aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Documentation/devicetree/bindings/mtd/fsmc-nand.txt33
-rw-r--r--Documentation/devicetree/bindings/mtd/spear_smi.txt31
-rw-r--r--arch/arm/mach-omap1/flash.c20
-rw-r--r--arch/arm/mach-s3c24xx/simtec-nor.c3
-rw-r--r--arch/arm/mach-shmobile/board-mackerel.c71
-rw-r--r--arch/arm/mach-shmobile/clock-sh7372.c4
-rw-r--r--arch/arm/mach-u300/core.c2
-rw-r--r--arch/arm/mach-u300/include/mach/u300-regs.h5
-rw-r--r--arch/mips/cavium-octeon/flash_setup.c2
-rw-r--r--drivers/dma/mxs-dma.c34
-rw-r--r--drivers/mmc/host/mxs-mmc.c12
-rw-r--r--drivers/mtd/Kconfig3
-rw-r--r--drivers/mtd/chips/cfi_cmdset_0001.c83
-rw-r--r--drivers/mtd/chips/cfi_cmdset_0002.c283
-rw-r--r--drivers/mtd/chips/cfi_cmdset_0020.c33
-rw-r--r--drivers/mtd/chips/cfi_util.c6
-rw-r--r--drivers/mtd/chips/fwh_lock.h4
-rw-r--r--drivers/mtd/chips/map_absent.c10
-rw-r--r--drivers/mtd/chips/map_ram.c14
-rw-r--r--drivers/mtd/chips/map_rom.c13
-rw-r--r--drivers/mtd/devices/Kconfig7
-rw-r--r--drivers/mtd/devices/Makefile1
-rw-r--r--drivers/mtd/devices/block2mtd.c28
-rw-r--r--drivers/mtd/devices/doc2000.c25
-rw-r--r--drivers/mtd/devices/doc2001.c22
-rw-r--r--drivers/mtd/devices/doc2001plus.c22
-rw-r--r--drivers/mtd/devices/docg3.c201
-rw-r--r--drivers/mtd/devices/docg3.h20
-rw-r--r--drivers/mtd/devices/lart.c17
-rw-r--r--drivers/mtd/devices/m25p80.c56
-rw-r--r--drivers/mtd/devices/ms02-nv.c12
-rw-r--r--drivers/mtd/devices/mtd_dataflash.c50
-rw-r--r--drivers/mtd/devices/mtdram.c35
-rw-r--r--drivers/mtd/devices/phram.c76
-rw-r--r--drivers/mtd/devices/pmc551.c99
-rw-r--r--drivers/mtd/devices/slram.c41
-rw-r--r--drivers/mtd/devices/spear_smi.c1147
-rw-r--r--drivers/mtd/devices/sst25l.c46
-rw-r--r--drivers/mtd/inftlcore.c2
-rw-r--r--drivers/mtd/lpddr/lpddr_cmds.c37
-rw-r--r--drivers/mtd/maps/bfin-async-flash.c4
-rw-r--r--drivers/mtd/maps/dc21285.c2
-rw-r--r--drivers/mtd/maps/gpio-addr-flash.c4
-rw-r--r--drivers/mtd/maps/h720x-flash.c4
-rw-r--r--drivers/mtd/maps/impa7.c2
-rw-r--r--drivers/mtd/maps/intel_vr_nor.c2
-rw-r--r--drivers/mtd/maps/ixp2000.c2
-rw-r--r--drivers/mtd/maps/ixp4xx.c5
-rw-r--r--drivers/mtd/maps/l440gx.c14
-rw-r--r--drivers/mtd/maps/lantiq-flash.c6
-rw-r--r--drivers/mtd/maps/latch-addr-flash.c5
-rw-r--r--drivers/mtd/maps/pcmciamtd.c13
-rw-r--r--drivers/mtd/maps/physmap.c24
-rw-r--r--drivers/mtd/maps/plat-ram.c5
-rw-r--r--drivers/mtd/maps/pxa2xx-flash.c3
-rw-r--r--drivers/mtd/maps/rbtx4939-flash.c4
-rw-r--r--drivers/mtd/maps/sa1100-flash.c18
-rw-r--r--drivers/mtd/maps/solutionengine.c4
-rw-r--r--drivers/mtd/maps/uclinux.c2
-rw-r--r--drivers/mtd/maps/vmu-flash.c14
-rw-r--r--drivers/mtd/maps/wr_sbc82xx_flash.c2
-rw-r--r--drivers/mtd/mtd_blkdevs.c1
-rw-r--r--drivers/mtd/mtdblock.c8
-rw-r--r--drivers/mtd/mtdchar.c4
-rw-r--r--drivers/mtd/mtdconcat.c106
-rw-r--r--drivers/mtd/mtdcore.c271
-rw-r--r--drivers/mtd/mtdoops.c9
-rw-r--r--drivers/mtd/mtdpart.c200
-rw-r--r--drivers/mtd/nand/Kconfig21
-rw-r--r--drivers/mtd/nand/Makefile1
-rw-r--r--drivers/mtd/nand/alauda.c9
-rw-r--r--drivers/mtd/nand/atmel_nand.c1
-rw-r--r--drivers/mtd/nand/bcm_umi_nand.c10
-rw-r--r--drivers/mtd/nand/bf5xx_nand.c2
-rw-r--r--drivers/mtd/nand/cafe_nand.c3
-rw-r--r--drivers/mtd/nand/cmx270_nand.c2
-rw-r--r--drivers/mtd/nand/cs553x_nand.c4
-rw-r--r--drivers/mtd/nand/davinci_nand.c5
-rw-r--r--drivers/mtd/nand/denali.c3
-rw-r--r--drivers/mtd/nand/diskonchip.c1
-rw-r--r--drivers/mtd/nand/docg4.c1377
-rw-r--r--drivers/mtd/nand/fsl_elbc_nand.c6
-rw-r--r--drivers/mtd/nand/fsmc_nand.c924
-rw-r--r--drivers/mtd/nand/gpmi-nand/gpmi-lib.c26
-rw-r--r--drivers/mtd/nand/gpmi-nand/gpmi-nand.c14
-rw-r--r--drivers/mtd/nand/gpmi-nand/gpmi-nand.h2
-rw-r--r--drivers/mtd/nand/h1910.c4
-rw-r--r--drivers/mtd/nand/jz4740_nand.c11
-rw-r--r--drivers/mtd/nand/mxc_nand.c11
-rw-r--r--drivers/mtd/nand/nand_base.c194
-rw-r--r--drivers/mtd/nand/ndfc.c1
-rw-r--r--drivers/mtd/nand/omap2.c5
-rw-r--r--drivers/mtd/nand/orion_nand.c4
-rw-r--r--drivers/mtd/nand/plat_nand.c5
-rw-r--r--drivers/mtd/nand/ppchameleonevb.c18
-rw-r--r--drivers/mtd/nand/pxa3xx_nand.c6
-rw-r--r--drivers/mtd/nand/r852.c1
-rw-r--r--drivers/mtd/nand/rtc_from4.c1
-rw-r--r--drivers/mtd/nand/s3c2410.c5
-rw-r--r--drivers/mtd/nand/sh_flctl.c106
-rw-r--r--drivers/mtd/nand/sharpsl.c5
-rw-r--r--drivers/mtd/nand/tmio_nand.c7
-rw-r--r--drivers/mtd/nand/txx9ndfmc.c3
-rw-r--r--drivers/mtd/nftlcore.c7
-rw-r--r--drivers/mtd/onenand/generic.c6
-rw-r--r--drivers/mtd/onenand/omap2.c6
-rw-r--r--drivers/mtd/onenand/onenand_base.c68
-rw-r--r--drivers/mtd/onenand/samsung.c6
-rw-r--r--drivers/mtd/redboot.c6
-rw-r--r--drivers/mtd/sm_ftl.c2
-rw-r--r--drivers/mtd/ubi/gluebi.c29
-rw-r--r--drivers/net/ethernet/sfc/mtd.c10
-rw-r--r--fs/jffs2/acl.c2
-rw-r--r--fs/jffs2/background.c29
-rw-r--r--fs/jffs2/build.c6
-rw-r--r--fs/jffs2/compr.c32
-rw-r--r--fs/jffs2/compr_lzo.c1
-rw-r--r--fs/jffs2/compr_rubin.c2
-rw-r--r--fs/jffs2/compr_zlib.c45
-rw-r--r--fs/jffs2/debug.c22
-rw-r--r--fs/jffs2/debug.h50
-rw-r--r--fs/jffs2/dir.c41
-rw-r--r--fs/jffs2/erase.c72
-rw-r--r--fs/jffs2/file.c33
-rw-r--r--fs/jffs2/fs.c67
-rw-r--r--fs/jffs2/gc.c322
-rw-r--r--fs/jffs2/malloc.c2
-rw-r--r--fs/jffs2/nodelist.c30
-rw-r--r--fs/jffs2/nodemgmt.c214
-rw-r--r--fs/jffs2/os-linux.h4
-rw-r--r--fs/jffs2/read.c70
-rw-r--r--fs/jffs2/readinode.c2
-rw-r--r--fs/jffs2/scan.c229
-rw-r--r--fs/jffs2/security.c4
-rw-r--r--fs/jffs2/summary.c16
-rw-r--r--fs/jffs2/super.c30
-rw-r--r--fs/jffs2/symlink.c7
-rw-r--r--fs/jffs2/wbuf.c148
-rw-r--r--fs/jffs2/write.c113
-rw-r--r--fs/jffs2/xattr.c2
-rw-r--r--fs/romfs/storage.c2
-rw-r--r--include/linux/fsl/mxs-dma.h (renamed from arch/arm/mach-mxs/include/mach/dma.h)0
-rw-r--r--include/linux/mtd/bbm.h5
-rw-r--r--include/linux/mtd/blktrans.h1
-rw-r--r--include/linux/mtd/fsmc.h169
-rw-r--r--include/linux/mtd/mtd.h304
-rw-r--r--include/linux/mtd/nand.h7
-rw-r--r--include/linux/mtd/pmc551.h78
-rw-r--r--include/linux/mtd/sh_flctl.h40
-rw-r--r--include/linux/mtd/spear_smi.h65
-rw-r--r--sound/soc/mxs/mxs-pcm.c2
-rw-r--r--sound/soc/mxs/mxs-saif.c2
152 files changed, 6063 insertions, 2493 deletions
diff --git a/Documentation/devicetree/bindings/mtd/fsmc-nand.txt b/Documentation/devicetree/bindings/mtd/fsmc-nand.txt
new file mode 100644
index 000000000000..e2c663b354d2
--- /dev/null
+++ b/Documentation/devicetree/bindings/mtd/fsmc-nand.txt
@@ -0,0 +1,33 @@
1* FSMC NAND
2
3Required properties:
4- compatible : "st,spear600-fsmc-nand"
5- reg : Address range of the mtd chip
6- reg-names: Should contain the reg names "fsmc_regs" and "nand_data"
7- st,ale-off : Chip specific offset to ALE
8- st,cle-off : Chip specific offset to CLE
9
10Optional properties:
11- bank-width : Width (in bytes) of the device. If not present, the width
12 defaults to 1 byte
13- nand-skip-bbtscan: Indicates the the BBT scanning should be skipped
14
15Example:
16
17 fsmc: flash@d1800000 {
18 compatible = "st,spear600-fsmc-nand";
19 #address-cells = <1>;
20 #size-cells = <1>;
21 reg = <0xd1800000 0x1000 /* FSMC Register */
22 0xd2000000 0x4000>; /* NAND Base */
23 reg-names = "fsmc_regs", "nand_data";
24 st,ale-off = <0x20000>;
25 st,cle-off = <0x10000>;
26
27 bank-width = <1>;
28 nand-skip-bbtscan;
29
30 partition@0 {
31 ...
32 };
33 };
diff --git a/Documentation/devicetree/bindings/mtd/spear_smi.txt b/Documentation/devicetree/bindings/mtd/spear_smi.txt
new file mode 100644
index 000000000000..7248aadd89e4
--- /dev/null
+++ b/Documentation/devicetree/bindings/mtd/spear_smi.txt
@@ -0,0 +1,31 @@
1* SPEAr SMI
2
3Required properties:
4- compatible : "st,spear600-smi"
5- reg : Address range of the mtd chip
6- #address-cells, #size-cells : Must be present if the device has sub-nodes
7 representing partitions.
8- interrupt-parent: Should be the phandle for the interrupt controller
9 that services interrupts for this device
10- interrupts: Should contain the STMMAC interrupts
11- clock-rate : Functional clock rate of SMI in Hz
12
13Optional properties:
14- st,smi-fast-mode : Flash supports read in fast mode
15
16Example:
17
18 smi: flash@fc000000 {
19 compatible = "st,spear600-smi";
20 #address-cells = <1>;
21 #size-cells = <1>;
22 reg = <0xfc000000 0x1000>;
23 interrupt-parent = <&vic1>;
24 interrupts = <12>;
25 clock-rate = <50000000>; /* 50MHz */
26
27 flash@f8000000 {
28 st,smi-fast-mode;
29 ...
30 };
31 };
diff --git a/arch/arm/mach-omap1/flash.c b/arch/arm/mach-omap1/flash.c
index f9bf78d4fdfb..401eb3c080c2 100644
--- a/arch/arm/mach-omap1/flash.c
+++ b/arch/arm/mach-omap1/flash.c
@@ -17,20 +17,12 @@
17 17
18void omap1_set_vpp(struct platform_device *pdev, int enable) 18void omap1_set_vpp(struct platform_device *pdev, int enable)
19{ 19{
20 static int count;
21 u32 l; 20 u32 l;
22 21
23 if (enable) { 22 l = omap_readl(EMIFS_CONFIG);
24 if (count++ == 0) { 23 if (enable)
25 l = omap_readl(EMIFS_CONFIG); 24 l |= OMAP_EMIFS_CONFIG_WP;
26 l |= OMAP_EMIFS_CONFIG_WP; 25 else
27 omap_writel(l, EMIFS_CONFIG); 26 l &= ~OMAP_EMIFS_CONFIG_WP;
28 } 27 omap_writel(l, EMIFS_CONFIG);
29 } else {
30 if (count && (--count == 0)) {
31 l = omap_readl(EMIFS_CONFIG);
32 l &= ~OMAP_EMIFS_CONFIG_WP;
33 omap_writel(l, EMIFS_CONFIG);
34 }
35 }
36} 28}
diff --git a/arch/arm/mach-s3c24xx/simtec-nor.c b/arch/arm/mach-s3c24xx/simtec-nor.c
index 2119ca6a73bc..b9d6d4f92c03 100644
--- a/arch/arm/mach-s3c24xx/simtec-nor.c
+++ b/arch/arm/mach-s3c24xx/simtec-nor.c
@@ -35,9 +35,7 @@
35static void simtec_nor_vpp(struct platform_device *pdev, int vpp) 35static void simtec_nor_vpp(struct platform_device *pdev, int vpp)
36{ 36{
37 unsigned int val; 37 unsigned int val;
38 unsigned long flags;
39 38
40 local_irq_save(flags);
41 val = __raw_readb(BAST_VA_CTRL3); 39 val = __raw_readb(BAST_VA_CTRL3);
42 40
43 printk(KERN_DEBUG "%s(%d)\n", __func__, vpp); 41 printk(KERN_DEBUG "%s(%d)\n", __func__, vpp);
@@ -48,7 +46,6 @@ static void simtec_nor_vpp(struct platform_device *pdev, int vpp)
48 val &= ~BAST_CPLD_CTRL3_ROMWEN; 46 val &= ~BAST_CPLD_CTRL3_ROMWEN;
49 47
50 __raw_writeb(val, BAST_VA_CTRL3); 48 __raw_writeb(val, BAST_VA_CTRL3);
51 local_irq_restore(flags);
52} 49}
53 50
54static struct physmap_flash_data simtec_nor_pdata = { 51static struct physmap_flash_data simtec_nor_pdata = {
diff --git a/arch/arm/mach-shmobile/board-mackerel.c b/arch/arm/mach-shmobile/board-mackerel.c
index a125d4e114ec..f49e28abe0ab 100644
--- a/arch/arm/mach-shmobile/board-mackerel.c
+++ b/arch/arm/mach-shmobile/board-mackerel.c
@@ -39,6 +39,7 @@
39#include <linux/mtd/mtd.h> 39#include <linux/mtd/mtd.h>
40#include <linux/mtd/partitions.h> 40#include <linux/mtd/partitions.h>
41#include <linux/mtd/physmap.h> 41#include <linux/mtd/physmap.h>
42#include <linux/mtd/sh_flctl.h>
42#include <linux/pm_clock.h> 43#include <linux/pm_clock.h>
43#include <linux/smsc911x.h> 44#include <linux/smsc911x.h>
44#include <linux/sh_intc.h> 45#include <linux/sh_intc.h>
@@ -956,6 +957,50 @@ static struct platform_device fsi_ak4643_device = {
956 }, 957 },
957}; 958};
958 959
960/* FLCTL */
961static struct mtd_partition nand_partition_info[] = {
962 {
963 .name = "system",
964 .offset = 0,
965 .size = 128 * 1024 * 1024,
966 },
967 {
968 .name = "userdata",
969 .offset = MTDPART_OFS_APPEND,
970 .size = 256 * 1024 * 1024,
971 },
972 {
973 .name = "cache",
974 .offset = MTDPART_OFS_APPEND,
975 .size = 128 * 1024 * 1024,
976 },
977};
978
979static struct resource nand_flash_resources[] = {
980 [0] = {
981 .start = 0xe6a30000,
982 .end = 0xe6a3009b,
983 .flags = IORESOURCE_MEM,
984 }
985};
986
987static struct sh_flctl_platform_data nand_flash_data = {
988 .parts = nand_partition_info,
989 .nr_parts = ARRAY_SIZE(nand_partition_info),
990 .flcmncr_val = CLK_16B_12L_4H | TYPESEL_SET
991 | SHBUSSEL | SEL_16BIT | SNAND_E,
992 .use_holden = 1,
993};
994
995static struct platform_device nand_flash_device = {
996 .name = "sh_flctl",
997 .resource = nand_flash_resources,
998 .num_resources = ARRAY_SIZE(nand_flash_resources),
999 .dev = {
1000 .platform_data = &nand_flash_data,
1001 },
1002};
1003
959/* 1004/*
960 * The card detect pin of the top SD/MMC slot (CN7) is active low and is 1005 * The card detect pin of the top SD/MMC slot (CN7) is active low and is
961 * connected to GPIO A22 of SH7372 (GPIO_PORT41). 1006 * connected to GPIO A22 of SH7372 (GPIO_PORT41).
@@ -1259,6 +1304,7 @@ static struct platform_device *mackerel_devices[] __initdata = {
1259 &fsi_device, 1304 &fsi_device,
1260 &fsi_ak4643_device, 1305 &fsi_ak4643_device,
1261 &fsi_hdmi_device, 1306 &fsi_hdmi_device,
1307 &nand_flash_device,
1262 &sdhi0_device, 1308 &sdhi0_device,
1263#if !defined(CONFIG_MMC_SH_MMCIF) && !defined(CONFIG_MMC_SH_MMCIF_MODULE) 1309#if !defined(CONFIG_MMC_SH_MMCIF) && !defined(CONFIG_MMC_SH_MMCIF_MODULE)
1264 &sdhi1_device, 1310 &sdhi1_device,
@@ -1488,6 +1534,30 @@ static void __init mackerel_init(void)
1488 gpio_request(GPIO_FN_MMCCMD0, NULL); 1534 gpio_request(GPIO_FN_MMCCMD0, NULL);
1489 gpio_request(GPIO_FN_MMCCLK0, NULL); 1535 gpio_request(GPIO_FN_MMCCLK0, NULL);
1490 1536
1537 /* FLCTL */
1538 gpio_request(GPIO_FN_D0_NAF0, NULL);
1539 gpio_request(GPIO_FN_D1_NAF1, NULL);
1540 gpio_request(GPIO_FN_D2_NAF2, NULL);
1541 gpio_request(GPIO_FN_D3_NAF3, NULL);
1542 gpio_request(GPIO_FN_D4_NAF4, NULL);
1543 gpio_request(GPIO_FN_D5_NAF5, NULL);
1544 gpio_request(GPIO_FN_D6_NAF6, NULL);
1545 gpio_request(GPIO_FN_D7_NAF7, NULL);
1546 gpio_request(GPIO_FN_D8_NAF8, NULL);
1547 gpio_request(GPIO_FN_D9_NAF9, NULL);
1548 gpio_request(GPIO_FN_D10_NAF10, NULL);
1549 gpio_request(GPIO_FN_D11_NAF11, NULL);
1550 gpio_request(GPIO_FN_D12_NAF12, NULL);
1551 gpio_request(GPIO_FN_D13_NAF13, NULL);
1552 gpio_request(GPIO_FN_D14_NAF14, NULL);
1553 gpio_request(GPIO_FN_D15_NAF15, NULL);
1554 gpio_request(GPIO_FN_FCE0, NULL);
1555 gpio_request(GPIO_FN_WE0_FWE, NULL);
1556 gpio_request(GPIO_FN_FRB, NULL);
1557 gpio_request(GPIO_FN_A4_FOE, NULL);
1558 gpio_request(GPIO_FN_A5_FCDE, NULL);
1559 gpio_request(GPIO_FN_RD_FSC, NULL);
1560
1491 /* enable GPS module (GT-720F) */ 1561 /* enable GPS module (GT-720F) */
1492 gpio_request(GPIO_FN_SCIFA2_TXD1, NULL); 1562 gpio_request(GPIO_FN_SCIFA2_TXD1, NULL);
1493 gpio_request(GPIO_FN_SCIFA2_RXD1, NULL); 1563 gpio_request(GPIO_FN_SCIFA2_RXD1, NULL);
@@ -1532,6 +1602,7 @@ static void __init mackerel_init(void)
1532 sh7372_add_device_to_domain(&sh7372_a4mp, &fsi_device); 1602 sh7372_add_device_to_domain(&sh7372_a4mp, &fsi_device);
1533 sh7372_add_device_to_domain(&sh7372_a3sp, &usbhs0_device); 1603 sh7372_add_device_to_domain(&sh7372_a3sp, &usbhs0_device);
1534 sh7372_add_device_to_domain(&sh7372_a3sp, &usbhs1_device); 1604 sh7372_add_device_to_domain(&sh7372_a3sp, &usbhs1_device);
1605 sh7372_add_device_to_domain(&sh7372_a3sp, &nand_flash_device);
1535 sh7372_add_device_to_domain(&sh7372_a3sp, &sh_mmcif_device); 1606 sh7372_add_device_to_domain(&sh7372_a3sp, &sh_mmcif_device);
1536 sh7372_add_device_to_domain(&sh7372_a3sp, &sdhi0_device); 1607 sh7372_add_device_to_domain(&sh7372_a3sp, &sdhi0_device);
1537#if !defined(CONFIG_MMC_SH_MMCIF) && !defined(CONFIG_MMC_SH_MMCIF_MODULE) 1608#if !defined(CONFIG_MMC_SH_MMCIF) && !defined(CONFIG_MMC_SH_MMCIF_MODULE)
diff --git a/arch/arm/mach-shmobile/clock-sh7372.c b/arch/arm/mach-shmobile/clock-sh7372.c
index de243e3c8392..94d1f88246d3 100644
--- a/arch/arm/mach-shmobile/clock-sh7372.c
+++ b/arch/arm/mach-shmobile/clock-sh7372.c
@@ -511,7 +511,7 @@ enum { MSTP001, MSTP000,
511 MSTP223, 511 MSTP223,
512 MSTP218, MSTP217, MSTP216, MSTP214, MSTP208, MSTP207, 512 MSTP218, MSTP217, MSTP216, MSTP214, MSTP208, MSTP207,
513 MSTP206, MSTP205, MSTP204, MSTP203, MSTP202, MSTP201, MSTP200, 513 MSTP206, MSTP205, MSTP204, MSTP203, MSTP202, MSTP201, MSTP200,
514 MSTP328, MSTP323, MSTP322, MSTP314, MSTP313, MSTP312, 514 MSTP328, MSTP323, MSTP322, MSTP315, MSTP314, MSTP313, MSTP312,
515 MSTP423, MSTP415, MSTP413, MSTP411, MSTP410, MSTP407, MSTP406, 515 MSTP423, MSTP415, MSTP413, MSTP411, MSTP410, MSTP407, MSTP406,
516 MSTP405, MSTP404, MSTP403, MSTP400, 516 MSTP405, MSTP404, MSTP403, MSTP400,
517 MSTP_NR }; 517 MSTP_NR };
@@ -553,6 +553,7 @@ static struct clk mstp_clks[MSTP_NR] = {
553 [MSTP328] = MSTP(&div6_clks[DIV6_SPU], SMSTPCR3, 28, 0), /* FSI2 */ 553 [MSTP328] = MSTP(&div6_clks[DIV6_SPU], SMSTPCR3, 28, 0), /* FSI2 */
554 [MSTP323] = MSTP(&div6_clks[DIV6_SUB], SMSTPCR3, 23, 0), /* IIC1 */ 554 [MSTP323] = MSTP(&div6_clks[DIV6_SUB], SMSTPCR3, 23, 0), /* IIC1 */
555 [MSTP322] = MSTP(&div6_clks[DIV6_SUB], SMSTPCR3, 22, 0), /* USB0 */ 555 [MSTP322] = MSTP(&div6_clks[DIV6_SUB], SMSTPCR3, 22, 0), /* USB0 */
556 [MSTP315] = MSTP(&div4_clks[DIV4_HP], SMSTPCR3, 15, 0), /* FLCTL*/
556 [MSTP314] = MSTP(&div4_clks[DIV4_HP], SMSTPCR3, 14, 0), /* SDHI0 */ 557 [MSTP314] = MSTP(&div4_clks[DIV4_HP], SMSTPCR3, 14, 0), /* SDHI0 */
557 [MSTP313] = MSTP(&div4_clks[DIV4_HP], SMSTPCR3, 13, 0), /* SDHI1 */ 558 [MSTP313] = MSTP(&div4_clks[DIV4_HP], SMSTPCR3, 13, 0), /* SDHI1 */
558 [MSTP312] = MSTP(&div4_clks[DIV4_HP], SMSTPCR3, 12, 0), /* MMC */ 559 [MSTP312] = MSTP(&div4_clks[DIV4_HP], SMSTPCR3, 12, 0), /* MMC */
@@ -653,6 +654,7 @@ static struct clk_lookup lookups[] = {
653 CLKDEV_DEV_ID("r8a66597_hcd.0", &mstp_clks[MSTP322]), /* USB0 */ 654 CLKDEV_DEV_ID("r8a66597_hcd.0", &mstp_clks[MSTP322]), /* USB0 */
654 CLKDEV_DEV_ID("r8a66597_udc.0", &mstp_clks[MSTP322]), /* USB0 */ 655 CLKDEV_DEV_ID("r8a66597_udc.0", &mstp_clks[MSTP322]), /* USB0 */
655 CLKDEV_DEV_ID("renesas_usbhs.0", &mstp_clks[MSTP322]), /* USB0 */ 656 CLKDEV_DEV_ID("renesas_usbhs.0", &mstp_clks[MSTP322]), /* USB0 */
657 CLKDEV_DEV_ID("sh_flctl.0", &mstp_clks[MSTP315]), /* FLCTL */
656 CLKDEV_DEV_ID("sh_mobile_sdhi.0", &mstp_clks[MSTP314]), /* SDHI0 */ 658 CLKDEV_DEV_ID("sh_mobile_sdhi.0", &mstp_clks[MSTP314]), /* SDHI0 */
657 CLKDEV_DEV_ID("sh_mobile_sdhi.1", &mstp_clks[MSTP313]), /* SDHI1 */ 659 CLKDEV_DEV_ID("sh_mobile_sdhi.1", &mstp_clks[MSTP313]), /* SDHI1 */
658 CLKDEV_DEV_ID("sh_mmcif.0", &mstp_clks[MSTP312]), /* MMC */ 660 CLKDEV_DEV_ID("sh_mmcif.0", &mstp_clks[MSTP312]), /* MMC */
diff --git a/arch/arm/mach-u300/core.c b/arch/arm/mach-u300/core.c
index 8b90c44d237f..1621ad07d284 100644
--- a/arch/arm/mach-u300/core.c
+++ b/arch/arm/mach-u300/core.c
@@ -1544,6 +1544,8 @@ static struct fsmc_nand_platform_data nand_platform_data = {
1544 .nr_partitions = ARRAY_SIZE(u300_partitions), 1544 .nr_partitions = ARRAY_SIZE(u300_partitions),
1545 .options = NAND_SKIP_BBTSCAN, 1545 .options = NAND_SKIP_BBTSCAN,
1546 .width = FSMC_NAND_BW8, 1546 .width = FSMC_NAND_BW8,
1547 .ale_off = PLAT_NAND_ALE,
1548 .cle_off = PLAT_NAND_CLE,
1547}; 1549};
1548 1550
1549static struct platform_device nand_device = { 1551static struct platform_device nand_device = {
diff --git a/arch/arm/mach-u300/include/mach/u300-regs.h b/arch/arm/mach-u300/include/mach/u300-regs.h
index 7b7cba960b69..65f87c523892 100644
--- a/arch/arm/mach-u300/include/mach/u300-regs.h
+++ b/arch/arm/mach-u300/include/mach/u300-regs.h
@@ -24,6 +24,11 @@
24/* NFIF */ 24/* NFIF */
25#define U300_NAND_IF_PHYS_BASE 0x9f800000 25#define U300_NAND_IF_PHYS_BASE 0x9f800000
26 26
27/* ALE, CLE offset for FSMC NAND */
28#define PLAT_NAND_CLE (1 << 16)
29#define PLAT_NAND_ALE (1 << 17)
30
31
27/* AHB Peripherals */ 32/* AHB Peripherals */
28#define U300_AHB_PER_PHYS_BASE 0xa0000000 33#define U300_AHB_PER_PHYS_BASE 0xa0000000
29#define U300_AHB_PER_VIRT_BASE 0xff010000 34#define U300_AHB_PER_VIRT_BASE 0xff010000
diff --git a/arch/mips/cavium-octeon/flash_setup.c b/arch/mips/cavium-octeon/flash_setup.c
index 0a430e06f5e5..e44a55bc7f0d 100644
--- a/arch/mips/cavium-octeon/flash_setup.c
+++ b/arch/mips/cavium-octeon/flash_setup.c
@@ -60,7 +60,7 @@ static int __init flash_init(void)
60 if (mymtd) { 60 if (mymtd) {
61 mymtd->owner = THIS_MODULE; 61 mymtd->owner = THIS_MODULE;
62 mtd_device_parse_register(mymtd, part_probe_types, 62 mtd_device_parse_register(mymtd, part_probe_types,
63 0, NULL, 0); 63 NULL, NULL, 0);
64 } else { 64 } else {
65 pr_err("Failed to register MTD device for flash\n"); 65 pr_err("Failed to register MTD device for flash\n");
66 } 66 }
diff --git a/drivers/dma/mxs-dma.c b/drivers/dma/mxs-dma.c
index 65334c49b71e..c81ef7e10e08 100644
--- a/drivers/dma/mxs-dma.c
+++ b/drivers/dma/mxs-dma.c
@@ -22,10 +22,10 @@
22#include <linux/platform_device.h> 22#include <linux/platform_device.h>
23#include <linux/dmaengine.h> 23#include <linux/dmaengine.h>
24#include <linux/delay.h> 24#include <linux/delay.h>
25#include <linux/fsl/mxs-dma.h>
25 26
26#include <asm/irq.h> 27#include <asm/irq.h>
27#include <mach/mxs.h> 28#include <mach/mxs.h>
28#include <mach/dma.h>
29#include <mach/common.h> 29#include <mach/common.h>
30 30
31#include "dmaengine.h" 31#include "dmaengine.h"
@@ -337,10 +337,32 @@ static void mxs_dma_free_chan_resources(struct dma_chan *chan)
337 clk_disable_unprepare(mxs_dma->clk); 337 clk_disable_unprepare(mxs_dma->clk);
338} 338}
339 339
340/*
341 * How to use the flags for ->device_prep_slave_sg() :
342 * [1] If there is only one DMA command in the DMA chain, the code should be:
343 * ......
344 * ->device_prep_slave_sg(DMA_CTRL_ACK);
345 * ......
346 * [2] If there are two DMA commands in the DMA chain, the code should be
347 * ......
348 * ->device_prep_slave_sg(0);
349 * ......
350 * ->device_prep_slave_sg(DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
351 * ......
352 * [3] If there are more than two DMA commands in the DMA chain, the code
353 * should be:
354 * ......
355 * ->device_prep_slave_sg(0); // First
356 * ......
357 * ->device_prep_slave_sg(DMA_PREP_INTERRUPT [| DMA_CTRL_ACK]);
358 * ......
359 * ->device_prep_slave_sg(DMA_PREP_INTERRUPT | DMA_CTRL_ACK); // Last
360 * ......
361 */
340static struct dma_async_tx_descriptor *mxs_dma_prep_slave_sg( 362static struct dma_async_tx_descriptor *mxs_dma_prep_slave_sg(
341 struct dma_chan *chan, struct scatterlist *sgl, 363 struct dma_chan *chan, struct scatterlist *sgl,
342 unsigned int sg_len, enum dma_transfer_direction direction, 364 unsigned int sg_len, enum dma_transfer_direction direction,
343 unsigned long append, void *context) 365 unsigned long flags, void *context)
344{ 366{
345 struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); 367 struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
346 struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; 368 struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
@@ -348,6 +370,7 @@ static struct dma_async_tx_descriptor *mxs_dma_prep_slave_sg(
348 struct scatterlist *sg; 370 struct scatterlist *sg;
349 int i, j; 371 int i, j;
350 u32 *pio; 372 u32 *pio;
373 bool append = flags & DMA_PREP_INTERRUPT;
351 int idx = append ? mxs_chan->desc_count : 0; 374 int idx = append ? mxs_chan->desc_count : 0;
352 375
353 if (mxs_chan->status == DMA_IN_PROGRESS && !append) 376 if (mxs_chan->status == DMA_IN_PROGRESS && !append)
@@ -374,7 +397,6 @@ static struct dma_async_tx_descriptor *mxs_dma_prep_slave_sg(
374 ccw->bits |= CCW_CHAIN; 397 ccw->bits |= CCW_CHAIN;
375 ccw->bits &= ~CCW_IRQ; 398 ccw->bits &= ~CCW_IRQ;
376 ccw->bits &= ~CCW_DEC_SEM; 399 ccw->bits &= ~CCW_DEC_SEM;
377 ccw->bits &= ~CCW_WAIT4END;
378 } else { 400 } else {
379 idx = 0; 401 idx = 0;
380 } 402 }
@@ -389,7 +411,8 @@ static struct dma_async_tx_descriptor *mxs_dma_prep_slave_sg(
389 ccw->bits = 0; 411 ccw->bits = 0;
390 ccw->bits |= CCW_IRQ; 412 ccw->bits |= CCW_IRQ;
391 ccw->bits |= CCW_DEC_SEM; 413 ccw->bits |= CCW_DEC_SEM;
392 ccw->bits |= CCW_WAIT4END; 414 if (flags & DMA_CTRL_ACK)
415 ccw->bits |= CCW_WAIT4END;
393 ccw->bits |= CCW_HALT_ON_TERM; 416 ccw->bits |= CCW_HALT_ON_TERM;
394 ccw->bits |= CCW_TERM_FLUSH; 417 ccw->bits |= CCW_TERM_FLUSH;
395 ccw->bits |= BF_CCW(sg_len, PIO_NUM); 418 ccw->bits |= BF_CCW(sg_len, PIO_NUM);
@@ -420,7 +443,8 @@ static struct dma_async_tx_descriptor *mxs_dma_prep_slave_sg(
420 ccw->bits &= ~CCW_CHAIN; 443 ccw->bits &= ~CCW_CHAIN;
421 ccw->bits |= CCW_IRQ; 444 ccw->bits |= CCW_IRQ;
422 ccw->bits |= CCW_DEC_SEM; 445 ccw->bits |= CCW_DEC_SEM;
423 ccw->bits |= CCW_WAIT4END; 446 if (flags & DMA_CTRL_ACK)
447 ccw->bits |= CCW_WAIT4END;
424 } 448 }
425 } 449 }
426 } 450 }
diff --git a/drivers/mmc/host/mxs-mmc.c b/drivers/mmc/host/mxs-mmc.c
index 65f36cf2ff33..b0f2ef988188 100644
--- a/drivers/mmc/host/mxs-mmc.c
+++ b/drivers/mmc/host/mxs-mmc.c
@@ -38,10 +38,10 @@
38#include <linux/gpio.h> 38#include <linux/gpio.h>
39#include <linux/regulator/consumer.h> 39#include <linux/regulator/consumer.h>
40#include <linux/module.h> 40#include <linux/module.h>
41#include <linux/fsl/mxs-dma.h>
41 42
42#include <mach/mxs.h> 43#include <mach/mxs.h>
43#include <mach/common.h> 44#include <mach/common.h>
44#include <mach/dma.h>
45#include <mach/mmc.h> 45#include <mach/mmc.h>
46 46
47#define DRIVER_NAME "mxs-mmc" 47#define DRIVER_NAME "mxs-mmc"
@@ -305,7 +305,7 @@ static irqreturn_t mxs_mmc_irq_handler(int irq, void *dev_id)
305} 305}
306 306
307static struct dma_async_tx_descriptor *mxs_mmc_prep_dma( 307static struct dma_async_tx_descriptor *mxs_mmc_prep_dma(
308 struct mxs_mmc_host *host, unsigned int append) 308 struct mxs_mmc_host *host, unsigned long flags)
309{ 309{
310 struct dma_async_tx_descriptor *desc; 310 struct dma_async_tx_descriptor *desc;
311 struct mmc_data *data = host->data; 311 struct mmc_data *data = host->data;
@@ -325,7 +325,7 @@ static struct dma_async_tx_descriptor *mxs_mmc_prep_dma(
325 } 325 }
326 326
327 desc = dmaengine_prep_slave_sg(host->dmach, 327 desc = dmaengine_prep_slave_sg(host->dmach,
328 sgl, sg_len, host->slave_dirn, append); 328 sgl, sg_len, host->slave_dirn, flags);
329 if (desc) { 329 if (desc) {
330 desc->callback = mxs_mmc_dma_irq_callback; 330 desc->callback = mxs_mmc_dma_irq_callback;
331 desc->callback_param = host; 331 desc->callback_param = host;
@@ -358,7 +358,7 @@ static void mxs_mmc_bc(struct mxs_mmc_host *host)
358 host->ssp_pio_words[2] = cmd1; 358 host->ssp_pio_words[2] = cmd1;
359 host->dma_dir = DMA_NONE; 359 host->dma_dir = DMA_NONE;
360 host->slave_dirn = DMA_TRANS_NONE; 360 host->slave_dirn = DMA_TRANS_NONE;
361 desc = mxs_mmc_prep_dma(host, 0); 361 desc = mxs_mmc_prep_dma(host, DMA_CTRL_ACK);
362 if (!desc) 362 if (!desc)
363 goto out; 363 goto out;
364 364
@@ -398,7 +398,7 @@ static void mxs_mmc_ac(struct mxs_mmc_host *host)
398 host->ssp_pio_words[2] = cmd1; 398 host->ssp_pio_words[2] = cmd1;
399 host->dma_dir = DMA_NONE; 399 host->dma_dir = DMA_NONE;
400 host->slave_dirn = DMA_TRANS_NONE; 400 host->slave_dirn = DMA_TRANS_NONE;
401 desc = mxs_mmc_prep_dma(host, 0); 401 desc = mxs_mmc_prep_dma(host, DMA_CTRL_ACK);
402 if (!desc) 402 if (!desc)
403 goto out; 403 goto out;
404 404
@@ -526,7 +526,7 @@ static void mxs_mmc_adtc(struct mxs_mmc_host *host)
526 host->data = data; 526 host->data = data;
527 host->dma_dir = dma_data_dir; 527 host->dma_dir = dma_data_dir;
528 host->slave_dirn = slave_dirn; 528 host->slave_dirn = slave_dirn;
529 desc = mxs_mmc_prep_dma(host, 1); 529 desc = mxs_mmc_prep_dma(host, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
530 if (!desc) 530 if (!desc)
531 goto out; 531 goto out;
532 532
diff --git a/drivers/mtd/Kconfig b/drivers/mtd/Kconfig
index 284cf3433720..5760c1a4b3f6 100644
--- a/drivers/mtd/Kconfig
+++ b/drivers/mtd/Kconfig
@@ -304,9 +304,6 @@ config MTD_OOPS
304 buffer in a flash partition where it can be read back at some 304 buffer in a flash partition where it can be read back at some
305 later point. 305 later point.
306 306
307 To use, add console=ttyMTDx to the kernel command line,
308 where x is the MTD device number to use.
309
310config MTD_SWAP 307config MTD_SWAP
311 tristate "Swap on MTD device support" 308 tristate "Swap on MTD device support"
312 depends on MTD && SWAP 309 depends on MTD && SWAP
diff --git a/drivers/mtd/chips/cfi_cmdset_0001.c b/drivers/mtd/chips/cfi_cmdset_0001.c
index 9bcd1f415f43..dbbd2edfb812 100644
--- a/drivers/mtd/chips/cfi_cmdset_0001.c
+++ b/drivers/mtd/chips/cfi_cmdset_0001.c
@@ -87,7 +87,7 @@ static int cfi_intelext_partition_fixup(struct mtd_info *, struct cfi_private **
87 87
88static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len, 88static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len,
89 size_t *retlen, void **virt, resource_size_t *phys); 89 size_t *retlen, void **virt, resource_size_t *phys);
90static void cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len); 90static int cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len);
91 91
92static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode); 92static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
93static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode); 93static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
@@ -262,9 +262,9 @@ static void fixup_st_m28w320cb(struct mtd_info *mtd)
262static void fixup_use_point(struct mtd_info *mtd) 262static void fixup_use_point(struct mtd_info *mtd)
263{ 263{
264 struct map_info *map = mtd->priv; 264 struct map_info *map = mtd->priv;
265 if (!mtd->point && map_is_linear(map)) { 265 if (!mtd->_point && map_is_linear(map)) {
266 mtd->point = cfi_intelext_point; 266 mtd->_point = cfi_intelext_point;
267 mtd->unpoint = cfi_intelext_unpoint; 267 mtd->_unpoint = cfi_intelext_unpoint;
268 } 268 }
269} 269}
270 270
@@ -274,8 +274,8 @@ static void fixup_use_write_buffers(struct mtd_info *mtd)
274 struct cfi_private *cfi = map->fldrv_priv; 274 struct cfi_private *cfi = map->fldrv_priv;
275 if (cfi->cfiq->BufWriteTimeoutTyp) { 275 if (cfi->cfiq->BufWriteTimeoutTyp) {
276 printk(KERN_INFO "Using buffer write method\n" ); 276 printk(KERN_INFO "Using buffer write method\n" );
277 mtd->write = cfi_intelext_write_buffers; 277 mtd->_write = cfi_intelext_write_buffers;
278 mtd->writev = cfi_intelext_writev; 278 mtd->_writev = cfi_intelext_writev;
279 } 279 }
280} 280}
281 281
@@ -443,15 +443,15 @@ struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary)
443 mtd->type = MTD_NORFLASH; 443 mtd->type = MTD_NORFLASH;
444 444
445 /* Fill in the default mtd operations */ 445 /* Fill in the default mtd operations */
446 mtd->erase = cfi_intelext_erase_varsize; 446 mtd->_erase = cfi_intelext_erase_varsize;
447 mtd->read = cfi_intelext_read; 447 mtd->_read = cfi_intelext_read;
448 mtd->write = cfi_intelext_write_words; 448 mtd->_write = cfi_intelext_write_words;
449 mtd->sync = cfi_intelext_sync; 449 mtd->_sync = cfi_intelext_sync;
450 mtd->lock = cfi_intelext_lock; 450 mtd->_lock = cfi_intelext_lock;
451 mtd->unlock = cfi_intelext_unlock; 451 mtd->_unlock = cfi_intelext_unlock;
452 mtd->is_locked = cfi_intelext_is_locked; 452 mtd->_is_locked = cfi_intelext_is_locked;
453 mtd->suspend = cfi_intelext_suspend; 453 mtd->_suspend = cfi_intelext_suspend;
454 mtd->resume = cfi_intelext_resume; 454 mtd->_resume = cfi_intelext_resume;
455 mtd->flags = MTD_CAP_NORFLASH; 455 mtd->flags = MTD_CAP_NORFLASH;
456 mtd->name = map->name; 456 mtd->name = map->name;
457 mtd->writesize = 1; 457 mtd->writesize = 1;
@@ -600,12 +600,12 @@ static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd)
600 } 600 }
601 601
602#ifdef CONFIG_MTD_OTP 602#ifdef CONFIG_MTD_OTP
603 mtd->read_fact_prot_reg = cfi_intelext_read_fact_prot_reg; 603 mtd->_read_fact_prot_reg = cfi_intelext_read_fact_prot_reg;
604 mtd->read_user_prot_reg = cfi_intelext_read_user_prot_reg; 604 mtd->_read_user_prot_reg = cfi_intelext_read_user_prot_reg;
605 mtd->write_user_prot_reg = cfi_intelext_write_user_prot_reg; 605 mtd->_write_user_prot_reg = cfi_intelext_write_user_prot_reg;
606 mtd->lock_user_prot_reg = cfi_intelext_lock_user_prot_reg; 606 mtd->_lock_user_prot_reg = cfi_intelext_lock_user_prot_reg;
607 mtd->get_fact_prot_info = cfi_intelext_get_fact_prot_info; 607 mtd->_get_fact_prot_info = cfi_intelext_get_fact_prot_info;
608 mtd->get_user_prot_info = cfi_intelext_get_user_prot_info; 608 mtd->_get_user_prot_info = cfi_intelext_get_user_prot_info;
609#endif 609#endif
610 610
611 /* This function has the potential to distort the reality 611 /* This function has the potential to distort the reality
@@ -1017,8 +1017,6 @@ static void put_chip(struct map_info *map, struct flchip *chip, unsigned long ad
1017 case FL_READY: 1017 case FL_READY:
1018 case FL_STATUS: 1018 case FL_STATUS:
1019 case FL_JEDEC_QUERY: 1019 case FL_JEDEC_QUERY:
1020 /* We should really make set_vpp() count, rather than doing this */
1021 DISABLE_VPP(map);
1022 break; 1020 break;
1023 default: 1021 default:
1024 printk(KERN_ERR "%s: put_chip() called with oldstate %d!!\n", map->name, chip->oldstate); 1022 printk(KERN_ERR "%s: put_chip() called with oldstate %d!!\n", map->name, chip->oldstate);
@@ -1324,7 +1322,7 @@ static int cfi_intelext_point(struct mtd_info *mtd, loff_t from, size_t len,
1324 int chipnum; 1322 int chipnum;
1325 int ret = 0; 1323 int ret = 0;
1326 1324
1327 if (!map->virt || (from + len > mtd->size)) 1325 if (!map->virt)
1328 return -EINVAL; 1326 return -EINVAL;
1329 1327
1330 /* Now lock the chip(s) to POINT state */ 1328 /* Now lock the chip(s) to POINT state */
@@ -1334,7 +1332,6 @@ static int cfi_intelext_point(struct mtd_info *mtd, loff_t from, size_t len,
1334 ofs = from - (chipnum << cfi->chipshift); 1332 ofs = from - (chipnum << cfi->chipshift);
1335 1333
1336 *virt = map->virt + cfi->chips[chipnum].start + ofs; 1334 *virt = map->virt + cfi->chips[chipnum].start + ofs;
1337 *retlen = 0;
1338 if (phys) 1335 if (phys)
1339 *phys = map->phys + cfi->chips[chipnum].start + ofs; 1336 *phys = map->phys + cfi->chips[chipnum].start + ofs;
1340 1337
@@ -1369,12 +1366,12 @@ static int cfi_intelext_point(struct mtd_info *mtd, loff_t from, size_t len,
1369 return 0; 1366 return 0;
1370} 1367}
1371 1368
1372static void cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 1369static int cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1373{ 1370{
1374 struct map_info *map = mtd->priv; 1371 struct map_info *map = mtd->priv;
1375 struct cfi_private *cfi = map->fldrv_priv; 1372 struct cfi_private *cfi = map->fldrv_priv;
1376 unsigned long ofs; 1373 unsigned long ofs;
1377 int chipnum; 1374 int chipnum, err = 0;
1378 1375
1379 /* Now unlock the chip(s) POINT state */ 1376 /* Now unlock the chip(s) POINT state */
1380 1377
@@ -1382,7 +1379,7 @@ static void cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1382 chipnum = (from >> cfi->chipshift); 1379 chipnum = (from >> cfi->chipshift);
1383 ofs = from - (chipnum << cfi->chipshift); 1380 ofs = from - (chipnum << cfi->chipshift);
1384 1381
1385 while (len) { 1382 while (len && !err) {
1386 unsigned long thislen; 1383 unsigned long thislen;
1387 struct flchip *chip; 1384 struct flchip *chip;
1388 1385
@@ -1400,8 +1397,10 @@ static void cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1400 chip->ref_point_counter--; 1397 chip->ref_point_counter--;
1401 if(chip->ref_point_counter == 0) 1398 if(chip->ref_point_counter == 0)
1402 chip->state = FL_READY; 1399 chip->state = FL_READY;
1403 } else 1400 } else {
1404 printk(KERN_ERR "%s: Warning: unpoint called on non pointed region\n", map->name); /* Should this give an error? */ 1401 printk(KERN_ERR "%s: Error: unpoint called on non pointed region\n", map->name);
1402 err = -EINVAL;
1403 }
1405 1404
1406 put_chip(map, chip, chip->start); 1405 put_chip(map, chip, chip->start);
1407 mutex_unlock(&chip->mutex); 1406 mutex_unlock(&chip->mutex);
@@ -1410,6 +1409,8 @@ static void cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1410 ofs = 0; 1409 ofs = 0;
1411 chipnum++; 1410 chipnum++;
1412 } 1411 }
1412
1413 return err;
1413} 1414}
1414 1415
1415static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf) 1416static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
@@ -1456,8 +1457,6 @@ static int cfi_intelext_read (struct mtd_info *mtd, loff_t from, size_t len, siz
1456 chipnum = (from >> cfi->chipshift); 1457 chipnum = (from >> cfi->chipshift);
1457 ofs = from - (chipnum << cfi->chipshift); 1458 ofs = from - (chipnum << cfi->chipshift);
1458 1459
1459 *retlen = 0;
1460
1461 while (len) { 1460 while (len) {
1462 unsigned long thislen; 1461 unsigned long thislen;
1463 1462
@@ -1551,7 +1550,8 @@ static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1551 } 1550 }
1552 1551
1553 xip_enable(map, chip, adr); 1552 xip_enable(map, chip, adr);
1554 out: put_chip(map, chip, adr); 1553 out: DISABLE_VPP(map);
1554 put_chip(map, chip, adr);
1555 mutex_unlock(&chip->mutex); 1555 mutex_unlock(&chip->mutex);
1556 return ret; 1556 return ret;
1557} 1557}
@@ -1565,10 +1565,6 @@ static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t le
1565 int chipnum; 1565 int chipnum;
1566 unsigned long ofs; 1566 unsigned long ofs;
1567 1567
1568 *retlen = 0;
1569 if (!len)
1570 return 0;
1571
1572 chipnum = to >> cfi->chipshift; 1568 chipnum = to >> cfi->chipshift;
1573 ofs = to - (chipnum << cfi->chipshift); 1569 ofs = to - (chipnum << cfi->chipshift);
1574 1570
@@ -1794,7 +1790,8 @@ static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1794 } 1790 }
1795 1791
1796 xip_enable(map, chip, cmd_adr); 1792 xip_enable(map, chip, cmd_adr);
1797 out: put_chip(map, chip, cmd_adr); 1793 out: DISABLE_VPP(map);
1794 put_chip(map, chip, cmd_adr);
1798 mutex_unlock(&chip->mutex); 1795 mutex_unlock(&chip->mutex);
1799 return ret; 1796 return ret;
1800} 1797}
@@ -1813,7 +1810,6 @@ static int cfi_intelext_writev (struct mtd_info *mtd, const struct kvec *vecs,
1813 for (i = 0; i < count; i++) 1810 for (i = 0; i < count; i++)
1814 len += vecs[i].iov_len; 1811 len += vecs[i].iov_len;
1815 1812
1816 *retlen = 0;
1817 if (!len) 1813 if (!len)
1818 return 0; 1814 return 0;
1819 1815
@@ -1932,6 +1928,7 @@ static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip,
1932 ret = -EIO; 1928 ret = -EIO;
1933 } else if (chipstatus & 0x20 && retries--) { 1929 } else if (chipstatus & 0x20 && retries--) {
1934 printk(KERN_DEBUG "block erase failed at 0x%08lx: status 0x%lx. Retrying...\n", adr, chipstatus); 1930 printk(KERN_DEBUG "block erase failed at 0x%08lx: status 0x%lx. Retrying...\n", adr, chipstatus);
1931 DISABLE_VPP(map);
1935 put_chip(map, chip, adr); 1932 put_chip(map, chip, adr);
1936 mutex_unlock(&chip->mutex); 1933 mutex_unlock(&chip->mutex);
1937 goto retry; 1934 goto retry;
@@ -1944,7 +1941,8 @@ static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip,
1944 } 1941 }
1945 1942
1946 xip_enable(map, chip, adr); 1943 xip_enable(map, chip, adr);
1947 out: put_chip(map, chip, adr); 1944 out: DISABLE_VPP(map);
1945 put_chip(map, chip, adr);
1948 mutex_unlock(&chip->mutex); 1946 mutex_unlock(&chip->mutex);
1949 return ret; 1947 return ret;
1950} 1948}
@@ -2086,7 +2084,8 @@ static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip
2086 } 2084 }
2087 2085
2088 xip_enable(map, chip, adr); 2086 xip_enable(map, chip, adr);
2089out: put_chip(map, chip, adr); 2087 out: DISABLE_VPP(map);
2088 put_chip(map, chip, adr);
2090 mutex_unlock(&chip->mutex); 2089 mutex_unlock(&chip->mutex);
2091 return ret; 2090 return ret;
2092} 2091}
@@ -2483,7 +2482,7 @@ static int cfi_intelext_suspend(struct mtd_info *mtd)
2483 allowed to. Or should we return -EAGAIN, because the upper layers 2482 allowed to. Or should we return -EAGAIN, because the upper layers
2484 ought to have already shut down anything which was using the device 2483 ought to have already shut down anything which was using the device
2485 anyway? The latter for now. */ 2484 anyway? The latter for now. */
2486 printk(KERN_NOTICE "Flash device refused suspend due to active operation (state %d)\n", chip->oldstate); 2485 printk(KERN_NOTICE "Flash device refused suspend due to active operation (state %d)\n", chip->state);
2487 ret = -EAGAIN; 2486 ret = -EAGAIN;
2488 case FL_PM_SUSPENDED: 2487 case FL_PM_SUSPENDED:
2489 break; 2488 break;
diff --git a/drivers/mtd/chips/cfi_cmdset_0002.c b/drivers/mtd/chips/cfi_cmdset_0002.c
index 8d70895a58d6..d02592e6a0f0 100644
--- a/drivers/mtd/chips/cfi_cmdset_0002.c
+++ b/drivers/mtd/chips/cfi_cmdset_0002.c
@@ -59,6 +59,9 @@ static void cfi_amdstd_resume (struct mtd_info *);
59static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *); 59static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
60static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); 60static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
61 61
62static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
63 size_t *retlen, const u_char *buf);
64
62static void cfi_amdstd_destroy(struct mtd_info *); 65static void cfi_amdstd_destroy(struct mtd_info *);
63 66
64struct mtd_info *cfi_cmdset_0002(struct map_info *, int); 67struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
@@ -189,7 +192,7 @@ static void fixup_use_write_buffers(struct mtd_info *mtd)
189 struct cfi_private *cfi = map->fldrv_priv; 192 struct cfi_private *cfi = map->fldrv_priv;
190 if (cfi->cfiq->BufWriteTimeoutTyp) { 193 if (cfi->cfiq->BufWriteTimeoutTyp) {
191 pr_debug("Using buffer write method\n" ); 194 pr_debug("Using buffer write method\n" );
192 mtd->write = cfi_amdstd_write_buffers; 195 mtd->_write = cfi_amdstd_write_buffers;
193 } 196 }
194} 197}
195 198
@@ -228,8 +231,8 @@ static void fixup_convert_atmel_pri(struct mtd_info *mtd)
228static void fixup_use_secsi(struct mtd_info *mtd) 231static void fixup_use_secsi(struct mtd_info *mtd)
229{ 232{
230 /* Setup for chips with a secsi area */ 233 /* Setup for chips with a secsi area */
231 mtd->read_user_prot_reg = cfi_amdstd_secsi_read; 234 mtd->_read_user_prot_reg = cfi_amdstd_secsi_read;
232 mtd->read_fact_prot_reg = cfi_amdstd_secsi_read; 235 mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read;
233} 236}
234 237
235static void fixup_use_erase_chip(struct mtd_info *mtd) 238static void fixup_use_erase_chip(struct mtd_info *mtd)
@@ -238,7 +241,7 @@ static void fixup_use_erase_chip(struct mtd_info *mtd)
238 struct cfi_private *cfi = map->fldrv_priv; 241 struct cfi_private *cfi = map->fldrv_priv;
239 if ((cfi->cfiq->NumEraseRegions == 1) && 242 if ((cfi->cfiq->NumEraseRegions == 1) &&
240 ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) { 243 ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
241 mtd->erase = cfi_amdstd_erase_chip; 244 mtd->_erase = cfi_amdstd_erase_chip;
242 } 245 }
243 246
244} 247}
@@ -249,8 +252,8 @@ static void fixup_use_erase_chip(struct mtd_info *mtd)
249 */ 252 */
250static void fixup_use_atmel_lock(struct mtd_info *mtd) 253static void fixup_use_atmel_lock(struct mtd_info *mtd)
251{ 254{
252 mtd->lock = cfi_atmel_lock; 255 mtd->_lock = cfi_atmel_lock;
253 mtd->unlock = cfi_atmel_unlock; 256 mtd->_unlock = cfi_atmel_unlock;
254 mtd->flags |= MTD_POWERUP_LOCK; 257 mtd->flags |= MTD_POWERUP_LOCK;
255} 258}
256 259
@@ -429,12 +432,12 @@ struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
429 mtd->type = MTD_NORFLASH; 432 mtd->type = MTD_NORFLASH;
430 433
431 /* Fill in the default mtd operations */ 434 /* Fill in the default mtd operations */
432 mtd->erase = cfi_amdstd_erase_varsize; 435 mtd->_erase = cfi_amdstd_erase_varsize;
433 mtd->write = cfi_amdstd_write_words; 436 mtd->_write = cfi_amdstd_write_words;
434 mtd->read = cfi_amdstd_read; 437 mtd->_read = cfi_amdstd_read;
435 mtd->sync = cfi_amdstd_sync; 438 mtd->_sync = cfi_amdstd_sync;
436 mtd->suspend = cfi_amdstd_suspend; 439 mtd->_suspend = cfi_amdstd_suspend;
437 mtd->resume = cfi_amdstd_resume; 440 mtd->_resume = cfi_amdstd_resume;
438 mtd->flags = MTD_CAP_NORFLASH; 441 mtd->flags = MTD_CAP_NORFLASH;
439 mtd->name = map->name; 442 mtd->name = map->name;
440 mtd->writesize = 1; 443 mtd->writesize = 1;
@@ -443,6 +446,7 @@ struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
443 pr_debug("MTD %s(): write buffer size %d\n", __func__, 446 pr_debug("MTD %s(): write buffer size %d\n", __func__,
444 mtd->writebufsize); 447 mtd->writebufsize);
445 448
449 mtd->_panic_write = cfi_amdstd_panic_write;
446 mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot; 450 mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
447 451
448 if (cfi->cfi_mode==CFI_MODE_CFI){ 452 if (cfi->cfi_mode==CFI_MODE_CFI){
@@ -770,8 +774,6 @@ static void put_chip(struct map_info *map, struct flchip *chip, unsigned long ad
770 774
771 case FL_READY: 775 case FL_READY:
772 case FL_STATUS: 776 case FL_STATUS:
773 /* We should really make set_vpp() count, rather than doing this */
774 DISABLE_VPP(map);
775 break; 777 break;
776 default: 778 default:
777 printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate); 779 printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
@@ -1013,13 +1015,9 @@ static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_
1013 int ret = 0; 1015 int ret = 0;
1014 1016
1015 /* ofs: offset within the first chip that the first read should start */ 1017 /* ofs: offset within the first chip that the first read should start */
1016
1017 chipnum = (from >> cfi->chipshift); 1018 chipnum = (from >> cfi->chipshift);
1018 ofs = from - (chipnum << cfi->chipshift); 1019 ofs = from - (chipnum << cfi->chipshift);
1019 1020
1020
1021 *retlen = 0;
1022
1023 while (len) { 1021 while (len) {
1024 unsigned long thislen; 1022 unsigned long thislen;
1025 1023
@@ -1097,16 +1095,11 @@ static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len,
1097 int chipnum; 1095 int chipnum;
1098 int ret = 0; 1096 int ret = 0;
1099 1097
1100
1101 /* ofs: offset within the first chip that the first read should start */ 1098 /* ofs: offset within the first chip that the first read should start */
1102
1103 /* 8 secsi bytes per chip */ 1099 /* 8 secsi bytes per chip */
1104 chipnum=from>>3; 1100 chipnum=from>>3;
1105 ofs=from & 7; 1101 ofs=from & 7;
1106 1102
1107
1108 *retlen = 0;
1109
1110 while (len) { 1103 while (len) {
1111 unsigned long thislen; 1104 unsigned long thislen;
1112 1105
@@ -1234,6 +1227,7 @@ static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1234 xip_enable(map, chip, adr); 1227 xip_enable(map, chip, adr);
1235 op_done: 1228 op_done:
1236 chip->state = FL_READY; 1229 chip->state = FL_READY;
1230 DISABLE_VPP(map);
1237 put_chip(map, chip, adr); 1231 put_chip(map, chip, adr);
1238 mutex_unlock(&chip->mutex); 1232 mutex_unlock(&chip->mutex);
1239 1233
@@ -1251,10 +1245,6 @@ static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1251 unsigned long ofs, chipstart; 1245 unsigned long ofs, chipstart;
1252 DECLARE_WAITQUEUE(wait, current); 1246 DECLARE_WAITQUEUE(wait, current);
1253 1247
1254 *retlen = 0;
1255 if (!len)
1256 return 0;
1257
1258 chipnum = to >> cfi->chipshift; 1248 chipnum = to >> cfi->chipshift;
1259 ofs = to - (chipnum << cfi->chipshift); 1249 ofs = to - (chipnum << cfi->chipshift);
1260 chipstart = cfi->chips[chipnum].start; 1250 chipstart = cfi->chips[chipnum].start;
@@ -1476,6 +1466,7 @@ static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1476 ret = -EIO; 1466 ret = -EIO;
1477 op_done: 1467 op_done:
1478 chip->state = FL_READY; 1468 chip->state = FL_READY;
1469 DISABLE_VPP(map);
1479 put_chip(map, chip, adr); 1470 put_chip(map, chip, adr);
1480 mutex_unlock(&chip->mutex); 1471 mutex_unlock(&chip->mutex);
1481 1472
@@ -1493,10 +1484,6 @@ static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1493 int chipnum; 1484 int chipnum;
1494 unsigned long ofs; 1485 unsigned long ofs;
1495 1486
1496 *retlen = 0;
1497 if (!len)
1498 return 0;
1499
1500 chipnum = to >> cfi->chipshift; 1487 chipnum = to >> cfi->chipshift;
1501 ofs = to - (chipnum << cfi->chipshift); 1488 ofs = to - (chipnum << cfi->chipshift);
1502 1489
@@ -1562,6 +1549,238 @@ static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1562 return 0; 1549 return 0;
1563} 1550}
1564 1551
1552/*
1553 * Wait for the flash chip to become ready to write data
1554 *
1555 * This is only called during the panic_write() path. When panic_write()
1556 * is called, the kernel is in the process of a panic, and will soon be
1557 * dead. Therefore we don't take any locks, and attempt to get access
1558 * to the chip as soon as possible.
1559 */
1560static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip,
1561 unsigned long adr)
1562{
1563 struct cfi_private *cfi = map->fldrv_priv;
1564 int retries = 10;
1565 int i;
1566
1567 /*
1568 * If the driver thinks the chip is idle, and no toggle bits
1569 * are changing, then the chip is actually idle for sure.
1570 */
1571 if (chip->state == FL_READY && chip_ready(map, adr))
1572 return 0;
1573
1574 /*
1575 * Try several times to reset the chip and then wait for it
1576 * to become idle. The upper limit of a few milliseconds of
1577 * delay isn't a big problem: the kernel is dying anyway. It
1578 * is more important to save the messages.
1579 */
1580 while (retries > 0) {
1581 const unsigned long timeo = (HZ / 1000) + 1;
1582
1583 /* send the reset command */
1584 map_write(map, CMD(0xF0), chip->start);
1585
1586 /* wait for the chip to become ready */
1587 for (i = 0; i < jiffies_to_usecs(timeo); i++) {
1588 if (chip_ready(map, adr))
1589 return 0;
1590
1591 udelay(1);
1592 }
1593 }
1594
1595 /* the chip never became ready */
1596 return -EBUSY;
1597}
1598
1599/*
1600 * Write out one word of data to a single flash chip during a kernel panic
1601 *
1602 * This is only called during the panic_write() path. When panic_write()
1603 * is called, the kernel is in the process of a panic, and will soon be
1604 * dead. Therefore we don't take any locks, and attempt to get access
1605 * to the chip as soon as possible.
1606 *
1607 * The implementation of this routine is intentionally similar to
1608 * do_write_oneword(), in order to ease code maintenance.
