aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Documentation/device-mapper/verity.txt194
-rw-r--r--drivers/md/Kconfig20
-rw-r--r--drivers/md/Makefile1
-rw-r--r--drivers/md/dm-verity.c913
4 files changed, 1128 insertions, 0 deletions
diff --git a/Documentation/device-mapper/verity.txt b/Documentation/device-mapper/verity.txt
new file mode 100644
index 000000000000..32e48797a14f
--- /dev/null
+++ b/Documentation/device-mapper/verity.txt
@@ -0,0 +1,194 @@
1dm-verity
2==========
3
4Device-Mapper's "verity" target provides transparent integrity checking of
5block devices using a cryptographic digest provided by the kernel crypto API.
6This target is read-only.
7
8Construction Parameters
9=======================
10 <version> <dev> <hash_dev> <hash_start>
11 <data_block_size> <hash_block_size>
12 <num_data_blocks> <hash_start_block>
13 <algorithm> <digest> <salt>
14
15<version>
16 This is the version number of the on-disk format.
17
18 0 is the original format used in the Chromium OS.
19 The salt is appended when hashing, digests are stored continuously and
20 the rest of the block is padded with zeros.
21
22 1 is the current format that should be used for new devices.
23 The salt is prepended when hashing and each digest is
24 padded with zeros to the power of two.
25
26<dev>
27 This is the device containing the data the integrity of which needs to be
28 checked. It may be specified as a path, like /dev/sdaX, or a device number,
29 <major>:<minor>.
30
31<hash_dev>
32 This is the device that that supplies the hash tree data. It may be
33 specified similarly to the device path and may be the same device. If the
34 same device is used, the hash_start should be outside of the dm-verity
35 configured device size.
36
37<data_block_size>
38 The block size on a data device. Each block corresponds to one digest on
39 the hash device.
40
41<hash_block_size>
42 The size of a hash block.
43
44<num_data_blocks>
45 The number of data blocks on the data device. Additional blocks are
46 inaccessible. You can place hashes to the same partition as data, in this
47 case hashes are placed after <num_data_blocks>.
48
49<hash_start_block>
50 This is the offset, in <hash_block_size>-blocks, from the start of hash_dev
51 to the root block of the hash tree.
52
53<algorithm>
54 The cryptographic hash algorithm used for this device. This should
55 be the name of the algorithm, like "sha1".
56
57<digest>
58 The hexadecimal encoding of the cryptographic hash of the root hash block
59 and the salt. This hash should be trusted as there is no other authenticity
60 beyond this point.
61
62<salt>
63 The hexadecimal encoding of the salt value.
64
65Theory of operation
66===================
67
68dm-verity is meant to be setup as part of a verified boot path. This
69may be anything ranging from a boot using tboot or trustedgrub to just
70booting from a known-good device (like a USB drive or CD).
71
72When a dm-verity device is configured, it is expected that the caller
73has been authenticated in some way (cryptographic signatures, etc).
74After instantiation, all hashes will be verified on-demand during
75disk access. If they cannot be verified up to the root node of the
76tree, the root hash, then the I/O will fail. This should identify
77tampering with any data on the device and the hash data.
78
79Cryptographic hashes are used to assert the integrity of the device on a
80per-block basis. This allows for a lightweight hash computation on first read
81into the page cache. Block hashes are stored linearly-aligned to the nearest
82block the size of a page.
83
84Hash Tree
85---------
86
87Each node in the tree is a cryptographic hash. If it is a leaf node, the hash
88is of some block data on disk. If it is an intermediary node, then the hash is
89of a number of child nodes.
90
91Each entry in the tree is a collection of neighboring nodes that fit in one
92block. The number is determined based on block_size and the size of the
93selected cryptographic digest algorithm. The hashes are linearly-ordered in
94this entry and any unaligned trailing space is ignored but included when
95calculating the parent node.
96
97The tree looks something like:
98
99alg = sha256, num_blocks = 32768, block_size = 4096
100
101 [ root ]
102 / . . . \
103 [entry_0] [entry_1]
104 / . . . \ . . . \
105 [entry_0_0] . . . [entry_0_127] . . . . [entry_1_127]
106 / ... \ / . . . \ / \
107 blk_0 ... blk_127 blk_16256 blk_16383 blk_32640 . . . blk_32767
108
109
110On-disk format
111==============
112
113Below is the recommended on-disk format. The verity kernel code does not
114read the on-disk header. It only reads the hash blocks which directly
115follow the header. It is expected that a user-space tool will verify the
116integrity of the verity_header and then call dmsetup with the correct
117parameters. Alternatively, the header can be omitted and the dmsetup
118parameters can be passed via the kernel command-line in a rooted chain
119of trust where the command-line is verified.
