aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--drivers/media/video/cx23885/cx23888-ir.c1063
1 files changed, 1034 insertions, 29 deletions
diff --git a/drivers/media/video/cx23885/cx23888-ir.c b/drivers/media/video/cx23885/cx23888-ir.c
index 12df0e3a2354..e8d949ae06b9 100644
--- a/drivers/media/video/cx23885/cx23888-ir.c
+++ b/drivers/media/video/cx23885/cx23888-ir.c
@@ -21,25 +21,79 @@
21 * 02110-1301, USA. 21 * 02110-1301, USA.
22 */ 22 */
23 23
24#include <linux/kfifo.h>
25
24#include <media/v4l2-device.h> 26#include <media/v4l2-device.h>
25#include <media/v4l2-chip-ident.h> 27#include <media/v4l2-chip-ident.h>
26 28
27#include "cx23885.h" 29#include "cx23885.h"
28 30
31static unsigned int ir_888_debug;
32module_param(ir_888_debug, int, 0644);
33MODULE_PARM_DESC(ir_888_debug, "enable debug messages [CX23888 IR controller]");
34
29#define CX23888_IR_REG_BASE 0x170000 35#define CX23888_IR_REG_BASE 0x170000
30/* 36/*
31 * These CX23888 register offsets have a straightforward one to one mapping 37 * These CX23888 register offsets have a straightforward one to one mapping
32 * to the CX23885 register offsets of 0x200 through 0x218 38 * to the CX23885 register offsets of 0x200 through 0x218
33 */ 39 */
34#define CX23888_IR_CNTRL_REG 0x170000 40#define CX23888_IR_CNTRL_REG 0x170000
41#define CNTRL_WIN_3_3 0x00000000
42#define CNTRL_WIN_4_3 0x00000001
43#define CNTRL_WIN_3_4 0x00000002
44#define CNTRL_WIN_4_4 0x00000003
45#define CNTRL_WIN 0x00000003
46#define CNTRL_EDG_NONE 0x00000000
47#define CNTRL_EDG_FALL 0x00000004
48#define CNTRL_EDG_RISE 0x00000008
49#define CNTRL_EDG_BOTH 0x0000000C
50#define CNTRL_EDG 0x0000000C
51#define CNTRL_DMD 0x00000010
52#define CNTRL_MOD 0x00000020
53#define CNTRL_RFE 0x00000040
54#define CNTRL_TFE 0x00000080
55#define CNTRL_RXE 0x00000100
56#define CNTRL_TXE 0x00000200
57#define CNTRL_RIC 0x00000400
58#define CNTRL_TIC 0x00000800
59#define CNTRL_CPL 0x00001000
60#define CNTRL_LBM 0x00002000
61#define CNTRL_R 0x00004000
62
35#define CX23888_IR_TXCLK_REG 0x170004 63#define CX23888_IR_TXCLK_REG 0x170004
64#define TXCLK_TCD 0x0000FFFF
65
36#define CX23888_IR_RXCLK_REG 0x170008 66#define CX23888_IR_RXCLK_REG 0x170008
67#define RXCLK_RCD 0x0000FFFF
68
37#define CX23888_IR_CDUTY_REG 0x17000C 69#define CX23888_IR_CDUTY_REG 0x17000C
70#define CDUTY_CDC 0x0000000F
71
38#define CX23888_IR_STATS_REG 0x170010 72#define CX23888_IR_STATS_REG 0x170010
73#define STATS_RTO 0x00000001
74#define STATS_ROR 0x00000002
75#define STATS_RBY 0x00000004
76#define STATS_TBY 0x00000008
77#define STATS_RSR 0x00000010
78#define STATS_TSR 0x00000020
79
39#define CX23888_IR_IRQEN_REG 0x170014 80#define CX23888_IR_IRQEN_REG 0x170014
81#define IRQEN_RTE 0x00000001
82#define IRQEN_ROE 0x00000002
83#define IRQEN_RSE 0x00000010
84#define IRQEN_TSE 0x00000020
85
40#define CX23888_IR_FILTR_REG 0x170018 86#define CX23888_IR_FILTR_REG 0x170018
87#define FILTR_LPF 0x0000FFFF
88
41/* This register doesn't follow the pattern; it's 0x23C on a CX23885 */ 89/* This register doesn't follow the pattern; it's 0x23C on a CX23885 */
42#define CX23888_IR_FIFO_REG 0x170040 90#define CX23888_IR_FIFO_REG 0x170040
91#define FIFO_RXTX 0x0000FFFF
92#define FIFO_RXTX_LVL 0x00010000
93#define FIFO_RXTX_RTO 0x0001FFFF
94#define FIFO_RX_NDV 0x00020000
95#define FIFO_RX_DEPTH 8
96#define FIFO_TX_DEPTH 8
43 97
44/* CX23888 unique registers */ 98/* CX23888 unique registers */
45#define CX23888_IR_SEEDP_REG 0x17001C 99#define CX23888_IR_SEEDP_REG 0x17001C
@@ -53,12 +107,32 @@
53#define CX23888_IR_DPIPG_REG 0x17003C 107#define CX23888_IR_DPIPG_REG 0x17003C
54#define CX23888_IR_LEARN_REG 0x170044 108#define CX23888_IR_LEARN_REG 0x170044
55 109
110#define CX23888_VIDCLK_FREQ 108000000 /* 108 MHz, BT.656 */
111#define CX23888_IR_REFCLK_FREQ (CX23888_VIDCLK_FREQ/2)
112
113#define CX23888_IR_RX_KFIFO_SIZE (512 * sizeof(u32))
114#define CX23888_IR_TX_KFIFO_SIZE (512 * sizeof(u32))
56 115
57struct cx23888_ir_state { 116struct cx23888_ir_state {
58 struct v4l2_subdev sd; 117 struct v4l2_subdev sd;
59 struct cx23885_dev *dev; 118 struct cx23885_dev *dev;
60 u32 id; 119 u32 id;
61 u32 rev; 120 u32 rev;
121
122 struct v4l2_subdev_ir_parameters rx_params;
123 struct mutex rx_params_lock;
124 atomic_t rxclk_divider;
125 atomic_t rx_invert;
126
127 struct kfifo *rx_kfifo;
128 spinlock_t rx_kfifo_lock;
129
130 struct v4l2_subdev_ir_parameters tx_params;
131 struct mutex tx_params_lock;
132 atomic_t txclk_divider;
133
134 struct kfifo *tx_kfifo;
135 spinlock_t tx_kfifo_lock;
62}; 136};
63 137
64static inline struct cx23888_ir_state *to_state(struct v4l2_subdev *sd) 138static inline struct cx23888_ir_state *to_state(struct v4l2_subdev *sd)
@@ -66,59 +140,903 @@ static inline struct cx23888_ir_state *to_state(struct v4l2_subdev *sd)
66 return v4l2_get_subdevdata(sd); 140 return v4l2_get_subdevdata(sd);
67} 141}
68 142
69static int cx23888_ir_write(struct cx23885_dev *dev, u32 addr, u8 value) 143/*
144 * IR register block read and write functions