1609 */
1610static int do_panic_write_oneword(struct map_info *map, struct flchip *chip,
1611 unsigned long adr, map_word datum)
1612{
1613 const unsigned long uWriteTimeout = (HZ / 1000) + 1;
1614 struct cfi_private *cfi = map->fldrv_priv;
1615 int retry_cnt = 0;
1616 map_word oldd;
1617 int ret = 0;
1618 int i;
1619
1620 adr += chip->start;
1621
1622 ret = cfi_amdstd_panic_wait(map, chip, adr);
1623 if (ret)
1624 return ret;
1625
1626 pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n",
1627 __func__, adr, datum.x[0]);
1628
1629 /*
1630 * Check for a NOP for the case when the datum to write is already
1631 * present - it saves time and works around buggy chips that corrupt
1632 * data at other locations when 0xff is written to a location that
1633 * already contains 0xff.
1634 */
1635 oldd = map_read(map, adr);
1636 if (map_word_equal(map, oldd, datum)) {
1637 pr_debug("MTD %s(): NOP\n", __func__);
1638 goto op_done;
1639 }
1640
1641 ENABLE_VPP(map);
1642
1643retry:
1644 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1645 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1646 cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1647 map_write(map, datum, adr);
1648
1649 for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) {
1650 if (chip_ready(map, adr))
1651 break;
1652
1653 udelay(1);
1654 }
1655
1656 if (!chip_good(map, adr, datum)) {
1657 /* reset on all failures. */
1658 map_write(map, CMD(0xF0), chip->start);
1659 /* FIXME - should have reset delay before continuing */
1660
1661 if (++retry_cnt <= MAX_WORD_RETRIES)
1662 goto retry;
1663
1664 ret = -EIO;
1665 }
1666
1667op_done:
1668 DISABLE_VPP(map);
1669 return ret;
1670}
1671
1672/*
1673 * Write out some data during a kernel panic
1674 *
1675 * This is used by the mtdoops driver to save the dying messages from a
1676 * kernel which has panic'd.
1677 *
1678 * This routine ignores all of the locking used throughout the rest of the
1679 * driver, in order to ensure that the data gets written out no matter what
1680 * state this driver (and the flash chip itself) was in when the kernel crashed.
1681 *
1682 * The implementation of this routine is intentionally similar to
1683 * cfi_amdstd_write_words(), in order to ease code maintenance.
1684 */
1685static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1686 size_t *retlen, const u_char *buf)
1687{
1688 struct map_info *map = mtd->priv;
1689 struct cfi_private *cfi = map->fldrv_priv;
1690 unsigned long ofs, chipstart;
1691 int ret = 0;
1692 int chipnum;
1693
1694 chipnum = to >> cfi->chipshift;
1695 ofs = to - (chipnum << cfi->chipshift);
1696 chipstart = cfi->chips[chipnum].start;
1697
1698 /* If it's not bus aligned, do the first byte write */
1699 if (ofs & (map_bankwidth(map) - 1)) {
1700 unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1);
1701 int i = ofs - bus_ofs;
1702 int n = 0;
1703 map_word tmp_buf;
1704
1705 ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs);
1706 if (ret)
1707 return ret;
1708
1709 /* Load 'tmp_buf' with old contents of flash */
1710 tmp_buf = map_read(map, bus_ofs + chipstart);
1711
1712 /* Number of bytes to copy from buffer */
1713 n = min_t(int, len, map_bankwidth(map) - i);
1714
1715 tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1716
1717 ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
1718 bus_ofs, tmp_buf);
1719 if (ret)
1720 return ret;
1721
1722 ofs += n;
1723 buf += n;
1724 (*retlen) += n;
1725 len -= n;
1726
1727 if (ofs >> cfi->chipshift) {
1728 chipnum++;
1729 ofs = 0;
1730 if (chipnum == cfi->numchips)
1731 return 0;
1732 }
1733 }
1734
1735 /* We are now aligned, write as much as possible */
1736 while (len >= map_bankwidth(map)) {
1737 map_word datum;
1738
1739 datum = map_word_load(map, buf);
1740
1741 ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
1742 ofs, datum);
1743 if (ret)
1744 return ret;
1745
1746 ofs += map_bankwidth(map);
1747 buf += map_bankwidth(map);
1748 (*retlen) += map_bankwidth(map);
1749 len -= map_bankwidth(map);
1750
1751 if (ofs >> cfi->chipshift) {
1752 chipnum++;
1753 ofs = 0;
1754 if (chipnum == cfi->numchips)
1755 return 0;
1756
1757 chipstart = cfi->chips[chipnum].start;
1758 }
1759 }
1760
1761 /* Write the trailing bytes if any */
1762 if (len & (map_bankwidth(map) - 1)) {
1763 map_word tmp_buf;
1764
1765 ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs);
1766 if (ret)
1767 return ret;
1768
1769 tmp_buf = map_read(map, ofs + chipstart);
1770
1771 tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1772
1773 ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
1774 ofs, tmp_buf);
1775 if (ret)
1776 return ret;
1777
1778 (*retlen) += len;
1779 }
1780
1781 return 0;
1782}
1783
1565 1784
1566/* 1785/*
1567 * Handle devices with one erase region, that only implement 1786 * Handle devices with one erase region, that only implement
@@ -1649,6 +1868,7 @@ static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
1649 1868
1650 chip->state = FL_READY; 1869 chip->state = FL_READY;
1651 xip_enable(map, chip, adr); 1870 xip_enable(map, chip, adr);
1871 DISABLE_VPP(map);
1652 put_chip(map, chip, adr); 1872 put_chip(map, chip, adr);
1653 mutex_unlock(&chip->mutex); 1873 mutex_unlock(&chip->mutex);
1654 1874
@@ -1739,6 +1959,7 @@ static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip,
1739 } 1959 }
1740 1960
1741 chip->state = FL_READY; 1961 chip->state = FL_READY;
1962 DISABLE_VPP(map);
1742 put_chip(map, chip, adr); 1963 put_chip(map, chip, adr);
1743 mutex_unlock(&chip->mutex); 1964 mutex_unlock(&chip->mutex);
1744 return ret; 1965 return ret;
diff --git a/drivers/mtd/chips/cfi_cmdset_0020.c b/drivers/mtd/chips/cfi_cmdset_0020.c
index 85e80180b65b..096993f9711e 100644
--- a/drivers/mtd/chips/cfi_cmdset_0020.c
+++ b/drivers/mtd/chips/cfi_cmdset_0020.c
@@ -228,15 +228,15 @@ static struct mtd_info *cfi_staa_setup(struct map_info *map)
228 } 228 }
229 229
230 /* Also select the correct geometry setup too */ 230 /* Also select the correct geometry setup too */
231 mtd->erase = cfi_staa_erase_varsize; 231 mtd->_erase = cfi_staa_erase_varsize;
232 mtd->read = cfi_staa_read; 232 mtd->_read = cfi_staa_read;
233 mtd->write = cfi_staa_write_buffers; 233 mtd->_write = cfi_staa_write_buffers;
234 mtd->writev = cfi_staa_writev; 234 mtd->_writev = cfi_staa_writev;
235 mtd->sync = cfi_staa_sync; 235 mtd->_sync = cfi_staa_sync;
236 mtd->lock = cfi_staa_lock; 236 mtd->_lock = cfi_staa_lock;
237 mtd->unlock = cfi_staa_unlock; 237 mtd->_unlock = cfi_staa_unlock;
238 mtd->suspend = cfi_staa_suspend; 238 mtd->_suspend = cfi_staa_suspend;
239 mtd->resume = cfi_staa_resume; 239 mtd->_resume = cfi_staa_resume;
240 mtd->flags = MTD_CAP_NORFLASH & ~MTD_BIT_WRITEABLE; 240 mtd->flags = MTD_CAP_NORFLASH & ~MTD_BIT_WRITEABLE;
241 mtd->writesize = 8; /* FIXME: Should be 0 for STMicro flashes w/out ECC */ 241 mtd->writesize = 8; /* FIXME: Should be 0 for STMicro flashes w/out ECC */
242 mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; 242 mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
@@ -394,8 +394,6 @@ static int cfi_staa_read (struct mtd_info *mtd, loff_t from, size_t len, size_t
394 chipnum = (from >> cfi->chipshift); 394 chipnum = (from >> cfi->chipshift);
395 ofs = from - (chipnum << cfi->chipshift); 395 ofs = from - (chipnum << cfi->chipshift);
396 396
397 *retlen = 0;
398
399 while (len) { 397 while (len) {
400 unsigned long thislen; 398 unsigned long thislen;
401 399
@@ -617,10 +615,6 @@ static int cfi_staa_write_buffers (struct mtd_info *mtd, loff_t to,
617 int chipnum; 615 int chipnum;
618 unsigned long ofs; 616 unsigned long ofs;
619 617
620 *retlen = 0;
621 if (!len)
622 return 0;
623
624 chipnum = to >> cfi->chipshift; 618 chipnum = to >> cfi->chipshift;
625 ofs = to - (chipnum << cfi->chipshift); 619 ofs = to - (chipnum << cfi->chipshift);
626 620
@@ -904,12 +898,6 @@ static int cfi_staa_erase_varsize(struct mtd_info *mtd,
904 int i, first; 898 int i, first;
905 struct mtd_erase_region_info *regions = mtd->eraseregions; 899 struct mtd_erase_region_info *regions = mtd->eraseregions;
906 900
907 if (instr->addr > mtd->size)
908 return -EINVAL;
909
910 if ((instr->len + instr->addr) > mtd->size)
911 return -EINVAL;
912
913 /* Check that both start and end of the requested erase are 901 /* Check that both start and end of the requested erase are
914 * aligned with the erasesize at the appropriate addresses. 902 * aligned with the erasesize at the appropriate addresses.
915 */ 903 */
@@ -1155,9 +1143,6 @@ static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1155 if (len & (mtd->erasesize -1)) 1143 if (len & (mtd->erasesize -1))
1156 return -EINVAL; 1144 return -EINVAL;
1157 1145
1158 if ((len + ofs) > mtd->size)
1159 return -EINVAL;
1160
1161 chipnum = ofs >> cfi->chipshift; 1146 chipnum = ofs >> cfi->chipshift;
1162 adr = ofs - (chipnum << cfi->chipshift); 1147 adr = ofs - (chipnum << cfi->chipshift);
1163 1148
diff --git a/drivers/mtd/chips/cfi_util.c b/drivers/mtd/chips/cfi_util.c
index 8e464054a631..f992418f40a8 100644
--- a/drivers/mtd/chips/cfi_util.c
+++ b/drivers/mtd/chips/cfi_util.c
@@ -173,12 +173,6 @@ int cfi_varsize_frob(struct mtd_info *mtd, varsize_frob_t frob,
173 int i, first; 173 int i, first;
174 struct mtd_erase_region_info *regions = mtd->eraseregions; 174 struct mtd_erase_region_info *regions = mtd->eraseregions;
175 175
176 if (ofs > mtd->size)
177 return -EINVAL;
178
179 if ((len + ofs) > mtd->size)
180 return -EINVAL;
181
182 /* Check that both start and end of the requested erase are 176 /* Check that both start and end of the requested erase are
183 * aligned with the erasesize at the appropriate addresses. 177 * aligned with the erasesize at the appropriate addresses.
184 */ 178 */
diff --git a/drivers/mtd/chips/fwh_lock.h b/drivers/mtd/chips/fwh_lock.h
index 89c6595454a5..800b0e853e86 100644
--- a/drivers/mtd/chips/fwh_lock.h
+++ b/drivers/mtd/chips/fwh_lock.h
@@ -101,7 +101,7 @@ static void fixup_use_fwh_lock(struct mtd_info *mtd)
101{ 101{
102 printk(KERN_NOTICE "using fwh lock/unlock method\n"); 102 printk(KERN_NOTICE "using fwh lock/unlock method\n");
103 /* Setup for the chips with the fwh lock method */ 103 /* Setup for the chips with the fwh lock method */
104 mtd->lock = fwh_lock_varsize; 104 mtd->_lock = fwh_lock_varsize;
105 mtd->unlock = fwh_unlock_varsize; 105 mtd->_unlock = fwh_unlock_varsize;
106} 106}
107#endif /* FWH_LOCK_H */ 107#endif /* FWH_LOCK_H */
diff --git a/drivers/mtd/chips/map_absent.c b/drivers/mtd/chips/map_absent.c
index f2b872946871..f7a5bca92aef 100644
--- a/drivers/mtd/chips/map_absent.c
+++ b/drivers/mtd/chips/map_absent.c
@@ -55,10 +55,10 @@ static struct mtd_info *map_absent_probe(struct map_info *map)
55 mtd->name = map->name; 55 mtd->name = map->name;
56 mtd->type = MTD_ABSENT; 56 mtd->type = MTD_ABSENT;
57 mtd->size = map->size; 57 mtd->size = map->size;
58 mtd->erase = map_absent_erase; 58 mtd->_erase = map_absent_erase;
59 mtd->read = map_absent_read; 59 mtd->_read = map_absent_read;
60 mtd->write = map_absent_write; 60 mtd->_write = map_absent_write;
61 mtd->sync = map_absent_sync; 61 mtd->_sync = map_absent_sync;
62 mtd->flags = 0; 62 mtd->flags = 0;
63 mtd->erasesize = PAGE_SIZE; 63 mtd->erasesize = PAGE_SIZE;
64 mtd->writesize = 1; 64 mtd->writesize = 1;
@@ -70,13 +70,11 @@ static struct mtd_info *map_absent_probe(struct map_info *map)
70 70
71static int map_absent_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) 71static int map_absent_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
72{ 72{
73 *retlen = 0;
74 return -ENODEV; 73 return -ENODEV;
75} 74}
76 75
77static int map_absent_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) 76static int map_absent_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf)
78{ 77{
79 *retlen = 0;
80 return -ENODEV; 78 return -ENODEV;
81} 79}
82 80
diff --git a/drivers/mtd/chips/map_ram.c b/drivers/mtd/chips/map_ram.c
index 67640ccb2d41..991c2a1c05d3 100644
--- a/drivers/mtd/chips/map_ram.c
+++ b/drivers/mtd/chips/map_ram.c
@@ -64,11 +64,11 @@ static struct mtd_info *map_ram_probe(struct map_info *map)
64 mtd->name = map->name; 64 mtd->name = map->name;
65 mtd->type = MTD_RAM; 65 mtd->type = MTD_RAM;
66 mtd->size = map->size; 66 mtd->size = map->size;
67 mtd->erase = mapram_erase; 67 mtd->_erase = mapram_erase;
68 mtd->get_unmapped_area = mapram_unmapped_area; 68 mtd->_get_unmapped_area = mapram_unmapped_area;
69 mtd->read = mapram_read; 69 mtd->_read = mapram_read;
70 mtd->write = mapram_write; 70 mtd->_write = mapram_write;
71 mtd->sync = mapram_nop; 71 mtd->_sync = mapram_nop;
72 mtd->flags = MTD_CAP_RAM; 72 mtd->flags = MTD_CAP_RAM;
73 mtd->writesize = 1; 73 mtd->writesize = 1;
74 74
@@ -122,14 +122,10 @@ static int mapram_erase (struct mtd_info *mtd, struct erase_info *instr)
122 unsigned long i; 122 unsigned long i;
123 123
124 allff = map_word_ff(map); 124 allff = map_word_ff(map);
125
126 for (i=0; i<instr->len; i += map_bankwidth(map)) 125 for (i=0; i<instr->len; i += map_bankwidth(map))
127 map_write(map, allff, instr->addr + i); 126 map_write(map, allff, instr->addr + i);
128
129 instr->state = MTD_ERASE_DONE; 127 instr->state = MTD_ERASE_DONE;
130
131 mtd_erase_callback(instr); 128 mtd_erase_callback(instr);
132
133 return 0; 129 return 0;
134} 130}
135 131
diff --git a/drivers/mtd/chips/map_rom.c b/drivers/mtd/chips/map_rom.c
index 593f73d480d2..47a43cf7e5c6 100644
--- a/drivers/mtd/chips/map_rom.c
+++ b/drivers/mtd/chips/map_rom.c
@@ -41,11 +41,11 @@ static struct mtd_info *map_rom_probe(struct map_info *map)
41 mtd->name = map->name; 41 mtd->name = map->name;
42 mtd->type = MTD_ROM; 42 mtd->type = MTD_ROM;
43 mtd->size = map->size; 43 mtd->size = map->size;
44 mtd->get_unmapped_area = maprom_unmapped_area; 44 mtd->_get_unmapped_area = maprom_unmapped_area;
45 mtd->read = maprom_read; 45 mtd->_read = maprom_read;
46 mtd->write = maprom_write; 46 mtd->_write = maprom_write;
47 mtd->sync = maprom_nop; 47 mtd->_sync = maprom_nop;
48 mtd->erase = maprom_erase; 48 mtd->_erase = maprom_erase;
49 mtd->flags = MTD_CAP_ROM; 49 mtd->flags = MTD_CAP_ROM;
50 mtd->erasesize = map->size; 50 mtd->erasesize = map->size;
51 mtd->writesize = 1; 51 mtd->writesize = 1;
@@ -85,8 +85,7 @@ static void maprom_nop(struct mtd_info *mtd)
85 85
86static int maprom_write (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) 86static int maprom_write (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf)
87{ 87{
88 printk(KERN_NOTICE "maprom_write called\n"); 88 return -EROFS;
89 return -EIO;
90} 89}
91 90
92static int maprom_erase (struct mtd_info *mtd, struct erase_info *info) 91static int maprom_erase (struct mtd_info *mtd, struct erase_info *info)
diff --git a/drivers/mtd/devices/Kconfig b/drivers/mtd/devices/Kconfig
index 8d3dac40d7e6..4cdb2af7bf44 100644
--- a/drivers/mtd/devices/Kconfig
+++ b/drivers/mtd/devices/Kconfig
@@ -103,6 +103,13 @@ config M25PXX_USE_FAST_READ
103 help 103 help
104 This option enables FAST_READ access supported by ST M25Pxx. 104 This option enables FAST_READ access supported by ST M25Pxx.
105 105
106config MTD_SPEAR_SMI
107 tristate "SPEAR MTD NOR Support through SMI controller"
108 depends on PLAT_SPEAR
109 default y
110 help
111 This enable SNOR support on SPEAR platforms using SMI controller
112
106config MTD_SST25L 113config MTD_SST25L
107 tristate "Support SST25L (non JEDEC) SPI Flash chips" 114 tristate "Support SST25L (non JEDEC) SPI Flash chips"
108 depends on SPI_MASTER 115 depends on SPI_MASTER
diff --git a/drivers/mtd/devices/Makefile b/drivers/mtd/devices/Makefile
index 56c7cd462f11..a4dd1d822b6c 100644
--- a/drivers/mtd/devices/Makefile
+++ b/drivers/mtd/devices/Makefile
@@ -17,6 +17,7 @@ obj-$(CONFIG_MTD_LART) += lart.o
17obj-$(CONFIG_MTD_BLOCK2MTD) += block2mtd.o 17obj-$(CONFIG_MTD_BLOCK2MTD) += block2mtd.o
18obj-$(CONFIG_MTD_DATAFLASH) += mtd_dataflash.o 18obj-$(CONFIG_MTD_DATAFLASH) += mtd_dataflash.o
19obj-$(CONFIG_MTD_M25P80) += m25p80.o 19obj-$(CONFIG_MTD_M25P80) += m25p80.o
20obj-$(CONFIG_MTD_SPEAR_SMI) += spear_smi.o
20obj-$(CONFIG_MTD_SST25L) += sst25l.o 21obj-$(CONFIG_MTD_SST25L) += sst25l.o
21 22
22CFLAGS_docg3.o += -I$(src) \ No newline at end of file 23CFLAGS_docg3.o += -I$(src) \ No newline at end of file
diff --git a/drivers/mtd/devices/block2mtd.c b/drivers/mtd/devices/block2mtd.c
index e7e46d1e7463..a4a80b742e65 100644
--- a/drivers/mtd/devices/block2mtd.c
+++ b/drivers/mtd/devices/block2mtd.c
@@ -104,14 +104,6 @@ static int block2mtd_read(struct mtd_info *mtd, loff_t from, size_t len,
104 int offset = from & (PAGE_SIZE-1); 104 int offset = from & (PAGE_SIZE-1);
105 int cpylen; 105 int cpylen;
106 106
107 if (from > mtd->size)
108 return -EINVAL;
109 if (from + len > mtd->size)
110 len = mtd->size - from;
111
112 if (retlen)
113 *retlen = 0;
114
115 while (len) { 107 while (len) {
116 if ((offset + len) > PAGE_SIZE) 108 if ((offset + len) > PAGE_SIZE)
117 cpylen = PAGE_SIZE - offset; // multiple pages 109 cpylen = PAGE_SIZE - offset; // multiple pages
@@ -148,8 +140,6 @@ static int _block2mtd_write(struct block2mtd_dev *dev, const u_char *buf,
148 int offset = to & ~PAGE_MASK; // page offset 140 int offset = to & ~PAGE_MASK; // page offset
149 int cpylen; 141 int cpylen;
150 142
151 if (retlen)
152 *retlen = 0;
153 while (len) { 143 while (len) {
154 if ((offset+len) > PAGE_SIZE) 144 if ((offset+len) > PAGE_SIZE)
155 cpylen = PAGE_SIZE - offset; // multiple pages 145 cpylen = PAGE_SIZE - offset; // multiple pages
@@ -188,13 +178,6 @@ static int block2mtd_write(struct mtd_info *mtd, loff_t to, size_t len,
188 struct block2mtd_dev *dev = mtd->priv; 178 struct block2mtd_dev *dev = mtd->priv;
189 int err; 179 int err;
190 180
191 if (!len)
192 return 0;
193 if (to >= mtd->size)
194 return -ENOSPC;
195 if (to + len > mtd->size)
196 len = mtd->size - to;
197
198 mutex_lock(&dev->write_mutex); 181 mutex_lock(&dev->write_mutex);
199 err = _block2mtd_write(dev, buf, to, len, retlen); 182 err = _block2mtd_write(dev, buf, to, len, retlen);
200 mutex_unlock(&dev->write_mutex); 183 mutex_unlock(&dev->write_mutex);
@@ -283,13 +266,14 @@ static struct block2mtd_dev *add_device(char *devname, int erase_size)
283 dev->mtd.size = dev->blkdev->bd_inode->i_size & PAGE_MASK; 266 dev->mtd.size = dev->blkdev->bd_inode->i_size & PAGE_MASK;
284 dev->mtd.erasesize = erase_size; 267 dev->mtd.erasesize = erase_size;
285 dev->mtd.writesize = 1; 268 dev->mtd.writesize = 1;
269 dev->mtd.writebufsize = PAGE_SIZE;
286 dev->mtd.type = MTD_RAM; 270 dev->mtd.type = MTD_RAM;
287 dev->mtd.flags = MTD_CAP_RAM; 271 dev->mtd.flags = MTD_CAP_RAM;
288 dev->mtd.erase = block2mtd_erase; 272 dev->mtd._erase = block2mtd_erase;
289 dev->mtd.write = block2mtd_write; 273 dev->mtd._write = block2mtd_write;
290 dev->mtd.writev = mtd_writev; 274 dev->mtd._writev = mtd_writev;
291 dev->mtd.sync = block2mtd_sync; 275 dev->mtd._sync = block2mtd_sync;
292 dev->mtd.read = block2mtd_read; 276 dev->mtd._read = block2mtd_read;
293 dev->mtd.priv = dev; 277 dev->mtd.priv = dev;
294 dev->mtd.owner = THIS_MODULE; 278 dev->mtd.owner = THIS_MODULE;
295 279
diff --git a/drivers/mtd/devices/doc2000.c b/drivers/mtd/devices/doc2000.c
index b1cdf6479019..a4eb8b5b85ec 100644
--- a/drivers/mtd/devices/doc2000.c
+++ b/drivers/mtd/devices/doc2000.c
@@ -562,14 +562,15 @@ void DoC2k_init(struct mtd_info *mtd)
562 562
563 mtd->type = MTD_NANDFLASH; 563 mtd->type = MTD_NANDFLASH;
564 mtd->flags = MTD_CAP_NANDFLASH; 564 mtd->flags = MTD_CAP_NANDFLASH;
565 mtd->writesize = 512; 565 mtd->writebufsize = mtd->writesize = 512;
566 mtd->oobsize = 16; 566 mtd->oobsize = 16;
567 mtd->ecc_strength = 2;
567 mtd->owner = THIS_MODULE; 568 mtd->owner = THIS_MODULE;
568 mtd->erase = doc_erase; 569 mtd->_erase = doc_erase;
569 mtd->read = doc_read; 570 mtd->_read = doc_read;
570 mtd->write = doc_write; 571 mtd->_write = doc_write;
571 mtd->read_oob = doc_read_oob; 572 mtd->_read_oob = doc_read_oob;
572 mtd->write_oob = doc_write_oob; 573 mtd->_write_oob = doc_write_oob;
573 this->curfloor = -1; 574 this->curfloor = -1;
574 this->curchip = -1; 575 this->curchip = -1;
575 mutex_init(&this->lock); 576 mutex_init(&this->lock);
@@ -602,13 +603,7 @@ static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
602 int i, len256 = 0, ret=0; 603 int i, len256 = 0, ret=0;
603 size_t left = len; 604 size_t left = len;
604 605
605 /* Don't allow read past end of device */
606 if (from >= this->totlen)
607 return -EINVAL;
608
609 mutex_lock(&this->lock); 606 mutex_lock(&this->lock);
610
611 *retlen = 0;
612 while (left) { 607 while (left) {
613 len = left; 608 len = left;
614 609
@@ -748,13 +743,7 @@ static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
748 size_t left = len; 743 size_t left = len;
749 int status; 744 int status;
750 745
751 /* Don't allow write past end of device */
752 if (to >= this->totlen)
753 return -EINVAL;
754
755 mutex_lock(&this->lock); 746 mutex_lock(&this->lock);
756
757 *retlen = 0;
758 while (left) { 747 while (left) {
759 len = left; 748 len = left;
760 749
diff --git a/drivers/mtd/devices/doc2001.c b/drivers/mtd/devices/doc2001.c
index 7543b98f46c4..f6927955dab0 100644
--- a/drivers/mtd/devices/doc2001.c
+++ b/drivers/mtd/devices/doc2001.c
@@ -346,14 +346,15 @@ void DoCMil_init(struct mtd_info *mtd)
346 346
347 /* FIXME: erase size is not always 8KiB */ 347 /* FIXME: erase size is not always 8KiB */
348 mtd->erasesize = 0x2000; 348 mtd->erasesize = 0x2000;
349 mtd->writesize = 512; 349 mtd->writebufsize = mtd->writesize = 512;
350 mtd->oobsize = 16; 350 mtd->oobsize = 16;
351 mtd->ecc_strength = 2;
351 mtd->owner = THIS_MODULE; 352 mtd->owner = THIS_MODULE;
352 mtd->erase = doc_erase; 353 mtd->_erase = doc_erase;
353 mtd->read = doc_read; 354 mtd->_read = doc_read;
354 mtd->write = doc_write; 355 mtd->_write = doc_write;
355 mtd->read_oob = doc_read_oob; 356 mtd->_read_oob = doc_read_oob;
356 mtd->write_oob = doc_write_oob; 357 mtd->_write_oob = doc_write_oob;
357 this->curfloor = -1; 358 this->curfloor = -1;
358 this->curchip = -1; 359 this->curchip = -1;
359 360
@@ -383,10 +384,6 @@ static int doc_read (struct mtd_info *mtd, loff_t from, size_t len,
383 void __iomem *docptr = this->virtadr; 384 void __iomem *docptr = this->virtadr;
384 struct Nand *mychip = &this->chips[from >> (this->chipshift)]; 385 struct Nand *mychip = &this->chips[from >> (this->chipshift)];
385 386
386 /* Don't allow read past end of device */
387 if (from >= this->totlen)
388 return -EINVAL;
389
390 /* Don't allow a single read to cross a 512-byte block boundary */ 387 /* Don't allow a single read to cross a 512-byte block boundary */
391 if (from + len > ((from | 0x1ff) + 1)) 388 if (from + len > ((from | 0x1ff) + 1))
392 len = ((from | 0x1ff) + 1) - from; 389 len = ((from | 0x1ff) + 1) - from;
@@ -494,10 +491,6 @@ static int doc_write (struct mtd_info *mtd, loff_t to, size_t len,
494 void __iomem *docptr = this->virtadr; 491 void __iomem *docptr = this->virtadr;
495 struct Nand *mychip = &this->chips[to >> (this->chipshift)]; 492 struct Nand *mychip = &this->chips[to >> (this->chipshift)];
496 493
497 /* Don't allow write past end of device */
498 if (to >= this->totlen)
499 return -EINVAL;
500
501#if 0 494#if 0
502 /* Don't allow a single write to cross a 512-byte block boundary */ 495 /* Don't allow a single write to cross a 512-byte block boundary */
503 if (to + len > ( (to | 0x1ff) + 1)) 496 if (to + len > ( (to | 0x1ff) + 1))
@@ -599,7 +592,6 @@ static int doc_write (struct mtd_info *mtd, loff_t to, size_t len,
599 printk("Error programming flash\n"); 592 printk("Error programming flash\n");
600 /* Error in programming 593 /* Error in programming
601 FIXME: implement Bad Block Replacement (in nftl.c ??) */ 594 FIXME: implement Bad Block Replacement (in nftl.c ??) */
602 *retlen = 0;
603 ret = -EIO; 595 ret = -EIO;
604 } 596 }
605 dummy = ReadDOC(docptr, LastDataRead); 597 dummy = ReadDOC(docptr, LastDataRead);
diff --git a/drivers/mtd/devices/doc2001plus.c b/drivers/mtd/devices/doc2001plus.c
index 177510d0e7ee..04eb2e4aa50f 100644
--- a/drivers/mtd/devices/doc2001plus.c
+++ b/drivers/mtd/devices/doc2001plus.c
@@ -467,14 +467,15 @@ void DoCMilPlus_init(struct mtd_info *mtd)
467 467
468 mtd->type = MTD_NANDFLASH; 468 mtd->type = MTD_NANDFLASH;
469 mtd->flags = MTD_CAP_NANDFLASH; 469 mtd->flags = MTD_CAP_NANDFLASH;
470 mtd->writesize = 512; 470 mtd->writebufsize = mtd->writesize = 512;
471 mtd->oobsize = 16; 471 mtd->oobsize = 16;
472 mtd->ecc_strength = 2;
472 mtd->owner = THIS_MODULE; 473 mtd->owner = THIS_MODULE;
473 mtd->erase = doc_erase; 474 mtd->_erase = doc_erase;
474 mtd->read = doc_read; 475 mtd->_read = doc_read;
475 mtd->write = doc_write; 476 mtd->_write = doc_write;
476 mtd->read_oob = doc_read_oob; 477 mtd->_read_oob = doc_read_oob;
477 mtd->write_oob = doc_write_oob; 478 mtd->_write_oob = doc_write_oob;
478 this->curfloor = -1; 479 this->curfloor = -1;
479 this->curchip = -1; 480 this->curchip = -1;
480 481
@@ -581,10 +582,6 @@ static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
581 void __iomem * docptr = this->virtadr; 582 void __iomem * docptr = this->virtadr;
582 struct Nand *mychip = &this->chips[from >> (this->chipshift)]; 583 struct Nand *mychip = &this->chips[from >> (this->chipshift)];
583 584
584 /* Don't allow read past end of device */
585 if (from >= this->totlen)
586 return -EINVAL;
587
588 /* Don't allow a single read to cross a 512-byte block boundary */ 585 /* Don't allow a single read to cross a 512-byte block boundary */
589 if (from + len > ((from | 0x1ff) + 1)) 586 if (from + len > ((from | 0x1ff) + 1))
590 len = ((from | 0x1ff) + 1) - from; 587 len = ((from | 0x1ff) + 1) - from;
@@ -700,10 +697,6 @@ static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
700 void __iomem * docptr = this->virtadr; 697 void __iomem * docptr = this->virtadr;
701 struct Nand *mychip = &this->chips[to >> (this->chipshift)]; 698 struct Nand *mychip = &this->chips[to >> (this->chipshift)];
702 699
703 /* Don't allow write past end of device */
704 if (to >= this->totlen)
705 return -EINVAL;
706
707 /* Don't allow writes which aren't exactly one block (512 bytes) */ 700 /* Don't allow writes which aren't exactly one block (512 bytes) */
708 if ((to & 0x1ff) || (len != 0x200)) 701 if ((to & 0x1ff) || (len != 0x200))
709 return -EINVAL; 702 return -EINVAL;
@@ -800,7 +793,6 @@ static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
800 printk("MTD: Error 0x%x programming at 0x%x\n", dummy, (int)to); 793 printk("MTD: Error 0x%x programming at 0x%x\n", dummy, (int)to);
801 /* Error in programming 794 /* Error in programming
802 FIXME: implement Bad Block Replacement (in nftl.c ??) */ 795 FIXME: implement Bad Block Replacement (in nftl.c ??) */
803 *retlen = 0;
804 ret = -EIO; 796 ret = -EIO;
805 } 797 }
806 dummy = ReadDOC(docptr, Mplus_LastDataRead); 798 dummy = ReadDOC(docptr, Mplus_LastDataRead);
diff --git a/drivers/mtd/devices/docg3.c b/drivers/mtd/devices/docg3.c
index ad11ef0a81f4..8272c02668d6 100644
--- a/drivers/mtd/devices/docg3.c
+++ b/drivers/mtd/devices/docg3.c
@@ -80,14 +80,9 @@ static struct nand_ecclayout docg3_oobinfo = {
80 .oobavail = 8, 80 .oobavail = 8,
81}; 81};
82 82
83/**
84 * struct docg3_bch - BCH engine
85 */
86static struct bch_control *docg3_bch;
87
88static inline u8 doc_readb(struct docg3 *docg3, u16 reg) 83static inline u8 doc_readb(struct docg3 *docg3, u16 reg)
89{ 84{
90 u8 val = readb(docg3->base + reg); 85 u8 val = readb(docg3->cascade->base + reg);
91 86
92 trace_docg3_io(0, 8, reg, (int)val); 87 trace_docg3_io(0, 8, reg, (int)val);
93 return val; 88 return val;
@@ -95,7 +90,7 @@ static inline u8 doc_readb(struct docg3 *docg3, u16 reg)
95 90
96static inline u16 doc_readw(struct docg3 *docg3, u16 reg) 91static inline u16 doc_readw(struct docg3 *docg3, u16 reg)
97{ 92{
98 u16 val = readw(docg3->base + reg); 93 u16 val = readw(docg3->cascade->base + reg);
99 94
100 trace_docg3_io(0, 16, reg, (int)val); 95 trace_docg3_io(0, 16, reg, (int)val);
101 return val; 96 return val;
@@ -103,13 +98,13 @@ static inline u16 doc_readw(struct docg3 *docg3, u16 reg)
103 98
104static inline void doc_writeb(struct docg3 *docg3, u8 val, u16 reg) 99static inline void doc_writeb(struct docg3 *docg3, u8 val, u16 reg)
105{ 100{
106 writeb(val, docg3->base + reg); 101 writeb(val, docg3->cascade->base + reg);
107 trace_docg3_io(1, 8, reg, val); 102 trace_docg3_io(1, 8, reg, val);
108} 103}
109 104
110static inline void doc_writew(struct docg3 *docg3, u16 val, u16 reg) 105static inline void doc_writew(struct docg3 *docg3, u16 val, u16 reg)
111{ 106{
112 writew(val, docg3->base + reg); 107 writew(val, docg3->cascade->base + reg);
113 trace_docg3_io(1, 16, reg, val); 108 trace_docg3_io(1, 16, reg, val);
114} 109}
115 110
@@ -643,7 +638,8 @@ static int doc_ecc_bch_fix_data(struct docg3 *docg3, void *buf, u8 *hwecc)
643 638
644 for (i = 0; i < DOC_ECC_BCH_SIZE; i++) 639 for (i = 0; i < DOC_ECC_BCH_SIZE; i++)
645 ecc[i] = bitrev8(hwecc[i]); 640 ecc[i] = bitrev8(hwecc[i]);
646 numerrs = decode_bch(docg3_bch, NULL, DOC_ECC_BCH_COVERED_BYTES, 641 numerrs = decode_bch(docg3->cascade->bch, NULL,
642 DOC_ECC_BCH_COVERED_BYTES,
647 NULL, ecc, NULL, errorpos); 643 NULL, ecc, NULL, errorpos);
648 BUG_ON(numerrs == -EINVAL); 644 BUG_ON(numerrs == -EINVAL);
649 if (numerrs < 0) 645 if (numerrs < 0)
@@ -734,7 +730,7 @@ err:
734 * doc_read_page_getbytes - Reads bytes from a prepared page 730 * doc_read_page_getbytes - Reads bytes from a prepared page
735 * @docg3: the device 731 * @docg3: the device
736 * @len: the number of bytes to be read (must be a multiple of 4) 732 * @len: the number of bytes to be read (must be a multiple of 4)
737 * @buf: the buffer to be filled in 733 * @buf: the buffer to be filled in (or NULL is forget bytes)
738 * @first: 1 if first time read, DOC_READADDRESS should be set 734 * @first: 1 if first time read, DOC_READADDRESS should be set
739 * 735 *
740 */ 736 */
@@ -849,7 +845,7 @@ static int doc_read_oob(struct mtd_info *mtd, loff_t from,
849 struct mtd_oob_ops *ops) 845 struct mtd_oob_ops *ops)
850{ 846{
851 struct docg3 *docg3 = mtd->priv; 847 struct docg3 *docg3 = mtd->priv;
852 int block0, block1, page, ret, ofs = 0; 848 int block0, block1, page, ret, skip, ofs = 0;
853 u8 *oobbuf = ops->oobbuf; 849 u8 *oobbuf = ops->oobbuf;
854 u8 *buf = ops->datbuf; 850 u8 *buf = ops->datbuf;
855 size_t len, ooblen, nbdata, nboob; 851 size_t len, ooblen, nbdata, nboob;
@@ -869,34 +865,36 @@ static int doc_read_oob(struct mtd_info *mtd, loff_t from,
869 865
870 doc_dbg("doc_read_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n", 866 doc_dbg("doc_read_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
871 from, ops->mode, buf, len, oobbuf, ooblen); 867 from, ops->mode, buf, len, oobbuf, ooblen);
872 if ((len % DOC_LAYOUT_PAGE_SIZE) || (ooblen % DOC_LAYOUT_OOB_SIZE) || 868 if (ooblen % DOC_LAYOUT_OOB_SIZE)
873 (from % DOC_LAYOUT_PAGE_SIZE))
874 return -EINVAL; 869 return -EINVAL;
875 870
876 ret = -EINVAL; 871 if (from + len > mtd->size)
877 calc_block_sector(from + len, &block0, &block1, &page, &ofs, 872 return -EINVAL;
878 docg3->reliable);
879 if (block1 > docg3->max_block)
880 goto err;
881 873
882 ops->oobretlen = 0; 874 ops->oobretlen = 0;
883 ops->retlen = 0; 875 ops->retlen = 0;
884 ret = 0; 876 ret = 0;
877 skip = from % DOC_LAYOUT_PAGE_SIZE;
878 mutex_lock(&docg3->cascade->lock);
885 while (!ret && (len > 0 || ooblen > 0)) { 879 while (!ret && (len > 0 || ooblen > 0)) {
886 calc_block_sector(from, &block0, &block1, &page, &ofs, 880 calc_block_sector(from - skip, &block0, &block1, &page, &ofs,
887 docg3->reliable); 881 docg3->reliable);
888 nbdata = min_t(size_t, len, (size_t)DOC_LAYOUT_PAGE_SIZE); 882 nbdata = min_t(size_t, len, DOC_LAYOUT_PAGE_SIZE - skip);
889 nboob = min_t(size_t, ooblen, (size_t)DOC_LAYOUT_OOB_SIZE); 883 nboob = min_t(size_t, ooblen, (size_t)DOC_LAYOUT_OOB_SIZE);
890 ret = doc_read_page_prepare(docg3, block0, block1, page, ofs); 884 ret = doc_read_page_prepare(docg3, block0, block1, page, ofs);
891 if (ret < 0) 885 if (ret < 0)
892 goto err; 886 goto out;
893 ret = doc_read_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES); 887 ret = doc_read_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES);
894 if (ret < 0) 888 if (ret < 0)
895 goto err_in_read; 889 goto err_in_read;
896 ret = doc_read_page_getbytes(docg3, nbdata, buf, 1); 890 ret = doc_read_page_getbytes(docg3, skip, NULL, 1);
891 if (ret < skip)
892 goto err_in_read;
893 ret = doc_read_page_getbytes(docg3, nbdata, buf, 0);
897 if (ret < nbdata) 894 if (ret < nbdata)
898 goto err_in_read; 895 goto err_in_read;
899 doc_read_page_getbytes(docg3, DOC_LAYOUT_PAGE_SIZE - nbdata, 896 doc_read_page_getbytes(docg3,
897 DOC_LAYOUT_PAGE_SIZE - nbdata - skip,
900 NULL, 0); 898 NULL, 0);
901 ret = doc_read_page_getbytes(docg3, nboob, oobbuf, 0); 899 ret = doc_read_page_getbytes(docg3, nboob, oobbuf, 0);
902 if (ret < nboob) 900 if (ret < nboob)
@@ -950,13 +948,15 @@ static int doc_read_oob(struct mtd_info *mtd, loff_t from,
950 len -= nbdata; 948 len -= nbdata;
951 ooblen -= nboob; 949 ooblen -= nboob;
952 from += DOC_LAYOUT_PAGE_SIZE; 950 from += DOC_LAYOUT_PAGE_SIZE;
951 skip = 0;
953 } 952 }
954 953
954out:
955 mutex_unlock(&docg3->cascade->lock);
955 return ret; 956 return ret;
956err_in_read: 957err_in_read:
957 doc_read_page_finish(docg3); 958 doc_read_page_finish(docg3);
958err: 959 goto out;
959 return ret;
960} 960}
961 961
962/** 962/**
@@ -1114,10 +1114,10 @@ static int doc_get_op_status(struct docg3 *docg3)
1114 */ 1114 */
1115static int doc_write_erase_wait_status(struct docg3 *docg3) 1115static int doc_write_erase_wait_status(struct docg3 *docg3)
1116{ 1116{
1117 int status, ret = 0; 1117 int i, status, ret = 0;
1118 1118
1119 if (!doc_is_ready(docg3)) 1119 for (i = 0; !doc_is_ready(docg3) && i < 5; i++)
1120 usleep_range(3000, 3000); 1120 msleep(20);
1121 if (!doc_is_ready(docg3)) { 1121 if (!doc_is_ready(docg3)) {
1122 doc_dbg("Timeout reached and the chip is still not ready\n"); 1122 doc_dbg("Timeout reached and the chip is still not ready\n");
1123 ret = -EAGAIN; 1123 ret = -EAGAIN;
@@ -1196,18 +1196,19 @@ static int doc_erase(struct mtd_info *mtd, struct erase_info *info)
1196 int block0, block1, page, ret, ofs = 0; 1196 int block0, block1, page, ret, ofs = 0;
1197 1197
1198 doc_dbg("doc_erase(from=%lld, len=%lld\n", info->addr, info->len); 1198 doc_dbg("doc_erase(from=%lld, len=%lld\n", info->addr, info->len);
1199 doc_set_device_id(docg3, docg3->device_id);
1200 1199
1201 info->state = MTD_ERASE_PENDING; 1200 info->state = MTD_ERASE_PENDING;
1202 calc_block_sector(info->addr + info->len, &block0, &block1, &page, 1201 calc_block_sector(info->addr + info->len, &block0, &block1, &page,
1203 &ofs, docg3->reliable); 1202 &ofs, docg3->reliable);
1204 ret = -EINVAL; 1203 ret = -EINVAL;
1205 if (block1 > docg3->max_block || page || ofs) 1204 if (info->addr + info->len > mtd->size || page || ofs)
1206 goto reset_err; 1205 goto reset_err;
1207 1206
1208 ret = 0; 1207 ret = 0;
1209 calc_block_sector(info->addr, &block0, &block1, &page, &ofs, 1208 calc_block_sector(info->addr, &block0, &block1, &page, &ofs,
1210 docg3->reliable); 1209 docg3->reliable);
1210 mutex_lock(&docg3->cascade->lock);
1211 doc_set_device_id(docg3, docg3->device_id);
1211 doc_set_reliable_mode(docg3); 1212 doc_set_reliable_mode(docg3);
1212 for (len = info->len; !ret && len > 0; len -= mtd->erasesize) { 1213 for (len = info->len; !ret && len > 0; len -= mtd->erasesize) {
1213 info->state = MTD_ERASING; 1214 info->state = MTD_ERASING;
@@ -1215,6 +1216,7 @@ static int doc_erase(struct mtd_info *mtd, struct erase_info *info)
1215 block0 += 2; 1216 block0 += 2;
1216 block1 += 2; 1217 block1 += 2;
1217 } 1218 }
1219 mutex_unlock(&docg3->cascade->lock);
1218 1220
1219 if (ret) 1221 if (ret)
1220 goto reset_err; 1222 goto reset_err;
@@ -1401,7 +1403,7 @@ static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
1401 struct mtd_oob_ops *ops) 1403 struct mtd_oob_ops *ops)
1402{ 1404{
1403 struct docg3 *docg3 = mtd->priv; 1405 struct docg3 *docg3 = mtd->priv;
1404 int block0, block1, page, ret, pofs = 0, autoecc, oobdelta; 1406 int ret, autoecc, oobdelta;
1405 u8 *oobbuf = ops->oobbuf; 1407 u8 *oobbuf = ops->oobbuf;
1406 u8 *buf = ops->datbuf; 1408 u8 *buf = ops->datbuf;
1407 size_t len, ooblen; 1409 size_t len, ooblen;
@@ -1438,12 +1440,8 @@ static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
1438 if (len && ooblen && 1440 if (len && ooblen &&
1439 (len / DOC_LAYOUT_PAGE_SIZE) != (ooblen / oobdelta)) 1441 (len / DOC_LAYOUT_PAGE_SIZE) != (ooblen / oobdelta))
1440 return -EINVAL; 1442 return -EINVAL;
1441 1443 if (ofs + len > mtd->size)
1442 ret = -EINVAL; 1444 return -EINVAL;
1443 calc_block_sector(ofs + len, &block0, &block1, &page, &pofs,
1444 docg3->reliable);
1445 if (block1 > docg3->max_block)
1446 goto err;
1447 1445
1448 ops->oobretlen = 0; 1446 ops->oobretlen = 0;
1449 ops->retlen = 0; 1447 ops->retlen = 0;
@@ -1457,6 +1455,7 @@ static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
1457 if (autoecc < 0) 1455 if (autoecc < 0)
1458 return autoecc; 1456 return autoecc;
1459 1457
1458 mutex_lock(&docg3->cascade->lock);
1460 while (!ret && len > 0) { 1459 while (!ret && len > 0) {
1461 memset(oob, 0, sizeof(oob)); 1460 memset(oob, 0, sizeof(oob));
1462 if (ofs == docg3->oob_write_ofs) 1461 if (ofs == docg3->oob_write_ofs)
@@ -1477,8 +1476,9 @@ static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
1477 } 1476 }
1478 ops->retlen += DOC_LAYOUT_PAGE_SIZE; 1477 ops->retlen += DOC_LAYOUT_PAGE_SIZE;
1479 } 1478 }
1480err: 1479
1481 doc_set_device_id(docg3, 0); 1480 doc_set_device_id(docg3, 0);
1481 mutex_unlock(&docg3->cascade->lock);
1482 return ret; 1482 return ret;
1483} 1483}
1484 1484
@@ -1535,9 +1535,11 @@ static ssize_t dps0_is_key_locked(struct device *dev,
1535 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr); 1535 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1536 int dps0; 1536 int dps0;
1537 1537
1538 mutex_lock(&docg3->cascade->lock);
1538 doc_set_device_id(docg3, docg3->device_id); 1539 doc_set_device_id(docg3, docg3->device_id);
1539 dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS); 1540 dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
1540 doc_set_device_id(docg3, 0); 1541 doc_set_device_id(docg3, 0);
1542 mutex_unlock(&docg3->cascade->lock);
1541 1543
1542 return sprintf(buf, "%d\n", !(dps0 & DOC_DPS_KEY_OK)); 1544 return sprintf(buf, "%d\n", !(dps0 & DOC_DPS_KEY_OK));
1543} 1545}
@@ -1548,9 +1550,11 @@ static ssize_t dps1_is_key_locked(struct device *dev,
1548 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr); 1550 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1549 int dps1; 1551 int dps1;
1550 1552
1553 mutex_lock(&docg3->cascade->lock);
1551 doc_set_device_id(docg3, docg3->device_id); 1554 doc_set_device_id(docg3, docg3->device_id);
1552 dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS); 1555 dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
1553 doc_set_device_id(docg3, 0); 1556 doc_set_device_id(docg3, 0);
1557 mutex_unlock(&docg3->cascade->lock);
1554 1558
1555 return sprintf(buf, "%d\n", !(dps1 & DOC_DPS_KEY_OK)); 1559 return sprintf(buf, "%d\n", !(dps1 & DOC_DPS_KEY_OK));
1556} 1560}
@@ -1565,10 +1569,12 @@ static ssize_t dps0_insert_key(struct device *dev,
1565 if (count != DOC_LAYOUT_DPS_KEY_LENGTH) 1569 if (count != DOC_LAYOUT_DPS_KEY_LENGTH)
1566 return -EINVAL; 1570 return -EINVAL;
1567 1571
1572 mutex_lock(&docg3->cascade->lock);
1568 doc_set_device_id(docg3, docg3->device_id); 1573 doc_set_device_id(docg3, docg3->device_id);
1569 for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++) 1574 for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++)
1570 doc_writeb(docg3, buf[i], DOC_DPS0_KEY); 1575 doc_writeb(docg3, buf[i], DOC_DPS0_KEY);
1571 doc_set_device_id(docg3, 0); 1576 doc_set_device_id(docg3, 0);
1577 mutex_unlock(&docg3->cascade->lock);
1572 return count; 1578 return count;
1573} 1579}
1574 1580
@@ -1582,10 +1588,12 @@ static ssize_t dps1_insert_key(struct device *dev,
1582 if (count != DOC_LAYOUT_DPS_KEY_LENGTH) 1588 if (count != DOC_LAYOUT_DPS_KEY_LENGTH)
1583 return -EINVAL; 1589 return -EINVAL;
1584 1590
1591 mutex_lock(&docg3->cascade->lock);
1585 doc_set_device_id(docg3, docg3->device_id); 1592 doc_set_device_id(docg3, docg3->device_id);
1586 for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++) 1593 for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++)
1587 doc_writeb(docg3, buf[i], DOC_DPS1_KEY); 1594 doc_writeb(docg3, buf[i], DOC_DPS1_KEY);
1588 doc_set_device_id(docg3, 0); 1595 doc_set_device_id(docg3, 0);
1596 mutex_unlock(&docg3->cascade->lock);
1589 return count; 1597 return count;
1590} 1598}
1591 1599
@@ -1601,13 +1609,13 @@ static struct device_attribute doc_sys_attrs[DOC_MAX_NBFLOORS][4] = {
1601}; 1609};
1602 1610
1603static int doc_register_sysfs(struct platform_device *pdev, 1611static int doc_register_sysfs(struct platform_device *pdev,
1604 struct mtd_info **floors) 1612 struct docg3_cascade *cascade)
1605{ 1613{
1606 int ret = 0, floor, i = 0; 1614 int ret = 0, floor, i = 0;
1607 struct device *dev = &pdev->dev; 1615 struct device *dev = &pdev->dev;
1608 1616
1609 for (floor = 0; !ret && floor < DOC_MAX_NBFLOORS && floors[floor]; 1617 for (floor = 0; !ret && floor < DOC_MAX_NBFLOORS &&
1610 floor++) 1618 cascade->floors[floor]; floor++)
1611 for (i = 0; !ret && i < 4; i++) 1619 for (i = 0; !ret && i < 4; i++)
1612 ret = device_create_file(dev, &doc_sys_attrs[floor][i]); 1620 ret = device_create_file(dev, &doc_sys_attrs[floor][i]);
1613 if (!ret) 1621 if (!ret)
@@ -1621,12 +1629,12 @@ static int doc_register_sysfs(struct platform_device *pdev,
1621} 1629}
1622 1630
1623static void doc_unregister_sysfs(struct platform_device *pdev, 1631static void doc_unregister_sysfs(struct platform_device *pdev,
1624 struct mtd_info **floors) 1632 struct docg3_cascade *cascade)
1625{ 1633{
1626 struct device *dev = &pdev->dev; 1634 struct device *dev = &pdev->dev;
1627 int floor, i; 1635 int floor, i;
1628 1636
1629 for (floor = 0; floor < DOC_MAX_NBFLOORS && floors[floor]; 1637 for (floor = 0; floor < DOC_MAX_NBFLOORS && cascade->floors[floor];
1630 floor++) 1638 floor++)
1631 for (i = 0; i < 4; i++) 1639 for (i = 0; i < 4; i++)
1632 device_remove_file(dev, &doc_sys_attrs[floor][i]); 1640 device_remove_file(dev, &doc_sys_attrs[floor][i]);
@@ -1640,7 +1648,11 @@ static int dbg_flashctrl_show(struct seq_file *s, void *p)
1640 struct docg3 *docg3 = (struct docg3 *)s->private; 1648 struct docg3 *docg3 = (struct docg3 *)s->private;
1641 1649
1642 int pos = 0; 1650 int pos = 0;
1643 u8 fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); 1651 u8 fctrl;
1652
1653 mutex_lock(&docg3->cascade->lock);
1654 fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
1655 mutex_unlock(&docg3->cascade->lock);
1644 1656
1645 pos += seq_printf(s, 1657 pos += seq_printf(s,
1646 "FlashControl : 0x%02x (%s,CE# %s,%s,%s,flash %s)\n", 1658 "FlashControl : 0x%02x (%s,CE# %s,%s,%s,flash %s)\n",
@@ -1658,9 +1670,12 @@ static int dbg_asicmode_show(struct seq_file *s, void *p)
1658{ 1670{
1659 struct docg3 *docg3 = (struct docg3 *)s->private; 1671 struct docg3 *docg3 = (struct docg3 *)s->private;
1660 1672
1661 int pos = 0; 1673 int pos = 0, pctrl, mode;
1662 int pctrl = doc_register_readb(docg3, DOC_ASICMODE); 1674
1663 int mode = pctrl & 0x03; 1675 mutex_lock(&docg3->cascade->lock);
1676 pctrl = doc_register_readb(docg3, DOC_ASICMODE);
1677 mode = pctrl & 0x03;
1678 mutex_unlock(&docg3->cascade->lock);
1664 1679
1665 pos += seq_printf(s, 1680 pos += seq_printf(s,
1666 "%04x : RAM_WE=%d,RSTIN_RESET=%d,BDETCT_RESET=%d,WRITE_ENABLE=%d,POWERDOWN=%d,MODE=%d%d (", 1681 "%04x : RAM_WE=%d,RSTIN_RESET=%d,BDETCT_RESET=%d,WRITE_ENABLE=%d,POWERDOWN=%d,MODE=%d%d (",
@@ -1692,7 +1707,11 @@ static int dbg_device_id_show(struct seq_file *s, void *p)
1692{ 1707{
1693 struct docg3 *docg3 = (struct docg3 *)s->private; 1708 struct docg3 *docg3 = (struct docg3 *)s->private;
1694 int pos = 0; 1709 int pos = 0;
1695 int id = doc_register_readb(docg3, DOC_DEVICESELECT); 1710 int id;
1711
1712 mutex_lock(&docg3->cascade->lock);
1713 id = doc_register_readb(docg3, DOC_DEVICESELECT);
1714 mutex_unlock(&docg3->cascade->lock);
1696 1715
1697 pos += seq_printf(s, "DeviceId = %d\n", id); 1716 pos += seq_printf(s, "DeviceId = %d\n", id);
1698 return pos; 1717 return pos;
@@ -1705,6 +1724,7 @@ static int dbg_protection_show(struct seq_file *s, void *p)
1705 int pos = 0; 1724 int pos = 0;
1706 int protect, dps0, dps0_low, dps0_high, dps1, dps1_low, dps1_high; 1725 int protect, dps0, dps0_low, dps0_high, dps1, dps1_low, dps1_high;
1707 1726
1727 mutex_lock(&docg3->cascade->lock);
1708 protect = doc_register_readb(docg3, DOC_PROTECTION); 1728 protect = doc_register_readb(docg3, DOC_PROTECTION);
1709 dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS); 1729 dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
1710 dps0_low = doc_register_readw(docg3, DOC_DPS0_ADDRLOW); 1730 dps0_low = doc_register_readw(docg3, DOC_DPS0_ADDRLOW);
@@ -1712,6 +1732,7 @@ static int dbg_protection_show(struct seq_file *s, void *p)
1712 dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS); 1732 dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
1713 dps1_low = doc_register_readw(docg3, DOC_DPS1_ADDRLOW); 1733 dps1_low = doc_register_readw(docg3, DOC_DPS1_ADDRLOW);
1714 dps1_high = doc_register_readw(docg3, DOC_DPS1_ADDRHIGH); 1734 dps1_high = doc_register_readw(docg3, DOC_DPS1_ADDRHIGH);
1735 mutex_unlock(&docg3->cascade->lock);
1715 1736
1716 pos += seq_printf(s, "Protection = 0x%02x (", 1737 pos += seq_printf(s, "Protection = 0x%02x (",
1717 protect); 1738 protect);
@@ -1804,7 +1825,7 @@ static void __init doc_set_driver_info(int chip_id, struct mtd_info *mtd)
1804 1825
1805 switch (chip_id) { 1826 switch (chip_id) {
1806 case DOC_CHIPID_G3: 1827 case DOC_CHIPID_G3:
1807 mtd->name = kasprintf(GFP_KERNEL, "DiskOnChip G3 floor %d", 1828 mtd->name = kasprintf(GFP_KERNEL, "docg3.%d",
1808 docg3->device_id); 1829 docg3->device_id);
1809 docg3->max_block = 2047; 1830 docg3->max_block = 2047;
1810 break; 1831 break;
@@ -1817,16 +1838,17 @@ static void __init doc_set_driver_info(int chip_id, struct mtd_info *mtd)
1817 mtd->erasesize = DOC_LAYOUT_BLOCK_SIZE * DOC_LAYOUT_NBPLANES; 1838 mtd->erasesize = DOC_LAYOUT_BLOCK_SIZE * DOC_LAYOUT_NBPLANES;
1818 if (docg3->reliable == 2) 1839 if (docg3->reliable == 2)
1819 mtd->erasesize /= 2; 1840 mtd->erasesize /= 2;
1820 mtd->writesize = DOC_LAYOUT_PAGE_SIZE; 1841 mtd->writebufsize = mtd->writesize = DOC_LAYOUT_PAGE_SIZE;
1821 mtd->oobsize = DOC_LAYOUT_OOB_SIZE; 1842 mtd->oobsize = DOC_LAYOUT_OOB_SIZE;
1822 mtd->owner = THIS_MODULE; 1843 mtd->owner = THIS_MODULE;
1823 mtd->erase = doc_erase; 1844 mtd->_erase = doc_erase;
1824 mtd->read = doc_read; 1845 mtd->_read = doc_read;
1825 mtd->write = doc_write; 1846 mtd->_write = doc_write;
1826 mtd->read_oob = doc_read_oob; 1847 mtd->_read_oob = doc_read_oob;
1827 mtd->write_oob = doc_write_oob; 1848 mtd->_write_oob = doc_write_oob;
1828 mtd->block_isbad = doc_block_isbad; 1849 mtd->_block_isbad = doc_block_isbad;
1829 mtd->ecclayout = &docg3_oobinfo; 1850 mtd->ecclayout = &docg3_oobinfo;
1851 mtd->ecc_strength = DOC_ECC_BCH_T;
1830} 1852}
1831 1853
1832/** 1854/**
@@ -1834,6 +1856,7 @@ static void __init doc_set_driver_info(int chip_id, struct mtd_info *mtd)
1834 * @base: the io space where the device is probed 1856 * @base: the io space where the device is probed
1835 * @floor: the floor of the probed device 1857 * @floor: the floor of the probed device
1836 * @dev: the device 1858 * @dev: the device
1859 * @cascade: the cascade of chips this devices will belong to
1837 * 1860 *
1838 * Checks whether a device at the specified IO range, and floor is available. 1861 * Checks whether a device at the specified IO range, and floor is available.
1839 * 1862 *
@@ -1841,8 +1864,8 @@ static void __init doc_set_driver_info(int chip_id, struct mtd_info *mtd)
1841 * if a memory allocation failed. If floor 0 is checked, a reset of the ASIC is 1864 * if a memory allocation failed. If floor 0 is checked, a reset of the ASIC is
1842 * launched. 1865 * launched.
