 26 | * @may_alloc: may allocate the array | ||
| 27 | * | ||
| 28 | * Returns pointer to array of pointers to struct page and bitmap, | ||
| 29 | * both of which can be indexed with pcpu_page_idx(). The returned | ||
| 30 | * array is cleared to zero and *@bitmapp is copied from | ||
| 31 | * @chunk->populated. Note that there is only one array and bitmap | ||
| 32 | * and access exclusion is the caller's responsibility. | ||
| 33 | * | ||
| 34 | * CONTEXT: | ||
| 35 | * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc. | ||
| 36 | * Otherwise, don't care. | ||
| 37 | * | ||
| 38 | * RETURNS: | ||
| 39 | * Pointer to temp pages array on success, NULL on failure. | ||
| 40 | */ | ||
| 41 | static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk, | ||
| 42 | unsigned long **bitmapp, | ||
| 43 | bool may_alloc) | ||
| 44 | { | ||
| 45 | static struct page **pages; | ||
| 46 | static unsigned long *bitmap; | ||
| 47 | size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]); | ||
| 48 | size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) * | ||
| 49 | sizeof(unsigned long); | ||
| 50 | |||
| 51 | if (!pages || !bitmap) { | ||
| 52 | if (may_alloc && !pages) | ||
| 53 | pages = pcpu_mem_alloc(pages_size); | ||
| 54 | if (may_alloc && !bitmap) | ||
| 55 | bitmap = pcpu_mem_alloc(bitmap_size); | ||
| 56 | if (!pages || !bitmap) | ||
| 57 | return NULL; | ||
| 58 | } | ||
| 59 | |||
| 60 | memset(pages, 0, pages_size); | ||
| 61 | bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages); | ||
| 62 | |||
| 63 | *bitmapp = bitmap; | ||
| 64 | return pages; | ||
| 65 | } | ||
| 66 | |||
| 67 | /** | ||
| 68 | * pcpu_free_pages - free pages which were allocated for @chunk | ||
| 69 | * @chunk: chunk pages were allocated for | ||
| 70 | * @pages: array of pages to be freed, indexed by pcpu_page_idx() | ||
| 71 | * @populated: populated bitmap | ||
| 72 | * @page_start: page index of the first page to be freed | ||
| 73 | * @page_end: page index of the last page to be freed + 1 | ||
| 74 | * | ||
| 75 | * Free pages [@page_start and @page_end) in @pages for all units. | ||
| 76 | * The pages were allocated for @chunk. | ||
| 77 | */ | ||
| 78 | static void pcpu_free_pages(struct pcpu_chunk *chunk, | ||
| 79 | struct page **pages, unsigned long *populated, | ||
| 80 | int page_start, int page_end) | ||
| 81 | { | ||
| 82 | unsigned int cpu; | ||
| 83 | int i; | ||
| 84 | |||
| 85 | for_each_possible_cpu(cpu) { | ||
| 86 | for (i = page_start; i < page_end; i++) { | ||
| 87 | struct page *page = pages[pcpu_page_idx(cpu, i)]; | ||
| 88 | |||
| 89 | if (page) | ||
| 90 | __free_page(page); | ||
| 91 | } | ||
| 92 | } | ||
| 93 | } | ||
| 94 | |||
| 95 | /** | ||
| 96 | * pcpu_alloc_pages - allocates pages for @chunk | ||
| 97 | * @chunk: target chunk | ||
| 98 | * @pages: array to put the allocated pages into, indexed by pcpu_page_idx() | ||
| 99 | * @populated: populated bitmap | ||
| 100 | * @page_start: page index of the first page to be allocated | ||
| 101 | * @page_end: page index of the last page to be allocated + 1 | ||
| 102 | * | ||
| 103 | * Allocate pages [@page_start,@page_end) into @pages for all units. | ||
| 104 | * The allocation is for @chunk. Percpu core doesn't care about the | ||
| 105 | * content of @pages and will pass it verbatim to pcpu_map_pages(). | ||
| 106 | */ | ||
| 107 | static int pcpu_alloc_pages(struct pcpu_chunk *chunk, | ||
| 108 | struct page **pages, unsigned long *populated, | ||
| 109 | int page_start, int page_end) | ||
| 110 | { | ||
| 111 | const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD; | ||
| 112 | unsigned int cpu; | ||
| 113 | int i; | ||
| 114 | |||
| 115 | for_each_possible_cpu(cpu) { | ||
| 116 | for (i = page_start; i < page_end; i++) { | ||
| 117 | struct page **pagep = &pages[pcpu_page_idx(cpu, i)]; | ||
| 118 | |||
| 119 | *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0); | ||
| 120 | if (!*pagep) { | ||
| 121 | pcpu_free_pages(chunk, pages, populated, | ||
| 122 | page_start, page_end); | ||
| 123 | return -ENOMEM; | ||
| 124 | } | ||
| 125 | } | ||
| 126 | } | ||
| 127 | return 0; | ||
| 128 | } | ||
| 129 | |||
| 130 | /** | ||
| 131 | * pcpu_pre_unmap_flush - flush cache prior to unmapping | ||
| 132 | * @chunk: chunk the regions to be flushed belongs to | ||
| 133 | * @page_start: page index of the first page to be flushed | ||
| 134 | * @page_end: page index of the last page to be flushed + 1 | ||
| 135 | * | ||
| 136 | * Pages in [@page_start,@page_end) of @chunk are about to be | ||
| 137 | * unmapped. Flush cache. As each flushing trial can be very | ||
| 138 | * expensive, issue flush on the whole region at once rather than | ||
| 139 | * doing it for each cpu. This could be an overkill but is more | ||
| 140 | * scalable. | ||
| 141 | */ | ||
| 142 | static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk, | ||
| 143 | int page_start, int page_end) | ||
| 144 | { | ||
| 145 | flush_cache_vunmap( | ||
| 146 | pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), | ||
| 147 | pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); | ||
| 148 | } | ||
| 149 | |||
| 150 | static void __pcpu_unmap_pages(unsigned long addr, int nr_pages) | ||
| 151 | { | ||
| 152 | unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT); | ||
| 153 | } | ||
| 154 | |||
| 155 | /** | ||
| 156 | * pcpu_unmap_pages - unmap pages out of a pcpu_chunk | ||
| 157 | * @chunk: chunk of interest | ||
| 158 | * @pages: pages array which can be used to pass information to free | ||
| 159 | * @populated: populated bitmap | ||
| 160 | * @page_start: page index of the first page to unmap | ||
| 161 | * @page_end: page index of the last page to unmap + 1 | ||
| 162 | * | ||
| 163 | * For each cpu, unmap pages [@page_start,@page_end) out of @chunk. | ||
| 164 | * Corresponding elements in @pages were cleared by the caller and can | ||
| 165 | * be used to carry information to pcpu_free_pages() which will be | ||
| 166 | * called after all unmaps are finished. The caller should call | ||
| 167 | * proper pre/post flush functions. | ||
| 168 | */ | ||
| 169 | static void pcpu_unmap_pages(struct pcpu_chunk *chunk, | ||
| 170 | struct page **pages, unsigned long *populated, | ||