120
121The on-disk format is especially useful in cases where the hash blocks
122are on a separate partition. The magic number allows easy identification
123of the partition contents. Alternatively, the hash blocks can be stored
124in the same partition as the data to be verified. In such a configuration
125the filesystem on the partition would be sized a little smaller than
126the full-partition, leaving room for the hash blocks.
127
128struct superblock {
129 uint8_t signature[8]
130 "verity\0\0";
131
132 uint8_t version;
133 1 - current format
134
135 uint8_t data_block_bits;
136 log2(data block size)
137
138 uint8_t hash_block_bits;
139 log2(hash block size)
140
141 uint8_t pad1[1];
142 zero padding
143
144 uint16_t salt_size;
145 big-endian salt size
146
147 uint8_t pad2[2];
148 zero padding
149
150 uint32_t data_blocks_hi;
151 big-endian high 32 bits of the 64-bit number of data blocks
152
153 uint32_t data_blocks_lo;
154 big-endian low 32 bits of the 64-bit number of data blocks
155
156 uint8_t algorithm[16];
157 cryptographic algorithm
158
159 uint8_t salt[384];
160 salt (the salt size is specified above)
161
162 uint8_t pad3[88];
163 zero padding to 512-byte boundary
164}
165
166Directly following the header (and with sector number padded to the next hash
167block boundary) are the hash blocks which are stored a depth at a time
168(starting from the root), sorted in order of increasing index.
169
170Status
171======
172V (for Valid) is returned if every check performed so far was valid.
173If any check failed, C (for Corruption) is returned.
174
175Example
176=======
177
178Setup a device:
179 dmsetup create vroot --table \
180 "0 2097152 "\
181 "verity 1 /dev/sda1 /dev/sda2 4096 4096 2097152 1 "\
182 "4392712ba01368efdf14b05c76f9e4df0d53664630b5d48632ed17a137f39076 "\
183 "1234000000000000000000000000000000000000000000000000000000000000"
184
185A command line tool veritysetup is available to compute or verify
186the hash tree or activate the kernel driver. This is available from
187the LVM2 upstream repository and may be supplied as a package called
188device-mapper-verity-tools:
189 git://sources.redhat.com/git/lvm2
190 http://sourceware.org/git/?p=lvm2.git
191 http://sourceware.org/cgi-bin/cvsweb.cgi/LVM2/verity?cvsroot=lvm2
192
193veritysetup -a vroot /dev/sda1 /dev/sda2 \
194 4392712ba01368efdf14b05c76f9e4df0d53664630b5d48632ed17a137f39076
diff --git a/drivers/md/Kconfig b/drivers/md/Kconfig
index 71000078351a..10f122a3a856 100644
--- a/drivers/md/Kconfig
+++ b/drivers/md/Kconfig
@@ -370,4 +370,24 @@ config DM_FLAKEY
370 ---help--- 370 ---help---
371 A target that intermittently fails I/O for debugging purposes. 371 A target that intermittently fails I/O for debugging purposes.
372 372
373config DM_VERITY
374 tristate "Verity target support (EXPERIMENTAL)"
375 depends on BLK_DEV_DM && EXPERIMENTAL
376 select CRYPTO
377 select CRYPTO_HASH
378 select DM_BUFIO
379 ---help---
380 This device-mapper target creates a read-only device that
381 transparently validates the data on one underlying device against
382 a pre-generated tree of cryptographic checksums stored on a second
383 device.
384
385 You'll need to activate the digests you're going to use in the
386 cryptoapi configuration.
387
388 To compile this code as a module, choose M here: the module will
389 be called dm-verity.
390
391 If unsure, say N.
392
373endif # MD 393endif # MD
diff --git a/drivers/md/Makefile b/drivers/md/Makefile
index 046860c7a166..8b2e0dffe82e 100644
--- a/drivers/md/Makefile
+++ b/drivers/md/Makefile
@@ -42,6 +42,7 @@ obj-$(CONFIG_DM_LOG_USERSPACE) += dm-log-userspace.o
42obj-$(CONFIG_DM_ZERO) += dm-zero.o 42obj-$(CONFIG_DM_ZERO) += dm-zero.o
43obj-$(CONFIG_DM_RAID) += dm-raid.o 43obj-$(CONFIG_DM_RAID) += dm-raid.o
44obj-$(CONFIG_DM_THIN_PROVISIONING) += dm-thin-pool.o 44obj-$(CONFIG_DM_THIN_PROVISIONING) += dm-thin-pool.o
45obj-$(CONFIG_DM_VERITY) += dm-verity.o
45 46
46ifeq ($(CONFIG_DM_UEVENT),y) 47ifeq ($(CONFIG_DM_UEVENT),y)
47dm-mod-objs += dm-uevent.o 48dm-mod-objs += dm-uevent.o
diff --git a/drivers/md/dm-verity.c b/drivers/md/dm-verity.c
new file mode 100644
index 000000000000..fa365d39b612
--- /dev/null
+++ b/drivers/md/dm-verity.c
@@ -0,0 +1,913 @@
1/*
2 * Copyright (C) 2012 Red Hat, Inc.