1843 */ 1866 */
1844static struct mtd_info *doc_probe_device(void __iomem *base, int floor, 1867static struct mtd_info * __init
1845 struct device *dev) 1868doc_probe_device(struct docg3_cascade *cascade, int floor, struct device *dev)
1846{ 1869{
1847 int ret, bbt_nbpages; 1870 int ret, bbt_nbpages;
1848 u16 chip_id, chip_id_inv; 1871 u16 chip_id, chip_id_inv;
@@ -1865,7 +1888,7 @@ static struct mtd_info *doc_probe_device(void __iomem *base, int floor,
1865 1888
1866 docg3->dev = dev; 1889 docg3->dev = dev;
1867 docg3->device_id = floor; 1890 docg3->device_id = floor;
1868 docg3->base = base; 1891 docg3->cascade = cascade;
1869 doc_set_device_id(docg3, docg3->device_id); 1892 doc_set_device_id(docg3, docg3->device_id);
1870 if (!floor) 1893 if (!floor)
1871 doc_set_asic_mode(docg3, DOC_ASICMODE_RESET); 1894 doc_set_asic_mode(docg3, DOC_ASICMODE_RESET);
@@ -1882,7 +1905,7 @@ static struct mtd_info *doc_probe_device(void __iomem *base, int floor,
1882 switch (chip_id) { 1905 switch (chip_id) {
1883 case DOC_CHIPID_G3: 1906 case DOC_CHIPID_G3:
1884 doc_info("Found a G3 DiskOnChip at addr %p, floor %d\n", 1907 doc_info("Found a G3 DiskOnChip at addr %p, floor %d\n",
1885 base, floor); 1908 docg3->cascade->base, floor);
1886 break; 1909 break;
1887 default: 1910 default:
1888 doc_err("Chip id %04x is not a DiskOnChip G3 chip\n", chip_id); 1911 doc_err("Chip id %04x is not a DiskOnChip G3 chip\n", chip_id);
@@ -1927,10 +1950,12 @@ static void doc_release_device(struct mtd_info *mtd)
1927static int docg3_resume(struct platform_device *pdev) 1950static int docg3_resume(struct platform_device *pdev)
1928{ 1951{
1929 int i; 1952 int i;
1953 struct docg3_cascade *cascade;
1930 struct mtd_info **docg3_floors, *mtd; 1954 struct mtd_info **docg3_floors, *mtd;
1931 struct docg3 *docg3; 1955 struct docg3 *docg3;
1932 1956
1933 docg3_floors = platform_get_drvdata(pdev); 1957 cascade = platform_get_drvdata(pdev);
1958 docg3_floors = cascade->floors;
1934 mtd = docg3_floors[0]; 1959 mtd = docg3_floors[0];
1935 docg3 = mtd->priv; 1960 docg3 = mtd->priv;
1936 1961
@@ -1952,11 +1977,13 @@ static int docg3_resume(struct platform_device *pdev)
1952static int docg3_suspend(struct platform_device *pdev, pm_message_t state) 1977static int docg3_suspend(struct platform_device *pdev, pm_message_t state)
1953{ 1978{
1954 int floor, i; 1979 int floor, i;
1980 struct docg3_cascade *cascade;
1955 struct mtd_info **docg3_floors, *mtd; 1981 struct mtd_info **docg3_floors, *mtd;
1956 struct docg3 *docg3; 1982 struct docg3 *docg3;
1957 u8 ctrl, pwr_down; 1983 u8 ctrl, pwr_down;
1958 1984
1959 docg3_floors = platform_get_drvdata(pdev); 1985 cascade = platform_get_drvdata(pdev);
1986 docg3_floors = cascade->floors;
1960 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) { 1987 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
1961 mtd = docg3_floors[floor]; 1988 mtd = docg3_floors[floor];
1962 if (!mtd) 1989 if (!mtd)
@@ -2006,7 +2033,7 @@ static int __init docg3_probe(struct platform_device *pdev)
2006 struct resource *ress; 2033 struct resource *ress;
2007 void __iomem *base; 2034 void __iomem *base;
2008 int ret, floor, found = 0; 2035 int ret, floor, found = 0;
2009 struct mtd_info **docg3_floors; 2036 struct docg3_cascade *cascade;
2010 2037
2011 ret = -ENXIO; 2038 ret = -ENXIO;
2012 ress = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2039 ress = platform_get_resource(pdev, IORESOURCE_MEM, 0);
@@ -2017,17 +2044,19 @@ static int __init docg3_probe(struct platform_device *pdev)
2017 base = ioremap(ress->start, DOC_IOSPACE_SIZE); 2044 base = ioremap(ress->start, DOC_IOSPACE_SIZE);
2018 2045
2019 ret = -ENOMEM; 2046 ret = -ENOMEM;
2020 docg3_floors = kzalloc(sizeof(*docg3_floors) * DOC_MAX_NBFLOORS, 2047 cascade = kzalloc(sizeof(*cascade) * DOC_MAX_NBFLOORS,
2021 GFP_KERNEL); 2048 GFP_KERNEL);
2022 if (!docg3_floors) 2049 if (!cascade)
2023 goto nomem1; 2050 goto nomem1;
2024 docg3_bch = init_bch(DOC_ECC_BCH_M, DOC_ECC_BCH_T, 2051 cascade->base = base;
2052 mutex_init(&cascade->lock);
2053 cascade->bch = init_bch(DOC_ECC_BCH_M, DOC_ECC_BCH_T,
2025 DOC_ECC_BCH_PRIMPOLY); 2054 DOC_ECC_BCH_PRIMPOLY);
2026 if (!docg3_bch) 2055 if (!cascade->bch)
2027 goto nomem2; 2056 goto nomem2;
2028 2057
2029 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) { 2058 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
2030 mtd = doc_probe_device(base, floor, dev); 2059 mtd = doc_probe_device(cascade, floor, dev);
2031 if (IS_ERR(mtd)) { 2060 if (IS_ERR(mtd)) {
2032 ret = PTR_ERR(mtd); 2061 ret = PTR_ERR(mtd);
2033 goto err_probe; 2062 goto err_probe;
@@ -2038,7 +2067,7 @@ static int __init docg3_probe(struct platform_device *pdev)
2038 else 2067 else
2039 continue; 2068 continue;
2040 } 2069 }
2041 docg3_floors[floor] = mtd; 2070 cascade->floors[floor] = mtd;
2042 ret = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 2071 ret = mtd_device_parse_register(mtd, part_probes, NULL, NULL,
2043 0); 2072 0);
2044 if (ret) 2073 if (ret)
@@ -2046,26 +2075,26 @@ static int __init docg3_probe(struct platform_device *pdev)
2046 found++; 2075 found++;
2047 } 2076 }
2048 2077
2049 ret = doc_register_sysfs(pdev, docg3_floors); 2078 ret = doc_register_sysfs(pdev, cascade);
2050 if (ret) 2079 if (ret)
2051 goto err_probe; 2080 goto err_probe;
2052 if (!found) 2081 if (!found)
2053 goto notfound; 2082 goto notfound;
2054 2083
2055 platform_set_drvdata(pdev, docg3_floors); 2084 platform_set_drvdata(pdev, cascade);
2056 doc_dbg_register(docg3_floors[0]->priv); 2085 doc_dbg_register(cascade->floors[0]->priv);
2057 return 0; 2086 return 0;
2058 2087
2059notfound: 2088notfound:
2060 ret = -ENODEV; 2089 ret = -ENODEV;
2061 dev_info(dev, "No supported DiskOnChip found\n"); 2090 dev_info(dev, "No supported DiskOnChip found\n");
2062err_probe: 2091err_probe:
2063 free_bch(docg3_bch); 2092 kfree(cascade->bch);
2064 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) 2093 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
2065 if (docg3_floors[floor]) 2094 if (cascade->floors[floor])
2066 doc_release_device(docg3_floors[floor]); 2095 doc_release_device(cascade->floors[floor]);
2067nomem2: 2096nomem2:
2068 kfree(docg3_floors); 2097 kfree(cascade);
2069nomem1: 2098nomem1:
2070 iounmap(base); 2099 iounmap(base);
2071noress: 2100noress:
@@ -2080,19 +2109,19 @@ noress:
2080 */ 2109 */
2081static int __exit docg3_release(struct platform_device *pdev) 2110static int __exit docg3_release(struct platform_device *pdev)
2082{ 2111{
2083 struct mtd_info **docg3_floors = platform_get_drvdata(pdev); 2112 struct docg3_cascade *cascade = platform_get_drvdata(pdev);
2084 struct docg3 *docg3 = docg3_floors[0]->priv; 2113 struct docg3 *docg3 = cascade->floors[0]->priv;
2085 void __iomem *base = docg3->base; 2114 void __iomem *base = cascade->base;
2086 int floor; 2115 int floor;
2087 2116
2088 doc_unregister_sysfs(pdev, docg3_floors); 2117 doc_unregister_sysfs(pdev, cascade);
2089 doc_dbg_unregister(docg3); 2118 doc_dbg_unregister(docg3);
2090 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) 2119 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
2091 if (docg3_floors[floor]) 2120 if (cascade->floors[floor])
2092 doc_release_device(docg3_floors[floor]); 2121 doc_release_device(cascade->floors[floor]);
2093 2122
2094 kfree(docg3_floors); 2123 free_bch(docg3->cascade->bch);
2095 free_bch(docg3_bch); 2124 kfree(cascade);
2096 iounmap(base); 2125 iounmap(base);
2097 return 0; 2126 return 0;
2098} 2127}
diff --git a/drivers/mtd/devices/docg3.h b/drivers/mtd/devices/docg3.h
index db0da436b493..19fb93f96a3a 100644
--- a/drivers/mtd/devices/docg3.h
+++ b/drivers/mtd/devices/docg3.h
@@ -22,6 +22,8 @@
22#ifndef _MTD_DOCG3_H 22#ifndef _MTD_DOCG3_H
23#define _MTD_DOCG3_H 23#define _MTD_DOCG3_H
24 24
25#include <linux/mtd/mtd.h>
26
25/* 27/*
26 * Flash memory areas : 28 * Flash memory areas :
27 * - 0x0000 .. 0x07ff : IPL 29 * - 0x0000 .. 0x07ff : IPL
@@ -267,9 +269,23 @@
267#define DOC_LAYOUT_DPS_KEY_LENGTH 8 269#define DOC_LAYOUT_DPS_KEY_LENGTH 8
268 270
269/** 271/**
272 * struct docg3_cascade - Cascade of 1 to 4 docg3 chips
273 * @floors: floors (ie. one physical docg3 chip is one floor)
274 * @base: IO space to access all chips in the cascade
275 * @bch: the BCH correcting control structure
276 * @lock: lock to protect docg3 IO space from concurrent accesses
277 */
278struct docg3_cascade {
279 struct mtd_info *floors[DOC_MAX_NBFLOORS];
280 void __iomem *base;
281 struct bch_control *bch;
282 struct mutex lock;
283};
284
285/**
270 * struct docg3 - DiskOnChip driver private data 286 * struct docg3 - DiskOnChip driver private data
271 * @dev: the device currently under control 287 * @dev: the device currently under control
272 * @base: mapped IO space 288 * @cascade: the cascade this device belongs to
273 * @device_id: number of the cascaded DoCG3 device (0, 1, 2 or 3) 289 * @device_id: number of the cascaded DoCG3 device (0, 1, 2 or 3)
274 * @if_cfg: if true, reads are on 16bits, else reads are on 8bits 290 * @if_cfg: if true, reads are on 16bits, else reads are on 8bits
275 291
@@ -287,7 +303,7 @@
287 */ 303 */
288struct docg3 { 304struct docg3 {
289 struct device *dev; 305 struct device *dev;
290 void __iomem *base; 306 struct docg3_cascade *cascade;
291 unsigned int device_id:4; 307 unsigned int device_id:4;
292 unsigned int if_cfg:1; 308 unsigned int if_cfg:1;
293 unsigned int reliable:2; 309 unsigned int reliable:2;
diff --git a/drivers/mtd/devices/lart.c b/drivers/mtd/devices/lart.c
index 3a11ea628e58..82bd00af5cc3 100644
--- a/drivers/mtd/devices/lart.c
+++ b/drivers/mtd/devices/lart.c
@@ -367,9 +367,6 @@ static int flash_erase (struct mtd_info *mtd,struct erase_info *instr)
367 printk (KERN_DEBUG "%s(addr = 0x%.8x, len = %d)\n", __func__, instr->addr, instr->len); 367 printk (KERN_DEBUG "%s(addr = 0x%.8x, len = %d)\n", __func__, instr->addr, instr->len);
368#endif 368#endif
369 369
370 /* sanity checks */
371 if (instr->addr + instr->len > mtd->size) return (-EINVAL);
372
373 /* 370 /*
374 * check that both start and end of the requested erase are 371 * check that both start and end of the requested erase are
375 * aligned with the erasesize at the appropriate addresses. 372 * aligned with the erasesize at the appropriate addresses.
@@ -440,10 +437,6 @@ static int flash_read (struct mtd_info *mtd,loff_t from,size_t len,size_t *retle
440 printk (KERN_DEBUG "%s(from = 0x%.8x, len = %d)\n", __func__, (__u32)from, len); 437 printk (KERN_DEBUG "%s(from = 0x%.8x, len = %d)\n", __func__, (__u32)from, len);
441#endif 438#endif
442 439
443 /* sanity checks */
444 if (!len) return (0);
445 if (from + len > mtd->size) return (-EINVAL);
446
447 /* we always read len bytes */ 440 /* we always read len bytes */
448 *retlen = len; 441 *retlen = len;
449 442
@@ -522,11 +515,8 @@ static int flash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen
522 printk (KERN_DEBUG "%s(to = 0x%.8x, len = %d)\n", __func__, (__u32)to, len); 515 printk (KERN_DEBUG "%s(to = 0x%.8x, len = %d)\n", __func__, (__u32)to, len);
523#endif 516#endif
524 517
525 *retlen = 0;
526
527 /* sanity checks */ 518 /* sanity checks */
528 if (!len) return (0); 519 if (!len) return (0);
529 if (to + len > mtd->size) return (-EINVAL);
530 520
531 /* first, we write a 0xFF.... padded byte until we reach a dword boundary */ 521 /* first, we write a 0xFF.... padded byte until we reach a dword boundary */
532 if (to & (BUSWIDTH - 1)) 522 if (to & (BUSWIDTH - 1))
@@ -630,14 +620,15 @@ static int __init lart_flash_init (void)
630 mtd.name = module_name; 620 mtd.name = module_name;
631 mtd.type = MTD_NORFLASH; 621 mtd.type = MTD_NORFLASH;
632 mtd.writesize = 1; 622 mtd.writesize = 1;
623 mtd.writebufsize = 4;
633 mtd.flags = MTD_CAP_NORFLASH; 624 mtd.flags = MTD_CAP_NORFLASH;
634 mtd.size = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM + FLASH_BLOCKSIZE_MAIN * FLASH_NUMBLOCKS_16m_MAIN; 625 mtd.size = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM + FLASH_BLOCKSIZE_MAIN * FLASH_NUMBLOCKS_16m_MAIN;
635 mtd.erasesize = FLASH_BLOCKSIZE_MAIN; 626 mtd.erasesize = FLASH_BLOCKSIZE_MAIN;
636 mtd.numeraseregions = ARRAY_SIZE(erase_regions); 627 mtd.numeraseregions = ARRAY_SIZE(erase_regions);
637 mtd.eraseregions = erase_regions; 628 mtd.eraseregions = erase_regions;
638 mtd.erase = flash_erase; 629 mtd._erase = flash_erase;
639 mtd.read = flash_read; 630 mtd._read = flash_read;
640 mtd.write = flash_write; 631 mtd._write = flash_write;
641 mtd.owner = THIS_MODULE; 632 mtd.owner = THIS_MODULE;
642 633
643#ifdef LART_DEBUG 634#ifdef LART_DEBUG
diff --git a/drivers/mtd/devices/m25p80.c b/drivers/mtd/devices/m25p80.c
index 7c60dddbefc0..1924d247c1cb 100644
--- a/drivers/mtd/devices/m25p80.c
+++ b/drivers/mtd/devices/m25p80.c
@@ -288,9 +288,6 @@ static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
288 __func__, (long long)instr->addr, 288 __func__, (long long)instr->addr,
289 (long long)instr->len); 289 (long long)instr->len);
290 290
291 /* sanity checks */
292 if (instr->addr + instr->len > flash->mtd.size)
293 return -EINVAL;
294 div_u64_rem(instr->len, mtd->erasesize, &rem); 291 div_u64_rem(instr->len, mtd->erasesize, &rem);
295 if (rem) 292 if (rem)
296 return -EINVAL; 293 return -EINVAL;
@@ -349,13 +346,6 @@ static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
349 pr_debug("%s: %s from 0x%08x, len %zd\n", dev_name(&flash->spi->dev), 346 pr_debug("%s: %s from 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
350 __func__, (u32)from, len); 347 __func__, (u32)from, len);
351 348
352 /* sanity checks */
353 if (!len)
354 return 0;
355
356 if (from + len > flash->mtd.size)
357 return -EINVAL;
358
359 spi_message_init(&m); 349 spi_message_init(&m);
360 memset(t, 0, (sizeof t)); 350 memset(t, 0, (sizeof t));
361 351
@@ -371,9 +361,6 @@ static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
371 t[1].len = len; 361 t[1].len = len;
372 spi_message_add_tail(&t[1], &m); 362 spi_message_add_tail(&t[1], &m);
373 363
374 /* Byte count starts at zero. */
375 *retlen = 0;
376
377 mutex_lock(&flash->lock); 364 mutex_lock(&flash->lock);
378 365
379 /* Wait till previous write/erase is done. */ 366 /* Wait till previous write/erase is done. */
@@ -417,15 +404,6 @@ static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
417 pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev), 404 pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
418 __func__, (u32)to, len); 405 __func__, (u32)to, len);
419 406
420 *retlen = 0;
421
422 /* sanity checks */
423 if (!len)
424 return(0);
425
426 if (to + len > flash->mtd.size)
427 return -EINVAL;
428
429 spi_message_init(&m); 407 spi_message_init(&m);
430 memset(t, 0, (sizeof t)); 408 memset(t, 0, (sizeof t));
431 409
@@ -509,15 +487,6 @@ static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
509 pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev), 487 pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
510 __func__, (u32)to, len); 488 __func__, (u32)to, len);
511 489
512 *retlen = 0;
513
514 /* sanity checks */
515 if (!len)
516 return 0;
517
518 if (to + len > flash->mtd.size)
519 return -EINVAL;
520
521 spi_message_init(&m); 490 spi_message_init(&m);
522 memset(t, 0, (sizeof t)); 491 memset(t, 0, (sizeof t));
523 492
@@ -908,14 +877,14 @@ static int __devinit m25p_probe(struct spi_device *spi)
908 flash->mtd.writesize = 1; 877 flash->mtd.writesize = 1;
909 flash->mtd.flags = MTD_CAP_NORFLASH; 878 flash->mtd.flags = MTD_CAP_NORFLASH;
910 flash->mtd.size = info->sector_size * info->n_sectors; 879 flash->mtd.size = info->sector_size * info->n_sectors;
911 flash->mtd.erase = m25p80_erase; 880 flash->mtd._erase = m25p80_erase;
912 flash->mtd.read = m25p80_read; 881 flash->mtd._read = m25p80_read;
913 882
914 /* sst flash chips use AAI word program */ 883 /* sst flash chips use AAI word program */
915 if (JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) 884 if (JEDEC_MFR(info->jedec_id) == CFI_MFR_SST)
916 flash->mtd.write = sst_write; 885 flash->mtd._write = sst_write;
917 else 886 else
918 flash->mtd.write = m25p80_write; 887 flash->mtd._write = m25p80_write;
919 888
920 /* prefer "small sector" erase if possible */ 889 /* prefer "small sector" erase if possible */
921 if (info->flags & SECT_4K) { 890 if (info->flags & SECT_4K) {
@@ -932,6 +901,7 @@ static int __devinit m25p_probe(struct spi_device *spi)
932 ppdata.of_node = spi->dev.of_node; 901 ppdata.of_node = spi->dev.of_node;
933 flash->mtd.dev.parent = &spi->dev; 902 flash->mtd.dev.parent = &spi->dev;
934 flash->page_size = info->page_size; 903 flash->page_size = info->page_size;
904 flash->mtd.writebufsize = flash->page_size;
935 905
936 if (info->addr_width) 906 if (info->addr_width)
937 flash->addr_width = info->addr_width; 907 flash->addr_width = info->addr_width;
@@ -1004,21 +974,7 @@ static struct spi_driver m25p80_driver = {
1004 */ 974 */
1005}; 975};
1006 976
1007 977module_spi_driver(m25p80_driver);
1008static int __init m25p80_init(void)
1009{
1010 return spi_register_driver(&m25p80_driver);
1011}
1012
1013
1014static void __exit m25p80_exit(void)
1015{
1016 spi_unregister_driver(&m25p80_driver);
1017}
1018
1019
1020module_init(m25p80_init);
1021module_exit(m25p80_exit);
1022 978
1023MODULE_LICENSE("GPL"); 979MODULE_LICENSE("GPL");
1024MODULE_AUTHOR("Mike Lavender"); 980MODULE_AUTHOR("Mike Lavender");
diff --git a/drivers/mtd/devices/ms02-nv.c b/drivers/mtd/devices/ms02-nv.c
index 8423fb6d4f26..182849d39c61 100644
--- a/drivers/mtd/devices/ms02-nv.c
+++ b/drivers/mtd/devices/ms02-nv.c
@@ -59,12 +59,8 @@ static int ms02nv_read(struct mtd_info *mtd, loff_t from,
59{ 59{
60 struct ms02nv_private *mp = mtd->priv; 60 struct ms02nv_private *mp = mtd->priv;
61 61
62 if (from + len > mtd->size)
63 return -EINVAL;
64
65 memcpy(buf, mp->uaddr + from, len); 62 memcpy(buf, mp->uaddr + from, len);
66 *retlen = len; 63 *retlen = len;
67
68 return 0; 64 return 0;
69} 65}
70 66
@@ -73,12 +69,8 @@ static int ms02nv_write(struct mtd_info *mtd, loff_t to,
73{ 69{
74 struct ms02nv_private *mp = mtd->priv; 70 struct ms02nv_private *mp = mtd->priv;
75 71
76 if (to + len > mtd->size)
77 return -EINVAL;
78
79 memcpy(mp->uaddr + to, buf, len); 72 memcpy(mp->uaddr + to, buf, len);
80 *retlen = len; 73 *retlen = len;
81
82 return 0; 74 return 0;
83} 75}
84 76
@@ -215,8 +207,8 @@ static int __init ms02nv_init_one(ulong addr)
215 mtd->size = fixsize; 207 mtd->size = fixsize;
216 mtd->name = (char *)ms02nv_name; 208 mtd->name = (char *)ms02nv_name;
217 mtd->owner = THIS_MODULE; 209 mtd->owner = THIS_MODULE;
218 mtd->read = ms02nv_read; 210 mtd->_read = ms02nv_read;
219 mtd->write = ms02nv_write; 211 mtd->_write = ms02nv_write;
220 mtd->writesize = 1; 212 mtd->writesize = 1;
221 213
222 ret = -EIO; 214 ret = -EIO;
diff --git a/drivers/mtd/devices/mtd_dataflash.c b/drivers/mtd/devices/mtd_dataflash.c
index 236057ead0d2..928fb0e6d73a 100644
--- a/drivers/mtd/devices/mtd_dataflash.c
+++ b/drivers/mtd/devices/mtd_dataflash.c
@@ -164,9 +164,6 @@ static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr)
164 dev_name(&spi->dev), (long long)instr->addr, 164 dev_name(&spi->dev), (long long)instr->addr,
165 (long long)instr->len); 165 (long long)instr->len);
166 166
167 /* Sanity checks */
168 if (instr->addr + instr->len > mtd->size)
169 return -EINVAL;
170 div_u64_rem(instr->len, priv->page_size, &rem); 167 div_u64_rem(instr->len, priv->page_size, &rem);
171 if (rem) 168 if (rem)
172 return -EINVAL; 169 return -EINVAL;
@@ -252,14 +249,6 @@ static int dataflash_read(struct mtd_info *mtd, loff_t from, size_t len,
252 pr_debug("%s: read 0x%x..0x%x\n", dev_name(&priv->spi->dev), 249 pr_debug("%s: read 0x%x..0x%x\n", dev_name(&priv->spi->dev),
253 (unsigned)from, (unsigned)(from + len)); 250 (unsigned)from, (unsigned)(from + len));
254 251
255 *retlen = 0;
256
257 /* Sanity checks */
258 if (!len)
259 return 0;
260 if (from + len > mtd->size)
261 return -EINVAL;
262
263 /* Calculate flash page/byte address */ 252 /* Calculate flash page/byte address */
264 addr = (((unsigned)from / priv->page_size) << priv->page_offset) 253 addr = (((unsigned)from / priv->page_size) << priv->page_offset)
265 + ((unsigned)from % priv->page_size); 254 + ((unsigned)from % priv->page_size);
@@ -328,14 +317,6 @@ static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len,
328 pr_debug("%s: write 0x%x..0x%x\n", 317 pr_debug("%s: write 0x%x..0x%x\n",
329 dev_name(&spi->dev), (unsigned)to, (unsigned)(to + len)); 318 dev_name(&spi->dev), (unsigned)to, (unsigned)(to + len));
330 319
331 *retlen = 0;
332
333 /* Sanity checks */
334 if (!len)
335 return 0;
336 if ((to + len) > mtd->size)
337 return -EINVAL;
338
339 spi_message_init(&msg); 320 spi_message_init(&msg);
340 321
341 x[0].tx_buf = command = priv->command; 322 x[0].tx_buf = command = priv->command;
@@ -490,8 +471,6 @@ static ssize_t otp_read(struct spi_device *spi, unsigned base,
490 471
491 if ((off + len) > 64) 472 if ((off + len) > 64)
492 len = 64 - off; 473 len = 64 - off;
493 if (len == 0)
494 return len;
495 474
496 spi_message_init(&m); 475 spi_message_init(&m);
497 476
@@ -611,16 +590,16 @@ static int dataflash_write_user_otp(struct mtd_info *mtd,
611 590
612static char *otp_setup(struct mtd_info *device, char revision) 591static char *otp_setup(struct mtd_info *device, char revision)
613{ 592{
614 device->get_fact_prot_info = dataflash_get_otp_info; 593 device->_get_fact_prot_info = dataflash_get_otp_info;
615 device->read_fact_prot_reg = dataflash_read_fact_otp; 594 device->_read_fact_prot_reg = dataflash_read_fact_otp;
616 device->get_user_prot_info = dataflash_get_otp_info; 595 device->_get_user_prot_info = dataflash_get_otp_info;
617 device->read_user_prot_reg = dataflash_read_user_otp; 596 device->_read_user_prot_reg = dataflash_read_user_otp;
618 597
619 /* rev c parts (at45db321c and at45db1281 only!) use a 598 /* rev c parts (at45db321c and at45db1281 only!) use a
620 * different write procedure; not (yet?) implemented. 599 * different write procedure; not (yet?) implemented.
621 */ 600 */
622 if (revision > 'c') 601 if (revision > 'c')
623 device->write_user_prot_reg = dataflash_write_user_otp; 602 device->_write_user_prot_reg = dataflash_write_user_otp;
624 603
625 return ", OTP"; 604 return ", OTP";
626} 605}
@@ -672,9 +651,9 @@ add_dataflash_otp(struct spi_device *spi, char *name,
672 device->owner = THIS_MODULE; 651 device->owner = THIS_MODULE;
673 device->type = MTD_DATAFLASH; 652 device->type = MTD_DATAFLASH;
674 device->flags = MTD_WRITEABLE; 653 device->flags = MTD_WRITEABLE;
675 device->erase = dataflash_erase; 654 device->_erase = dataflash_erase;
676 device->read = dataflash_read; 655 device->_read = dataflash_read;
677 device->write = dataflash_write; 656 device->_write = dataflash_write;
678 device->priv = priv; 657 device->priv = priv;
679 658
680 device->dev.parent = &spi->dev; 659 device->dev.parent = &spi->dev;
@@ -946,18 +925,7 @@ static struct spi_driver dataflash_driver = {
946 /* FIXME: investigate suspend and resume... */ 925 /* FIXME: investigate suspend and resume... */
947}; 926};
948 927
949static int __init dataflash_init(void) 928module_spi_driver(dataflash_driver);
950{
951 return spi_register_driver(&dataflash_driver);
952}
953module_init(dataflash_init);
954
955static void __exit dataflash_exit(void)
956{
957 spi_unregister_driver(&dataflash_driver);
958}
959module_exit(dataflash_exit);
960
961 929
962MODULE_LICENSE("GPL"); 930MODULE_LICENSE("GPL");
963MODULE_AUTHOR("Andrew Victor, David Brownell"); 931MODULE_AUTHOR("Andrew Victor, David Brownell");
diff --git a/drivers/mtd/devices/mtdram.c b/drivers/mtd/devices/mtdram.c
index 2562689ba6b4..ec59d65897fb 100644
--- a/drivers/mtd/devices/mtdram.c
+++ b/drivers/mtd/devices/mtdram.c
@@ -34,34 +34,23 @@ static struct mtd_info *mtd_info;
34 34
35static int ram_erase(struct mtd_info *mtd, struct erase_info *instr) 35static int ram_erase(struct mtd_info *mtd, struct erase_info *instr)
36{ 36{
37 if (instr->addr + instr->len > mtd->size)
38 return -EINVAL;
39
40 memset((char *)mtd->priv + instr->addr, 0xff, instr->len); 37 memset((char *)mtd->priv + instr->addr, 0xff, instr->len);
41
42 instr->state = MTD_ERASE_DONE; 38 instr->state = MTD_ERASE_DONE;
43 mtd_erase_callback(instr); 39 mtd_erase_callback(instr);
44
45 return 0; 40 return 0;
46} 41}
47 42
48static int ram_point(struct mtd_info *mtd, loff_t from, size_t len, 43static int ram_point(struct mtd_info *mtd, loff_t from, size_t len,
49 size_t *retlen, void **virt, resource_size_t *phys) 44 size_t *retlen, void **virt, resource_size_t *phys)
50{ 45{
51 if (from + len > mtd->size)
52 return -EINVAL;
53
54 /* can we return a physical address with this driver? */
55 if (phys)
56 return -EINVAL;
57
58 *virt = mtd->priv + from; 46 *virt = mtd->priv + from;
59 *retlen = len; 47 *retlen = len;
60 return 0; 48 return 0;
61} 49}
62 50
63static void ram_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 51static int ram_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
64{ 52{
53 return 0;
65} 54}
66 55
67/* 56/*
@@ -80,11 +69,7 @@ static unsigned long ram_get_unmapped_area(struct mtd_info *mtd,
80static int ram_read(struct mtd_info *mtd, loff_t from, size_t len, 69static int ram_read(struct mtd_info *mtd, loff_t from, size_t len,
81 size_t *retlen, u_char *buf) 70 size_t *retlen, u_char *buf)
82{ 71{
83 if (from + len > mtd->size)
84 return -EINVAL;
85
86 memcpy(buf, mtd->priv + from, len); 72 memcpy(buf, mtd->priv + from, len);
87
88 *retlen = len; 73 *retlen = len;
89 return 0; 74 return 0;
90} 75}
@@ -92,11 +77,7 @@ static int ram_read(struct mtd_info *mtd, loff_t from, size_t len,
92static int ram_write(struct mtd_info *mtd, loff_t to, size_t len, 77static int ram_write(struct mtd_info *mtd, loff_t to, size_t len,
93 size_t *retlen, const u_char *buf) 78 size_t *retlen, const u_char *buf)
94{ 79{
95 if (to + len > mtd->size)
96 return -EINVAL;
97
98 memcpy((char *)mtd->priv + to, buf, len); 80 memcpy((char *)mtd->priv + to, buf, len);
99
100 *retlen = len; 81 *retlen = len;
101 return 0; 82 return 0;
102} 83}
@@ -126,12 +107,12 @@ int mtdram_init_device(struct mtd_info *mtd, void *mapped_address,
126 mtd->priv = mapped_address; 107 mtd->priv = mapped_address;
127 108
128 mtd->owner = THIS_MODULE; 109 mtd->owner = THIS_MODULE;
129 mtd->erase = ram_erase; 110 mtd->_erase = ram_erase;
130 mtd->point = ram_point; 111 mtd->_point = ram_point;
131 mtd->unpoint = ram_unpoint; 112 mtd->_unpoint = ram_unpoint;
132 mtd->get_unmapped_area = ram_get_unmapped_area; 113 mtd->_get_unmapped_area = ram_get_unmapped_area;
133 mtd->read = ram_read; 114 mtd->_read = ram_read;
134 mtd->write = ram_write; 115 mtd->_write = ram_write;
135 116
136 if (mtd_device_register(mtd, NULL, 0)) 117 if (mtd_device_register(mtd, NULL, 0))
137 return -EIO; 118 return -EIO;
diff --git a/drivers/mtd/devices/phram.c b/drivers/mtd/devices/phram.c
index 23423bd00b06..67823de68db6 100644
--- a/drivers/mtd/devices/phram.c
+++ b/drivers/mtd/devices/phram.c
@@ -33,45 +33,33 @@ struct phram_mtd_list {
33 33
34static LIST_HEAD(phram_list); 34static LIST_HEAD(phram_list);
35 35
36
37static int phram_erase(struct mtd_info *mtd, struct erase_info *instr) 36static int phram_erase(struct mtd_info *mtd, struct erase_info *instr)
38{ 37{
39 u_char *start = mtd->priv; 38 u_char *start = mtd->priv;
40 39
41 if (instr->addr + instr->len > mtd->size)
42 return -EINVAL;
43
44 memset(start + instr->addr, 0xff, instr->len); 40 memset(start + instr->addr, 0xff, instr->len);
45 41
46 /* This'll catch a few races. Free the thing before returning :) 42 /*
43 * This'll catch a few races. Free the thing before returning :)
47 * I don't feel at all ashamed. This kind of thing is possible anyway 44 * I don't feel at all ashamed. This kind of thing is possible anyway
48 * with flash, but unlikely. 45 * with flash, but unlikely.
49 */ 46 */
50
51 instr->state = MTD_ERASE_DONE; 47 instr->state = MTD_ERASE_DONE;
52
53 mtd_erase_callback(instr); 48 mtd_erase_callback(instr);
54
55 return 0; 49 return 0;
56} 50}
57 51
58static int phram_point(struct mtd_info *mtd, loff_t from, size_t len, 52static int phram_point(struct mtd_info *mtd, loff_t from, size_t len,
59 size_t *retlen, void **virt, resource_size_t *phys) 53 size_t *retlen, void **virt, resource_size_t *phys)
60{ 54{
61 if (from + len > mtd->size)
62 return -EINVAL;
63
64 /* can we return a physical address with this driver? */
65 if (phys)
66 return -EINVAL;
67
68 *virt = mtd->priv + from; 55 *virt = mtd->priv + from;
69 *retlen = len; 56 *retlen = len;
70 return 0; 57 return 0;
71} 58}
72 59
73static void phram_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 60static int phram_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
74{ 61{
62 return 0;
75} 63}
76 64
77static int phram_read(struct mtd_info *mtd, loff_t from, size_t len, 65static int phram_read(struct mtd_info *mtd, loff_t from, size_t len,
@@ -79,14 +67,7 @@ static int phram_read(struct mtd_info *mtd, loff_t from, size_t len,
79{ 67{
80 u_char *start = mtd->priv; 68 u_char *start = mtd->priv;
81 69
82 if (from >= mtd->size)
83 return -EINVAL;
84
85 if (len > mtd->size - from)
86 len = mtd->size - from;
87
88 memcpy(buf, start + from, len); 70 memcpy(buf, start + from, len);
89
90 *retlen = len; 71 *retlen = len;
91 return 0; 72 return 0;
92} 73}
@@ -96,20 +77,11 @@ static int phram_write(struct mtd_info *mtd, loff_t to, size_t len,
96{ 77{
97 u_char *start = mtd->priv; 78 u_char *start = mtd->priv;
98 79
99 if (to >= mtd->size)
100 return -EINVAL;
101
102 if (len > mtd->size - to)
103 len = mtd->size - to;
104
105 memcpy(start + to, buf, len); 80 memcpy(start + to, buf, len);
106
107 *retlen = len; 81 *retlen = len;
108 return 0; 82 return 0;
109} 83}
110 84
111
112
113static void unregister_devices(void) 85static void unregister_devices(void)
114{ 86{
115 struct phram_mtd_list *this, *safe; 87 struct phram_mtd_list *this, *safe;
@@ -142,11 +114,11 @@ static int register_device(char *name, unsigned long start, unsigned long len)
142 new->mtd.name = name; 114 new->mtd.name = name;
143 new->mtd.size = len; 115 new->mtd.size = len;
144 new->mtd.flags = MTD_CAP_RAM; 116 new->mtd.flags = MTD_CAP_RAM;
145 new->mtd.erase = phram_erase; 117 new->mtd._erase = phram_erase;
146 new->mtd.point = phram_point; 118 new->mtd._point = phram_point;
147 new->mtd.unpoint = phram_unpoint; 119 new->mtd._unpoint = phram_unpoint;
148 new->mtd.read = phram_read; 120 new->mtd._read = phram_read;
149 new->mtd.write = phram_write; 121 new->mtd._write = phram_write;
150 new->mtd.owner = THIS_MODULE; 122 new->mtd.owner = THIS_MODULE;
151 new->mtd.type = MTD_RAM; 123 new->mtd.type = MTD_RAM;
152 new->mtd.erasesize = PAGE_SIZE; 124 new->mtd.erasesize = PAGE_SIZE;
@@ -233,7 +205,17 @@ static inline void kill_final_newline(char *str)
233 return 1; \ 205 return 1; \
234} while (0) 206} while (0)
235 207
236static int phram_setup(const char *val, struct kernel_param *kp) 208/*
209 * This shall contain the module parameter if any. It is of the form:
210 * - phram=<device>,<address>,<size> for module case
211 * - phram.phram=<device>,<address>,<size> for built-in case
212 * We leave 64 bytes for the device name, 12 for the address and 12 for the
213 * size.
214 * Example: phram.phram=rootfs,0xa0000000,512Mi
215 */
216static __initdata char phram_paramline[64+12+12];
217
218static int __init phram_setup(const char *val)
237{ 219{
238 char buf[64+12+12], *str = buf; 220 char buf[64+12+12], *str = buf;
239 char *token[3]; 221 char *token[3];
@@ -282,12 +264,28 @@ static int phram_setup(const char *val, struct kernel_param *kp)
282 return ret; 264 return ret;
283} 265}
284 266
285module_param_call(phram, phram_setup, NULL, NULL, 000); 267static int __init phram_param_call(const char *val, struct kernel_param *kp)
268{
269 /*
270 * This function is always called before 'init_phram()', whether
271 * built-in or module.
272 */
273 if (strlen(val) >= sizeof(phram_paramline))
274 return -ENOSPC;
275 strcpy(phram_paramline, val);
276
277 return 0;
278}
279
280module_param_call(phram, phram_param_call, NULL, NULL, 000);
286MODULE_PARM_DESC(phram, "Memory region to map. \"phram=<name>,<start>,<length>\""); 281MODULE_PARM_DESC(phram, "Memory region to map. \"phram=<name>,<start>,<length>\"");
287 282
288 283
289static int __init init_phram(void) 284static int __init init_phram(void)
290{ 285{
286 if (phram_paramline[0])
287 return phram_setup(phram_paramline);
288
291 return 0; 289 return 0;
292} 290}
293 291
diff --git a/drivers/mtd/devices/pmc551.c b/drivers/mtd/devices/pmc551.c
index 5d53c5760a6c..0c51b988e1f8 100644
--- a/drivers/mtd/devices/pmc551.c
+++ b/drivers/mtd/devices/pmc551.c
@@ -94,12 +94,48 @@
94#include <linux/ioctl.h> 94#include <linux/ioctl.h>
95#include <asm/io.h> 95#include <asm/io.h>
96#include <linux/pci.h> 96#include <linux/pci.h>
97
98#include <linux/mtd/mtd.h> 97#include <linux/mtd/mtd.h>
99#include <linux/mtd/pmc551.h> 98
99#define PMC551_VERSION \
100 "Ramix PMC551 PCI Mezzanine Ram Driver. (C) 1999,2000 Nortel Networks.\n"
101
102#define PCI_VENDOR_ID_V3_SEMI 0x11b0
103#define PCI_DEVICE_ID_V3_SEMI_V370PDC 0x0200
104
105#define PMC551_PCI_MEM_MAP0 0x50
106#define PMC551_PCI_MEM_MAP1 0x54
107#define PMC551_PCI_MEM_MAP_MAP_ADDR_MASK 0x3ff00000
108#define PMC551_PCI_MEM_MAP_APERTURE_MASK 0x000000f0
109#define PMC551_PCI_MEM_MAP_REG_EN 0x00000002
110#define PMC551_PCI_MEM_MAP_ENABLE 0x00000001
111
112#define PMC551_SDRAM_MA 0x60
113#define PMC551_SDRAM_CMD 0x62
114#define PMC551_DRAM_CFG 0x64
115#define PMC551_SYS_CTRL_REG 0x78
116
117#define PMC551_DRAM_BLK0 0x68
118#define PMC551_DRAM_BLK1 0x6c
119#define PMC551_DRAM_BLK2 0x70
120#define PMC551_DRAM_BLK3 0x74
121#define PMC551_DRAM_BLK_GET_SIZE(x) (524288 << ((x >> 4) & 0x0f))
122#define PMC551_DRAM_BLK_SET_COL_MUX(x, v) (((x) & ~0x00007000) | (((v) & 0x7) << 12))
123#define PMC551_DRAM_BLK_SET_ROW_MUX(x, v) (((x) & ~0x00000f00) | (((v) & 0xf) << 8))
124
125struct mypriv {
126 struct pci_dev *dev;
127 u_char *start;
128 u32 base_map0;
129 u32 curr_map0;
130 u32 asize;
131 struct mtd_info *nextpmc551;
132};
100 133
101static struct mtd_info *pmc551list; 134static struct mtd_info *pmc551list;
102 135
136static int pmc551_point(struct mtd_info *mtd, loff_t from, size_t len,
137 size_t *retlen, void **virt, resource_size_t *phys);
138
103static int pmc551_erase(struct mtd_info *mtd, struct erase_info *instr) 139static int pmc551_erase(struct mtd_info *mtd, struct erase_info *instr)
104{ 140{
105 struct mypriv *priv = mtd->priv; 141 struct mypriv *priv = mtd->priv;
@@ -115,16 +151,6 @@ static int pmc551_erase(struct mtd_info *mtd, struct erase_info *instr)
115#endif 151#endif
116 152
117 end = instr->addr + instr->len - 1; 153 end = instr->addr + instr->len - 1;
118
119 /* Is it past the end? */
120 if (end > mtd->size) {
121#ifdef CONFIG_MTD_PMC551_DEBUG
122 printk(KERN_DEBUG "pmc551_erase() out of bounds (%ld > %ld)\n",
123 (long)end, (long)mtd->size);
124#endif
125 return -EINVAL;
126 }
127
128 eoff_hi = end & ~(priv->asize - 1); 154 eoff_hi = end & ~(priv->asize - 1);
129 soff_hi = instr->addr & ~(priv->asize - 1); 155 soff_hi = instr->addr & ~(priv->asize - 1);
130 eoff_lo = end & (priv->asize - 1); 156 eoff_lo = end & (priv->asize - 1);
@@ -178,18 +204,6 @@ static int pmc551_point(struct mtd_info *mtd, loff_t from, size_t len,
178 printk(KERN_DEBUG "pmc551_point(%ld, %ld)\n", (long)from, (long)len); 204 printk(KERN_DEBUG "pmc551_point(%ld, %ld)\n", (long)from, (long)len);
179#endif 205#endif
180 206
181 if (from + len > mtd->size) {
182#ifdef CONFIG_MTD_PMC551_DEBUG
183 printk(KERN_DEBUG "pmc551_point() out of bounds (%ld > %ld)\n",
184 (long)from + len, (long)mtd->size);
185#endif
186 return -EINVAL;
187 }
188
189 /* can we return a physical address with this driver? */
190 if (phys)
191 return -EINVAL;
192
193 soff_hi = from & ~(priv->asize - 1); 207 soff_hi = from & ~(priv->asize - 1);
194 soff_lo = from & (priv->asize - 1); 208 soff_lo = from & (priv->asize - 1);
195 209
@@ -205,11 +219,12 @@ static int pmc551_point(struct mtd_info *mtd, loff_t from, size_t len,
205 return 0; 219 return 0;
206} 220}
207 221
208static void pmc551_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 222static int pmc551_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
209{ 223{
210#ifdef CONFIG_MTD_PMC551_DEBUG 224#ifdef CONFIG_MTD_PMC551_DEBUG
211 printk(KERN_DEBUG "pmc551_unpoint()\n"); 225 printk(KERN_DEBUG "pmc551_unpoint()\n");
212#endif 226#endif
227 return 0;
213} 228}
214 229
215static int pmc551_read(struct mtd_info *mtd, loff_t from, size_t len, 230static int pmc551_read(struct mtd_info *mtd, loff_t from, size_t len,
@@ -228,16 +243,6 @@ static int pmc551_read(struct mtd_info *mtd, loff_t from, size_t len,
228#endif 243#endif
229 244
230 end = from + len - 1; 245 end = from + len - 1;
231
232 /* Is it past the end? */
233 if (end > mtd->size) {
234#ifdef CONFIG_MTD_PMC551_DEBUG
235 printk(KERN_DEBUG "pmc551_read() out of bounds (%ld > %ld)\n",
236 (long)end, (long)mtd->size);
237#endif
238 return -EINVAL;
239 }
240
241 soff_hi = from & ~(priv->asize - 1); 246 soff_hi = from & ~(priv->asize - 1);
242 eoff_hi = end & ~(priv->asize - 1); 247 eoff_hi = end & ~(priv->asize - 1);
243 soff_lo = from & (priv->asize - 1); 248 soff_lo = from & (priv->asize - 1);
@@ -295,16 +300,6 @@ static int pmc551_write(struct mtd_info *mtd, loff_t to, size_t len,
295#endif 300#endif
296 301
297 end = to + len - 1; 302 end = to + len - 1;
298 /* Is it past the end? or did the u32 wrap? */
299 if (end > mtd->size) {
300#ifdef CONFIG_MTD_PMC551_DEBUG
301 printk(KERN_DEBUG "pmc551_write() out of bounds (end: %ld, "
302 "size: %ld, to: %ld)\n", (long)end, (long)mtd->size,
303 (long)to);
304#endif
305 return -EINVAL;
306 }
307
308 soff_hi = to & ~(priv->asize - 1); 303 soff_hi = to & ~(priv->asize - 1);
309 eoff_hi = end & ~(priv->asize - 1); 304 eoff_hi = end & ~(priv->asize - 1);
310 soff_lo = to & (priv->asize - 1); 305 soff_lo = to & (priv->asize - 1);
@@ -358,7 +353,7 @@ static int pmc551_write(struct mtd_info *mtd, loff_t to, size_t len,
358 * mechanism 353 * mechanism
359 * returns the size of the memory region found. 354 * returns the size of the memory region found.
360 */ 355 */
361static u32 fixup_pmc551(struct pci_dev *dev) 356static int fixup_pmc551(struct pci_dev *dev)
362{ 357{
363#ifdef CONFIG_MTD_PMC551_BUGFIX 358#ifdef CONFIG_MTD_PMC551_BUGFIX
364 u32 dram_data; 359 u32 dram_data;
@@ -668,7 +663,7 @@ static int __init init_pmc551(void)
668 struct mypriv *priv; 663 struct mypriv *priv;
669 int found = 0; 664 int found = 0;
670 struct mtd_info *mtd; 665 struct mtd_info *mtd;
671 u32 length = 0; 666 int length = 0;
672 667
673 if (msize) { 668 if (msize) {
674 msize = (1 << (ffs(msize) - 1)) << 20; 669 msize = (1 << (ffs(msize) - 1)) << 20;
@@ -786,11 +781,11 @@ static int __init init_pmc551(void)
786 781
787 mtd->size = msize; 782 mtd->size = msize;
788 mtd->flags = MTD_CAP_RAM; 783 mtd->flags = MTD_CAP_RAM;
789 mtd->erase = pmc551_erase; 784 mtd->_erase = pmc551_erase;
790 mtd->read = pmc551_read; 785 mtd->_read = pmc551_read;
791 mtd->write = pmc551_write; 786 mtd->_write = pmc551_write;
792 mtd->point = pmc551_point; 787 mtd->_point = pmc551_point;
793 mtd->unpoint = pmc551_unpoint; 788 mtd->_unpoint = pmc551_unpoint;
794 mtd->type = MTD_RAM; 789 mtd->type = MTD_RAM;
795 mtd->name = "PMC551 RAM board"; 790 mtd->name = "PMC551 RAM board";
796 mtd->erasesize = 0x10000; 791 mtd->erasesize = 0x10000;
diff --git a/drivers/mtd/devices/slram.c b/drivers/mtd/devices/slram.c
index 288594163c22..8f52fc858e48 100644
--- a/drivers/mtd/devices/slram.c
+++ b/drivers/mtd/devices/slram.c
@@ -75,7 +75,7 @@ static slram_mtd_list_t *slram_mtdlist = NULL;
75static int slram_erase(struct mtd_info *, struct erase_info *); 75static int slram_erase(struct mtd_info *, struct erase_info *);
76static int slram_point(struct mtd_info *, loff_t, size_t, size_t *, void **, 76static int slram_point(struct mtd_info *, loff_t, size_t, size_t *, void **,
77 resource_size_t *); 77 resource_size_t *);
78static void slram_unpoint(struct mtd_info *, loff_t, size_t); 78static int slram_unpoint(struct mtd_info *, loff_t, size_t);
79static int slram_read(struct mtd_info *, loff_t, size_t, size_t *, u_char *); 79static int slram_read(struct mtd_info *, loff_t, size_t, size_t *, u_char *);
80static int slram_write(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); 80static int slram_write(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
81 81
@@ -83,21 +83,13 @@ static int slram_erase(struct mtd_info *mtd, struct erase_info *instr)
83{ 83{
84 slram_priv_t *priv = mtd->priv; 84 slram_priv_t *priv = mtd->priv;
85 85
86 if (instr->addr + instr->len > mtd->size) {
87 return(-EINVAL);
88 }
89
90 memset(priv->start + instr->addr, 0xff, instr->len); 86 memset(priv->start + instr->addr, 0xff, instr->len);
91
92 /* This'll catch a few races. Free the thing before returning :) 87 /* This'll catch a few races. Free the thing before returning :)
93 * I don't feel at all ashamed. This kind of thing is possible anyway 88 * I don't feel at all ashamed. This kind of thing is possible anyway
94 * with flash, but unlikely. 89 * with flash, but unlikely.
95 */ 90 */
96
97 instr->state = MTD_ERASE_DONE; 91 instr->state = MTD_ERASE_DONE;
98
99 mtd_erase_callback(instr); 92 mtd_erase_callback(instr);
100
101 return(0); 93 return(0);
102} 94}
103 95
@@ -106,20 +98,14 @@ static int slram_point(struct mtd_info *mtd, loff_t from, size_t len,
106{ 98{
107 slram_priv_t *priv = mtd->priv; 99 slram_priv_t *priv = mtd->priv;
108 100
109 /* can we return a physical address with this driver? */
110 if (phys)
111 return -EINVAL;
112
113 if (from + len > mtd->size)
114 return -EINVAL;
115
116 *virt = priv->start + from; 101 *virt = priv->start + from;
117 *retlen = len; 102 *retlen = len;
118 return(0); 103 return(0);
119} 104}
120 105
121static void slram_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 106static int slram_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
122{ 107{
108 return 0;
123} 109}
124 110
125static int slram_read(struct mtd_info *mtd, loff_t from, size_t len, 111static int slram_read(struct mtd_info *mtd, loff_t from, size_t len,
@@ -127,14 +113,7 @@ static int slram_read(struct mtd_info *mtd, loff_t from, size_t len,
127{ 113{
128 slram_priv_t *priv = mtd->priv; 114 slram_priv_t *priv = mtd->priv;
129 115
130 if (from > mtd->size)
131 return -EINVAL;
132
133 if (from + len > mtd->size)
134 len = mtd->size - from;
135
136 memcpy(buf, priv->start + from, len); 116 memcpy(buf, priv->start + from, len);
137
138 *retlen = len; 117 *retlen = len;
139 return(0); 118 return(0);
140} 119}
@@ -144,11 +123,7 @@ static int slram_write(struct mtd_info *mtd, loff_t to, size_t len,
144{ 123{
145 slram_priv_t *priv = mtd->priv; 124 slram_priv_t *priv = mtd->priv;
146 125
147 if (to + len > mtd->size)
148 return -EINVAL;
149
150 memcpy(priv->start + to, buf, len); 126 memcpy(priv->start + to, buf, len);
151
152 *retlen = len; 127 *retlen = len;
153 return(0); 128 return(0);
154} 129}
@@ -199,11 +174,11 @@ static int register_device(char *name, unsigned long start, unsigned long length
199 (*curmtd)->mtdinfo->name = name; 174 (*curmtd)->mtdinfo->name = name;
200 (*curmtd)->mtdinfo->size = length; 175 (*curmtd)->mtdinfo->size = length;
201 (*curmtd)->mtdinfo->flags = MTD_CAP_RAM; 176 (*curmtd)->mtdinfo->flags = MTD_CAP_RAM;
202 (*curmtd)->mtdinfo->erase = slram_erase; 177 (*curmtd)->mtdinfo->_erase = slram_erase;
203 (*curmtd)->mtdinfo->point = slram_point; 178 (*curmtd)->mtdinfo->_point = slram_point;
204 (*curmtd)->mtdinfo->unpoint = slram_unpoint; 179 (*curmtd)->mtdinfo->_unpoint = slram_unpoint;
205 (*curmtd)->mtdinfo->read = slram_read; 180 (*curmtd)->mtdinfo->_read = slram_read;
206 (*curmtd)->mtdinfo->write = slram_write; 181 (*curmtd)->mtdinfo->_write = slram_write;
207 (*curmtd)->mtdinfo->owner = THIS_MODULE; 182 (*curmtd)->mtdinfo->owner = THIS_MODULE;
208 (*curmtd)->mtdinfo->type = MTD_RAM; 183 (*curmtd)->mtdinfo->type = MTD_RAM;
209 (*curmtd)->mtdinfo->erasesize = SLRAM_BLK_SZ; 184 (*curmtd)->mtdinfo->erasesize = SLRAM_BLK_SZ;
diff --git a/drivers/mtd/devices/spear_smi.c b/drivers/mtd/devices/spear_smi.c
new file mode 100644
index 000000000000..797d43cd3550
--- /dev/null
+++ b/drivers/mtd/devices/spear_smi.c
@@ -0,0 +1,1147 @@
1/*
2 * SMI (Serial Memory Controller) device driver for Serial NOR Flash on
3 * SPEAr platform
4 * The serial nor interface is largely based on drivers/mtd/m25p80.c,
5 * however the SPI interface has been replaced by SMI.
6 *
7 * Copyright © 2010 STMicroelectronics.
8 * Ashish Priyadarshi
9 * Shiraz Hashim <shiraz.hashim@st.com>
10 *
11 * This file is licensed under the terms of the GNU General Public
12 * License version 2. This program is licensed "as is" without any
13 * warranty of any kind, whether express or implied.
14 */
15
16#include <linux/clk.h>
17#include <linux/delay.h>
18#include <linux/device.h>
19#include <linux/err.h>
20#include <linux/errno.h>
21#include <linux/interrupt.h>
22#include <linux/io.h>
23#include <linux/ioport.h>
24#include <linux/jiffies.h>
25#include <linux/kernel.h>
26#include <linux/module.h>
27#include <linux/param.h>
28#include <linux/platform_device.h>
29#include <linux/mtd/mtd.h>
30#include <linux/mtd/partitions.h>
31#include <linux/mtd/spear_smi.h>
32#include <linux/mutex.h>
33#include <linux/sched.h>
34#include <linux/slab.h>
35#include <linux/wait.h>
36#include <linux/of.h>
37#include <linux/of_address.h>
38
39/* SMI clock rate */
40#define SMI_MAX_CLOCK_FREQ 50000000 /* 50 MHz */
41
42/* MAX time out to safely come out of a erase or write busy conditions */
43#define SMI_PROBE_TIMEOUT (HZ / 10)
44#define SMI_MAX_TIME_OUT (3 * HZ)
45
46/* timeout for command completion */
47#define SMI_CMD_TIMEOUT (HZ / 10)
48
49/* registers of smi */
50#define SMI_CR1 0x0 /* SMI control register 1 */
51#define SMI_CR2 0x4 /* SMI control register 2 */
52#define SMI_SR 0x8 /* SMI status register */
53#define SMI_TR 0xC /* SMI transmit register */
54#define SMI_RR 0x10 /* SMI receive register */
55
56/* defines for control_reg 1 */
57#define BANK_EN (0xF << 0) /* enables all banks */
58#define DSEL_TIME (0x6 << 4) /* Deselect time 6 + 1 SMI_CK periods */
59#define SW_MODE (0x1 << 28) /* enables SW Mode */
60#define WB_MODE (0x1 << 29) /* Write Burst Mode */
61#define FAST_MODE (0x1 << 15) /* Fast Mode */
62#define HOLD1 (0x1 << 16) /* Clock Hold period selection */
63
64/* defines for control_reg 2 */
65#define SEND (0x1 << 7) /* Send data */
66#define TFIE (0x1 << 8) /* Transmission Flag Interrupt Enable */
67#define WCIE (0x1 << 9) /* Write Complete Interrupt Enable */
68#define RD_STATUS_REG (0x1 << 10) /* reads status reg */
69#define WE (0x1 << 11) /* Write Enable */
70
71#define TX_LEN_SHIFT 0
72#define RX_LEN_SHIFT 4
73#define BANK_SHIFT 12
74
75/* defines for status register */
76#define SR_WIP 0x1 /* Write in progress */
77#define SR_WEL 0x2 /* Write enable latch */
78#define SR_BP0 0x4 /* Block protect 0 */
79#define SR_BP1 0x8 /* Block protect 1 */
80#define SR_BP2 0x10 /* Block protect 2 */
81#define SR_SRWD 0x80 /* SR write protect */
82#define TFF 0x100 /* Transfer Finished Flag */
83#define WCF 0x200 /* Transfer Finished Flag */
84#define ERF1 0x400 /* Forbidden Write Request */
85#define ERF2 0x800 /* Forbidden Access */
86
87#define WM_SHIFT 12
88
89/* flash opcodes */
90#define OPCODE_RDID 0x9f /* Read JEDEC ID */
91
92/* Flash Device Ids maintenance section */
93
94/* data structure to maintain flash ids from different vendors */
95struct flash_device {
96 char *name;
97 u8 erase_cmd;
98 u32 device_id;
99 u32 pagesize;
100 unsigned long sectorsize;
101 unsigned long size_in_bytes;
102};
103
104#define FLASH_ID(n, es, id, psize, ssize, size) \
105{ \
106 .name = n, \
107 .erase_cmd = es, \
108 .device_id = id, \
109 .pagesize = psize, \
110 .sectorsize = ssize, \
111 .size_in_bytes = size \
112}
113
114static struct flash_device flash_devices[] = {
115 FLASH_ID("st m25p16" , 0xd8, 0x00152020, 0x100, 0x10000, 0x200000),
116 FLASH_ID("st m25p32" , 0xd8, 0x00162020, 0x100, 0x10000, 0x400000),
117 FLASH_ID("st m25p64" , 0xd8, 0x00172020, 0x100, 0x10000, 0x800000),
118 FLASH_ID("st m25p128" , 0xd8, 0x00182020, 0x100, 0x40000, 0x1000000),
119 FLASH_ID("st m25p05" , 0xd8, 0x00102020, 0x80 , 0x8000 , 0x10000),
120 FLASH_ID("st m25p10" , 0xd8, 0x00112020, 0x80 , 0x8000 , 0x20000),
121 FLASH_ID("st m25p20" , 0xd8, 0x00122020, 0x100, 0x10000, 0x40000),
122 FLASH_ID("st m25p40" , 0xd8, 0x00132020, 0x100, 0x10000, 0x80000),
123 FLASH_ID("st m25p80" , 0xd8, 0x00142020, 0x100, 0x10000, 0x100000),
124 FLASH_ID("st m45pe10" , 0xd8, 0x00114020, 0x100, 0x10000, 0x20000),
125 FLASH_ID("st m45pe20" , 0xd8, 0x00124020, 0x100, 0x10000, 0x40000),
126 FLASH_ID("st m45pe40" , 0xd8, 0x00134020, 0x100, 0x10000, 0x80000),
127 FLASH_ID("st m45pe80" , 0xd8, 0x00144020, 0x100, 0x10000, 0x100000),
128 FLASH_ID("sp s25fl004" , 0xd8, 0x00120201, 0x100, 0x10000, 0x80000),
129 FLASH_ID("sp s25fl008" , 0xd8, 0x00130201, 0x100, 0x10000, 0x100000),
130 FLASH_ID("sp s25fl016" , 0xd8, 0x00140201, 0x100, 0x10000, 0x200000),
131 FLASH_ID("sp s25fl032" , 0xd8, 0x00150201, 0x100, 0x10000, 0x400000),
132 FLASH_ID("sp s25fl064" , 0xd8, 0x00160201, 0x100, 0x10000, 0x800000),
133 FLASH_ID("atmel 25f512" , 0x52, 0x0065001F, 0x80 , 0x8000 , 0x10000),
134 FLASH_ID("atmel 25f1024" , 0x52, 0x0060001F, 0x100, 0x8000 , 0x20000),
135 FLASH_ID("atmel 25f2048" , 0x52, 0x0063001F, 0x100, 0x10000, 0x40000),
136 FLASH_ID("atmel 25f4096" , 0x52, 0x0064001F, 0x100, 0x10000, 0x80000),
137 FLASH_ID("atmel 25fs040" , 0xd7, 0x0004661F, 0x100, 0x10000, 0x80000),
138 FLASH_ID("mac 25l512" , 0xd8, 0x001020C2, 0x010, 0x10000, 0x10000),
139 FLASH_ID("mac 25l1005" , 0xd8, 0x001120C2, 0x010, 0x10000, 0x20000),
140 FLASH_ID("mac 25l2005" , 0xd8, 0x001220C2, 0x010, 0x10000, 0x40000),
141 FLASH_ID("mac 25l4005" , 0xd8, 0x001320C2, 0x010, 0x10000, 0x80000),
142 FLASH_ID("mac 25l4005a" , 0xd8, 0x001320C2, 0x010, 0x10000, 0x80000),
143 FLASH_ID("mac 25l8005" , 0xd8, 0x001420C2, 0x010, 0x10000, 0x100000),
144 FLASH_ID("mac 25l1605" , 0xd8, 0x001520C2, 0x100, 0x10000, 0x200000),
145 FLASH_ID("mac 25l1605a" , 0xd8, 0x001520C2, 0x010, 0x10000, 0x200000),
146 FLASH_ID("mac 25l3205" , 0xd8, 0x001620C2, 0x100, 0x10000, 0x400000),
147 FLASH_ID("mac 25l3205a" , 0xd8, 0x001620C2, 0x100, 0x10000, 0x400000),
148 FLASH_ID("mac 25l6405" , 0xd8, 0x001720C2, 0x100, 0x10000, 0x800000),
149};
150
151/* Define spear specific structures */
152
153struct spear_snor_flash;
154
155/**
156 * struct spear_smi - Structure for SMI Device
157 *
158 * @clk: functional clock
159 * @status: current status register of SMI.
160 * @clk_rate: functional clock rate of SMI (default: SMI_MAX_CLOCK_FREQ)
161 * @lock: lock to prevent parallel access of SMI.
162 * @io_base: base address for registers of SMI.
163 * @pdev: platform device
164 * @cmd_complete: queue to wait for command completion of NOR-flash.
165 * @num_flashes: number of flashes actually present on board.
166 * @flash: separate structure for each Serial NOR-flash attached to SMI.
167 */
168struct spear_smi {
169 struct clk *clk;
170 u32 status;
171 unsigned long clk_rate;
172 struct mutex lock;
173 void __iomem *io_base;
174 struct platform_device *pdev;
175 wait_queue_head_t cmd_complete;
176 u32 num_flashes;
177 struct spear_snor_flash *flash[MAX_NUM_FLASH_CHIP];
178};
179
180/**
181 * struct spear_snor_flash - Structure for Serial NOR Flash
182 *
183 * @bank: Bank number(0, 1, 2, 3) for each NOR-flash.
184 * @dev_id: Device ID of NOR-flash.
185 * @lock: lock to manage flash read, write and erase operations
186 * @mtd: MTD info for each NOR-flash.
187 * @num_parts: Total number of partition in each bank of NOR-flash.
188 * @parts: Partition info for each bank of NOR-flash.
189 * @page_size: Page size of NOR-flash.
190 * @base_addr: Base address of NOR-flash.
191 * @erase_cmd: erase command may vary on different flash types
192 * @fast_mode: flash supports read in fast mode
193 */
194struct spear_snor_flash {
195 u32 bank;
196 u32 dev_id;
197 struct mutex lock;
198 struct mtd_info mtd;
199 u32 num_parts;
200 struct mtd_partition *parts;
201 u32 page_size;
202 void __iomem *base_addr;
203 u8 erase_cmd;
204 u8 fast_mode;
205};
206
207static inline struct spear_snor_flash *get_flash_data(struct mtd_info *mtd)
208{
209 return container_of(mtd, struct spear_snor_flash, mtd);
210}
211
212/**
213 * spear_smi_read_sr - Read status register of flash through SMI
214 * @dev: structure of SMI information.
215 * @bank: bank to which flash is connected
216 *
217 * This routine will return the status register of the flash chip present at the
218 * given bank.
219 */
220static int spear_smi_read_sr(struct spear_smi *dev, u32 bank)
221{
222 int ret;
223 u32 ctrlreg1;
224
225 mutex_lock(&dev->lock);
226 dev->status = 0; /* Will be set in interrupt handler */
227
228 ctrlreg1 = readl(dev->io_base + SMI_CR1);
229 /* program smi in hw mode */
230 writel(ctrlreg1 & ~(SW_MODE | WB_MODE), dev->io_base + SMI_CR1);
231
232 /* performing a rsr instruction in hw mode */
233 writel((bank << BANK_SHIFT) | RD_STATUS_REG | TFIE,
234 dev->io_base + SMI_CR2);
235
236 /* wait for tff */
237 ret = wait_event_interruptible_timeout(dev->cmd_complete,
238 dev->status & TFF, SMI_CMD_TIMEOUT);
239
240 /* copy dev->status (lower 16 bits) in order to release lock */
241 if (ret > 0)
242 ret = dev->status & 0xffff;
243 else
244 ret = -EIO;
245
246 /* restore the ctrl regs state */
247 writel(ctrlreg1, dev->io_base + SMI_CR1);
248 writel(0, dev->io_base + SMI_CR2);
249 mutex_unlock(&dev->lock);
250
251 return ret;
252}
253
254/**
255 * spear_smi_wait_till_ready - wait till flash is ready
256 * @dev: structure of SMI information.
257 * @bank: flash corresponding to this bank
258 * @timeout: timeout for busy wait condition
259 *
260 * This routine checks for WIP (write in progress) bit in Status register
261 * If successful the routine returns 0 else -EBUSY
262 */
263static int spear_smi_wait_till_ready(struct spear_smi *dev, u32 bank,
264 unsigned long timeout)
265{
266 unsigned long finish;
267 int status;
268
269 finish = jiffies + timeout;
270 do {
271 status = spear_smi_read_sr(dev, bank);
272 if (status < 0)
273 continue; /* try till timeout */
274 else if (!(status & SR_WIP))
275 return 0;
276
277 cond_resched();
278 } while (!time_after_eq(jiffies, finish));
279
280 dev_err(&dev->pdev->dev, "smi controller is busy, timeout\n");
281 return status;
282}
283
284/**
285 * spear_smi_int_handler - SMI Interrupt Handler.
286 * @irq: irq number
287 * @dev_id: structure of SMI device, embedded in dev_id.
288 *
289 * The handler clears all interrupt conditions and records the status in
290 * dev->status which is used by the driver later.
291 */
292static irqreturn_t spear_smi_int_handler(int irq, void *dev_id)
293{
294 u32 status = 0;
295 struct spear_smi *dev = dev_id;
296
297 status = readl(dev->io_base + SMI_SR);
298
299 if (unlikely(!status))
300 return IRQ_NONE;
301
302 /* clear all interrupt conditions */
303 writel(0, dev->io_base + SMI_SR);
304
305 /* copy the status register in dev->status */
306 dev->status |= status;
307
308 /* send the completion */
309 wake_up_interruptible(&dev->cmd_complete);
310
311 return IRQ_HANDLED;
312}
313
314/**
315 * spear_smi_hw_init - initializes the smi controller.
316 * @dev: structure of smi device
317 *
318 * this routine initializes the smi controller wit the default values
319 */
320static void spear_smi_hw_init(struct spear_smi *dev)
321{
322 unsigned long rate = 0;
323 u32 prescale = 0;
324 u32 val;
325
326 rate = clk_get_rate(dev->clk);
327
328 /* functional clock of smi */
329 prescale = DIV_ROUND_UP(rate, dev->clk_rate);
330
331 /*
332 * setting the standard values, fast mode, prescaler for
333 * SMI_MAX_CLOCK_FREQ (50MHz) operation and bank enable
334 */
335 val = HOLD1 | BANK_EN | DSEL_TIME | (prescale << 8);
336
337 mutex_lock(&dev->lock);
338 writel(val, dev->io_base + SMI_CR1);
339 mutex_unlock(&dev->lock);
340}
341
342/**
343 * get_flash_index - match chip id from a flash list.
344 * @flash_id: a valid nor flash chip id obtained from board.
345 *
346 * try to validate the chip id by matching from a list, if not found then simply
347 * returns negative. In case of success returns index in to the flash devices
348 * array.
349 */
350static int get_flash_index(u32 flash_id)
351{
352 int index;
353
354 /* Matches chip-id to entire list of 'serial-nor flash' ids */
355 for (index = 0; index < ARRAY_SIZE(flash_devices); index++) {
356 if (flash_devices[index].device_id == flash_id)
357 return index;
358 }
359
360 /* Memory chip is not listed and not supported */
361 return -ENODEV;
362}
363
364/**
365 * spear_smi_write_enable - Enable the flash to do write operation
366 * @dev: structure of SMI device
367 * @bank: enable write for flash connected to this bank
368 *
369 * Set write enable latch with Write Enable command.
370 * Returns 0 on success.