| 171 | int page_start, int page_end) | ||
| 172 | { | ||
| 173 | unsigned int cpu; | ||
| 174 | int i; | ||
| 175 | |||
| 176 | for_each_possible_cpu(cpu) { | ||
| 177 | for (i = page_start; i < page_end; i++) { | ||
| 178 | struct page *page; | ||
| 179 | |||
| 180 | page = pcpu_chunk_page(chunk, cpu, i); | ||
| 181 | WARN_ON(!page); | ||
| 182 | pages[pcpu_page_idx(cpu, i)] = page; | ||
| 183 | } | ||
| 184 | __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start), | ||
| 185 | page_end - page_start); | ||
| 186 | } | ||
| 187 | |||
| 188 | for (i = page_start; i < page_end; i++) | ||
| 189 | __clear_bit(i, populated); | ||
| 190 | } | ||
| 191 | |||
| 192 | /** | ||
| 193 | * pcpu_post_unmap_tlb_flush - flush TLB after unmapping | ||
| 194 | * @chunk: pcpu_chunk the regions to be flushed belong to | ||
| 195 | * @page_start: page index of the first page to be flushed | ||
| 196 | * @page_end: page index of the last page to be flushed + 1 | ||
| 197 | * | ||
| 198 | * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush | ||
| 199 | * TLB for the regions. This can be skipped if the area is to be | ||
| 200 | * returned to vmalloc as vmalloc will handle TLB flushing lazily. | ||
| 201 | * | ||
| 202 | * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once | ||
| 203 | * for the whole region. | ||
| 204 | */ | ||
| 205 | static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk, | ||
| 206 | int page_start, int page_end) | ||
| 207 | { | ||
| 208 | flush_tlb_kernel_range( | ||
| 209 | pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), | ||
| 210 | pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); | ||
| 211 | } | ||
| 212 | |||
| 213 | static int __pcpu_map_pages(unsigned long addr, struct page **pages, | ||
| 214 | int nr_pages) | ||
| 215 | { | ||
| 216 | return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT, | ||
| 217 | PAGE_KERNEL, pages); | ||
| 218 | } | ||
| 219 | |||
| 220 | /** | ||
| 221 | * pcpu_map_pages - map pages into a pcpu_chunk | ||
| 222 | * @chunk: chunk of interest | ||
| 223 | * @pages: pages array containing pages to be mapped | ||
| 224 | * @populated: populated bitmap | ||
| 225 | * @page_start: page index of the first page to map | ||
| 226 | * @page_end: page index of the last page to map + 1 | ||
| 227 | * | ||
| 228 | * For each cpu, map pages [@page_start,@page_end) into @chunk. The | ||
| 229 | * caller is responsible for calling pcpu_post_map_flush() after all | ||
| 230 | * mappings are complete. | ||
| 231 | * | ||
| 232 | * This function is responsible for setting corresponding bits in | ||
| 233 | * @chunk->populated bitmap and whatever is necessary for reverse | ||
| 234 | * lookup (addr -> chunk). | ||
| 235 | */ | ||
| 236 | static int pcpu_map_pages(struct pcpu_chunk *chunk, | ||
| 237 | struct page **pages, unsigned long *populated, | ||
| 238 | int page_start, int page_end) | ||
| 239 | { | ||
| 240 | unsigned int cpu, tcpu; | ||
| 241 | int i, err; | ||
| 242 | |||
| 243 | for_each_possible_cpu(cpu) { | ||
| 244 | err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start), | ||
| 245 | &pages[pcpu_page_idx(cpu, page_start)], | ||
| 246 | page_end - page_start); | ||
| 247 | if (err < 0) | ||
| 248 | goto err; | ||
| 249 | } | ||
| 250 | |||
| 251 | /* mapping successful, link chunk and mark populated */ | ||
| 252 | for (i = page_start; i < page_end; i++) { | ||
| 253 | for_each_possible_cpu(cpu) | ||
| 254 | pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)], | ||
| 255 | chunk); | ||
| 256 | __set_bit(i, populated); | ||
| 257 | } | ||
| 258 | |||
| 259 | return 0; | ||
| 260 | |||
| 261 | err: | ||
| 262 | for_each_possible_cpu(tcpu) { | ||
| 263 | if (tcpu == cpu) | ||
| 264 | break; | ||
| 265 | __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start), | ||
| 266 | page_end - page_start); | ||
| 267 | } | ||
| 268 | return err; | ||
| 269 | } | ||
| 270 | |||
| 271 | /** | ||
| 272 | * pcpu_post_map_flush - flush cache after mapping | ||
| 273 | * @chunk: pcpu_chunk the regions to be flushed belong to | ||
| 274 | * @page_start: page index of the first page to be flushed | ||
| 275 | * @page_end: page index of the last page to be flushed + 1 | ||
| 276 | * | ||
| 277 | * Pages [@page_start,@page_end) of @chunk have been mapped. Flush | ||
| 278 | * cache. | ||
| 279 | * | ||
| 280 | * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once | ||
| 281 | * for the whole region. | ||
| 282 | */ | ||
| 283 | static void pcpu_post_map_flush(struct pcpu_chunk *chunk, | ||
| 284 | int page_start, int page_end) | ||
| 285 | { | ||
| 286 | flush_cache_vmap( | ||
| 287 | pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), | ||
| 288 | pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); | ||
| 289 | } | ||
| 290 | |||
| 291 | /** | ||
| 292 | * pcpu_populate_chunk - populate and map an area of a pcpu_chunk | ||
| 293 | * @chunk: chunk of interest | ||
| 294 | * @off: offset to the area to populate | ||
| 295 | * @size: size of the area to populate in bytes | ||
| 296 | * | ||
| 297 | * For each cpu, populate and map pages [@page_start,@page_end) into | ||
| 298 | * @chunk. The area is cleared on return. | ||
| 299 | * | ||
| 300 | * CONTEXT: | ||
| 301 | * pcpu_alloc_mutex, does GFP_KERNEL allocation. | ||
| 302 | */ | ||
| 303 | static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size) | ||
| 304 | { | ||
| 305 | int page_start = PFN_DOWN(off); | ||
| 306 | int page_end = PFN_UP(off + size); | ||
| 307 | int free_end = page_start, unmap_end = page_start; | ||
| 308 | struct page **pages; | ||
| 309 | unsigned long *populated; | ||
| 310 | unsigned int cpu; | ||
| 311 | int rs, re, rc; | ||
| 312 | |||
| 313 | /* quick path, check whether all pages are already there */ | ||
| 314 | rs = page_start; | ||
| 315 | pcpu_next_pop(chunk, &rs, &re, page_end); | ||
| 316 | if (rs == page_start && re == page_end) | ||
| 317 | goto clear; | ||
| 318 | |||
| 319 | /* need to allocate and map pages, this chunk can't be immutable */ | ||
| 320 | WARN_ON(chunk->immutable); | ||
| 321 | |||
| 322 | pages = pcpu_get_pages_and_bitmap(chunk, &populated, true); | ||
| 323 | if (!pages) | ||
| 324 | return -ENOMEM; | ||