145 */
146static
147inline int cx23888_ir_write4(struct cx23885_dev *dev, u32 addr, u32 value)
70{ 148{
71 u32 reg = (addr & ~3); 149 cx_write(addr, value);
72 int shift = (addr & 3) * 8; 150 return 0;
73 u32 x = cx_read(reg); 151}
152
153static inline u32 cx23888_ir_read4(struct cx23885_dev *dev, u32 addr)
154{
155 return cx_read(addr);
156}
74 157
75 x = (x & ~(0xff << shift)) | ((u32)value << shift); 158static inline int cx23888_ir_and_or4(struct cx23885_dev *dev, u32 addr,
76 cx_write(reg, x); 159 u32 and_mask, u32 or_value)
160{
161 cx_andor(addr, ~and_mask, or_value);
77 return 0; 162 return 0;
78} 163}
79 164
80static 165/*
81inline int cx23888_ir_write4(struct cx23885_dev *dev, u32 addr, u32 value) 166 * Rx and Tx Clock Divider register computations
167 *
168 * Note the largest clock divider value of 0xffff corresponds to:
169 * (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
170 * which fits in 21 bits, so we'll use unsigned int for time arguments.
171 */
172static inline u16 count_to_clock_divider(unsigned int d)
82{ 173{
83 cx_write(addr, value); 174 if (d > RXCLK_RCD+1)
175 d = RXCLK_RCD;
176 else if (d < 2)
177 d = 1;
178 else
179 d--;
180 return (u16) d;
181}
182
183static inline u16 ns_to_clock_divider(unsigned int ns)
184{
185 return count_to_clock_divider(
186 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ/1000000 * ns, 1000));
187}
188
189static inline unsigned int clock_divider_to_ns(unsigned int divider)
190{
191 /* Period of the Rx or Tx clock in ns */
192 return DIV_ROUND_CLOSEST((divider + 1) * 1000,
193 CX23888_IR_REFCLK_FREQ/1000000);
194}
195
196static inline u16 carrier_freq_to_clock_divider(unsigned int freq)
197{
198 return count_to_clock_divider(
199 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * 16));
200}
201
202static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider)
203{
204 return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, (divider + 1) * 16);
205}
206
207static inline u16 freq_to_clock_divider(unsigned int freq,
208 unsigned int rollovers)
209{
210 return count_to_clock_divider(
211 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * rollovers));
212}
213
214static inline unsigned int clock_divider_to_freq(unsigned int divider,
215 unsigned int rollovers)
216{
217 return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ,
218 (divider + 1) * rollovers);
219}
220
221/*
222 * Low Pass Filter register calculations
223 *
224 * Note the largest count value of 0xffff corresponds to:
225 * 0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
226 * which fits in 21 bits, so we'll use unsigned int for time arguments.
227 */
228static inline u16 count_to_lpf_count(unsigned int d)
229{
230 if (d > FILTR_LPF)
231 d = FILTR_LPF;
232 else if (d < 4)
233 d = 0;
234 return (u16) d;
235}
236
237static inline u16 ns_to_lpf_count(unsigned int ns)
238{
239 return count_to_lpf_count(
240 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ/1000000 * ns, 1000));
241}
242
243static inline unsigned int lpf_count_to_ns(unsigned int count)
244{
245 /* Duration of the Low Pass Filter rejection window in ns */
246 return DIV_ROUND_CLOSEST(count * 1000, CX23888_IR_REFCLK_FREQ/1000000);
247}
248
249static inline unsigned int lpf_count_to_us(unsigned int count)
250{
251 /* Duration of the Low Pass Filter rejection window in us */
252 return DIV_ROUND_CLOSEST(count, CX23888_IR_REFCLK_FREQ/1000000);
253}
254
255/*
256 * FIFO register pulse width count compuations
257 */
258static u32 clock_divider_to_resolution(u16 divider)
259{
260 /*
261 * Resolution is the duration of 1 tick of the readable portion of
262 * of the pulse width counter as read from the FIFO. The two lsb's are
263 * not readable, hence the << 2. This function returns ns.
264 */
265 return DIV_ROUND_CLOSEST((1 << 2) * ((u32) divider + 1) * 1000,
266 CX23888_IR_REFCLK_FREQ/1000000);
267}
268
269static u64 pulse_width_count_to_ns(u16 count, u16 divider)
270{
271 u64 n;
272 u32 rem;
273
274 /*
275 * The 2 lsb's of the pulse width timer count are not readable, hence
276 * the (count << 2) | 0x3
277 */
278 n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */
279 rem = do_div(n, CX23888_IR_REFCLK_FREQ/1000000); /* / MHz => ns */
280 if (rem >= CX23888_IR_REFCLK_FREQ/1000000/2)
281 n++;
282 return n;
283}
284
285static unsigned int pulse_width_count_to_us(u16 count, u16 divider)
286{
287 u64 n;
288 u32 rem;
289
290 /*
291 * The 2 lsb's of the pulse width timer count are not readable, hence
292 * the (count << 2) | 0x3
293 */
294 n = (((u64) count << 2) | 0x3) * (divider + 1); /* cycles */
295 rem = do_div(n, CX23888_IR_REFCLK_FREQ/1000000); /* / MHz => us */
296 if (rem >= CX23888_IR_REFCLK_FREQ/1000000/2)
297 n++;
298 return (unsigned int) n;
299}
300
301/*
302 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
303 *
304 * The total pulse clock count is an 18 bit pulse width timer count as the most
305 * significant part and (up to) 16 bit clock divider count as a modulus.