3 *
4 * Author: Mikulas Patocka <mpatocka@redhat.com>
5 *
6 * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
7 *
8 * This file is released under the GPLv2.
9 *
10 * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
11 * default prefetch value. Data are read in "prefetch_cluster" chunks from the
12 * hash device. Setting this greatly improves performance when data and hash
13 * are on the same disk on different partitions on devices with poor random
14 * access behavior.
15 */
16
17#include "dm-bufio.h"
18
19#include <linux/module.h>
20#include <linux/device-mapper.h>
21#include <crypto/hash.h>
22
23#define DM_MSG_PREFIX "verity"
24
25#define DM_VERITY_IO_VEC_INLINE 16
26#define DM_VERITY_MEMPOOL_SIZE 4
27#define DM_VERITY_DEFAULT_PREFETCH_SIZE 262144
28
29#define DM_VERITY_MAX_LEVELS 63
30
31static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
32
33module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
34
35struct dm_verity {
36 struct dm_dev *data_dev;
37 struct dm_dev *hash_dev;
38 struct dm_target *ti;
39 struct dm_bufio_client *bufio;
40 char *alg_name;
41 struct crypto_shash *tfm;
42 u8 *root_digest; /* digest of the root block */
43 u8 *salt; /* salt: its size is salt_size */
44 unsigned salt_size;
45 sector_t data_start; /* data offset in 512-byte sectors */
46 sector_t hash_start; /* hash start in blocks */
47 sector_t data_blocks; /* the number of data blocks */
48 sector_t hash_blocks; /* the number of hash blocks */
49 unsigned char data_dev_block_bits; /* log2(data blocksize) */
50 unsigned char hash_dev_block_bits; /* log2(hash blocksize) */
51 unsigned char hash_per_block_bits; /* log2(hashes in hash block) */
52 unsigned char levels; /* the number of tree levels */
53 unsigned char version;
54 unsigned digest_size; /* digest size for the current hash algorithm */
55 unsigned shash_descsize;/* the size of temporary space for crypto */
56 int hash_failed; /* set to 1 if hash of any block failed */
57
58 mempool_t *io_mempool; /* mempool of struct dm_verity_io */
59 mempool_t *vec_mempool; /* mempool of bio vector */
60
61 struct workqueue_struct *verify_wq;
62
63 /* starting blocks for each tree level. 0 is the lowest level. */
64 sector_t hash_level_block[DM_VERITY_MAX_LEVELS];
65};
66
67struct dm_verity_io {
68 struct dm_verity *v;
69 struct bio *bio;
70
71 /* original values of bio->bi_end_io and bio->bi_private */
72 bio_end_io_t *orig_bi_end_io;
73 void *orig_bi_private;
74
75 sector_t block;
76 unsigned n_blocks;
77
78 /* saved bio vector */
79 struct bio_vec *io_vec;
80 unsigned io_vec_size;
81
82 struct work_struct work;
83
84 /* A space for short vectors; longer vectors are allocated separately. */
85 struct bio_vec io_vec_inline[DM_VERITY_IO_VEC_INLINE];
86
87 /*
88 * Three variably-size fields follow this struct:
89 *
90 * u8 hash_desc[v->shash_descsize];
91 * u8 real_digest[v->digest_size];
92 * u8 want_digest[v->digest_size];
93 *
94 * To access them use: io_hash_desc(), io_real_digest() and io_want_digest().
95 */
96};
97
98static struct shash_desc *io_hash_desc(struct dm_verity *v, struct dm_verity_io *io)
99{
100 return (struct shash_desc *)(io + 1);
101}
102
103static u8 *io_real_digest(struct dm_verity *v, struct dm_verity_io *io)
104{
105 return (u8 *)(io + 1) + v->shash_descsize;
106}
107
108static u8 *io_want_digest(struct dm_verity *v, struct dm_verity_io *io)
109{
110 return (u8 *)(io + 1) + v->shash_descsize + v->digest_size;
111}
112
113/*
114 * Auxiliary structure appended to each dm-bufio buffer. If the value
115 * hash_verified is nonzero, hash of the block has been verified.
116 *
117 * The variable hash_verified is set to 0 when allocating the buffer, then
118 * it can be changed to 1 and it is never reset to 0 again.
119 *
120 * There is no lock around this value, a race condition can at worst cause
121 * that multiple processes verify the hash of the same buffer simultaneously
122 * and write 1 to hash_verified simultaneously.
123 * This condition is harmless, so we don't need locking.
124 */
125struct buffer_aux {
126 int hash_verified;
127};
128
129/*
130 * Initialize struct buffer_aux for a freshly created buffer.