371 */
372static int spear_smi_write_enable(struct spear_smi *dev, u32 bank)
373{
374 int ret;
375 u32 ctrlreg1;
376
377 mutex_lock(&dev->lock);
378 dev->status = 0; /* Will be set in interrupt handler */
379
380 ctrlreg1 = readl(dev->io_base + SMI_CR1);
381 /* program smi in h/w mode */
382 writel(ctrlreg1 & ~SW_MODE, dev->io_base + SMI_CR1);
383
384 /* give the flash, write enable command */
385 writel((bank << BANK_SHIFT) | WE | TFIE, dev->io_base + SMI_CR2);
386
387 ret = wait_event_interruptible_timeout(dev->cmd_complete,
388 dev->status & TFF, SMI_CMD_TIMEOUT);
389
390 /* restore the ctrl regs state */
391 writel(ctrlreg1, dev->io_base + SMI_CR1);
392 writel(0, dev->io_base + SMI_CR2);
393
394 if (ret <= 0) {
395 ret = -EIO;
396 dev_err(&dev->pdev->dev,
397 "smi controller failed on write enable\n");
398 } else {
399 /* check whether write mode status is set for required bank */
400 if (dev->status & (1 << (bank + WM_SHIFT)))
401 ret = 0;
402 else {
403 dev_err(&dev->pdev->dev, "couldn't enable write\n");
404 ret = -EIO;
405 }
406 }
407
408 mutex_unlock(&dev->lock);
409 return ret;
410}
411
412static inline u32
413get_sector_erase_cmd(struct spear_snor_flash *flash, u32 offset)
414{
415 u32 cmd;
416 u8 *x = (u8 *)&cmd;
417
418 x[0] = flash->erase_cmd;
419 x[1] = offset >> 16;
420 x[2] = offset >> 8;
421 x[3] = offset;
422
423 return cmd;
424}
425
426/**
427 * spear_smi_erase_sector - erase one sector of flash
428 * @dev: structure of SMI information
429 * @command: erase command to be send
430 * @bank: bank to which this command needs to be send
431 * @bytes: size of command
432 *
433 * Erase one sector of flash memory at offset ``offset'' which is any
434 * address within the sector which should be erased.
435 * Returns 0 if successful, non-zero otherwise.
436 */
437static int spear_smi_erase_sector(struct spear_smi *dev,
438 u32 bank, u32 command, u32 bytes)
439{
440 u32 ctrlreg1 = 0;
441 int ret;
442
443 ret = spear_smi_wait_till_ready(dev, bank, SMI_MAX_TIME_OUT);
444 if (ret)
445 return ret;
446
447 ret = spear_smi_write_enable(dev, bank);
448 if (ret)
449 return ret;
450
451 mutex_lock(&dev->lock);
452
453 ctrlreg1 = readl(dev->io_base + SMI_CR1);
454 writel((ctrlreg1 | SW_MODE) & ~WB_MODE, dev->io_base + SMI_CR1);
455
456 /* send command in sw mode */
457 writel(command, dev->io_base + SMI_TR);
458
459 writel((bank << BANK_SHIFT) | SEND | TFIE | (bytes << TX_LEN_SHIFT),
460 dev->io_base + SMI_CR2);
461
462 ret = wait_event_interruptible_timeout(dev->cmd_complete,
463 dev->status & TFF, SMI_CMD_TIMEOUT);
464
465 if (ret <= 0) {
466 ret = -EIO;
467 dev_err(&dev->pdev->dev, "sector erase failed\n");
468 } else
469 ret = 0; /* success */
470
471 /* restore ctrl regs */
472 writel(ctrlreg1, dev->io_base + SMI_CR1);
473 writel(0, dev->io_base + SMI_CR2);
474
475 mutex_unlock(&dev->lock);
476 return ret;
477}
478
479/**
480 * spear_mtd_erase - perform flash erase operation as requested by user
481 * @mtd: Provides the memory characteristics
482 * @e_info: Provides the erase information
483 *
484 * Erase an address range on the flash chip. The address range may extend
485 * one or more erase sectors. Return an error is there is a problem erasing.
486 */
487static int spear_mtd_erase(struct mtd_info *mtd, struct erase_info *e_info)
488{
489 struct spear_snor_flash *flash = get_flash_data(mtd);
490 struct spear_smi *dev = mtd->priv;
491 u32 addr, command, bank;
492 int len, ret;
493
494 if (!flash || !dev)
495 return -ENODEV;
496
497 bank = flash->bank;
498 if (bank > dev->num_flashes - 1) {
499 dev_err(&dev->pdev->dev, "Invalid Bank Num");
500 return -EINVAL;
501 }
502
503 addr = e_info->addr;
504 len = e_info->len;
505
506 mutex_lock(&flash->lock);
507
508 /* now erase sectors in loop */
509 while (len) {
510 command = get_sector_erase_cmd(flash, addr);
511 /* preparing the command for flash */
512 ret = spear_smi_erase_sector(dev, bank, command, 4);
513 if (ret) {
514 e_info->state = MTD_ERASE_FAILED;
515 mutex_unlock(&flash->lock);
516 return ret;
517 }
518 addr += mtd->erasesize;
519 len -= mtd->erasesize;
520 }
521
522 mutex_unlock(&flash->lock);
523 e_info->state = MTD_ERASE_DONE;
524 mtd_erase_callback(e_info);
525
526 return 0;
527}
528
529/**
530 * spear_mtd_read - performs flash read operation as requested by the user
531 * @mtd: MTD information of the memory bank
532 * @from: Address from which to start read
533 * @len: Number of bytes to be read
534 * @retlen: Fills the Number of bytes actually read
535 * @buf: Fills this after reading
536 *
537 * Read an address range from the flash chip. The address range
538 * may be any size provided it is within the physical boundaries.
539 * Returns 0 on success, non zero otherwise
540 */
541static int spear_mtd_read(struct mtd_info *mtd, loff_t from, size_t len,
542 size_t *retlen, u8 *buf)
543{
544 struct spear_snor_flash *flash = get_flash_data(mtd);
545 struct spear_smi *dev = mtd->priv;
546 void *src;
547 u32 ctrlreg1, val;
548 int ret;
549
550 if (!flash || !dev)
551 return -ENODEV;
552
553 if (flash->bank > dev->num_flashes - 1) {
554 dev_err(&dev->pdev->dev, "Invalid Bank Num");
555 return -EINVAL;
556 }
557
558 /* select address as per bank number */
559 src = flash->base_addr + from;
560
561 mutex_lock(&flash->lock);
562
563 /* wait till previous write/erase is done. */
564 ret = spear_smi_wait_till_ready(dev, flash->bank, SMI_MAX_TIME_OUT);
565 if (ret) {
566 mutex_unlock(&flash->lock);
567 return ret;
568 }
569
570 mutex_lock(&dev->lock);
571 /* put smi in hw mode not wbt mode */
572 ctrlreg1 = val = readl(dev->io_base + SMI_CR1);
573 val &= ~(SW_MODE | WB_MODE);
574 if (flash->fast_mode)
575 val |= FAST_MODE;
576
577 writel(val, dev->io_base + SMI_CR1);
578
579 memcpy_fromio(buf, (u8 *)src, len);
580
581 /* restore ctrl reg1 */
582 writel(ctrlreg1, dev->io_base + SMI_CR1);
583 mutex_unlock(&dev->lock);
584
585 *retlen = len;
586 mutex_unlock(&flash->lock);
587
588 return 0;
589}
590
591static inline int spear_smi_cpy_toio(struct spear_smi *dev, u32 bank,
592 void *dest, const void *src, size_t len)
593{
594 int ret;
595 u32 ctrlreg1;
596
597 /* wait until finished previous write command. */
598 ret = spear_smi_wait_till_ready(dev, bank, SMI_MAX_TIME_OUT);
599 if (ret)
600 return ret;
601
602 /* put smi in write enable */
603 ret = spear_smi_write_enable(dev, bank);
604 if (ret)
605 return ret;
606
607 /* put smi in hw, write burst mode */
608 mutex_lock(&dev->lock);
609
610 ctrlreg1 = readl(dev->io_base + SMI_CR1);
611 writel((ctrlreg1 | WB_MODE) & ~SW_MODE, dev->io_base + SMI_CR1);
612
613 memcpy_toio(dest, src, len);
614
615 writel(ctrlreg1, dev->io_base + SMI_CR1);
616
617 mutex_unlock(&dev->lock);
618 return 0;
619}
620
621/**
622 * spear_mtd_write - performs write operation as requested by the user.
623 * @mtd: MTD information of the memory bank.
624 * @to: Address to write.
625 * @len: Number of bytes to be written.
626 * @retlen: Number of bytes actually wrote.
627 * @buf: Buffer from which the data to be taken.
628 *
629 * Write an address range to the flash chip. Data must be written in
630 * flash_page_size chunks. The address range may be any size provided
631 * it is within the physical boundaries.
632 * Returns 0 on success, non zero otherwise
633 */
634static int spear_mtd_write(struct mtd_info *mtd, loff_t to, size_t len,
635 size_t *retlen, const u8 *buf)
636{
637 struct spear_snor_flash *flash = get_flash_data(mtd);
638 struct spear_smi *dev = mtd->priv;
639 void *dest;
640 u32 page_offset, page_size;
641 int ret;
642
643 if (!flash || !dev)
644 return -ENODEV;
645
646 if (flash->bank > dev->num_flashes - 1) {
647 dev_err(&dev->pdev->dev, "Invalid Bank Num");
648 return -EINVAL;
649 }
650
651 /* select address as per bank number */
652 dest = flash->base_addr + to;
653 mutex_lock(&flash->lock);
654
655 page_offset = (u32)to % flash->page_size;
656
657 /* do if all the bytes fit onto one page */
658 if (page_offset + len <= flash->page_size) {
659 ret = spear_smi_cpy_toio(dev, flash->bank, dest, buf, len);
660 if (!ret)
661 *retlen += len;
662 } else {
663 u32 i;
664
665 /* the size of data remaining on the first page */
666 page_size = flash->page_size - page_offset;
667
668 ret = spear_smi_cpy_toio(dev, flash->bank, dest, buf,
669 page_size);
670 if (ret)
671 goto err_write;
672 else
673 *retlen += page_size;
674
675 /* write everything in pagesize chunks */
676 for (i = page_size; i < len; i += page_size) {
677 page_size = len - i;
678 if (page_size > flash->page_size)
679 page_size = flash->page_size;
680
681 ret = spear_smi_cpy_toio(dev, flash->bank, dest + i,
682 buf + i, page_size);
683 if (ret)
684 break;
685 else
686 *retlen += page_size;
687 }
688 }
689
690err_write:
691 mutex_unlock(&flash->lock);
692
693 return ret;
694}
695
696/**
697 * spear_smi_probe_flash - Detects the NOR Flash chip.
698 * @dev: structure of SMI information.
699 * @bank: bank on which flash must be probed
700 *
701 * This routine will check whether there exists a flash chip on a given memory
702 * bank ID.
703 * Return index of the probed flash in flash devices structure
704 */
705static int spear_smi_probe_flash(struct spear_smi *dev, u32 bank)
706{
707 int ret;
708 u32 val = 0;
709
710 ret = spear_smi_wait_till_ready(dev, bank, SMI_PROBE_TIMEOUT);
711 if (ret)
712 return ret;
713
714 mutex_lock(&dev->lock);
715
716 dev->status = 0; /* Will be set in interrupt handler */
717 /* put smi in sw mode */
718 val = readl(dev->io_base + SMI_CR1);
719 writel(val | SW_MODE, dev->io_base + SMI_CR1);
720
721 /* send readid command in sw mode */
722 writel(OPCODE_RDID, dev->io_base + SMI_TR);
723
724 val = (bank << BANK_SHIFT) | SEND | (1 << TX_LEN_SHIFT) |
725 (3 << RX_LEN_SHIFT) | TFIE;
726 writel(val, dev->io_base + SMI_CR2);
727
728 /* wait for TFF */
729 ret = wait_event_interruptible_timeout(dev->cmd_complete,
730 dev->status & TFF, SMI_CMD_TIMEOUT);
731 if (ret <= 0) {
732 ret = -ENODEV;
733 goto err_probe;
734 }
735
736 /* get memory chip id */
737 val = readl(dev->io_base + SMI_RR);
738 val &= 0x00ffffff;
739 ret = get_flash_index(val);
740
741err_probe:
742 /* clear sw mode */
743 val = readl(dev->io_base + SMI_CR1);
744 writel(val & ~SW_MODE, dev->io_base + SMI_CR1);
745
746 mutex_unlock(&dev->lock);
747 return ret;
748}
749
750
751#ifdef CONFIG_OF
752static int __devinit spear_smi_probe_config_dt(struct platform_device *pdev,
753 struct device_node *np)
754{
755 struct spear_smi_plat_data *pdata = dev_get_platdata(&pdev->dev);
756 struct device_node *pp = NULL;
757 const __be32 *addr;
758 u32 val;
759 int len;
760 int i = 0;
761
762 if (!np)
763 return -ENODEV;
764
765 of_property_read_u32(np, "clock-rate", &val);
766 pdata->clk_rate = val;
767
768 pdata->board_flash_info = devm_kzalloc(&pdev->dev,
769 sizeof(*pdata->board_flash_info),
770 GFP_KERNEL);
771
772 /* Fill structs for each subnode (flash device) */
773 while ((pp = of_get_next_child(np, pp))) {
774 struct spear_smi_flash_info *flash_info;
775
776 flash_info = &pdata->board_flash_info[i];
777 pdata->np[i] = pp;
778
779 /* Read base-addr and size from DT */
780 addr = of_get_property(pp, "reg", &len);
781 pdata->board_flash_info->mem_base = be32_to_cpup(&addr[0]);
782 pdata->board_flash_info->size = be32_to_cpup(&addr[1]);
783
784 if (of_get_property(pp, "st,smi-fast-mode", NULL))
785 pdata->board_flash_info->fast_mode = 1;
786
787 i++;
788 }
789
790 pdata->num_flashes = i;
791
792 return 0;
793}
794#else
795static int __devinit spear_smi_probe_config_dt(struct platform_device *pdev,
796 struct device_node *np)
797{
798 return -ENOSYS;
799}
800#endif
801
802static int spear_smi_setup_banks(struct platform_device *pdev,
803 u32 bank, struct device_node *np)
804{
805 struct spear_smi *dev = platform_get_drvdata(pdev);
806 struct mtd_part_parser_data ppdata = {};
807 struct spear_smi_flash_info *flash_info;
808 struct spear_smi_plat_data *pdata;
809 struct spear_snor_flash *flash;
810 struct mtd_partition *parts = NULL;
811 int count = 0;
812 int flash_index;
813 int ret = 0;
814
815 pdata = dev_get_platdata(&pdev->dev);
816 if (bank > pdata->num_flashes - 1)
817 return -EINVAL;
818
819 flash_info = &pdata->board_flash_info[bank];
820 if (!flash_info)
821 return -ENODEV;
822
823 flash = kzalloc(sizeof(*flash), GFP_ATOMIC);
824 if (!flash)
825 return -ENOMEM;
826 flash->bank = bank;
827 flash->fast_mode = flash_info->fast_mode ? 1 : 0;
828 mutex_init(&flash->lock);
829
830 /* verify whether nor flash is really present on board */
831 flash_index = spear_smi_probe_flash(dev, bank);
832 if (flash_index < 0) {
833 dev_info(&dev->pdev->dev, "smi-nor%d not found\n", bank);
834 ret = flash_index;
835 goto err_probe;
836 }
837 /* map the memory for nor flash chip */
838 flash->base_addr = ioremap(flash_info->mem_base, flash_info->size);
839 if (!flash->base_addr) {
840 ret = -EIO;
841 goto err_probe;
842 }
843
844 dev->flash[bank] = flash;
845 flash->mtd.priv = dev;
846
847 if (flash_info->name)
848 flash->mtd.name = flash_info->name;
849 else
850 flash->mtd.name = flash_devices[flash_index].name;
851
852 flash->mtd.type = MTD_NORFLASH;
853 flash->mtd.writesize = 1;
854 flash->mtd.flags = MTD_CAP_NORFLASH;
855 flash->mtd.size = flash_info->size;
856 flash->mtd.erasesize = flash_devices[flash_index].sectorsize;
857 flash->page_size = flash_devices[flash_index].pagesize;
858 flash->mtd.writebufsize = flash->page_size;
859 flash->erase_cmd = flash_devices[flash_index].erase_cmd;
860 flash->mtd._erase = spear_mtd_erase;
861 flash->mtd._read = spear_mtd_read;
862 flash->mtd._write = spear_mtd_write;
863 flash->dev_id = flash_devices[flash_index].device_id;
864
865 dev_info(&dev->pdev->dev, "mtd .name=%s .size=%llx(%lluM)\n",
866 flash->mtd.name, flash->mtd.size,
867 flash->mtd.size / (1024 * 1024));
868
869 dev_info(&dev->pdev->dev, ".erasesize = 0x%x(%uK)\n",
870 flash->mtd.erasesize, flash->mtd.erasesize / 1024);
871
872#ifndef CONFIG_OF
873 if (flash_info->partitions) {
874 parts = flash_info->partitions;
875 count = flash_info->nr_partitions;
876 }
877#endif
878 ppdata.of_node = np;
879
880 ret = mtd_device_parse_register(&flash->mtd, NULL, &ppdata, parts,
881 count);
882 if (ret) {
883 dev_err(&dev->pdev->dev, "Err MTD partition=%d\n", ret);
884 goto err_map;
885 }
886
887 return 0;
888
889err_map:
890 iounmap(flash->base_addr);
891
892err_probe:
893 kfree(flash);
894 return ret;
895}
896
897/**
898 * spear_smi_probe - Entry routine
899 * @pdev: platform device structure
900 *
901 * This is the first routine which gets invoked during booting and does all
902 * initialization/allocation work. The routine looks for available memory banks,
903 * and do proper init for any found one.
904 * Returns 0 on success, non zero otherwise
905 */
906static int __devinit spear_smi_probe(struct platform_device *pdev)
907{
908 struct device_node *np = pdev->dev.of_node;
909 struct spear_smi_plat_data *pdata = NULL;
910 struct spear_smi *dev;
911 struct resource *smi_base;
912 int irq, ret = 0;
913 int i;
914
915 if (np) {
916 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
917 if (!pdata) {
918 pr_err("%s: ERROR: no memory", __func__);
919 ret = -ENOMEM;
920 goto err;
921 }
922 pdev->dev.platform_data = pdata;
923 ret = spear_smi_probe_config_dt(pdev, np);
924 if (ret) {
925 ret = -ENODEV;
926 dev_err(&pdev->dev, "no platform data\n");
927 goto err;
928 }
929 } else {
930 pdata = dev_get_platdata(&pdev->dev);
931 if (pdata < 0) {
932 ret = -ENODEV;
933 dev_err(&pdev->dev, "no platform data\n");
934 goto err;
935 }
936 }
937
938 smi_base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
939 if (!smi_base) {
940 ret = -ENODEV;
941 dev_err(&pdev->dev, "invalid smi base address\n");
942 goto err;
943 }
944
945 irq = platform_get_irq(pdev, 0);
946 if (irq < 0) {
947 ret = -ENODEV;
948 dev_err(&pdev->dev, "invalid smi irq\n");
949 goto err;
950 }
951
952 dev = kzalloc(sizeof(*dev), GFP_ATOMIC);
953 if (!dev) {
954 ret = -ENOMEM;
955 dev_err(&pdev->dev, "mem alloc fail\n");
956 goto err;
957 }
958
959 smi_base = request_mem_region(smi_base->start, resource_size(smi_base),
960 pdev->name);
961 if (!smi_base) {
962 ret = -EBUSY;
963 dev_err(&pdev->dev, "request mem region fail\n");
964 goto err_mem;
965 }
966
967 dev->io_base = ioremap(smi_base->start, resource_size(smi_base));
968 if (!dev->io_base) {
969 ret = -EIO;
970 dev_err(&pdev->dev, "ioremap fail\n");
971 goto err_ioremap;
972 }
973
974 dev->pdev = pdev;
975 dev->clk_rate = pdata->clk_rate;
976
977 if (dev->clk_rate < 0 || dev->clk_rate > SMI_MAX_CLOCK_FREQ)
978 dev->clk_rate = SMI_MAX_CLOCK_FREQ;
979
980 dev->num_flashes = pdata->num_flashes;
981
982 if (dev->num_flashes > MAX_NUM_FLASH_CHIP) {
983 dev_err(&pdev->dev, "exceeding max number of flashes\n");
984 dev->num_flashes = MAX_NUM_FLASH_CHIP;
985 }
986
987 dev->clk = clk_get(&pdev->dev, NULL);
988 if (IS_ERR(dev->clk)) {
989 ret = PTR_ERR(dev->clk);
990 goto err_clk;
991 }
992
993 ret = clk_enable(dev->clk);
994 if (ret)
995 goto err_clk_enable;
996
997 ret = request_irq(irq, spear_smi_int_handler, 0, pdev->name, dev);
998 if (ret) {
999 dev_err(&dev->pdev->dev, "SMI IRQ allocation failed\n");
1000 goto err_irq;
1001 }
1002
1003 mutex_init(&dev->lock);
1004 init_waitqueue_head(&dev->cmd_complete);
1005 spear_smi_hw_init(dev);
1006 platform_set_drvdata(pdev, dev);
1007
1008 /* loop for each serial nor-flash which is connected to smi */
1009 for (i = 0; i < dev->num_flashes; i++) {
1010 ret = spear_smi_setup_banks(pdev, i, pdata->np[i]);
1011 if (ret) {
1012 dev_err(&dev->pdev->dev, "bank setup failed\n");
1013 goto err_bank_setup;
1014 }
1015 }
1016
1017 return 0;
1018
1019err_bank_setup:
1020 free_irq(irq, dev);
1021 platform_set_drvdata(pdev, NULL);
1022err_irq:
1023 clk_disable(dev->clk);
1024err_clk_enable:
1025 clk_put(dev->clk);
1026err_clk:
1027 iounmap(dev->io_base);
1028err_ioremap:
1029 release_mem_region(smi_base->start, resource_size(smi_base));
1030err_mem:
1031 kfree(dev);
1032err:
1033 return ret;
1034}
1035
1036/**
1037 * spear_smi_remove - Exit routine
1038 * @pdev: platform device structure
1039 *
1040 * free all allocations and delete the partitions.
1041 */
1042static int __devexit spear_smi_remove(struct platform_device *pdev)
1043{
1044 struct spear_smi *dev;
1045 struct spear_smi_plat_data *pdata;
1046 struct spear_snor_flash *flash;
1047 struct resource *smi_base;
1048 int ret;
1049 int i, irq;
1050
1051 dev = platform_get_drvdata(pdev);
1052 if (!dev) {
1053 dev_err(&pdev->dev, "dev is null\n");
1054 return -ENODEV;
1055 }
1056
1057 pdata = dev_get_platdata(&pdev->dev);
1058
1059 /* clean up for all nor flash */
1060 for (i = 0; i < dev->num_flashes; i++) {
1061 flash = dev->flash[i];
1062 if (!flash)
1063 continue;
1064
1065 /* clean up mtd stuff */
1066 ret = mtd_device_unregister(&flash->mtd);
1067 if (ret)
1068 dev_err(&pdev->dev, "error removing mtd\n");
1069
1070 iounmap(flash->base_addr);
1071 kfree(flash);
1072 }
1073
1074 irq = platform_get_irq(pdev, 0);
1075 free_irq(irq, dev);
1076
1077 clk_disable(dev->clk);
1078 clk_put(dev->clk);
1079 iounmap(dev->io_base);
1080 kfree(dev);
1081
1082 smi_base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1083 release_mem_region(smi_base->start, resource_size(smi_base));
1084 platform_set_drvdata(pdev, NULL);
1085
1086 return 0;
1087}
1088
1089int spear_smi_suspend(struct platform_device *pdev, pm_message_t state)
1090{
1091 struct spear_smi *dev = platform_get_drvdata(pdev);
1092
1093 if (dev && dev->clk)
1094 clk_disable(dev->clk);
1095
1096 return 0;
1097}
1098
1099int spear_smi_resume(struct platform_device *pdev)
1100{
1101 struct spear_smi *dev = platform_get_drvdata(pdev);
1102 int ret = -EPERM;
1103
1104 if (dev && dev->clk)
1105 ret = clk_enable(dev->clk);
1106
1107 if (!ret)
1108 spear_smi_hw_init(dev);
1109 return ret;
1110}
1111
1112#ifdef CONFIG_OF
1113static const struct of_device_id spear_smi_id_table[] = {
1114 { .compatible = "st,spear600-smi" },
1115 {}
1116};
1117MODULE_DEVICE_TABLE(of, spear_smi_id_table);
1118#endif
1119
1120static struct platform_driver spear_smi_driver = {
1121 .driver = {
1122 .name = "smi",
1123 .bus = &platform_bus_type,
1124 .owner = THIS_MODULE,
1125 .of_match_table = of_match_ptr(spear_smi_id_table),
1126 },
1127 .probe = spear_smi_probe,
1128 .remove = __devexit_p(spear_smi_remove),
1129 .suspend = spear_smi_suspend,
1130 .resume = spear_smi_resume,
1131};
1132
1133static int spear_smi_init(void)
1134{
1135 return platform_driver_register(&spear_smi_driver);
1136}
1137module_init(spear_smi_init);
1138
1139static void spear_smi_exit(void)
1140{
1141 platform_driver_unregister(&spear_smi_driver);
1142}
1143module_exit(spear_smi_exit);
1144
1145MODULE_LICENSE("GPL");
1146MODULE_AUTHOR("Ashish Priyadarshi, Shiraz Hashim <shiraz.hashim@st.com>");
1147MODULE_DESCRIPTION("MTD SMI driver for serial nor flash chips");
diff --git a/drivers/mtd/devices/sst25l.c b/drivers/mtd/devices/sst25l.c
index 5fc198350b94..ab8a2f4c8d60 100644
--- a/drivers/mtd/devices/sst25l.c
+++ b/drivers/mtd/devices/sst25l.c
@@ -175,9 +175,6 @@ static int sst25l_erase(struct mtd_info *mtd, struct erase_info *instr)
175 int err; 175 int err;
176 176
177 /* Sanity checks */ 177 /* Sanity checks */
178 if (instr->addr + instr->len > flash->mtd.size)
179 return -EINVAL;
180
181 if ((uint32_t)instr->len % mtd->erasesize) 178 if ((uint32_t)instr->len % mtd->erasesize)
182 return -EINVAL; 179 return -EINVAL;
183 180
@@ -223,16 +220,6 @@ static int sst25l_read(struct mtd_info *mtd, loff_t from, size_t len,
223 unsigned char command[4]; 220 unsigned char command[4];
224 int ret; 221 int ret;
225 222
226 /* Sanity checking */
227 if (len == 0)
228 return 0;
229
230 if (from + len > flash->mtd.size)
231 return -EINVAL;
232
233 if (retlen)
234 *retlen = 0;
235
236 spi_message_init(&message); 223 spi_message_init(&message);
237 memset(&transfer, 0, sizeof(transfer)); 224 memset(&transfer, 0, sizeof(transfer));
238 225
@@ -274,13 +261,6 @@ static int sst25l_write(struct mtd_info *mtd, loff_t to, size_t len,
274 int i, j, ret, bytes, copied = 0; 261 int i, j, ret, bytes, copied = 0;
275 unsigned char command[5]; 262 unsigned char command[5];
276 263
277 /* Sanity checks */
278 if (!len)
279 return 0;
280
281 if (to + len > flash->mtd.size)
282 return -EINVAL;
283
284 if ((uint32_t)to % mtd->writesize) 264 if ((uint32_t)to % mtd->writesize)
285 return -EINVAL; 265 return -EINVAL;
286 266
@@ -402,10 +382,11 @@ static int __devinit sst25l_probe(struct spi_device *spi)
402 flash->mtd.flags = MTD_CAP_NORFLASH; 382 flash->mtd.flags = MTD_CAP_NORFLASH;
403 flash->mtd.erasesize = flash_info->erase_size; 383 flash->mtd.erasesize = flash_info->erase_size;
404 flash->mtd.writesize = flash_info->page_size; 384 flash->mtd.writesize = flash_info->page_size;
385 flash->mtd.writebufsize = flash_info->page_size;
405 flash->mtd.size = flash_info->page_size * flash_info->nr_pages; 386 flash->mtd.size = flash_info->page_size * flash_info->nr_pages;
406 flash->mtd.erase = sst25l_erase; 387 flash->mtd._erase = sst25l_erase;
407 flash->mtd.read = sst25l_read; 388 flash->mtd._read = sst25l_read;
408 flash->mtd.write = sst25l_write; 389 flash->mtd._write = sst25l_write;
409 390
410 dev_info(&spi->dev, "%s (%lld KiB)\n", flash_info->name, 391 dev_info(&spi->dev, "%s (%lld KiB)\n", flash_info->name,
411 (long long)flash->mtd.size >> 10); 392 (long long)flash->mtd.size >> 10);
@@ -418,9 +399,9 @@ static int __devinit sst25l_probe(struct spi_device *spi)
418 flash->mtd.numeraseregions); 399 flash->mtd.numeraseregions);
419 400
420 401
421 ret = mtd_device_parse_register(&flash->mtd, NULL, 0, 402 ret = mtd_device_parse_register(&flash->mtd, NULL, NULL,
422 data ? data->parts : NULL, 403 data ? data->parts : NULL,
423 data ? data->nr_parts : 0); 404 data ? data->nr_parts : 0);
424 if (ret) { 405 if (ret) {
425 kfree(flash); 406 kfree(flash);
426 dev_set_drvdata(&spi->dev, NULL); 407 dev_set_drvdata(&spi->dev, NULL);
@@ -450,18 +431,7 @@ static struct spi_driver sst25l_driver = {
450 .remove = __devexit_p(sst25l_remove), 431 .remove = __devexit_p(sst25l_remove),
451}; 432};
452 433
453static int __init sst25l_init(void) 434module_spi_driver(sst25l_driver);
454{
455 return spi_register_driver(&sst25l_driver);
456}
457
458static void __exit sst25l_exit(void)
459{
460 spi_unregister_driver(&sst25l_driver);
461}
462
463module_init(sst25l_init);
464module_exit(sst25l_exit);
465 435
466MODULE_DESCRIPTION("MTD SPI driver for SST25L Flash chips"); 436MODULE_DESCRIPTION("MTD SPI driver for SST25L Flash chips");
467MODULE_AUTHOR("Andre Renaud <andre@bluewatersys.com>, " 437MODULE_AUTHOR("Andre Renaud <andre@bluewatersys.com>, "
diff --git a/drivers/mtd/inftlcore.c b/drivers/mtd/inftlcore.c
index 28646c95cfb8..3af351484098 100644
--- a/drivers/mtd/inftlcore.c
+++ b/drivers/mtd/inftlcore.c
@@ -56,7 +56,7 @@ static void inftl_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd)
56 if (memcmp(mtd->name, "DiskOnChip", 10)) 56 if (memcmp(mtd->name, "DiskOnChip", 10))
57 return; 57 return;
58 58
59 if (!mtd->block_isbad) { 59 if (!mtd->_block_isbad) {
60 printk(KERN_ERR 60 printk(KERN_ERR
61"INFTL no longer supports the old DiskOnChip drivers loaded via docprobe.\n" 61"INFTL no longer supports the old DiskOnChip drivers loaded via docprobe.\n"
62"Please use the new diskonchip driver under the NAND subsystem.\n"); 62"Please use the new diskonchip driver under the NAND subsystem.\n");
diff --git a/drivers/mtd/lpddr/lpddr_cmds.c b/drivers/mtd/lpddr/lpddr_cmds.c
index 536bbceaeaad..d3cfe26beeaa 100644
--- a/drivers/mtd/lpddr/lpddr_cmds.c
+++ b/drivers/mtd/lpddr/lpddr_cmds.c
@@ -40,7 +40,7 @@ static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
40static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 40static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
41static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len, 41static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
42 size_t *retlen, void **mtdbuf, resource_size_t *phys); 42 size_t *retlen, void **mtdbuf, resource_size_t *phys);
43static void lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len); 43static int lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len);
44static int get_chip(struct map_info *map, struct flchip *chip, int mode); 44static int get_chip(struct map_info *map, struct flchip *chip, int mode);
45static int chip_ready(struct map_info *map, struct flchip *chip, int mode); 45static int chip_ready(struct map_info *map, struct flchip *chip, int mode);
46static void put_chip(struct map_info *map, struct flchip *chip); 46static void put_chip(struct map_info *map, struct flchip *chip);
@@ -63,18 +63,18 @@ struct mtd_info *lpddr_cmdset(struct map_info *map)
63 mtd->type = MTD_NORFLASH; 63 mtd->type = MTD_NORFLASH;
64 64
65 /* Fill in the default mtd operations */ 65 /* Fill in the default mtd operations */
66 mtd->read = lpddr_read; 66 mtd->_read = lpddr_read;
67 mtd->type = MTD_NORFLASH; 67 mtd->type = MTD_NORFLASH;
68 mtd->flags = MTD_CAP_NORFLASH; 68 mtd->flags = MTD_CAP_NORFLASH;
69 mtd->flags &= ~MTD_BIT_WRITEABLE; 69 mtd->flags &= ~MTD_BIT_WRITEABLE;
70 mtd->erase = lpddr_erase; 70 mtd->_erase = lpddr_erase;
71 mtd->write = lpddr_write_buffers; 71 mtd->_write = lpddr_write_buffers;
72 mtd->writev = lpddr_writev; 72 mtd->_writev = lpddr_writev;
73 mtd->lock = lpddr_lock; 73 mtd->_lock = lpddr_lock;
74 mtd->unlock = lpddr_unlock; 74 mtd->_unlock = lpddr_unlock;
75 if (map_is_linear(map)) { 75 if (map_is_linear(map)) {
76 mtd->point = lpddr_point; 76 mtd->_point = lpddr_point;
77 mtd->unpoint = lpddr_unpoint; 77 mtd->_unpoint = lpddr_unpoint;
78 } 78 }
79 mtd->size = 1 << lpddr->qinfo->DevSizeShift; 79 mtd->size = 1 << lpddr->qinfo->DevSizeShift;
80 mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift; 80 mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift;
@@ -530,14 +530,12 @@ static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
530 struct flchip *chip = &lpddr->chips[chipnum]; 530 struct flchip *chip = &lpddr->chips[chipnum];
531 int ret = 0; 531 int ret = 0;
532 532
533 if (!map->virt || (adr + len > mtd->size)) 533 if (!map->virt)
534 return -EINVAL; 534 return -EINVAL;
535 535
536 /* ofs: offset within the first chip that the first read should start */ 536 /* ofs: offset within the first chip that the first read should start */
537 ofs = adr - (chipnum << lpddr->chipshift); 537 ofs = adr - (chipnum << lpddr->chipshift);
538
539 *mtdbuf = (void *)map->virt + chip->start + ofs; 538 *mtdbuf = (void *)map->virt + chip->start + ofs;
540 *retlen = 0;
541 539
542 while (len) { 540 while (len) {
543 unsigned long thislen; 541 unsigned long thislen;
@@ -575,11 +573,11 @@ static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
575 return 0; 573 return 0;
576} 574}
577 575
578static void lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len) 576static int lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len)
579{ 577{
580 struct map_info *map = mtd->priv; 578 struct map_info *map = mtd->priv;
581 struct lpddr_private *lpddr = map->fldrv_priv; 579 struct lpddr_private *lpddr = map->fldrv_priv;
582 int chipnum = adr >> lpddr->chipshift; 580 int chipnum = adr >> lpddr->chipshift, err = 0;
583 unsigned long ofs; 581 unsigned long ofs;
584 582
585 /* ofs: offset within the first chip that the first read should start */ 583 /* ofs: offset within the first chip that the first read should start */
@@ -603,9 +601,11 @@ static void lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len)
603 chip->ref_point_counter--; 601 chip->ref_point_counter--;
604 if (chip->ref_point_counter == 0) 602 if (chip->ref_point_counter == 0)
605 chip->state = FL_READY; 603 chip->state = FL_READY;
606 } else 604 } else {
607 printk(KERN_WARNING "%s: Warning: unpoint called on non" 605 printk(KERN_WARNING "%s: Warning: unpoint called on non"
608 "pointed region\n", map->name); 606 "pointed region\n", map->name);
607 err = -EINVAL;
608 }
609 609
610 put_chip(map, chip); 610 put_chip(map, chip);
611 mutex_unlock(&chip->mutex); 611 mutex_unlock(&chip->mutex);
@@ -614,6 +614,8 @@ static void lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len)
614 ofs = 0; 614 ofs = 0;
615 chipnum++; 615 chipnum++;
616 } 616 }
617
618 return err;
617} 619}
618 620
619static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len, 621static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
@@ -637,13 +639,11 @@ static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
637 int chipnum; 639 int chipnum;
638 unsigned long ofs, vec_seek, i; 640 unsigned long ofs, vec_seek, i;
639 int wbufsize = 1 << lpddr->qinfo->BufSizeShift; 641 int wbufsize = 1 << lpddr->qinfo->BufSizeShift;
640
641 size_t len = 0; 642 size_t len = 0;
642 643
643 for (i = 0; i < count; i++) 644 for (i = 0; i < count; i++)
644 len += vecs[i].iov_len; 645 len += vecs[i].iov_len;
645 646
646 *retlen = 0;
647 if (!len) 647 if (!len)
648 return 0; 648 return 0;
649 649
@@ -688,9 +688,6 @@ static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr)
688 ofs = instr->addr; 688 ofs = instr->addr;
689 len = instr->len; 689 len = instr->len;
690 690
691 if (ofs > mtd->size || (len + ofs) > mtd->size)
692 return -EINVAL;
693
694 while (len > 0) { 691 while (len > 0) {
695 ret = do_erase_oneblock(mtd, ofs); 692 ret = do_erase_oneblock(mtd, ofs);
696 if (ret) 693 if (ret)
diff --git a/drivers/mtd/maps/bfin-async-flash.c b/drivers/mtd/maps/bfin-async-flash.c
index 650126c361f1..ef5cde84a8b3 100644
--- a/drivers/mtd/maps/bfin-async-flash.c
+++ b/drivers/mtd/maps/bfin-async-flash.c
@@ -164,8 +164,8 @@ static int __devinit bfin_flash_probe(struct platform_device *pdev)
164 return -ENXIO; 164 return -ENXIO;
165 } 165 }
166 166
167 mtd_device_parse_register(state->mtd, part_probe_types, 0, 167 mtd_device_parse_register(state->mtd, part_probe_types, NULL,
168 pdata->parts, pdata->nr_parts); 168 pdata->parts, pdata->nr_parts);
169 169
170 platform_set_drvdata(pdev, state); 170 platform_set_drvdata(pdev, state);
171 171
diff --git a/drivers/mtd/maps/dc21285.c b/drivers/mtd/maps/dc21285.c
index f43b365b848c..080f06053bd4 100644
--- a/drivers/mtd/maps/dc21285.c
+++ b/drivers/mtd/maps/dc21285.c
@@ -196,7 +196,7 @@ static int __init init_dc21285(void)
196 196
197 dc21285_mtd->owner = THIS_MODULE; 197 dc21285_mtd->owner = THIS_MODULE;
198 198
199 mtd_device_parse_register(dc21285_mtd, probes, 0, NULL, 0); 199 mtd_device_parse_register(dc21285_mtd, probes, NULL, NULL, 0);
200 200
201 if(machine_is_ebsa285()) { 201 if(machine_is_ebsa285()) {
202 /* 202 /*
diff --git a/drivers/mtd/maps/gpio-addr-flash.c b/drivers/mtd/maps/gpio-addr-flash.c
index 33cce895859f..e4de96ba52b3 100644
--- a/drivers/mtd/maps/gpio-addr-flash.c
+++ b/drivers/mtd/maps/gpio-addr-flash.c
@@ -252,8 +252,8 @@ static int __devinit gpio_flash_probe(struct platform_device *pdev)
252 } 252 }
253 253
254 254
255 mtd_device_parse_register(state->mtd, part_probe_types, 0, 255 mtd_device_parse_register(state->mtd, part_probe_types, NULL,
256 pdata->parts, pdata->nr_parts); 256 pdata->parts, pdata->nr_parts);
257 257
258 return 0; 258 return 0;
259} 259}
diff --git a/drivers/mtd/maps/h720x-flash.c b/drivers/mtd/maps/h720x-flash.c
index 49c14187fc66..8ed6cb4529d8 100644
--- a/drivers/mtd/maps/h720x-flash.c
+++ b/drivers/mtd/maps/h720x-flash.c
@@ -85,8 +85,8 @@ static int __init h720x_mtd_init(void)
85 if (mymtd) { 85 if (mymtd) {
86 mymtd->owner = THIS_MODULE; 86 mymtd->owner = THIS_MODULE;
87 87
88 mtd_device_parse_register(mymtd, NULL, 0, 88 mtd_device_parse_register(mymtd, NULL, NULL,
89 h720x_partitions, NUM_PARTITIONS); 89 h720x_partitions, NUM_PARTITIONS);
90 return 0; 90 return 0;
91 } 91 }
92 92
diff --git a/drivers/mtd/maps/impa7.c b/drivers/mtd/maps/impa7.c
index f47aedb24366..834a06c56f56 100644
--- a/drivers/mtd/maps/impa7.c
+++ b/drivers/mtd/maps/impa7.c
@@ -91,7 +91,7 @@ static int __init init_impa7(void)
91 if (impa7_mtd[i]) { 91 if (impa7_mtd[i]) {
92 impa7_mtd[i]->owner = THIS_MODULE; 92 impa7_mtd[i]->owner = THIS_MODULE;
93 devicesfound++; 93 devicesfound++;
94 mtd_device_parse_register(impa7_mtd[i], NULL, 0, 94 mtd_device_parse_register(impa7_mtd[i], NULL, NULL,
95 partitions, 95 partitions,
96 ARRAY_SIZE(partitions)); 96 ARRAY_SIZE(partitions));
97 } 97 }
diff --git a/drivers/mtd/maps/intel_vr_nor.c b/drivers/mtd/maps/intel_vr_nor.c
index 08c239604ee4..92e1f41634c7 100644
--- a/drivers/mtd/maps/intel_vr_nor.c
+++ b/drivers/mtd/maps/intel_vr_nor.c
@@ -72,7 +72,7 @@ static int __devinit vr_nor_init_partitions(struct vr_nor_mtd *p)
72{ 72{
73 /* register the flash bank */ 73 /* register the flash bank */
74 /* partition the flash bank */ 74 /* partition the flash bank */
75 return mtd_device_parse_register(p->info, NULL, 0, NULL, 0); 75 return mtd_device_parse_register(p->info, NULL, NULL, NULL, 0);
76} 76}
77 77
78static void __devexit vr_nor_destroy_mtd_setup(struct vr_nor_mtd *p) 78static void __devexit vr_nor_destroy_mtd_setup(struct vr_nor_mtd *p)
diff --git a/drivers/mtd/maps/ixp2000.c b/drivers/mtd/maps/ixp2000.c
index fc7d4d0d9a4e..4a41ced0f710 100644
--- a/drivers/mtd/maps/ixp2000.c
+++ b/drivers/mtd/maps/ixp2000.c
@@ -226,7 +226,7 @@ static int ixp2000_flash_probe(struct platform_device *dev)
226 } 226 }
227 info->mtd->owner = THIS_MODULE; 227 info->mtd->owner = THIS_MODULE;
228 228
229 err = mtd_device_parse_register(info->mtd, probes, 0, NULL, 0); 229 err = mtd_device_parse_register(info->mtd, probes, NULL, NULL, 0);
230 if (err) 230 if (err)
231 goto Error; 231 goto Error;
232 232
diff --git a/drivers/mtd/maps/ixp4xx.c b/drivers/mtd/maps/ixp4xx.c
index 8b5410162d70..e864fc6c58f9 100644
--- a/drivers/mtd/maps/ixp4xx.c
+++ b/drivers/mtd/maps/ixp4xx.c
@@ -182,6 +182,9 @@ static int ixp4xx_flash_probe(struct platform_device *dev)
182{ 182{
183 struct flash_platform_data *plat = dev->dev.platform_data; 183 struct flash_platform_data *plat = dev->dev.platform_data;
184 struct ixp4xx_flash_info *info; 184 struct ixp4xx_flash_info *info;
185 struct mtd_part_parser_data ppdata = {
186 .origin = dev->resource->start,
187 };
185 int err = -1; 188 int err = -1;
186 189
187 if (!plat) 190 if (!plat)
@@ -247,7 +250,7 @@ static int ixp4xx_flash_probe(struct platform_device *dev)
247 /* Use the fast version */ 250 /* Use the fast version */
248 info->map.write = ixp4xx_write16; 251 info->map.write = ixp4xx_write16;
249 252
250 err = mtd_device_parse_register(info->mtd, probes, dev->resource->start, 253 err = mtd_device_parse_register(info->mtd, probes, &ppdata,
251 plat->parts, plat->nr_parts); 254 plat->parts, plat->nr_parts);
252 if (err) { 255 if (err) {
253 printk(KERN_ERR "Could not parse partitions\n"); 256 printk(KERN_ERR "Could not parse partitions\n");
diff --git a/drivers/mtd/maps/l440gx.c b/drivers/mtd/maps/l440gx.c
index dd0360ba2412..74bd98ee635f 100644
--- a/drivers/mtd/maps/l440gx.c
+++ b/drivers/mtd/maps/l440gx.c
@@ -27,17 +27,21 @@ static struct mtd_info *mymtd;
27 27
28 28
29/* Is this really the vpp port? */ 29/* Is this really the vpp port? */
30static DEFINE_SPINLOCK(l440gx_vpp_lock);
31static int l440gx_vpp_refcnt;
30static void l440gx_set_vpp(struct map_info *map, int vpp) 32static void l440gx_set_vpp(struct map_info *map, int vpp)
31{ 33{
32 unsigned long l; 34 unsigned long flags;
33 35
34 l = inl(VPP_PORT); 36 spin_lock_irqsave(&l440gx_vpp_lock, flags);
35 if (vpp) { 37 if (vpp) {
36 l |= 1; 38 if (++l440gx_vpp_refcnt == 1) /* first nested 'on' */
39 outl(inl(VPP_PORT) | 1, VPP_PORT);
37 } else { 40 } else {
38 l &= ~1; 41 if (--l440gx_vpp_refcnt == 0) /* last nested 'off' */
42 outl(inl(VPP_PORT) & ~1, VPP_PORT);
39 } 43 }
40 outl(l, VPP_PORT); 44 spin_unlock_irqrestore(&l440gx_vpp_lock, flags);
41} 45}
42 46
43static struct map_info l440gx_map = { 47static struct map_info l440gx_map = {
diff --git a/drivers/mtd/maps/lantiq-flash.c b/drivers/mtd/maps/lantiq-flash.c
index 7b889de9477b..b5401e355745 100644
--- a/drivers/mtd/maps/lantiq-flash.c
+++ b/drivers/mtd/maps/lantiq-flash.c
@@ -45,6 +45,7 @@ struct ltq_mtd {
45}; 45};
46 46
47static char ltq_map_name[] = "ltq_nor"; 47static char ltq_map_name[] = "ltq_nor";
48static const char *ltq_probe_types[] __devinitconst = { "cmdlinepart", NULL };
48 49
49static map_word 50static map_word
50ltq_read16(struct map_info *map, unsigned long adr) 51ltq_read16(struct map_info *map, unsigned long adr)
@@ -168,8 +169,9 @@ ltq_mtd_probe(struct platform_device *pdev)
168 cfi->addr_unlock1 ^= 1; 169 cfi->addr_unlock1 ^= 1;
169 cfi->addr_unlock2 ^= 1; 170 cfi->addr_unlock2 ^= 1;
170 171
171 err = mtd_device_parse_register(ltq_mtd->mtd, NULL, 0, 172 err = mtd_device_parse_register(ltq_mtd->mtd, ltq_probe_types, NULL,
172 ltq_mtd_data->parts, ltq_mtd_data->nr_parts); 173 ltq_mtd_data->parts,
174 ltq_mtd_data->nr_parts);
173 if (err) { 175 if (err) {
174 dev_err(&pdev->dev, "failed to add partitions\n"); 176 dev_err(&pdev->dev, "failed to add partitions\n");
175 goto err_destroy; 177 goto err_destroy;
diff --git a/drivers/mtd/maps/latch-addr-flash.c b/drivers/mtd/maps/latch-addr-flash.c
index 8fed58e3a4a8..3c7ad17fca78 100644
--- a/drivers/mtd/maps/latch-addr-flash.c
+++ b/drivers/mtd/maps/latch-addr-flash.c
@@ -199,8 +199,9 @@ static int __devinit latch_addr_flash_probe(struct platform_device *dev)
199 } 199 }
200 info->mtd->owner = THIS_MODULE; 200 info->mtd->owner = THIS_MODULE;
201 201
202 mtd_device_parse_register(info->mtd, NULL, 0, 202 mtd_device_parse_register(info->mtd, NULL, NULL,
203 latch_addr_data->parts, latch_addr_data->nr_parts); 203 latch_addr_data->parts,
204 latch_addr_data->nr_parts);
204 return 0; 205 return 0;
205 206
206iounmap: 207iounmap:
diff --git a/drivers/mtd/maps/pcmciamtd.c b/drivers/mtd/maps/pcmciamtd.c
index 0259cf583022..a3cfad392ed6 100644
--- a/drivers/mtd/maps/pcmciamtd.c
+++ b/drivers/mtd/maps/pcmciamtd.c
@@ -294,13 +294,24 @@ static void pcmcia_copy_to(struct map_info *map, unsigned long to, const void *f
294} 294}
295 295
296 296
297static DEFINE_SPINLOCK(pcmcia_vpp_lock);
298static int pcmcia_vpp_refcnt;
297static void pcmciamtd_set_vpp(struct map_info *map, int on) 299static void pcmciamtd_set_vpp(struct map_info *map, int on)
298{ 300{
299 struct pcmciamtd_dev *dev = (struct pcmciamtd_dev *)map->map_priv_1; 301 struct pcmciamtd_dev *dev = (struct pcmciamtd_dev *)map->map_priv_1;
300 struct pcmcia_device *link = dev->p_dev; 302 struct pcmcia_device *link = dev->p_dev;
303 unsigned long flags;
301 304
302 pr_debug("dev = %p on = %d vpp = %d\n\n", dev, on, dev->vpp); 305 pr_debug("dev = %p on = %d vpp = %d\n\n", dev, on, dev->vpp);
303 pcmcia_fixup_vpp(link, on ? dev->vpp : 0); 306 spin_lock_irqsave(&pcmcia_vpp_lock, flags);
307 if (on) {
308 if (++pcmcia_vpp_refcnt == 1) /* first nested 'on' */
309 pcmcia_fixup_vpp(link, dev->vpp);
310 } else {
311 if (--pcmcia_vpp_refcnt == 0) /* last nested 'off' */
312 pcmcia_fixup_vpp(link, 0);
313 }
314 spin_unlock_irqrestore(&pcmcia_vpp_lock, flags);
304} 315}
305 316
306 317
diff --git a/drivers/mtd/maps/physmap.c b/drivers/mtd/maps/physmap.c
index abc562653b31..21b0b713cacb 100644
--- a/drivers/mtd/maps/physmap.c
+++ b/drivers/mtd/maps/physmap.c
@@ -27,6 +27,8 @@ struct physmap_flash_info {
27 struct mtd_info *mtd[MAX_RESOURCES]; 27 struct mtd_info *mtd[MAX_RESOURCES];
28 struct mtd_info *cmtd; 28 struct mtd_info *cmtd;
29 struct map_info map[MAX_RESOURCES]; 29 struct map_info map[MAX_RESOURCES];
30 spinlock_t vpp_lock;
31 int vpp_refcnt;
30}; 32};
31 33
32static int physmap_flash_remove(struct platform_device *dev) 34static int physmap_flash_remove(struct platform_device *dev)
@@ -63,12 +65,26 @@ static void physmap_set_vpp(struct map_info *map, int state)
63{ 65{
64 struct platform_device *pdev; 66 struct platform_device *pdev;
65 struct physmap_flash_data *physmap_data; 67 struct physmap_flash_data *physmap_data;
68 struct physmap_flash_info *info;
69 unsigned long flags;
66 70
67 pdev = (struct platform_device *)map->map_priv_1; 71 pdev = (struct platform_device *)map->map_priv_1;
68 physmap_data = pdev->dev.platform_data; 72 physmap_data = pdev->dev.platform_data;
69 73
70 if (physmap_data->set_vpp) 74 if (!physmap_data->set_vpp)
71 physmap_data->set_vpp(pdev, state); 75 return;
76
77 info = platform_get_drvdata(pdev);
78
79 spin_lock_irqsave(&info->vpp_lock, flags);
80 if (state) {
81 if (++info->vpp_refcnt == 1) /* first nested 'on' */
82 physmap_data->set_vpp(pdev, 1);
83 } else {
84 if (--info->vpp_refcnt == 0) /* last nested 'off' */
85 physmap_data->set_vpp(pdev, 0);
86 }
87 spin_unlock_irqrestore(&info->vpp_lock, flags);
72} 88}
73 89
74static const char *rom_probe_types[] = { 90static const char *rom_probe_types[] = {
@@ -172,9 +188,11 @@ static int physmap_flash_probe(struct platform_device *dev)
172 if (err) 188 if (err)
173 goto err_out; 189 goto err_out;
174 190
191 spin_lock_init(&info->vpp_lock);
192
175 part_types = physmap_data->part_probe_types ? : part_probe_types; 193 part_types = physmap_data->part_probe_types ? : part_probe_types;
176 194
177 mtd_device_parse_register(info->cmtd, part_types, 0, 195 mtd_device_parse_register(info->cmtd, part_types, NULL,
178 physmap_data->parts, physmap_data->nr_parts); 196 physmap_data->parts, physmap_data->nr_parts);
179 return 0; 197 return 0;
180 198
diff --git a/drivers/mtd/maps/plat-ram.c b/drivers/mtd/maps/plat-ram.c
index 45876d0e5b8e..891558de3ec1 100644
--- a/drivers/mtd/maps/plat-ram.c
+++ b/drivers/mtd/maps/plat-ram.c
@@ -222,8 +222,9 @@ static int platram_probe(struct platform_device *pdev)
222 /* check to see if there are any available partitions, or wether 222 /* check to see if there are any available partitions, or wether
223 * to add this device whole */ 223 * to add this device whole */
224 224
225 err = mtd_device_parse_register(info->mtd, pdata->probes, 0, 225 err = mtd_device_parse_register(info->mtd, pdata->probes, NULL,
226 pdata->partitions, pdata->nr_partitions); 226 pdata->partitions,
227 pdata->nr_partitions);
227 if (!err) 228 if (!err)
228 dev_info(&pdev->dev, "registered mtd device\n"); 229 dev_info(&pdev->dev, "registered mtd device\n");
229 230
diff --git a/drivers/mtd/maps/pxa2xx-flash.c b/drivers/mtd/maps/pxa2xx-flash.c
index 436d121185b1..81884c277405 100644
--- a/drivers/mtd/maps/pxa2xx-flash.c
+++ b/drivers/mtd/maps/pxa2xx-flash.c
@@ -98,7 +98,8 @@ static int __devinit pxa2xx_flash_probe(struct platform_device *pdev)
98 } 98 }
99 info->mtd->owner = THIS_MODULE; 99 info->mtd->owner = THIS_MODULE;
100 100
101 mtd_device_parse_register(info->mtd, probes, 0, flash->parts, flash->nr_parts); 101 mtd_device_parse_register(info->mtd, probes, NULL, flash->parts,
102 flash->nr_parts);
102 103
103 platform_set_drvdata(pdev, info); 104 platform_set_drvdata(pdev, info);
104 return 0; 105 return 0;
diff --git a/drivers/mtd/maps/rbtx4939-flash.c b/drivers/mtd/maps/rbtx4939-flash.c
index 3da63fc6f16e..6f52e1f288b6 100644
--- a/drivers/mtd/maps/rbtx4939-flash.c
+++ b/drivers/mtd/maps/rbtx4939-flash.c
@@ -102,8 +102,8 @@ static int rbtx4939_flash_probe(struct platform_device *dev)
102 info->mtd->owner = THIS_MODULE; 102 info->mtd->owner = THIS_MODULE;
103 if (err) 103 if (err)
104 goto err_out; 104 goto err_out;
105 err = mtd_device_parse_register(info->mtd, NULL, 0, 105 err = mtd_device_parse_register(info->mtd, NULL, NULL, pdata->parts,
106 pdata->parts, pdata->nr_parts); 106 pdata->nr_parts);
107 107
108 if (err) 108 if (err)
109 goto err_out; 109 goto err_out;
diff --git a/drivers/mtd/maps/sa1100-flash.c b/drivers/mtd/maps/sa1100-flash.c
index cbc3b7867910..a675bdbcb0fe 100644
--- a/drivers/mtd/maps/sa1100-flash.c
+++ b/drivers/mtd/maps/sa1100-flash.c
@@ -36,10 +36,22 @@ struct sa_info {
36 struct sa_subdev_info subdev[0]; 36 struct sa_subdev_info subdev[0];
37}; 37};
38 38
39static DEFINE_SPINLOCK(sa1100_vpp_lock);
40static int sa1100_vpp_refcnt;
39static void sa1100_set_vpp(struct map_info *map, int on) 41static void sa1100_set_vpp(struct map_info *map, int on)
40{ 42{
41 struct sa_subdev_info *subdev = container_of(map, struct sa_subdev_info, map); 43 struct sa_subdev_info *subdev = container_of(map, struct sa_subdev_info, map);
42 subdev->plat->set_vpp(on); 44 unsigned long flags;
45
46 spin_lock_irqsave(&sa1100_vpp_lock, flags);
47 if (on) {
48 if (++sa1100_vpp_refcnt == 1) /* first nested 'on' */
49 subdev->plat->set_vpp(1);
50 } else {
51 if (--sa1100_vpp_refcnt == 0) /* last nested 'off' */
52 subdev->plat->set_vpp(0);
53 }
54 spin_unlock_irqrestore(&sa1100_vpp_lock, flags);
43} 55}
44 56
45static void sa1100_destroy_subdev(struct sa_subdev_info *subdev) 57static void sa1100_destroy_subdev(struct sa_subdev_info *subdev)
@@ -252,8 +264,8 @@ static int __devinit sa1100_mtd_probe(struct platform_device *pdev)
252 /* 264 /*
253 * Partition selection stuff. 265 * Partition selection stuff.
254 */ 266 */
255 mtd_device_parse_register(info->mtd, part_probes, 0, 267 mtd_device_parse_register(info->mtd, part_probes, NULL, plat->parts,
256 plat->parts, plat->nr_parts); 268 plat->nr_parts);
257 269
258 platform_set_drvdata(pdev, info); 270 platform_set_drvdata(pdev, info);
259 err = 0; 271 err = 0;
diff --git a/drivers/mtd/maps/solutionengine.c b/drivers/mtd/maps/solutionengine.c
index 496c40704aff..9d900ada6708 100644
--- a/drivers/mtd/maps/solutionengine.c
+++ b/drivers/mtd/maps/solutionengine.c
@@ -92,8 +92,8 @@ static int __init init_soleng_maps(void)
92 mtd_device_register(eprom_mtd, NULL, 0); 92 mtd_device_register(eprom_mtd, NULL, 0);
93 } 93 }
94 94
95 mtd_device_parse_register(flash_mtd, probes, 0, 95 mtd_device_parse_register(flash_mtd, probes, NULL,
96 superh_se_partitions, NUM_PARTITIONS); 96 superh_se_partitions, NUM_PARTITIONS);
97 97
98 return 0; 98 return 0;
99} 99}
diff --git a/drivers/mtd/maps/uclinux.c b/drivers/mtd/maps/uclinux.c
index 6793074f3f40..cfff454f628b 100644
--- a/drivers/mtd/maps/uclinux.c
+++ b/drivers/mtd/maps/uclinux.c
@@ -85,7 +85,7 @@ static int __init uclinux_mtd_init(void)
85 } 85 }
86 86
87 mtd->owner = THIS_MODULE; 87 mtd->owner = THIS_MODULE;
88 mtd->point = uclinux_point; 88 mtd->_point = uclinux_point;
89 mtd->priv = mapp; 89 mtd->priv = mapp;
90 90
91 uclinux_ram_mtdinfo = mtd; 91 uclinux_ram_mtdinfo = mtd;
diff --git a/drivers/mtd/maps/vmu-flash.c b/drivers/mtd/maps/vmu-flash.c
index 3a04b078576a..2e2b0945edc7 100644
--- a/drivers/mtd/maps/vmu-flash.c
+++ b/drivers/mtd/maps/vmu-flash.c
@@ -360,9 +360,6 @@ static int vmu_flash_read(struct mtd_info *mtd, loff_t from, size_t len,
360 int index = 0, retval, partition, leftover, numblocks; 360 int index = 0, retval, partition, leftover, numblocks;
361 unsigned char cx; 361 unsigned char cx;
362 362
363 if (len < 1)
364 return -EIO;
365
366 mpart = mtd->priv; 363 mpart = mtd->priv;
367 mdev = mpart->mdev; 364 mdev = mpart->mdev;
368 partition = mpart->partition; 365 partition = mpart->partition;
@@ -434,11 +431,6 @@ static int vmu_flash_write(struct mtd_info *mtd, loff_t to, size_t len,
434 partition = mpart->partition; 431 partition = mpart->partition;
435 card = maple_get_drvdata(mdev); 432 card = maple_get_drvdata(mdev);
436 433
437 /* simple sanity checks */
438 if (len < 1) {
439 error = -EIO;
440 goto failed;
441 }
442 numblocks = card->parts[partition].numblocks; 434 numblocks = card->parts[partition].numblocks;
443 if (to + len > numblocks * card->blocklen) 435 if (to + len > numblocks * card->blocklen)
444 len = numblocks * card->blocklen - to; 436 len = numblocks * card->blocklen - to;
@@ -544,9 +536,9 @@ static void vmu_queryblocks(struct mapleq *mq)
544 mtd_cur->flags = MTD_WRITEABLE|MTD_NO_ERASE; 536 mtd_cur->flags = MTD_WRITEABLE|MTD_NO_ERASE;
545 mtd_cur->size = part_cur->numblocks * card->blocklen; 537 mtd_cur->size = part_cur->numblocks * card->blocklen;
546 mtd_cur->erasesize = card->blocklen; 538 mtd_cur->erasesize = card->blocklen;
547 mtd_cur->write = vmu_flash_write; 539 mtd_cur->_write = vmu_flash_write;
548 mtd_cur->read = vmu_flash_read; 540 mtd_cur->_read = vmu_flash_read;
549 mtd_cur->sync = vmu_flash_sync; 541 mtd_cur->_sync = vmu_flash_sync;
550 mtd_cur->writesize = card->blocklen; 542 mtd_cur->writesize = card->blocklen;
551 543
552 mpart = kmalloc(sizeof(struct mdev_part), GFP_KERNEL); 544 mpart = kmalloc(sizeof(struct mdev_part), GFP_KERNEL);
diff --git a/drivers/mtd/maps/wr_sbc82xx_flash.c b/drivers/mtd/maps/wr_sbc82xx_flash.c
index aa7e0cb2893c..71b0ba797912 100644
--- a/drivers/mtd/maps/wr_sbc82xx_flash.c
+++ b/drivers/mtd/maps/wr_sbc82xx_flash.c
@@ -142,7 +142,7 @@ static int __init init_sbc82xx_flash(void)
142 nr_parts = ARRAY_SIZE(smallflash_parts); 142 nr_parts = ARRAY_SIZE(smallflash_parts);
143 } 143 }
144 144
145 mtd_device_parse_register(sbcmtd[i], part_probes, 0, 145 mtd_device_parse_register(sbcmtd[i], part_probes, NULL,
146 defparts, nr_parts); 146 defparts, nr_parts);
147 } 147 }
148 return 0; 148 return 0;
diff --git a/drivers/mtd/mtd_blkdevs.c b/drivers/mtd/mtd_blkdevs.c
index 424ca5f93c6c..f1f06715d4e0 100644
--- a/drivers/mtd/mtd_blkdevs.c
+++ b/drivers/mtd/mtd_blkdevs.c
@@ -233,6 +233,7 @@ static int blktrans_open(struct block_device *bdev, fmode_t mode)
233 ret = __get_mtd_device(dev->mtd); 233 ret = __get_mtd_device(dev->mtd);
234 if (ret) 234 if (ret)
235 goto error_release; 235 goto error_release;
236 dev->file_mode = mode;
236 237
237unlock: 238unlock:
238 dev->open++; 239 dev->open++;
diff --git a/drivers/mtd/mtdblock.c b/drivers/mtd/mtdblock.c
index af6591237b9b..6c6d80736fad 100644
--- a/drivers/mtd/mtdblock.c
+++ b/drivers/mtd/mtdblock.c
@@ -321,8 +321,12 @@ static int mtdblock_release(struct mtd_blktrans_dev *mbd)
321 mutex_unlock(&mtdblk->cache_mutex); 321 mutex_unlock(&mtdblk->cache_mutex);
322 322
323 if (!--mtdblk->count) { 323 if (!--mtdblk->count) {
324 /* It was the last usage. Free the cache */ 324 /*
325 mtd_sync(mbd->mtd); 325 * It was the last usage. Free the cache, but only sync if
326 * opened for writing.