306 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
307 * width timer count's least significant bit.
308 */
309static u64 ns_to_pulse_clocks(u32 ns)
310{
311 u64 clocks;
312 u32 rem;
313 clocks = CX23888_IR_REFCLK_FREQ/1000000 * (u64) ns; /* millicycles */
314 rem = do_div(clocks, 1000); /* /1000 = cycles */
315 if (rem >= 1000/2)
316 clocks++;
317 return clocks;
318}
319
320static u16 pulse_clocks_to_clock_divider(u64 count)
321{
322 u32 rem;
323
324 rem = do_div(count, (FIFO_RXTX << 2) | 0x3);
325
326 /* net result needs to be rounded down and decremented by 1 */
327 if (count > RXCLK_RCD+1)
328 count = RXCLK_RCD;
329 else if (count < 2)
330 count = 1;
331 else
332 count--;
333 return (u16) count;
334}
335
336/*
337 * IR Control Register helpers
338 */
339enum tx_fifo_watermark {
340 TX_FIFO_HALF_EMPTY = 0,
341 TX_FIFO_EMPTY = CNTRL_TIC,
342};
343
344enum rx_fifo_watermark {
345 RX_FIFO_HALF_FULL = 0,
346 RX_FIFO_NOT_EMPTY = CNTRL_RIC,
347};
348
349static inline void control_tx_irq_watermark(struct cx23885_dev *dev,
350 enum tx_fifo_watermark level)
351{
352 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_TIC, level);
353}
354
355static inline void control_rx_irq_watermark(struct cx23885_dev *dev,
356 enum rx_fifo_watermark level)
357{
358 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_RIC, level);
359}
360
361static inline void control_tx_enable(struct cx23885_dev *dev, bool enable)
362{
363 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE),
364 enable ? (CNTRL_TXE | CNTRL_TFE) : 0);
365}
366
367static inline void control_rx_enable(struct cx23885_dev *dev, bool enable)
368{
369 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE),
370 enable ? (CNTRL_RXE | CNTRL_RFE) : 0);
371}
372
373static inline void control_tx_modulation_enable(struct cx23885_dev *dev,
374 bool enable)
375{
376 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_MOD,
377 enable ? CNTRL_MOD : 0);
378}
379
380static inline void control_rx_demodulation_enable(struct cx23885_dev *dev,
381 bool enable)
382{
383 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_DMD,
384 enable ? CNTRL_DMD : 0);
385}
386
387static inline void control_rx_s_edge_detection(struct cx23885_dev *dev,
388 u32 edge_types)
389{
390 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_EDG_BOTH,
391 edge_types & CNTRL_EDG_BOTH);
392}
393
394static void control_rx_s_carrier_window(struct cx23885_dev *dev,
395 unsigned int carrier,
396 unsigned int *carrier_range_low,
397 unsigned int *carrier_range_high)
398{
399 u32 v;
400 unsigned int c16 = carrier * 16;
401
402 if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) {
403 v = CNTRL_WIN_3_4;
404 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4);
405 } else {
406 v = CNTRL_WIN_3_3;
407 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3);
408 }
409
410 if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) {
411 v |= CNTRL_WIN_4_3;
412 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4);
413 } else {
414 v |= CNTRL_WIN_3_3;
415 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3);
416 }
417 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_WIN, v);
418}
419
420static inline void control_tx_polarity_invert(struct cx23885_dev *dev,
421 bool invert)
422{
423 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_CPL,
424 invert ? CNTRL_CPL : 0);
425}
426
427/*
428 * IR Rx & Tx Clock Register helpers
429 */
430static unsigned int txclk_tx_s_carrier(struct cx23885_dev *dev,
431 unsigned int freq,
432 u16 *divider)
433{
434 *divider = carrier_freq_to_clock_divider(freq);
435 cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
436 return clock_divider_to_carrier_freq(*divider);
437}
438
439static unsigned int rxclk_rx_s_carrier(struct cx23885_dev *dev,
440 unsigned int freq,
441 u16 *divider)
442{
443 *divider = carrier_freq_to_clock_divider(freq);
444 cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
445 return clock_divider_to_carrier_freq(*divider);
446}
447
448static u32 txclk_tx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
449 u16 *divider)
450{
451 u64 pulse_clocks;
452
453 if (ns > V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS)
454 ns = V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS;
455 pulse_clocks = ns_to_pulse_clocks(ns);
456 *divider = pulse_clocks_to_clock_divider(pulse_clocks);
457 cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
458 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
459}
460
461static u32 rxclk_rx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
462 u16 *divider)
463{
464 u64 pulse_clocks;
465
466 if (ns > V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS)
467 ns = V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS;
468 pulse_clocks = ns_to_pulse_clocks(ns);
469 *divider = pulse_clocks_to_clock_divider(pulse_clocks);
470 cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