131 */
132static void dm_bufio_alloc_callback(struct dm_buffer *buf)
133{
134 struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
135
136 aux->hash_verified = 0;
137}
138
139/*
140 * Translate input sector number to the sector number on the target device.
141 */
142static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
143{
144 return v->data_start + dm_target_offset(v->ti, bi_sector);
145}
146
147/*
148 * Return hash position of a specified block at a specified tree level
149 * (0 is the lowest level).
150 * The lowest "hash_per_block_bits"-bits of the result denote hash position
151 * inside a hash block. The remaining bits denote location of the hash block.
152 */
153static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
154 int level)
155{
156 return block >> (level * v->hash_per_block_bits);
157}
158
159static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
160 sector_t *hash_block, unsigned *offset)
161{
162 sector_t position = verity_position_at_level(v, block, level);
163 unsigned idx;
164
165 *hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
166
167 if (!offset)
168 return;
169
170 idx = position & ((1 << v->hash_per_block_bits) - 1);
171 if (!v->version)
172 *offset = idx * v->digest_size;
173 else
174 *offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
175}
176
177/*
178 * Verify hash of a metadata block pertaining to the specified data block
179 * ("block" argument) at a specified level ("level" argument).
180 *
181 * On successful return, io_want_digest(v, io) contains the hash value for
182 * a lower tree level or for the data block (if we're at the lowest leve).
183 *
184 * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
185 * If "skip_unverified" is false, unverified buffer is hashed and verified
186 * against current value of io_want_digest(v, io).
187 */
188static int verity_verify_level(struct dm_verity_io *io, sector_t block,
189 int level, bool skip_unverified)
190{
191 struct dm_verity *v = io->v;
192 struct dm_buffer *buf;
193 struct buffer_aux *aux;
194 u8 *data;
195 int r;
196 sector_t hash_block;
197 unsigned offset;
198
199 verity_hash_at_level(v, block, level, &hash_block, &offset);
200
201 data = dm_bufio_read(v->bufio, hash_block, &buf);
202 if (unlikely(IS_ERR(data)))
203 return PTR_ERR(data);
204
205 aux = dm_bufio_get_aux_data(buf);
206
207 if (!aux->hash_verified) {
208 struct shash_desc *desc;
209 u8 *result;
210
211 if (skip_unverified) {
212 r = 1;
213 goto release_ret_r;
214 }
215
216 desc = io_hash_desc(v, io);
217 desc->tfm = v->tfm;
218 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
219 r = crypto_shash_init(desc);
220 if (r < 0) {
221 DMERR("crypto_shash_init failed: %d", r);
222 goto release_ret_r;
223 }
224
225 if (likely(v->version >= 1)) {
226 r = crypto_shash_update(desc, v->salt, v->salt_size);
227 if (r < 0) {
228 DMERR("crypto_shash_update failed: %d", r);
229 goto release_ret_r;
230 }
231 }
232
233 r = crypto_shash_update(desc, data, 1 << v->hash_dev_block_bits);
234 if (r < 0) {
235 DMERR("crypto_shash_update failed: %d", r);
236 goto release_ret_r;
237 }
238
239 if (!v->version) {
240 r = crypto_shash_update(desc, v->salt, v->salt_size);
241 if (r < 0) {
242 DMERR("crypto_shash_update failed: %d", r);
243 goto release_ret_r;
244 }
245 }
246
247 result = io_real_digest(v, io);
248 r = crypto_shash_final(desc, result);
249 if (r < 0) {
250 DMERR("crypto_shash_final failed: %d", r);
251 goto release_ret_r;
252 }
253 if (unlikely(memcmp(result, io_want_digest(v, io), v->digest_size))) {
254 DMERR_LIMIT("metadata block %llu is corrupted",
255 (unsigned long long)hash_block);
256 v->hash_failed = 1;
257 r = -EIO;
258 goto release_ret_r;
259 } else
260 aux->hash_verified = 1;
261 }
262
263 data += offset;
264
265 memcpy(io_want_digest(v, io), data, v->digest_size);
266
267 dm_bufio_release(buf);
268 return 0;
269
270release_ret_r:
271 dm_bufio_release(buf);
272
273 return r;
274}
275
276/*
277 * Verify one "dm_verity_io" structure.
278 */
279static int verity_verify_io(struct dm_verity_io *io)
280{
281 struct dm_verity *v = io->v;
282 unsigned b;
283 int i;
284 unsigned vector = 0, offset = 0;
285
286 for (b = 0; b < io->n_blocks; b++) {
287 struct shash_desc *desc;
288 u8 *result;
289 int r;
290 unsigned todo;
291
292 if (likely(v->levels)) {
293 /*
294 * First, we try to get the requested hash for
295 * the current block. If the hash block itself is
296 * verified, zero is returned. If it isn't, this
297 * function returns 0 and we fall back to whole
298 * chain verification.
