diff options
| -rw-r--r-- | litmus/Kconfig | 14 | ||||
| -rw-r--r-- | litmus/Makefile | 1 | ||||
| -rw-r--r-- | litmus/sched_pfair.c | 1079 |
3 files changed, 1094 insertions, 0 deletions
diff --git a/litmus/Kconfig b/litmus/Kconfig index c764857aec82..5d5d6eb29882 100644 --- a/litmus/Kconfig +++ b/litmus/Kconfig | |||
| @@ -12,6 +12,20 @@ config PLUGIN_CEDF | |||
| 12 | On smaller platforms (e.g., ARM PB11MPCore), using C-EDF | 12 | On smaller platforms (e.g., ARM PB11MPCore), using C-EDF |
| 13 | makes little sense since there aren't any shared caches. | 13 | makes little sense since there aren't any shared caches. |
| 14 | 14 | ||
| 15 | config PLUGIN_PFAIR | ||
| 16 | bool "PFAIR" | ||
| 17 | depends on HIGH_RES_TIMERS && HZ_PERIODIC && HZ = "1000" | ||
| 18 | default y | ||
| 19 | help | ||
| 20 | Include the PFAIR plugin (i.e., the PD^2 scheduler) in the kernel. | ||
| 21 | The PFAIR plugin requires high resolution timers (for staggered | ||
| 22 | quanta) and also requires HZ_PERIODIC (i.e., periodic timer ticks | ||
| 23 | even if a processor is idle, as quanta could be missed otherwise). | ||
| 24 | Further, the PFAIR plugin uses the system tick and thus requires | ||
| 25 | HZ=1000 to achive reasonable granularity. | ||
| 26 | |||
| 27 | If unsure, say Yes. | ||
| 28 | |||
| 15 | config RELEASE_MASTER | 29 | config RELEASE_MASTER |
| 16 | bool "Release-master Support" | 30 | bool "Release-master Support" |
| 17 | depends on ARCH_HAS_SEND_PULL_TIMERS && SMP | 31 | depends on ARCH_HAS_SEND_PULL_TIMERS && SMP |
diff --git a/litmus/Makefile b/litmus/Makefile index bcb007d9b592..d26ca7076b62 100644 --- a/litmus/Makefile +++ b/litmus/Makefile | |||
| @@ -23,6 +23,7 @@ obj-y = sched_plugin.o litmus.o \ | |||
| 23 | sched_pfp.o | 23 | sched_pfp.o |
| 24 | 24 | ||
| 25 | obj-$(CONFIG_PLUGIN_CEDF) += sched_cedf.o | 25 | obj-$(CONFIG_PLUGIN_CEDF) += sched_cedf.o |
| 26 | obj-$(CONFIG_PLUGIN_PFAIR) += sched_pfair.o | ||
| 26 | obj-$(CONFIG_SCHED_CPU_AFFINITY) += affinity.o | 27 | obj-$(CONFIG_SCHED_CPU_AFFINITY) += affinity.o |
| 27 | 28 | ||
| 28 | obj-$(CONFIG_FEATHER_TRACE) += ft_event.o ftdev.o | 29 | obj-$(CONFIG_FEATHER_TRACE) += ft_event.o ftdev.o |
diff --git a/litmus/sched_pfair.c b/litmus/sched_pfair.c new file mode 100644 index 000000000000..efe5e130da15 --- /dev/null +++ b/litmus/sched_pfair.c | |||
| @@ -0,0 +1,1079 @@ | |||
| 1 | /* | ||
| 2 | * kernel/sched_pfair.c | ||
| 3 | * | ||
| 4 | * Implementation of the PD^2 pfair scheduling algorithm. This | ||
| 5 | * implementation realizes "early releasing," i.e., it is work-conserving. | ||
| 6 | * | ||
| 7 | */ | ||
| 8 | |||
| 9 | #include <asm/div64.h> | ||
| 10 | #include <linux/delay.h> | ||
| 11 | #include <linux/module.h> | ||
| 12 | #include <linux/spinlock.h> | ||
| 13 | #include <linux/percpu.h> | ||
| 14 | #include <linux/sched.h> | ||
| 15 | #include <linux/list.h> | ||
| 16 | #include <linux/slab.h> | ||
| 17 | |||
| 18 | #include <litmus/litmus.h> | ||
| 19 | #include <litmus/jobs.h> | ||
| 20 | #include <litmus/preempt.h> | ||
| 21 | #include <litmus/rt_domain.h> | ||
| 22 | #include <litmus/sched_plugin.h> | ||
| 23 | #include <litmus/sched_trace.h> | ||
| 24 | |||
| 25 | #include <litmus/bheap.h> | ||
| 26 | |||
| 27 | /* to configure the cluster size */ | ||
| 28 | #include <litmus/litmus_proc.h> | ||
| 29 | |||
| 30 | #include <litmus/clustered.h> | ||
| 31 | |||
| 32 | static enum cache_level pfair_cluster_level = GLOBAL_CLUSTER; | ||
| 33 | |||
| 34 | struct subtask { | ||
| 35 | /* measured in quanta relative to job release */ | ||
| 36 | quanta_t release; | ||
| 37 | quanta_t deadline; | ||
| 38 | quanta_t overlap; /* called "b bit" by PD^2 */ | ||
| 39 | quanta_t group_deadline; | ||
| 40 | }; | ||
| 41 | |||
| 42 | struct pfair_param { | ||
| 43 | quanta_t quanta; /* number of subtasks */ | ||
| 44 | quanta_t cur; /* index of current subtask */ | ||
| 45 | |||
| 46 | quanta_t release; /* in quanta */ | ||
| 47 | quanta_t period; /* in quanta */ | ||
| 48 | |||
| 49 | quanta_t last_quantum; /* when scheduled last */ | ||
| 50 | int last_cpu; /* where scheduled last */ | ||
| 51 | |||
| 52 | struct pfair_cluster* cluster; /* where this task is scheduled */ | ||
| 53 | |||
| 54 | struct subtask subtasks[0]; /* allocate together with pfair_param */ | ||
| 55 | }; | ||
| 56 | |||
| 57 | #define tsk_pfair(tsk) ((tsk)->rt_param.pfair) | ||
| 58 | |||
| 59 | struct pfair_state { | ||
| 60 | struct cluster_cpu topology; | ||
| 61 | |||
| 62 | volatile quanta_t cur_tick; /* updated by the CPU that is advancing | ||
| 63 | * the time */ | ||
| 64 | volatile quanta_t local_tick; /* What tick is the local CPU currently | ||
| 65 | * executing? Updated only by the local | ||
| 66 | * CPU. In QEMU, this may lag behind the | ||
| 67 | * current tick. In a real system, with | ||
| 68 | * proper timers and aligned quanta, | ||
| 69 | * that should only be the case for a | ||
| 70 | * very short time after the time | ||
| 71 | * advanced. With staggered quanta, it | ||
| 72 | * will lag for the duration of the | ||
| 73 | * offset. | ||
| 74 | */ | ||
| 75 | |||
| 76 | struct task_struct* linked; /* the task that should be executing */ | ||
| 77 | struct task_struct* local; /* the local copy of linked */ | ||
| 78 | struct task_struct* scheduled; /* what is actually scheduled */ | ||