| 325 | |||
| 326 | /* alloc and map */ | ||
| 327 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { | ||
| 328 | rc = pcpu_alloc_pages(chunk, pages, populated, rs, re); | ||
| 329 | if (rc) | ||
| 330 | goto err_free; | ||
| 331 | free_end = re; | ||
| 332 | } | ||
| 333 | |||
| 334 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { | ||
| 335 | rc = pcpu_map_pages(chunk, pages, populated, rs, re); | ||
| 336 | if (rc) | ||
| 337 | goto err_unmap; | ||
| 338 | unmap_end = re; | ||
| 339 | } | ||
| 340 | pcpu_post_map_flush(chunk, page_start, page_end); | ||
| 341 | |||
| 342 | /* commit new bitmap */ | ||
| 343 | bitmap_copy(chunk->populated, populated, pcpu_unit_pages); | ||
| 344 | clear: | ||
| 345 | for_each_possible_cpu(cpu) | ||
| 346 | memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); | ||
| 347 | return 0; | ||
| 348 | |||
| 349 | err_unmap: | ||
| 350 | pcpu_pre_unmap_flush(chunk, page_start, unmap_end); | ||
| 351 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end) | ||
| 352 | pcpu_unmap_pages(chunk, pages, populated, rs, re); | ||
| 353 | pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end); | ||
| 354 | err_free: | ||
| 355 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end) | ||
| 356 | pcpu_free_pages(chunk, pages, populated, rs, re); | ||
| 357 | return rc; | ||
| 358 | } | ||
| 359 | |||
| 360 | /** | ||
| 361 | * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk | ||
| 362 | * @chunk: chunk to depopulate | ||
| 363 | * @off: offset to the area to depopulate | ||
| 364 | * @size: size of the area to depopulate in bytes | ||
| 365 | * @flush: whether to flush cache and tlb or not | ||
| 366 | * | ||
| 367 | * For each cpu, depopulate and unmap pages [@page_start,@page_end) | ||
| 368 | * from @chunk. If @flush is true, vcache is flushed before unmapping | ||
| 369 | * and tlb after. | ||
| 370 | * | ||
| 371 | * CONTEXT: | ||
| 372 | * pcpu_alloc_mutex. | ||
| 373 | */ | ||
| 374 | static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size) | ||
| 375 | { | ||
| 376 | int page_start = PFN_DOWN(off); | ||
| 377 | int page_end = PFN_UP(off + size); | ||
| 378 | struct page **pages; | ||
| 379 | unsigned long *populated; | ||
| 380 | int rs, re; | ||
| 381 | |||
| 382 | /* quick path, check whether it's empty already */ | ||
| 383 | rs = page_start; | ||
| 384 | pcpu_next_unpop(chunk, &rs, &re, page_end); | ||
| 385 | if (rs == page_start && re == page_end) | ||
| 386 | return; | ||
| 387 | |||
| 388 | /* immutable chunks can't be depopulated */ | ||
| 389 | WARN_ON(chunk->immutable); | ||
| 390 | |||
| 391 | /* | ||
| 392 | * If control reaches here, there must have been at least one | ||
| 393 | * successful population attempt so the temp pages array must | ||
| 394 | * be available now. | ||
| 395 | */ | ||
| 396 | pages = pcpu_get_pages_and_bitmap(chunk, &populated, false); | ||
| 397 | BUG_ON(!pages); | ||
| 398 | |||
| 399 | /* unmap and free */ | ||
| 400 | pcpu_pre_unmap_flush(chunk, page_start, page_end); | ||
| 401 | |||
| 402 | pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) | ||
| 403 | pcpu_unmap_pages(chunk, pages, populated, rs, re); | ||
| 404 | |||
| 405 | /* no need to flush tlb, vmalloc will handle it lazily */ | ||
| 406 | |||
| 407 | pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) | ||
| 408 | pcpu_free_pages(chunk, pages, populated, rs, re); | ||
| 409 | |||
| 410 | /* commit new bitmap */ | ||
| 411 | bitmap_copy(chunk->populated, populated, pcpu_unit_pages); | ||
| 412 | } | ||
| 413 | |||
| 414 | static struct pcpu_chunk *pcpu_create_chunk(void) | ||
| 415 | { | ||
| 416 | struct pcpu_chunk *chunk; | ||
| 417 | struct vm_struct **vms; | ||
| 418 | |||
| 419 | chunk = pcpu_alloc_chunk(); | ||
| 420 | if (!chunk) | ||
| 421 | return NULL; | ||
| 422 | |||
| 423 | vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes, | ||
| 424 | pcpu_nr_groups, pcpu_atom_size, GFP_KERNEL); | ||
| 425 | if (!vms) { | ||
| 426 | pcpu_free_chunk(chunk); | ||
| 427 | return NULL; | ||
| 428 | } | ||
| 429 | |||
| 430 | chunk->data = vms; | ||
| 431 | chunk->base_addr = vms[0]->addr - pcpu_group_offsets[0]; | ||
| 432 | return chunk; | ||
| 433 | } | ||
| 434 | |||
| 435 | static void pcpu_destroy_chunk(struct pcpu_chunk *chunk) | ||
| 436 | { | ||
| 437 | if (chunk && chunk->data) | ||
| 438 | pcpu_free_vm_areas(chunk->data, pcpu_nr_groups); | ||
| 439 | pcpu_free_chunk(chunk); | ||
| 440 | } | ||
| 441 | |||
| 442 | static struct page *pcpu_addr_to_page(void *addr) | ||
| 443 | { | ||
| 444 | return vmalloc_to_page(addr); | ||
| 445 | } | ||
| 446 | |||
| 447 | static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai) | ||
| 448 | { | ||
| 449 | /* no extra restriction */ | ||
| 450 | return 0; | ||
| 451 | } | ||
diff --git a/mm/percpu.c b/mm/percpu.c index 6e09741ddc62..39f7dfd59585 100644 --- a/mm/percpu.c +++ b/mm/percpu.c | |||
| @@ -1,5 +1,5 @@ | |||
| 1 | /* | 1 | /* |
| 2 | * linux/mm/percpu.c - percpu memory allocator | 2 | * mm/percpu.c - percpu memory allocator |
| 3 | * | 3 | * |
| 4 | * Copyright (C) 2009 SUSE Linux Products GmbH | 4 | * Copyright (C) 2009 SUSE Linux Products GmbH |
| 5 | * Copyright (C) 2009 Tejun Heo <tj@kernel.org> | 5 | * Copyright (C) 2009 Tejun Heo <tj@kernel.org> |
| @@ -7,14 +7,13 @@ | |||
| 7 | * This file is released under the GPLv2. | 7 | * This file is released under the GPLv2. |
| 8 | * | 8 | * |
| 9 | * This is percpu allocator which can handle both static and dynamic | 9 | * This is percpu allocator which can handle both static and dynamic |
| 10 | * areas. Percpu areas are allocated in chunks in vmalloc area. Each | 10 | * areas. Percpu areas are allocated in chunks. Each chunk is |
| 11 | * chunk is consisted of boot-time determined number of units and the | 11 | * consisted of boot-time determined number of units and the first |
| 12 | * first chunk is used for static percpu variables in the kernel image | 12 | * chunk is used for static percpu variables in the kernel image |
| 13 | * (special boot time alloc/init handling necessary as these areas | 13 | * (special boot time alloc/init handling necessary as these areas |