299 */
300 int r = verity_verify_level(io, io->block + b, 0, true);
301 if (likely(!r))
302 goto test_block_hash;
303 if (r < 0)
304 return r;
305 }
306
307 memcpy(io_want_digest(v, io), v->root_digest, v->digest_size);
308
309 for (i = v->levels - 1; i >= 0; i--) {
310 int r = verity_verify_level(io, io->block + b, i, false);
311 if (unlikely(r))
312 return r;
313 }
314
315test_block_hash:
316 desc = io_hash_desc(v, io);
317 desc->tfm = v->tfm;
318 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
319 r = crypto_shash_init(desc);
320 if (r < 0) {
321 DMERR("crypto_shash_init failed: %d", r);
322 return r;
323 }
324
325 if (likely(v->version >= 1)) {
326 r = crypto_shash_update(desc, v->salt, v->salt_size);
327 if (r < 0) {
328 DMERR("crypto_shash_update failed: %d", r);
329 return r;
330 }
331 }
332
333 todo = 1 << v->data_dev_block_bits;
334 do {
335 struct bio_vec *bv;
336 u8 *page;
337 unsigned len;
338
339 BUG_ON(vector >= io->io_vec_size);
340 bv = &io->io_vec[vector];
341 page = kmap_atomic(bv->bv_page);
342 len = bv->bv_len - offset;
343 if (likely(len >= todo))
344 len = todo;
345 r = crypto_shash_update(desc,
346 page + bv->bv_offset + offset, len);
347 kunmap_atomic(page);
348 if (r < 0) {
349 DMERR("crypto_shash_update failed: %d", r);
350 return r;
351 }
352 offset += len;
353 if (likely(offset == bv->bv_len)) {
354 offset = 0;
355 vector++;
356 }
357 todo -= len;
358 } while (todo);
359
360 if (!v->version) {
361 r = crypto_shash_update(desc, v->salt, v->salt_size);
362 if (r < 0) {
363 DMERR("crypto_shash_update failed: %d", r);
364 return r;
365 }
366 }
367
368 result = io_real_digest(v, io);
369 r = crypto_shash_final(desc, result);
370 if (r < 0) {
371 DMERR("crypto_shash_final failed: %d", r);
372 return r;
373 }
374 if (unlikely(memcmp(result, io_want_digest(v, io), v->digest_size))) {
375 DMERR_LIMIT("data block %llu is corrupted",
376 (unsigned long long)(io->block + b));
377 v->hash_failed = 1;
378 return -EIO;
379 }
380 }
381 BUG_ON(vector != io->io_vec_size);
382 BUG_ON(offset);
383
384 return 0;
385}
386
387/*
388 * End one "io" structure with a given error.
389 */
390static void verity_finish_io(struct dm_verity_io *io, int error)
391{
392 struct bio *bio = io->bio;
393 struct dm_verity *v = io->v;
394
395 bio->bi_end_io = io->orig_bi_end_io;
396 bio->bi_private = io->orig_bi_private;
397
398 if (io->io_vec != io->io_vec_inline)
399 mempool_free(io->io_vec, v->vec_mempool);
400
401 mempool_free(io, v->io_mempool);
402
403 bio_endio(bio, error);
404}
405
406static void verity_work(struct work_struct *w)
407{
408 struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
409
410 verity_finish_io(io, verity_verify_io(io));
411}
412
413static void verity_end_io(struct bio *bio, int error)
414{
415 struct dm_verity_io *io = bio->bi_private;
416
417 if (error) {
418 verity_finish_io(io, error);
419 return;
420 }
421
422 INIT_WORK(&io->work, verity_work);
423 queue_work(io->v->verify_wq, &io->work);
424}
425
426/*
427 * Prefetch buffers for the specified io.
428 * The root buffer is not prefetched, it is assumed that it will be cached
429 * all the time.
430 */
431static void verity_prefetch_io(struct dm_verity *v, struct dm_verity_io *io)
432{
433 int i;
434
435 for (i = v->levels - 2; i >= 0; i--) {
436 sector_t hash_block_start;
437 sector_t hash_block_end;
438 verity_hash_at_level(v, io->block, i, &hash_block_start, NULL);
439 verity_hash_at_level(v, io->block + io->n_blocks - 1, i, &hash_block_end, NULL);
440 if (!i) {
441 unsigned cluster = *(volatile unsigned *)&dm_verity_prefetch_cluster;
442
443 cluster >>= v->data_dev_block_bits;
444 if (unlikely(!cluster))
445 goto no_prefetch_cluster;
446
447 if (unlikely(cluster & (cluster - 1)))
448 cluster = 1 << (fls(cluster) - 1);
449
450 hash_block_start &= ~(sector_t)(cluster - 1);
451 hash_block_end |= cluster - 1;
452 if (unlikely(hash_block_end >= v->hash_blocks))
453 hash_block_end = v->hash_blocks - 1;
454 }
455no_prefetch_cluster:
456 dm_bufio_prefetch(v->bufio, hash_block_start,
457 hash_block_end - hash_block_start + 1);
458 }
459}
460
461/*
462 * Bio map function. It allocates dm_verity_io structure and bio vector and
463 * fills them. Then it issues prefetches and the I/O.