471 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
472}
473
474/*
475 * IR Tx Carrier Duty Cycle register helpers
476 */
477static unsigned int cduty_tx_s_duty_cycle(struct cx23885_dev *dev,
478 unsigned int duty_cycle)
479{
480 u32 n;
481 n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */
482 if (n != 0)
483 n--;
484 if (n > 15)
485 n = 15;
486 cx23888_ir_write4(dev, CX23888_IR_CDUTY_REG, n);
487 return DIV_ROUND_CLOSEST((n+1) * 100, 16);
488}
489
490/*
491 * IR Filter Register helpers
492 */
493static u32 filter_rx_s_min_width(struct cx23885_dev *dev, u32 min_width_ns)
494{
495 u32 count = ns_to_lpf_count(min_width_ns);
496 cx23888_ir_write4(dev, CX23888_IR_FILTR_REG, count);
497 return lpf_count_to_ns(count);
498}
499
500/*
501 * IR IRQ Enable Register helpers
502 */
503static inline void irqenable_rx(struct cx23885_dev *dev, u32 mask)
504{
505 mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE);
506 cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG,
507 ~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask);
508}
509
510static inline void irqenable_tx(struct cx23885_dev *dev, u32 mask)
511{
512 mask &= IRQEN_TSE;
513 cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG, ~IRQEN_TSE, mask);
514}
515
516/*
517 * V4L2 Subdevice IR Ops
518 */
519static int cx23888_ir_irq_handler(struct v4l2_subdev *sd, u32 status,
520 bool *handled)
521{
522 struct cx23888_ir_state *state = to_state(sd);
523 struct cx23885_dev *dev = state->dev;
524
525 u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
526 u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
527 u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
528
529 u32 rx_data[FIFO_RX_DEPTH];
530 int i, j, k;
531 u32 events, v;
532 int tsr, rsr, rto, ror, tse, rse, rte, roe, kror;
533
534 tsr = stats & STATS_TSR; /* Tx FIFO Service Request */
535 rsr = stats & STATS_RSR; /* Rx FIFO Service Request */
536 rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */
537 ror = stats & STATS_ROR; /* Rx FIFO Over Run */
538
539 tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */
540 rse = irqen & IRQEN_RSE; /* Rx FIFO Service Reuqest IRQ Enable */
541 rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */
542 roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */
543
544 *handled = false;
545 v4l2_dbg(2, ir_888_debug, sd, "IRQ Status: %s %s %s %s %s %s\n",
546 tsr ? "tsr" : " ", rsr ? "rsr" : " ",
547 rto ? "rto" : " ", ror ? "ror" : " ",
548 stats & STATS_TBY ? "tby" : " ",
549 stats & STATS_RBY ? "rby" : " ");
550
551 v4l2_dbg(2, ir_888_debug, sd, "IRQ Enables: %s %s %s %s\n",
552 tse ? "tse" : " ", rse ? "rse" : " ",
553 rte ? "rte" : " ", roe ? "roe" : " ");
554
555 /*
556 * Transmitter interrupt service
557 */
558 if (tse && tsr) {
559 /*
560 * TODO:
561 * Check the watermark threshold setting
562 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
563 * Push the data to the hardware FIFO.
564 * If there was nothing more to send in the tx_kfifo, disable
565 * the TSR IRQ and notify the v4l2_device.
566 * If there was something in the tx_kfifo, check the tx_kfifo
567 * level and notify the v4l2_device, if it is low.
568 */
569 /* For now, inhibit TSR interrupt until Tx is implemented */
570 irqenable_tx(dev, 0);
571 events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ;
572 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events);
573 *handled = true;
574 }
575
576 /*
577 * Receiver interrupt service
578 */
579 kror = 0;
580 if ((rse && rsr) || (rte && rto)) {
581 /*
582 * Receive data on RSR to clear the STATS_RSR.
583 * Receive data on RTO, since we may not have yet hit the RSR
584 * watermark when we receive the RTO.
585 */
586 for (i = 0, v = FIFO_RX_NDV;
587 (v & FIFO_RX_NDV) && !kror; i = 0) {
588 for (j = 0;
589 (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) {
590 v = cx23888_ir_read4(dev, CX23888_IR_FIFO_REG);
591 rx_data[i++] = v & ~FIFO_RX_NDV;
592 }
593 if (i == 0)
594 break;
595 j = i * sizeof(u32);
596 k = kfifo_put(state->rx_kfifo,
597 (unsigned char *) rx_data, j);
598 if (k != j)
599 kror++; /* rx_kfifo over run */
600 }
601 *handled = true;
602 }
603
604 events = 0;
605 v = 0;
606 if (kror) {
607 events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN;
608 v4l2_err(sd, "IR receiver software FIFO overrun\n");
609 }
610 if (roe && ror) {
611 /*
612 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
613 * the Rx FIFO Over Run status (STATS_ROR)
614 */
615 v |= CNTRL_RFE;
616 events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN;
617 v4l2_err(sd, "IR receiver hardware FIFO overrun\n");
618 }
619 if (rte && rto) {
620 /*
621 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
622 * the Rx Pulse Width Timer Time Out (STATS_RTO)
623 */
624 v |= CNTRL_RXE;
625 events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED;
626 }