| 79 | |||
| 80 | lt_t offset; /* stagger offset */ | ||
| 81 | unsigned int missed_updates; | ||
| 82 | unsigned int missed_quanta; | ||
| 83 | }; | ||
| 84 | |||
| 85 | struct pfair_cluster { | ||
| 86 | struct scheduling_cluster topology; | ||
| 87 | |||
| 88 | /* The "global" time in this cluster. */ | ||
| 89 | quanta_t pfair_time; /* the "official" PFAIR clock */ | ||
| 90 | |||
| 91 | /* The ready queue for this cluster. */ | ||
| 92 | rt_domain_t pfair; | ||
| 93 | |||
| 94 | /* The set of jobs that should have their release enacted at the next | ||
| 95 | * quantum boundary. | ||
| 96 | */ | ||
| 97 | struct bheap release_queue; | ||
| 98 | raw_spinlock_t release_lock; | ||
| 99 | }; | ||
| 100 | |||
| 101 | #define FLAGS_NEED_REQUEUE 0x1 | ||
| 102 | |||
| 103 | static inline struct pfair_cluster* cpu_cluster(struct pfair_state* state) | ||
| 104 | { | ||
| 105 | return container_of(state->topology.cluster, struct pfair_cluster, topology); | ||
| 106 | } | ||
| 107 | |||
| 108 | static inline int cpu_id(struct pfair_state* state) | ||
| 109 | { | ||
| 110 | return state->topology.id; | ||
| 111 | } | ||
| 112 | |||
| 113 | static inline struct pfair_state* from_cluster_list(struct list_head* pos) | ||
| 114 | { | ||
| 115 | return list_entry(pos, struct pfair_state, topology.cluster_list); | ||
| 116 | } | ||
| 117 | |||
| 118 | static inline struct pfair_cluster* from_domain(rt_domain_t* rt) | ||
| 119 | { | ||
| 120 | return container_of(rt, struct pfair_cluster, pfair); | ||
| 121 | } | ||
| 122 | |||
| 123 | static inline raw_spinlock_t* cluster_lock(struct pfair_cluster* cluster) | ||
| 124 | { | ||
| 125 | /* The ready_lock is used to serialize all scheduling events. */ | ||
| 126 | return &cluster->pfair.ready_lock; | ||
| 127 | } | ||
| 128 | |||
| 129 | static inline raw_spinlock_t* cpu_lock(struct pfair_state* state) | ||
| 130 | { | ||
| 131 | return cluster_lock(cpu_cluster(state)); | ||
| 132 | } | ||
| 133 | |||
| 134 | DEFINE_PER_CPU(struct pfair_state, pfair_state); | ||
| 135 | struct pfair_state* *pstate; /* short cut */ | ||
| 136 | |||
| 137 | static struct pfair_cluster* pfair_clusters; | ||
| 138 | static int num_pfair_clusters; | ||
| 139 | |||
| 140 | /* Enable for lots of trace info. | ||
| 141 | * #define PFAIR_DEBUG | ||
| 142 | */ | ||
| 143 | |||
| 144 | #ifdef PFAIR_DEBUG | ||
| 145 | #define PTRACE_TASK(t, f, args...) TRACE_TASK(t, f, ## args) | ||
| 146 | #define PTRACE(f, args...) TRACE(f, ## args) | ||
| 147 | #else | ||
| 148 | #define PTRACE_TASK(t, f, args...) | ||
| 149 | #define PTRACE(f, args...) | ||
| 150 | #endif | ||
| 151 | |||
| 152 | /* gcc will inline all of these accessor functions... */ | ||
| 153 | static struct subtask* cur_subtask(struct task_struct* t) | ||
| 154 | { | ||
| 155 | return tsk_pfair(t)->subtasks + tsk_pfair(t)->cur; | ||
| 156 | } | ||
| 157 | |||
| 158 | static quanta_t cur_deadline(struct task_struct* t) | ||
| 159 | { | ||
| 160 | return cur_subtask(t)->deadline + tsk_pfair(t)->release; | ||
| 161 | } | ||
| 162 | |||
| 163 | static quanta_t cur_release(struct task_struct* t) | ||
| 164 | { | ||
| 165 | /* This is early releasing: only the release of the first subtask | ||
| 166 | * counts. */ | ||
| 167 | return tsk_pfair(t)->release; | ||
| 168 | } | ||
| 169 | |||
| 170 | static quanta_t cur_overlap(struct task_struct* t) | ||
| 171 | { | ||
| 172 | return cur_subtask(t)->overlap; | ||
| 173 | } | ||
| 174 | |||
| 175 | static quanta_t cur_group_deadline(struct task_struct* t) | ||
| 176 | { | ||
| 177 | quanta_t gdl = cur_subtask(t)->group_deadline; | ||
| 178 | if (gdl) | ||
| 179 | return gdl + tsk_pfair(t)->release; | ||
| 180 | else | ||
| 181 | return gdl; | ||
| 182 | } | ||
| 183 | |||
| 184 | |||
| 185 | static int pfair_higher_prio(struct task_struct* first, | ||
| 186 | struct task_struct* second) | ||
| 187 | { | ||
| 188 | return /* first task must exist */ | ||
| 189 | first && ( | ||
| 190 | /* Does the second task exist and is it a real-time task? If | ||
| 191 | * not, the first task (which is a RT task) has higher | ||
| 192 | * priority. | ||
| 193 | */ | ||
| 194 | !second || !is_realtime(second) || | ||
| 195 | |||
| 196 | /* Is the (subtask) deadline of the first task earlier? | ||
| 197 | * Then it has higher priority. | ||
| 198 | */ | ||
| 199 | time_before(cur_deadline(first), cur_deadline(second)) || | ||
| 200 | |||
| 201 | /* Do we have a deadline tie? | ||
| 202 | * Then break by B-bit. | ||
| 203 | */ | ||
| 204 | (cur_deadline(first) == cur_deadline(second) && | ||
| 205 | (cur_overlap(first) > cur_overlap(second) || | ||
| 206 | |||
| 207 | /* Do we have a B-bit tie? | ||
| 208 | * Then break by group deadline. | ||
| 209 | */ | ||
| 210 | (cur_overlap(first) == cur_overlap(second) && | ||
| 211 | (time_after(cur_group_deadline(first), | ||
| 212 | cur_group_deadline(second)) || | ||
| 213 | |||
| 214 | /* Do we have a group deadline tie? | ||
| 215 | * Then break by PID, which are unique. | ||
| 216 | */ | ||
| 217 | (cur_group_deadline(first) == | ||
| 218 | cur_group_deadline(second) && | ||
| 219 | first->pid < second->pid)))))); | ||
| 220 | } | ||
| 221 | |||
| 222 | int pfair_ready_order(struct bheap_node* a, struct bheap_node* b) | ||
| 223 | { | ||
| 224 | return pfair_higher_prio(bheap2task(a), bheap2task(b)); | ||