464 */
465static int verity_map(struct dm_target *ti, struct bio *bio,
466 union map_info *map_context)
467{
468 struct dm_verity *v = ti->private;
469 struct dm_verity_io *io;
470
471 bio->bi_bdev = v->data_dev->bdev;
472 bio->bi_sector = verity_map_sector(v, bio->bi_sector);
473
474 if (((unsigned)bio->bi_sector | bio_sectors(bio)) &
475 ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
476 DMERR_LIMIT("unaligned io");
477 return -EIO;
478 }
479
480 if ((bio->bi_sector + bio_sectors(bio)) >>
481 (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
482 DMERR_LIMIT("io out of range");
483 return -EIO;
484 }
485
486 if (bio_data_dir(bio) == WRITE)
487 return -EIO;
488
489 io = mempool_alloc(v->io_mempool, GFP_NOIO);
490 io->v = v;
491 io->bio = bio;
492 io->orig_bi_end_io = bio->bi_end_io;
493 io->orig_bi_private = bio->bi_private;
494 io->block = bio->bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
495 io->n_blocks = bio->bi_size >> v->data_dev_block_bits;
496
497 bio->bi_end_io = verity_end_io;
498 bio->bi_private = io;
499 io->io_vec_size = bio->bi_vcnt - bio->bi_idx;
500 if (io->io_vec_size < DM_VERITY_IO_VEC_INLINE)
501 io->io_vec = io->io_vec_inline;
502 else
503 io->io_vec = mempool_alloc(v->vec_mempool, GFP_NOIO);
504 memcpy(io->io_vec, bio_iovec(bio),
505 io->io_vec_size * sizeof(struct bio_vec));
506
507 verity_prefetch_io(v, io);
508
509 generic_make_request(bio);
510
511 return DM_MAPIO_SUBMITTED;
512}
513
514/*
515 * Status: V (valid) or C (corruption found)
516 */
517static int verity_status(struct dm_target *ti, status_type_t type,
518 char *result, unsigned maxlen)
519{
520 struct dm_verity *v = ti->private;
521 unsigned sz = 0;
522 unsigned x;
523
524 switch (type) {
525 case STATUSTYPE_INFO:
526 DMEMIT("%c", v->hash_failed ? 'C' : 'V');
527 break;
528 case STATUSTYPE_TABLE:
529 DMEMIT("%u %s %s %u %u %llu %llu %s ",
530 v->version,
531 v->data_dev->name,
532 v->hash_dev->name,
533 1 << v->data_dev_block_bits,
534 1 << v->hash_dev_block_bits,
535 (unsigned long long)v->data_blocks,
536 (unsigned long long)v->hash_start,
537 v->alg_name
538 );
539 for (x = 0; x < v->digest_size; x++)
540 DMEMIT("%02x", v->root_digest[x]);
541 DMEMIT(" ");
542 if (!v->salt_size)
543 DMEMIT("-");
544 else
545 for (x = 0; x < v->salt_size; x++)
546 DMEMIT("%02x", v->salt[x]);
547 break;
548 }
549
550 return 0;
551}
552
553static int verity_ioctl(struct dm_target *ti, unsigned cmd,
554 unsigned long arg)
555{
556 struct dm_verity *v = ti->private;
557 int r = 0;
558
559 if (v->data_start ||
560 ti->len != i_size_read(v->data_dev->bdev->bd_inode) >> SECTOR_SHIFT)
561 r = scsi_verify_blk_ioctl(NULL, cmd);
562
563 return r ? : __blkdev_driver_ioctl(v->data_dev->bdev, v->data_dev->mode,
564 cmd, arg);
565}
566
567static int verity_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
568 struct bio_vec *biovec, int max_size)
569{
570 struct dm_verity *v = ti->private;
571 struct request_queue *q = bdev_get_queue(v->data_dev->bdev);
572
573 if (!q->merge_bvec_fn)
574 return max_size;
575
576 bvm->bi_bdev = v->data_dev->bdev;
577 bvm->bi_sector = verity_map_sector(v, bvm->bi_sector);
578
579 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
580}
581
582static int verity_iterate_devices(struct dm_target *ti,
583 iterate_devices_callout_fn fn, void *data)
584{
585 struct dm_verity *v = ti->private;
586
587 return fn(ti, v->data_dev, v->data_start, ti->len, data);
588}
589
590static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
591{
592 struct dm_verity *v = ti->private;
593
594 if (limits->logical_block_size < 1 << v->data_dev_block_bits)
595 limits->logical_block_size = 1 << v->data_dev_block_bits;
596
597 if (limits->physical_block_size < 1 << v->data_dev_block_bits)
598 limits->physical_block_size = 1 << v->data_dev_block_bits;
599
600 blk_limits_io_min(limits, limits->logical_block_size);
601}
602
603static void verity_dtr(struct dm_target *ti)
604{
605 struct dm_verity *v = ti->private;
606
607 if (v->verify_wq)
608 destroy_workqueue(v->verify_wq);
609
610 if (v->vec_mempool)
611 mempool_destroy(v->vec_mempool);
612
613 if (v->io_mempool)
614 mempool_destroy(v->io_mempool);
615
616 if (v->bufio)
617 dm_bufio_client_destroy(v->bufio);
618
619 kfree(v->salt);
620 kfree(v->root_digest);
621
622 if (v->tfm)
623 crypto_free_shash(v->tfm);
624
625 kfree(v->alg_name);
626
627 if (v->hash_dev)
628 dm_put_device(ti, v->hash_dev);
629
630 if (v->data_dev)
631 dm_put_device(ti, v->data_dev);
632
633 kfree(v);
634}
635
636/*
637 * Target parameters:
638 * <version> The current format is version 1.