| 14 | * need to be brought up before allocation services are running). | 14 | * need to be brought up before allocation services are running). |
| 15 | * Unit grows as necessary and all units grow or shrink in unison. | 15 | * Unit grows as necessary and all units grow or shrink in unison. |
| 16 | * When a chunk is filled up, another chunk is allocated. ie. in | 16 | * When a chunk is filled up, another chunk is allocated. |
| 17 | * vmalloc area | ||
| 18 | * | 17 | * |
| 19 | * c0 c1 c2 | 18 | * c0 c1 c2 |
| 20 | * ------------------- ------------------- ------------ | 19 | * ------------------- ------------------- ------------ |
| @@ -99,7 +98,7 @@ struct pcpu_chunk { | |||
| 99 | int map_used; /* # of map entries used */ | 98 | int map_used; /* # of map entries used */ |
| 100 | int map_alloc; /* # of map entries allocated */ | 99 | int map_alloc; /* # of map entries allocated */ |
| 101 | int *map; /* allocation map */ | 100 | int *map; /* allocation map */ |
| 102 | struct vm_struct **vms; /* mapped vmalloc regions */ | 101 | void *data; /* chunk data */ |
| 103 | bool immutable; /* no [de]population allowed */ | 102 | bool immutable; /* no [de]population allowed */ |
| 104 | unsigned long populated[]; /* populated bitmap */ | 103 | unsigned long populated[]; /* populated bitmap */ |
| 105 | }; | 104 | }; |
| @@ -177,6 +176,21 @@ static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */ | |||
| 177 | static void pcpu_reclaim(struct work_struct *work); | 176 | static void pcpu_reclaim(struct work_struct *work); |
| 178 | static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim); | 177 | static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim); |
| 179 | 178 | ||
| 179 | static bool pcpu_addr_in_first_chunk(void *addr) | ||
| 180 | { | ||
| 181 | void *first_start = pcpu_first_chunk->base_addr; | ||
| 182 | |||
| 183 | return addr >= first_start && addr < first_start + pcpu_unit_size; | ||
| 184 | } | ||
| 185 | |||
| 186 | static bool pcpu_addr_in_reserved_chunk(void *addr) | ||
| 187 | { | ||
| 188 | void *first_start = pcpu_first_chunk->base_addr; | ||
| 189 | |||
| 190 | return addr >= first_start && | ||
| 191 | addr < first_start + pcpu_reserved_chunk_limit; | ||
| 192 | } | ||
| 193 | |||
| 180 | static int __pcpu_size_to_slot(int size) | 194 | static int __pcpu_size_to_slot(int size) |
| 181 | { | 195 | { |
| 182 | int highbit = fls(size); /* size is in bytes */ | 196 | int highbit = fls(size); /* size is in bytes */ |
| @@ -198,27 +212,6 @@ static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) | |||
| 198 | return pcpu_size_to_slot(chunk->free_size); | 212 | return pcpu_size_to_slot(chunk->free_size); |
| 199 | } | 213 | } |
| 200 | 214 | ||
| 201 | static int pcpu_page_idx(unsigned int cpu, int page_idx) | ||
| 202 | { | ||
| 203 | return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; | ||
| 204 | } | ||
| 205 | |||
| 206 | static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, | ||
| 207 | unsigned int cpu, int page_idx) | ||
| 208 | { | ||
| 209 | return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] + | ||
| 210 | (page_idx << PAGE_SHIFT); | ||
| 211 | } | ||
| 212 | |||
| 213 | static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk, | ||
| 214 | unsigned int cpu, int page_idx) | ||
| 215 | { | ||
| 216 | /* must not be used on pre-mapped chunk */ | ||
| 217 | WARN_ON(chunk->immutable); | ||
| 218 | |||
| 219 | return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx)); | ||
| 220 | } | ||
| 221 | |||
| 222 | /* set the pointer to a chunk in a page struct */ | 215 | /* set the pointer to a chunk in a page struct */ |
| 223 | static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) | 216 | static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) |
| 224 | { | 217 | { |
| @@ -231,13 +224,27 @@ static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) | |||
| 231 | return (struct pcpu_chunk *)page->index; | 224 | return (struct pcpu_chunk *)page->index; |
| 232 | } | 225 | } |
| 233 | 226 | ||
| 234 | static void pcpu_next_unpop(struct pcpu_chunk *chunk, int *rs, int *re, int end) | 227 | static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) |
| 228 | { | ||
| 229 | return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; | ||
| 230 | } | ||
| 231 | |||
| 232 | static unsigned long __maybe_unused pcpu_chunk_addr(struct pcpu_chunk *chunk, | ||
| 233 | unsigned int cpu, int page_idx) | ||
| 234 | { | ||
| 235 | return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] + | ||
| 236 | (page_idx << PAGE_SHIFT); | ||
| 237 | } | ||
| 238 | |||
| 239 | static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk, | ||
| 240 | int *rs, int *re, int end) | ||
| 235 | { | 241 | { |
| 236 | *rs = find_next_zero_bit(chunk->populated, end, *rs); | 242 | *rs = find_next_zero_bit(chunk->populated, end, *rs); |
| 237 | *re = find_next_bit(chunk->populated, end, *rs + 1); | 243 | *re = find_next_bit(chunk->populated, end, *rs + 1); |
| 238 | } | 244 | } |
| 239 | 245 | ||
| 240 | static void pcpu_next_pop(struct pcpu_chunk *chunk, int *rs, int *re, int end) | 246 | static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk, |
| 247 | int *rs, int *re, int end) | ||
| 241 | { | 248 | { |
| 242 | *rs = find_next_bit(chunk->populated, end, *rs); | 249 | *rs = find_next_bit(chunk->populated, end, *rs); |
| 243 | *re = find_next_zero_bit(chunk->populated, end, *rs + 1); | 250 | *re = find_next_zero_bit(chunk->populated, end, *rs + 1); |
| @@ -326,36 +333,6 @@ static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) | |||
| 326 | } | 333 | } |
| 327 | 334 | ||
| 328 | /** | 335 | /** |
| 329 | * pcpu_chunk_addr_search - determine chunk containing specified address | ||
| 330 | * @addr: address for which the chunk needs to be determined. | ||
| 331 | * | ||
| 332 | * RETURNS: | ||
| 333 | * The address of the found chunk. | ||
| 334 | */ | ||
| 335 | static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) | ||
| 336 | { | ||
| 337 | void *first_start = pcpu_first_chunk->base_addr; | ||
| 338 | |||
| 339 | /* is it in the first chunk? */ | ||
| 340 | if (addr >= first_start && addr < first_start + pcpu_unit_size) { | ||
| 341 | /* is it in the reserved area? */ | ||