627 if (v) {
628 /* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */
629 cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl & ~v);
630 cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl);
631 *handled = true;
632 }
633 if (kfifo_len(state->rx_kfifo) >= CX23888_IR_RX_KFIFO_SIZE/2)
634 events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ;
635
636 if (events)
637 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events);
84 return 0; 638 return 0;
85} 639}
86 640
87static u8 cx23888_ir_read(struct cx23885_dev *dev, u32 addr) 641/* Receiver */
642static int cx23888_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count,
643 ssize_t *num)
88{ 644{
89 u32 x = cx_read((addr & ~3)); 645 struct cx23888_ir_state *state = to_state(sd);
90 int shift = (addr & 3) * 8; 646 bool invert = (bool) atomic_read(&state->rx_invert);
647 u16 divider = (u16) atomic_read(&state->rxclk_divider);
648
649 unsigned int i, n;
650 u32 *p;
651 u32 u, v;
652
653 n = count / sizeof(u32) * sizeof(u32);
654 if (n == 0) {
655 *num = 0;
656 return 0;
657 }
658
659 n = kfifo_get(state->rx_kfifo, buf, n);
660
661 n /= sizeof(u32);
662 *num = n * sizeof(u32);
663
664 for (p = (u32 *) buf, i = 0; i < n; p++, i++) {
665 if ((*p & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) {
666 *p = V4L2_SUBDEV_IR_PULSE_RX_SEQ_END;
667 v4l2_dbg(2, ir_888_debug, sd, "rx read: end of rx\n");
668 continue;
669 }
670
671 u = (*p & FIFO_RXTX_LVL) ? V4L2_SUBDEV_IR_PULSE_LEVEL_MASK : 0;
672 if (invert)
673 u = u ? 0 : V4L2_SUBDEV_IR_PULSE_LEVEL_MASK;
91 674
92 return (x >> shift) & 0xff; 675 v = (u32) pulse_width_count_to_ns((u16) (*p & FIFO_RXTX),
676 divider);
677 if (v >= V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS)
678 v = V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS - 1;
679
680 *p = u | v;
681
682 v4l2_dbg(2, ir_888_debug, sd, "rx read: %10u ns %s\n",
683 v, u ? "mark" : "space");
684 }
685 return 0;
93} 686}
94 687
95static inline u32 cx23888_ir_read4(struct cx23885_dev *dev, u32 addr) 688static int cx23888_ir_rx_g_parameters(struct v4l2_subdev *sd,
689 struct v4l2_subdev_ir_parameters *p)
96{ 690{
97 return cx_read(addr); 691 struct cx23888_ir_state *state = to_state(sd);
692 mutex_lock(&state->rx_params_lock);
693 memcpy(p, &state->rx_params, sizeof(struct v4l2_subdev_ir_parameters));
694 mutex_unlock(&state->rx_params_lock);
695 return 0;
98} 696}
99 697
100static int cx23888_ir_and_or(struct cx23885_dev *dev, u32 addr, 698static int cx23888_ir_rx_shutdown(struct v4l2_subdev *sd)
101 unsigned and_mask, u8 or_value)
102{ 699{
103 return cx23888_ir_write(dev, addr, 700 struct cx23888_ir_state *state = to_state(sd);
104 (cx23888_ir_read(dev, addr) & and_mask) | 701 struct cx23885_dev *dev = state->dev;
105 or_value); 702
703 mutex_lock(&state->rx_params_lock);
704
705 /* Disable or slow down all IR Rx circuits and counters */
706 irqenable_rx(dev, 0);
707 control_rx_enable(dev, false);
708 control_rx_demodulation_enable(dev, false);
709 control_rx_s_edge_detection(dev, CNTRL_EDG_NONE);
710 filter_rx_s_min_width(dev, 0);
711 cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, RXCLK_RCD);
712
713 state->rx_params.shutdown = true;
714
715 mutex_unlock(&state->rx_params_lock);
716 return 0;
106} 717}
107 718
108static inline int cx23888_ir_and_or4(struct cx23885_dev *dev, u32 addr, 719static int cx23888_ir_rx_s_parameters(struct v4l2_subdev *sd,
109 u32 and_mask, u32 or_value) 720 struct v4l2_subdev_ir_parameters *p)
110{ 721{
111 cx_andor(addr, and_mask, or_value); 722 struct cx23888_ir_state *state = to_state(sd);
723 struct cx23885_dev *dev = state->dev;
724 struct v4l2_subdev_ir_parameters *o = &state->rx_params;
725 u16 rxclk_divider;
726
727 if (p->shutdown)
728 return cx23888_ir_rx_shutdown(sd);
729
730 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
731 return -ENOSYS;
732
733 mutex_lock(&state->rx_params_lock);
734
735 o->shutdown = p->shutdown;
736
737 o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
738
739 o->bytes_per_data_element = p->bytes_per_data_element = sizeof(u32);
740
741 /* Before we tweak the hardware, we have to disable the receiver */
742 irqenable_rx(dev, 0);
743 control_rx_enable(dev, false);
744
745 control_rx_demodulation_enable(dev, p->modulation);
746 o->modulation = p->modulation;
747
748 if (p->modulation) {
749 p->carrier_freq = rxclk_rx_s_carrier(dev, p->carrier_freq,
750 &rxclk_divider);
751
752 o->carrier_freq = p->carrier_freq;
753
754 o->duty_cycle = p->duty_cycle = 50;
755
756 control_rx_s_carrier_window(dev, p->carrier_freq,
757 &p->carrier_range_lower,
758 &p->carrier_range_upper);
759 o->carrier_range_lower = p->carrier_range_lower;
760 o->carrier_range_upper = p->carrier_range_upper;
761 } else {
762 p->max_pulse_width =
763 rxclk_rx_s_max_pulse_width(dev, p->max_pulse_width,
764 &rxclk_divider);