327 */
328 if (mbd->file_mode & FMODE_WRITE)
329 mtd_sync(mbd->mtd);
326 vfree(mtdblk->cache_data); 330 vfree(mtdblk->cache_data);
327 } 331 }
328 332
diff --git a/drivers/mtd/mtdchar.c b/drivers/mtd/mtdchar.c
index c57ae92ebda4..55d82321d307 100644
--- a/drivers/mtd/mtdchar.c
+++ b/drivers/mtd/mtdchar.c
@@ -405,7 +405,7 @@ static int mtdchar_writeoob(struct file *file, struct mtd_info *mtd,
405 if (length > 4096) 405 if (length > 4096)
406 return -EINVAL; 406 return -EINVAL;
407 407
408 if (!mtd->write_oob) 408 if (!mtd->_write_oob)
409 ret = -EOPNOTSUPP; 409 ret = -EOPNOTSUPP;
410 else 410 else
411 ret = access_ok(VERIFY_READ, ptr, length) ? 0 : -EFAULT; 411 ret = access_ok(VERIFY_READ, ptr, length) ? 0 : -EFAULT;
@@ -576,7 +576,7 @@ static int mtdchar_write_ioctl(struct mtd_info *mtd,
576 !access_ok(VERIFY_READ, req.usr_data, req.len) || 576 !access_ok(VERIFY_READ, req.usr_data, req.len) ||
577 !access_ok(VERIFY_READ, req.usr_oob, req.ooblen)) 577 !access_ok(VERIFY_READ, req.usr_oob, req.ooblen))
578 return -EFAULT; 578 return -EFAULT;
579 if (!mtd->write_oob) 579 if (!mtd->_write_oob)
580 return -EOPNOTSUPP; 580 return -EOPNOTSUPP;
581 581
582 ops.mode = req.mode; 582 ops.mode = req.mode;
diff --git a/drivers/mtd/mtdconcat.c b/drivers/mtd/mtdconcat.c
index 1ed5103b219b..b9000563b9f4 100644
--- a/drivers/mtd/mtdconcat.c
+++ b/drivers/mtd/mtdconcat.c
@@ -72,8 +72,6 @@ concat_read(struct mtd_info *mtd, loff_t from, size_t len,
72 int ret = 0, err; 72 int ret = 0, err;
73 int i; 73 int i;
74 74
75 *retlen = 0;
76
77 for (i = 0; i < concat->num_subdev; i++) { 75 for (i = 0; i < concat->num_subdev; i++) {
78 struct mtd_info *subdev = concat->subdev[i]; 76 struct mtd_info *subdev = concat->subdev[i];
79 size_t size, retsize; 77 size_t size, retsize;
@@ -126,11 +124,6 @@ concat_write(struct mtd_info *mtd, loff_t to, size_t len,
126 int err = -EINVAL; 124 int err = -EINVAL;
127 int i; 125 int i;
128 126
129 if (!(mtd->flags & MTD_WRITEABLE))
130 return -EROFS;
131
132 *retlen = 0;
133
134 for (i = 0; i < concat->num_subdev; i++) { 127 for (i = 0; i < concat->num_subdev; i++) {
135 struct mtd_info *subdev = concat->subdev[i]; 128 struct mtd_info *subdev = concat->subdev[i];
136 size_t size, retsize; 129 size_t size, retsize;
@@ -145,11 +138,7 @@ concat_write(struct mtd_info *mtd, loff_t to, size_t len,
145 else 138 else
146 size = len; 139 size = len;
147 140
148 if (!(subdev->flags & MTD_WRITEABLE)) 141 err = mtd_write(subdev, to, size, &retsize, buf);
149 err = -EROFS;
150 else
151 err = mtd_write(subdev, to, size, &retsize, buf);
152
153 if (err) 142 if (err)
154 break; 143 break;
155 144
@@ -176,19 +165,10 @@ concat_writev(struct mtd_info *mtd, const struct kvec *vecs,
176 int i; 165 int i;
177 int err = -EINVAL; 166 int err = -EINVAL;
178 167
179 if (!(mtd->flags & MTD_WRITEABLE))
180 return -EROFS;
181
182 *retlen = 0;
183
184 /* Calculate total length of data */ 168 /* Calculate total length of data */
185 for (i = 0; i < count; i++) 169 for (i = 0; i < count; i++)
186 total_len += vecs[i].iov_len; 170 total_len += vecs[i].iov_len;
187 171
188 /* Do not allow write past end of device */
189 if ((to + total_len) > mtd->size)
190 return -EINVAL;
191
192 /* Check alignment */ 172 /* Check alignment */
193 if (mtd->writesize > 1) { 173 if (mtd->writesize > 1) {
194 uint64_t __to = to; 174 uint64_t __to = to;
@@ -224,12 +204,8 @@ concat_writev(struct mtd_info *mtd, const struct kvec *vecs,
224 old_iov_len = vecs_copy[entry_high].iov_len; 204 old_iov_len = vecs_copy[entry_high].iov_len;
225 vecs_copy[entry_high].iov_len = size; 205 vecs_copy[entry_high].iov_len = size;
226 206
227 if (!(subdev->flags & MTD_WRITEABLE)) 207 err = mtd_writev(subdev, &vecs_copy[entry_low],
228 err = -EROFS; 208 entry_high - entry_low + 1, to, &retsize);
229 else
230 err = mtd_writev(subdev, &vecs_copy[entry_low],
231 entry_high - entry_low + 1, to,
232 &retsize);
233 209
234 vecs_copy[entry_high].iov_len = old_iov_len - size; 210 vecs_copy[entry_high].iov_len = old_iov_len - size;
235 vecs_copy[entry_high].iov_base += size; 211 vecs_copy[entry_high].iov_base += size;
@@ -403,15 +379,6 @@ static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
403 uint64_t length, offset = 0; 379 uint64_t length, offset = 0;
404 struct erase_info *erase; 380 struct erase_info *erase;
405 381
406 if (!(mtd->flags & MTD_WRITEABLE))
407 return -EROFS;
408
409 if (instr->addr > concat->mtd.size)
410 return -EINVAL;
411
412 if (instr->len + instr->addr > concat->mtd.size)
413 return -EINVAL;
414
415 /* 382 /*
416 * Check for proper erase block alignment of the to-be-erased area. 383 * Check for proper erase block alignment of the to-be-erased area.
417 * It is easier to do this based on the super device's erase 384 * It is easier to do this based on the super device's erase
@@ -459,8 +426,6 @@ static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
459 return -EINVAL; 426 return -EINVAL;
460 } 427 }
461 428
462 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
463
464 /* make a local copy of instr to avoid modifying the caller's struct */ 429 /* make a local copy of instr to avoid modifying the caller's struct */
465 erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL); 430 erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
466 431
@@ -499,10 +464,6 @@ static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
499 else 464 else
500 erase->len = length; 465 erase->len = length;
501 466
502 if (!(subdev->flags & MTD_WRITEABLE)) {
503 err = -EROFS;
504 break;
505 }
506 length -= erase->len; 467 length -= erase->len;
507 if ((err = concat_dev_erase(subdev, erase))) { 468 if ((err = concat_dev_erase(subdev, erase))) {
508 /* sanity check: should never happen since 469 /* sanity check: should never happen since
@@ -538,9 +499,6 @@ static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
538 struct mtd_concat *concat = CONCAT(mtd); 499 struct mtd_concat *concat = CONCAT(mtd);
539 int i, err = -EINVAL; 500 int i, err = -EINVAL;
540 501
541 if ((len + ofs) > mtd->size)
542 return -EINVAL;
543
544 for (i = 0; i < concat->num_subdev; i++) { 502 for (i = 0; i < concat->num_subdev; i++) {
545 struct mtd_info *subdev = concat->subdev[i]; 503 struct mtd_info *subdev = concat->subdev[i];
546 uint64_t size; 504 uint64_t size;
@@ -575,9 +533,6 @@ static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
575 struct mtd_concat *concat = CONCAT(mtd); 533 struct mtd_concat *concat = CONCAT(mtd);
576 int i, err = 0; 534 int i, err = 0;
577 535
578 if ((len + ofs) > mtd->size)
579 return -EINVAL;
580
581 for (i = 0; i < concat->num_subdev; i++) { 536 for (i = 0; i < concat->num_subdev; i++) {
582 struct mtd_info *subdev = concat->subdev[i]; 537 struct mtd_info *subdev = concat->subdev[i];
583 uint64_t size; 538 uint64_t size;
@@ -650,9 +605,6 @@ static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
650 if (!mtd_can_have_bb(concat->subdev[0])) 605 if (!mtd_can_have_bb(concat->subdev[0]))
651 return res; 606 return res;
652 607
653 if (ofs > mtd->size)
654 return -EINVAL;
655
656 for (i = 0; i < concat->num_subdev; i++) { 608 for (i = 0; i < concat->num_subdev; i++) {
657 struct mtd_info *subdev = concat->subdev[i]; 609 struct mtd_info *subdev = concat->subdev[i];
658 610
@@ -673,12 +625,6 @@ static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
673 struct mtd_concat *concat = CONCAT(mtd); 625 struct mtd_concat *concat = CONCAT(mtd);
674 int i, err = -EINVAL; 626 int i, err = -EINVAL;
675 627
676 if (!mtd_can_have_bb(concat->subdev[0]))
677 return 0;
678
679 if (ofs > mtd->size)
680 return -EINVAL;
681
682 for (i = 0; i < concat->num_subdev; i++) { 628 for (i = 0; i < concat->num_subdev; i++) {
683 struct mtd_info *subdev = concat->subdev[i]; 629 struct mtd_info *subdev = concat->subdev[i];
684 630
@@ -716,10 +662,6 @@ static unsigned long concat_get_unmapped_area(struct mtd_info *mtd,
716 continue; 662 continue;
717 } 663 }
718 664
719 /* we've found the subdev over which the mapping will reside */
720 if (offset + len > subdev->size)
721 return (unsigned long) -EINVAL;
722
723 return mtd_get_unmapped_area(subdev, len, offset, flags); 665 return mtd_get_unmapped_area(subdev, len, offset, flags);
724 } 666 }
725 667
@@ -777,16 +719,16 @@ struct mtd_info *mtd_concat_create(struct mtd_info *subdev[], /* subdevices to c
777 concat->mtd.subpage_sft = subdev[0]->subpage_sft; 719 concat->mtd.subpage_sft = subdev[0]->subpage_sft;
778 concat->mtd.oobsize = subdev[0]->oobsize; 720 concat->mtd.oobsize = subdev[0]->oobsize;
779 concat->mtd.oobavail = subdev[0]->oobavail; 721 concat->mtd.oobavail = subdev[0]->oobavail;
780 if (subdev[0]->writev) 722 if (subdev[0]->_writev)
781 concat->mtd.writev = concat_writev; 723 concat->mtd._writev = concat_writev;
782 if (subdev[0]->read_oob) 724 if (subdev[0]->_read_oob)
783 concat->mtd.read_oob = concat_read_oob; 725 concat->mtd._read_oob = concat_read_oob;
784 if (subdev[0]->write_oob) 726 if (subdev[0]->_write_oob)
785 concat->mtd.write_oob = concat_write_oob; 727 concat->mtd._write_oob = concat_write_oob;
786 if (subdev[0]->block_isbad) 728 if (subdev[0]->_block_isbad)
787 concat->mtd.block_isbad = concat_block_isbad; 729 concat->mtd._block_isbad = concat_block_isbad;
788 if (subdev[0]->block_markbad) 730 if (subdev[0]->_block_markbad)
789 concat->mtd.block_markbad = concat_block_markbad; 731 concat->mtd._block_markbad = concat_block_markbad;
790 732
791 concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks; 733 concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;
792 734
@@ -833,8 +775,8 @@ struct mtd_info *mtd_concat_create(struct mtd_info *subdev[], /* subdevices to c
833 if (concat->mtd.writesize != subdev[i]->writesize || 775 if (concat->mtd.writesize != subdev[i]->writesize ||
834 concat->mtd.subpage_sft != subdev[i]->subpage_sft || 776 concat->mtd.subpage_sft != subdev[i]->subpage_sft ||
835 concat->mtd.oobsize != subdev[i]->oobsize || 777 concat->mtd.oobsize != subdev[i]->oobsize ||
836 !concat->mtd.read_oob != !subdev[i]->read_oob || 778 !concat->mtd._read_oob != !subdev[i]->_read_oob ||
837 !concat->mtd.write_oob != !subdev[i]->write_oob) { 779 !concat->mtd._write_oob != !subdev[i]->_write_oob) {
838 kfree(concat); 780 kfree(concat);
839 printk("Incompatible OOB or ECC data on \"%s\"\n", 781 printk("Incompatible OOB or ECC data on \"%s\"\n",
840 subdev[i]->name); 782 subdev[i]->name);
@@ -849,15 +791,15 @@ struct mtd_info *mtd_concat_create(struct mtd_info *subdev[], /* subdevices to c
849 concat->num_subdev = num_devs; 791 concat->num_subdev = num_devs;
850 concat->mtd.name = name; 792 concat->mtd.name = name;
851 793
852 concat->mtd.erase = concat_erase; 794 concat->mtd._erase = concat_erase;
853 concat->mtd.read = concat_read; 795 concat->mtd._read = concat_read;
854 concat->mtd.write = concat_write; 796 concat->mtd._write = concat_write;
855 concat->mtd.sync = concat_sync; 797 concat->mtd._sync = concat_sync;
856 concat->mtd.lock = concat_lock; 798 concat->mtd._lock = concat_lock;
857 concat->mtd.unlock = concat_unlock; 799 concat->mtd._unlock = concat_unlock;
858 concat->mtd.suspend = concat_suspend; 800 concat->mtd._suspend = concat_suspend;
859 concat->mtd.resume = concat_resume; 801 concat->mtd._resume = concat_resume;
860 concat->mtd.get_unmapped_area = concat_get_unmapped_area; 802 concat->mtd._get_unmapped_area = concat_get_unmapped_area;
861 803
862 /* 804 /*
863 * Combine the erase block size info of the subdevices: 805 * Combine the erase block size info of the subdevices:
diff --git a/drivers/mtd/mtdcore.c b/drivers/mtd/mtdcore.c
index 9a9ce71a71fc..c837507dfb1c 100644
--- a/drivers/mtd/mtdcore.c
+++ b/drivers/mtd/mtdcore.c
@@ -107,7 +107,7 @@ static LIST_HEAD(mtd_notifiers);
107 */ 107 */
108static void mtd_release(struct device *dev) 108static void mtd_release(struct device *dev)
109{ 109{
110 struct mtd_info *mtd = dev_get_drvdata(dev); 110 struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
111 dev_t index = MTD_DEVT(mtd->index); 111 dev_t index = MTD_DEVT(mtd->index);
112 112
113 /* remove /dev/mtdXro node if needed */ 113 /* remove /dev/mtdXro node if needed */
@@ -126,7 +126,7 @@ static int mtd_cls_resume(struct device *dev)
126{ 126{
127 struct mtd_info *mtd = dev_get_drvdata(dev); 127 struct mtd_info *mtd = dev_get_drvdata(dev);
128 128
129 if (mtd && mtd->resume) 129 if (mtd)
130 mtd_resume(mtd); 130 mtd_resume(mtd);
131 return 0; 131 return 0;
132} 132}
@@ -610,8 +610,8 @@ int __get_mtd_device(struct mtd_info *mtd)
610 if (!try_module_get(mtd->owner)) 610 if (!try_module_get(mtd->owner))
611 return -ENODEV; 611 return -ENODEV;
612 612
613 if (mtd->get_device) { 613 if (mtd->_get_device) {
614 err = mtd->get_device(mtd); 614 err = mtd->_get_device(mtd);
615 615
616 if (err) { 616 if (err) {
617 module_put(mtd->owner); 617 module_put(mtd->owner);
@@ -675,14 +675,267 @@ void __put_mtd_device(struct mtd_info *mtd)
675 --mtd->usecount; 675 --mtd->usecount;
676 BUG_ON(mtd->usecount < 0); 676 BUG_ON(mtd->usecount < 0);
677 677
678 if (mtd->put_device) 678 if (mtd->_put_device)
679 mtd->put_device(mtd); 679 mtd->_put_device(mtd);
680 680
681 module_put(mtd->owner); 681 module_put(mtd->owner);
682} 682}
683EXPORT_SYMBOL_GPL(__put_mtd_device); 683EXPORT_SYMBOL_GPL(__put_mtd_device);
684 684
685/* 685/*
686 * Erase is an asynchronous operation. Device drivers are supposed
687 * to call instr->callback() whenever the operation completes, even
688 * if it completes with a failure.
689 * Callers are supposed to pass a callback function and wait for it
690 * to be called before writing to the block.
691 */
692int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
693{
694 if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
695 return -EINVAL;
696 if (!(mtd->flags & MTD_WRITEABLE))
697 return -EROFS;
698 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
699 if (!instr->len) {
700 instr->state = MTD_ERASE_DONE;
701 mtd_erase_callback(instr);
702 return 0;
703 }
704 return mtd->_erase(mtd, instr);
705}
706EXPORT_SYMBOL_GPL(mtd_erase);
707
708/*
709 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
710 */
711int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
712 void **virt, resource_size_t *phys)
713{
714 *retlen = 0;
715 *virt = NULL;
716 if (phys)
717 *phys = 0;
718 if (!mtd->_point)
719 return -EOPNOTSUPP;
720 if (from < 0 || from > mtd->size || len > mtd->size - from)
721 return -EINVAL;
722 if (!len)
723 return 0;
724 return mtd->_point(mtd, from, len, retlen, virt, phys);
725}
726EXPORT_SYMBOL_GPL(mtd_point);
727
728/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
729int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
730{
731 if (!mtd->_point)
732 return -EOPNOTSUPP;
733 if (from < 0 || from > mtd->size || len > mtd->size - from)
734 return -EINVAL;
735 if (!len)
736 return 0;
737 return mtd->_unpoint(mtd, from, len);
738}
739EXPORT_SYMBOL_GPL(mtd_unpoint);
740
741/*
742 * Allow NOMMU mmap() to directly map the device (if not NULL)
743 * - return the address to which the offset maps
744 * - return -ENOSYS to indicate refusal to do the mapping
745 */
746unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
747 unsigned long offset, unsigned long flags)
748{
749 if (!mtd->_get_unmapped_area)
750 return -EOPNOTSUPP;
751 if (offset > mtd->size || len > mtd->size - offset)
752 return -EINVAL;
753 return mtd->_get_unmapped_area(mtd, len, offset, flags);
754}
755EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
756
757int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
758 u_char *buf)
759{
760 *retlen = 0;
761 if (from < 0 || from > mtd->size || len > mtd->size - from)
762 return -EINVAL;
763 if (!len)
764 return 0;
765 return mtd->_read(mtd, from, len, retlen, buf);
766}
767EXPORT_SYMBOL_GPL(mtd_read);
768
769int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
770 const u_char *buf)
771{
772 *retlen = 0;
773 if (to < 0 || to > mtd->size || len > mtd->size - to)
774 return -EINVAL;
775 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
776 return -EROFS;
777 if (!len)
778 return 0;
779 return mtd->_write(mtd, to, len, retlen, buf);
780}
781EXPORT_SYMBOL_GPL(mtd_write);
782
783/*
784 * In blackbox flight recorder like scenarios we want to make successful writes
785 * in interrupt context. panic_write() is only intended to be called when its
786 * known the kernel is about to panic and we need the write to succeed. Since
787 * the kernel is not going to be running for much longer, this function can
788 * break locks and delay to ensure the write succeeds (but not sleep).
789 */
790int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
791 const u_char *buf)
792{
793 *retlen = 0;
794 if (!mtd->_panic_write)
795 return -EOPNOTSUPP;
796 if (to < 0 || to > mtd->size || len > mtd->size - to)
797 return -EINVAL;
798 if (!(mtd->flags & MTD_WRITEABLE))
799 return -EROFS;
800 if (!len)
801 return 0;
802 return mtd->_panic_write(mtd, to, len, retlen, buf);
803}
804EXPORT_SYMBOL_GPL(mtd_panic_write);
805
806/*
807 * Method to access the protection register area, present in some flash
808 * devices. The user data is one time programmable but the factory data is read
809 * only.
810 */
811int mtd_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
812 size_t len)
813{
814 if (!mtd->_get_fact_prot_info)
815 return -EOPNOTSUPP;
816 if (!len)
817 return 0;
818 return mtd->_get_fact_prot_info(mtd, buf, len);
819}
820EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
821
822int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
823 size_t *retlen, u_char *buf)
824{
825 *retlen = 0;
826 if (!mtd->_read_fact_prot_reg)
827 return -EOPNOTSUPP;
828 if (!len)
829 return 0;
830 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
831}
832EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
833
834int mtd_get_user_prot_info(struct mtd_info *mtd, struct otp_info *buf,
835 size_t len)
836{
837 if (!mtd->_get_user_prot_info)
838 return -EOPNOTSUPP;
839 if (!len)
840 return 0;
841 return mtd->_get_user_prot_info(mtd, buf, len);
842}
843EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
844
845int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
846 size_t *retlen, u_char *buf)
847{
848 *retlen = 0;
849 if (!mtd->_read_user_prot_reg)
850 return -EOPNOTSUPP;
851 if (!len)
852 return 0;
853 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
854}
855EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
856
857int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
858 size_t *retlen, u_char *buf)
859{
860 *retlen = 0;
861 if (!mtd->_write_user_prot_reg)
862 return -EOPNOTSUPP;
863 if (!len)
864 return 0;
865 return mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
866}
867EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
868
869int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
870{
871 if (!mtd->_lock_user_prot_reg)
872 return -EOPNOTSUPP;
873 if (!len)
874 return 0;
875 return mtd->_lock_user_prot_reg(mtd, from, len);
876}
877EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
878
879/* Chip-supported device locking */
880int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
881{
882 if (!mtd->_lock)
883 return -EOPNOTSUPP;
884 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
885 return -EINVAL;
886 if (!len)
887 return 0;
888 return mtd->_lock(mtd, ofs, len);
889}
890EXPORT_SYMBOL_GPL(mtd_lock);
891
892int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
893{
894 if (!mtd->_unlock)
895 return -EOPNOTSUPP;
896 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
897 return -EINVAL;
898 if (!len)
899 return 0;
900 return mtd->_unlock(mtd, ofs, len);
901}
902EXPORT_SYMBOL_GPL(mtd_unlock);
903
904int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
905{
906 if (!mtd->_is_locked)
907 return -EOPNOTSUPP;
908 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
909 return -EINVAL;
910 if (!len)
911 return 0;
912 return mtd->_is_locked(mtd, ofs, len);
913}
914EXPORT_SYMBOL_GPL(mtd_is_locked);
915
916int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
917{
918 if (!mtd->_block_isbad)
919 return 0;
920 if (ofs < 0 || ofs > mtd->size)
921 return -EINVAL;
922 return mtd->_block_isbad(mtd, ofs);
923}
924EXPORT_SYMBOL_GPL(mtd_block_isbad);
925
926int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
927{
928 if (!mtd->_block_markbad)
929 return -EOPNOTSUPP;
930 if (ofs < 0 || ofs > mtd->size)
931 return -EINVAL;
932 if (!(mtd->flags & MTD_WRITEABLE))
933 return -EROFS;
934 return mtd->_block_markbad(mtd, ofs);
935}
936EXPORT_SYMBOL_GPL(mtd_block_markbad);
937
938/*
686 * default_mtd_writev - the default writev method 939 * default_mtd_writev - the default writev method
687 * @mtd: mtd device description object pointer 940 * @mtd: mtd device description object pointer
688 * @vecs: the vectors to write 941 * @vecs: the vectors to write
@@ -729,9 +982,11 @@ int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
729 unsigned long count, loff_t to, size_t *retlen) 982 unsigned long count, loff_t to, size_t *retlen)
730{ 983{
731 *retlen = 0; 984 *retlen = 0;
732 if (!mtd->writev) 985 if (!(mtd->flags & MTD_WRITEABLE))
986 return -EROFS;
987 if (!mtd->_writev)
733 return default_mtd_writev(mtd, vecs, count, to, retlen); 988 return default_mtd_writev(mtd, vecs, count, to, retlen);
734 return mtd->writev(mtd, vecs, count, to, retlen); 989 return mtd->_writev(mtd, vecs, count, to, retlen);
735} 990}
736EXPORT_SYMBOL_GPL(mtd_writev); 991EXPORT_SYMBOL_GPL(mtd_writev);
737 992
diff --git a/drivers/mtd/mtdoops.c b/drivers/mtd/mtdoops.c
index 3ce99e00a49e..ae36d7e1e913 100644
--- a/drivers/mtd/mtdoops.c
+++ b/drivers/mtd/mtdoops.c
@@ -169,7 +169,7 @@ static void mtdoops_workfunc_erase(struct work_struct *work)
169 cxt->nextpage = 0; 169 cxt->nextpage = 0;
170 } 170 }
171 171
172 while (mtd_can_have_bb(mtd)) { 172 while (1) {
173 ret = mtd_block_isbad(mtd, cxt->nextpage * record_size); 173 ret = mtd_block_isbad(mtd, cxt->nextpage * record_size);
174 if (!ret) 174 if (!ret)
175 break; 175 break;
@@ -199,9 +199,9 @@ badblock:
199 return; 199 return;
200 } 200 }
201 201
202 if (mtd_can_have_bb(mtd) && ret == -EIO) { 202 if (ret == -EIO) {
203 ret = mtd_block_markbad(mtd, cxt->nextpage * record_size); 203 ret = mtd_block_markbad(mtd, cxt->nextpage * record_size);
204 if (ret < 0) { 204 if (ret < 0 && ret != -EOPNOTSUPP) {
205 printk(KERN_ERR "mtdoops: block_markbad failed, aborting\n"); 205 printk(KERN_ERR "mtdoops: block_markbad failed, aborting\n");
206 return; 206 return;
207 } 207 }
@@ -257,8 +257,7 @@ static void find_next_position(struct mtdoops_context *cxt)
257 size_t retlen; 257 size_t retlen;
258 258
259 for (page = 0; page < cxt->oops_pages; page++) { 259 for (page = 0; page < cxt->oops_pages; page++) {
260 if (mtd_can_have_bb(mtd) && 260 if (mtd_block_isbad(mtd, page * record_size))
261 mtd_block_isbad(mtd, page * record_size))
262 continue; 261 continue;
263 /* Assume the page is used */ 262 /* Assume the page is used */
264 mark_page_used(cxt, page); 263 mark_page_used(cxt, page);
diff --git a/drivers/mtd/mtdpart.c b/drivers/mtd/mtdpart.c
index a3d44c3416b4..9651c06de0a9 100644
--- a/drivers/mtd/mtdpart.c
+++ b/drivers/mtd/mtdpart.c
@@ -65,12 +65,8 @@ static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
65 int res; 65 int res;
66 66
67 stats = part->master->ecc_stats; 67 stats = part->master->ecc_stats;
68 68 res = part->master->_read(part->master, from + part->offset, len,
69 if (from >= mtd->size) 69 retlen, buf);
70 len = 0;
71 else if (from + len > mtd->size)
72 len = mtd->size - from;
73 res = mtd_read(part->master, from + part->offset, len, retlen, buf);
74 if (unlikely(res)) { 70 if (unlikely(res)) {
75 if (mtd_is_bitflip(res)) 71 if (mtd_is_bitflip(res))
76 mtd->ecc_stats.corrected += part->master->ecc_stats.corrected - stats.corrected; 72 mtd->ecc_stats.corrected += part->master->ecc_stats.corrected - stats.corrected;
@@ -84,19 +80,16 @@ static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
84 size_t *retlen, void **virt, resource_size_t *phys) 80 size_t *retlen, void **virt, resource_size_t *phys)
85{ 81{
86 struct mtd_part *part = PART(mtd); 82 struct mtd_part *part = PART(mtd);
87 if (from >= mtd->size) 83
88 len = 0; 84 return part->master->_point(part->master, from + part->offset, len,
89 else if (from + len > mtd->size) 85 retlen, virt, phys);
90 len = mtd->size - from;
91 return mtd_point(part->master, from + part->offset, len, retlen,
92 virt, phys);
93} 86}
94 87
95static void part_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 88static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
96{ 89{
97 struct mtd_part *part = PART(mtd); 90 struct mtd_part *part = PART(mtd);
98 91
99 mtd_unpoint(part->master, from + part->offset, len); 92 return part->master->_unpoint(part->master, from + part->offset, len);
100} 93}
101 94
102static unsigned long part_get_unmapped_area(struct mtd_info *mtd, 95static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
@@ -107,7 +100,8 @@ static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
107 struct mtd_part *part = PART(mtd); 100 struct mtd_part *part = PART(mtd);
108 101
109 offset += part->offset; 102 offset += part->offset;
110 return mtd_get_unmapped_area(part->master, len, offset, flags); 103 return part->master->_get_unmapped_area(part->master, len, offset,
104 flags);
111} 105}
112 106
113static int part_read_oob(struct mtd_info *mtd, loff_t from, 107static int part_read_oob(struct mtd_info *mtd, loff_t from,
@@ -138,7 +132,7 @@ static int part_read_oob(struct mtd_info *mtd, loff_t from,
138 return -EINVAL; 132 return -EINVAL;
139 } 133 }
140 134
141 res = mtd_read_oob(part->master, from + part->offset, ops); 135 res = part->master->_read_oob(part->master, from + part->offset, ops);
142 if (unlikely(res)) { 136 if (unlikely(res)) {
143 if (mtd_is_bitflip(res)) 137 if (mtd_is_bitflip(res))
144 mtd->ecc_stats.corrected++; 138 mtd->ecc_stats.corrected++;
@@ -152,55 +146,46 @@ static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
152 size_t len, size_t *retlen, u_char *buf) 146 size_t len, size_t *retlen, u_char *buf)
153{ 147{
154 struct mtd_part *part = PART(mtd); 148 struct mtd_part *part = PART(mtd);
155 return mtd_read_user_prot_reg(part->master, from, len, retlen, buf); 149 return part->master->_read_user_prot_reg(part->master, from, len,
150 retlen, buf);
156} 151}
157 152
158static int part_get_user_prot_info(struct mtd_info *mtd, 153static int part_get_user_prot_info(struct mtd_info *mtd,
159 struct otp_info *buf, size_t len) 154 struct otp_info *buf, size_t len)
160{ 155{
161 struct mtd_part *part = PART(mtd); 156 struct mtd_part *part = PART(mtd);
162 return mtd_get_user_prot_info(part->master, buf, len); 157 return part->master->_get_user_prot_info(part->master, buf, len);
163} 158}
164 159
165static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, 160static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
166 size_t len, size_t *retlen, u_char *buf) 161 size_t len, size_t *retlen, u_char *buf)
167{ 162{
168 struct mtd_part *part = PART(mtd); 163 struct mtd_part *part = PART(mtd);
169 return mtd_read_fact_prot_reg(part->master, from, len, retlen, buf); 164 return part->master->_read_fact_prot_reg(part->master, from, len,
165 retlen, buf);
170} 166}
171 167
172static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf, 168static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
173 size_t len) 169 size_t len)
174{ 170{
175 struct mtd_part *part = PART(mtd); 171 struct mtd_part *part = PART(mtd);
176 return mtd_get_fact_prot_info(part->master, buf, len); 172 return part->master->_get_fact_prot_info(part->master, buf, len);
177} 173}
178 174
179static int part_write(struct mtd_info *mtd, loff_t to, size_t len, 175static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
180 size_t *retlen, const u_char *buf) 176 size_t *retlen, const u_char *buf)
181{ 177{
182 struct mtd_part *part = PART(mtd); 178 struct mtd_part *part = PART(mtd);
183 if (!(mtd->flags & MTD_WRITEABLE)) 179 return part->master->_write(part->master, to + part->offset, len,
184 return -EROFS; 180 retlen, buf);
185 if (to >= mtd->size)
186 len = 0;
187 else if (to + len > mtd->size)
188 len = mtd->size - to;
189 return mtd_write(part->master, to + part->offset, len, retlen, buf);
190} 181}
191 182
192static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len, 183static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
193 size_t *retlen, const u_char *buf) 184 size_t *retlen, const u_char *buf)
194{ 185{
195 struct mtd_part *part = PART(mtd); 186 struct mtd_part *part = PART(mtd);
196 if (!(mtd->flags & MTD_WRITEABLE)) 187 return part->master->_panic_write(part->master, to + part->offset, len,
197 return -EROFS; 188 retlen, buf);
198 if (to >= mtd->size)
199 len = 0;
200 else if (to + len > mtd->size)
201 len = mtd->size - to;
202 return mtd_panic_write(part->master, to + part->offset, len, retlen,
203 buf);
204} 189}
205 190
206static int part_write_oob(struct mtd_info *mtd, loff_t to, 191static int part_write_oob(struct mtd_info *mtd, loff_t to,
@@ -208,50 +193,43 @@ static int part_write_oob(struct mtd_info *mtd, loff_t to,
208{ 193{
209 struct mtd_part *part = PART(mtd); 194 struct mtd_part *part = PART(mtd);
210 195
211 if (!(mtd->flags & MTD_WRITEABLE))
212 return -EROFS;
213
214 if (to >= mtd->size) 196 if (to >= mtd->size)
215 return -EINVAL; 197 return -EINVAL;
216 if (ops->datbuf && to + ops->len > mtd->size) 198 if (ops->datbuf && to + ops->len > mtd->size)
217 return -EINVAL; 199 return -EINVAL;
218 return mtd_write_oob(part->master, to + part->offset, ops); 200 return part->master->_write_oob(part->master, to + part->offset, ops);
219} 201}
220 202
221static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from, 203static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
222 size_t len, size_t *retlen, u_char *buf) 204 size_t len, size_t *retlen, u_char *buf)
223{ 205{
224 struct mtd_part *part = PART(mtd); 206 struct mtd_part *part = PART(mtd);
225 return mtd_write_user_prot_reg(part->master, from, len, retlen, buf); 207 return part->master->_write_user_prot_reg(part->master, from, len,
208 retlen, buf);
226} 209}
227 210
228static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, 211static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
229 size_t len) 212 size_t len)
230{ 213{
231 struct mtd_part *part = PART(mtd); 214 struct mtd_part *part = PART(mtd);
232 return mtd_lock_user_prot_reg(part->master, from, len); 215 return part->master->_lock_user_prot_reg(part->master, from, len);
233} 216}
234 217
235static int part_writev(struct mtd_info *mtd, const struct kvec *vecs, 218static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
236 unsigned long count, loff_t to, size_t *retlen) 219 unsigned long count, loff_t to, size_t *retlen)
237{ 220{
238 struct mtd_part *part = PART(mtd); 221 struct mtd_part *part = PART(mtd);
239 if (!(mtd->flags & MTD_WRITEABLE)) 222 return part->master->_writev(part->master, vecs, count,
240 return -EROFS; 223 to + part->offset, retlen);
241 return mtd_writev(part->master, vecs, count, to + part->offset,
242 retlen);
243} 224}
244 225
245static int part_erase(struct mtd_info *mtd, struct erase_info *instr) 226static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
246{ 227{
247 struct mtd_part *part = PART(mtd); 228 struct mtd_part *part = PART(mtd);
248 int ret; 229 int ret;
249 if (!(mtd->flags & MTD_WRITEABLE)) 230
250 return -EROFS;
251 if (instr->addr >= mtd->size)
252 return -EINVAL;
253 instr->addr += part->offset; 231 instr->addr += part->offset;
254 ret = mtd_erase(part->master, instr); 232 ret = part->master->_erase(part->master, instr);
255 if (ret) { 233 if (ret) {
256 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 234 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
257 instr->fail_addr -= part->offset; 235 instr->fail_addr -= part->offset;
@@ -262,7 +240,7 @@ static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
262 240
263void mtd_erase_callback(struct erase_info *instr) 241void mtd_erase_callback(struct erase_info *instr)
264{ 242{
265 if (instr->mtd->erase == part_erase) { 243 if (instr->mtd->_erase == part_erase) {
266 struct mtd_part *part = PART(instr->mtd); 244 struct mtd_part *part = PART(instr->mtd);
267 245
268 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 246 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
@@ -277,52 +255,44 @@ EXPORT_SYMBOL_GPL(mtd_erase_callback);
277static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 255static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
278{ 256{
279 struct mtd_part *part = PART(mtd); 257 struct mtd_part *part = PART(mtd);
280 if ((len + ofs) > mtd->size) 258 return part->master->_lock(part->master, ofs + part->offset, len);
281 return -EINVAL;
282 return mtd_lock(part->master, ofs + part->offset, len);
283} 259}
284 260
285static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 261static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
286{ 262{
287 struct mtd_part *part = PART(mtd); 263 struct mtd_part *part = PART(mtd);
288 if ((len + ofs) > mtd->size) 264 return part->master->_unlock(part->master, ofs + part->offset, len);
289 return -EINVAL;
290 return mtd_unlock(part->master, ofs + part->offset, len);
291} 265}
292 266
293static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 267static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
294{ 268{
295 struct mtd_part *part = PART(mtd); 269 struct mtd_part *part = PART(mtd);
296 if ((len + ofs) > mtd->size) 270 return part->master->_is_locked(part->master, ofs + part->offset, len);
297 return -EINVAL;
298 return mtd_is_locked(part->master, ofs + part->offset, len);
299} 271}
300 272
301static void part_sync(struct mtd_info *mtd) 273static void part_sync(struct mtd_info *mtd)
302{ 274{
303 struct mtd_part *part = PART(mtd); 275 struct mtd_part *part = PART(mtd);
304 mtd_sync(part->master); 276 part->master->_sync(part->master);
305} 277}
306 278
307static int part_suspend(struct mtd_info *mtd) 279static int part_suspend(struct mtd_info *mtd)
308{ 280{
309 struct mtd_part *part = PART(mtd); 281 struct mtd_part *part = PART(mtd);
310 return mtd_suspend(part->master); 282 return part->master->_suspend(part->master);
311} 283}
312 284
313static void part_resume(struct mtd_info *mtd) 285static void part_resume(struct mtd_info *mtd)
314{ 286{
315 struct mtd_part *part = PART(mtd); 287 struct mtd_part *part = PART(mtd);
316 mtd_resume(part->master); 288 part->master->_resume(part->master);
317} 289}
318 290
319static int part_block_isbad(struct mtd_info *mtd, loff_t ofs) 291static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
320{ 292{
321 struct mtd_part *part = PART(mtd); 293 struct mtd_part *part = PART(mtd);
322 if (ofs >= mtd->size)
323 return -EINVAL;
324 ofs += part->offset; 294 ofs += part->offset;
325 return mtd_block_isbad(part->master, ofs); 295 return part->master->_block_isbad(part->master, ofs);
326} 296}
327 297
328static int part_block_markbad(struct mtd_info *mtd, loff_t ofs) 298static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
@@ -330,12 +300,8 @@ static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
330 struct mtd_part *part = PART(mtd); 300 struct mtd_part *part = PART(mtd);
331 int res; 301 int res;
332 302
333 if (!(mtd->flags & MTD_WRITEABLE))
334 return -EROFS;
335 if (ofs >= mtd->size)
336 return -EINVAL;
337 ofs += part->offset; 303 ofs += part->offset;
338 res = mtd_block_markbad(part->master, ofs); 304 res = part->master->_block_markbad(part->master, ofs);
339 if (!res) 305 if (!res)
340 mtd->ecc_stats.badblocks++; 306 mtd->ecc_stats.badblocks++;
341 return res; 307 return res;
@@ -410,54 +376,55 @@ static struct mtd_part *allocate_partition(struct mtd_info *master,
410 */ 376 */
411 slave->mtd.dev.parent = master->dev.parent; 377 slave->mtd.dev.parent = master->dev.parent;
412 378
413 slave->mtd.read = part_read; 379 slave->mtd._read = part_read;
414 slave->mtd.write = part_write; 380 slave->mtd._write = part_write;
415 381
416 if (master->panic_write) 382 if (master->_panic_write)
417 slave->mtd.panic_write = part_panic_write; 383 slave->mtd._panic_write = part_panic_write;
418 384
419 if (master->point && master->unpoint) { 385 if (master->_point && master->_unpoint) {
420 slave->mtd.point = part_point; 386 slave->mtd._point = part_point;
421 slave->mtd.unpoint = part_unpoint; 387 slave->mtd._unpoint = part_unpoint;
422 } 388 }
423 389
424 if (master->get_unmapped_area) 390 if (master->_get_unmapped_area)
425 slave->mtd.get_unmapped_area = part_get_unmapped_area; 391 slave->mtd._get_unmapped_area = part_get_unmapped_area;
426 if (master->read_oob) 392 if (master->_read_oob)
427 slave->mtd.read_oob = part_read_oob; 393 slave->mtd._read_oob = part_read_oob;
428 if (master->write_oob) 394 if (master->_write_oob)
429 slave->mtd.write_oob = part_write_oob; 395 slave->mtd._write_oob = part_write_oob;
430 if (master->read_user_prot_reg) 396 if (master->_read_user_prot_reg)
431 slave->mtd.read_user_prot_reg = part_read_user_prot_reg; 397 slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
432 if (master->read_fact_prot_reg) 398 if (master->_read_fact_prot_reg)
433 slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg; 399 slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
434 if (master->write_user_prot_reg) 400 if (master->_write_user_prot_reg)
435 slave->mtd.write_user_prot_reg = part_write_user_prot_reg; 401 slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
436 if (master->lock_user_prot_reg) 402 if (master->_lock_user_prot_reg)
437 slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg; 403 slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
438 if (master->get_user_prot_info) 404 if (master->_get_user_prot_info)
439 slave->mtd.get_user_prot_info = part_get_user_prot_info; 405 slave->mtd._get_user_prot_info = part_get_user_prot_info;
440 if (master->get_fact_prot_info) 406 if (master->_get_fact_prot_info)
441 slave->mtd.get_fact_prot_info = part_get_fact_prot_info; 407 slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
442 if (master->sync) 408 if (master->_sync)
443 slave->mtd.sync = part_sync; 409 slave->mtd._sync = part_sync;
444 if (!partno && !master->dev.class && master->suspend && master->resume) { 410 if (!partno && !master->dev.class && master->_suspend &&
445 slave->mtd.suspend = part_suspend; 411 master->_resume) {
446 slave->mtd.resume = part_resume; 412 slave->mtd._suspend = part_suspend;
413 slave->mtd._resume = part_resume;
447 } 414 }
448 if (master->writev) 415 if (master->_writev)
449 slave->mtd.writev = part_writev; 416 slave->mtd._writev = part_writev;
450 if (master->lock) 417 if (master->_lock)
451 slave->mtd.lock = part_lock; 418 slave->mtd._lock = part_lock;
452 if (master->unlock) 419 if (master->_unlock)
453 slave->mtd.unlock = part_unlock; 420 slave->mtd._unlock = part_unlock;
454 if (master->is_locked) 421 if (master->_is_locked)
455 slave->mtd.is_locked = part_is_locked; 422 slave->mtd._is_locked = part_is_locked;
456 if (master->block_isbad) 423 if (master->_block_isbad)
457 slave->mtd.block_isbad = part_block_isbad; 424 slave->mtd._block_isbad = part_block_isbad;
458 if (master->block_markbad) 425 if (master->_block_markbad)
459 slave->mtd.block_markbad = part_block_markbad; 426 slave->mtd._block_markbad = part_block_markbad;
460 slave->mtd.erase = part_erase; 427 slave->mtd._erase = part_erase;
461 slave->master = master; 428 slave->master = master;
462 slave->offset = part->offset; 429 slave->offset = part->offset;
463 430
@@ -549,7 +516,8 @@ static struct mtd_part *allocate_partition(struct mtd_info *master,
549 } 516 }
550 517
551 slave->mtd.ecclayout = master->ecclayout; 518 slave->mtd.ecclayout = master->ecclayout;
552 if (master->block_isbad) { 519 slave->mtd.ecc_strength = master->ecc_strength;
520 if (master->_block_isbad) {
553 uint64_t offs = 0; 521 uint64_t offs = 0;
554 522
555 while (offs < slave->mtd.size) { 523 while (offs < slave->mtd.size) {
@@ -761,7 +729,7 @@ int parse_mtd_partitions(struct mtd_info *master, const char **types,
761 for ( ; ret <= 0 && *types; types++) { 729 for ( ; ret <= 0 && *types; types++) {
762 parser = get_partition_parser(*types); 730 parser = get_partition_parser(*types);
763 if (!parser && !request_module("%s", *types)) 731 if (!parser && !request_module("%s", *types))
764 parser = get_partition_parser(*types); 732 parser = get_partition_parser(*types);
765 if (!parser) 733 if (!parser)
766 continue; 734 continue;
767 ret = (*parser->parse_fn)(master, pparts, data); 735 ret = (*parser->parse_fn)(master, pparts, data);
diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
index a3c4de551ebe..7d17cecad69d 100644
--- a/drivers/mtd/nand/Kconfig
+++ b/drivers/mtd/nand/Kconfig
@@ -314,6 +314,26 @@ config MTD_NAND_DISKONCHIP_BBTWRITE
314 load time (assuming you build diskonchip as a module) with the module 314 load time (assuming you build diskonchip as a module) with the module
315 parameter "inftl_bbt_write=1". 315 parameter "inftl_bbt_write=1".
316 316
317config MTD_NAND_DOCG4
318 tristate "Support for DiskOnChip G4 (EXPERIMENTAL)"
319 depends on EXPERIMENTAL
320 select BCH
321 select BITREVERSE
322 help
323 Support for diskonchip G4 nand flash, found in various smartphones and
324 PDAs, among them the Palm Treo680, HTC Prophet and Wizard, Toshiba
325 Portege G900, Asus P526, and O2 XDA Zinc.
326
327 With this driver you will be able to use UBI and create a ubifs on the
328 device, so you may wish to consider enabling UBI and UBIFS as well.
329
330 These devices ship with the Mys/Sandisk SAFTL formatting, for which
331 there is currently no mtd parser, so you may want to use command line
332 partitioning to segregate write-protected blocks. On the Treo680, the
333 first five erase blocks (256KiB each) are write-protected, followed
334 by the block containing the saftl partition table. This is probably
335 typical.
336
317config MTD_NAND_SHARPSL 337config MTD_NAND_SHARPSL
318 tristate "Support for NAND Flash on Sharp SL Series (C7xx + others)" 338 tristate "Support for NAND Flash on Sharp SL Series (C7xx + others)"
319 depends on ARCH_PXA 339 depends on ARCH_PXA
@@ -421,7 +441,6 @@ config MTD_NAND_NANDSIM
421config MTD_NAND_GPMI_NAND 441config MTD_NAND_GPMI_NAND
422 bool "GPMI NAND Flash Controller driver" 442 bool "GPMI NAND Flash Controller driver"
423 depends on MTD_NAND && (SOC_IMX23 || SOC_IMX28) 443 depends on MTD_NAND && (SOC_IMX23 || SOC_IMX28)
424 select MTD_CMDLINE_PARTS
425 help 444 help
426 Enables NAND Flash support for IMX23 or IMX28. 445 Enables NAND Flash support for IMX23 or IMX28.
427 The GPMI controller is very powerful, with the help of BCH 446 The GPMI controller is very powerful, with the help of BCH
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
index 19bc8cb1d187..d4b4d8739bd8 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -19,6 +19,7 @@ obj-$(CONFIG_MTD_NAND_PPCHAMELEONEVB) += ppchameleonevb.o
19obj-$(CONFIG_MTD_NAND_S3C2410) += s3c2410.o 19obj-$(CONFIG_MTD_NAND_S3C2410) += s3c2410.o
20obj-$(CONFIG_MTD_NAND_DAVINCI) += davinci_nand.o 20obj-$(CONFIG_MTD_NAND_DAVINCI) += davinci_nand.o
21obj-$(CONFIG_MTD_NAND_DISKONCHIP) += diskonchip.o 21obj-$(CONFIG_MTD_NAND_DISKONCHIP) += diskonchip.o
22obj-$(CONFIG_MTD_NAND_DOCG4) += docg4.o
22obj-$(CONFIG_MTD_NAND_FSMC) += fsmc_nand.o 23obj-$(CONFIG_MTD_NAND_FSMC) += fsmc_nand.o
23obj-$(CONFIG_MTD_NAND_H1900) += h1910.o 24obj-$(CONFIG_MTD_NAND_H1900) += h1910.o
24obj-$(CONFIG_MTD_NAND_RTC_FROM4) += rtc_from4.o 25obj-$(CONFIG_MTD_NAND_RTC_FROM4) += rtc_from4.o
diff --git a/drivers/mtd/nand/alauda.c b/drivers/mtd/nand/alauda.c
index 6a5ff64a139e..4f20e1d8bef1 100644
--- a/drivers/mtd/nand/alauda.c
+++ b/drivers/mtd/nand/alauda.c
@@ -585,12 +585,13 @@ static int alauda_init_media(struct alauda *al)
585 mtd->writesize = 1<<card->pageshift; 585 mtd->writesize = 1<<card->pageshift;
586 mtd->type = MTD_NANDFLASH; 586 mtd->type = MTD_NANDFLASH;
587 mtd->flags = MTD_CAP_NANDFLASH; 587 mtd->flags = MTD_CAP_NANDFLASH;
588 mtd->read = alauda_read; 588 mtd->_read = alauda_read;
589 mtd->write = alauda_write; 589 mtd->_write = alauda_write;
590 mtd->erase = alauda_erase; 590 mtd->_erase = alauda_erase;
591 mtd->block_isbad = alauda_isbad; 591 mtd->_block_isbad = alauda_isbad;
592 mtd->priv = al; 592 mtd->priv = al;
593 mtd->owner = THIS_MODULE; 593 mtd->owner = THIS_MODULE;
594 mtd->ecc_strength = 1;
594 595
595 err = mtd_device_register(mtd, NULL, 0); 596 err = mtd_device_register(mtd, NULL, 0);
596 if (err) { 597 if (err) {
diff --git a/drivers/mtd/nand/atmel_nand.c b/drivers/mtd/nand/atmel_nand.c
index ae7e37d9ac17..2165576a1c67 100644
--- a/drivers/mtd/nand/atmel_nand.c
+++ b/drivers/mtd/nand/atmel_nand.c
@@ -603,6 +603,7 @@ static int __init atmel_nand_probe(struct platform_device *pdev)
603 nand_chip->ecc.hwctl = atmel_nand_hwctl; 603 nand_chip->ecc.hwctl = atmel_nand_hwctl;
604 nand_chip->ecc.read_page = atmel_nand_read_page; 604 nand_chip->ecc.read_page = atmel_nand_read_page;
605 nand_chip->ecc.bytes = 4; 605 nand_chip->ecc.bytes = 4;
606 nand_chip->ecc.strength = 1;
606 } 607 }
607 608
608 nand_chip->chip_delay = 20; /* 20us command delay time */ 609 nand_chip->chip_delay = 20; /* 20us command delay time */
diff --git a/drivers/mtd/nand/bcm_umi_nand.c b/drivers/mtd/nand/bcm_umi_nand.c
index 64c9cbaf86a1..6908cdde3065 100644
--- a/drivers/mtd/nand/bcm_umi_nand.c
+++ b/drivers/mtd/nand/bcm_umi_nand.c
@@ -475,6 +475,14 @@ static int __devinit bcm_umi_nand_probe(struct platform_device *pdev)
475 largepage_bbt.options = NAND_BBT_SCAN2NDPAGE; 475 largepage_bbt.options = NAND_BBT_SCAN2NDPAGE;
476 this->badblock_pattern = &largepage_bbt; 476 this->badblock_pattern = &largepage_bbt;
477 } 477 }
478
479 /*
480 * FIXME: ecc strength value of 6 bits per 512 bytes of data is a
481 * conservative guess, given 13 ecc bytes and using bch alg.
482 * (Assume Galois field order m=15 to allow a margin of error.)
483 */
484 this->ecc.strength = 6;
485
478#endif 486#endif
479 487
480 /* Now finish off the scan, now that ecc.layout has been initialized. */ 488 /* Now finish off the scan, now that ecc.layout has been initialized. */
@@ -487,7 +495,7 @@ static int __devinit bcm_umi_nand_probe(struct platform_device *pdev)
487 495
488 /* Register the partitions */ 496 /* Register the partitions */
489 board_mtd->name = "bcm_umi-nand"; 497 board_mtd->name = "bcm_umi-nand";
490 mtd_device_parse_register(board_mtd, NULL, 0, NULL, 0); 498 mtd_device_parse_register(board_mtd, NULL, NULL, NULL, 0);
491 499
492 /* Return happy */ 500 /* Return happy */
493 return 0; 501 return 0;
diff --git a/drivers/mtd/nand/bf5xx_nand.c b/drivers/mtd/nand/bf5xx_nand.c
index dd899cb5d366..d7b86b925de5 100644
--- a/drivers/mtd/nand/bf5xx_nand.c
+++ b/drivers/mtd/nand/bf5xx_nand.c
@@ -702,9 +702,11 @@ static int bf5xx_nand_scan(struct mtd_info *mtd)
702 if (likely(mtd->writesize >= 512)) { 702 if (likely(mtd->writesize >= 512)) {
703 chip->ecc.size = 512; 703 chip->ecc.size = 512;
704 chip->ecc.bytes = 6; 704 chip->ecc.bytes = 6;
705 chip->ecc.strength = 2;
705 } else { 706 } else {
706 chip->ecc.size = 256; 707 chip->ecc.size = 256;
707 chip->ecc.bytes = 3; 708 chip->ecc.bytes = 3;
709 chip->ecc.strength = 1;
708 bfin_write_NFC_CTL(bfin_read_NFC_CTL() & ~(1 << NFC_PG_SIZE_OFFSET)); 710 bfin_write_NFC_CTL(bfin_read_NFC_CTL() & ~(1 << NFC_PG_SIZE_OFFSET));
709 SSYNC(); 711 SSYNC();
710 } 712 }
diff --git a/drivers/mtd/nand/cafe_nand.c b/drivers/mtd/nand/cafe_nand.c
index 72d3f23490c5..2a96e1a12062 100644
--- a/drivers/mtd/nand/cafe_nand.c
+++ b/drivers/mtd/nand/cafe_nand.c
@@ -783,6 +783,7 @@ static int __devinit cafe_nand_probe(struct pci_dev *pdev,
783 cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME; 783 cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
784 cafe->nand.ecc.size = mtd->writesize; 784 cafe->nand.ecc.size = mtd->writesize;
785 cafe->nand.ecc.bytes = 14; 785 cafe->nand.ecc.bytes = 14;
786 cafe->nand.ecc.strength = 4;
786 cafe->nand.ecc.hwctl = (void *)cafe_nand_bug; 787 cafe->nand.ecc.hwctl = (void *)cafe_nand_bug;
787 cafe->nand.ecc.calculate = (void *)cafe_nand_bug; 788 cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
788 cafe->nand.ecc.correct = (void *)cafe_nand_bug; 789 cafe->nand.ecc.correct = (void *)cafe_nand_bug;
@@ -799,7 +800,7 @@ static int __devinit cafe_nand_probe(struct pci_dev *pdev,
799 pci_set_drvdata(pdev, mtd); 800 pci_set_drvdata(pdev, mtd);
800 801
801 mtd->name = "cafe_nand"; 802 mtd->name = "cafe_nand";
802 mtd_device_parse_register(mtd, part_probes, 0, NULL, 0); 803 mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
803 804
804 goto out; 805 goto out;
805 806
diff --git a/drivers/mtd/nand/cmx270_nand.c b/drivers/mtd/nand/cmx270_nand.c
index 737ef9a04fdb..1024bfc05c86 100644
--- a/drivers/mtd/nand/cmx270_nand.c
+++ b/drivers/mtd/nand/cmx270_nand.c
@@ -219,7 +219,7 @@ static int __init cmx270_init(void)
219 } 219 }
220 220
221 /* Register the partitions */ 221 /* Register the partitions */
222 ret = mtd_device_parse_register(cmx270_nand_mtd, NULL, 0, 222 ret = mtd_device_parse_register(cmx270_nand_mtd, NULL, NULL,
223 partition_info, NUM_PARTITIONS); 223 partition_info, NUM_PARTITIONS);
224 if (ret) 224 if (ret)
225 goto err_scan; 225 goto err_scan;
diff --git a/drivers/mtd/nand/cs553x_nand.c b/drivers/mtd/nand/cs553x_nand.c
index 414afa793563..821c34c62500 100644
--- a/drivers/mtd/nand/cs553x_nand.c
+++ b/drivers/mtd/nand/cs553x_nand.c
@@ -248,6 +248,8 @@ static int __init cs553x_init_one(int cs, int mmio, unsigned long adr)
248 goto out_ior; 248 goto out_ior;
249 } 249 }
250 250
251 this->ecc.strength = 1;
252
251 new_mtd->name = kasprintf(GFP_KERNEL, "cs553x_nand_cs%d", cs); 253 new_mtd->name = kasprintf(GFP_KERNEL, "cs553x_nand_cs%d", cs);
252 254
253 cs553x_mtd[cs] = new_mtd; 255 cs553x_mtd[cs] = new_mtd;
@@ -313,7 +315,7 @@ static int __init cs553x_init(void)
313 for (i = 0; i < NR_CS553X_CONTROLLERS; i++) { 315 for (i = 0; i < NR_CS553X_CONTROLLERS; i++) {
314 if (cs553x_mtd[i]) { 316 if (cs553x_mtd[i]) {
315 /* If any devices registered, return success. Else the last error. */ 317 /* If any devices registered, return success. Else the last error. */
316 mtd_device_parse_register(cs553x_mtd[i], NULL, 0, 318 mtd_device_parse_register(cs553x_mtd[i], NULL, NULL,
317 NULL, 0); 319 NULL, 0);
318 err = 0; 320 err = 0;
319 } 321 }
diff --git a/drivers/mtd/nand/davinci_nand.c b/drivers/mtd/nand/davinci_nand.c
index 6e566156956f..d94b03c207af 100644
--- a/drivers/mtd/nand/davinci_nand.c
+++ b/drivers/mtd/nand/davinci_nand.c
@@ -641,6 +641,7 @@ static int __init nand_davinci_probe(struct platform_device *pdev)
641 info->chip.ecc.bytes = 3; 641 info->chip.ecc.bytes = 3;
642 } 642 }
643 info->chip.ecc.size = 512; 643 info->chip.ecc.size = 512;
644 info->chip.ecc.strength = pdata->ecc_bits;
644 break; 645 break;
645 default: 646 default:
646 ret = -EINVAL; 647 ret = -EINVAL;
@@ -752,8 +753,8 @@ syndrome_done:
752 if (ret < 0) 753 if (ret < 0)
753 goto err_scan; 754 goto err_scan;
754 755
755 ret = mtd_device_parse_register(&info->mtd, NULL, 0, 756 ret = mtd_device_parse_register(&info->mtd, NULL, NULL, pdata->parts,
756 pdata->parts, pdata->nr_parts); 757 pdata->nr_parts);
757 758
758 if (ret < 0) 759 if (ret < 0)
759 goto err_scan; 760 goto err_scan;
diff --git a/drivers/mtd/nand/denali.c b/drivers/mtd/nand/denali.c
index 3984d488f9ab..a9e57d686297 100644
--- a/drivers/mtd/nand/denali.c
+++ b/drivers/mtd/nand/denali.c
@@ -1590,6 +1590,7 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
1590 ECC_15BITS * (denali->mtd.writesize / 1590 ECC_15BITS * (denali->mtd.writesize /
1591 ECC_SECTOR_SIZE)))) { 1591 ECC_SECTOR_SIZE)))) {
1592 /* if MLC OOB size is large enough, use 15bit ECC*/ 1592 /* if MLC OOB size is large enough, use 15bit ECC*/
1593 denali->nand.ecc.strength = 15;
1593 denali->nand.ecc.layout = &nand_15bit_oob; 1594 denali->nand.ecc.layout = &nand_15bit_oob;
1594 denali->nand.ecc.bytes = ECC_15BITS; 1595 denali->nand.ecc.bytes = ECC_15BITS;
1595 iowrite32(15, denali->flash_reg + ECC_CORRECTION); 1596 iowrite32(15, denali->flash_reg + ECC_CORRECTION);
@@ -1600,12 +1601,14 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
1600 " contain 8bit ECC correction codes"); 1601 " contain 8bit ECC correction codes");
1601 goto failed_req_irq; 1602 goto failed_req_irq;
1602 } else { 1603 } else {
1604 denali->nand.ecc.strength = 8;
1603 denali->nand.ecc.layout = &nand_8bit_oob; 1605 denali->nand.ecc.layout = &nand_8bit_oob;
1604 denali->nand.ecc.bytes = ECC_8BITS; 1606 denali->nand.ecc.bytes = ECC_8BITS;
1605 iowrite32(8, denali->flash_reg + ECC_CORRECTION); 1607 iowrite32(8, denali->flash_reg + ECC_CORRECTION);
1606 } 1608 }
1607 1609
1608 denali->nand.ecc.bytes *= denali->devnum; 1610 denali->nand.ecc.bytes *= denali->devnum;
1611 denali->nand.ecc.strength *= denali->devnum;
1609 denali->nand.ecc.layout->eccbytes *= 1612 denali->nand.ecc.layout->eccbytes *=
1610 denali->mtd.writesize / ECC_SECTOR_SIZE; 1613 denali->mtd.writesize / ECC_SECTOR_SIZE;
1611 denali->nand.ecc.layout->oobfree[0].offset = 1614 denali->nand.ecc.layout->oobfree[0].offset =
diff --git a/drivers/mtd/nand/diskonchip.c b/drivers/mtd/nand/diskonchip.c
index df921e7a496c..e2ca067631cf 100644
--- a/drivers/mtd/nand/diskonchip.c
+++ b/drivers/mtd/nand/diskonchip.c
@@ -1653,6 +1653,7 @@ static int __init doc_probe(unsigned long physadr)
1653 nand->ecc.mode = NAND_ECC_HW_SYNDROME; 1653 nand->ecc.mode = NAND_ECC_HW_SYNDROME;
1654 nand->ecc.size = 512; 1654 nand->ecc.size = 512;
1655 nand->ecc.bytes = 6; 1655 nand->ecc.bytes = 6;
1656 nand->ecc.strength = 2;
1656 nand->bbt_options = NAND_BBT_USE_FLASH; 1657 nand->bbt_options = NAND_BBT_USE_FLASH;
1657 1658
1658 doc->physadr = physadr; 1659 doc->physadr = physadr;
diff --git a/drivers/mtd/nand/docg4.c b/drivers/mtd/nand/docg4.c
new file mode 100644
index 000000000000..b08202664543
--- /dev/null
+++ b/drivers/mtd/nand/docg4.c
@@ -0,0 +1,1377 @@
1/*
2 * Copyright © 2012 Mike Dunn <mikedunn@newsguy.com>
3 *
4 * mtd nand driver for M-Systems DiskOnChip G4
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * Tested on the Palm Treo 680. The G4 is also present on Toshiba Portege, Asus
12 * P526, some HTC smartphones (Wizard, Prophet, ...), O2 XDA Zinc, maybe others.
13 * Should work on these as well. Let me know!
14 *
15 * TODO:
16 *
17 * Mechanism for management of password-protected areas
18 *
19 * Hamming ecc when reading oob only
20 *
21 * According to the M-Sys documentation, this device is also available in a
22 * "dual-die" configuration having a 256MB capacity, but no mechanism for
23 * detecting this variant is documented. Currently this driver assumes 128MB
24 * capacity.
25 *
26 * Support for multiple cascaded devices ("floors"). Not sure which gadgets
27 * contain multiple G4s in a cascaded configuration, if any.
28 *
29 */
30
31#include <linux/kernel.h>
32#include <linux/slab.h>
33#include <linux/init.h>
34#include <linux/string.h>
35#include <linux/sched.h>
36#include <linux/delay.h>
37#include <linux/module.h>
38#include <linux/export.h>
39#include <linux/platform_device.h>
40#include <linux/io.h>
41#include <linux/bitops.h>
42#include <linux/mtd/partitions.h>
43#include <linux/mtd/mtd.h>
44#include <linux/mtd/nand.h>
45#include <linux/bch.h>
46#include <linux/bitrev.h>
47
48/*
49 * You'll want to ignore badblocks if you're reading a partition that contains
50 * data written by the TrueFFS library (i.e., by PalmOS, Windows, etc), since
51 * it does not use mtd nand's method for marking bad blocks (using oob area).
52 * This will also skip the check of the "page written" flag.
53 */
54static bool ignore_badblocks;
55module_param(ignore_badblocks, bool, 0);
56MODULE_PARM_DESC(ignore_badblocks, "no badblock checking performed");
57
58struct docg4_priv {
59 struct mtd_info *mtd;
60 struct device *dev;
61 void __iomem *virtadr;
62 int status;
63 struct {
64 unsigned int command;
65 int column;
66 int page;
67 } last_command;
68 uint8_t oob_buf[16];
69 uint8_t ecc_buf[7];
70 int oob_page;
71 struct bch_control *bch;
72};
73
74/*
75 * Defines prefixed with DOCG4 are unique to the diskonchip G4. All others are
76 * shared with other diskonchip devices (P3, G3 at least).
77 *
78 * Functions with names prefixed with docg4_ are mtd / nand interface functions
79 * (though they may also be called internally). All others are internal.
80 */
81
82#define DOC_IOSPACE_DATA 0x0800
83
84/* register offsets */
85#define DOC_CHIPID 0x1000
86#define DOC_DEVICESELECT 0x100a
87#define DOC_ASICMODE 0x100c
88#define DOC_DATAEND 0x101e
89#define DOC_NOP 0x103e
90
91#define DOC_FLASHSEQUENCE 0x1032
92#define DOC_FLASHCOMMAND 0x1034
93#define DOC_FLASHADDRESS 0x1036
94#define DOC_FLASHCONTROL 0x1038
95#define DOC_ECCCONF0 0x1040
96#define DOC_ECCCONF1 0x1042
97#define DOC_HAMMINGPARITY 0x1046
98#define DOC_BCH_SYNDROM(idx) (0x1048 + idx)
99
100#define DOC_ASICMODECONFIRM 0x1072
101#define DOC_CHIPID_INV 0x1074
102#define DOC_POWERMODE 0x107c
103
104#define DOCG4_MYSTERY_REG 0x1050
105
106/* apparently used only to write oob bytes 6 and 7 */
107#define DOCG4_OOB_6_7 0x1052
108
109/* DOC_FLASHSEQUENCE register commands */
110#define DOC_SEQ_RESET 0x00
111#define DOCG4_SEQ_PAGE_READ 0x03
112#define DOCG4_SEQ_FLUSH 0x29
113#define DOCG4_SEQ_PAGEWRITE 0x16
114#define DOCG4_SEQ_PAGEPROG 0x1e
115#define DOCG4_SEQ_BLOCKERASE 0x24
116
117/* DOC_FLASHCOMMAND register commands */
118#define DOCG4_CMD_PAGE_READ 0x00
119#define DOC_CMD_ERASECYCLE2 0xd0
120#define DOCG4_CMD_FLUSH 0x70
121#define DOCG4_CMD_READ2 0x30
122#define DOC_CMD_PROG_BLOCK_ADDR 0x60
123#define DOCG4_CMD_PAGEWRITE 0x80
124#define DOC_CMD_PROG_CYCLE2 0x10
125#define DOC_CMD_RESET 0xff
126
127/* DOC_POWERMODE register bits */
128#define DOC_POWERDOWN_READY 0x80
129
130/* DOC_FLASHCONTROL register bits */
131#define DOC_CTRL_CE 0x10
132#define DOC_CTRL_UNKNOWN 0x40
133#define DOC_CTRL_FLASHREADY 0x01
134
135/* DOC_ECCCONF0 register bits */
136#define DOC_ECCCONF0_READ_MODE 0x8000
137#define DOC_ECCCONF0_UNKNOWN 0x2000
138#define DOC_ECCCONF0_ECC_ENABLE 0x1000
139#define DOC_ECCCONF0_DATA_BYTES_MASK 0x07ff
140
141/* DOC_ECCCONF1 register bits */
142#define DOC_ECCCONF1_BCH_SYNDROM_ERR 0x80
143#define DOC_ECCCONF1_ECC_ENABLE 0x07
144#define DOC_ECCCONF1_PAGE_IS_WRITTEN 0x20
145
146/* DOC_ASICMODE register bits */
147#define DOC_ASICMODE_RESET 0x00
148#define DOC_ASICMODE_NORMAL 0x01
149#define DOC_ASICMODE_POWERDOWN 0x02
150#define DOC_ASICMODE_MDWREN 0x04
151#define DOC_ASICMODE_BDETCT_RESET 0x08
152#define DOC_ASICMODE_RSTIN_RESET 0x10
153#define DOC_ASICMODE_RAM_WE 0x20
154
155/* good status values read after read/write/erase operations */
156#define DOCG4_PROGSTATUS_GOOD 0x51
157#define DOCG4_PROGSTATUS_GOOD_2 0xe0
158
159/*
160 * On read operations (page and oob-only), the first byte read from I/O reg is a
161 * status. On error, it reads 0x73; otherwise, it reads either 0x71 (first read
162 * after reset only) or 0x51, so bit 1 is presumed to be an error indicator.