| 225 | } | ||
| 226 | |||
| 227 | static void pfair_release_jobs(rt_domain_t* rt, struct bheap* tasks) | ||
| 228 | { | ||
| 229 | struct pfair_cluster* cluster = from_domain(rt); | ||
| 230 | unsigned long flags; | ||
| 231 | |||
| 232 | raw_spin_lock_irqsave(&cluster->release_lock, flags); | ||
| 233 | |||
| 234 | bheap_union(pfair_ready_order, &cluster->release_queue, tasks); | ||
| 235 | |||
| 236 | raw_spin_unlock_irqrestore(&cluster->release_lock, flags); | ||
| 237 | } | ||
| 238 | |||
| 239 | static void prepare_release(struct task_struct* t, quanta_t at) | ||
| 240 | { | ||
| 241 | tsk_pfair(t)->release = at; | ||
| 242 | tsk_pfair(t)->cur = 0; | ||
| 243 | } | ||
| 244 | |||
| 245 | /* pull released tasks from the release queue */ | ||
| 246 | static void poll_releases(struct pfair_cluster* cluster) | ||
| 247 | { | ||
| 248 | raw_spin_lock(&cluster->release_lock); | ||
| 249 | __merge_ready(&cluster->pfair, &cluster->release_queue); | ||
| 250 | raw_spin_unlock(&cluster->release_lock); | ||
| 251 | } | ||
| 252 | |||
| 253 | static void check_preempt(struct task_struct* t) | ||
| 254 | { | ||
| 255 | int cpu = NO_CPU; | ||
| 256 | if (tsk_rt(t)->linked_on != tsk_rt(t)->scheduled_on && | ||
| 257 | is_present(t)) { | ||
| 258 | /* the task can be scheduled and | ||
| 259 | * is not scheduled where it ought to be scheduled | ||
| 260 | */ | ||
| 261 | cpu = tsk_rt(t)->linked_on != NO_CPU ? | ||
| 262 | tsk_rt(t)->linked_on : | ||
| 263 | tsk_rt(t)->scheduled_on; | ||
| 264 | PTRACE_TASK(t, "linked_on:%d, scheduled_on:%d\n", | ||
| 265 | tsk_rt(t)->linked_on, tsk_rt(t)->scheduled_on); | ||
| 266 | /* preempt */ | ||
| 267 | litmus_reschedule(cpu); | ||
| 268 | } | ||
| 269 | } | ||
| 270 | |||
| 271 | /* caller must hold pfair.ready_lock */ | ||
| 272 | static void drop_all_references(struct task_struct *t) | ||
| 273 | { | ||
| 274 | int cpu; | ||
| 275 | struct pfair_state* s; | ||
| 276 | struct pfair_cluster* cluster; | ||
| 277 | if (bheap_node_in_heap(tsk_rt(t)->heap_node)) { | ||
| 278 | /* It must be in the ready queue; drop references isn't called | ||
| 279 | * when the job is in a release queue. */ | ||
| 280 | cluster = tsk_pfair(t)->cluster; | ||
| 281 | bheap_delete(pfair_ready_order, &cluster->pfair.ready_queue, | ||
| 282 | tsk_rt(t)->heap_node); | ||
| 283 | } | ||
| 284 | for (cpu = 0; cpu < num_online_cpus(); cpu++) { | ||
| 285 | s = &per_cpu(pfair_state, cpu); | ||
| 286 | if (s->linked == t) | ||
| 287 | s->linked = NULL; | ||
| 288 | if (s->local == t) | ||
| 289 | s->local = NULL; | ||
| 290 | if (s->scheduled == t) | ||
| 291 | s->scheduled = NULL; | ||
| 292 | } | ||
| 293 | /* make sure we don't have a stale linked_on field */ | ||
| 294 | tsk_rt(t)->linked_on = NO_CPU; | ||
| 295 | } | ||
| 296 | |||
| 297 | static void pfair_prepare_next_period(struct task_struct* t) | ||
| 298 | { | ||
| 299 | struct pfair_param* p = tsk_pfair(t); | ||
| 300 | |||
| 301 | prepare_for_next_period(t); | ||
| 302 | tsk_rt(t)->completed = 0; | ||
| 303 | p->release += p->period; | ||
| 304 | } | ||
| 305 | |||
| 306 | /* returns 1 if the task needs to go the release queue */ | ||
| 307 | static int advance_subtask(quanta_t time, struct task_struct* t, int cpu) | ||
| 308 | { | ||
| 309 | struct pfair_param* p = tsk_pfair(t); | ||
| 310 | int to_relq; | ||
| 311 | p->cur = (p->cur + 1) % p->quanta; | ||
| 312 | if (!p->cur) { | ||
| 313 | if (is_present(t)) { | ||
| 314 | /* The job overran; we start a new budget allocation. */ | ||
| 315 | pfair_prepare_next_period(t); | ||
| 316 | } else { | ||
| 317 | /* remove task from system until it wakes */ | ||
| 318 | drop_all_references(t); | ||
| 319 | tsk_rt(t)->flags |= FLAGS_NEED_REQUEUE; | ||
| 320 | TRACE_TASK(t, "on %d advanced to subtask %lu (not present)\n", | ||
| 321 | cpu, p->cur); | ||
| 322 | return 0; | ||
| 323 | } | ||
| 324 | } | ||
| 325 | to_relq = time_after(cur_release(t), time); | ||
| 326 | TRACE_TASK(t, "on %d advanced to subtask %lu -> to_relq=%d (cur_release:%lu time:%lu)\n", | ||
| 327 | cpu, p->cur, to_relq, cur_release(t), time); | ||
| 328 | return to_relq; | ||
| 329 | } | ||
| 330 | |||
| 331 | static void advance_subtasks(struct pfair_cluster *cluster, quanta_t time) | ||
| 332 | { | ||
| 333 | struct task_struct* l; | ||
| 334 | struct pfair_param* p; | ||
| 335 | struct list_head* pos; | ||
| 336 | struct pfair_state* cpu; | ||
| 337 | |||
| 338 | list_for_each(pos, &cluster->topology.cpus) { | ||
| 339 | cpu = from_cluster_list(pos); | ||
| 340 | l = cpu->linked; | ||
| 341 | cpu->missed_updates += cpu->linked != cpu->local; | ||
| 342 | if (l) { | ||
| 343 | p = tsk_pfair(l); | ||
| 344 | p->last_quantum = time; | ||
| 345 | p->last_cpu = cpu_id(cpu); | ||
| 346 | if (advance_subtask(time, l, cpu_id(cpu))) { | ||
| 347 | //cpu->linked = NULL; | ||
| 348 | PTRACE_TASK(l, "should go to release queue. " | ||
| 349 | "scheduled_on=%d present=%d\n", | ||
| 350 | tsk_rt(l)->scheduled_on, | ||
| 351 | tsk_rt(l)->present); | ||
| 352 | } | ||
| 353 | } | ||
| 354 | } | ||
| 355 | } | ||
| 356 | |||
| 357 | static int target_cpu(quanta_t time, struct task_struct* t, int default_cpu) | ||
| 358 | { | ||
| 359 | int cpu; | ||
| 360 | if (tsk_rt(t)->scheduled_on != NO_CPU) { | ||
| 361 | /* always observe scheduled_on linkage */ | ||
| 362 | default_cpu = tsk_rt(t)->scheduled_on; | ||