639 * Vsn 0 is compatible with original Chromium OS releases.
640 * <data device>
641 * <hash device>
642 * <data block size>
643 * <hash block size>
644 * <the number of data blocks>
645 * <hash start block>
646 * <algorithm>
647 * <digest>
648 * <salt> Hex string or "-" if no salt.
649 */
650static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
651{
652 struct dm_verity *v;
653 unsigned num;
654 unsigned long long num_ll;
655 int r;
656 int i;
657 sector_t hash_position;
658 char dummy;
659
660 v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
661 if (!v) {
662 ti->error = "Cannot allocate verity structure";
663 return -ENOMEM;
664 }
665 ti->private = v;
666 v->ti = ti;
667
668 if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
669 ti->error = "Device must be readonly";
670 r = -EINVAL;
671 goto bad;
672 }
673
674 if (argc != 10) {
675 ti->error = "Invalid argument count: exactly 10 arguments required";
676 r = -EINVAL;
677 goto bad;
678 }
679
680 if (sscanf(argv[0], "%d%c", &num, &dummy) != 1 ||
681 num < 0 || num > 1) {
682 ti->error = "Invalid version";
683 r = -EINVAL;
684 goto bad;
685 }
686 v->version = num;
687
688 r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
689 if (r) {
690 ti->error = "Data device lookup failed";
691 goto bad;
692 }
693
694 r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
695 if (r) {
696 ti->error = "Data device lookup failed";
697 goto bad;
698 }
699
700 if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
701 !num || (num & (num - 1)) ||
702 num < bdev_logical_block_size(v->data_dev->bdev) ||
703 num > PAGE_SIZE) {
704 ti->error = "Invalid data device block size";
705 r = -EINVAL;
706 goto bad;
707 }
708 v->data_dev_block_bits = ffs(num) - 1;
709
710 if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
711 !num || (num & (num - 1)) ||
712 num < bdev_logical_block_size(v->hash_dev->bdev) ||
713 num > INT_MAX) {
714 ti->error = "Invalid hash device block size";
715 r = -EINVAL;
716 goto bad;
717 }
718 v->hash_dev_block_bits = ffs(num) - 1;
719
720 if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
721 num_ll << (v->data_dev_block_bits - SECTOR_SHIFT) !=
722 (sector_t)num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) {
723 ti->error = "Invalid data blocks";
724 r = -EINVAL;
725 goto bad;
726 }
727 v->data_blocks = num_ll;
728
729 if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
730 ti->error = "Data device is too small";
731 r = -EINVAL;
732 goto bad;
733 }
734
735 if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
736 num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT) !=
737 (sector_t)num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT)) {
738 ti->error = "Invalid hash start";
739 r = -EINVAL;
740 goto bad;
741 }
742 v->hash_start = num_ll;
743
744 v->alg_name = kstrdup(argv[7], GFP_KERNEL);
745 if (!v->alg_name) {
746 ti->error = "Cannot allocate algorithm name";
747 r = -ENOMEM;
748 goto bad;
749 }
750
751 v->tfm = crypto_alloc_shash(v->alg_name, 0, 0);
752 if (IS_ERR(v->tfm)) {
753 ti->error = "Cannot initialize hash function";
754 r = PTR_ERR(v->tfm);
755 v->tfm = NULL;
756 goto bad;
757 }
758 v->digest_size = crypto_shash_digestsize(v->tfm);
759 if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
760 ti->error = "Digest size too big";
761 r = -EINVAL;
762 goto bad;
763 }
764 v->shash_descsize =
765 sizeof(struct shash_desc) + crypto_shash_descsize(v->tfm);
766
767 v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
768 if (!v->root_digest) {
769 ti->error = "Cannot allocate root digest";
770 r = -ENOMEM;
771 goto bad;
772 }
773 if (strlen(argv[8]) != v->digest_size * 2 ||