| 342 | if (addr < first_start + pcpu_reserved_chunk_limit) | ||
| 343 | return pcpu_reserved_chunk; | ||
| 344 | return pcpu_first_chunk; | ||
| 345 | } | ||
| 346 | |||
| 347 | /* | ||
| 348 | * The address is relative to unit0 which might be unused and | ||
| 349 | * thus unmapped. Offset the address to the unit space of the | ||
| 350 | * current processor before looking it up in the vmalloc | ||
| 351 | * space. Note that any possible cpu id can be used here, so | ||
| 352 | * there's no need to worry about preemption or cpu hotplug. | ||
| 353 | */ | ||
| 354 | addr += pcpu_unit_offsets[raw_smp_processor_id()]; | ||
| 355 | return pcpu_get_page_chunk(vmalloc_to_page(addr)); | ||
| 356 | } | ||
| 357 | |||
| 358 | /** | ||
| 359 | * pcpu_need_to_extend - determine whether chunk area map needs to be extended | 336 | * pcpu_need_to_extend - determine whether chunk area map needs to be extended |
| 360 | * @chunk: chunk of interest | 337 | * @chunk: chunk of interest |
| 361 | * | 338 | * |
| @@ -623,434 +600,92 @@ static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme) | |||
| 623 | pcpu_chunk_relocate(chunk, oslot); | 600 | pcpu_chunk_relocate(chunk, oslot); |
| 624 | } | 601 | } |
| 625 | 602 | ||
| 626 | /** | 603 | static struct pcpu_chunk *pcpu_alloc_chunk(void) |
| 627 | * pcpu_get_pages_and_bitmap - get temp pages array and bitmap | ||
| 628 | * @chunk: chunk of interest | ||
| 629 | * @bitmapp: output parameter for bitmap | ||
| 630 | * @may_alloc: may allocate the array | ||
| 631 | * | ||
| 632 | * Returns pointer to array of pointers to struct page and bitmap, | ||
| 633 | * both of which can be indexed with pcpu_page_idx(). The returned | ||
| 634 | * array is cleared to zero and *@bitmapp is copied from | ||
| 635 | * @chunk->populated. Note that there is only one array and bitmap | ||
| 636 | * and access exclusion is the caller's responsibility. | ||
| 637 | * | ||
| 638 | * CONTEXT: | ||
| 639 | * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc. | ||
| 640 | * Otherwise, don't care. | ||
| 641 | * | ||
| 642 | * RETURNS: | ||
| 643 | * Pointer to temp pages array on success, NULL on failure. | ||
| 644 | */ | ||
| 645 | static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk, | ||
| 646 | unsigned long **bitmapp, | ||
| 647 | bool may_alloc) | ||
| 648 | { | ||
| 649 | static struct page **pages; | ||
| 650 | static unsigned long *bitmap; | ||
| 651 | size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]); | ||
| 652 | size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) * | ||
| 653 | sizeof(unsigned long); | ||
| 654 | |||
| 655 | if (!pages || !bitmap) { | ||
| 656 | if (may_alloc && !pages) | ||
| 657 | pages = pcpu_mem_alloc(pages_size); | ||
| 658 | if (may_alloc && !bitmap) | ||
| 659 | bitmap = pcpu_mem_alloc(bitmap_size); | ||
| 660 | if (!pages || !bitmap) | ||
| 661 | return NULL; | ||
| 662 | } | ||
| 663 | |||
| 664 | memset(pages, 0, pages_size); | ||
| 665 | bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages); | ||
| 666 | |||
| 667 | *bitmapp = bitmap; | ||
| 668 | return pages; | ||
| 669 | } | ||
| 670 | |||
| 671 | /** | ||
| 672 | * pcpu_free_pages - free pages which were allocated for @chunk | ||
| 673 | * @chunk: chunk pages were allocated for | ||
| 674 | * @pages: array of pages to be freed, indexed by pcpu_page_idx() | ||
| 675 | * @populated: populated bitmap | ||
| 676 | * @page_start: page index of the first page to be freed | ||
| 677 | * @page_end: page index of the last page to be freed + 1 | ||
| 678 | * | ||
| 679 | * Free pages [@page_start and @page_end) in @pages for all units. | ||
| 680 | * The pages were allocated for @chunk. | ||
| 681 | */ | ||
| 682 | static void pcpu_free_pages(struct pcpu_chunk *chunk, | ||
| 683 | struct page **pages, unsigned long *populated, | ||
| 684 | int page_start, int page_end) | ||
| 685 | { | 604 | { |
| 686 | unsigned int cpu; | 605 | struct pcpu_chunk *chunk; |
| 687 | int i; | ||
| 688 | 606 | ||
| 689 | for_each_possible_cpu(cpu) { | 607 | chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL); |
| 690 | for (i = page_start; i < page_end; i++) { | 608 | if (!chunk) |
| 691 | struct page *page = pages[pcpu_page_idx(cpu, i)]; | 609 | return NULL; |
| 692 | 610 | ||
| 693 | if (page) | 611 | chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0])); |
| 694 | __free_page(page); | 612 | if (!chunk->map) { |
| 695 | } | 613 | kfree(chunk); |
| 614 | return NULL; | ||
| 696 | } | 615 | } |
| 697 | } | ||
| 698 | 616 | ||
| 699 | /** | 617 | chunk->map_alloc = PCPU_DFL_MAP_ALLOC; |
| 700 | * pcpu_alloc_pages - allocates pages for @chunk | 618 | chunk->map[chunk->map_used++] = pcpu_unit_size; |
| 701 | * @chunk: target chunk | ||
| 702 | * @pages: array to put the allocated pages into, indexed by pcpu_page_idx() | ||
| 703 | * @populated: populated bitmap | ||
| 704 | * @page_start: page index of the first page to be allocated | ||
| 705 | * @page_end: page index of the last page to be allocated + 1 | ||
| 706 | * | ||
| 707 | * Allocate pages [@page_start,@page_end) into @pages for all units. | ||
| 708 | * The allocation is for @chunk. Percpu core doesn't care about the | ||
| 709 | * content of @pages and will pass it verbatim to pcpu_map_pages(). | ||
| 710 | */ | ||
| 711 | static int pcpu_alloc_pages(struct pcpu_chunk *chunk, | ||
| 712 | struct page **pages, unsigned long *populated, | ||
| 713 | int page_start, int page_end) | ||
| 714 | { | ||
| 715 | const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD; | ||
| 716 | unsigned int cpu; | ||
| 717 | int i; | ||
| 718 | 619 | ||
| 719 | for_each_possible_cpu(cpu) { | 620 | INIT_LIST_HEAD(&chunk->list); |
| 720 | for (i = page_start; i < page_end; i++) { | 621 | chunk->free_size = pcpu_unit_size; |
| 721 | struct page **pagep = &pages[pcpu_page_idx(cpu, i)]; | 622 | chunk->contig_hint = pcpu_unit_size; |
| 722 | |||
| 723 | *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0); | ||
| 724 | if (!*pagep) { | ||
| 725 | pcpu_free_pages(chunk, pages, populated, | ||
| 726 | page_start, page_end); | ||
| 727 | return -ENOMEM; | ||
| 728 | } | ||
| 729 | } | ||
| 730 | } | ||
| 731 | return 0; | ||
| 732 | } | ||
| 733 | 623 | ||
| 734 | /** | 624 | return chunk; |