| 363 | } else if (tsk_pfair(t)->last_quantum == time - 1) { | ||
| 364 | /* back2back quanta */ | ||
| 365 | /* Only observe last_quantum if no scheduled_on is in the way. | ||
| 366 | * This should only kick in if a CPU missed quanta, and that | ||
| 367 | * *should* only happen in QEMU. | ||
| 368 | */ | ||
| 369 | cpu = tsk_pfair(t)->last_cpu; | ||
| 370 | if (!pstate[cpu]->linked || | ||
| 371 | tsk_rt(pstate[cpu]->linked)->scheduled_on != cpu) { | ||
| 372 | default_cpu = cpu; | ||
| 373 | } | ||
| 374 | } | ||
| 375 | return default_cpu; | ||
| 376 | } | ||
| 377 | |||
| 378 | /* returns one if linking was redirected */ | ||
| 379 | static int pfair_link(quanta_t time, int cpu, | ||
| 380 | struct task_struct* t) | ||
| 381 | { | ||
| 382 | int target = target_cpu(time, t, cpu); | ||
| 383 | struct task_struct* prev = pstate[cpu]->linked; | ||
| 384 | struct task_struct* other; | ||
| 385 | struct pfair_cluster* cluster = cpu_cluster(pstate[cpu]); | ||
| 386 | |||
| 387 | if (target != cpu) { | ||
| 388 | BUG_ON(pstate[target]->topology.cluster != pstate[cpu]->topology.cluster); | ||
| 389 | other = pstate[target]->linked; | ||
| 390 | pstate[target]->linked = t; | ||
| 391 | tsk_rt(t)->linked_on = target; | ||
| 392 | if (!other) | ||
| 393 | /* linked ok, but reschedule this CPU */ | ||
| 394 | return 1; | ||
| 395 | if (target < cpu) { | ||
| 396 | /* link other to cpu instead */ | ||
| 397 | tsk_rt(other)->linked_on = cpu; | ||
| 398 | pstate[cpu]->linked = other; | ||
| 399 | if (prev) { | ||
| 400 | /* prev got pushed back into the ready queue */ | ||
| 401 | tsk_rt(prev)->linked_on = NO_CPU; | ||
| 402 | __add_ready(&cluster->pfair, prev); | ||
| 403 | } | ||
| 404 | /* we are done with this cpu */ | ||
| 405 | return 0; | ||
| 406 | } else { | ||
| 407 | /* re-add other, it's original CPU was not considered yet */ | ||
| 408 | tsk_rt(other)->linked_on = NO_CPU; | ||
| 409 | __add_ready(&cluster->pfair, other); | ||
| 410 | /* reschedule this CPU */ | ||
| 411 | return 1; | ||
| 412 | } | ||
| 413 | } else { | ||
| 414 | pstate[cpu]->linked = t; | ||
| 415 | tsk_rt(t)->linked_on = cpu; | ||
| 416 | if (prev) { | ||
| 417 | /* prev got pushed back into the ready queue */ | ||
| 418 | tsk_rt(prev)->linked_on = NO_CPU; | ||
| 419 | __add_ready(&cluster->pfair, prev); | ||
| 420 | } | ||
| 421 | /* we are done with this CPU */ | ||
| 422 | return 0; | ||
| 423 | } | ||
| 424 | } | ||
| 425 | |||
| 426 | static void schedule_subtasks(struct pfair_cluster *cluster, quanta_t time) | ||
| 427 | { | ||
| 428 | int retry; | ||
| 429 | struct list_head *pos; | ||
| 430 | struct pfair_state *cpu_state; | ||
| 431 | |||
| 432 | list_for_each(pos, &cluster->topology.cpus) { | ||
| 433 | cpu_state = from_cluster_list(pos); | ||
| 434 | retry = 1; | ||
| 435 | #ifdef CONFIG_RELEASE_MASTER | ||
| 436 | /* skip release master */ | ||
| 437 | if (cluster->pfair.release_master == cpu_id(cpu_state)) | ||
| 438 | continue; | ||
| 439 | #endif | ||
| 440 | while (retry) { | ||
| 441 | if (pfair_higher_prio(__peek_ready(&cluster->pfair), | ||
| 442 | cpu_state->linked)) | ||
| 443 | retry = pfair_link(time, cpu_id(cpu_state), | ||
| 444 | __take_ready(&cluster->pfair)); | ||
| 445 | else | ||
| 446 | retry = 0; | ||
| 447 | } | ||
| 448 | } | ||
| 449 | } | ||
| 450 | |||
| 451 | static void schedule_next_quantum(struct pfair_cluster *cluster, quanta_t time) | ||
| 452 | { | ||
| 453 | struct pfair_state *cpu; | ||
| 454 | struct list_head* pos; | ||
| 455 | |||
| 456 | /* called with interrupts disabled */ | ||
| 457 | PTRACE("--- Q %lu at %llu PRE-SPIN\n", | ||
| 458 | time, litmus_clock()); | ||
| 459 | raw_spin_lock(cluster_lock(cluster)); | ||
| 460 | PTRACE("<<< Q %lu at %llu\n", | ||
| 461 | time, litmus_clock()); | ||
| 462 | |||
| 463 | sched_trace_quantum_boundary(); | ||
| 464 | |||
| 465 | advance_subtasks(cluster, time); | ||
| 466 | poll_releases(cluster); | ||
| 467 | schedule_subtasks(cluster, time); | ||
| 468 | |||
| 469 | list_for_each(pos, &cluster->topology.cpus) { | ||
| 470 | cpu = from_cluster_list(pos); | ||
| 471 | if (cpu->linked) | ||
| 472 | PTRACE_TASK(cpu->linked, | ||
| 473 | " linked on %d.\n", cpu_id(cpu)); | ||
| 474 | else | ||
| 475 | PTRACE("(null) linked on %d.\n", cpu_id(cpu)); | ||
| 476 | } | ||
| 477 | /* We are done. Advance time. */ | ||
| 478 | mb(); | ||
| 479 | list_for_each(pos, &cluster->topology.cpus) { | ||
| 480 | cpu = from_cluster_list(pos); | ||
| 481 | if (cpu->local_tick != cpu->cur_tick) { | ||
| 482 | TRACE("BAD Quantum not acked on %d " | ||
| 483 | "(l:%lu c:%lu p:%lu)\n", | ||
| 484 | cpu_id(cpu), | ||
| 485 | cpu->local_tick, | ||
| 486 | cpu->cur_tick, | ||
| 487 | cluster->pfair_time); | ||
| 488 | cpu->missed_quanta++; | ||
| 489 | } | ||
| 490 | cpu->cur_tick = time; | ||
| 491 | } | ||
| 492 | PTRACE(">>> Q %lu at %llu\n", | ||
| 493 | time, litmus_clock()); | ||
| 494 | raw_spin_unlock(cluster_lock(cluster)); | ||
| 495 | } | ||
| 496 | |||
| 497 | static noinline void wait_for_quantum(quanta_t q, struct pfair_state* state) | ||
| 498 | { | ||
| 499 | quanta_t loc; | ||
| 500 | |||
| 501 | goto first; /* skip mb() on first iteration */ | ||
| 502 | do { | ||
| 503 | cpu_relax(); | ||
| 504 | mb(); | ||
| 505 | first: loc = state->cur_tick; | ||
| 506 | /* FIXME: what if loc > cur? */ | ||