163 */
164#define DOCG4_READ_ERROR 0x02 /* bit 1 indicates read error */
165
166/* anatomy of the device */
167#define DOCG4_CHIP_SIZE 0x8000000
168#define DOCG4_PAGE_SIZE 0x200
169#define DOCG4_PAGES_PER_BLOCK 0x200
170#define DOCG4_BLOCK_SIZE (DOCG4_PAGES_PER_BLOCK * DOCG4_PAGE_SIZE)
171#define DOCG4_NUMBLOCKS (DOCG4_CHIP_SIZE / DOCG4_BLOCK_SIZE)
172#define DOCG4_OOB_SIZE 0x10
173#define DOCG4_CHIP_SHIFT 27 /* log_2(DOCG4_CHIP_SIZE) */
174#define DOCG4_PAGE_SHIFT 9 /* log_2(DOCG4_PAGE_SIZE) */
175#define DOCG4_ERASE_SHIFT 18 /* log_2(DOCG4_BLOCK_SIZE) */
176
177/* all but the last byte is included in ecc calculation */
178#define DOCG4_BCH_SIZE (DOCG4_PAGE_SIZE + DOCG4_OOB_SIZE - 1)
179
180#define DOCG4_USERDATA_LEN 520 /* 512 byte page plus 8 oob avail to user */
181
182/* expected values from the ID registers */
183#define DOCG4_IDREG1_VALUE 0x0400
184#define DOCG4_IDREG2_VALUE 0xfbff
185
186/* primitive polynomial used to build the Galois field used by hw ecc gen */
187#define DOCG4_PRIMITIVE_POLY 0x4443
188
189#define DOCG4_M 14 /* Galois field is of order 2^14 */
190#define DOCG4_T 4 /* BCH alg corrects up to 4 bit errors */
191
192#define DOCG4_FACTORY_BBT_PAGE 16 /* page where read-only factory bbt lives */
193
194/*
195 * Oob bytes 0 - 6 are available to the user.
196 * Byte 7 is hamming ecc for first 7 bytes. Bytes 8 - 14 are hw-generated ecc.
197 * Byte 15 (the last) is used by the driver as a "page written" flag.
198 */
199static struct nand_ecclayout docg4_oobinfo = {
200 .eccbytes = 9,
201 .eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15},
202 .oobavail = 7,
203 .oobfree = { {0, 7} }
204};
205
206/*
207 * The device has a nop register which M-Sys claims is for the purpose of
208 * inserting precise delays. But beware; at least some operations fail if the
209 * nop writes are replaced with a generic delay!
210 */
211static inline void write_nop(void __iomem *docptr)
212{
213 writew(0, docptr + DOC_NOP);
214}
215
216static void docg4_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
217{
218 int i;
219 struct nand_chip *nand = mtd->priv;
220 uint16_t *p = (uint16_t *) buf;
221 len >>= 1;
222
223 for (i = 0; i < len; i++)
224 p[i] = readw(nand->IO_ADDR_R);
225}
226
227static void docg4_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
228{
229 int i;
230 struct nand_chip *nand = mtd->priv;
231 uint16_t *p = (uint16_t *) buf;
232 len >>= 1;
233
234 for (i = 0; i < len; i++)
235 writew(p[i], nand->IO_ADDR_W);
236}
237
238static int poll_status(struct docg4_priv *doc)
239{
240 /*
241 * Busy-wait for the FLASHREADY bit to be set in the FLASHCONTROL
242 * register. Operations known to take a long time (e.g., block erase)
243 * should sleep for a while before calling this.
244 */
245
246 uint16_t flash_status;
247 unsigned int timeo;
248 void __iomem *docptr = doc->virtadr;
249
250 dev_dbg(doc->dev, "%s...\n", __func__);
251
252 /* hardware quirk requires reading twice initially */
253 flash_status = readw(docptr + DOC_FLASHCONTROL);
254
255 timeo = 1000;
256 do {
257 cpu_relax();
258 flash_status = readb(docptr + DOC_FLASHCONTROL);
259 } while (!(flash_status & DOC_CTRL_FLASHREADY) && --timeo);
260
261
262 if (!timeo) {
263 dev_err(doc->dev, "%s: timed out!\n", __func__);
264 return NAND_STATUS_FAIL;
265 }
266
267 if (unlikely(timeo < 50))
268 dev_warn(doc->dev, "%s: nearly timed out; %d remaining\n",
269 __func__, timeo);
270
271 return 0;
272}
273
274
275static int docg4_wait(struct mtd_info *mtd, struct nand_chip *nand)
276{
277
278 struct docg4_priv *doc = nand->priv;
279 int status = NAND_STATUS_WP; /* inverse logic?? */
280 dev_dbg(doc->dev, "%s...\n", __func__);
281
282 /* report any previously unreported error */
283 if (doc->status) {
284 status |= doc->status;
285 doc->status = 0;
286 return status;
287 }
288
289 status |= poll_status(doc);
290 return status;
291}
292
293static void docg4_select_chip(struct mtd_info *mtd, int chip)
294{
295 /*
296 * Select among multiple cascaded chips ("floors"). Multiple floors are
297 * not yet supported, so the only valid non-negative value is 0.
298 */
299 struct nand_chip *nand = mtd->priv;
300 struct docg4_priv *doc = nand->priv;
301 void __iomem *docptr = doc->virtadr;
302
303 dev_dbg(doc->dev, "%s: chip %d\n", __func__, chip);
304
305 if (chip < 0)
306 return; /* deselected */
307
308 if (chip > 0)
309 dev_warn(doc->dev, "multiple floors currently unsupported\n");
310
311 writew(0, docptr + DOC_DEVICESELECT);
312}
313
314static void reset(struct mtd_info *mtd)
315{
316 /* full device reset */
317
318 struct nand_chip *nand = mtd->priv;
319 struct docg4_priv *doc = nand->priv;
320 void __iomem *docptr = doc->virtadr;
321
322 writew(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN,
323 docptr + DOC_ASICMODE);
324 writew(~(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN),
325 docptr + DOC_ASICMODECONFIRM);
326 write_nop(docptr);
327
328 writew(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN,
329 docptr + DOC_ASICMODE);
330 writew(~(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN),
331 docptr + DOC_ASICMODECONFIRM);
332
333 writew(DOC_ECCCONF1_ECC_ENABLE, docptr + DOC_ECCCONF1);
334
335 poll_status(doc);
336}
337
338static void read_hw_ecc(void __iomem *docptr, uint8_t *ecc_buf)
339{
340 /* read the 7 hw-generated ecc bytes */
341
342 int i;
343 for (i = 0; i < 7; i++) { /* hw quirk; read twice */
344 ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i));
345 ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i));
346 }
347}
348
349static int correct_data(struct mtd_info *mtd, uint8_t *buf, int page)
350{
351 /*
352 * Called after a page read when hardware reports bitflips.
353 * Up to four bitflips can be corrected.
354 */
355
356 struct nand_chip *nand = mtd->priv;
357 struct docg4_priv *doc = nand->priv;
358 void __iomem *docptr = doc->virtadr;
359 int i, numerrs, errpos[4];
360 const uint8_t blank_read_hwecc[8] = {
361 0xcf, 0x72, 0xfc, 0x1b, 0xa9, 0xc7, 0xb9, 0 };
362
363 read_hw_ecc(docptr, doc->ecc_buf); /* read 7 hw-generated ecc bytes */
364
365 /* check if read error is due to a blank page */
366 if (!memcmp(doc->ecc_buf, blank_read_hwecc, 7))
367 return 0; /* yes */
368
369 /* skip additional check of "written flag" if ignore_badblocks */
370 if (ignore_badblocks == false) {
371
372 /*
373 * If the hw ecc bytes are not those of a blank page, there's
374 * still a chance that the page is blank, but was read with
375 * errors. Check the "written flag" in last oob byte, which
376 * is set to zero when a page is written. If more than half
377 * the bits are set, assume a blank page. Unfortunately, the
378 * bit flips(s) are not reported in stats.
379 */
380
381 if (doc->oob_buf[15]) {
382 int bit, numsetbits = 0;
383 unsigned long written_flag = doc->oob_buf[15];
384 for_each_set_bit(bit, &written_flag, 8)
385 numsetbits++;
386 if (numsetbits > 4) { /* assume blank */
387 dev_warn(doc->dev,
388 "error(s) in blank page "
389 "at offset %08x\n",
390 page * DOCG4_PAGE_SIZE);
391 return 0;
392 }
393 }
394 }
395
396 /*
397 * The hardware ecc unit produces oob_ecc ^ calc_ecc. The kernel's bch
398 * algorithm is used to decode this. However the hw operates on page
399 * data in a bit order that is the reverse of that of the bch alg,
400 * requiring that the bits be reversed on the result. Thanks to Ivan
401 * Djelic for his analysis!
402 */
403 for (i = 0; i < 7; i++)
404 doc->ecc_buf[i] = bitrev8(doc->ecc_buf[i]);
405
406 numerrs = decode_bch(doc->bch, NULL, DOCG4_USERDATA_LEN, NULL,
407 doc->ecc_buf, NULL, errpos);
408
409 if (numerrs == -EBADMSG) {
410 dev_warn(doc->dev, "uncorrectable errors at offset %08x\n",
411 page * DOCG4_PAGE_SIZE);
412 return -EBADMSG;
413 }
414
415 BUG_ON(numerrs < 0); /* -EINVAL, or anything other than -EBADMSG */
416
417 /* undo last step in BCH alg (modulo mirroring not needed) */
418 for (i = 0; i < numerrs; i++)
419 errpos[i] = (errpos[i] & ~7)|(7-(errpos[i] & 7));
420
421 /* fix the errors */
422 for (i = 0; i < numerrs; i++) {
423
424 /* ignore if error within oob ecc bytes */
425 if (errpos[i] > DOCG4_USERDATA_LEN * 8)
426 continue;
427
428 /* if error within oob area preceeding ecc bytes... */
429 if (errpos[i] > DOCG4_PAGE_SIZE * 8)
430 change_bit(errpos[i] - DOCG4_PAGE_SIZE * 8,
431 (unsigned long *)doc->oob_buf);
432
433 else /* error in page data */
434 change_bit(errpos[i], (unsigned long *)buf);
435 }
436
437 dev_notice(doc->dev, "%d error(s) corrected at offset %08x\n",
438 numerrs, page * DOCG4_PAGE_SIZE);
439
440 return numerrs;
441}
442
443static uint8_t docg4_read_byte(struct mtd_info *mtd)
444{
445 struct nand_chip *nand = mtd->priv;
446 struct docg4_priv *doc = nand->priv;
447
448 dev_dbg(doc->dev, "%s\n", __func__);
449
450 if (doc->last_command.command == NAND_CMD_STATUS) {
451 int status;
452
453 /*
454 * Previous nand command was status request, so nand
455 * infrastructure code expects to read the status here. If an
456 * error occurred in a previous operation, report it.
457 */
458 doc->last_command.command = 0;
459
460 if (doc->status) {
461 status = doc->status;
462 doc->status = 0;
463 }
464
465 /* why is NAND_STATUS_WP inverse logic?? */
466 else
467 status = NAND_STATUS_WP | NAND_STATUS_READY;
468
469 return status;
470 }
471
472 dev_warn(doc->dev, "unexpectd call to read_byte()\n");
473
474 return 0;
475}
476
477static void write_addr(struct docg4_priv *doc, uint32_t docg4_addr)
478{
479 /* write the four address bytes packed in docg4_addr to the device */
480
481 void __iomem *docptr = doc->virtadr;
482 writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
483 docg4_addr >>= 8;
484 writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
485 docg4_addr >>= 8;
486 writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
487 docg4_addr >>= 8;
488 writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
489}
490
491static int read_progstatus(struct docg4_priv *doc)
492{
493 /*
494 * This apparently checks the status of programming. Done after an
495 * erasure, and after page data is written. On error, the status is
496 * saved, to be later retrieved by the nand infrastructure code.
497 */
498 void __iomem *docptr = doc->virtadr;
499
500 /* status is read from the I/O reg */
501 uint16_t status1 = readw(docptr + DOC_IOSPACE_DATA);
502 uint16_t status2 = readw(docptr + DOC_IOSPACE_DATA);
503 uint16_t status3 = readw(docptr + DOCG4_MYSTERY_REG);
504
505 dev_dbg(doc->dev, "docg4: %s: %02x %02x %02x\n",
506 __func__, status1, status2, status3);
507
508 if (status1 != DOCG4_PROGSTATUS_GOOD
509 || status2 != DOCG4_PROGSTATUS_GOOD_2
510 || status3 != DOCG4_PROGSTATUS_GOOD_2) {
511 doc->status = NAND_STATUS_FAIL;
512 dev_warn(doc->dev, "read_progstatus failed: "
513 "%02x, %02x, %02x\n", status1, status2, status3);
514 return -EIO;
515 }
516 return 0;
517}
518
519static int pageprog(struct mtd_info *mtd)
520{
521 /*
522 * Final step in writing a page. Writes the contents of its
523 * internal buffer out to the flash array, or some such.
524 */
525
526 struct nand_chip *nand = mtd->priv;
527 struct docg4_priv *doc = nand->priv;
528 void __iomem *docptr = doc->virtadr;
529 int retval = 0;
530
531 dev_dbg(doc->dev, "docg4: %s\n", __func__);
532
533 writew(DOCG4_SEQ_PAGEPROG, docptr + DOC_FLASHSEQUENCE);
534 writew(DOC_CMD_PROG_CYCLE2, docptr + DOC_FLASHCOMMAND);
535 write_nop(docptr);
536 write_nop(docptr);
537
538 /* Just busy-wait; usleep_range() slows things down noticeably. */
539 poll_status(doc);
540
541 writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE);
542 writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND);
543 writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0);
544 write_nop(docptr);
545 write_nop(docptr);
546 write_nop(docptr);
547 write_nop(docptr);
548 write_nop(docptr);
549
550 retval = read_progstatus(doc);
551 writew(0, docptr + DOC_DATAEND);
552 write_nop(docptr);
553 poll_status(doc);
554 write_nop(docptr);
555
556 return retval;
557}
558
559static void sequence_reset(struct mtd_info *mtd)
560{
561 /* common starting sequence for all operations */
562
563 struct nand_chip *nand = mtd->priv;
564 struct docg4_priv *doc = nand->priv;
565 void __iomem *docptr = doc->virtadr;
566
567 writew(DOC_CTRL_UNKNOWN | DOC_CTRL_CE, docptr + DOC_FLASHCONTROL);
568 writew(DOC_SEQ_RESET, docptr + DOC_FLASHSEQUENCE);
569 writew(DOC_CMD_RESET, docptr + DOC_FLASHCOMMAND);
570 write_nop(docptr);
571 write_nop(docptr);
572 poll_status(doc);
573 write_nop(docptr);
574}
575
576static void read_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr)
577{
578 /* first step in reading a page */
579
580 struct nand_chip *nand = mtd->priv;
581 struct docg4_priv *doc = nand->priv;
582 void __iomem *docptr = doc->virtadr;
583
584 dev_dbg(doc->dev,
585 "docg4: %s: g4 page %08x\n", __func__, docg4_addr);
586
587 sequence_reset(mtd);
588
589 writew(DOCG4_SEQ_PAGE_READ, docptr + DOC_FLASHSEQUENCE);
590 writew(DOCG4_CMD_PAGE_READ, docptr + DOC_FLASHCOMMAND);
591 write_nop(docptr);
592
593 write_addr(doc, docg4_addr);
594
595 write_nop(docptr);
596 writew(DOCG4_CMD_READ2, docptr + DOC_FLASHCOMMAND);
597 write_nop(docptr);
598 write_nop(docptr);
599
600 poll_status(doc);
601}
602
603static void write_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr)
604{
605 /* first step in writing a page */
606
607 struct nand_chip *nand = mtd->priv;
608 struct docg4_priv *doc = nand->priv;
609 void __iomem *docptr = doc->virtadr;
610
611 dev_dbg(doc->dev,
612 "docg4: %s: g4 addr: %x\n", __func__, docg4_addr);
613 sequence_reset(mtd);
614 writew(DOCG4_SEQ_PAGEWRITE, docptr + DOC_FLASHSEQUENCE);
615 writew(DOCG4_CMD_PAGEWRITE, docptr + DOC_FLASHCOMMAND);
616 write_nop(docptr);
617 write_addr(doc, docg4_addr);
618 write_nop(docptr);
619 write_nop(docptr);
620 poll_status(doc);
621}
622
623static uint32_t mtd_to_docg4_address(int page, int column)
624{
625 /*
626 * Convert mtd address to format used by the device, 32 bit packed.
627 *
628 * Some notes on G4 addressing... The M-Sys documentation on this device
629 * claims that pages are 2K in length, and indeed, the format of the
630 * address used by the device reflects that. But within each page are
631 * four 512 byte "sub-pages", each with its own oob data that is
632 * read/written immediately after the 512 bytes of page data. This oob
633 * data contains the ecc bytes for the preceeding 512 bytes.
634 *
635 * Rather than tell the mtd nand infrastructure that page size is 2k,
636 * with four sub-pages each, we engage in a little subterfuge and tell
637 * the infrastructure code that pages are 512 bytes in size. This is
638 * done because during the course of reverse-engineering the device, I
639 * never observed an instance where an entire 2K "page" was read or
640 * written as a unit. Each "sub-page" is always addressed individually,
641 * its data read/written, and ecc handled before the next "sub-page" is
642 * addressed.
643 *
644 * This requires us to convert addresses passed by the mtd nand
645 * infrastructure code to those used by the device.
646 *
647 * The address that is written to the device consists of four bytes: the
648 * first two are the 2k page number, and the second is the index into
649 * the page. The index is in terms of 16-bit half-words and includes
650 * the preceeding oob data, so e.g., the index into the second
651 * "sub-page" is 0x108, and the full device address of the start of mtd
652 * page 0x201 is 0x00800108.
653 */
654 int g4_page = page / 4; /* device's 2K page */
655 int g4_index = (page % 4) * 0x108 + column/2; /* offset into page */
656 return (g4_page << 16) | g4_index; /* pack */
657}
658
659static void docg4_command(struct mtd_info *mtd, unsigned command, int column,
660 int page_addr)
661{
662 /* handle standard nand commands */
663
664 struct nand_chip *nand = mtd->priv;
665 struct docg4_priv *doc = nand->priv;
666 uint32_t g4_addr = mtd_to_docg4_address(page_addr, column);
667
668 dev_dbg(doc->dev, "%s %x, page_addr=%x, column=%x\n",
669 __func__, command, page_addr, column);
670
671 /*
672 * Save the command and its arguments. This enables emulation of
673 * standard flash devices, and also some optimizations.
674 */
675 doc->last_command.command = command;
676 doc->last_command.column = column;
677 doc->last_command.page = page_addr;
678
679 switch (command) {
680
681 case NAND_CMD_RESET:
682 reset(mtd);
683 break;
684
685 case NAND_CMD_READ0:
686 read_page_prologue(mtd, g4_addr);
687 break;
688
689 case NAND_CMD_STATUS:
690 /* next call to read_byte() will expect a status */
691 break;
692
693 case NAND_CMD_SEQIN:
694 write_page_prologue(mtd, g4_addr);
695
696 /* hack for deferred write of oob bytes */
697 if (doc->oob_page == page_addr)
698 memcpy(nand->oob_poi, doc->oob_buf, 16);
699 break;
700
701 case NAND_CMD_PAGEPROG:
702 pageprog(mtd);
703 break;
704
705 /* we don't expect these, based on review of nand_base.c */
706 case NAND_CMD_READOOB:
707 case NAND_CMD_READID:
708 case NAND_CMD_ERASE1:
709 case NAND_CMD_ERASE2:
710 dev_warn(doc->dev, "docg4_command: "
711 "unexpected nand command 0x%x\n", command);
712 break;
713
714 }
715}
716
717static int read_page(struct mtd_info *mtd, struct nand_chip *nand,
718 uint8_t *buf, int page, bool use_ecc)
719{
720 struct docg4_priv *doc = nand->priv;
721 void __iomem *docptr = doc->virtadr;
722 uint16_t status, edc_err, *buf16;
723
724 dev_dbg(doc->dev, "%s: page %08x\n", __func__, page);
725
726 writew(DOC_ECCCONF0_READ_MODE |
727 DOC_ECCCONF0_ECC_ENABLE |
728 DOC_ECCCONF0_UNKNOWN |
729 DOCG4_BCH_SIZE,
730 docptr + DOC_ECCCONF0);
731 write_nop(docptr);
732 write_nop(docptr);
733 write_nop(docptr);
734 write_nop(docptr);
735 write_nop(docptr);
736
737 /* the 1st byte from the I/O reg is a status; the rest is page data */
738 status = readw(docptr + DOC_IOSPACE_DATA);
739 if (status & DOCG4_READ_ERROR) {
740 dev_err(doc->dev,
741 "docg4_read_page: bad status: 0x%02x\n", status);
742 writew(0, docptr + DOC_DATAEND);
743 return -EIO;
744 }
745
746 dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status);
747
748 docg4_read_buf(mtd, buf, DOCG4_PAGE_SIZE); /* read the page data */
749
750 /*
751 * Diskonchips read oob immediately after a page read. Mtd
752 * infrastructure issues a separate command for reading oob after the
753 * page is read. So we save the oob bytes in a local buffer and just
754 * copy it if the next command reads oob from the same page.
755 */
756
757 /* first 14 oob bytes read from I/O reg */
758 docg4_read_buf(mtd, doc->oob_buf, 14);
759
760 /* last 2 read from another reg */
761 buf16 = (uint16_t *)(doc->oob_buf + 14);
762 *buf16 = readw(docptr + DOCG4_MYSTERY_REG);
763
764 write_nop(docptr);
765
766 if (likely(use_ecc == true)) {
767
768 /* read the register that tells us if bitflip(s) detected */
769 edc_err = readw(docptr + DOC_ECCCONF1);
770 edc_err = readw(docptr + DOC_ECCCONF1);
771 dev_dbg(doc->dev, "%s: edc_err = 0x%02x\n", __func__, edc_err);
772
773 /* If bitflips are reported, attempt to correct with ecc */
774 if (edc_err & DOC_ECCCONF1_BCH_SYNDROM_ERR) {
775 int bits_corrected = correct_data(mtd, buf, page);
776 if (bits_corrected == -EBADMSG)
777 mtd->ecc_stats.failed++;
778 else
779 mtd->ecc_stats.corrected += bits_corrected;
780 }
781 }
782
783 writew(0, docptr + DOC_DATAEND);
784 return 0;
785}
786
787
788static int docg4_read_page_raw(struct mtd_info *mtd, struct nand_chip *nand,
789 uint8_t *buf, int page)
790{
791 return read_page(mtd, nand, buf, page, false);
792}
793
794static int docg4_read_page(struct mtd_info *mtd, struct nand_chip *nand,
795 uint8_t *buf, int page)
796{
797 return read_page(mtd, nand, buf, page, true);
798}
799
800static int docg4_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
801 int page, int sndcmd)
802{
803 struct docg4_priv *doc = nand->priv;
804 void __iomem *docptr = doc->virtadr;
805 uint16_t status;
806
807 dev_dbg(doc->dev, "%s: page %x\n", __func__, page);
808
809 /*
810 * Oob bytes are read as part of a normal page read. If the previous
811 * nand command was a read of the page whose oob is now being read, just
812 * copy the oob bytes that we saved in a local buffer and avoid a
813 * separate oob read.
814 */
815 if (doc->last_command.command == NAND_CMD_READ0 &&
816 doc->last_command.page == page) {
817 memcpy(nand->oob_poi, doc->oob_buf, 16);
818 return 0;
819 }
820
821 /*
822 * Separate read of oob data only.
823 */
824 docg4_command(mtd, NAND_CMD_READ0, nand->ecc.size, page);
825
826 writew(DOC_ECCCONF0_READ_MODE | DOCG4_OOB_SIZE, docptr + DOC_ECCCONF0);
827 write_nop(docptr);
828 write_nop(docptr);
829 write_nop(docptr);
830 write_nop(docptr);
831 write_nop(docptr);
832
833 /* the 1st byte from the I/O reg is a status; the rest is oob data */
834 status = readw(docptr + DOC_IOSPACE_DATA);
835 if (status & DOCG4_READ_ERROR) {
836 dev_warn(doc->dev,
837 "docg4_read_oob failed: status = 0x%02x\n", status);
838 return -EIO;
839 }
840
841 dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status);
842
843 docg4_read_buf(mtd, nand->oob_poi, 16);
844
845 write_nop(docptr);
846 write_nop(docptr);
847 write_nop(docptr);
848 writew(0, docptr + DOC_DATAEND);
849 write_nop(docptr);
850
851 return 0;
852}
853
854static void docg4_erase_block(struct mtd_info *mtd, int page)
855{
856 struct nand_chip *nand = mtd->priv;
857 struct docg4_priv *doc = nand->priv;
858 void __iomem *docptr = doc->virtadr;
859 uint16_t g4_page;
860
861 dev_dbg(doc->dev, "%s: page %04x\n", __func__, page);
862
863 sequence_reset(mtd);
864
865 writew(DOCG4_SEQ_BLOCKERASE, docptr + DOC_FLASHSEQUENCE);
866 writew(DOC_CMD_PROG_BLOCK_ADDR, docptr + DOC_FLASHCOMMAND);
867 write_nop(docptr);
868
869 /* only 2 bytes of address are written to specify erase block */
870 g4_page = (uint16_t)(page / 4); /* to g4's 2k page addressing */
871 writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS);
872 g4_page >>= 8;
873 writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS);
874 write_nop(docptr);
875
876 /* start the erasure */
877 writew(DOC_CMD_ERASECYCLE2, docptr + DOC_FLASHCOMMAND);
878 write_nop(docptr);
879 write_nop(docptr);
880
881 usleep_range(500, 1000); /* erasure is long; take a snooze */
882 poll_status(doc);
883 writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE);
884 writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND);
885 writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0);
886 write_nop(docptr);
887 write_nop(docptr);
888 write_nop(docptr);
889 write_nop(docptr);
890 write_nop(docptr);
891
892 read_progstatus(doc);
893
894 writew(0, docptr + DOC_DATAEND);
895 write_nop(docptr);
896 poll_status(doc);
897 write_nop(docptr);
898}
899
900static void write_page(struct mtd_info *mtd, struct nand_chip *nand,
901 const uint8_t *buf, bool use_ecc)
902{
903 struct docg4_priv *doc = nand->priv;
904 void __iomem *docptr = doc->virtadr;
905 uint8_t ecc_buf[8];
906
907 dev_dbg(doc->dev, "%s...\n", __func__);
908
909 writew(DOC_ECCCONF0_ECC_ENABLE |
910 DOC_ECCCONF0_UNKNOWN |
911 DOCG4_BCH_SIZE,
912 docptr + DOC_ECCCONF0);
913 write_nop(docptr);
914
915 /* write the page data */
916 docg4_write_buf16(mtd, buf, DOCG4_PAGE_SIZE);
917
918 /* oob bytes 0 through 5 are written to I/O reg */
919 docg4_write_buf16(mtd, nand->oob_poi, 6);
920
921 /* oob byte 6 written to a separate reg */
922 writew(nand->oob_poi[6], docptr + DOCG4_OOB_6_7);
923
924 write_nop(docptr);
925 write_nop(docptr);
926
927 /* write hw-generated ecc bytes to oob */
928 if (likely(use_ecc == true)) {
929 /* oob byte 7 is hamming code */
930 uint8_t hamming = readb(docptr + DOC_HAMMINGPARITY);
931 hamming = readb(docptr + DOC_HAMMINGPARITY); /* 2nd read */
932 writew(hamming, docptr + DOCG4_OOB_6_7);
933 write_nop(docptr);
934
935 /* read the 7 bch bytes from ecc regs */
936 read_hw_ecc(docptr, ecc_buf);
937 ecc_buf[7] = 0; /* clear the "page written" flag */
938 }
939
940 /* write user-supplied bytes to oob */
941 else {
942 writew(nand->oob_poi[7], docptr + DOCG4_OOB_6_7);
943 write_nop(docptr);
944 memcpy(ecc_buf, &nand->oob_poi[8], 8);
945 }
946
947 docg4_write_buf16(mtd, ecc_buf, 8);
948 write_nop(docptr);
949 write_nop(docptr);
950 writew(0, docptr + DOC_DATAEND);
951 write_nop(docptr);
952}
953
954static void docg4_write_page_raw(struct mtd_info *mtd, struct nand_chip *nand,
955 const uint8_t *buf)
956{
957 return write_page(mtd, nand, buf, false);
958}
959
960static void docg4_write_page(struct mtd_info *mtd, struct nand_chip *nand,
961 const uint8_t *buf)
962{
963 return write_page(mtd, nand, buf, true);
964}
965
966static int docg4_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
967 int page)
968{
969 /*
970 * Writing oob-only is not really supported, because MLC nand must write
971 * oob bytes at the same time as page data. Nonetheless, we save the
972 * oob buffer contents here, and then write it along with the page data
973 * if the same page is subsequently written. This allows user space
974 * utilities that write the oob data prior to the page data to work
975 * (e.g., nandwrite). The disdvantage is that, if the intention was to
976 * write oob only, the operation is quietly ignored. Also, oob can get
977 * corrupted if two concurrent processes are running nandwrite.
978 */
979
980 /* note that bytes 7..14 are hw generated hamming/ecc and overwritten */
981 struct docg4_priv *doc = nand->priv;
982 doc->oob_page = page;
983 memcpy(doc->oob_buf, nand->oob_poi, 16);
984 return 0;
985}
986
987static int __init read_factory_bbt(struct mtd_info *mtd)
988{
989 /*
990 * The device contains a read-only factory bad block table. Read it and
991 * update the memory-based bbt accordingly.
992 */
993
994 struct nand_chip *nand = mtd->priv;
995 struct docg4_priv *doc = nand->priv;
996 uint32_t g4_addr = mtd_to_docg4_address(DOCG4_FACTORY_BBT_PAGE, 0);
997 uint8_t *buf;
998 int i, block, status;
999
1000 buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL);
1001 if (buf == NULL)
1002 return -ENOMEM;
1003
1004 read_page_prologue(mtd, g4_addr);
1005 status = docg4_read_page(mtd, nand, buf, DOCG4_FACTORY_BBT_PAGE);
1006 if (status)
1007 goto exit;
1008
1009 /*
1010 * If no memory-based bbt was created, exit. This will happen if module
1011 * parameter ignore_badblocks is set. Then why even call this function?
1012 * For an unknown reason, block erase always fails if it's the first
1013 * operation after device power-up. The above read ensures it never is.
1014 * Ugly, I know.
1015 */
1016 if (nand->bbt == NULL) /* no memory-based bbt */
1017 goto exit;
1018
1019 /*
1020 * Parse factory bbt and update memory-based bbt. Factory bbt format is
1021 * simple: one bit per block, block numbers increase left to right (msb
1022 * to lsb). Bit clear means bad block.
1023 */
1024 for (i = block = 0; block < DOCG4_NUMBLOCKS; block += 8, i++) {
1025 int bitnum;
1026 unsigned long bits = ~buf[i];
1027 for_each_set_bit(bitnum, &bits, 8) {
1028 int badblock = block + 7 - bitnum;
1029 nand->bbt[badblock / 4] |=
1030 0x03 << ((badblock % 4) * 2);
1031 mtd->ecc_stats.badblocks++;
1032 dev_notice(doc->dev, "factory-marked bad block: %d\n",
1033 badblock);
1034 }
1035 }
1036 exit:
1037 kfree(buf);
1038 return status;
1039}
1040
1041static int docg4_block_markbad(struct mtd_info *mtd, loff_t ofs)
1042{
1043 /*
1044 * Mark a block as bad. Bad blocks are marked in the oob area of the
1045 * first page of the block. The default scan_bbt() in the nand
1046 * infrastructure code works fine for building the memory-based bbt
1047 * during initialization, as does the nand infrastructure function that
1048 * checks if a block is bad by reading the bbt. This function replaces
1049 * the nand default because writes to oob-only are not supported.
1050 */
1051
1052 int ret, i;
1053 uint8_t *buf;
1054 struct nand_chip *nand = mtd->priv;
1055 struct docg4_priv *doc = nand->priv;
1056 struct nand_bbt_descr *bbtd = nand->badblock_pattern;
1057 int block = (int)(ofs >> nand->bbt_erase_shift);
1058 int page = (int)(ofs >> nand->page_shift);
1059 uint32_t g4_addr = mtd_to_docg4_address(page, 0);
1060
1061 dev_dbg(doc->dev, "%s: %08llx\n", __func__, ofs);
1062
1063 if (unlikely(ofs & (DOCG4_BLOCK_SIZE - 1)))
1064 dev_warn(doc->dev, "%s: ofs %llx not start of block!\n",
1065 __func__, ofs);
1066
1067 /* allocate blank buffer for page data */
1068 buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL);
1069 if (buf == NULL)
1070 return -ENOMEM;
1071
1072 /* update bbt in memory */
1073 nand->bbt[block / 4] |= 0x01 << ((block & 0x03) * 2);
1074
1075 /* write bit-wise negation of pattern to oob buffer */
1076 memset(nand->oob_poi, 0xff, mtd->oobsize);
1077 for (i = 0; i < bbtd->len; i++)
1078 nand->oob_poi[bbtd->offs + i] = ~bbtd->pattern[i];
1079
1080 /* write first page of block */
1081 write_page_prologue(mtd, g4_addr);
1082 docg4_write_page(mtd, nand, buf);
1083 ret = pageprog(mtd);
1084 if (!ret)
1085 mtd->ecc_stats.badblocks++;
1086
1087 kfree(buf);
1088
1089 return ret;
1090}
1091
1092static int docg4_block_neverbad(struct mtd_info *mtd, loff_t ofs, int getchip)
1093{
1094 /* only called when module_param ignore_badblocks is set */
1095 return 0;
1096}
1097
1098static int docg4_suspend(struct platform_device *pdev, pm_message_t state)
1099{
1100 /*
1101 * Put the device into "deep power-down" mode. Note that CE# must be
1102 * deasserted for this to take effect. The xscale, e.g., can be
1103 * configured to float this signal when the processor enters power-down,
1104 * and a suitable pull-up ensures its deassertion.
1105 */
1106
1107 int i;
1108 uint8_t pwr_down;
1109 struct docg4_priv *doc = platform_get_drvdata(pdev);
1110 void __iomem *docptr = doc->virtadr;
1111
1112 dev_dbg(doc->dev, "%s...\n", __func__);
1113
1114 /* poll the register that tells us we're ready to go to sleep */
1115 for (i = 0; i < 10; i++) {
1116 pwr_down = readb(docptr + DOC_POWERMODE);
1117 if (pwr_down & DOC_POWERDOWN_READY)
1118 break;
1119 usleep_range(1000, 4000);
1120 }
1121
1122 if (pwr_down & DOC_POWERDOWN_READY) {
1123 dev_err(doc->dev, "suspend failed; "
1124 "timeout polling DOC_POWERDOWN_READY\n");
1125 return -EIO;
1126 }
1127
1128 writew(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN,
1129 docptr + DOC_ASICMODE);
1130 writew(~(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN),
1131 docptr + DOC_ASICMODECONFIRM);
1132
1133 write_nop(docptr);
1134
1135 return 0;
1136}
1137
1138static int docg4_resume(struct platform_device *pdev)
1139{
1140
1141 /*
1142 * Exit power-down. Twelve consecutive reads of the address below
1143 * accomplishes this, assuming CE# has been asserted.
1144 */
1145
1146 struct docg4_priv *doc = platform_get_drvdata(pdev);
1147 void __iomem *docptr = doc->virtadr;
1148 int i;
1149
1150 dev_dbg(doc->dev, "%s...\n", __func__);
1151
1152 for (i = 0; i < 12; i++)
1153 readb(docptr + 0x1fff);
1154
1155 return 0;
1156}
1157
1158static void __init init_mtd_structs(struct mtd_info *mtd)
1159{
1160 /* initialize mtd and nand data structures */
1161
1162 /*
1163 * Note that some of the following initializations are not usually
1164 * required within a nand driver because they are performed by the nand
1165 * infrastructure code as part of nand_scan(). In this case they need
1166 * to be initialized here because we skip call to nand_scan_ident() (the
1167 * first half of nand_scan()). The call to nand_scan_ident() is skipped
1168 * because for this device the chip id is not read in the manner of a
1169 * standard nand device. Unfortunately, nand_scan_ident() does other
1170 * things as well, such as call nand_set_defaults().
1171 */
1172
1173 struct nand_chip *nand = mtd->priv;
1174 struct docg4_priv *doc = nand->priv;
1175
1176 mtd->size = DOCG4_CHIP_SIZE;
1177 mtd->name = "Msys_Diskonchip_G4";
1178 mtd->writesize = DOCG4_PAGE_SIZE;
1179 mtd->erasesize = DOCG4_BLOCK_SIZE;
1180 mtd->oobsize = DOCG4_OOB_SIZE;
1181 nand->chipsize = DOCG4_CHIP_SIZE;
1182 nand->chip_shift = DOCG4_CHIP_SHIFT;
1183 nand->bbt_erase_shift = nand->phys_erase_shift = DOCG4_ERASE_SHIFT;
1184 nand->chip_delay = 20;
1185 nand->page_shift = DOCG4_PAGE_SHIFT;
1186 nand->pagemask = 0x3ffff;
1187 nand->badblockpos = NAND_LARGE_BADBLOCK_POS;
1188 nand->badblockbits = 8;
1189 nand->ecc.layout = &docg4_oobinfo;
1190 nand->ecc.mode = NAND_ECC_HW_SYNDROME;
1191 nand->ecc.size = DOCG4_PAGE_SIZE;
1192 nand->ecc.prepad = 8;
1193 nand->ecc.bytes = 8;
1194 nand->ecc.strength = DOCG4_T;
1195 nand->options =
1196 NAND_BUSWIDTH_16 | NAND_NO_SUBPAGE_WRITE | NAND_NO_AUTOINCR;
1197 nand->IO_ADDR_R = nand->IO_ADDR_W = doc->virtadr + DOC_IOSPACE_DATA;
1198 nand->controller = &nand->hwcontrol;
1199 spin_lock_init(&nand->controller->lock);
1200 init_waitqueue_head(&nand->controller->wq);
1201
1202 /* methods */
1203 nand->cmdfunc = docg4_command;
1204 nand->waitfunc = docg4_wait;
1205 nand->select_chip = docg4_select_chip;
1206 nand->read_byte = docg4_read_byte;
1207 nand->block_markbad = docg4_block_markbad;
1208 nand->read_buf = docg4_read_buf;
1209 nand->write_buf = docg4_write_buf16;
1210 nand->scan_bbt = nand_default_bbt;
1211 nand->erase_cmd = docg4_erase_block;
1212 nand->ecc.read_page = docg4_read_page;
1213 nand->ecc.write_page = docg4_write_page;
1214 nand->ecc.read_page_raw = docg4_read_page_raw;
1215 nand->ecc.write_page_raw = docg4_write_page_raw;
1216 nand->ecc.read_oob = docg4_read_oob;
1217 nand->ecc.write_oob = docg4_write_oob;
1218
1219 /*
1220 * The way the nand infrastructure code is written, a memory-based bbt
1221 * is not created if NAND_SKIP_BBTSCAN is set. With no memory bbt,
1222 * nand->block_bad() is used. So when ignoring bad blocks, we skip the
1223 * scan and define a dummy block_bad() which always returns 0.
1224 */
1225 if (ignore_badblocks) {
1226 nand->options |= NAND_SKIP_BBTSCAN;
1227 nand->block_bad = docg4_block_neverbad;
1228 }
1229
1230}
1231
1232static int __init read_id_reg(struct mtd_info *mtd)
1233{
1234 struct nand_chip *nand = mtd->priv;
1235 struct docg4_priv *doc = nand->priv;
1236 void __iomem *docptr = doc->virtadr;
1237 uint16_t id1, id2;
1238
1239 /* check for presence of g4 chip by reading id registers */
1240 id1 = readw(docptr + DOC_CHIPID);
1241 id1 = readw(docptr + DOCG4_MYSTERY_REG);
1242 id2 = readw(docptr + DOC_CHIPID_INV);
1243 id2 = readw(docptr + DOCG4_MYSTERY_REG);
1244
1245 if (id1 == DOCG4_IDREG1_VALUE && id2 == DOCG4_IDREG2_VALUE) {
1246 dev_info(doc->dev,
1247 "NAND device: 128MiB Diskonchip G4 detected\n");
1248 return 0;
1249 }
1250
1251 return -ENODEV;
1252}
1253
1254static char const *part_probes[] = { "cmdlinepart", "saftlpart", NULL };
1255
1256static int __init probe_docg4(struct platform_device *pdev)
1257{
1258 struct mtd_info *mtd;
1259 struct nand_chip *nand;
1260 void __iomem *virtadr;
1261 struct docg4_priv *doc;
1262 int len, retval;
1263 struct resource *r;
1264 struct device *dev = &pdev->dev;
1265
1266 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1267 if (r == NULL) {
1268 dev_err(dev, "no io memory resource defined!\n");
1269 return -ENODEV;
1270 }
1271
1272 virtadr = ioremap(r->start, resource_size(r));
1273 if (!virtadr) {
1274 dev_err(dev, "Diskonchip ioremap failed: %pR\n", r);
1275 return -EIO;
1276 }
1277
1278 len = sizeof(struct mtd_info) + sizeof(struct nand_chip) +
1279 sizeof(struct docg4_priv);
1280 mtd = kzalloc(len, GFP_KERNEL);
1281 if (mtd == NULL) {
1282 retval = -ENOMEM;
1283 goto fail;
1284 }
1285 nand = (struct nand_chip *) (mtd + 1);
1286 doc = (struct docg4_priv *) (nand + 1);
1287 mtd->priv = nand;
1288 nand->priv = doc;
1289 mtd->owner = THIS_MODULE;
1290 doc->virtadr = virtadr;
1291 doc->dev = dev;
1292
1293 init_mtd_structs(mtd);
1294
1295 /* initialize kernel bch algorithm */
1296 doc->bch = init_bch(DOCG4_M, DOCG4_T, DOCG4_PRIMITIVE_POLY);
1297 if (doc->bch == NULL) {
1298 retval = -EINVAL;
1299 goto fail;
1300 }
1301
1302 platform_set_drvdata(pdev, doc);
1303
1304 reset(mtd);
1305 retval = read_id_reg(mtd);
1306 if (retval == -ENODEV) {
1307 dev_warn(dev, "No diskonchip G4 device found.\n");
1308 goto fail;
1309 }
1310
1311 retval = nand_scan_tail(mtd);
1312 if (retval)
1313 goto fail;
1314
1315 retval = read_factory_bbt(mtd);
1316 if (retval)
1317 goto fail;
1318
1319 retval = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
1320 if (retval)
1321 goto fail;
1322
1323 doc->mtd = mtd;
1324 return 0;
1325
1326 fail:
1327 iounmap(virtadr);
1328 if (mtd) {
1329 /* re-declarations avoid compiler warning */
1330 struct nand_chip *nand = mtd->priv;
1331 struct docg4_priv *doc = nand->priv;
1332 nand_release(mtd); /* deletes partitions and mtd devices */
1333 platform_set_drvdata(pdev, NULL);
1334 free_bch(doc->bch);
1335 kfree(mtd);
1336 }
1337
1338 return retval;
1339}
1340
1341static int __exit cleanup_docg4(struct platform_device *pdev)
1342{
1343 struct docg4_priv *doc = platform_get_drvdata(pdev);
1344 nand_release(doc->mtd);
1345 platform_set_drvdata(pdev, NULL);
1346 free_bch(doc->bch);
1347 kfree(doc->mtd);
1348 iounmap(doc->virtadr);
1349 return 0;
1350}
1351
1352static struct platform_driver docg4_driver = {
1353 .driver = {
1354 .name = "docg4",
1355 .owner = THIS_MODULE,
1356 },
1357 .suspend = docg4_suspend,
1358 .resume = docg4_resume,
1359 .remove = __exit_p(cleanup_docg4),
1360};
1361
1362static int __init docg4_init(void)
1363{
1364 return platform_driver_probe(&docg4_driver, probe_docg4);
1365}
1366
1367static void __exit docg4_exit(void)
1368{
1369 platform_driver_unregister(&docg4_driver);
1370}
1371
1372module_init(docg4_init);
1373module_exit(docg4_exit);
1374
1375MODULE_LICENSE("GPL");
1376MODULE_AUTHOR("Mike Dunn");
1377MODULE_DESCRIPTION("M-Systems DiskOnChip G4 device driver");
diff --git a/drivers/mtd/nand/fsl_elbc_nand.c b/drivers/mtd/nand/fsl_elbc_nand.c
index 7195ee6efe12..80b5264f0a32 100644
--- a/drivers/mtd/nand/fsl_elbc_nand.c
+++ b/drivers/mtd/nand/fsl_elbc_nand.c
@@ -813,6 +813,12 @@ static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
813 &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0; 813 &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
814 chip->ecc.size = 512; 814 chip->ecc.size = 512;
815 chip->ecc.bytes = 3; 815 chip->ecc.bytes = 3;
816 chip->ecc.strength = 1;
817 /*
818 * FIXME: can hardware ecc correct 4 bitflips if page size is
819 * 2k? Then does hardware report number of corrections for this
820 * case? If so, ecc_stats reporting needs to be fixed as well.
821 */
816 } else { 822 } else {
817 /* otherwise fall back to default software ECC */ 823 /* otherwise fall back to default software ECC */
818 chip->ecc.mode = NAND_ECC_SOFT; 824 chip->ecc.mode = NAND_ECC_SOFT;
diff --git a/drivers/mtd/nand/fsmc_nand.c b/drivers/mtd/nand/fsmc_nand.c
index e53b76064133..1b8330e1155a 100644
--- a/drivers/mtd/nand/fsmc_nand.c
+++ b/drivers/mtd/nand/fsmc_nand.c
@@ -17,6 +17,10 @@
17 */ 17 */
18 18
19#include <linux/clk.h> 19#include <linux/clk.h>
20#include <linux/completion.h>
21#include <linux/dmaengine.h>
22#include <linux/dma-direction.h>
23#include <linux/dma-mapping.h>
20#include <linux/err.h> 24#include <linux/err.h>
21#include <linux/init.h> 25#include <linux/init.h>
22#include <linux/module.h> 26#include <linux/module.h>
@@ -27,6 +31,7 @@
27#include <linux/mtd/nand.h> 31#include <linux/mtd/nand.h>
28#include <linux/mtd/nand_ecc.h> 32#include <linux/mtd/nand_ecc.h>
29#include <linux/platform_device.h> 33#include <linux/platform_device.h>
34#include <linux/of.h>
30#include <linux/mtd/partitions.h> 35#include <linux/mtd/partitions.h>
31#include <linux/io.h> 36#include <linux/io.h>
32#include <linux/slab.h> 37#include <linux/slab.h>
@@ -34,7 +39,7 @@
34#include <linux/amba/bus.h> 39#include <linux/amba/bus.h>
35#include <mtd/mtd-abi.h> 40#include <mtd/mtd-abi.h>
36 41
37static struct nand_ecclayout fsmc_ecc1_layout = { 42static struct nand_ecclayout fsmc_ecc1_128_layout = {
38 .eccbytes = 24, 43 .eccbytes = 24,
39 .eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52, 44 .eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52,
40 66, 67, 68, 82, 83, 84, 98, 99, 100, 114, 115, 116}, 45 66, 67, 68, 82, 83, 84, 98, 99, 100, 114, 115, 116},
@@ -50,7 +55,127 @@ static struct nand_ecclayout fsmc_ecc1_layout = {
50 } 55 }
51}; 56};
52 57
53static struct nand_ecclayout fsmc_ecc4_lp_layout = { 58static struct nand_ecclayout fsmc_ecc1_64_layout = {
59 .eccbytes = 12,
60 .eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52},
61 .oobfree = {
62 {.offset = 8, .length = 8},
63 {.offset = 24, .length = 8},
64 {.offset = 40, .length = 8},
65 {.offset = 56, .length = 8},
66 }
67};
68
69static struct nand_ecclayout fsmc_ecc1_16_layout = {
70 .eccbytes = 3,
71 .eccpos = {2, 3, 4},
72 .oobfree = {
73 {.offset = 8, .length = 8},
74 }
75};
76
77/*
78 * ECC4 layout for NAND of pagesize 8192 bytes & OOBsize 256 bytes. 13*16 bytes
79 * of OB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block and 46
80 * bytes are free for use.
81 */
82static struct nand_ecclayout fsmc_ecc4_256_layout = {
83 .eccbytes = 208,
84 .eccpos = { 2, 3, 4, 5, 6, 7, 8,
85 9, 10, 11, 12, 13, 14,
86 18, 19, 20, 21, 22, 23, 24,
87 25, 26, 27, 28, 29, 30,
88 34, 35, 36, 37, 38, 39, 40,
89 41, 42, 43, 44, 45, 46,
90 50, 51, 52, 53, 54, 55, 56,
91 57, 58, 59, 60, 61, 62,
92 66, 67, 68, 69, 70, 71, 72,
93 73, 74, 75, 76, 77, 78,
94 82, 83, 84, 85, 86, 87, 88,
95 89, 90, 91, 92, 93, 94,
96 98, 99, 100, 101, 102, 103, 104,
97 105, 106, 107, 108, 109, 110,
98 114, 115, 116, 117, 118, 119, 120,
99 121, 122, 123, 124, 125, 126,
100 130, 131, 132, 133, 134, 135, 136,
101 137, 138, 139, 140, 141, 142,
102 146, 147, 148, 149, 150, 151, 152,
103 153, 154, 155, 156, 157, 158,
104 162, 163, 164, 165, 166, 167, 168,
105 169, 170, 171, 172, 173, 174,
106 178, 179, 180, 181, 182, 183, 184,
107 185, 186, 187, 188, 189, 190,
108 194, 195, 196, 197, 198, 199, 200,
109 201, 202, 203, 204, 205, 206,
110 210, 211, 212, 213, 214, 215, 216,
111 217, 218, 219, 220, 221, 222,
112 226, 227, 228, 229, 230, 231, 232,
113 233, 234, 235, 236, 237, 238,
114 242, 243, 244, 245, 246, 247, 248,
115 249, 250, 251, 252, 253, 254
116 },
117 .oobfree = {
118 {.offset = 15, .length = 3},
119 {.offset = 31, .length = 3},
120 {.offset = 47, .length = 3},
121 {.offset = 63, .length = 3},
122 {.offset = 79, .length = 3},
123 {.offset = 95, .length = 3},
124 {.offset = 111, .length = 3},
125 {.offset = 127, .length = 3},
126 {.offset = 143, .length = 3},
127 {.offset = 159, .length = 3},
128 {.offset = 175, .length = 3},
129 {.offset = 191, .length = 3},
130 {.offset = 207, .length = 3},
131 {.offset = 223, .length = 3},
132 {.offset = 239, .length = 3},
133 {.offset = 255, .length = 1}
134 }
135};
136
137/*
138 * ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 224 bytes. 13*8 bytes
139 * of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 118
140 * bytes are free for use.
141 */
142static struct nand_ecclayout fsmc_ecc4_224_layout = {
143 .eccbytes = 104,
144 .eccpos = { 2, 3, 4, 5, 6, 7, 8,
145 9, 10, 11, 12, 13, 14,
146 18, 19, 20, 21, 22, 23, 24,
147 25, 26, 27, 28, 29, 30,
148 34, 35, 36, 37, 38, 39, 40,
149 41, 42, 43, 44, 45, 46,
150 50, 51, 52, 53, 54, 55, 56,
151 57, 58, 59, 60, 61, 62,
152 66, 67, 68, 69, 70, 71, 72,
153 73, 74, 75, 76, 77, 78,
154 82, 83, 84, 85, 86, 87, 88,
155 89, 90, 91, 92, 93, 94,
156 98, 99, 100, 101, 102, 103, 104,
157 105, 106, 107, 108, 109, 110,
158 114, 115, 116, 117, 118, 119, 120,
159 121, 122, 123, 124, 125, 126
160 },
161 .oobfree = {
162 {.offset = 15, .length = 3},
163 {.offset = 31, .length = 3},
164 {.offset = 47, .length = 3},
165 {.offset = 63, .length = 3},
166 {.offset = 79, .length = 3},
167 {.offset = 95, .length = 3},
168 {.offset = 111, .length = 3},
169 {.offset = 127, .length = 97}
170 }
171};
172
173/*
174 * ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 128 bytes. 13*8 bytes
175 * of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 22
176 * bytes are free for use.
177 */
178static struct nand_ecclayout fsmc_ecc4_128_layout = {
54 .eccbytes = 104, 179 .eccbytes = 104,
55 .eccpos = { 2, 3, 4, 5, 6, 7, 8, 180 .eccpos = { 2, 3, 4, 5, 6, 7, 8,
56 9, 10, 11, 12, 13, 14, 181 9, 10, 11, 12, 13, 14,
@@ -82,6 +207,45 @@ static struct nand_ecclayout fsmc_ecc4_lp_layout = {
82}; 207};
83 208
84/* 209/*
210 * ECC4 layout for NAND of pagesize 2048 bytes & OOBsize 64 bytes. 13*4 bytes of
211 * OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block and 10
212 * bytes are free for use.
213 */
214static struct nand_ecclayout fsmc_ecc4_64_layout = {
215 .eccbytes = 52,
216 .eccpos = { 2, 3, 4, 5, 6, 7, 8,
217 9, 10, 11, 12, 13, 14,
218 18, 19, 20, 21, 22, 23, 24,
219 25, 26, 27, 28, 29, 30,
220 34, 35, 36, 37, 38, 39, 40,
221 41, 42, 43, 44, 45, 46,
222 50, 51, 52, 53, 54, 55, 56,
223 57, 58, 59, 60, 61, 62,
224 },
225 .oobfree = {
226 {.offset = 15, .length = 3},
227 {.offset = 31, .length = 3},
228 {.offset = 47, .length = 3},
229 {.offset = 63, .length = 1},
230 }
231};
232
233/*
234 * ECC4 layout for NAND of pagesize 512 bytes & OOBsize 16 bytes. 13 bytes of
235 * OOB size is reserved for ECC, Byte no. 4 & 5 reserved for bad block and One
236 * byte is free for use.
237 */
238static struct nand_ecclayout fsmc_ecc4_16_layout = {
239 .eccbytes = 13,
240 .eccpos = { 0, 1, 2, 3, 6, 7, 8,
241 9, 10, 11, 12, 13, 14
242 },
243 .oobfree = {
244 {.offset = 15, .length = 1},
245 }
246};
247
248/*
85 * ECC placement definitions in oobfree type format. 249 * ECC placement definitions in oobfree type format.
86 * There are 13 bytes of ecc for every 512 byte block and it has to be read 250 * There are 13 bytes of ecc for every 512 byte block and it has to be read
87 * consecutively and immediately after the 512 byte data block for hardware to 251 * consecutively and immediately after the 512 byte data block for hardware to
@@ -103,16 +267,6 @@ static struct fsmc_eccplace fsmc_ecc4_lp_place = {
103 } 267 }
104}; 268};
105 269
106static struct nand_ecclayout fsmc_ecc4_sp_layout = {
107 .eccbytes = 13,
108 .eccpos = { 0, 1, 2, 3, 6, 7, 8,
109 9, 10, 11, 12, 13, 14
110 },
111 .oobfree = {
112 {.offset = 15, .length = 1},
113 }
114};
115
116static struct fsmc_eccplace fsmc_ecc4_sp_place = { 270static struct fsmc_eccplace fsmc_ecc4_sp_place = {
117 .eccplace = { 271 .eccplace = {
118 {.offset = 0, .length = 4}, 272 {.offset = 0, .length = 4},
@@ -120,75 +274,24 @@ static struct fsmc_eccplace fsmc_ecc4_sp_place = {
120 } 274 }
121}; 275};
122 276
123/*
124 * Default partition tables to be used if the partition information not
125 * provided through platform data.
126 *
127 * Default partition layout for small page(= 512 bytes) devices
128 * Size for "Root file system" is updated in driver based on actual device size
129 */
130static struct mtd_partition partition_info_16KB_blk[] = {
131 {
132 .name = "X-loader",
133 .offset = 0,
134 .size = 4*0x4000,
135 },
136 {
137 .name = "U-Boot",
138 .offset = 0x10000,
139 .size = 20*0x4000,
140 },
141 {
142 .name = "Kernel",
143 .offset = 0x60000,
144 .size = 256*0x4000,
145 },
146 {
147 .name = "Root File System",
148 .offset = 0x460000,
149 .size = MTDPART_SIZ_FULL,
150 },
151};
152
153/*
154 * Default partition layout for large page(> 512 bytes) devices
155 * Size for "Root file system" is updated in driver based on actual device size
156 */
157static struct mtd_partition partition_info_128KB_blk[] = {
158 {
159 .name = "X-loader",
160 .offset = 0,
161 .size = 4*0x20000,
162 },
163 {
164 .name = "U-Boot",
165 .offset = 0x80000,
166 .size = 12*0x20000,
167 },
168 {
169 .name = "Kernel",
170 .offset = 0x200000,
171 .size = 48*0x20000,
172 },
173 {
174 .name = "Root File System",
175 .offset = 0x800000,
176 .size = MTDPART_SIZ_FULL,
177 },
178};
179
180
181/** 277/**
182 * struct fsmc_nand_data - structure for FSMC NAND device state 278 * struct fsmc_nand_data - structure for FSMC NAND device state
183 * 279 *
184 * @pid: Part ID on the AMBA PrimeCell format 280 * @pid: Part ID on the AMBA PrimeCell format
185 * @mtd: MTD info for a NAND flash. 281 * @mtd: MTD info for a NAND flash.
186 * @nand: Chip related info for a NAND flash. 282 * @nand: Chip related info for a NAND flash.
283 * @partitions: Partition info for a NAND Flash.
284 * @nr_partitions: Total number of partition of a NAND flash.
187 * 285 *
188 * @ecc_place: ECC placing locations in oobfree type format. 286 * @ecc_place: ECC placing locations in oobfree type format.
189 * @bank: Bank number for probed device. 287 * @bank: Bank number for probed device.
190 * @clk: Clock structure for FSMC. 288 * @clk: Clock structure for FSMC.
191 * 289 *
290 * @read_dma_chan: DMA channel for read access
291 * @write_dma_chan: DMA channel for write access to NAND
292 * @dma_access_complete: Completion structure
293 *
294 * @data_pa: NAND Physical port for Data.
192 * @data_va: NAND port for Data. 295 * @data_va: NAND port for Data.
193 * @cmd_va: NAND port for Command. 296 * @cmd_va: NAND port for Command.
194 * @addr_va: NAND port for Address. 297 * @addr_va: NAND port for Address.