| 735 | * pcpu_pre_unmap_flush - flush cache prior to unmapping | ||
| 736 | * @chunk: chunk the regions to be flushed belongs to | ||
| 737 | * @page_start: page index of the first page to be flushed | ||
| 738 | * @page_end: page index of the last page to be flushed + 1 | ||
| 739 | * | ||
| 740 | * Pages in [@page_start,@page_end) of @chunk are about to be | ||
| 741 | * unmapped. Flush cache. As each flushing trial can be very | ||
| 742 | * expensive, issue flush on the whole region at once rather than | ||
| 743 | * doing it for each cpu. This could be an overkill but is more | ||
| 744 | * scalable. | ||
| 745 | */ | ||
| 746 | static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk, | ||
| 747 | int page_start, int page_end) | ||
| 748 | { | ||
| 749 | flush_cache_vunmap( | ||
| 750 | pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), | ||
| 751 | pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); | ||
| 752 | } | 625 | } |
| 753 | 626 | ||
| 754 | static void __pcpu_unmap_pages(unsigned long addr, int nr_pages) | 627 | static void pcpu_free_chunk(struct pcpu_chunk *chunk) |
| 755 | { | 628 | { |
| 756 | unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT); | 629 | if (!chunk) |
| 630 | return; | ||
| 631 | pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0])); | ||
| 632 | kfree(chunk); | ||
| 757 | } | 633 | } |
| 758 | 634 | ||
| 759 | /** | 635 | /* |
| 760 | * pcpu_unmap_pages - unmap pages out of a pcpu_chunk | 636 | * Chunk management implementation. |
| 761 | * @chunk: chunk of interest | 637 | * |
| 762 | * @pages: pages array which can be used to pass information to free | 638 | * To allow different implementations, chunk alloc/free and |
| 763 | * @populated: populated bitmap | 639 | * [de]population are implemented in a separate file which is pulled |
| 764 | * @page_start: page index of the first page to unmap | 640 | * into this file and compiled together. The following functions |
| 765 | * @page_end: page index of the last page to unmap + 1 | 641 | * should be implemented. |
| 766 | * | 642 | * |
| 767 | * For each cpu, unmap pages [@page_start,@page_end) out of @chunk. | 643 | * pcpu_populate_chunk - populate the specified range of a chunk |
| 768 | * Corresponding elements in @pages were cleared by the caller and can | 644 | * pcpu_depopulate_chunk - depopulate the specified range of a chunk |
| 769 | * be used to carry information to pcpu_free_pages() which will be | 645 | * pcpu_create_chunk - create a new chunk |
| 770 | * called after all unmaps are finished. The caller should call | 646 | * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop |
| 771 | * proper pre/post flush functions. | 647 | * pcpu_addr_to_page - translate address to physical address |
| 648 | * pcpu_verify_alloc_info - check alloc_info is acceptable during init | ||
| 772 | */ | 649 | */ |
| 773 | static void pcpu_unmap_pages(struct pcpu_chunk *chunk, | 650 | static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size); |
| 774 | struct page **pages, unsigned long *populated, | 651 | static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size); |
| 775 | int page_start, int page_end) | 652 | static struct pcpu_chunk *pcpu_create_chunk(void); |
| 776 | { | 653 | static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); |
| 777 | unsigned int cpu; | 654 | static struct page *pcpu_addr_to_page(void *addr); |
| 778 | int i; | 655 | static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); |
| 779 | 656 | ||
| 780 | for_each_possible_cpu(cpu) { | 657 | #ifdef CONFIG_NEED_PER_CPU_KM |
| 781 | for (i = page_start; i < page_end; i++) { | 658 | #include "percpu-km.c" |
| 782 | struct page *page; | 659 | #else |
| 783 | 660 | #include "percpu-vm.c" | |
| 784 | page = pcpu_chunk_page(chunk, cpu, i); | 661 | #endif |
| 785 | WARN_ON(!page); | ||
| 786 | pages[pcpu_page_idx(cpu, i)] = page; | ||
| 787 | } | ||
| 788 | __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start), | ||
| 789 | page_end - page_start); | ||
| 790 | } | ||
| 791 | |||
| 792 | for (i = page_start; i < page_end; i++) | ||
| 793 | __clear_bit(i, populated); | ||
| 794 | } | ||
| 795 | 662 | ||
| 796 | /** | 663 | /** |
| 797 | * pcpu_post_unmap_tlb_flush - flush TLB after unmapping | 664 | * pcpu_chunk_addr_search - determine chunk containing specified address |
| 798 | * @chunk: pcpu_chunk the regions to be flushed belong to | 665 | * @addr: address for which the chunk needs to be determined. |
| 799 | * @page_start: page index of the first page to be flushed | ||
| 800 | * @page_end: page index of the last page to be flushed + 1 | ||
| 801 | * | ||
| 802 | * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush | ||
| 803 | * TLB for the regions. This can be skipped if the area is to be | ||
| 804 | * returned to vmalloc as vmalloc will handle TLB flushing lazily. | ||
| 805 | * | 666 | * |
| 806 | * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once | 667 | * RETURNS: |
| 807 | * for the whole region. | 668 | * The address of the found chunk. |
| 808 | */ | ||
| 809 | static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk, | ||
| 810 | int page_start, int page_end) | ||
| 811 | { | ||
| 812 | flush_tlb_kernel_range( | ||
| 813 | pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), | ||
| 814 | pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); | ||
| 815 | } | ||
| 816 | |||
| 817 | static int __pcpu_map_pages(unsigned long addr, struct page **pages, | ||
| 818 | int nr_pages) | ||
| 819 | { | ||
| 820 | return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT, | ||
| 821 | PAGE_KERNEL, pages); | ||
| 822 | } | ||
| 823 | |||
| 824 | /** | ||
| 825 | * pcpu_map_pages - map pages into a pcpu_chunk | ||
| 826 | * @chunk: chunk of interest | ||
| 827 | * @pages: pages array containing pages to be mapped | ||
| 828 | * @populated: populated bitmap | ||
| 829 | * @page_start: page index of the first page to map | ||
| 830 | * @page_end: page index of the last page to map + 1 | ||
| 831 | * | ||
| 832 | * For each cpu, map pages [@page_start,@page_end) into @chunk. The | ||
| 833 | * caller is responsible for calling pcpu_post_map_flush() after all | ||
| 834 | * mappings are complete. | ||