| 507 | } while (time_before(loc, q)); | ||
| 508 | PTRACE("observed cur_tick:%lu >= q:%lu\n", | ||
| 509 | loc, q); | ||
| 510 | } | ||
| 511 | |||
| 512 | static quanta_t current_quantum(struct pfair_state* state) | ||
| 513 | { | ||
| 514 | lt_t t = litmus_clock() - state->offset; | ||
| 515 | return time2quanta(t, FLOOR); | ||
| 516 | } | ||
| 517 | |||
| 518 | static void catchup_quanta(quanta_t from, quanta_t target, | ||
| 519 | struct pfair_state* state) | ||
| 520 | { | ||
| 521 | quanta_t cur = from, time; | ||
| 522 | TRACE("+++< BAD catching up quanta from %lu to %lu\n", | ||
| 523 | from, target); | ||
| 524 | while (time_before(cur, target)) { | ||
| 525 | wait_for_quantum(cur, state); | ||
| 526 | cur++; | ||
| 527 | time = cmpxchg(&cpu_cluster(state)->pfair_time, | ||
| 528 | cur - 1, /* expected */ | ||
| 529 | cur /* next */ | ||
| 530 | ); | ||
| 531 | if (time == cur - 1) | ||
| 532 | schedule_next_quantum(cpu_cluster(state), cur); | ||
| 533 | } | ||
| 534 | TRACE("+++> catching up done\n"); | ||
| 535 | } | ||
| 536 | |||
| 537 | /* pfair_tick - this function is called for every local timer | ||
| 538 | * interrupt. | ||
| 539 | */ | ||
| 540 | static void pfair_tick(struct task_struct* t) | ||
| 541 | { | ||
| 542 | struct pfair_state* state = &__get_cpu_var(pfair_state); | ||
| 543 | quanta_t time, cur; | ||
| 544 | int retry = 10; | ||
| 545 | |||
| 546 | do { | ||
| 547 | cur = current_quantum(state); | ||
| 548 | PTRACE("q %lu at %llu\n", cur, litmus_clock()); | ||
| 549 | |||
| 550 | /* Attempt to advance time. First CPU to get here | ||
| 551 | * will prepare the next quantum. | ||
| 552 | */ | ||
| 553 | time = cmpxchg(&cpu_cluster(state)->pfair_time, | ||
| 554 | cur - 1, /* expected */ | ||
| 555 | cur /* next */ | ||
| 556 | ); | ||
| 557 | if (time == cur - 1) { | ||
| 558 | /* exchange succeeded */ | ||
| 559 | wait_for_quantum(cur - 1, state); | ||
| 560 | schedule_next_quantum(cpu_cluster(state), cur); | ||
| 561 | retry = 0; | ||
| 562 | } else if (time_before(time, cur - 1)) { | ||
| 563 | /* the whole system missed a tick !? */ | ||
| 564 | catchup_quanta(time, cur, state); | ||
| 565 | retry--; | ||
| 566 | } else if (time_after(time, cur)) { | ||
| 567 | /* our timer lagging behind!? */ | ||
| 568 | TRACE("BAD pfair_time:%lu > cur:%lu\n", time, cur); | ||
| 569 | retry--; | ||
| 570 | } else { | ||
| 571 | /* Some other CPU already started scheduling | ||
| 572 | * this quantum. Let it do its job and then update. | ||
| 573 | */ | ||
| 574 | retry = 0; | ||
| 575 | } | ||
| 576 | } while (retry); | ||
| 577 | |||
| 578 | /* Spin locally until time advances. */ | ||
| 579 | wait_for_quantum(cur, state); | ||
| 580 | |||
| 581 | /* copy assignment */ | ||
| 582 | /* FIXME: what if we race with a future update? Corrupted state? */ | ||
| 583 | state->local = state->linked; | ||
| 584 | /* signal that we are done */ | ||
| 585 | mb(); | ||
| 586 | state->local_tick = state->cur_tick; | ||
| 587 | |||
| 588 | if (state->local != current | ||
| 589 | && (is_realtime(current) || is_present(state->local))) | ||
| 590 | litmus_reschedule_local(); | ||
| 591 | } | ||
| 592 | |||
| 593 | static int safe_to_schedule(struct task_struct* t, int cpu) | ||
| 594 | { | ||
| 595 | int where = tsk_rt(t)->scheduled_on; | ||
| 596 | if (where != NO_CPU && where != cpu) { | ||
| 597 | TRACE_TASK(t, "BAD: can't be scheduled on %d, " | ||
| 598 | "scheduled already on %d.\n", cpu, where); | ||
| 599 | return 0; | ||
| 600 | } else | ||
| 601 | return is_present(t) && !is_completed(t); | ||
| 602 | } | ||
| 603 | |||
| 604 | static struct task_struct* pfair_schedule(struct task_struct * prev) | ||
| 605 | { | ||
| 606 | struct pfair_state* state = &__get_cpu_var(pfair_state); | ||
| 607 | struct pfair_cluster* cluster = cpu_cluster(state); | ||
| 608 | int blocks, completion, out_of_time; | ||
| 609 | struct task_struct* next = NULL; | ||
| 610 | |||
| 611 | #ifdef CONFIG_RELEASE_MASTER | ||
| 612 | /* Bail out early if we are the release master. | ||
| 613 | * The release master never schedules any real-time tasks. | ||
| 614 | */ | ||
| 615 | if (unlikely(cluster->pfair.release_master == cpu_id(state))) { | ||
| 616 | sched_state_task_picked(); | ||
| 617 | return NULL; | ||
| 618 | } | ||
| 619 | #endif | ||
| 620 | |||
| 621 | raw_spin_lock(cpu_lock(state)); | ||
| 622 | |||
| 623 | blocks = is_realtime(prev) && !is_running(prev); | ||
| 624 | completion = is_realtime(prev) && is_completed(prev); | ||
| 625 | out_of_time = is_realtime(prev) && time_after(cur_release(prev), | ||
| 626 | state->local_tick); | ||
| 627 | |||
| 628 | if (is_realtime(prev)) | ||
| 629 | PTRACE_TASK(prev, "blocks:%d completion:%d out_of_time:%d\n", | ||
| 630 | blocks, completion, out_of_time); | ||
| 631 | |||
| 632 | if (completion) { | ||
| 633 | sched_trace_task_completion(prev, 0); | ||
| 634 | pfair_prepare_next_period(prev); | ||
| 635 | prepare_release(prev, cur_release(prev)); | ||
| 636 | } | ||
| 637 | |||
| 638 | if (!blocks && (completion || out_of_time)) { | ||
| 639 | drop_all_references(prev); | ||
| 640 | sched_trace_task_release(prev); | ||
| 641 | add_release(&cluster->pfair, prev); | ||
| 642 | } | ||
| 643 | |||
| 644 | if (state->local && safe_to_schedule(state->local, cpu_id(state))) | ||
| 645 | next = state->local; | ||