@@ -198,16 +301,23 @@ struct fsmc_nand_data {
198 u32 pid; 301 u32 pid;
199 struct mtd_info mtd; 302 struct mtd_info mtd;
200 struct nand_chip nand; 303 struct nand_chip nand;
304 struct mtd_partition *partitions;
305 unsigned int nr_partitions;
201 306
202 struct fsmc_eccplace *ecc_place; 307 struct fsmc_eccplace *ecc_place;
203 unsigned int bank; 308 unsigned int bank;
309 struct device *dev;
310 enum access_mode mode;
204 struct clk *clk; 311 struct clk *clk;
205 312
206 struct resource *resregs; 313 /* DMA related objects */
207 struct resource *rescmd; 314 struct dma_chan *read_dma_chan;
208 struct resource *resaddr; 315 struct dma_chan *write_dma_chan;
209 struct resource *resdata; 316 struct completion dma_access_complete;
317
318 struct fsmc_nand_timings *dev_timings;
210 319
320 dma_addr_t data_pa;
211 void __iomem *data_va; 321 void __iomem *data_va;
212 void __iomem *cmd_va; 322 void __iomem *cmd_va;
213 void __iomem *addr_va; 323 void __iomem *addr_va;
@@ -251,28 +361,29 @@ static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
251 struct nand_chip *this = mtd->priv; 361 struct nand_chip *this = mtd->priv;
252 struct fsmc_nand_data *host = container_of(mtd, 362 struct fsmc_nand_data *host = container_of(mtd,
253 struct fsmc_nand_data, mtd); 363 struct fsmc_nand_data, mtd);
254 struct fsmc_regs *regs = host->regs_va; 364 void *__iomem *regs = host->regs_va;
255 unsigned int bank = host->bank; 365 unsigned int bank = host->bank;
256 366
257 if (ctrl & NAND_CTRL_CHANGE) { 367 if (ctrl & NAND_CTRL_CHANGE) {
368 u32 pc;
369
258 if (ctrl & NAND_CLE) { 370 if (ctrl & NAND_CLE) {
259 this->IO_ADDR_R = (void __iomem *)host->cmd_va; 371 this->IO_ADDR_R = host->cmd_va;
260 this->IO_ADDR_W = (void __iomem *)host->cmd_va; 372 this->IO_ADDR_W = host->cmd_va;
261 } else if (ctrl & NAND_ALE) { 373 } else if (ctrl & NAND_ALE) {
262 this->IO_ADDR_R = (void __iomem *)host->addr_va; 374 this->IO_ADDR_R = host->addr_va;
263 this->IO_ADDR_W = (void __iomem *)host->addr_va; 375 this->IO_ADDR_W = host->addr_va;
264 } else { 376 } else {
265 this->IO_ADDR_R = (void __iomem *)host->data_va; 377 this->IO_ADDR_R = host->data_va;
266 this->IO_ADDR_W = (void __iomem *)host->data_va; 378 this->IO_ADDR_W = host->data_va;
267 } 379 }
268 380
269 if (ctrl & NAND_NCE) { 381 pc = readl(FSMC_NAND_REG(regs, bank, PC));
270 writel(readl(&regs->bank_regs[bank].pc) | FSMC_ENABLE, 382 if (ctrl & NAND_NCE)
271 &regs->bank_regs[bank].pc); 383 pc |= FSMC_ENABLE;
272 } else { 384 else
273 writel(readl(&regs->bank_regs[bank].pc) & ~FSMC_ENABLE, 385 pc &= ~FSMC_ENABLE;
274 &regs->bank_regs[bank].pc); 386 writel(pc, FSMC_NAND_REG(regs, bank, PC));
275 }
276 } 387 }
277 388
278 mb(); 389 mb();
@@ -287,22 +398,42 @@ static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
287 * This routine initializes timing parameters related to NAND memory access in 398 * This routine initializes timing parameters related to NAND memory access in
288 * FSMC registers 399 * FSMC registers
289 */ 400 */
290static void __init fsmc_nand_setup(struct fsmc_regs *regs, uint32_t bank, 401static void fsmc_nand_setup(void __iomem *regs, uint32_t bank,
291 uint32_t busw) 402 uint32_t busw, struct fsmc_nand_timings *timings)
292{ 403{
293 uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON; 404 uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
405 uint32_t tclr, tar, thiz, thold, twait, tset;
406 struct fsmc_nand_timings *tims;
407 struct fsmc_nand_timings default_timings = {
408 .tclr = FSMC_TCLR_1,
409 .tar = FSMC_TAR_1,
410 .thiz = FSMC_THIZ_1,
411 .thold = FSMC_THOLD_4,
412 .twait = FSMC_TWAIT_6,
413 .tset = FSMC_TSET_0,
414 };
415
416 if (timings)
417 tims = timings;
418 else
419 tims = &default_timings;
420
421 tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
422 tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
423 thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
424 thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
425 twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
426 tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
294 427
295 if (busw) 428 if (busw)
296 writel(value | FSMC_DEVWID_16, &regs->bank_regs[bank].pc); 429 writel(value | FSMC_DEVWID_16, FSMC_NAND_REG(regs, bank, PC));
297 else 430 else
298 writel(value | FSMC_DEVWID_8, &regs->bank_regs[bank].pc); 431 writel(value | FSMC_DEVWID_8, FSMC_NAND_REG(regs, bank, PC));
299 432
300 writel(readl(&regs->bank_regs[bank].pc) | FSMC_TCLR_1 | FSMC_TAR_1, 433 writel(readl(FSMC_NAND_REG(regs, bank, PC)) | tclr | tar,
301 &regs->bank_regs[bank].pc); 434 FSMC_NAND_REG(regs, bank, PC));
302 writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0, 435 writel(thiz | thold | twait | tset, FSMC_NAND_REG(regs, bank, COMM));
303 &regs->bank_regs[bank].comm); 436 writel(thiz | thold | twait | tset, FSMC_NAND_REG(regs, bank, ATTRIB));
304 writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0,
305 &regs->bank_regs[bank].attrib);
306} 437}
307 438
308/* 439/*
@@ -312,15 +443,15 @@ static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
312{ 443{
313 struct fsmc_nand_data *host = container_of(mtd, 444 struct fsmc_nand_data *host = container_of(mtd,
314 struct fsmc_nand_data, mtd); 445 struct fsmc_nand_data, mtd);
315 struct fsmc_regs *regs = host->regs_va; 446 void __iomem *regs = host->regs_va;
316 uint32_t bank = host->bank; 447 uint32_t bank = host->bank;
317 448
318 writel(readl(&regs->bank_regs[bank].pc) & ~FSMC_ECCPLEN_256, 449 writel(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCPLEN_256,
319 &regs->bank_regs[bank].pc); 450 FSMC_NAND_REG(regs, bank, PC));
320 writel(readl(&regs->bank_regs[bank].pc) & ~FSMC_ECCEN, 451 writel(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCEN,
321 &regs->bank_regs[bank].pc); 452 FSMC_NAND_REG(regs, bank, PC));
322 writel(readl(&regs->bank_regs[bank].pc) | FSMC_ECCEN, 453 writel(readl(FSMC_NAND_REG(regs, bank, PC)) | FSMC_ECCEN,
323 &regs->bank_regs[bank].pc); 454 FSMC_NAND_REG(regs, bank, PC));
324} 455}
325 456
326/* 457/*
@@ -333,37 +464,42 @@ static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data,
333{ 464{
334 struct fsmc_nand_data *host = container_of(mtd, 465 struct fsmc_nand_data *host = container_of(mtd,
335 struct fsmc_nand_data, mtd); 466 struct fsmc_nand_data, mtd);
336 struct fsmc_regs *regs = host->regs_va; 467 void __iomem *regs = host->regs_va;
337 uint32_t bank = host->bank; 468 uint32_t bank = host->bank;
338 uint32_t ecc_tmp; 469 uint32_t ecc_tmp;
339 unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT; 470 unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
340 471
341 do { 472 do {
342 if (readl(&regs->bank_regs[bank].sts) & FSMC_CODE_RDY) 473 if (readl(FSMC_NAND_REG(regs, bank, STS)) & FSMC_CODE_RDY)
343 break; 474 break;
344 else 475 else
345 cond_resched(); 476 cond_resched();
346 } while (!time_after_eq(jiffies, deadline)); 477 } while (!time_after_eq(jiffies, deadline));
347 478
348 ecc_tmp = readl(&regs->bank_regs[bank].ecc1); 479 if (time_after_eq(jiffies, deadline)) {
480 dev_err(host->dev, "calculate ecc timed out\n");
481 return -ETIMEDOUT;
482 }
483
484 ecc_tmp = readl(FSMC_NAND_REG(regs, bank, ECC1));
349 ecc[0] = (uint8_t) (ecc_tmp >> 0); 485 ecc[0] = (uint8_t) (ecc_tmp >> 0);
350 ecc[1] = (uint8_t) (ecc_tmp >> 8); 486 ecc[1] = (uint8_t) (ecc_tmp >> 8);
351 ecc[2] = (uint8_t) (ecc_tmp >> 16); 487 ecc[2] = (uint8_t) (ecc_tmp >> 16);
352 ecc[3] = (uint8_t) (ecc_tmp >> 24); 488 ecc[3] = (uint8_t) (ecc_tmp >> 24);
353 489
354 ecc_tmp = readl(&regs->bank_regs[bank].ecc2); 490 ecc_tmp = readl(FSMC_NAND_REG(regs, bank, ECC2));
355 ecc[4] = (uint8_t) (ecc_tmp >> 0); 491 ecc[4] = (uint8_t) (ecc_tmp >> 0);
356 ecc[5] = (uint8_t) (ecc_tmp >> 8); 492 ecc[5] = (uint8_t) (ecc_tmp >> 8);
357 ecc[6] = (uint8_t) (ecc_tmp >> 16); 493 ecc[6] = (uint8_t) (ecc_tmp >> 16);
358 ecc[7] = (uint8_t) (ecc_tmp >> 24); 494 ecc[7] = (uint8_t) (ecc_tmp >> 24);
359 495
360 ecc_tmp = readl(&regs->bank_regs[bank].ecc3); 496 ecc_tmp = readl(FSMC_NAND_REG(regs, bank, ECC3));
361 ecc[8] = (uint8_t) (ecc_tmp >> 0); 497 ecc[8] = (uint8_t) (ecc_tmp >> 0);
362 ecc[9] = (uint8_t) (ecc_tmp >> 8); 498 ecc[9] = (uint8_t) (ecc_tmp >> 8);
363 ecc[10] = (uint8_t) (ecc_tmp >> 16); 499 ecc[10] = (uint8_t) (ecc_tmp >> 16);
364 ecc[11] = (uint8_t) (ecc_tmp >> 24); 500 ecc[11] = (uint8_t) (ecc_tmp >> 24);
365 501
366 ecc_tmp = readl(&regs->bank_regs[bank].sts); 502 ecc_tmp = readl(FSMC_NAND_REG(regs, bank, STS));
367 ecc[12] = (uint8_t) (ecc_tmp >> 16); 503 ecc[12] = (uint8_t) (ecc_tmp >> 16);
368 504
369 return 0; 505 return 0;
@@ -379,11 +515,11 @@ static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data,
379{ 515{
380 struct fsmc_nand_data *host = container_of(mtd, 516 struct fsmc_nand_data *host = container_of(mtd,
381 struct fsmc_nand_data, mtd); 517 struct fsmc_nand_data, mtd);
382 struct fsmc_regs *regs = host->regs_va; 518 void __iomem *regs = host->regs_va;
383 uint32_t bank = host->bank; 519 uint32_t bank = host->bank;
384 uint32_t ecc_tmp; 520 uint32_t ecc_tmp;
385 521
386 ecc_tmp = readl(&regs->bank_regs[bank].ecc1); 522 ecc_tmp = readl(FSMC_NAND_REG(regs, bank, ECC1));
387 ecc[0] = (uint8_t) (ecc_tmp >> 0); 523 ecc[0] = (uint8_t) (ecc_tmp >> 0);
388 ecc[1] = (uint8_t) (ecc_tmp >> 8); 524 ecc[1] = (uint8_t) (ecc_tmp >> 8);
389 ecc[2] = (uint8_t) (ecc_tmp >> 16); 525 ecc[2] = (uint8_t) (ecc_tmp >> 16);
@@ -391,6 +527,166 @@ static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data,
391 return 0; 527 return 0;
392} 528}
393 529
530/* Count the number of 0's in buff upto a max of max_bits */
531static int count_written_bits(uint8_t *buff, int size, int max_bits)
532{
533 int k, written_bits = 0;
534
535 for (k = 0; k < size; k++) {
536 written_bits += hweight8(~buff[k]);
537 if (written_bits > max_bits)
538 break;
539 }
540
541 return written_bits;
542}
543
544static void dma_complete(void *param)
545{
546 struct fsmc_nand_data *host = param;
547
548 complete(&host->dma_access_complete);
549}
550
551static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
552 enum dma_data_direction direction)
553{
554 struct dma_chan *chan;
555 struct dma_device *dma_dev;
556 struct dma_async_tx_descriptor *tx;
557 dma_addr_t dma_dst, dma_src, dma_addr;
558 dma_cookie_t cookie;
559 unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
560 int ret;
561
562 if (direction == DMA_TO_DEVICE)
563 chan = host->write_dma_chan;
564 else if (direction == DMA_FROM_DEVICE)
565 chan = host->read_dma_chan;
566 else
567 return -EINVAL;
568
569 dma_dev = chan->device;
570 dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
571
572 if (direction == DMA_TO_DEVICE) {
573 dma_src = dma_addr;
574 dma_dst = host->data_pa;
575 flags |= DMA_COMPL_SRC_UNMAP_SINGLE | DMA_COMPL_SKIP_DEST_UNMAP;
576 } else {
577 dma_src = host->data_pa;
578 dma_dst = dma_addr;
579 flags |= DMA_COMPL_DEST_UNMAP_SINGLE | DMA_COMPL_SKIP_SRC_UNMAP;
580 }
581
582 tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
583 len, flags);
584
585 if (!tx) {
586 dev_err(host->dev, "device_prep_dma_memcpy error\n");
587 dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
588 return -EIO;
589 }
590
591 tx->callback = dma_complete;
592 tx->callback_param = host;
593 cookie = tx->tx_submit(tx);
594
595 ret = dma_submit_error(cookie);
596 if (ret) {
597 dev_err(host->dev, "dma_submit_error %d\n", cookie);
598 return ret;
599 }
600
601 dma_async_issue_pending(chan);
602
603 ret =
604 wait_for_completion_interruptible_timeout(&host->dma_access_complete,
605 msecs_to_jiffies(3000));
606 if (ret <= 0) {
607 chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
608 dev_err(host->dev, "wait_for_completion_timeout\n");
609 return ret ? ret : -ETIMEDOUT;
610 }
611
612 return 0;
613}
614
615/*
616 * fsmc_write_buf - write buffer to chip
617 * @mtd: MTD device structure
618 * @buf: data buffer
619 * @len: number of bytes to write
620 */
621static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
622{
623 int i;
624 struct nand_chip *chip = mtd->priv;
625
626 if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
627 IS_ALIGNED(len, sizeof(uint32_t))) {
628 uint32_t *p = (uint32_t *)buf;
629 len = len >> 2;
630 for (i = 0; i < len; i++)
631 writel(p[i], chip->IO_ADDR_W);
632 } else {
633 for (i = 0; i < len; i++)
634 writeb(buf[i], chip->IO_ADDR_W);
635 }
636}
637
638/*
639 * fsmc_read_buf - read chip data into buffer
640 * @mtd: MTD device structure
641 * @buf: buffer to store date
642 * @len: number of bytes to read
643 */
644static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
645{
646 int i;
647 struct nand_chip *chip = mtd->priv;
648
649 if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
650 IS_ALIGNED(len, sizeof(uint32_t))) {
651 uint32_t *p = (uint32_t *)buf;
652 len = len >> 2;
653 for (i = 0; i < len; i++)
654 p[i] = readl(chip->IO_ADDR_R);
655 } else {
656 for (i = 0; i < len; i++)
657 buf[i] = readb(chip->IO_ADDR_R);
658 }
659}
660
661/*
662 * fsmc_read_buf_dma - read chip data into buffer
663 * @mtd: MTD device structure
664 * @buf: buffer to store date
665 * @len: number of bytes to read
666 */
667static void fsmc_read_buf_dma(struct mtd_info *mtd, uint8_t *buf, int len)
668{
669 struct fsmc_nand_data *host;
670
671 host = container_of(mtd, struct fsmc_nand_data, mtd);
672 dma_xfer(host, buf, len, DMA_FROM_DEVICE);
673}
674
675/*
676 * fsmc_write_buf_dma - write buffer to chip
677 * @mtd: MTD device structure
678 * @buf: data buffer
679 * @len: number of bytes to write
680 */
681static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf,
682 int len)
683{
684 struct fsmc_nand_data *host;
685
686 host = container_of(mtd, struct fsmc_nand_data, mtd);
687 dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
688}
689
394/* 690/*
395 * fsmc_read_page_hwecc 691 * fsmc_read_page_hwecc
396 * @mtd: mtd info structure 692 * @mtd: mtd info structure
@@ -426,7 +722,6 @@ static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
426 uint8_t *oob = (uint8_t *)&ecc_oob[0]; 722 uint8_t *oob = (uint8_t *)&ecc_oob[0];
427 723
428 for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) { 724 for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
429
430 chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page); 725 chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page);
431 chip->ecc.hwctl(mtd, NAND_ECC_READ); 726 chip->ecc.hwctl(mtd, NAND_ECC_READ);
432 chip->read_buf(mtd, p, eccsize); 727 chip->read_buf(mtd, p, eccsize);
@@ -437,17 +732,19 @@ static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
437 group++; 732 group++;
438 733
439 /* 734 /*
440 * length is intentionally kept a higher multiple of 2 735 * length is intentionally kept a higher multiple of 2
441 * to read at least 13 bytes even in case of 16 bit NAND 736 * to read at least 13 bytes even in case of 16 bit NAND
442 * devices 737 * devices
443 */ 738 */
444 len = roundup(len, 2); 739 if (chip->options & NAND_BUSWIDTH_16)
740 len = roundup(len, 2);
741
445 chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page); 742 chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page);
446 chip->read_buf(mtd, oob + j, len); 743 chip->read_buf(mtd, oob + j, len);
447 j += len; 744 j += len;
448 } 745 }
449 746
450 memcpy(&ecc_code[i], oob, 13); 747 memcpy(&ecc_code[i], oob, chip->ecc.bytes);
451 chip->ecc.calculate(mtd, p, &ecc_calc[i]); 748 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
452 749
453 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); 750 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
@@ -461,7 +758,7 @@ static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
461} 758}
462 759
463/* 760/*
464 * fsmc_correct_data 761 * fsmc_bch8_correct_data
465 * @mtd: mtd info structure 762 * @mtd: mtd info structure
466 * @dat: buffer of read data 763 * @dat: buffer of read data
467 * @read_ecc: ecc read from device spare area 764 * @read_ecc: ecc read from device spare area
@@ -470,19 +767,51 @@ static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
470 * calc_ecc is a 104 bit information containing maximum of 8 error 767 * calc_ecc is a 104 bit information containing maximum of 8 error
471 * offset informations of 13 bits each in 512 bytes of read data. 768 * offset informations of 13 bits each in 512 bytes of read data.
472 */ 769 */
473static int fsmc_correct_data(struct mtd_info *mtd, uint8_t *dat, 770static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat,
474 uint8_t *read_ecc, uint8_t *calc_ecc) 771 uint8_t *read_ecc, uint8_t *calc_ecc)
475{ 772{
476 struct fsmc_nand_data *host = container_of(mtd, 773 struct fsmc_nand_data *host = container_of(mtd,
477 struct fsmc_nand_data, mtd); 774 struct fsmc_nand_data, mtd);
478 struct fsmc_regs *regs = host->regs_va; 775 struct nand_chip *chip = mtd->priv;
776 void __iomem *regs = host->regs_va;
479 unsigned int bank = host->bank; 777 unsigned int bank = host->bank;
480 uint16_t err_idx[8]; 778 uint32_t err_idx[8];
481 uint64_t ecc_data[2];
482 uint32_t num_err, i; 779 uint32_t num_err, i;
780 uint32_t ecc1, ecc2, ecc3, ecc4;
781
782 num_err = (readl(FSMC_NAND_REG(regs, bank, STS)) >> 10) & 0xF;
783
784 /* no bit flipping */
785 if (likely(num_err == 0))
786 return 0;
787
788 /* too many errors */
789 if (unlikely(num_err > 8)) {
790 /*
791 * This is a temporary erase check. A newly erased page read
792 * would result in an ecc error because the oob data is also
793 * erased to FF and the calculated ecc for an FF data is not
794 * FF..FF.
795 * This is a workaround to skip performing correction in case
796 * data is FF..FF
797 *
798 * Logic:
799 * For every page, each bit written as 0 is counted until these
800 * number of bits are greater than 8 (the maximum correction
801 * capability of FSMC for each 512 + 13 bytes)
802 */
803
804 int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
805 int bits_data = count_written_bits(dat, chip->ecc.size, 8);
806
807 if ((bits_ecc + bits_data) <= 8) {
808 if (bits_data)
809 memset(dat, 0xff, chip->ecc.size);
810 return bits_data;
811 }
483 812
484 /* The calculated ecc is actually the correction index in data */ 813 return -EBADMSG;
485 memcpy(ecc_data, calc_ecc, 13); 814 }
486 815
487 /* 816 /*
488 * ------------------- calc_ecc[] bit wise -----------|--13 bits--| 817 * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
@@ -493,27 +822,26 @@ static int fsmc_correct_data(struct mtd_info *mtd, uint8_t *dat,
493 * uint64_t array and error offset indexes are populated in err_idx 822 * uint64_t array and error offset indexes are populated in err_idx
494 * array 823 * array
495 */ 824 */
496 for (i = 0; i < 8; i++) { 825 ecc1 = readl(FSMC_NAND_REG(regs, bank, ECC1));
497 if (i == 4) { 826 ecc2 = readl(FSMC_NAND_REG(regs, bank, ECC2));
498 err_idx[4] = ((ecc_data[1] & 0x1) << 12) | ecc_data[0]; 827 ecc3 = readl(FSMC_NAND_REG(regs, bank, ECC3));
499 ecc_data[1] >>= 1; 828 ecc4 = readl(FSMC_NAND_REG(regs, bank, STS));
500 continue; 829
501 } 830 err_idx[0] = (ecc1 >> 0) & 0x1FFF;
502 err_idx[i] = (ecc_data[i/4] & 0x1FFF); 831 err_idx[1] = (ecc1 >> 13) & 0x1FFF;
503 ecc_data[i/4] >>= 13; 832 err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
504 } 833 err_idx[3] = (ecc2 >> 7) & 0x1FFF;
505 834 err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
506 num_err = (readl(&regs->bank_regs[bank].sts) >> 10) & 0xF; 835 err_idx[5] = (ecc3 >> 1) & 0x1FFF;
507 836 err_idx[6] = (ecc3 >> 14) & 0x1FFF;
508 if (num_err == 0xF) 837 err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
509 return -EBADMSG;
510 838
511 i = 0; 839 i = 0;
512 while (num_err--) { 840 while (num_err--) {
513 change_bit(0, (unsigned long *)&err_idx[i]); 841 change_bit(0, (unsigned long *)&err_idx[i]);
514 change_bit(1, (unsigned long *)&err_idx[i]); 842 change_bit(1, (unsigned long *)&err_idx[i]);
515 843
516 if (err_idx[i] <= 512 * 8) { 844 if (err_idx[i] < chip->ecc.size * 8) {
517 change_bit(err_idx[i], (unsigned long *)dat); 845 change_bit(err_idx[i], (unsigned long *)dat);
518 i++; 846 i++;
519 } 847 }
@@ -521,6 +849,44 @@ static int fsmc_correct_data(struct mtd_info *mtd, uint8_t *dat,
521 return i; 849 return i;
522} 850}
523 851
852static bool filter(struct dma_chan *chan, void *slave)
853{
854 chan->private = slave;
855 return true;
856}
857
858#ifdef CONFIG_OF
859static int __devinit fsmc_nand_probe_config_dt(struct platform_device *pdev,
860 struct device_node *np)
861{
862 struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
863 u32 val;
864
865 /* Set default NAND width to 8 bits */
866 pdata->width = 8;
867 if (!of_property_read_u32(np, "bank-width", &val)) {
868 if (val == 2) {
869 pdata->width = 16;
870 } else if (val != 1) {
871 dev_err(&pdev->dev, "invalid bank-width %u\n", val);
872 return -EINVAL;
873 }
874 }
875 of_property_read_u32(np, "st,ale-off", &pdata->ale_off);
876 of_property_read_u32(np, "st,cle-off", &pdata->cle_off);
877 if (of_get_property(np, "nand-skip-bbtscan", NULL))
878 pdata->options = NAND_SKIP_BBTSCAN;
879
880 return 0;
881}
882#else
883static int __devinit fsmc_nand_probe_config_dt(struct platform_device *pdev,
884 struct device_node *np)
885{
886 return -ENOSYS;
887}
888#endif
889
524/* 890/*
525 * fsmc_nand_probe - Probe function 891 * fsmc_nand_probe - Probe function
526 * @pdev: platform device structure 892 * @pdev: platform device structure
@@ -528,102 +894,109 @@ static int fsmc_correct_data(struct mtd_info *mtd, uint8_t *dat,
528static int __init fsmc_nand_probe(struct platform_device *pdev) 894static int __init fsmc_nand_probe(struct platform_device *pdev)
529{ 895{
530 struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev); 896 struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
897 struct device_node __maybe_unused *np = pdev->dev.of_node;
898 struct mtd_part_parser_data ppdata = {};
531 struct fsmc_nand_data *host; 899 struct fsmc_nand_data *host;
532 struct mtd_info *mtd; 900 struct mtd_info *mtd;
533 struct nand_chip *nand; 901 struct nand_chip *nand;
534 struct fsmc_regs *regs;
535 struct resource *res; 902 struct resource *res;
903 dma_cap_mask_t mask;
536 int ret = 0; 904 int ret = 0;
537 u32 pid; 905 u32 pid;
538 int i; 906 int i;
539 907
908 if (np) {
909 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
910 pdev->dev.platform_data = pdata;
911 ret = fsmc_nand_probe_config_dt(pdev, np);
912 if (ret) {
913 dev_err(&pdev->dev, "no platform data\n");
914 return -ENODEV;
915 }
916 }
917
540 if (!pdata) { 918 if (!pdata) {
541 dev_err(&pdev->dev, "platform data is NULL\n"); 919 dev_err(&pdev->dev, "platform data is NULL\n");
542 return -EINVAL; 920 return -EINVAL;
543 } 921 }
544 922
545 /* Allocate memory for the device structure (and zero it) */ 923 /* Allocate memory for the device structure (and zero it) */
546 host = kzalloc(sizeof(*host), GFP_KERNEL); 924 host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
547 if (!host) { 925 if (!host) {
548 dev_err(&pdev->dev, "failed to allocate device structure\n"); 926 dev_err(&pdev->dev, "failed to allocate device structure\n");
549 return -ENOMEM; 927 return -ENOMEM;
550 } 928 }
551 929
552 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data"); 930 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
553 if (!res) { 931 if (!res)
554 ret = -EIO; 932 return -EINVAL;
555 goto err_probe1;
556 }
557 933
558 host->resdata = request_mem_region(res->start, resource_size(res), 934 if (!devm_request_mem_region(&pdev->dev, res->start, resource_size(res),
559 pdev->name); 935 pdev->name)) {
560 if (!host->resdata) { 936 dev_err(&pdev->dev, "Failed to get memory data resourse\n");
561 ret = -EIO; 937 return -ENOENT;
562 goto err_probe1;
563 } 938 }
564 939
565 host->data_va = ioremap(res->start, resource_size(res)); 940 host->data_pa = (dma_addr_t)res->start;
941 host->data_va = devm_ioremap(&pdev->dev, res->start,
942 resource_size(res));
566 if (!host->data_va) { 943 if (!host->data_va) {
567 ret = -EIO; 944 dev_err(&pdev->dev, "data ioremap failed\n");
568 goto err_probe1; 945 return -ENOMEM;
569 } 946 }
570 947
571 host->resaddr = request_mem_region(res->start + PLAT_NAND_ALE, 948 if (!devm_request_mem_region(&pdev->dev, res->start + pdata->ale_off,
572 resource_size(res), pdev->name); 949 resource_size(res), pdev->name)) {
573 if (!host->resaddr) { 950 dev_err(&pdev->dev, "Failed to get memory ale resourse\n");
574 ret = -EIO; 951 return -ENOENT;
575 goto err_probe1;
576 } 952 }
577 953
578 host->addr_va = ioremap(res->start + PLAT_NAND_ALE, resource_size(res)); 954 host->addr_va = devm_ioremap(&pdev->dev, res->start + pdata->ale_off,
955 resource_size(res));
579 if (!host->addr_va) { 956 if (!host->addr_va) {
580 ret = -EIO; 957 dev_err(&pdev->dev, "ale ioremap failed\n");
581 goto err_probe1; 958 return -ENOMEM;
582 } 959 }
583 960
584 host->rescmd = request_mem_region(res->start + PLAT_NAND_CLE, 961 if (!devm_request_mem_region(&pdev->dev, res->start + pdata->cle_off,
585 resource_size(res), pdev->name); 962 resource_size(res), pdev->name)) {
586 if (!host->rescmd) { 963 dev_err(&pdev->dev, "Failed to get memory cle resourse\n");
587 ret = -EIO; 964 return -ENOENT;
588 goto err_probe1;
589 } 965 }
590 966
591 host->cmd_va = ioremap(res->start + PLAT_NAND_CLE, resource_size(res)); 967 host->cmd_va = devm_ioremap(&pdev->dev, res->start + pdata->cle_off,
968 resource_size(res));
592 if (!host->cmd_va) { 969 if (!host->cmd_va) {
593 ret = -EIO; 970 dev_err(&pdev->dev, "ale ioremap failed\n");
594 goto err_probe1; 971 return -ENOMEM;
595 } 972 }
596 973
597 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs"); 974 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
598 if (!res) { 975 if (!res)
599 ret = -EIO; 976 return -EINVAL;
600 goto err_probe1;
601 }
602 977
603 host->resregs = request_mem_region(res->start, resource_size(res), 978 if (!devm_request_mem_region(&pdev->dev, res->start, resource_size(res),
604 pdev->name); 979 pdev->name)) {
605 if (!host->resregs) { 980 dev_err(&pdev->dev, "Failed to get memory regs resourse\n");
606 ret = -EIO; 981 return -ENOENT;
607 goto err_probe1;
608 } 982 }
609 983
610 host->regs_va = ioremap(res->start, resource_size(res)); 984 host->regs_va = devm_ioremap(&pdev->dev, res->start,
985 resource_size(res));
611 if (!host->regs_va) { 986 if (!host->regs_va) {
612 ret = -EIO; 987 dev_err(&pdev->dev, "regs ioremap failed\n");
613 goto err_probe1; 988 return -ENOMEM;
614 } 989 }
615 990
616 host->clk = clk_get(&pdev->dev, NULL); 991 host->clk = clk_get(&pdev->dev, NULL);
617 if (IS_ERR(host->clk)) { 992 if (IS_ERR(host->clk)) {
618 dev_err(&pdev->dev, "failed to fetch block clock\n"); 993 dev_err(&pdev->dev, "failed to fetch block clock\n");
619 ret = PTR_ERR(host->clk); 994 return PTR_ERR(host->clk);
620 host->clk = NULL;
621 goto err_probe1;
622 } 995 }
623 996
624 ret = clk_enable(host->clk); 997 ret = clk_enable(host->clk);
625 if (ret) 998 if (ret)
626 goto err_probe1; 999 goto err_clk_enable;
627 1000
628 /* 1001 /*
629 * This device ID is actually a common AMBA ID as used on the 1002 * This device ID is actually a common AMBA ID as used on the
@@ -639,7 +1012,14 @@ static int __init fsmc_nand_probe(struct platform_device *pdev)
639 1012
640 host->bank = pdata->bank; 1013 host->bank = pdata->bank;
641 host->select_chip = pdata->select_bank; 1014 host->select_chip = pdata->select_bank;
642 regs = host->regs_va; 1015 host->partitions = pdata->partitions;
1016 host->nr_partitions = pdata->nr_partitions;
1017 host->dev = &pdev->dev;
1018 host->dev_timings = pdata->nand_timings;
1019 host->mode = pdata->mode;
1020
1021 if (host->mode == USE_DMA_ACCESS)
1022 init_completion(&host->dma_access_complete);
643 1023
644 /* Link all private pointers */ 1024 /* Link all private pointers */
645 mtd = &host->mtd; 1025 mtd = &host->mtd;
@@ -658,21 +1038,53 @@ static int __init fsmc_nand_probe(struct platform_device *pdev)
658 nand->ecc.size = 512; 1038 nand->ecc.size = 512;
659 nand->options = pdata->options; 1039 nand->options = pdata->options;
660 nand->select_chip = fsmc_select_chip; 1040 nand->select_chip = fsmc_select_chip;
1041 nand->badblockbits = 7;
661 1042
662 if (pdata->width == FSMC_NAND_BW16) 1043 if (pdata->width == FSMC_NAND_BW16)
663 nand->options |= NAND_BUSWIDTH_16; 1044 nand->options |= NAND_BUSWIDTH_16;
664 1045
665 fsmc_nand_setup(regs, host->bank, nand->options & NAND_BUSWIDTH_16); 1046 switch (host->mode) {
1047 case USE_DMA_ACCESS:
1048 dma_cap_zero(mask);
1049 dma_cap_set(DMA_MEMCPY, mask);
1050 host->read_dma_chan = dma_request_channel(mask, filter,
1051 pdata->read_dma_priv);
1052 if (!host->read_dma_chan) {
1053 dev_err(&pdev->dev, "Unable to get read dma channel\n");
1054 goto err_req_read_chnl;
1055 }
1056 host->write_dma_chan = dma_request_channel(mask, filter,
1057 pdata->write_dma_priv);
1058 if (!host->write_dma_chan) {
1059 dev_err(&pdev->dev, "Unable to get write dma channel\n");
1060 goto err_req_write_chnl;
1061 }
1062 nand->read_buf = fsmc_read_buf_dma;
1063 nand->write_buf = fsmc_write_buf_dma;
1064 break;
1065
1066 default:
1067 case USE_WORD_ACCESS:
1068 nand->read_buf = fsmc_read_buf;
1069 nand->write_buf = fsmc_write_buf;
1070 break;
1071 }
1072
1073 fsmc_nand_setup(host->regs_va, host->bank,
1074 nand->options & NAND_BUSWIDTH_16,
1075 host->dev_timings);
666 1076
667 if (AMBA_REV_BITS(host->pid) >= 8) { 1077 if (AMBA_REV_BITS(host->pid) >= 8) {
668 nand->ecc.read_page = fsmc_read_page_hwecc; 1078 nand->ecc.read_page = fsmc_read_page_hwecc;
669 nand->ecc.calculate = fsmc_read_hwecc_ecc4; 1079 nand->ecc.calculate = fsmc_read_hwecc_ecc4;
670 nand->ecc.correct = fsmc_correct_data; 1080 nand->ecc.correct = fsmc_bch8_correct_data;
671 nand->ecc.bytes = 13; 1081 nand->ecc.bytes = 13;
1082 nand->ecc.strength = 8;
672 } else { 1083 } else {
673 nand->ecc.calculate = fsmc_read_hwecc_ecc1; 1084 nand->ecc.calculate = fsmc_read_hwecc_ecc1;
674 nand->ecc.correct = nand_correct_data; 1085 nand->ecc.correct = nand_correct_data;
675 nand->ecc.bytes = 3; 1086 nand->ecc.bytes = 3;
1087 nand->ecc.strength = 1;
676 } 1088 }
677 1089
678 /* 1090 /*
@@ -681,19 +1093,52 @@ static int __init fsmc_nand_probe(struct platform_device *pdev)
681 if (nand_scan_ident(&host->mtd, 1, NULL)) { 1093 if (nand_scan_ident(&host->mtd, 1, NULL)) {
682 ret = -ENXIO; 1094 ret = -ENXIO;
683 dev_err(&pdev->dev, "No NAND Device found!\n"); 1095 dev_err(&pdev->dev, "No NAND Device found!\n");
684 goto err_probe; 1096 goto err_scan_ident;
685 } 1097 }
686 1098
687 if (AMBA_REV_BITS(host->pid) >= 8) { 1099 if (AMBA_REV_BITS(host->pid) >= 8) {
688 if (host->mtd.writesize == 512) { 1100 switch (host->mtd.oobsize) {
689 nand->ecc.layout = &fsmc_ecc4_sp_layout; 1101 case 16:
1102 nand->ecc.layout = &fsmc_ecc4_16_layout;
690 host->ecc_place = &fsmc_ecc4_sp_place; 1103 host->ecc_place = &fsmc_ecc4_sp_place;
691 } else { 1104 break;
692 nand->ecc.layout = &fsmc_ecc4_lp_layout; 1105 case 64:
1106 nand->ecc.layout = &fsmc_ecc4_64_layout;
1107 host->ecc_place = &fsmc_ecc4_lp_place;
1108 break;
1109 case 128:
1110 nand->ecc.layout = &fsmc_ecc4_128_layout;
1111 host->ecc_place = &fsmc_ecc4_lp_place;
1112 break;
1113 case 224:
1114 nand->ecc.layout = &fsmc_ecc4_224_layout;
693 host->ecc_place = &fsmc_ecc4_lp_place; 1115 host->ecc_place = &fsmc_ecc4_lp_place;
1116 break;
1117 case 256:
1118 nand->ecc.layout = &fsmc_ecc4_256_layout;
1119 host->ecc_place = &fsmc_ecc4_lp_place;
1120 break;
1121 default:
1122 printk(KERN_WARNING "No oob scheme defined for "
1123 "oobsize %d\n", mtd->oobsize);
1124 BUG();
694 } 1125 }
695 } else { 1126 } else {
696 nand->ecc.layout = &fsmc_ecc1_layout; 1127 switch (host->mtd.oobsize) {
1128 case 16:
1129 nand->ecc.layout = &fsmc_ecc1_16_layout;
1130 break;
1131 case 64:
1132 nand->ecc.layout = &fsmc_ecc1_64_layout;
1133 break;
1134 case 128:
1135 nand->ecc.layout = &fsmc_ecc1_128_layout;
1136 break;
1137 default:
1138 printk(KERN_WARNING "No oob scheme defined for "
1139 "oobsize %d\n", mtd->oobsize);
1140 BUG();
1141 }
697 } 1142 }
698 1143
699 /* Second stage of scan to fill MTD data-structures */ 1144 /* Second stage of scan to fill MTD data-structures */
@@ -713,13 +1158,9 @@ static int __init fsmc_nand_probe(struct platform_device *pdev)
713 * Check for partition info passed 1158 * Check for partition info passed
714 */ 1159 */
715 host->mtd.name = "nand"; 1160 host->mtd.name = "nand";
716 ret = mtd_device_parse_register(&host->mtd, NULL, 0, 1161 ppdata.of_node = np;
717 host->mtd.size <= 0x04000000 ? 1162 ret = mtd_device_parse_register(&host->mtd, NULL, &ppdata,
718 partition_info_16KB_blk : 1163 host->partitions, host->nr_partitions);
719 partition_info_128KB_blk,
720 host->mtd.size <= 0x04000000 ?
721 ARRAY_SIZE(partition_info_16KB_blk) :
722 ARRAY_SIZE(partition_info_128KB_blk));
723 if (ret) 1164 if (ret)
724 goto err_probe; 1165 goto err_probe;
725 1166
@@ -728,32 +1169,16 @@ static int __init fsmc_nand_probe(struct platform_device *pdev)
728 return 0; 1169 return 0;
729 1170
730err_probe: 1171err_probe:
1172err_scan_ident:
1173 if (host->mode == USE_DMA_ACCESS)
1174 dma_release_channel(host->write_dma_chan);
1175err_req_write_chnl:
1176 if (host->mode == USE_DMA_ACCESS)
1177 dma_release_channel(host->read_dma_chan);
1178err_req_read_chnl:
731 clk_disable(host->clk); 1179 clk_disable(host->clk);
732err_probe1: 1180err_clk_enable:
733 if (host->clk) 1181 clk_put(host->clk);
734 clk_put(host->clk);
735 if (host->regs_va)
736 iounmap(host->regs_va);
737 if (host->resregs)
738 release_mem_region(host->resregs->start,
739 resource_size(host->resregs));
740 if (host->cmd_va)
741 iounmap(host->cmd_va);
742 if (host->rescmd)
743 release_mem_region(host->rescmd->start,
744 resource_size(host->rescmd));
745 if (host->addr_va)
746 iounmap(host->addr_va);
747 if (host->resaddr)
748 release_mem_region(host->resaddr->start,
749 resource_size(host->resaddr));
750 if (host->data_va)
751 iounmap(host->data_va);
752 if (host->resdata)
753 release_mem_region(host->resdata->start,
754 resource_size(host->resdata));
755
756 kfree(host);
757 return ret; 1182 return ret;
758} 1183}
759 1184
@@ -768,24 +1193,15 @@ static int fsmc_nand_remove(struct platform_device *pdev)
768 1193
769 if (host) { 1194 if (host) {
770 nand_release(&host->mtd); 1195 nand_release(&host->mtd);
1196
1197 if (host->mode == USE_DMA_ACCESS) {
1198 dma_release_channel(host->write_dma_chan);
1199 dma_release_channel(host->read_dma_chan);
1200 }
771 clk_disable(host->clk); 1201 clk_disable(host->clk);
772 clk_put(host->clk); 1202 clk_put(host->clk);
773
774 iounmap(host->regs_va);
775 release_mem_region(host->resregs->start,
776 resource_size(host->resregs));
777 iounmap(host->cmd_va);
778 release_mem_region(host->rescmd->start,
779 resource_size(host->rescmd));
780 iounmap(host->addr_va);
781 release_mem_region(host->resaddr->start,
782 resource_size(host->resaddr));
783 iounmap(host->data_va);
784 release_mem_region(host->resdata->start,
785 resource_size(host->resdata));
786
787 kfree(host);
788 } 1203 }
1204
789 return 0; 1205 return 0;
790} 1206}
791 1207
@@ -801,15 +1217,24 @@ static int fsmc_nand_suspend(struct device *dev)
801static int fsmc_nand_resume(struct device *dev) 1217static int fsmc_nand_resume(struct device *dev)
802{ 1218{
803 struct fsmc_nand_data *host = dev_get_drvdata(dev); 1219 struct fsmc_nand_data *host = dev_get_drvdata(dev);
804 if (host) 1220 if (host) {
805 clk_enable(host->clk); 1221 clk_enable(host->clk);
1222 fsmc_nand_setup(host->regs_va, host->bank,
1223 host->nand.options & NAND_BUSWIDTH_16,
1224 host->dev_timings);
1225 }
806 return 0; 1226 return 0;
807} 1227}
808 1228
809static const struct dev_pm_ops fsmc_nand_pm_ops = { 1229static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
810 .suspend = fsmc_nand_suspend, 1230#endif
811 .resume = fsmc_nand_resume, 1231
1232#ifdef CONFIG_OF
1233static const struct of_device_id fsmc_nand_id_table[] = {
1234 { .compatible = "st,spear600-fsmc-nand" },
1235 {}
812}; 1236};
1237MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
813#endif 1238#endif
814 1239
815static struct platform_driver fsmc_nand_driver = { 1240static struct platform_driver fsmc_nand_driver = {
@@ -817,6 +1242,7 @@ static struct platform_driver fsmc_nand_driver = {
817 .driver = { 1242 .driver = {
818 .owner = THIS_MODULE, 1243 .owner = THIS_MODULE,
819 .name = "fsmc-nand", 1244 .name = "fsmc-nand",
1245 .of_match_table = of_match_ptr(fsmc_nand_id_table),
820#ifdef CONFIG_PM 1246#ifdef CONFIG_PM
821 .pm = &fsmc_nand_pm_ops, 1247 .pm = &fsmc_nand_pm_ops,
822#endif 1248#endif
diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-lib.c b/drivers/mtd/nand/gpmi-nand/gpmi-lib.c
index 590dd5cceed6..e8ea7107932e 100644
--- a/drivers/mtd/nand/gpmi-nand/gpmi-lib.c
+++ b/drivers/mtd/nand/gpmi-nand/gpmi-lib.c
@@ -848,7 +848,10 @@ int gpmi_send_command(struct gpmi_nand_data *this)
848 848
849 sg_init_one(sgl, this->cmd_buffer, this->command_length); 849 sg_init_one(sgl, this->cmd_buffer, this->command_length);
850 dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE); 850 dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE);
851 desc = dmaengine_prep_slave_sg(channel, sgl, 1, DMA_MEM_TO_DEV, 1); 851 desc = dmaengine_prep_slave_sg(channel,
852 sgl, 1, DMA_MEM_TO_DEV,
853 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
854
852 if (!desc) { 855 if (!desc) {
853 pr_err("step 2 error\n"); 856 pr_err("step 2 error\n");
854 return -1; 857 return -1;
@@ -889,7 +892,8 @@ int gpmi_send_data(struct gpmi_nand_data *this)
889 /* [2] send DMA request */ 892 /* [2] send DMA request */
890 prepare_data_dma(this, DMA_TO_DEVICE); 893 prepare_data_dma(this, DMA_TO_DEVICE);
891 desc = dmaengine_prep_slave_sg(channel, &this->data_sgl, 894 desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
892 1, DMA_MEM_TO_DEV, 1); 895 1, DMA_MEM_TO_DEV,
896 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
893 if (!desc) { 897 if (!desc) {
894 pr_err("step 2 error\n"); 898 pr_err("step 2 error\n");
895 return -1; 899 return -1;
@@ -925,7 +929,8 @@ int gpmi_read_data(struct gpmi_nand_data *this)
925 /* [2] : send DMA request */ 929 /* [2] : send DMA request */
926 prepare_data_dma(this, DMA_FROM_DEVICE); 930 prepare_data_dma(this, DMA_FROM_DEVICE);
927 desc = dmaengine_prep_slave_sg(channel, &this->data_sgl, 931 desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
928 1, DMA_DEV_TO_MEM, 1); 932 1, DMA_DEV_TO_MEM,
933 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
929 if (!desc) { 934 if (!desc) {
930 pr_err("step 2 error\n"); 935 pr_err("step 2 error\n");
931 return -1; 936 return -1;
@@ -970,8 +975,10 @@ int gpmi_send_page(struct gpmi_nand_data *this,
970 pio[4] = payload; 975 pio[4] = payload;
971 pio[5] = auxiliary; 976 pio[5] = auxiliary;
972 977
973 desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio, 978 desc = dmaengine_prep_slave_sg(channel,
974 ARRAY_SIZE(pio), DMA_TRANS_NONE, 0); 979 (struct scatterlist *)pio,
980 ARRAY_SIZE(pio), DMA_TRANS_NONE,
981 DMA_CTRL_ACK);
975 if (!desc) { 982 if (!desc) {
976 pr_err("step 2 error\n"); 983 pr_err("step 2 error\n");
977 return -1; 984 return -1;
@@ -1035,7 +1042,8 @@ int gpmi_read_page(struct gpmi_nand_data *this,
1035 pio[5] = auxiliary; 1042 pio[5] = auxiliary;
1036 desc = dmaengine_prep_slave_sg(channel, 1043 desc = dmaengine_prep_slave_sg(channel,
1037 (struct scatterlist *)pio, 1044 (struct scatterlist *)pio,
1038 ARRAY_SIZE(pio), DMA_TRANS_NONE, 1); 1045 ARRAY_SIZE(pio), DMA_TRANS_NONE,
1046 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1039 if (!desc) { 1047 if (!desc) {
1040 pr_err("step 2 error\n"); 1048 pr_err("step 2 error\n");
1041 return -1; 1049 return -1;
@@ -1052,9 +1060,11 @@ int gpmi_read_page(struct gpmi_nand_data *this,
1052 | BF_GPMI_CTRL0_ADDRESS(address) 1060 | BF_GPMI_CTRL0_ADDRESS(address)
1053 | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size); 1061 | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
1054 pio[1] = 0; 1062 pio[1] = 0;
1063 pio[2] = 0; /* clear GPMI_HW_GPMI_ECCCTRL, disable the BCH. */
1055 desc = dmaengine_prep_slave_sg(channel, 1064 desc = dmaengine_prep_slave_sg(channel,
1056 (struct scatterlist *)pio, 2, 1065 (struct scatterlist *)pio, 3,
1057 DMA_TRANS_NONE, 1); 1066 DMA_TRANS_NONE,
1067 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1058 if (!desc) { 1068 if (!desc) {
1059 pr_err("step 3 error\n"); 1069 pr_err("step 3 error\n");
1060 return -1; 1070 return -1;
diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-nand.c b/drivers/mtd/nand/gpmi-nand/gpmi-nand.c
index 493ec2fcf97f..75b1dde16358 100644
--- a/drivers/mtd/nand/gpmi-nand/gpmi-nand.c
+++ b/drivers/mtd/nand/gpmi-nand/gpmi-nand.c
@@ -1124,7 +1124,7 @@ static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs)
1124 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1); 1124 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1125 1125
1126 /* Do we have a flash based bad block table ? */ 1126 /* Do we have a flash based bad block table ? */
1127 if (chip->options & NAND_BBT_USE_FLASH) 1127 if (chip->bbt_options & NAND_BBT_USE_FLASH)
1128 ret = nand_update_bbt(mtd, ofs); 1128 ret = nand_update_bbt(mtd, ofs);
1129 else { 1129 else {
1130 chipnr = (int)(ofs >> chip->chip_shift); 1130 chipnr = (int)(ofs >> chip->chip_shift);
@@ -1155,7 +1155,7 @@ static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs)
1155 return ret; 1155 return ret;
1156} 1156}
1157 1157
1158static int __devinit nand_boot_set_geometry(struct gpmi_nand_data *this) 1158static int nand_boot_set_geometry(struct gpmi_nand_data *this)
1159{ 1159{
1160 struct boot_rom_geometry *geometry = &this->rom_geometry; 1160 struct boot_rom_geometry *geometry = &this->rom_geometry;
1161 1161
@@ -1182,7 +1182,7 @@ static int __devinit nand_boot_set_geometry(struct gpmi_nand_data *this)
1182} 1182}
1183 1183
1184static const char *fingerprint = "STMP"; 1184static const char *fingerprint = "STMP";
1185static int __devinit mx23_check_transcription_stamp(struct gpmi_nand_data *this) 1185static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
1186{ 1186{
1187 struct boot_rom_geometry *rom_geo = &this->rom_geometry; 1187 struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1188 struct device *dev = this->dev; 1188 struct device *dev = this->dev;
@@ -1239,7 +1239,7 @@ static int __devinit mx23_check_transcription_stamp(struct gpmi_nand_data *this)
1239} 1239}
1240 1240
1241/* Writes a transcription stamp. */ 1241/* Writes a transcription stamp. */
1242static int __devinit mx23_write_transcription_stamp(struct gpmi_nand_data *this) 1242static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
1243{ 1243{
1244 struct device *dev = this->dev; 1244 struct device *dev = this->dev;
1245 struct boot_rom_geometry *rom_geo = &this->rom_geometry; 1245 struct boot_rom_geometry *rom_geo = &this->rom_geometry;
@@ -1322,7 +1322,7 @@ static int __devinit mx23_write_transcription_stamp(struct gpmi_nand_data *this)
1322 return 0; 1322 return 0;
1323} 1323}
1324 1324
1325static int __devinit mx23_boot_init(struct gpmi_nand_data *this) 1325static int mx23_boot_init(struct gpmi_nand_data *this)
1326{ 1326{
1327 struct device *dev = this->dev; 1327 struct device *dev = this->dev;
1328 struct nand_chip *chip = &this->nand; 1328 struct nand_chip *chip = &this->nand;
@@ -1391,7 +1391,7 @@ static int __devinit mx23_boot_init(struct gpmi_nand_data *this)
1391 return 0; 1391 return 0;
1392} 1392}
1393 1393
1394static int __devinit nand_boot_init(struct gpmi_nand_data *this) 1394static int nand_boot_init(struct gpmi_nand_data *this)
1395{ 1395{
1396 nand_boot_set_geometry(this); 1396 nand_boot_set_geometry(this);
1397 1397
@@ -1401,7 +1401,7 @@ static int __devinit nand_boot_init(struct gpmi_nand_data *this)
1401 return 0; 1401 return 0;
1402} 1402}
1403 1403
1404static int __devinit gpmi_set_geometry(struct gpmi_nand_data *this) 1404static int gpmi_set_geometry(struct gpmi_nand_data *this)
1405{ 1405{
1406 int ret; 1406 int ret;
1407 1407
diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-nand.h b/drivers/mtd/nand/gpmi-nand/gpmi-nand.h
index e023bccb7781..ec6180d4ff8f 100644
--- a/drivers/mtd/nand/gpmi-nand/gpmi-nand.h
+++ b/drivers/mtd/nand/gpmi-nand/gpmi-nand.h
@@ -20,7 +20,7 @@
20#include <linux/mtd/nand.h> 20#include <linux/mtd/nand.h>
21#include <linux/platform_device.h> 21#include <linux/platform_device.h>
22#include <linux/dma-mapping.h> 22#include <linux/dma-mapping.h>
23#include <mach/dma.h> 23#include <linux/fsl/mxs-dma.h>
24 24
25struct resources { 25struct resources {
26 void *gpmi_regs; 26 void *gpmi_regs;
diff --git a/drivers/mtd/nand/h1910.c b/drivers/mtd/nand/h1910.c
index 5dc6f0d92f1a..11e487813428 100644
--- a/drivers/mtd/nand/h1910.c
+++ b/drivers/mtd/nand/h1910.c
@@ -135,8 +135,8 @@ static int __init h1910_init(void)
135 } 135 }
136 136
137 /* Register the partitions */ 137 /* Register the partitions */
138 mtd_device_parse_register(h1910_nand_mtd, NULL, 0, 138 mtd_device_parse_register(h1910_nand_mtd, NULL, NULL, partition_info,
139 partition_info, NUM_PARTITIONS); 139 NUM_PARTITIONS);
140 140
141 /* Return happy */ 141 /* Return happy */
142 return 0; 142 return 0;
diff --git a/drivers/mtd/nand/jz4740_nand.c b/drivers/mtd/nand/jz4740_nand.c
index ac3b9f255e00..e4147e8acb7c 100644
--- a/drivers/mtd/nand/jz4740_nand.c
+++ b/drivers/mtd/nand/jz4740_nand.c
@@ -332,6 +332,11 @@ static int __devinit jz_nand_probe(struct platform_device *pdev)
332 chip->ecc.mode = NAND_ECC_HW_OOB_FIRST; 332 chip->ecc.mode = NAND_ECC_HW_OOB_FIRST;
333 chip->ecc.size = 512; 333 chip->ecc.size = 512;
334 chip->ecc.bytes = 9; 334 chip->ecc.bytes = 9;
335 chip->ecc.strength = 2;
336 /*
337 * FIXME: ecc_strength value of 2 bits per 512 bytes of data is a
338 * conservative guess, given 9 ecc bytes and reed-solomon alg.
339 */
335 340
336 if (pdata) 341 if (pdata)
337 chip->ecc.layout = pdata->ecc_layout; 342 chip->ecc.layout = pdata->ecc_layout;
@@ -367,9 +372,9 @@ static int __devinit jz_nand_probe(struct platform_device *pdev)
367 goto err_gpio_free; 372 goto err_gpio_free;
368 } 373 }
369 374
370 ret = mtd_device_parse_register(mtd, NULL, 0, 375 ret = mtd_device_parse_register(mtd, NULL, NULL,
371 pdata ? pdata->partitions : NULL, 376 pdata ? pdata->partitions : NULL,
372 pdata ? pdata->num_partitions : 0); 377 pdata ? pdata->num_partitions : 0);
373 378
374 if (ret) { 379 if (ret) {
375 dev_err(&pdev->dev, "Failed to add mtd device\n"); 380 dev_err(&pdev->dev, "Failed to add mtd device\n");
diff --git a/drivers/mtd/nand/mxc_nand.c b/drivers/mtd/nand/mxc_nand.c
index 74a43b818d0e..cc0678a967c1 100644
--- a/drivers/mtd/nand/mxc_nand.c
+++ b/drivers/mtd/nand/mxc_nand.c
@@ -1225,9 +1225,16 @@ static int __init mxcnd_probe(struct platform_device *pdev)
1225 goto escan; 1225 goto escan;
1226 } 1226 }
1227 1227
1228 if (this->ecc.mode == NAND_ECC_HW) {
1229 if (nfc_is_v1())
1230 this->ecc.strength = 1;
1231 else
1232 this->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1233 }
1234
1228 /* Register the partitions */ 1235 /* Register the partitions */
1229 mtd_device_parse_register(mtd, part_probes, 0, 1236 mtd_device_parse_register(mtd, part_probes, NULL, pdata->parts,
1230 pdata->parts, pdata->nr_parts); 1237 pdata->nr_parts);
1231 1238
1232 platform_set_drvdata(pdev, host); 1239 platform_set_drvdata(pdev, host);
1233 1240
diff --git a/drivers/mtd/nand/nand_base.c b/drivers/mtd/nand/nand_base.c
index 8a393f9e6027..47b19c0bb070 100644
--- a/drivers/mtd/nand/nand_base.c
+++ b/drivers/mtd/nand/nand_base.c
@@ -123,12 +123,6 @@ static int check_offs_len(struct mtd_info *mtd,
123 ret = -EINVAL; 123 ret = -EINVAL;
124 } 124 }
125 125
126 /* Do not allow past end of device */
127 if (ofs + len > mtd->size) {
128 pr_debug("%s: past end of device\n", __func__);
129 ret = -EINVAL;
130 }
131
132 return ret; 126 return ret;
133} 127}
134 128
@@ -338,7 +332,7 @@ static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
338 */ 332 */
339static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip) 333static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
340{ 334{
341 int page, chipnr, res = 0; 335 int page, chipnr, res = 0, i = 0;
342 struct nand_chip *chip = mtd->priv; 336 struct nand_chip *chip = mtd->priv;
343 u16 bad; 337 u16 bad;
344 338
@@ -356,23 +350,29 @@ static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
356 chip->select_chip(mtd, chipnr); 350 chip->select_chip(mtd, chipnr);
357 } 351 }
358 352
359 if (chip->options & NAND_BUSWIDTH_16) { 353 do {
360 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE, 354 if (chip->options & NAND_BUSWIDTH_16) {
361 page); 355 chip->cmdfunc(mtd, NAND_CMD_READOOB,
362 bad = cpu_to_le16(chip->read_word(mtd)); 356 chip->badblockpos & 0xFE, page);
363 if (chip->badblockpos & 0x1) 357 bad = cpu_to_le16(chip->read_word(mtd));
364 bad >>= 8; 358 if (chip->badblockpos & 0x1)
365 else 359 bad >>= 8;
366 bad &= 0xFF; 360 else
367 } else { 361 bad &= 0xFF;
368 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page); 362 } else {
369 bad = chip->read_byte(mtd); 363 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
370 } 364 page);
365 bad = chip->read_byte(mtd);
366 }
371 367
372 if (likely(chip->badblockbits == 8)) 368 if (likely(chip->badblockbits == 8))
373 res = bad != 0xFF; 369 res = bad != 0xFF;
374 else 370 else
375 res = hweight8(bad) < chip->badblockbits; 371 res = hweight8(bad) < chip->badblockbits;
372 ofs += mtd->writesize;
373 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
374 i++;
375 } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
376 376
377 if (getchip) 377 if (getchip)
378 nand_release_device(mtd); 378 nand_release_device(mtd);
@@ -386,51 +386,79 @@ static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
386 * @ofs: offset from device start 386 * @ofs: offset from device start
387 * 387 *
388 * This is the default implementation, which can be overridden by a hardware 388 * This is the default implementation, which can be overridden by a hardware
389 * specific driver. 389 * specific driver. We try operations in the following order, according to our
390 * bbt_options (NAND_BBT_NO_OOB_BBM and NAND_BBT_USE_FLASH):
391 * (1) erase the affected block, to allow OOB marker to be written cleanly
392 * (2) update in-memory BBT
393 * (3) write bad block marker to OOB area of affected block
394 * (4) update flash-based BBT
395 * Note that we retain the first error encountered in (3) or (4), finish the
396 * procedures, and dump the error in the end.
390*/ 397*/
391static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs) 398static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
392{ 399{
393 struct nand_chip *chip = mtd->priv; 400 struct nand_chip *chip = mtd->priv;
394 uint8_t buf[2] = { 0, 0 }; 401 uint8_t buf[2] = { 0, 0 };
395 int block, ret, i = 0; 402 int block, res, ret = 0, i = 0;
403 int write_oob = !(chip->bbt_options & NAND_BBT_NO_OOB_BBM);
396 404
397 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE) 405 if (write_oob) {
398 ofs += mtd->erasesize - mtd->writesize; 406 struct erase_info einfo;
407
408 /* Attempt erase before marking OOB */
409 memset(&einfo, 0, sizeof(einfo));
410 einfo.mtd = mtd;
411 einfo.addr = ofs;
412 einfo.len = 1 << chip->phys_erase_shift;
413 nand_erase_nand(mtd, &einfo, 0);
414 }
399 415
400 /* Get block number */ 416 /* Get block number */
401 block = (int)(ofs >> chip->bbt_erase_shift); 417 block = (int)(ofs >> chip->bbt_erase_shift);
418 /* Mark block bad in memory-based BBT */
402 if (chip->bbt) 419 if (chip->bbt)
403 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1); 420 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
404 421
405 /* Do we have a flash based bad block table? */ 422 /* Write bad block marker to OOB */
406 if (chip->bbt_options & NAND_BBT_USE_FLASH) 423 if (write_oob) {
407 ret = nand_update_bbt(mtd, ofs);
408 else {
409 struct mtd_oob_ops ops; 424 struct mtd_oob_ops ops;
425 loff_t wr_ofs = ofs;
410 426
411 nand_get_device(chip, mtd, FL_WRITING); 427 nand_get_device(chip, mtd, FL_WRITING);
412 428
413 /*
414 * Write to first two pages if necessary. If we write to more
415 * than one location, the first error encountered quits the
416 * procedure. We write two bytes per location, so we dont have
417 * to mess with 16 bit access.
418 */
419 ops.len = ops.ooblen = 2;
420 ops.datbuf = NULL; 429 ops.datbuf = NULL;
421 ops.oobbuf = buf; 430 ops.oobbuf = buf;
422 ops.ooboffs = chip->badblockpos & ~0x01; 431 ops.ooboffs = chip->badblockpos;
432 if (chip->options & NAND_BUSWIDTH_16) {
433 ops.ooboffs &= ~0x01;
434 ops.len = ops.ooblen = 2;
435 } else {
436 ops.len = ops.ooblen = 1;
437 }
423 ops.mode = MTD_OPS_PLACE_OOB; 438 ops.mode = MTD_OPS_PLACE_OOB;
439
440 /* Write to first/last page(s) if necessary */
441 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
442 wr_ofs += mtd->erasesize - mtd->writesize;
424 do { 443 do {
425 ret = nand_do_write_oob(mtd, ofs, &ops); 444 res = nand_do_write_oob(mtd, wr_ofs, &ops);
445 if (!ret)
446 ret = res;
426 447
427 i++; 448 i++;
428 ofs += mtd->writesize; 449 wr_ofs += mtd->writesize;
429 } while (!ret && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && 450 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
430 i < 2);
431 451
432 nand_release_device(mtd); 452 nand_release_device(mtd);
433 } 453 }
454
455 /* Update flash-based bad block table */
456 if (chip->bbt_options & NAND_BBT_USE_FLASH) {
457 res = nand_update_bbt(mtd, ofs);
458 if (!ret)
459 ret = res;
460 }
461
434 if (!ret) 462 if (!ret)
435 mtd->ecc_stats.badblocks++; 463 mtd->ecc_stats.badblocks++;
436 464
@@ -1586,25 +1614,14 @@ static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1586 struct mtd_oob_ops ops; 1614 struct mtd_oob_ops ops;
1587 int ret; 1615 int ret;
1588 1616
1589 /* Do not allow reads past end of device */
1590 if ((from + len) > mtd->size)
1591 return -EINVAL;
1592 if (!len)
1593 return 0;
1594
1595 nand_get_device(chip, mtd, FL_READING); 1617 nand_get_device(chip, mtd, FL_READING);
1596
1597 ops.len = len; 1618 ops.len = len;
1598 ops.datbuf = buf; 1619 ops.datbuf = buf;
1599 ops.oobbuf = NULL; 1620 ops.oobbuf = NULL;
1600 ops.mode = 0; 1621 ops.mode = 0;
1601
1602 ret = nand_do_read_ops(mtd, from, &ops); 1622 ret = nand_do_read_ops(mtd, from, &ops);
1603
1604 *retlen = ops.retlen; 1623 *retlen = ops.retlen;
1605
1606 nand_release_device(mtd); 1624 nand_release_device(mtd);
1607
1608 return ret; 1625 return ret;
1609} 1626}
1610 1627
@@ -2293,12 +2310,6 @@ static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2293 struct mtd_oob_ops ops; 2310 struct mtd_oob_ops ops;
2294 int ret; 2311 int ret;
2295 2312
2296 /* Do not allow reads past end of device */
2297 if ((to + len) > mtd->size)
2298 return -EINVAL;
2299 if (!len)
2300 return 0;
2301
2302 /* Wait for the device to get ready */ 2313 /* Wait for the device to get ready */
2303 panic_nand_wait(mtd, chip, 400); 2314 panic_nand_wait(mtd, chip, 400);
2304 2315
@@ -2333,25 +2344,14 @@ static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2333 struct mtd_oob_ops ops; 2344 struct mtd_oob_ops ops;
2334 int ret; 2345 int ret;
2335 2346
2336 /* Do not allow reads past end of device */
2337 if ((to + len) > mtd->size)
2338 return -EINVAL;
2339 if (!len)
2340 return 0;
2341
2342 nand_get_device(chip, mtd, FL_WRITING); 2347 nand_get_device(chip, mtd, FL_WRITING);
2343
2344 ops.len = len; 2348 ops.len = len;
2345 ops.datbuf = (uint8_t *)buf; 2349 ops.datbuf = (uint8_t *)buf;
2346 ops.oobbuf = NULL; 2350 ops.oobbuf = NULL;
2347 ops.mode = 0; 2351 ops.mode = 0;
2348
2349 ret = nand_do_write_ops(mtd, to, &ops); 2352 ret = nand_do_write_ops(mtd, to, &ops);
2350
2351 *retlen = ops.retlen; 2353 *retlen = ops.retlen;
2352
2353 nand_release_device(mtd); 2354 nand_release_device(mtd);
2354
2355 return ret; 2355 return ret;
2356} 2356}
2357 2357
@@ -2550,8 +2550,6 @@ int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2550 if (check_offs_len(mtd, instr->addr, instr->len)) 2550 if (check_offs_len(mtd, instr->addr, instr->len))
2551 return -EINVAL; 2551 return -EINVAL;
2552 2552
2553 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2554
2555 /* Grab the lock and see if the device is available */ 2553 /* Grab the lock and see if the device is available */
2556 nand_get_device(chip, mtd, FL_ERASING); 2554 nand_get_device(chip, mtd, FL_ERASING);
2557 2555
@@ -2715,10 +2713,6 @@ static void nand_sync(struct mtd_info *mtd)
2715 */ 2713 */
2716static int nand_block_isbad(struct mtd_info *mtd, loff_t offs) 2714static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2717{ 2715{
2718 /* Check for invalid offset */
2719 if (offs > mtd->size)
2720 return -EINVAL;
2721
2722 return nand_block_checkbad(mtd, offs, 1, 0); 2716 return nand_block_checkbad(mtd, offs, 1, 0);
2723} 2717}
2724 2718
@@ -2857,7 +2851,6 @@ static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
2857 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I') 2851 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
2858 return 0; 2852 return 0;
2859 2853
2860 pr_info("ONFI flash detected\n");
2861 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1); 2854 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2862 for (i = 0; i < 3; i++) { 2855 for (i = 0; i < 3; i++) {
2863 chip->read_buf(mtd, (uint8_t *)p, sizeof(*p)); 2856 chip->read_buf(mtd, (uint8_t *)p, sizeof(*p));
@@ -2898,7 +2891,8 @@ static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
2898 mtd->writesize = le32_to_cpu(p->byte_per_page); 2891 mtd->writesize = le32_to_cpu(p->byte_per_page);
2899 mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize; 2892 mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize;
2900 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page); 2893 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
2901 chip->chipsize = (uint64_t)le32_to_cpu(p->blocks_per_lun) * mtd->erasesize; 2894 chip->chipsize = le32_to_cpu(p->blocks_per_lun);
2895 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
2902 *busw = 0; 2896 *busw = 0;
2903 if (le16_to_cpu(p->features) & 1) 2897 if (le16_to_cpu(p->features) & 1)
2904 *busw = NAND_BUSWIDTH_16; 2898 *busw = NAND_BUSWIDTH_16;
@@ -2907,6 +2901,7 @@ static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
2907 chip->options |= (NAND_NO_READRDY | 2901 chip->options |= (NAND_NO_READRDY |
2908 NAND_NO_AUTOINCR) & NAND_CHIPOPTIONS_MSK; 2902 NAND_NO_AUTOINCR) & NAND_CHIPOPTIONS_MSK;
2909 2903
2904 pr_info("ONFI flash detected\n");
2910 return 1; 2905 return 1;
2911} 2906}
2912 2907
@@ -3238,6 +3233,10 @@ int nand_scan_tail(struct mtd_info *mtd)
3238 int i; 3233 int i;
3239 struct nand_chip *chip = mtd->priv; 3234 struct nand_chip *chip = mtd->priv;
3240 3235
3236 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
3237 BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
3238 !(chip->bbt_options & NAND_BBT_USE_FLASH));
3239
3241 if (!(chip->options & NAND_OWN_BUFFERS)) 3240 if (!(chip->options & NAND_OWN_BUFFERS))
3242 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL); 3241 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3243 if (!chip->buffers) 3242 if (!chip->buffers)
@@ -3350,6 +3349,7 @@ int nand_scan_tail(struct mtd_info *mtd)
3350 if (!chip->ecc.size) 3349 if (!chip->ecc.size)
3351 chip->ecc.size = 256; 3350 chip->ecc.size = 256;
3352 chip->ecc.bytes = 3; 3351 chip->ecc.bytes = 3;
3352 chip->ecc.strength = 1;
3353 break; 3353 break;
3354 3354
3355 case NAND_ECC_SOFT_BCH: 3355 case NAND_ECC_SOFT_BCH:
@@ -3384,6 +3384,8 @@ int nand_scan_tail(struct mtd_info *mtd)
3384 pr_warn("BCH ECC initialization failed!\n"); 3384 pr_warn("BCH ECC initialization failed!\n");
3385 BUG(); 3385 BUG();
3386 } 3386 }
3387 chip->ecc.strength =
3388 chip->ecc.bytes*8 / fls(8*chip->ecc.size);
3387 break; 3389 break;
3388 3390
3389 case NAND_ECC_NONE: 3391 case NAND_ECC_NONE:
@@ -3397,6 +3399,7 @@ int nand_scan_tail(struct mtd_info *mtd)
3397 chip->ecc.write_oob = nand_write_oob_std; 3399 chip->ecc.write_oob = nand_write_oob_std;
3398 chip->ecc.size = mtd->writesize; 3400 chip->ecc.size = mtd->writesize;
3399 chip->ecc.bytes = 0; 3401 chip->ecc.bytes = 0;
3402 chip->ecc.strength = 0;
3400 break; 3403 break;
3401 3404
3402 default: 3405 default:
@@ -3461,25 +3464,26 @@ int nand_scan_tail(struct mtd_info *mtd)
3461 mtd->type = MTD_NANDFLASH; 3464 mtd->type = MTD_NANDFLASH;
3462 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM : 3465 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3463 MTD_CAP_NANDFLASH; 3466 MTD_CAP_NANDFLASH;
3464 mtd->erase = nand_erase; 3467 mtd->_erase = nand_erase;
3465 mtd->point = NULL; 3468 mtd->_point = NULL;
3466 mtd->unpoint = NULL; 3469 mtd->_unpoint = NULL;
3467 mtd->read = nand_read; 3470 mtd->_read = nand_read;
3468 mtd->write = nand_write; 3471 mtd->_write = nand_write;
3469 mtd->panic_write = panic_nand_write; 3472 mtd->_panic_write = panic_nand_write;
3470 mtd->read_oob = nand_read_oob; 3473 mtd->_read_oob = nand_read_oob;
3471 mtd->write_oob = nand_write_oob; 3474 mtd->_write_oob = nand_write_oob;
3472 mtd->sync = nand_sync; 3475 mtd->_sync = nand_sync;
3473 mtd->lock = NULL; 3476 mtd->_lock = NULL;
3474 mtd->unlock = NULL; 3477 mtd->_unlock = NULL;
3475 mtd->suspend = nand_suspend; 3478 mtd->_suspend = nand_suspend;
3476 mtd->resume = nand_resume; 3479 mtd->_resume = nand_resume;
3477 mtd->block_isbad = nand_block_isbad; 3480 mtd->_block_isbad = nand_block_isbad;
3478 mtd->block_markbad = nand_block_markbad; 3481 mtd->_block_markbad = nand_block_markbad;
3479 mtd->writebufsize = mtd->writesize; 3482 mtd->writebufsize = mtd->writesize;
3480 3483
3481 /* propagate ecc.layout to mtd_info */ 3484 /* propagate ecc info to mtd_info */
3482 mtd->ecclayout = chip->ecc.layout; 3485 mtd->ecclayout = chip->ecc.layout;
3486 mtd->ecc_strength = chip->ecc.strength * chip->ecc.steps;
3483 3487
3484 /* Check, if we should skip the bad block table scan */ 3488 /* Check, if we should skip the bad block table scan */
3485 if (chip->options & NAND_SKIP_BBTSCAN) 3489 if (chip->options & NAND_SKIP_BBTSCAN)
diff --git a/drivers/mtd/nand/ndfc.c b/drivers/mtd/nand/ndfc.c
index ec688548c880..2b6f632cf274 100644
--- a/drivers/mtd/nand/ndfc.c
+++ b/drivers/mtd/nand/ndfc.c
@@ -179,6 +179,7 @@ static int ndfc_chip_init(struct ndfc_controller *ndfc,
179 chip->ecc.mode = NAND_ECC_HW; 179 chip->ecc.mode = NAND_ECC_HW;
180 chip->ecc.size = 256; 180 chip->ecc.size = 256;
181 chip->ecc.bytes = 3; 181 chip->ecc.bytes = 3;
182 chip->ecc.strength = 1;
182 chip->priv = ndfc; 183 chip->priv = ndfc;
183 184
184 ndfc->mtd.priv = chip; 185 ndfc->mtd.priv = chip;
diff --git a/drivers/mtd/nand/omap2.c b/drivers/mtd/nand/omap2.c
index b3a883e2a22f..c2b0bba9d8b3 100644
--- a/drivers/mtd/nand/omap2.c
+++ b/drivers/mtd/nand/omap2.c
@@ -1058,6 +1058,7 @@ static int __devinit omap_nand_probe(struct platform_device *pdev)
1058 (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE)) { 1058 (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE)) {
1059 info->nand.ecc.bytes = 3; 1059 info->nand.ecc.bytes = 3;
1060 info->nand.ecc.size = 512; 1060 info->nand.ecc.size = 512;
1061 info->nand.ecc.strength = 1;
1061 info->nand.ecc.calculate = omap_calculate_ecc; 1062 info->nand.ecc.calculate = omap_calculate_ecc;
1062 info->nand.ecc.hwctl = omap_enable_hwecc; 1063 info->nand.ecc.hwctl = omap_enable_hwecc;
1063 info->nand.ecc.correct = omap_correct_data; 1064 info->nand.ecc.correct = omap_correct_data;
@@ -1101,8 +1102,8 @@ static int __devinit omap_nand_probe(struct platform_device *pdev)
1101 goto out_release_mem_region; 1102 goto out_release_mem_region;
1102 } 1103 }
1103 1104
1104 mtd_device_parse_register(&info->mtd, NULL, 0, 1105 mtd_device_parse_register(&info->mtd, NULL, NULL, pdata->parts,
1105 pdata->parts, pdata->nr_parts); 1106 pdata->nr_parts);
1106 1107
1107 platform_set_drvdata(pdev, &info->mtd); 1108 platform_set_drvdata(pdev, &info->mtd);
1108 1109
diff --git a/drivers/mtd/nand/orion_nand.c b/drivers/mtd/nand/orion_nand.c
index 29f505adaf84..1d3bfb26080c 100644
--- a/drivers/mtd/nand/orion_nand.c
+++ b/drivers/mtd/nand/orion_nand.c
@@ -129,8 +129,8 @@ static int __init orion_nand_probe(struct platform_device *pdev)
129 } 129 }
130 130
131 mtd->name = "orion_nand"; 131 mtd->name = "orion_nand";
132 ret = mtd_device_parse_register(mtd, NULL, 0, 132 ret = mtd_device_parse_register(mtd, NULL, NULL, board->parts,
133 board->parts, board->nr_parts); 133 board->nr_parts);
134 if (ret) { 134 if (ret) {
135 nand_release(mtd); 135 nand_release(mtd);
136 goto no_dev; 136 goto no_dev;
diff --git a/drivers/mtd/nand/plat_nand.c b/drivers/mtd/nand/plat_nand.c
index 7f2da6953357..6404e6e81b10 100644
--- a/drivers/mtd/nand/plat_nand.c
+++ b/drivers/mtd/nand/plat_nand.c
@@ -99,8 +99,9 @@ static int __devinit plat_nand_probe(struct platform_device *pdev)
99 } 99 }
100 100
101 err = mtd_device_parse_register(&data->mtd, 101 err = mtd_device_parse_register(&data->mtd,
102 pdata->chip.part_probe_types, 0, 102 pdata->chip.part_probe_types, NULL,
103 pdata->chip.partitions, pdata->chip.nr_partitions); 103 pdata->chip.partitions,
104 pdata->chip.nr_partitions);
104 105
105 if (!err) 106 if (!err)
106 return err; 107 return err;
diff --git a/drivers/mtd/nand/ppchameleonevb.c b/drivers/mtd/nand/ppchameleonevb.c
index 7e52af51a198..0ddd90e5788f 100644
--- a/drivers/mtd/nand/ppchameleonevb.c
+++ b/drivers/mtd/nand/ppchameleonevb.c
@@ -275,11 +275,10 @@ static int __init ppchameleonevb_init(void)
275 ppchameleon_mtd->name = "ppchameleon-nand"; 275 ppchameleon_mtd->name = "ppchameleon-nand";
276 276
277 /* Register the partitions */ 277 /* Register the partitions */
278 mtd_device_parse_register(ppchameleon_mtd, NULL, 0, 278 mtd_device_parse_register(ppchameleon_mtd, NULL, NULL,
279 ppchameleon_mtd->size == NAND_SMALL_SIZE ? 279 ppchameleon_mtd->size == NAND_SMALL_SIZE ?