| 835 | * | ||
| 836 | * This function is responsible for setting corresponding bits in | ||
| 837 | * @chunk->populated bitmap and whatever is necessary for reverse | ||
| 838 | * lookup (addr -> chunk). | ||
| 839 | */ | 669 | */ |
| 840 | static int pcpu_map_pages(struct pcpu_chunk *chunk, | 670 | static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) |
| 841 | struct page **pages, unsigned long *populated, | ||
| 842 | int page_start, int page_end) | ||
| 843 | { | 671 | { |
| 844 | unsigned int cpu, tcpu; | 672 | /* is it in the first chunk? */ |
| 845 | int i, err; | 673 | if (pcpu_addr_in_first_chunk(addr)) { |
| 846 | 674 | /* is it in the reserved area? */ | |
| 847 | for_each_possible_cpu(cpu) { | 675 | if (pcpu_addr_in_reserved_chunk(addr)) |
| 848 | err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start), | 676 | return pcpu_reserved_chunk; |
| 849 | &pages[pcpu_page_idx(cpu, page_start)], | 677 | return pcpu_first_chunk; |
| 850 | page_end - page_start); | ||
| 851 | if (err < 0) | ||
| 852 | goto err; | ||
| 853 | } | ||
| 854 | |||
| 855 | /* mapping successful, link chunk and mark populated */ | ||
| 856 | for (i = page_start; i < page_end; i++) { | ||
| 857 | for_each_possible_cpu(cpu) | ||
| 858 | pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)], | ||
| 859 | chunk); | ||
| 860 | __set_bit(i, populated); | ||
| 861 | } | ||
| 862 | |||
| 863 | return 0; | ||
| 864 | |||
| 865 | err: | ||
| 866 | for_each_possible_cpu(tcpu) { | ||
| 867 | if (tcpu == cpu) | ||
| 868 | break; | ||
| 869 | __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start), | ||
| 870 | page_end - page_start); | ||
| 871 | } | 678 | } |
| 872 | return err; | ||
| 873 | } | ||
| 874 | |||
| 875 | /** | ||
| 876 | * pcpu_post_map_flush - flush cache after mapping | ||
| 877 | * @chunk: pcpu_chunk the regions to be flushed belong to | ||
| 878 | * @page_start: page index of the first page to be flushed | ||
| 879 | * @page_end: page index of the last page to be flushed + 1 | ||
| 880 | * | ||
| 881 | * Pages [@page_start,@page_end) of @chunk have been mapped. Flush | ||
| 882 | * cache. | ||
| 883 | * | ||
| 884 | * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once | ||
| 885 | * for the whole region. | ||
| 886 | */ | ||
| 887 | static void pcpu_post_map_flush(struct pcpu_chunk *chunk, | ||
| 888 | int page_start, int page_end) | ||
| 889 | { | ||
| 890 | flush_cache_vmap( | ||
| 891 | pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), | ||
| 892 | pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); | ||
| 893 | } | ||
| 894 | |||
| 895 | /** | ||
| 896 | * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk | ||
| 897 | * @chunk: chunk to depopulate | ||
| 898 | * @off: offset to the area to depopulate | ||
| 899 | * @size: size of the area to depopulate in bytes | ||
| 900 | * @flush: whether to flush cache and tlb or not | ||
| 901 | * | ||
| 902 | * For each cpu, depopulate and unmap pages [@page_start,@page_end) | ||
| 903 | * from @chunk. If @flush is true, vcache is flushed before unmapping | ||
| 904 | * and tlb after. | ||
| 905 | * | ||
| 906 | * CONTEXT: | ||
| 907 | * pcpu_alloc_mutex. | ||
| 908 | */ | ||
| 909 | static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size) | ||
| 910 | { | ||
| 911 | int page_start = PFN_DOWN(off); | ||
| 912 | int page_end = PFN_UP(off + size); | ||
| 913 | struct page **pages; | ||
| 914 | unsigned long *populated; | ||
| 915 | int rs, re; | ||
| 916 | |||
| 917 | /* quick path, check whether it's empty already */ | ||
| 918 | rs = page_start; | ||
| 919 | pcpu_next_unpop(chunk, &rs, &re, page_end); | ||
| 920 | if (rs == page_start && re == page_end) | ||
| 921 | return; | ||
| 922 | |||
| 923 | /* immutable chunks can't be depopulated */ | ||
| 924 | WARN_ON(chunk->immutable); | ||
| 925 | 679 | ||
| 926 | /* | 680 | /* |
| 927 | * If control reaches here, there must have been at least one | 681 | * The address is relative to unit0 which might be unused and |
| 928 | * successful population attempt so the temp pages array must | 682 | * thus unmapped. Offset the address to the unit space of the |
| 929 | * be available now. | 683 | * current processor before looking it up in the vmalloc |
| 684 | * space. Note that any possible cpu id can be used here, so | ||
| 685 | * there's no need to worry about preemption or cpu hotplug. | ||
| 930 | */ | 686 | */ |
| 931 | pages = pcpu_get_pages_and_bitmap(chunk, &populated, false); | 687 | addr += pcpu_unit_offsets[raw_smp_processor_id()]; |
| 932 | BUG_ON(!pages); | 688 | return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); |
| 933 | |||
| 934 | /* unmap and free */ | ||
| 935 | pcpu_pre_unmap_flush(chunk, page_start, page_end); | ||
| 936 | |||
| 937 | pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) | ||
| 938 | pcpu_unmap_pages(chunk, pages, populated, rs, re); | ||
| 939 | |||
| 940 | /* no need to flush tlb, vmalloc will handle it lazily */ | ||
| 941 | |||
| 942 | pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) | ||
| 943 | pcpu_free_pages(chunk, pages, populated, rs, re); | ||
| 944 | |||
| 945 | /* commit new bitmap */ | ||
| 946 | bitmap_copy(chunk->populated, populated, pcpu_unit_pages); | ||
| 947 | } | ||
| 948 | |||
| 949 | /** | ||
| 950 | * pcpu_populate_chunk - populate and map an area of a pcpu_chunk | ||
| 951 | * @chunk: chunk of interest | ||
| 952 | * @off: offset to the area to populate | ||
| 953 | * @size: size of the area to populate in bytes | ||
| 954 | * | ||
| 955 | * For each cpu, populate and map pages [@page_start,@page_end) into | ||
| 956 | * @chunk. The area is cleared on return. | ||
| 957 | * | ||
| 958 | * CONTEXT: | ||
| 959 | * pcpu_alloc_mutex, does GFP_KERNEL allocation. | ||
| 960 | */ | ||
| 961 | static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size) | ||
| 962 | { | ||
| 963 | int page_start = PFN_DOWN(off); | ||
| 964 | int page_end = PFN_UP(off + size); | ||
| 965 | int free_end = page_start, unmap_end = page_start; | ||
| 966 | struct page **pages; | ||
| 967 | unsigned long *populated; | ||
| 968 | unsigned int cpu; | ||
| 969 | int rs, re, rc; | ||
| 970 | |||