| 646 | |||
| 647 | if (prev != next) { | ||
| 648 | tsk_rt(prev)->scheduled_on = NO_CPU; | ||
| 649 | if (next) | ||
| 650 | tsk_rt(next)->scheduled_on = cpu_id(state); | ||
| 651 | } | ||
| 652 | sched_state_task_picked(); | ||
| 653 | raw_spin_unlock(cpu_lock(state)); | ||
| 654 | |||
| 655 | if (next) | ||
| 656 | TRACE_TASK(next, "scheduled rel=%lu at %lu (%llu)\n", | ||
| 657 | tsk_pfair(next)->release, cpu_cluster(state)->pfair_time, litmus_clock()); | ||
| 658 | else if (is_realtime(prev)) | ||
| 659 | TRACE("Becomes idle at %lu (%llu)\n", cpu_cluster(state)->pfair_time, litmus_clock()); | ||
| 660 | |||
| 661 | return next; | ||
| 662 | } | ||
| 663 | |||
| 664 | static void pfair_task_new(struct task_struct * t, int on_rq, int is_scheduled) | ||
| 665 | { | ||
| 666 | unsigned long flags; | ||
| 667 | struct pfair_cluster* cluster; | ||
| 668 | |||
| 669 | TRACE("pfair: task new %d state:%d\n", t->pid, t->state); | ||
| 670 | |||
| 671 | cluster = tsk_pfair(t)->cluster; | ||
| 672 | |||
| 673 | raw_spin_lock_irqsave(cluster_lock(cluster), flags); | ||
| 674 | |||
| 675 | prepare_release(t, cluster->pfair_time + 1); | ||
| 676 | |||
| 677 | t->rt_param.scheduled_on = NO_CPU; | ||
| 678 | t->rt_param.linked_on = NO_CPU; | ||
| 679 | |||
| 680 | if (is_scheduled) { | ||
| 681 | #ifdef CONFIG_RELEASE_MASTER | ||
| 682 | if (task_cpu(t) != cluster->pfair.release_master) | ||
| 683 | #endif | ||
| 684 | t->rt_param.scheduled_on = task_cpu(t); | ||
| 685 | } | ||
| 686 | |||
| 687 | if (is_running(t)) { | ||
| 688 | tsk_rt(t)->present = 1; | ||
| 689 | __add_ready(&cluster->pfair, t); | ||
| 690 | } else { | ||
| 691 | tsk_rt(t)->present = 0; | ||
| 692 | tsk_rt(t)->flags |= FLAGS_NEED_REQUEUE; | ||
| 693 | } | ||
| 694 | |||
| 695 | check_preempt(t); | ||
| 696 | |||
| 697 | raw_spin_unlock_irqrestore(cluster_lock(cluster), flags); | ||
| 698 | } | ||
| 699 | |||
| 700 | static void pfair_task_wake_up(struct task_struct *t) | ||
| 701 | { | ||
| 702 | unsigned long flags; | ||
| 703 | lt_t now; | ||
| 704 | struct pfair_cluster* cluster; | ||
| 705 | |||
| 706 | cluster = tsk_pfair(t)->cluster; | ||
| 707 | |||
| 708 | TRACE_TASK(t, "wakes at %llu, release=%lu, pfair_time:%lu\n", | ||
| 709 | litmus_clock(), cur_release(t), cluster->pfair_time); | ||
| 710 | |||
| 711 | raw_spin_lock_irqsave(cluster_lock(cluster), flags); | ||
| 712 | |||
| 713 | /* If a task blocks and wakes before its next job release, | ||
| 714 | * then it may resume if it is currently linked somewhere | ||
| 715 | * (as if it never blocked at all). Otherwise, we have a | ||
| 716 | * new sporadic job release. | ||
| 717 | */ | ||
| 718 | now = litmus_clock(); | ||
| 719 | if (is_tardy(t, now)) { | ||
| 720 | TRACE_TASK(t, "sporadic release!\n"); | ||
| 721 | release_at(t, now); | ||
| 722 | prepare_release(t, time2quanta(now, CEIL)); | ||
| 723 | sched_trace_task_release(t); | ||
| 724 | } | ||
| 725 | |||
| 726 | /* only add to ready queue if the task isn't still linked somewhere */ | ||
| 727 | if (tsk_rt(t)->flags & FLAGS_NEED_REQUEUE) { | ||
| 728 | tsk_rt(t)->flags &= ~FLAGS_NEED_REQUEUE; | ||
| 729 | TRACE_TASK(t, "requeueing required\n"); | ||
| 730 | tsk_rt(t)->completed = 0; | ||
| 731 | __add_ready(&cluster->pfair, t); | ||
| 732 | } | ||
| 733 | |||
| 734 | check_preempt(t); | ||
| 735 | |||
| 736 | raw_spin_unlock_irqrestore(cluster_lock(cluster), flags); | ||
| 737 | TRACE_TASK(t, "wake up done at %llu\n", litmus_clock()); | ||
| 738 | } | ||
| 739 | |||
| 740 | static void pfair_task_block(struct task_struct *t) | ||
| 741 | { | ||
| 742 | BUG_ON(!is_realtime(t)); | ||
| 743 | TRACE_TASK(t, "blocks at %llu, state:%d\n", | ||
| 744 | litmus_clock(), t->state); | ||
| 745 | } | ||
| 746 | |||
| 747 | static void pfair_task_exit(struct task_struct * t) | ||
| 748 | { | ||
| 749 | unsigned long flags; | ||
| 750 | struct pfair_cluster *cluster; | ||
| 751 | |||
| 752 | BUG_ON(!is_realtime(t)); | ||
| 753 | |||
| 754 | cluster = tsk_pfair(t)->cluster; | ||
| 755 | |||
| 756 | /* Remote task from release or ready queue, and ensure | ||
| 757 | * that it is not the scheduled task for ANY CPU. We | ||
| 758 | * do this blanket check because occassionally when | ||
| 759 | * tasks exit while blocked, the task_cpu of the task | ||
| 760 | * might not be the same as the CPU that the PFAIR scheduler | ||
| 761 | * has chosen for it. | ||
| 762 | */ | ||
| 763 | raw_spin_lock_irqsave(cluster_lock(cluster), flags); | ||
| 764 | |||
| 765 | TRACE_TASK(t, "RIP, state:%d\n", t->state); | ||
| 766 | drop_all_references(t); | ||
| 767 | |||
| 768 | raw_spin_unlock_irqrestore(cluster_lock(cluster), flags); | ||
| 769 | |||
| 770 | kfree(t->rt_param.pfair); | ||
| 771 | t->rt_param.pfair = NULL; | ||
| 772 | } | ||
| 773 | |||
| 774 | |||
| 775 | static void pfair_release_at(struct task_struct* task, lt_t start) | ||
| 776 | { | ||
| 777 | unsigned long flags; | ||
| 778 | quanta_t release; | ||
| 779 | |||
| 780 | struct pfair_cluster *cluster; | ||
| 781 | |||
| 782 | cluster = tsk_pfair(task)->cluster; | ||
| 783 | |||
| 784 | BUG_ON(!is_realtime(task)); | ||
| 785 | |||
| 786 | raw_spin_lock_irqsave(cluster_lock(cluster), flags); | ||
| 787 | |||
| 788 | release_at(task, start); | ||
| 789 | release = time2quanta(start, CEIL); | ||
| 790 | prepare_release(task, release); | ||