765 o->max_pulse_width = p->max_pulse_width;
766 }
767 atomic_set(&state->rxclk_divider, rxclk_divider);
768
769 p->noise_filter_min_width =
770 filter_rx_s_min_width(dev, p->noise_filter_min_width);
771 o->noise_filter_min_width = p->noise_filter_min_width;
772
773 p->resolution = clock_divider_to_resolution(rxclk_divider);
774 o->resolution = p->resolution;
775
776 /* FIXME - make this dependent on resolution for better performance */
777 control_rx_irq_watermark(dev, RX_FIFO_HALF_FULL);
778
779 control_rx_s_edge_detection(dev, CNTRL_EDG_BOTH);
780
781 o->invert = p->invert;
782 atomic_set(&state->rx_invert, p->invert);
783
784 o->interrupt_enable = p->interrupt_enable;
785 o->enable = p->enable;
786 if (p->enable) {
787 kfifo_reset(state->rx_kfifo);
788 if (p->interrupt_enable)
789 irqenable_rx(dev, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE);
790 control_rx_enable(dev, p->enable);
791 }
792
793 mutex_unlock(&state->rx_params_lock);
794 return 0;
795}
796
797/* Transmitter */
798static int cx23888_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count,
799 ssize_t *num)
800{
801 struct cx23888_ir_state *state = to_state(sd);
802 struct cx23885_dev *dev = state->dev;
803 /* For now enable the Tx FIFO Service interrupt & pretend we did work */
804 irqenable_tx(dev, IRQEN_TSE);
805 *num = count;
806 return 0;
807}
808
809static int cx23888_ir_tx_g_parameters(struct v4l2_subdev *sd,
810 struct v4l2_subdev_ir_parameters *p)
811{
812 struct cx23888_ir_state *state = to_state(sd);
813 mutex_lock(&state->tx_params_lock);
814 memcpy(p, &state->tx_params, sizeof(struct v4l2_subdev_ir_parameters));
815 mutex_unlock(&state->tx_params_lock);
112 return 0; 816 return 0;
113} 817}
114 818
819static int cx23888_ir_tx_shutdown(struct v4l2_subdev *sd)
820{
821 struct cx23888_ir_state *state = to_state(sd);
822 struct cx23885_dev *dev = state->dev;
823
824 mutex_lock(&state->tx_params_lock);
825
826 /* Disable or slow down all IR Tx circuits and counters */
827 irqenable_tx(dev, 0);
828 control_tx_enable(dev, false);
829 control_tx_modulation_enable(dev, false);
830 cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, TXCLK_TCD);
831
832 state->tx_params.shutdown = true;
833
834 mutex_unlock(&state->tx_params_lock);
835 return 0;
836}
837
838static int cx23888_ir_tx_s_parameters(struct v4l2_subdev *sd,
839 struct v4l2_subdev_ir_parameters *p)
840{
841 struct cx23888_ir_state *state = to_state(sd);
842 struct cx23885_dev *dev = state->dev;
843 struct v4l2_subdev_ir_parameters *o = &state->tx_params;
844 u16 txclk_divider;
845
846 if (p->shutdown)
847 return cx23888_ir_tx_shutdown(sd);
848
849 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
850 return -ENOSYS;
851
852 mutex_lock(&state->tx_params_lock);
853
854 o->shutdown = p->shutdown;
855
856 o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
857
858 o->bytes_per_data_element = p->bytes_per_data_element = sizeof(u32);
859
860 /* Before we tweak the hardware, we have to disable the transmitter */
861 irqenable_tx(dev, 0);
862 control_tx_enable(dev, false);
863
864 control_tx_modulation_enable(dev, p->modulation);
865 o->modulation = p->modulation;
866
867 if (p->modulation) {
868 p->carrier_freq = txclk_tx_s_carrier(dev, p->carrier_freq,
869 &txclk_divider);
870 o->carrier_freq = p->carrier_freq;
871
872 p->duty_cycle = cduty_tx_s_duty_cycle(dev, p->duty_cycle);
873 o->duty_cycle = p->duty_cycle;
874 } else {
875 p->max_pulse_width =
876 txclk_tx_s_max_pulse_width(dev, p->max_pulse_width,
877 &txclk_divider);
878 o->max_pulse_width = p->max_pulse_width;
879 }
880 atomic_set(&state->txclk_divider, txclk_divider);
881
882 p->resolution = clock_divider_to_resolution(txclk_divider);
883 o->resolution = p->resolution;
884
885 /* FIXME - make this dependent on resolution for better performance */
886 control_tx_irq_watermark(dev, TX_FIFO_HALF_EMPTY);
887
888 control_tx_polarity_invert(dev, p->invert);
889 o->invert = p->invert;
890
891 o->interrupt_enable = p->interrupt_enable;
892 o->enable = p->enable;
893 if (p->enable) {
894 kfifo_reset(state->tx_kfifo);
895 if (p->interrupt_enable)
896 irqenable_tx(dev, IRQEN_TSE);
897 control_tx_enable(dev, p->enable);
898 }
899
900 mutex_unlock(&state->tx_params_lock);
901 return 0;
902}
903
904
905/*
906 * V4L2 Subdevice Core Ops
907 */
115static int cx23888_ir_log_status(struct v4l2_subdev *sd) 908static int cx23888_ir_log_status(struct v4l2_subdev *sd)
116{ 909{
117 struct cx23888_ir_state *state = to_state(sd); 910 struct cx23888_ir_state *state = to_state(sd);
118 struct cx23885_dev *dev = state->dev; 911 struct cx23885_dev *dev = state->dev;
119 u8 cntrl = cx23888_ir_read(dev, CX23888_IR_CNTRL_REG+1); 912 char *s;
120 v4l2_info(sd, "receiver %sabled\n", cntrl & 0x1 ? "en" : "dis"); 913 int i, j;
121 v4l2_info(sd, "transmitter %sabled\n", cntrl & 0x2 ? "en" : "dis"); 914