| 971 | /* quick path, check whether all pages are already there */ | ||
| 972 | rs = page_start; | ||
| 973 | pcpu_next_pop(chunk, &rs, &re, page_end); | ||
| 974 | if (rs == page_start && re == page_end) | ||
| 975 | goto clear; | ||
| 976 | |||
| 977 | /* need to allocate and map pages, this chunk can't be immutable */ | ||
| 978 | WARN_ON(chunk->immutable); | ||
| 979 | |||
| 980 | pages = pcpu_get_pages_and_bitmap(chunk, &populated, true); | ||
| 981 | if (!pages) | ||
| 982 | return -ENOMEM; | ||
| 983 | |||
| 984 | /* alloc and map */ | ||
| 985 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { | ||
| 986 | rc = pcpu_alloc_pages(chunk, pages, populated, rs, re); | ||
| 987 | if (rc) | ||
| 988 | goto err_free; | ||
| 989 | free_end = re; | ||
| 990 | } | ||
| 991 | |||
| 992 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { | ||
| 993 | rc = pcpu_map_pages(chunk, pages, populated, rs, re); | ||
| 994 | if (rc) | ||
| 995 | goto err_unmap; | ||
| 996 | unmap_end = re; | ||
| 997 | } | ||
| 998 | pcpu_post_map_flush(chunk, page_start, page_end); | ||
| 999 | |||
| 1000 | /* commit new bitmap */ | ||
| 1001 | bitmap_copy(chunk->populated, populated, pcpu_unit_pages); | ||
| 1002 | clear: | ||
| 1003 | for_each_possible_cpu(cpu) | ||
| 1004 | memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); | ||
| 1005 | return 0; | ||
| 1006 | |||
| 1007 | err_unmap: | ||
| 1008 | pcpu_pre_unmap_flush(chunk, page_start, unmap_end); | ||
| 1009 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end) | ||
| 1010 | pcpu_unmap_pages(chunk, pages, populated, rs, re); | ||
| 1011 | pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end); | ||
| 1012 | err_free: | ||
| 1013 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end) | ||
| 1014 | pcpu_free_pages(chunk, pages, populated, rs, re); | ||
| 1015 | return rc; | ||
| 1016 | } | ||
| 1017 | |||
| 1018 | static void free_pcpu_chunk(struct pcpu_chunk *chunk) | ||
| 1019 | { | ||
| 1020 | if (!chunk) | ||
| 1021 | return; | ||
| 1022 | if (chunk->vms) | ||
| 1023 | pcpu_free_vm_areas(chunk->vms, pcpu_nr_groups); | ||
| 1024 | pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0])); | ||
| 1025 | kfree(chunk); | ||
| 1026 | } | ||
| 1027 | |||
| 1028 | static struct pcpu_chunk *alloc_pcpu_chunk(void) | ||
| 1029 | { | ||
| 1030 | struct pcpu_chunk *chunk; | ||
| 1031 | |||
| 1032 | chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL); | ||
| 1033 | if (!chunk) | ||
| 1034 | return NULL; | ||
| 1035 | |||
| 1036 | chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0])); | ||
| 1037 | chunk->map_alloc = PCPU_DFL_MAP_ALLOC; | ||
| 1038 | chunk->map[chunk->map_used++] = pcpu_unit_size; | ||
| 1039 | |||
| 1040 | chunk->vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes, | ||
| 1041 | pcpu_nr_groups, pcpu_atom_size, | ||
| 1042 | GFP_KERNEL); | ||
| 1043 | if (!chunk->vms) { | ||
| 1044 | free_pcpu_chunk(chunk); | ||
| 1045 | return NULL; | ||
| 1046 | } | ||
| 1047 | |||
| 1048 | INIT_LIST_HEAD(&chunk->list); | ||
| 1049 | chunk->free_size = pcpu_unit_size; | ||
| 1050 | chunk->contig_hint = pcpu_unit_size; | ||
| 1051 | chunk->base_addr = chunk->vms[0]->addr - pcpu_group_offsets[0]; | ||
| 1052 | |||
| 1053 | return chunk; | ||
| 1054 | } | 689 | } |
| 1055 | 690 | ||
| 1056 | /** | 691 | /** |
| @@ -1142,7 +777,7 @@ restart: | |||
| 1142 | /* hmmm... no space left, create a new chunk */ | 777 | /* hmmm... no space left, create a new chunk */ |
| 1143 | spin_unlock_irqrestore(&pcpu_lock, flags); | 778 | spin_unlock_irqrestore(&pcpu_lock, flags); |
| 1144 | 779 | ||
| 1145 | chunk = alloc_pcpu_chunk(); | 780 | chunk = pcpu_create_chunk(); |
| 1146 | if (!chunk) { | 781 | if (!chunk) { |
| 1147 | err = "failed to allocate new chunk"; | 782 | err = "failed to allocate new chunk"; |
| 1148 | goto fail_unlock_mutex; | 783 | goto fail_unlock_mutex; |
| @@ -1254,7 +889,7 @@ static void pcpu_reclaim(struct work_struct *work) | |||
| 1254 | 889 | ||
| 1255 | list_for_each_entry_safe(chunk, next, &todo, list) { | 890 | list_for_each_entry_safe(chunk, next, &todo, list) { |
| 1256 | pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size); | 891 | pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size); |
| 1257 | free_pcpu_chunk(chunk); | 892 | pcpu_destroy_chunk(chunk); |
| 1258 | } | 893 | } |
| 1259 | 894 | ||
| 1260 | mutex_unlock(&pcpu_alloc_mutex); | 895 | mutex_unlock(&pcpu_alloc_mutex); |
| @@ -1343,11 +978,14 @@ bool is_kernel_percpu_address(unsigned long addr) | |||
| 1343 | */ | 978 | */ |
| 1344 | phys_addr_t per_cpu_ptr_to_phys(void *addr) | 979 | phys_addr_t per_cpu_ptr_to_phys(void *addr) |
| 1345 | { | 980 | { |
| 1346 | if ((unsigned long)addr < VMALLOC_START || | 981 | if (pcpu_addr_in_first_chunk(addr)) { |
| 1347 | (unsigned long)addr >= VMALLOC_END) | 982 | if ((unsigned long)addr < VMALLOC_START || |
| 1348 | return __pa(addr); | 983 | (unsigned long)addr >= VMALLOC_END) |
| 1349 | else | 984 | return __pa(addr); |
| 1350 | return page_to_phys(vmalloc_to_page(addr)); | 985 | else |
| 986 | return page_to_phys(vmalloc_to_page(addr)); | ||
| 987 | } else | ||
| 988 | return page_to_phys(pcpu_addr_to_page(addr)); | ||
| 1351 | } | 989 | } |
| 1352 | 990 | ||
| 1353 | static inline size_t pcpu_calc_fc_sizes(size_t static_size, | 991 | static inline size_t pcpu_calc_fc_sizes(size_t static_size, |
| @@ -1719,6 +1357,7 @@ int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, | |||
| 1719 | PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); | 1357 | PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); |
| 1720 | PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK); | 1358 | PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK); |
| 1721 | PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); | 1359 | PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); |
| 1360 | PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); | ||
| 1722 | 1361 | ||
| 1723 | /* process group information and build config tables accordingly */ | 1362 | /* process group information and build config tables accordingly */ |
| 1724 | group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0])); | 1363 | group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0])); |