| 791 | |||
| 792 | TRACE_TASK(task, "sys release at %lu\n", release); | ||
| 793 | |||
| 794 | raw_spin_unlock_irqrestore(cluster_lock(cluster), flags); | ||
| 795 | } | ||
| 796 | |||
| 797 | static void init_subtask(struct subtask* sub, unsigned long i, | ||
| 798 | lt_t quanta, lt_t period) | ||
| 799 | { | ||
| 800 | /* since i is zero-based, the formulas are shifted by one */ | ||
| 801 | lt_t tmp; | ||
| 802 | |||
| 803 | /* release */ | ||
| 804 | tmp = period * i; | ||
| 805 | do_div(tmp, quanta); /* floor */ | ||
| 806 | sub->release = (quanta_t) tmp; | ||
| 807 | |||
| 808 | /* deadline */ | ||
| 809 | tmp = period * (i + 1); | ||
| 810 | if (do_div(tmp, quanta)) /* ceil */ | ||
| 811 | tmp++; | ||
| 812 | sub->deadline = (quanta_t) tmp; | ||
| 813 | |||
| 814 | /* next release */ | ||
| 815 | tmp = period * (i + 1); | ||
| 816 | do_div(tmp, quanta); /* floor */ | ||
| 817 | sub->overlap = sub->deadline - (quanta_t) tmp; | ||
| 818 | |||
| 819 | /* Group deadline. | ||
| 820 | * Based on the formula given in Uma's thesis. | ||
| 821 | */ | ||
| 822 | if (2 * quanta >= period) { | ||
| 823 | /* heavy */ | ||
| 824 | tmp = (sub->deadline - (i + 1)) * period; | ||
| 825 | if (period > quanta && | ||
| 826 | do_div(tmp, (period - quanta))) /* ceil */ | ||
| 827 | tmp++; | ||
| 828 | sub->group_deadline = (quanta_t) tmp; | ||
| 829 | } else | ||
| 830 | sub->group_deadline = 0; | ||
| 831 | } | ||
| 832 | |||
| 833 | static void dump_subtasks(struct task_struct* t) | ||
| 834 | { | ||
| 835 | unsigned long i; | ||
| 836 | for (i = 0; i < t->rt_param.pfair->quanta; i++) | ||
| 837 | TRACE_TASK(t, "SUBTASK %lu: rel=%lu dl=%lu bbit:%lu gdl:%lu\n", | ||
| 838 | i + 1, | ||
| 839 | t->rt_param.pfair->subtasks[i].release, | ||
| 840 | t->rt_param.pfair->subtasks[i].deadline, | ||
| 841 | t->rt_param.pfair->subtasks[i].overlap, | ||
| 842 | t->rt_param.pfair->subtasks[i].group_deadline); | ||
| 843 | } | ||
| 844 | |||
| 845 | static long pfair_admit_task(struct task_struct* t) | ||
| 846 | { | ||
| 847 | lt_t quanta; | ||
| 848 | lt_t period; | ||
| 849 | s64 quantum_length = ktime_to_ns(tick_period); | ||
| 850 | struct pfair_param* param; | ||
| 851 | unsigned long i; | ||
| 852 | |||
| 853 | /* first check that the task is in the right cluster */ | ||
| 854 | if (cpu_cluster(pstate[tsk_rt(t)->task_params.cpu]) != | ||
| 855 | cpu_cluster(pstate[task_cpu(t)])) | ||
| 856 | return -EINVAL; | ||
| 857 | |||
| 858 | if (get_rt_period(t) != get_rt_relative_deadline(t)) { | ||
| 859 | printk(KERN_INFO "%s: Admission rejected. " | ||
| 860 | "Only implicit deadlines are currently supported.\n", | ||
| 861 | litmus->plugin_name); | ||
| 862 | return -EINVAL; | ||
| 863 | } | ||
| 864 | |||
| 865 | /* Pfair is a tick-based method, so the time | ||
| 866 | * of interest is jiffies. Calculate tick-based | ||
| 867 | * times for everything. | ||
| 868 | * (Ceiling of exec cost, floor of period.) | ||
| 869 | */ | ||
| 870 | |||
| 871 | quanta = get_exec_cost(t); | ||
| 872 | period = get_rt_period(t); | ||
| 873 | |||
| 874 | quanta = time2quanta(get_exec_cost(t), CEIL); | ||
| 875 | |||
| 876 | if (do_div(period, quantum_length)) | ||
| 877 | printk(KERN_WARNING | ||
| 878 | "The period of %s/%d is not a multiple of %llu.\n", | ||
| 879 | t->comm, t->pid, (unsigned long long) quantum_length); | ||
| 880 | |||
| 881 | if (quanta == period) { | ||
| 882 | /* special case: task has weight 1.0 */ | ||
| 883 | printk(KERN_INFO | ||
| 884 | "Admitting weight 1.0 task. (%s/%d, %llu, %llu).\n", | ||
| 885 | t->comm, t->pid, quanta, period); | ||
| 886 | quanta = 1; | ||
| 887 | period = 1; | ||
| 888 | } | ||
| 889 | |||
| 890 | param = kmalloc(sizeof(*param) + | ||
| 891 | quanta * sizeof(struct subtask), GFP_ATOMIC); | ||
| 892 | |||
| 893 | if (!param) | ||
| 894 | return -ENOMEM; | ||
| 895 | |||
| 896 | param->quanta = quanta; | ||
| 897 | param->cur = 0; | ||
| 898 | param->release = 0; | ||
| 899 | param->period = period; | ||
| 900 | |||
| 901 | param->cluster = cpu_cluster(pstate[tsk_rt(t)->task_params.cpu]); | ||
| 902 | |||
| 903 | for (i = 0; i < quanta; i++) | ||
| 904 | init_subtask(param->subtasks + i, i, quanta, period); | ||
| 905 | |||
| 906 | if (t->rt_param.pfair) | ||
| 907 | /* get rid of stale allocation */ | ||
| 908 | kfree(t->rt_param.pfair); | ||
| 909 | |||
| 910 | t->rt_param.pfair = param; | ||
| 911 | |||
| 912 | /* spew out some debug info */ | ||
| 913 | dump_subtasks(t); | ||
| 914 | |||
| 915 | return 0; | ||
| 916 | } | ||
| 917 | |||
| 918 | static void pfair_init_cluster(struct pfair_cluster* cluster) | ||
| 919 | { | ||
| 920 | rt_domain_init(&cluster->pfair, pfair_ready_order, NULL, pfair_release_jobs); | ||
| 921 | bheap_init(&cluster->release_queue); | ||
| 922 | raw_spin_lock_init(&cluster->release_lock); | ||
| 923 | INIT_LIST_HEAD(&cluster->topology.cpus); | ||
| 924 | } | ||
| 925 | |||
| 926 | static void cleanup_clusters(void) | ||
| 927 | { | ||
| 928 | int i; | ||
| 929 | |||
| 930 | if (num_pfair_clusters) | ||
| 931 | kfree(pfair_clusters); | ||
| 932 | pfair_clusters = NULL; | ||
| 933 | num_pfair_clusters = 0; | ||
| 934 | |||
| 935 | /* avoid stale pointers */ | ||
| 936 | for (i = 0; i < num_online_cpus(); i++) { | ||
| 937 | pstate[i]->topology.cluster = NULL; | ||