774 hex2bin(v->root_digest, argv[8], v->digest_size)) {
775 ti->error = "Invalid root digest";
776 r = -EINVAL;
777 goto bad;
778 }
779
780 if (strcmp(argv[9], "-")) {
781 v->salt_size = strlen(argv[9]) / 2;
782 v->salt = kmalloc(v->salt_size, GFP_KERNEL);
783 if (!v->salt) {
784 ti->error = "Cannot allocate salt";
785 r = -ENOMEM;
786 goto bad;
787 }
788 if (strlen(argv[9]) != v->salt_size * 2 ||
789 hex2bin(v->salt, argv[9], v->salt_size)) {
790 ti->error = "Invalid salt";
791 r = -EINVAL;
792 goto bad;
793 }
794 }
795
796 v->hash_per_block_bits =
797 fls((1 << v->hash_dev_block_bits) / v->digest_size) - 1;
798
799 v->levels = 0;
800 if (v->data_blocks)
801 while (v->hash_per_block_bits * v->levels < 64 &&
802 (unsigned long long)(v->data_blocks - 1) >>
803 (v->hash_per_block_bits * v->levels))
804 v->levels++;
805
806 if (v->levels > DM_VERITY_MAX_LEVELS) {
807 ti->error = "Too many tree levels";
808 r = -E2BIG;
809 goto bad;
810 }
811
812 hash_position = v->hash_start;
813 for (i = v->levels - 1; i >= 0; i--) {
814 sector_t s;
815 v->hash_level_block[i] = hash_position;
816 s = verity_position_at_level(v, v->data_blocks, i);
817 s = (s >> v->hash_per_block_bits) +
818 !!(s & ((1 << v->hash_per_block_bits) - 1));
819 if (hash_position + s < hash_position) {
820 ti->error = "Hash device offset overflow";
821 r = -E2BIG;
822 goto bad;
823 }
824 hash_position += s;
825 }
826 v->hash_blocks = hash_position;
827
828 v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
829 1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
830 dm_bufio_alloc_callback, NULL);
831 if (IS_ERR(v->bufio)) {
832 ti->error = "Cannot initialize dm-bufio";
833 r = PTR_ERR(v->bufio);
834 v->bufio = NULL;
835 goto bad;
836 }
837
838 if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
839 ti->error = "Hash device is too small";
840 r = -E2BIG;
841 goto bad;
842 }
843
844 v->io_mempool = mempool_create_kmalloc_pool(DM_VERITY_MEMPOOL_SIZE,
845 sizeof(struct dm_verity_io) + v->shash_descsize + v->digest_size * 2);
846 if (!v->io_mempool) {
847 ti->error = "Cannot allocate io mempool";
848 r = -ENOMEM;
849 goto bad;
850 }
851
852 v->vec_mempool = mempool_create_kmalloc_pool(DM_VERITY_MEMPOOL_SIZE,
853 BIO_MAX_PAGES * sizeof(struct bio_vec));
854 if (!v->vec_mempool) {
855 ti->error = "Cannot allocate vector mempool";
856 r = -ENOMEM;
857 goto bad;
858 }
859
860 /* WQ_UNBOUND greatly improves performance when running on ramdisk */
861 v->verify_wq = alloc_workqueue("kverityd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus());
862 if (!v->verify_wq) {
863 ti->error = "Cannot allocate workqueue";
864 r = -ENOMEM;
865 goto bad;
866 }
867
868 return 0;
869
870bad:
871 verity_dtr(ti);
872
873 return r;
874}
875
876static struct target_type verity_target = {
877 .name = "verity",
878 .version = {1, 0, 0},
879 .module = THIS_MODULE,
880 .ctr = verity_ctr,
881 .dtr = verity_dtr,
882 .map = verity_map,
883 .status = verity_status,
884 .ioctl = verity_ioctl,
885 .merge = verity_merge,
886 .iterate_devices = verity_iterate_devices,
887 .io_hints = verity_io_hints,
888};
889
890static int __init dm_verity_init(void)
891{
892 int r;
893
894 r = dm_register_target(&verity_target);
895 if (r < 0)
896 DMERR("register failed %d", r);
897
898 return r;
899}
900
901static void __exit dm_verity_exit(void)
902{
903 dm_unregister_target(&verity_target);
904}
905
906module_init(dm_verity_init);
907module_exit(dm_verity_exit);
908
909MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
910MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
911MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
912MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
913MODULE_LICENSE("GPL");