915 u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
916 u32 txclk = cx23888_ir_read4(dev, CX23888_IR_TXCLK_REG) & TXCLK_TCD;
917 u32 rxclk = cx23888_ir_read4(dev, CX23888_IR_RXCLK_REG) & RXCLK_RCD;
918 u32 cduty = cx23888_ir_read4(dev, CX23888_IR_CDUTY_REG) & CDUTY_CDC;
919 u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
920 u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
921 u32 filtr = cx23888_ir_read4(dev, CX23888_IR_FILTR_REG) & FILTR_LPF;
922
923 v4l2_info(sd, "IR Receiver:\n");
924 v4l2_info(sd, "\tEnabled: %s\n",
925 cntrl & CNTRL_RXE ? "yes" : "no");
926 v4l2_info(sd, "\tDemodulation from a carrier: %s\n",
927 cntrl & CNTRL_DMD ? "enabled" : "disabled");
928 v4l2_info(sd, "\tFIFO: %s\n",
929 cntrl & CNTRL_RFE ? "enabled" : "disabled");
930 switch (cntrl & CNTRL_EDG) {
931 case CNTRL_EDG_NONE:
932 s = "disabled";
933 break;
934 case CNTRL_EDG_FALL:
935 s = "falling edge";
936 break;
937 case CNTRL_EDG_RISE:
938 s = "rising edge";
939 break;
940 case CNTRL_EDG_BOTH:
941 s = "rising & falling edges";
942 break;
943 default:
944 s = "??? edge";
945 break;
946 }
947 v4l2_info(sd, "\tPulse timers' start/stop trigger: %s\n", s);
948 v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n",
949 cntrl & CNTRL_R ? "not loaded" : "overflow marker");
950 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n",
951 cntrl & CNTRL_RIC ? "not empty" : "half full or greater");
952 v4l2_info(sd, "\tLoopback mode: %s\n",
953 cntrl & CNTRL_LBM ? "loopback active" : "normal receive");
954 if (cntrl & CNTRL_DMD) {
955 v4l2_info(sd, "\tExpected carrier (16 clocks): %u Hz\n",
956 clock_divider_to_carrier_freq(rxclk));
957 switch (cntrl & CNTRL_WIN) {
958 case CNTRL_WIN_3_3:
959 i = 3;
960 j = 3;
961 break;
962 case CNTRL_WIN_4_3:
963 i = 4;
964 j = 3;
965 break;
966 case CNTRL_WIN_3_4:
967 i = 3;
968 j = 4;
969 break;
970 case CNTRL_WIN_4_4:
971 i = 4;
972 j = 4;
973 break;
974 default:
975 i = 0;
976 j = 0;
977 break;
978 }
979 v4l2_info(sd, "\tNext carrier edge window: 16 clocks "
980 "-%1d/+%1d, %u to %u Hz\n", i, j,
981 clock_divider_to_freq(rxclk, 16 + j),
982 clock_divider_to_freq(rxclk, 16 - i));
983 } else {
984 v4l2_info(sd, "\tMax measurable pulse width: %u us, "
985 "%llu ns\n",
986 pulse_width_count_to_us(FIFO_RXTX, rxclk),
987 pulse_width_count_to_ns(FIFO_RXTX, rxclk));
988 }
989 v4l2_info(sd, "\tLow pass filter: %s\n",
990 filtr ? "enabled" : "disabled");
991 if (filtr)
992 v4l2_info(sd, "\tMin acceptable pulse width (LPF): %u us, "
993 "%u ns\n",
994 lpf_count_to_us(filtr),
995 lpf_count_to_ns(filtr));
996 v4l2_info(sd, "\tPulse width timer timed-out: %s\n",
997 stats & STATS_RTO ? "yes" : "no");
998 v4l2_info(sd, "\tPulse width timer time-out intr: %s\n",
999 irqen & IRQEN_RTE ? "enabled" : "disabled");
1000 v4l2_info(sd, "\tFIFO overrun: %s\n",
1001 stats & STATS_ROR ? "yes" : "no");
1002 v4l2_info(sd, "\tFIFO overrun interrupt: %s\n",
1003 irqen & IRQEN_ROE ? "enabled" : "disabled");
1004 v4l2_info(sd, "\tBusy: %s\n",
1005 stats & STATS_RBY ? "yes" : "no");
1006 v4l2_info(sd, "\tFIFO service requested: %s\n",
1007 stats & STATS_RSR ? "yes" : "no");
1008 v4l2_info(sd, "\tFIFO service request interrupt: %s\n",
1009 irqen & IRQEN_RSE ? "enabled" : "disabled");
1010
1011 v4l2_info(sd, "IR Transmitter:\n");
1012 v4l2_info(sd, "\tEnabled: %s\n",
1013 cntrl & CNTRL_TXE ? "yes" : "no");
1014 v4l2_info(sd, "\tModulation onto a carrier: %s\n",
1015 cntrl & CNTRL_MOD ? "enabled" : "disabled");
1016 v4l2_info(sd, "\tFIFO: %s\n",
1017 cntrl & CNTRL_TFE ? "enabled" : "disabled");
1018 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n",
1019 cntrl & CNTRL_TIC ? "not empty" : "half full or less");
1020 v4l2_info(sd, "\tSignal polarity: %s\n",
1021 cntrl & CNTRL_CPL ? "0:mark 1:space" : "0:space 1:mark");
1022 if (cntrl & CNTRL_MOD) {
1023 v4l2_info(sd, "\tCarrier (16 clocks): %u Hz\n",
1024 clock_divider_to_carrier_freq(txclk));
1025 v4l2_info(sd, "\tCarrier duty cycle: %2u/16\n",
1026 cduty + 1);
1027 } else {
1028 v4l2_info(sd, "\tMax pulse width: %u us, "
1029 "%llu ns\n",
1030 pulse_width_count_to_us(FIFO_RXTX, txclk),
1031 pulse_width_count_to_ns(FIFO_RXTX, txclk));
1032 }
1033 v4l2_info(sd, "\tBusy: %s\n",
1034 stats & STATS_TBY ? "yes" : "no");
1035 v4l2_info(sd, "\tFIFO service requested: %s\n",
1036 stats & STATS_TSR ? "yes" : "no");
1037 v4l2_info(sd, "\tFIFO service request interrupt: %s\n",
1038 irqen & IRQEN_TSE ? "enabled" : "disabled");
1039
122 return 0; 1040 return 0;
123} 1041}
124 1042
@@ -187,19 +1105,81 @@ static const struct v4l2_subdev_core_ops cx23888_ir_core_ops = {
187#endif 1105#endif
188}; 1106};
189 1107
1108static const struct v4l2_subdev_ir_ops cx23888_ir_ir_ops = {
1109 .interrupt_service_routine = cx23888_ir_irq_handler,
1110
1111 .rx_read = cx23888_ir_rx_read,
1112 .rx_g_parameters = cx23888_ir_rx_g_parameters,
1113 .rx_s_parameters = cx23888_ir_rx_s_parameters,