| 938 | printk("P%d missed %u updates and %u quanta.\n", cpu_id(pstate[i]), | ||
| 939 | pstate[i]->missed_updates, pstate[i]->missed_quanta); | ||
| 940 | } | ||
| 941 | } | ||
| 942 | |||
| 943 | static long pfair_activate_plugin(void) | ||
| 944 | { | ||
| 945 | int err, i; | ||
| 946 | struct pfair_state* state; | ||
| 947 | struct pfair_cluster* cluster ; | ||
| 948 | quanta_t now; | ||
| 949 | int cluster_size; | ||
| 950 | struct cluster_cpu* cpus[NR_CPUS]; | ||
| 951 | struct scheduling_cluster* clust[NR_CPUS]; | ||
| 952 | |||
| 953 | cluster_size = get_cluster_size(pfair_cluster_level); | ||
| 954 | |||
| 955 | if (cluster_size <= 0 || num_online_cpus() % cluster_size != 0) | ||
| 956 | return -EINVAL; | ||
| 957 | |||
| 958 | num_pfair_clusters = num_online_cpus() / cluster_size; | ||
| 959 | |||
| 960 | pfair_clusters = kzalloc(num_pfair_clusters * sizeof(struct pfair_cluster), GFP_ATOMIC); | ||
| 961 | if (!pfair_clusters) { | ||
| 962 | num_pfair_clusters = 0; | ||
| 963 | printk(KERN_ERR "Could not allocate Pfair clusters!\n"); | ||
| 964 | return -ENOMEM; | ||
| 965 | } | ||
| 966 | |||
| 967 | state = &__get_cpu_var(pfair_state); | ||
| 968 | now = current_quantum(state); | ||
| 969 | TRACE("Activating PFAIR at q=%lu\n", now); | ||
| 970 | |||
| 971 | for (i = 0; i < num_pfair_clusters; i++) { | ||
| 972 | cluster = &pfair_clusters[i]; | ||
| 973 | pfair_init_cluster(cluster); | ||
| 974 | cluster->pfair_time = now; | ||
| 975 | clust[i] = &cluster->topology; | ||
| 976 | #ifdef CONFIG_RELEASE_MASTER | ||
| 977 | cluster->pfair.release_master = atomic_read(&release_master_cpu); | ||
| 978 | #endif | ||
| 979 | } | ||
| 980 | |||
| 981 | for (i = 0; i < num_online_cpus(); i++) { | ||
| 982 | state = &per_cpu(pfair_state, i); | ||
| 983 | state->cur_tick = now; | ||
| 984 | state->local_tick = now; | ||
| 985 | state->missed_quanta = 0; | ||
| 986 | state->missed_updates = 0; | ||
| 987 | state->offset = cpu_stagger_offset(i); | ||
| 988 | printk(KERN_ERR "cpus[%d] set; %d\n", i, num_online_cpus()); | ||
| 989 | cpus[i] = &state->topology; | ||
| 990 | } | ||
| 991 | |||
| 992 | err = assign_cpus_to_clusters(pfair_cluster_level, clust, num_pfair_clusters, | ||
| 993 | cpus, num_online_cpus()); | ||
| 994 | |||
| 995 | if (err < 0) | ||
| 996 | cleanup_clusters(); | ||
| 997 | |||
| 998 | return err; | ||
| 999 | } | ||
| 1000 | |||
| 1001 | static long pfair_deactivate_plugin(void) | ||
| 1002 | { | ||
| 1003 | cleanup_clusters(); | ||
| 1004 | return 0; | ||
| 1005 | } | ||
| 1006 | |||
| 1007 | /* Plugin object */ | ||
| 1008 | static struct sched_plugin pfair_plugin __cacheline_aligned_in_smp = { | ||
| 1009 | .plugin_name = "PFAIR", | ||
| 1010 | .tick = pfair_tick, | ||
| 1011 | .task_new = pfair_task_new, | ||
| 1012 | .task_exit = pfair_task_exit, | ||
| 1013 | .schedule = pfair_schedule, | ||
| 1014 | .task_wake_up = pfair_task_wake_up, | ||
| 1015 | .task_block = pfair_task_block, | ||
| 1016 | .admit_task = pfair_admit_task, | ||
| 1017 | .release_at = pfair_release_at, | ||
| 1018 | .complete_job = complete_job, | ||
| 1019 | .activate_plugin = pfair_activate_plugin, | ||
| 1020 | .deactivate_plugin = pfair_deactivate_plugin, | ||
| 1021 | }; | ||
| 1022 | |||
| 1023 | |||
| 1024 | static struct proc_dir_entry *cluster_file = NULL, *pfair_dir = NULL; | ||
| 1025 | |||
| 1026 | static int __init init_pfair(void) | ||
| 1027 | { | ||
| 1028 | int cpu, err, fs; | ||
| 1029 | struct pfair_state *state; | ||
| 1030 | |||
| 1031 | /* | ||
| 1032 | * initialize short_cut for per-cpu pfair state; | ||
| 1033 | * there may be a problem here if someone removes a cpu | ||
| 1034 | * while we are doing this initialization... and if cpus | ||
| 1035 | * are added / removed later... but we don't support CPU hotplug atm anyway. | ||
| 1036 | */ | ||
| 1037 | pstate = kmalloc(sizeof(struct pfair_state*) * num_online_cpus(), GFP_KERNEL); | ||
| 1038 | |||
| 1039 | /* initialize CPU state */ | ||
| 1040 | for (cpu = 0; cpu < num_online_cpus(); cpu++) { | ||
| 1041 | state = &per_cpu(pfair_state, cpu); | ||
| 1042 | state->topology.id = cpu; | ||
| 1043 | state->cur_tick = 0; | ||
| 1044 | state->local_tick = 0; | ||
| 1045 | state->linked = NULL; | ||
| 1046 | state->local = NULL; | ||
| 1047 | state->scheduled = NULL; | ||
| 1048 | state->missed_quanta = 0; | ||
| 1049 | state->offset = cpu_stagger_offset(cpu); | ||
| 1050 | pstate[cpu] = state; | ||
| 1051 | } | ||
| 1052 | |||
| 1053 | pfair_clusters = NULL; | ||
| 1054 | num_pfair_clusters = 0; | ||
| 1055 | |||
| 1056 | err = register_sched_plugin(&pfair_plugin); | ||
| 1057 | if (!err) { | ||
| 1058 | fs = make_plugin_proc_dir(&pfair_plugin, &pfair_dir); | ||
| 1059 | if (!fs) | ||
| 1060 | cluster_file = create_cluster_file(pfair_dir, &pfair_cluster_level); | ||
| 1061 | else | ||
| 1062 | printk(KERN_ERR "Could not allocate PFAIR procfs dir.\n"); | ||
| 1063 | } | ||
| 1064 | |||
| 1065 | return err; | ||
| 1066 | } | ||
| 1067 | |||
| 1068 | static void __exit clean_pfair(void) | ||
| 1069 | { | ||
| 1070 | kfree(pstate); | ||
| 1071 | |||
| 1072 | if (cluster_file) | ||
| 1073 | remove_proc_entry("cluster", pfair_dir); | ||
| 1074 | if (pfair_dir) | ||
| 1075 | remove_plugin_proc_dir(&pfair_plugin); | ||
| 1076 | } | ||
| 1077 | |||
| 1078 | module_init(init_pfair); | ||
| 1079 | module_exit(clean_pfair); | ||