1114
1115 .tx_write = cx23888_ir_tx_write,
1116 .tx_g_parameters = cx23888_ir_tx_g_parameters,
1117 .tx_s_parameters = cx23888_ir_tx_s_parameters,
1118};
1119
190static const struct v4l2_subdev_ops cx23888_ir_controller_ops = { 1120static const struct v4l2_subdev_ops cx23888_ir_controller_ops = {
191 .core = &cx23888_ir_core_ops, 1121 .core = &cx23888_ir_core_ops,
1122 .ir = &cx23888_ir_ir_ops,
1123};
1124
1125static const struct v4l2_subdev_ir_parameters default_rx_params = {
1126 .bytes_per_data_element = sizeof(u32),
1127 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1128
1129 .enable = false,
1130 .interrupt_enable = false,
1131 .shutdown = true,
1132
1133 .modulation = true,
1134 .carrier_freq = 36000, /* 36 kHz - RC-5, RC-6, and RC-6A carrier */
1135
1136 /* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
1137 /* RC-6A: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
1138 .noise_filter_min_width = 333333, /* ns */
1139 .carrier_range_lower = 35000,
1140 .carrier_range_upper = 37000,
1141 .invert = false,
1142};
1143
1144static const struct v4l2_subdev_ir_parameters default_tx_params = {
1145 .bytes_per_data_element = sizeof(u32),
1146 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1147
1148 .enable = false,
1149 .interrupt_enable = false,
1150 .shutdown = true,
1151
1152 .modulation = true,
1153 .carrier_freq = 36000, /* 36 kHz - RC-5 carrier */
1154 .duty_cycle = 25, /* 25 % - RC-5 carrier */
1155 .invert = false,
192}; 1156};
193 1157
194int cx23888_ir_probe(struct cx23885_dev *dev) 1158int cx23888_ir_probe(struct cx23885_dev *dev)
195{ 1159{
196 struct cx23888_ir_state *state; 1160 struct cx23888_ir_state *state;
197 struct v4l2_subdev *sd; 1161 struct v4l2_subdev *sd;
1162 struct v4l2_subdev_ir_parameters default_params;
1163 int ret;
198 1164
199 state = kzalloc(sizeof(struct cx23888_ir_state), GFP_KERNEL); 1165 state = kzalloc(sizeof(struct cx23888_ir_state), GFP_KERNEL);
200 if (state == NULL) 1166 if (state == NULL)
201 return -ENOMEM; 1167 return -ENOMEM;
202 1168
1169 spin_lock_init(&state->rx_kfifo_lock);
1170 state->rx_kfifo = kfifo_alloc(CX23888_IR_RX_KFIFO_SIZE, GFP_KERNEL,
1171 &state->rx_kfifo_lock);
1172 if (state->rx_kfifo == NULL)
1173 return -ENOMEM;
1174
1175 spin_lock_init(&state->tx_kfifo_lock);
1176 state->tx_kfifo = kfifo_alloc(CX23888_IR_TX_KFIFO_SIZE, GFP_KERNEL,
1177 &state->tx_kfifo_lock);
1178 if (state->tx_kfifo == NULL) {
1179 kfifo_free(state->rx_kfifo);
1180 return -ENOMEM;
1181 }
1182
203 state->dev = dev; 1183 state->dev = dev;
204 state->id = V4L2_IDENT_CX23888_IR; 1184 state->id = V4L2_IDENT_CX23888_IR;
205 state->rev = 0; 1185 state->rev = 0;
@@ -210,7 +1190,30 @@ int cx23888_ir_probe(struct cx23885_dev *dev)
210 /* FIXME - fix the formatting of dev->v4l2_dev.name and use it */ 1190 /* FIXME - fix the formatting of dev->v4l2_dev.name and use it */
211 snprintf(sd->name, sizeof(sd->name), "%s/888-ir", dev->name); 1191 snprintf(sd->name, sizeof(sd->name), "%s/888-ir", dev->name);
212 sd->grp_id = CX23885_HW_888_IR; 1192 sd->grp_id = CX23885_HW_888_IR;
213 return v4l2_device_register_subdev(&dev->v4l2_dev, sd); 1193
1194 ret = v4l2_device_register_subdev(&dev->v4l2_dev, sd);
1195 if (ret == 0) {
1196 /*
1197 * Ensure no interrupts arrive from '888 specific conditions,
1198 * since we ignore them in this driver to have commonality with
1199 * similar IR controller cores.
1200 */
1201 cx23888_ir_write4(dev, CX23888_IR_IRQEN_REG, 0);
1202
1203 mutex_init(&state->rx_params_lock);
1204 memcpy(&default_params, &default_rx_params,
1205 sizeof(struct v4l2_subdev_ir_parameters));
1206 v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params);
1207
1208 mutex_init(&state->tx_params_lock);
1209 memcpy(&default_params, &default_tx_params,
1210 sizeof(struct v4l2_subdev_ir_parameters));
1211 v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params);
1212 } else {
1213 kfifo_free(state->rx_kfifo);
1214 kfifo_free(state->tx_kfifo);
1215 }
1216 return ret;
214} 1217}
215 1218
216int cx23888_ir_remove(struct cx23885_dev *dev) 1219int cx23888_ir_remove(struct cx23885_dev *dev)
@@ -222,11 +1225,13 @@ int cx23888_ir_remove(struct cx23885_dev *dev)
222 if (sd == NULL) 1225 if (sd == NULL)
223 return -ENODEV; 1226 return -ENODEV;
224 1227
225 /* Disable receiver and transmitter */ 1228 cx23888_ir_rx_shutdown(sd);
226 cx23888_ir_and_or(dev, CX23888_IR_CNTRL_REG+1, 0xfc, 0); 1229 cx23888_ir_tx_shutdown(sd);
227 1230
228 state = to_state(sd); 1231 state = to_state(sd);
229 v4l2_device_unregister_subdev(sd); 1232 v4l2_device_unregister_subdev(sd);
1233 kfifo_free(state->rx_kfifo);
1234 kfifo_free(state->tx_kfifo);
230 kfree(state); 1235 kfree(state);
231 /* Nothing more to free() as state held the actual v4l2_subdev object */ 1236 /* Nothing more to free() as state held the actual v4l2_subdev object */
232 return 0; 1237 return 0;