280 partition_info_me : 280 partition_info_me : partition_info_hi,
281 partition_info_hi, 281 NUM_PARTITIONS);
282 NUM_PARTITIONS);
283 282
284 nand_evb_init: 283 nand_evb_init:
285 /**************************** 284 /****************************
@@ -365,11 +364,10 @@ static int __init ppchameleonevb_init(void)
365 ppchameleonevb_mtd->name = NAND_EVB_MTD_NAME; 364 ppchameleonevb_mtd->name = NAND_EVB_MTD_NAME;
366 365
367 /* Register the partitions */ 366 /* Register the partitions */
368 mtd_device_parse_register(ppchameleonevb_mtd, NULL, 0, 367 mtd_device_parse_register(ppchameleonevb_mtd, NULL, NULL,
369 ppchameleon_mtd->size == NAND_SMALL_SIZE ? 368 ppchameleon_mtd->size == NAND_SMALL_SIZE ?
370 partition_info_me : 369 partition_info_me : partition_info_hi,
371 partition_info_hi, 370 NUM_PARTITIONS);
372 NUM_PARTITIONS);
373 371
374 /* Return happy */ 372 /* Return happy */
375 return 0; 373 return 0;
diff --git a/drivers/mtd/nand/pxa3xx_nand.c b/drivers/mtd/nand/pxa3xx_nand.c
index 5c3d719c37e6..def50caa6f84 100644
--- a/drivers/mtd/nand/pxa3xx_nand.c
+++ b/drivers/mtd/nand/pxa3xx_nand.c
@@ -1002,6 +1002,7 @@ static int pxa3xx_nand_scan(struct mtd_info *mtd)
1002KEEP_CONFIG: 1002KEEP_CONFIG:
1003 chip->ecc.mode = NAND_ECC_HW; 1003 chip->ecc.mode = NAND_ECC_HW;
1004 chip->ecc.size = host->page_size; 1004 chip->ecc.size = host->page_size;
1005 chip->ecc.strength = 1;
1005 1006
1006 chip->options = NAND_NO_AUTOINCR; 1007 chip->options = NAND_NO_AUTOINCR;
1007 chip->options |= NAND_NO_READRDY; 1008 chip->options |= NAND_NO_READRDY;
@@ -1228,8 +1229,9 @@ static int pxa3xx_nand_probe(struct platform_device *pdev)
1228 continue; 1229 continue;
1229 } 1230 }
1230 1231
1231 ret = mtd_device_parse_register(info->host[cs]->mtd, NULL, 0, 1232 ret = mtd_device_parse_register(info->host[cs]->mtd, NULL,
1232 pdata->parts[cs], pdata->nr_parts[cs]); 1233 NULL, pdata->parts[cs],
1234 pdata->nr_parts[cs]);
1233 if (!ret) 1235 if (!ret)
1234 probe_success = 1; 1236 probe_success = 1;
1235 } 1237 }
diff --git a/drivers/mtd/nand/r852.c b/drivers/mtd/nand/r852.c
index 769a4e096b3c..c2040187c813 100644
--- a/drivers/mtd/nand/r852.c
+++ b/drivers/mtd/nand/r852.c
@@ -891,6 +891,7 @@ int r852_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
891 chip->ecc.mode = NAND_ECC_HW_SYNDROME; 891 chip->ecc.mode = NAND_ECC_HW_SYNDROME;
892 chip->ecc.size = R852_DMA_LEN; 892 chip->ecc.size = R852_DMA_LEN;
893 chip->ecc.bytes = SM_OOB_SIZE; 893 chip->ecc.bytes = SM_OOB_SIZE;
894 chip->ecc.strength = 2;
894 chip->ecc.hwctl = r852_ecc_hwctl; 895 chip->ecc.hwctl = r852_ecc_hwctl;
895 chip->ecc.calculate = r852_ecc_calculate; 896 chip->ecc.calculate = r852_ecc_calculate;
896 chip->ecc.correct = r852_ecc_correct; 897 chip->ecc.correct = r852_ecc_correct;
diff --git a/drivers/mtd/nand/rtc_from4.c b/drivers/mtd/nand/rtc_from4.c
index f309addc2fa0..e55b5cfbe145 100644
--- a/drivers/mtd/nand/rtc_from4.c
+++ b/drivers/mtd/nand/rtc_from4.c
@@ -527,6 +527,7 @@ static int __init rtc_from4_init(void)
527 this->ecc.mode = NAND_ECC_HW_SYNDROME; 527 this->ecc.mode = NAND_ECC_HW_SYNDROME;
528 this->ecc.size = 512; 528 this->ecc.size = 512;
529 this->ecc.bytes = 8; 529 this->ecc.bytes = 8;
530 this->ecc.strength = 3;
530 /* return the status of extra status and ECC checks */ 531 /* return the status of extra status and ECC checks */
531 this->errstat = rtc_from4_errstat; 532 this->errstat = rtc_from4_errstat;
532 /* set the nand_oobinfo to support FPGA H/W error detection */ 533 /* set the nand_oobinfo to support FPGA H/W error detection */
diff --git a/drivers/mtd/nand/s3c2410.c b/drivers/mtd/nand/s3c2410.c
index 868685db6712..91121f33f743 100644
--- a/drivers/mtd/nand/s3c2410.c
+++ b/drivers/mtd/nand/s3c2410.c
@@ -751,8 +751,8 @@ static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
751 if (set) 751 if (set)
752 mtd->mtd.name = set->name; 752 mtd->mtd.name = set->name;
753 753
754 return mtd_device_parse_register(&mtd->mtd, NULL, 0, 754 return mtd_device_parse_register(&mtd->mtd, NULL, NULL,
755 set->partitions, set->nr_partitions); 755 set->partitions, set->nr_partitions);
756} 756}
757 757
758/** 758/**
@@ -823,6 +823,7 @@ static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
823 chip->ecc.calculate = s3c2410_nand_calculate_ecc; 823 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
824 chip->ecc.correct = s3c2410_nand_correct_data; 824 chip->ecc.correct = s3c2410_nand_correct_data;
825 chip->ecc.mode = NAND_ECC_HW; 825 chip->ecc.mode = NAND_ECC_HW;
826 chip->ecc.strength = 1;
826 827
827 switch (info->cpu_type) { 828 switch (info->cpu_type) {
828 case TYPE_S3C2410: 829 case TYPE_S3C2410:
diff --git a/drivers/mtd/nand/sh_flctl.c b/drivers/mtd/nand/sh_flctl.c
index 93b1f74321c2..e9b2b260de3a 100644
--- a/drivers/mtd/nand/sh_flctl.c
+++ b/drivers/mtd/nand/sh_flctl.c
@@ -26,6 +26,7 @@
26#include <linux/delay.h> 26#include <linux/delay.h>
27#include <linux/io.h> 27#include <linux/io.h>
28#include <linux/platform_device.h> 28#include <linux/platform_device.h>
29#include <linux/pm_runtime.h>
29#include <linux/slab.h> 30#include <linux/slab.h>
30 31
31#include <linux/mtd/mtd.h> 32#include <linux/mtd/mtd.h>
@@ -283,7 +284,7 @@ static void write_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
283static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val) 284static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val)
284{ 285{
285 struct sh_flctl *flctl = mtd_to_flctl(mtd); 286 struct sh_flctl *flctl = mtd_to_flctl(mtd);
286 uint32_t flcmncr_val = readl(FLCMNCR(flctl)) & ~SEL_16BIT; 287 uint32_t flcmncr_val = flctl->flcmncr_base & ~SEL_16BIT;
287 uint32_t flcmdcr_val, addr_len_bytes = 0; 288 uint32_t flcmdcr_val, addr_len_bytes = 0;
288 289
289 /* Set SNAND bit if page size is 2048byte */ 290 /* Set SNAND bit if page size is 2048byte */
@@ -303,6 +304,7 @@ static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_va
303 break; 304 break;
304 case NAND_CMD_READ0: 305 case NAND_CMD_READ0:
305 case NAND_CMD_READOOB: 306 case NAND_CMD_READOOB:
307 case NAND_CMD_RNDOUT:
306 addr_len_bytes = flctl->rw_ADRCNT; 308 addr_len_bytes = flctl->rw_ADRCNT;
307 flcmdcr_val |= CDSRC_E; 309 flcmdcr_val |= CDSRC_E;
308 if (flctl->chip.options & NAND_BUSWIDTH_16) 310 if (flctl->chip.options & NAND_BUSWIDTH_16)
@@ -320,6 +322,7 @@ static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_va
320 break; 322 break;
321 case NAND_CMD_READID: 323 case NAND_CMD_READID:
322 flcmncr_val &= ~SNAND_E; 324 flcmncr_val &= ~SNAND_E;
325 flcmdcr_val |= CDSRC_E;
323 addr_len_bytes = ADRCNT_1; 326 addr_len_bytes = ADRCNT_1;
324 break; 327 break;
325 case NAND_CMD_STATUS: 328 case NAND_CMD_STATUS:
@@ -513,6 +516,8 @@ static void flctl_cmdfunc(struct mtd_info *mtd, unsigned int command,
513 struct sh_flctl *flctl = mtd_to_flctl(mtd); 516 struct sh_flctl *flctl = mtd_to_flctl(mtd);
514 uint32_t read_cmd = 0; 517 uint32_t read_cmd = 0;
515 518
519 pm_runtime_get_sync(&flctl->pdev->dev);
520
516 flctl->read_bytes = 0; 521 flctl->read_bytes = 0;
517 if (command != NAND_CMD_PAGEPROG) 522 if (command != NAND_CMD_PAGEPROG)
518 flctl->index = 0; 523 flctl->index = 0;
@@ -525,7 +530,6 @@ static void flctl_cmdfunc(struct mtd_info *mtd, unsigned int command,
525 execmd_read_page_sector(mtd, page_addr); 530 execmd_read_page_sector(mtd, page_addr);
526 break; 531 break;
527 } 532 }
528 empty_fifo(flctl);
529 if (flctl->page_size) 533 if (flctl->page_size)
530 set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8) 534 set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
531 | command); 535 | command);
@@ -547,7 +551,6 @@ static void flctl_cmdfunc(struct mtd_info *mtd, unsigned int command,
547 break; 551 break;
548 } 552 }
549 553
550 empty_fifo(flctl);
551 if (flctl->page_size) { 554 if (flctl->page_size) {
552 set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8) 555 set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
553 | NAND_CMD_READ0); 556 | NAND_CMD_READ0);
@@ -559,15 +562,35 @@ static void flctl_cmdfunc(struct mtd_info *mtd, unsigned int command,
559 flctl->read_bytes = mtd->oobsize; 562 flctl->read_bytes = mtd->oobsize;
560 goto read_normal_exit; 563 goto read_normal_exit;
561 564
565 case NAND_CMD_RNDOUT:
566 if (flctl->hwecc)
567 break;
568
569 if (flctl->page_size)
570 set_cmd_regs(mtd, command, (NAND_CMD_RNDOUTSTART << 8)
571 | command);
572 else
573 set_cmd_regs(mtd, command, command);
574
575 set_addr(mtd, column, 0);
576
577 flctl->read_bytes = mtd->writesize + mtd->oobsize - column;
578 goto read_normal_exit;
579
562 case NAND_CMD_READID: 580 case NAND_CMD_READID:
563 empty_fifo(flctl);
564 set_cmd_regs(mtd, command, command); 581 set_cmd_regs(mtd, command, command);
565 set_addr(mtd, 0, 0);
566 582
567 flctl->read_bytes = 4; 583 /* READID is always performed using an 8-bit bus */
584 if (flctl->chip.options & NAND_BUSWIDTH_16)
585 column <<= 1;
586 set_addr(mtd, column, 0);
587
588 flctl->read_bytes = 8;
568 writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */ 589 writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
590 empty_fifo(flctl);
569 start_translation(flctl); 591 start_translation(flctl);
570 read_datareg(flctl, 0); /* read and end */ 592 read_fiforeg(flctl, flctl->read_bytes, 0);
593 wait_completion(flctl);
571 break; 594 break;
572 595
573 case NAND_CMD_ERASE1: 596 case NAND_CMD_ERASE1:
@@ -650,29 +673,55 @@ static void flctl_cmdfunc(struct mtd_info *mtd, unsigned int command,
650 default: 673 default:
651 break; 674 break;
652 } 675 }
653 return; 676 goto runtime_exit;
654 677
655read_normal_exit: 678read_normal_exit:
656 writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */ 679 writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
680 empty_fifo(flctl);
657 start_translation(flctl); 681 start_translation(flctl);
658 read_fiforeg(flctl, flctl->read_bytes, 0); 682 read_fiforeg(flctl, flctl->read_bytes, 0);
659 wait_completion(flctl); 683 wait_completion(flctl);
684runtime_exit:
685 pm_runtime_put_sync(&flctl->pdev->dev);
660 return; 686 return;
661} 687}
662 688
663static void flctl_select_chip(struct mtd_info *mtd, int chipnr) 689static void flctl_select_chip(struct mtd_info *mtd, int chipnr)
664{ 690{
665 struct sh_flctl *flctl = mtd_to_flctl(mtd); 691 struct sh_flctl *flctl = mtd_to_flctl(mtd);
666 uint32_t flcmncr_val = readl(FLCMNCR(flctl)); 692 int ret;
667 693
668 switch (chipnr) { 694 switch (chipnr) {
669 case -1: 695 case -1:
670 flcmncr_val &= ~CE0_ENABLE; 696 flctl->flcmncr_base &= ~CE0_ENABLE;
671 writel(flcmncr_val, FLCMNCR(flctl)); 697
698 pm_runtime_get_sync(&flctl->pdev->dev);
699 writel(flctl->flcmncr_base, FLCMNCR(flctl));
700
701 if (flctl->qos_request) {
702 dev_pm_qos_remove_request(&flctl->pm_qos);
703 flctl->qos_request = 0;
704 }
705
706 pm_runtime_put_sync(&flctl->pdev->dev);
672 break; 707 break;
673 case 0: 708 case 0:
674 flcmncr_val |= CE0_ENABLE; 709 flctl->flcmncr_base |= CE0_ENABLE;
675 writel(flcmncr_val, FLCMNCR(flctl)); 710
711 if (!flctl->qos_request) {
712 ret = dev_pm_qos_add_request(&flctl->pdev->dev,
713 &flctl->pm_qos, 100);
714 if (ret < 0)
715 dev_err(&flctl->pdev->dev,
716 "PM QoS request failed: %d\n", ret);
717 flctl->qos_request = 1;
718 }
719
720 if (flctl->holden) {
721 pm_runtime_get_sync(&flctl->pdev->dev);
722 writel(HOLDEN, FLHOLDCR(flctl));
723 pm_runtime_put_sync(&flctl->pdev->dev);
724 }
676 break; 725 break;
677 default: 726 default:
678 BUG(); 727 BUG();
@@ -730,11 +779,6 @@ static int flctl_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
730 return 0; 779 return 0;
731} 780}
732 781
733static void flctl_register_init(struct sh_flctl *flctl, unsigned long val)
734{
735 writel(val, FLCMNCR(flctl));
736}
737
738static int flctl_chip_init_tail(struct mtd_info *mtd) 782static int flctl_chip_init_tail(struct mtd_info *mtd)
739{ 783{
740 struct sh_flctl *flctl = mtd_to_flctl(mtd); 784 struct sh_flctl *flctl = mtd_to_flctl(mtd);
@@ -781,13 +825,13 @@ static int flctl_chip_init_tail(struct mtd_info *mtd)
781 825
782 chip->ecc.size = 512; 826 chip->ecc.size = 512;
783 chip->ecc.bytes = 10; 827 chip->ecc.bytes = 10;
828 chip->ecc.strength = 4;
784 chip->ecc.read_page = flctl_read_page_hwecc; 829 chip->ecc.read_page = flctl_read_page_hwecc;
785 chip->ecc.write_page = flctl_write_page_hwecc; 830 chip->ecc.write_page = flctl_write_page_hwecc;
786 chip->ecc.mode = NAND_ECC_HW; 831 chip->ecc.mode = NAND_ECC_HW;
787 832
788 /* 4 symbols ECC enabled */ 833 /* 4 symbols ECC enabled */
789 writel(readl(FLCMNCR(flctl)) | _4ECCEN | ECCPOS2 | ECCPOS_02, 834 flctl->flcmncr_base |= _4ECCEN | ECCPOS2 | ECCPOS_02;
790 FLCMNCR(flctl));
791 } else { 835 } else {
792 chip->ecc.mode = NAND_ECC_SOFT; 836 chip->ecc.mode = NAND_ECC_SOFT;
793 } 837 }
@@ -819,13 +863,13 @@ static int __devinit flctl_probe(struct platform_device *pdev)
819 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 863 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
820 if (!res) { 864 if (!res) {
821 dev_err(&pdev->dev, "failed to get I/O memory\n"); 865 dev_err(&pdev->dev, "failed to get I/O memory\n");
822 goto err; 866 goto err_iomap;
823 } 867 }
824 868
825 flctl->reg = ioremap(res->start, resource_size(res)); 869 flctl->reg = ioremap(res->start, resource_size(res));
826 if (flctl->reg == NULL) { 870 if (flctl->reg == NULL) {
827 dev_err(&pdev->dev, "failed to remap I/O memory\n"); 871 dev_err(&pdev->dev, "failed to remap I/O memory\n");
828 goto err; 872 goto err_iomap;
829 } 873 }
830 874
831 platform_set_drvdata(pdev, flctl); 875 platform_set_drvdata(pdev, flctl);
@@ -833,9 +877,9 @@ static int __devinit flctl_probe(struct platform_device *pdev)
833 nand = &flctl->chip; 877 nand = &flctl->chip;
834 flctl_mtd->priv = nand; 878 flctl_mtd->priv = nand;
835 flctl->pdev = pdev; 879 flctl->pdev = pdev;
880 flctl->flcmncr_base = pdata->flcmncr_val;
836 flctl->hwecc = pdata->has_hwecc; 881 flctl->hwecc = pdata->has_hwecc;
837 882 flctl->holden = pdata->use_holden;
838 flctl_register_init(flctl, pdata->flcmncr_val);
839 883
840 nand->options = NAND_NO_AUTOINCR; 884 nand->options = NAND_NO_AUTOINCR;
841 885
@@ -855,23 +899,28 @@ static int __devinit flctl_probe(struct platform_device *pdev)
855 nand->read_word = flctl_read_word; 899 nand->read_word = flctl_read_word;
856 } 900 }
857 901
902 pm_runtime_enable(&pdev->dev);
903 pm_runtime_resume(&pdev->dev);
904
858 ret = nand_scan_ident(flctl_mtd, 1, NULL); 905 ret = nand_scan_ident(flctl_mtd, 1, NULL);
859 if (ret) 906 if (ret)
860 goto err; 907 goto err_chip;
861 908
862 ret = flctl_chip_init_tail(flctl_mtd); 909 ret = flctl_chip_init_tail(flctl_mtd);
863 if (ret) 910 if (ret)
864 goto err; 911 goto err_chip;
865 912
866 ret = nand_scan_tail(flctl_mtd); 913 ret = nand_scan_tail(flctl_mtd);
867 if (ret) 914 if (ret)
868 goto err; 915 goto err_chip;
869 916
870 mtd_device_register(flctl_mtd, pdata->parts, pdata->nr_parts); 917 mtd_device_register(flctl_mtd, pdata->parts, pdata->nr_parts);
871 918
872 return 0; 919 return 0;
873 920
874err: 921err_chip:
922 pm_runtime_disable(&pdev->dev);
923err_iomap:
875 kfree(flctl); 924 kfree(flctl);
876 return ret; 925 return ret;
877} 926}
@@ -881,6 +930,7 @@ static int __devexit flctl_remove(struct platform_device *pdev)
881 struct sh_flctl *flctl = platform_get_drvdata(pdev); 930 struct sh_flctl *flctl = platform_get_drvdata(pdev);
882 931
883 nand_release(&flctl->mtd); 932 nand_release(&flctl->mtd);
933 pm_runtime_disable(&pdev->dev);
884 kfree(flctl); 934 kfree(flctl);
885 935
886 return 0; 936 return 0;
diff --git a/drivers/mtd/nand/sharpsl.c b/drivers/mtd/nand/sharpsl.c
index b175c0fd8b93..3421e3762a5a 100644
--- a/drivers/mtd/nand/sharpsl.c
+++ b/drivers/mtd/nand/sharpsl.c
@@ -167,6 +167,7 @@ static int __devinit sharpsl_nand_probe(struct platform_device *pdev)
167 this->ecc.mode = NAND_ECC_HW; 167 this->ecc.mode = NAND_ECC_HW;
168 this->ecc.size = 256; 168 this->ecc.size = 256;
169 this->ecc.bytes = 3; 169 this->ecc.bytes = 3;
170 this->ecc.strength = 1;
170 this->badblock_pattern = data->badblock_pattern; 171 this->badblock_pattern = data->badblock_pattern;
171 this->ecc.layout = data->ecc_layout; 172 this->ecc.layout = data->ecc_layout;
172 this->ecc.hwctl = sharpsl_nand_enable_hwecc; 173 this->ecc.hwctl = sharpsl_nand_enable_hwecc;
@@ -181,8 +182,8 @@ static int __devinit sharpsl_nand_probe(struct platform_device *pdev)
181 /* Register the partitions */ 182 /* Register the partitions */
182 sharpsl->mtd.name = "sharpsl-nand"; 183 sharpsl->mtd.name = "sharpsl-nand";
183 184
184 err = mtd_device_parse_register(&sharpsl->mtd, NULL, 0, 185 err = mtd_device_parse_register(&sharpsl->mtd, NULL, NULL,
185 data->partitions, data->nr_partitions); 186 data->partitions, data->nr_partitions);
186 if (err) 187 if (err)
187 goto err_add; 188 goto err_add;
188 189
diff --git a/drivers/mtd/nand/tmio_nand.c b/drivers/mtd/nand/tmio_nand.c
index 6caa0cd9d6a7..5aa518081c51 100644
--- a/drivers/mtd/nand/tmio_nand.c
+++ b/drivers/mtd/nand/tmio_nand.c
@@ -430,6 +430,7 @@ static int tmio_probe(struct platform_device *dev)
430 nand_chip->ecc.mode = NAND_ECC_HW; 430 nand_chip->ecc.mode = NAND_ECC_HW;
431 nand_chip->ecc.size = 512; 431 nand_chip->ecc.size = 512;
432 nand_chip->ecc.bytes = 6; 432 nand_chip->ecc.bytes = 6;
433 nand_chip->ecc.strength = 2;
433 nand_chip->ecc.hwctl = tmio_nand_enable_hwecc; 434 nand_chip->ecc.hwctl = tmio_nand_enable_hwecc;
434 nand_chip->ecc.calculate = tmio_nand_calculate_ecc; 435 nand_chip->ecc.calculate = tmio_nand_calculate_ecc;
435 nand_chip->ecc.correct = tmio_nand_correct_data; 436 nand_chip->ecc.correct = tmio_nand_correct_data;
@@ -456,9 +457,9 @@ static int tmio_probe(struct platform_device *dev)
456 goto err_scan; 457 goto err_scan;
457 } 458 }
458 /* Register the partitions */ 459 /* Register the partitions */
459 retval = mtd_device_parse_register(mtd, NULL, 0, 460 retval = mtd_device_parse_register(mtd, NULL, NULL,
460 data ? data->partition : NULL, 461 data ? data->partition : NULL,
461 data ? data->num_partitions : 0); 462 data ? data->num_partitions : 0);
462 if (!retval) 463 if (!retval)
463 return retval; 464 return retval;
464 465
diff --git a/drivers/mtd/nand/txx9ndfmc.c b/drivers/mtd/nand/txx9ndfmc.c
index c7c4f1d11c77..26398dcf21cf 100644
--- a/drivers/mtd/nand/txx9ndfmc.c
+++ b/drivers/mtd/nand/txx9ndfmc.c
@@ -356,6 +356,7 @@ static int __init txx9ndfmc_probe(struct platform_device *dev)
356 /* txx9ndfmc_nand_scan will overwrite ecc.size and ecc.bytes */ 356 /* txx9ndfmc_nand_scan will overwrite ecc.size and ecc.bytes */
357 chip->ecc.size = 256; 357 chip->ecc.size = 256;
358 chip->ecc.bytes = 3; 358 chip->ecc.bytes = 3;
359 chip->ecc.strength = 1;
359 chip->chip_delay = 100; 360 chip->chip_delay = 100;
360 chip->controller = &drvdata->hw_control; 361 chip->controller = &drvdata->hw_control;
361 362
@@ -386,7 +387,7 @@ static int __init txx9ndfmc_probe(struct platform_device *dev)
386 } 387 }
387 mtd->name = txx9_priv->mtdname; 388 mtd->name = txx9_priv->mtdname;
388 389
389 mtd_device_parse_register(mtd, NULL, 0, NULL, 0); 390 mtd_device_parse_register(mtd, NULL, NULL, NULL, 0);
390 drvdata->mtds[i] = mtd; 391 drvdata->mtds[i] = mtd;
391 } 392 }
392 393
diff --git a/drivers/mtd/nftlcore.c b/drivers/mtd/nftlcore.c
index a75382aff5f6..c5f4ebf4b384 100644
--- a/drivers/mtd/nftlcore.c
+++ b/drivers/mtd/nftlcore.c
@@ -56,13 +56,6 @@ static void nftl_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd)
56 if (memcmp(mtd->name, "DiskOnChip", 10)) 56 if (memcmp(mtd->name, "DiskOnChip", 10))
57 return; 57 return;
58 58
59 if (!mtd_can_have_bb(mtd)) {
60 printk(KERN_ERR
61"NFTL no longer supports the old DiskOnChip drivers loaded via docprobe.\n"
62"Please use the new diskonchip driver under the NAND subsystem.\n");
63 return;
64 }
65
66 pr_debug("NFTL: add_mtd for %s\n", mtd->name); 59 pr_debug("NFTL: add_mtd for %s\n", mtd->name);
67 60
68 nftl = kzalloc(sizeof(struct NFTLrecord), GFP_KERNEL); 61 nftl = kzalloc(sizeof(struct NFTLrecord), GFP_KERNEL);
diff --git a/drivers/mtd/onenand/generic.c b/drivers/mtd/onenand/generic.c
index 0ccd5bff2544..1c4f97c63e62 100644
--- a/drivers/mtd/onenand/generic.c
+++ b/drivers/mtd/onenand/generic.c
@@ -70,9 +70,9 @@ static int __devinit generic_onenand_probe(struct platform_device *pdev)
70 goto out_iounmap; 70 goto out_iounmap;
71 } 71 }
72 72
73 err = mtd_device_parse_register(&info->mtd, NULL, 0, 73 err = mtd_device_parse_register(&info->mtd, NULL, NULL,
74 pdata ? pdata->parts : NULL, 74 pdata ? pdata->parts : NULL,
75 pdata ? pdata->nr_parts : 0); 75 pdata ? pdata->nr_parts : 0);
76 76
77 platform_set_drvdata(pdev, info); 77 platform_set_drvdata(pdev, info);
78 78
diff --git a/drivers/mtd/onenand/omap2.c b/drivers/mtd/onenand/omap2.c
index 7e9ea6852b67..398a82783848 100644
--- a/drivers/mtd/onenand/omap2.c
+++ b/drivers/mtd/onenand/omap2.c
@@ -751,9 +751,9 @@ static int __devinit omap2_onenand_probe(struct platform_device *pdev)
751 if ((r = onenand_scan(&c->mtd, 1)) < 0) 751 if ((r = onenand_scan(&c->mtd, 1)) < 0)
752 goto err_release_regulator; 752 goto err_release_regulator;
753 753
754 r = mtd_device_parse_register(&c->mtd, NULL, 0, 754 r = mtd_device_parse_register(&c->mtd, NULL, NULL,
755 pdata ? pdata->parts : NULL, 755 pdata ? pdata->parts : NULL,
756 pdata ? pdata->nr_parts : 0); 756 pdata ? pdata->nr_parts : 0);
757 if (r) 757 if (r)
758 goto err_release_onenand; 758 goto err_release_onenand;
759 759
diff --git a/drivers/mtd/onenand/onenand_base.c b/drivers/mtd/onenand/onenand_base.c
index a061bc163da2..b3ce12ef359e 100644
--- a/drivers/mtd/onenand/onenand_base.c
+++ b/drivers/mtd/onenand/onenand_base.c
@@ -1753,16 +1753,6 @@ static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1753 pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to, 1753 pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1754 (int)len); 1754 (int)len);
1755 1755
1756 /* Initialize retlen, in case of early exit */
1757 *retlen = 0;
1758
1759 /* Do not allow writes past end of device */
1760 if (unlikely((to + len) > mtd->size)) {
1761 printk(KERN_ERR "%s: Attempt write to past end of device\n",
1762 __func__);
1763 return -EINVAL;
1764 }
1765
1766 /* Reject writes, which are not page aligned */ 1756 /* Reject writes, which are not page aligned */
1767 if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) { 1757 if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1768 printk(KERN_ERR "%s: Attempt to write not page aligned data\n", 1758 printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
@@ -1890,13 +1880,6 @@ static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1890 ops->retlen = 0; 1880 ops->retlen = 0;
1891 ops->oobretlen = 0; 1881 ops->oobretlen = 0;
1892 1882
1893 /* Do not allow writes past end of device */
1894 if (unlikely((to + len) > mtd->size)) {
1895 printk(KERN_ERR "%s: Attempt write to past end of device\n",
1896 __func__);
1897 return -EINVAL;
1898 }
1899
1900 /* Reject writes, which are not page aligned */ 1883 /* Reject writes, which are not page aligned */
1901 if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) { 1884 if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1902 printk(KERN_ERR "%s: Attempt to write not page aligned data\n", 1885 printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
@@ -2493,12 +2476,6 @@ static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
2493 (unsigned long long)instr->addr, 2476 (unsigned long long)instr->addr,
2494 (unsigned long long)instr->len); 2477 (unsigned long long)instr->len);
2495 2478
2496 /* Do not allow erase past end of device */
2497 if (unlikely((len + addr) > mtd->size)) {
2498 printk(KERN_ERR "%s: Erase past end of device\n", __func__);
2499 return -EINVAL;
2500 }
2501
2502 if (FLEXONENAND(this)) { 2479 if (FLEXONENAND(this)) {
2503 /* Find the eraseregion of this address */ 2480 /* Find the eraseregion of this address */
2504 int i = flexonenand_region(mtd, addr); 2481 int i = flexonenand_region(mtd, addr);
@@ -2525,8 +2502,6 @@ static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
2525 return -EINVAL; 2502 return -EINVAL;
2526 } 2503 }
2527 2504
2528 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2529
2530 /* Grab the lock and see if the device is available */ 2505 /* Grab the lock and see if the device is available */
2531 onenand_get_device(mtd, FL_ERASING); 2506 onenand_get_device(mtd, FL_ERASING);
2532 2507
@@ -4103,33 +4078,34 @@ int onenand_scan(struct mtd_info *mtd, int maxchips)
4103 mtd->oobavail = this->ecclayout->oobavail; 4078 mtd->oobavail = this->ecclayout->oobavail;
4104 4079
4105 mtd->ecclayout = this->ecclayout; 4080 mtd->ecclayout = this->ecclayout;
4081 mtd->ecc_strength = 1;
4106 4082
4107 /* Fill in remaining MTD driver data */ 4083 /* Fill in remaining MTD driver data */
4108 mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH; 4084 mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH;
4109 mtd->flags = MTD_CAP_NANDFLASH; 4085 mtd->flags = MTD_CAP_NANDFLASH;
4110 mtd->erase = onenand_erase; 4086 mtd->_erase = onenand_erase;
4111 mtd->point = NULL; 4087 mtd->_point = NULL;
4112 mtd->unpoint = NULL; 4088 mtd->_unpoint = NULL;
4113 mtd->read = onenand_read; 4089 mtd->_read = onenand_read;
4114 mtd->write = onenand_write; 4090 mtd->_write = onenand_write;
4115 mtd->read_oob = onenand_read_oob; 4091 mtd->_read_oob = onenand_read_oob;
4116 mtd->write_oob = onenand_write_oob; 4092 mtd->_write_oob = onenand_write_oob;
4117 mtd->panic_write = onenand_panic_write; 4093 mtd->_panic_write = onenand_panic_write;
4118#ifdef CONFIG_MTD_ONENAND_OTP 4094#ifdef CONFIG_MTD_ONENAND_OTP
4119 mtd->get_fact_prot_info = onenand_get_fact_prot_info; 4095 mtd->_get_fact_prot_info = onenand_get_fact_prot_info;
4120 mtd->read_fact_prot_reg = onenand_read_fact_prot_reg; 4096 mtd->_read_fact_prot_reg = onenand_read_fact_prot_reg;
4121 mtd->get_user_prot_info = onenand_get_user_prot_info; 4097 mtd->_get_user_prot_info = onenand_get_user_prot_info;
4122 mtd->read_user_prot_reg = onenand_read_user_prot_reg; 4098 mtd->_read_user_prot_reg = onenand_read_user_prot_reg;
4123 mtd->write_user_prot_reg = onenand_write_user_prot_reg; 4099 mtd->_write_user_prot_reg = onenand_write_user_prot_reg;
4124 mtd->lock_user_prot_reg = onenand_lock_user_prot_reg; 4100 mtd->_lock_user_prot_reg = onenand_lock_user_prot_reg;
4125#endif 4101#endif
4126 mtd->sync = onenand_sync; 4102 mtd->_sync = onenand_sync;
4127 mtd->lock = onenand_lock; 4103 mtd->_lock = onenand_lock;
4128 mtd->unlock = onenand_unlock; 4104 mtd->_unlock = onenand_unlock;
4129 mtd->suspend = onenand_suspend; 4105 mtd->_suspend = onenand_suspend;
4130 mtd->resume = onenand_resume; 4106 mtd->_resume = onenand_resume;
4131 mtd->block_isbad = onenand_block_isbad; 4107 mtd->_block_isbad = onenand_block_isbad;
4132 mtd->block_markbad = onenand_block_markbad; 4108 mtd->_block_markbad = onenand_block_markbad;
4133 mtd->owner = THIS_MODULE; 4109 mtd->owner = THIS_MODULE;
4134 mtd->writebufsize = mtd->writesize; 4110 mtd->writebufsize = mtd->writesize;
4135 4111
diff --git a/drivers/mtd/onenand/samsung.c b/drivers/mtd/onenand/samsung.c
index fa1ee43f735b..8e4b3f2742ba 100644
--- a/drivers/mtd/onenand/samsung.c
+++ b/drivers/mtd/onenand/samsung.c
@@ -923,7 +923,7 @@ static int s3c_onenand_probe(struct platform_device *pdev)
923 r = platform_get_resource(pdev, IORESOURCE_MEM, 1); 923 r = platform_get_resource(pdev, IORESOURCE_MEM, 1);
924 if (!r) { 924 if (!r) {
925 dev_err(&pdev->dev, "no buffer memory resource defined\n"); 925 dev_err(&pdev->dev, "no buffer memory resource defined\n");
926 return -ENOENT; 926 err = -ENOENT;
927 goto ahb_resource_failed; 927 goto ahb_resource_failed;
928 } 928 }
929 929
@@ -964,7 +964,7 @@ static int s3c_onenand_probe(struct platform_device *pdev)
964 r = platform_get_resource(pdev, IORESOURCE_MEM, 1); 964 r = platform_get_resource(pdev, IORESOURCE_MEM, 1);
965 if (!r) { 965 if (!r) {
966 dev_err(&pdev->dev, "no dma memory resource defined\n"); 966 dev_err(&pdev->dev, "no dma memory resource defined\n");
967 return -ENOENT; 967 err = -ENOENT;
968 goto dma_resource_failed; 968 goto dma_resource_failed;
969 } 969 }
970 970
@@ -1014,7 +1014,7 @@ static int s3c_onenand_probe(struct platform_device *pdev)
1014 if (s3c_read_reg(MEM_CFG_OFFSET) & ONENAND_SYS_CFG1_SYNC_READ) 1014 if (s3c_read_reg(MEM_CFG_OFFSET) & ONENAND_SYS_CFG1_SYNC_READ)
1015 dev_info(&onenand->pdev->dev, "OneNAND Sync. Burst Read enabled\n"); 1015 dev_info(&onenand->pdev->dev, "OneNAND Sync. Burst Read enabled\n");
1016 1016
1017 err = mtd_device_parse_register(mtd, NULL, 0, 1017 err = mtd_device_parse_register(mtd, NULL, NULL,
1018 pdata ? pdata->parts : NULL, 1018 pdata ? pdata->parts : NULL,
1019 pdata ? pdata->nr_parts : 0); 1019 pdata ? pdata->nr_parts : 0);
1020 1020
diff --git a/drivers/mtd/redboot.c b/drivers/mtd/redboot.c
index 48970c14beff..580035c803d6 100644
--- a/drivers/mtd/redboot.c
+++ b/drivers/mtd/redboot.c
@@ -78,8 +78,7 @@ static int parse_redboot_partitions(struct mtd_info *master,
78 78
79 if ( directory < 0 ) { 79 if ( directory < 0 ) {
80 offset = master->size + directory * master->erasesize; 80 offset = master->size + directory * master->erasesize;
81 while (mtd_can_have_bb(master) && 81 while (mtd_block_isbad(master, offset)) {
82 mtd_block_isbad(master, offset)) {
83 if (!offset) { 82 if (!offset) {
84 nogood: 83 nogood:
85 printk(KERN_NOTICE "Failed to find a non-bad block to check for RedBoot partition table\n"); 84 printk(KERN_NOTICE "Failed to find a non-bad block to check for RedBoot partition table\n");
@@ -89,8 +88,7 @@ static int parse_redboot_partitions(struct mtd_info *master,
89 } 88 }
90 } else { 89 } else {
91 offset = directory * master->erasesize; 90 offset = directory * master->erasesize;
92 while (mtd_can_have_bb(master) && 91 while (mtd_block_isbad(master, offset)) {
93 mtd_block_isbad(master, offset)) {
94 offset += master->erasesize; 92 offset += master->erasesize;
95 if (offset == master->size) 93 if (offset == master->size)
96 goto nogood; 94 goto nogood;
diff --git a/drivers/mtd/sm_ftl.c b/drivers/mtd/sm_ftl.c
index 072ed5970e2f..9e2dfd517aa5 100644
--- a/drivers/mtd/sm_ftl.c
+++ b/drivers/mtd/sm_ftl.c
@@ -1256,7 +1256,7 @@ static void sm_remove_dev(struct mtd_blktrans_dev *dev)
1256 1256
1257static struct mtd_blktrans_ops sm_ftl_ops = { 1257static struct mtd_blktrans_ops sm_ftl_ops = {
1258 .name = "smblk", 1258 .name = "smblk",
1259 .major = -1, 1259 .major = 0,
1260 .part_bits = SM_FTL_PARTN_BITS, 1260 .part_bits = SM_FTL_PARTN_BITS,
1261 .blksize = SM_SECTOR_SIZE, 1261 .blksize = SM_SECTOR_SIZE,
1262 .getgeo = sm_getgeo, 1262 .getgeo = sm_getgeo,
diff --git a/drivers/mtd/ubi/gluebi.c b/drivers/mtd/ubi/gluebi.c
index 941bc3c05d6e..90b98822d9a4 100644
--- a/drivers/mtd/ubi/gluebi.c
+++ b/drivers/mtd/ubi/gluebi.c
@@ -174,11 +174,7 @@ static int gluebi_read(struct mtd_info *mtd, loff_t from, size_t len,
174 int err = 0, lnum, offs, total_read; 174 int err = 0, lnum, offs, total_read;
175 struct gluebi_device *gluebi; 175 struct gluebi_device *gluebi;
176 176
177 if (len < 0 || from < 0 || from + len > mtd->size)
178 return -EINVAL;
179
180 gluebi = container_of(mtd, struct gluebi_device, mtd); 177 gluebi = container_of(mtd, struct gluebi_device, mtd);
181
182 lnum = div_u64_rem(from, mtd->erasesize, &offs); 178 lnum = div_u64_rem(from, mtd->erasesize, &offs);
183 total_read = len; 179 total_read = len;
184 while (total_read) { 180 while (total_read) {
@@ -218,14 +214,7 @@ static int gluebi_write(struct mtd_info *mtd, loff_t to, size_t len,
218 int err = 0, lnum, offs, total_written; 214 int err = 0, lnum, offs, total_written;
219 struct gluebi_device *gluebi; 215 struct gluebi_device *gluebi;
220 216
221 if (len < 0 || to < 0 || len + to > mtd->size)
222 return -EINVAL;
223
224 gluebi = container_of(mtd, struct gluebi_device, mtd); 217 gluebi = container_of(mtd, struct gluebi_device, mtd);
225
226 if (!(mtd->flags & MTD_WRITEABLE))
227 return -EROFS;
228
229 lnum = div_u64_rem(to, mtd->erasesize, &offs); 218 lnum = div_u64_rem(to, mtd->erasesize, &offs);
230 219
231 if (len % mtd->writesize || offs % mtd->writesize) 220 if (len % mtd->writesize || offs % mtd->writesize)
@@ -265,21 +254,13 @@ static int gluebi_erase(struct mtd_info *mtd, struct erase_info *instr)
265 int err, i, lnum, count; 254 int err, i, lnum, count;
266 struct gluebi_device *gluebi; 255 struct gluebi_device *gluebi;
267 256
268 if (instr->addr < 0 || instr->addr > mtd->size - mtd->erasesize)
269 return -EINVAL;
270 if (instr->len < 0 || instr->addr + instr->len > mtd->size)
271 return -EINVAL;
272 if (mtd_mod_by_ws(instr->addr, mtd) || mtd_mod_by_ws(instr->len, mtd)) 257 if (mtd_mod_by_ws(instr->addr, mtd) || mtd_mod_by_ws(instr->len, mtd))
273 return -EINVAL; 258 return -EINVAL;
274 259
275 lnum = mtd_div_by_eb(instr->addr, mtd); 260 lnum = mtd_div_by_eb(instr->addr, mtd);
276 count = mtd_div_by_eb(instr->len, mtd); 261 count = mtd_div_by_eb(instr->len, mtd);
277
278 gluebi = container_of(mtd, struct gluebi_device, mtd); 262 gluebi = container_of(mtd, struct gluebi_device, mtd);
279 263
280 if (!(mtd->flags & MTD_WRITEABLE))
281 return -EROFS;
282
283 for (i = 0; i < count - 1; i++) { 264 for (i = 0; i < count - 1; i++) {
284 err = ubi_leb_unmap(gluebi->desc, lnum + i); 265 err = ubi_leb_unmap(gluebi->desc, lnum + i);
285 if (err) 266 if (err)
@@ -340,11 +321,11 @@ static int gluebi_create(struct ubi_device_info *di,
340 mtd->owner = THIS_MODULE; 321 mtd->owner = THIS_MODULE;
341 mtd->writesize = di->min_io_size; 322 mtd->writesize = di->min_io_size;
342 mtd->erasesize = vi->usable_leb_size; 323 mtd->erasesize = vi->usable_leb_size;
343 mtd->read = gluebi_read; 324 mtd->_read = gluebi_read;
344 mtd->write = gluebi_write; 325 mtd->_write = gluebi_write;
345 mtd->erase = gluebi_erase; 326 mtd->_erase = gluebi_erase;
346 mtd->get_device = gluebi_get_device; 327 mtd->_get_device = gluebi_get_device;
347 mtd->put_device = gluebi_put_device; 328 mtd->_put_device = gluebi_put_device;
348 329
349 /* 330 /*
350 * In case of dynamic a volume, MTD device size is just volume size. In 331 * In case of dynamic a volume, MTD device size is just volume size. In
diff --git a/drivers/net/ethernet/sfc/mtd.c b/drivers/net/ethernet/sfc/mtd.c
index 26b3c23b0b6f..758148379b0e 100644
--- a/drivers/net/ethernet/sfc/mtd.c
+++ b/drivers/net/ethernet/sfc/mtd.c
@@ -193,7 +193,7 @@ static int efx_mtd_erase(struct mtd_info *mtd, struct erase_info *erase)
193 erase->state = MTD_ERASE_DONE; 193 erase->state = MTD_ERASE_DONE;
194 } else { 194 } else {
195 erase->state = MTD_ERASE_FAILED; 195 erase->state = MTD_ERASE_FAILED;
196 erase->fail_addr = 0xffffffff; 196 erase->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
197 } 197 }
198 mtd_erase_callback(erase); 198 mtd_erase_callback(erase);
199 return rc; 199 return rc;
@@ -263,10 +263,10 @@ static int efx_mtd_probe_device(struct efx_nic *efx, struct efx_mtd *efx_mtd)
263 part->mtd.owner = THIS_MODULE; 263 part->mtd.owner = THIS_MODULE;
264 part->mtd.priv = efx_mtd; 264 part->mtd.priv = efx_mtd;
265 part->mtd.name = part->name; 265 part->mtd.name = part->name;
266 part->mtd.erase = efx_mtd_erase; 266 part->mtd._erase = efx_mtd_erase;
267 part->mtd.read = efx_mtd->ops->read; 267 part->mtd._read = efx_mtd->ops->read;
268 part->mtd.write = efx_mtd->ops->write; 268 part->mtd._write = efx_mtd->ops->write;
269 part->mtd.sync = efx_mtd_sync; 269 part->mtd._sync = efx_mtd_sync;
270 270
271 if (mtd_device_register(&part->mtd, NULL, 0)) 271 if (mtd_device_register(&part->mtd, NULL, 0))
272 goto fail; 272 goto fail;
diff --git a/fs/jffs2/acl.c b/fs/jffs2/acl.c
index 926d02068a14..922f146e4235 100644
--- a/fs/jffs2/acl.c
+++ b/fs/jffs2/acl.c
@@ -9,6 +9,8 @@
9 * 9 *
10 */ 10 */
11 11
12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
12#include <linux/kernel.h> 14#include <linux/kernel.h>
13#include <linux/slab.h> 15#include <linux/slab.h>
14#include <linux/fs.h> 16#include <linux/fs.h>
diff --git a/fs/jffs2/background.c b/fs/jffs2/background.c
index 404111b016c9..2b60ce1996aa 100644
--- a/fs/jffs2/background.c
+++ b/fs/jffs2/background.c
@@ -10,6 +10,8 @@
10 * 10 *
11 */ 11 */
12 12
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
13#include <linux/kernel.h> 15#include <linux/kernel.h>
14#include <linux/jffs2.h> 16#include <linux/jffs2.h>
15#include <linux/mtd/mtd.h> 17#include <linux/mtd/mtd.h>
@@ -42,12 +44,13 @@ int jffs2_start_garbage_collect_thread(struct jffs2_sb_info *c)
42 44
43 tsk = kthread_run(jffs2_garbage_collect_thread, c, "jffs2_gcd_mtd%d", c->mtd->index); 45 tsk = kthread_run(jffs2_garbage_collect_thread, c, "jffs2_gcd_mtd%d", c->mtd->index);
44 if (IS_ERR(tsk)) { 46 if (IS_ERR(tsk)) {
45 printk(KERN_WARNING "fork failed for JFFS2 garbage collect thread: %ld\n", -PTR_ERR(tsk)); 47 pr_warn("fork failed for JFFS2 garbage collect thread: %ld\n",
48 -PTR_ERR(tsk));
46 complete(&c->gc_thread_exit); 49 complete(&c->gc_thread_exit);
47 ret = PTR_ERR(tsk); 50 ret = PTR_ERR(tsk);
48 } else { 51 } else {
49 /* Wait for it... */ 52 /* Wait for it... */
50 D1(printk(KERN_DEBUG "JFFS2: Garbage collect thread is pid %d\n", tsk->pid)); 53 jffs2_dbg(1, "Garbage collect thread is pid %d\n", tsk->pid);
51 wait_for_completion(&c->gc_thread_start); 54 wait_for_completion(&c->gc_thread_start);
52 ret = tsk->pid; 55 ret = tsk->pid;
53 } 56 }
@@ -60,7 +63,7 @@ void jffs2_stop_garbage_collect_thread(struct jffs2_sb_info *c)
60 int wait = 0; 63 int wait = 0;
61 spin_lock(&c->erase_completion_lock); 64 spin_lock(&c->erase_completion_lock);
62 if (c->gc_task) { 65 if (c->gc_task) {
63 D1(printk(KERN_DEBUG "jffs2: Killing GC task %d\n", c->gc_task->pid)); 66 jffs2_dbg(1, "Killing GC task %d\n", c->gc_task->pid);
64 send_sig(SIGKILL, c->gc_task, 1); 67 send_sig(SIGKILL, c->gc_task, 1);
65 wait = 1; 68 wait = 1;
66 } 69 }
@@ -90,7 +93,7 @@ static int jffs2_garbage_collect_thread(void *_c)
90 if (!jffs2_thread_should_wake(c)) { 93 if (!jffs2_thread_should_wake(c)) {
91 set_current_state (TASK_INTERRUPTIBLE); 94 set_current_state (TASK_INTERRUPTIBLE);
92 spin_unlock(&c->erase_completion_lock); 95 spin_unlock(&c->erase_completion_lock);
93 D1(printk(KERN_DEBUG "jffs2_garbage_collect_thread sleeping...\n")); 96 jffs2_dbg(1, "%s(): sleeping...\n", __func__);
94 schedule(); 97 schedule();
95 } else 98 } else
96 spin_unlock(&c->erase_completion_lock); 99 spin_unlock(&c->erase_completion_lock);
@@ -109,7 +112,7 @@ static int jffs2_garbage_collect_thread(void *_c)
109 schedule_timeout_interruptible(msecs_to_jiffies(50)); 112 schedule_timeout_interruptible(msecs_to_jiffies(50));
110 113
111 if (kthread_should_stop()) { 114 if (kthread_should_stop()) {
112 D1(printk(KERN_DEBUG "jffs2_garbage_collect_thread(): kthread_stop() called.\n")); 115 jffs2_dbg(1, "%s(): kthread_stop() called\n", __func__);
113 goto die; 116 goto die;
114 } 117 }
115 118
@@ -126,28 +129,32 @@ static int jffs2_garbage_collect_thread(void *_c)
126 129
127 switch(signr) { 130 switch(signr) {
128 case SIGSTOP: 131 case SIGSTOP:
129 D1(printk(KERN_DEBUG "jffs2_garbage_collect_thread(): SIGSTOP received.\n")); 132 jffs2_dbg(1, "%s(): SIGSTOP received\n",
133 __func__);
130 set_current_state(TASK_STOPPED); 134 set_current_state(TASK_STOPPED);
131 schedule(); 135 schedule();
132 break; 136 break;
133 137
134 case SIGKILL: 138 case SIGKILL:
135 D1(printk(KERN_DEBUG "jffs2_garbage_collect_thread(): SIGKILL received.\n")); 139 jffs2_dbg(1, "%s(): SIGKILL received\n",
140 __func__);
136 goto die; 141 goto die;
137 142
138 case SIGHUP: 143 case SIGHUP:
139 D1(printk(KERN_DEBUG "jffs2_garbage_collect_thread(): SIGHUP received.\n")); 144 jffs2_dbg(1, "%s(): SIGHUP received\n",
145 __func__);
140 break; 146 break;
141 default: 147 default:
142 D1(printk(KERN_DEBUG "jffs2_garbage_collect_thread(): signal %ld received\n", signr)); 148 jffs2_dbg(1, "%s(): signal %ld received\n",
149 __func__, signr);
143 } 150 }
144 } 151 }
145 /* We don't want SIGHUP to interrupt us. STOP and KILL are OK though. */ 152 /* We don't want SIGHUP to interrupt us. STOP and KILL are OK though. */
146 disallow_signal(SIGHUP); 153 disallow_signal(SIGHUP);
147 154
148 D1(printk(KERN_DEBUG "jffs2_garbage_collect_thread(): pass\n")); 155 jffs2_dbg(1, "%s(): pass\n", __func__);
149 if (jffs2_garbage_collect_pass(c) == -ENOSPC) { 156 if (jffs2_garbage_collect_pass(c) == -ENOSPC) {
150 printk(KERN_NOTICE "No space for garbage collection. Aborting GC thread\n"); 157 pr_notice("No space for garbage collection. Aborting GC thread\n");
151 goto die; 158 goto die;
152 } 159 }
153 } 160 }
diff --git a/fs/jffs2/build.c b/fs/jffs2/build.c
index 3005ec4520ad..a3750f902adc 100644
--- a/fs/jffs2/build.c
+++ b/fs/jffs2/build.c
@@ -10,6 +10,8 @@
10 * 10 *
11 */ 11 */
12 12
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
13#include <linux/kernel.h> 15#include <linux/kernel.h>
14#include <linux/sched.h> 16#include <linux/sched.h>
15#include <linux/slab.h> 17#include <linux/slab.h>
@@ -307,8 +309,8 @@ static void jffs2_calc_trigger_levels(struct jffs2_sb_info *c)
307 trying to GC to make more space. It'll be a fruitless task */ 309 trying to GC to make more space. It'll be a fruitless task */
308 c->nospc_dirty_size = c->sector_size + (c->flash_size / 100); 310 c->nospc_dirty_size = c->sector_size + (c->flash_size / 100);
309 311
310 dbg_fsbuild("JFFS2 trigger levels (size %d KiB, block size %d KiB, %d blocks)\n", 312 dbg_fsbuild("trigger levels (size %d KiB, block size %d KiB, %d blocks)\n",
311 c->flash_size / 1024, c->sector_size / 1024, c->nr_blocks); 313 c->flash_size / 1024, c->sector_size / 1024, c->nr_blocks);
312 dbg_fsbuild("Blocks required to allow deletion: %d (%d KiB)\n", 314 dbg_fsbuild("Blocks required to allow deletion: %d (%d KiB)\n",
313 c->resv_blocks_deletion, c->resv_blocks_deletion*c->sector_size/1024); 315 c->resv_blocks_deletion, c->resv_blocks_deletion*c->sector_size/1024);
314 dbg_fsbuild("Blocks required to allow writes: %d (%d KiB)\n", 316 dbg_fsbuild("Blocks required to allow writes: %d (%d KiB)\n",
diff --git a/fs/jffs2/compr.c b/fs/jffs2/compr.c
index 96ed3c9ec3fc..4849a4c9a0e2 100644
--- a/fs/jffs2/compr.c
+++ b/fs/jffs2/compr.c
@@ -12,6 +12,8 @@
12 * 12 *
13 */ 13 */
14 14
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
15#include "compr.h" 17#include "compr.h"
16 18
17static DEFINE_SPINLOCK(jffs2_compressor_list_lock); 19static DEFINE_SPINLOCK(jffs2_compressor_list_lock);
@@ -79,7 +81,7 @@ static int jffs2_selected_compress(u8 compr, unsigned char *data_in,
79 81
80 output_buf = kmalloc(*cdatalen, GFP_KERNEL); 82 output_buf = kmalloc(*cdatalen, GFP_KERNEL);
81 if (!output_buf) { 83 if (!output_buf) {
82 printk(KERN_WARNING "JFFS2: No memory for compressor allocation. Compression failed.\n"); 84 pr_warn("No memory for compressor allocation. Compression failed.\n");
83 return ret; 85 return ret;
84 } 86 }
85 orig_slen = *datalen; 87 orig_slen = *datalen;
@@ -188,7 +190,8 @@ uint16_t jffs2_compress(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
188 tmp_buf = kmalloc(orig_slen, GFP_KERNEL); 190 tmp_buf = kmalloc(orig_slen, GFP_KERNEL);
189 spin_lock(&jffs2_compressor_list_lock); 191 spin_lock(&jffs2_compressor_list_lock);
190 if (!tmp_buf) { 192 if (!tmp_buf) {
191 printk(KERN_WARNING "JFFS2: No memory for compressor allocation. (%d bytes)\n", orig_slen); 193 pr_warn("No memory for compressor allocation. (%d bytes)\n",
194 orig_slen);
192 continue; 195 continue;
193 } 196 }
194 else { 197 else {
@@ -235,7 +238,7 @@ uint16_t jffs2_compress(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
235 cpage_out, datalen, cdatalen); 238 cpage_out, datalen, cdatalen);
236 break; 239 break;
237 default: 240 default:
238 printk(KERN_ERR "JFFS2: unknown compression mode.\n"); 241 pr_err("unknown compression mode\n");
239 } 242 }
240 243
241 if (ret == JFFS2_COMPR_NONE) { 244 if (ret == JFFS2_COMPR_NONE) {
@@ -277,7 +280,8 @@ int jffs2_decompress(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
277 ret = this->decompress(cdata_in, data_out, cdatalen, datalen); 280 ret = this->decompress(cdata_in, data_out, cdatalen, datalen);
278 spin_lock(&jffs2_compressor_list_lock); 281 spin_lock(&jffs2_compressor_list_lock);
279 if (ret) { 282 if (ret) {
280 printk(KERN_WARNING "Decompressor \"%s\" returned %d\n", this->name, ret); 283 pr_warn("Decompressor \"%s\" returned %d\n",
284 this->name, ret);
281 } 285 }
282 else { 286 else {
283 this->stat_decompr_blocks++; 287 this->stat_decompr_blocks++;
@@ -287,7 +291,7 @@ int jffs2_decompress(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
287 return ret; 291 return ret;
288 } 292 }
289 } 293 }
290 printk(KERN_WARNING "JFFS2 compression type 0x%02x not available.\n", comprtype); 294 pr_warn("compression type 0x%02x not available\n", comprtype);
291 spin_unlock(&jffs2_compressor_list_lock); 295 spin_unlock(&jffs2_compressor_list_lock);
292 return -EIO; 296 return -EIO;
293 } 297 }
@@ -299,7 +303,7 @@ int jffs2_register_compressor(struct jffs2_compressor *comp)
299 struct jffs2_compressor *this; 303 struct jffs2_compressor *this;
300 304
301 if (!comp->name) { 305 if (!comp->name) {
302 printk(KERN_WARNING "NULL compressor name at registering JFFS2 compressor. Failed.\n"); 306 pr_warn("NULL compressor name at registering JFFS2 compressor. Failed.\n");
303 return -1; 307 return -1;
304 } 308 }
305 comp->compr_buf_size=0; 309 comp->compr_buf_size=0;
@@ -309,7 +313,7 @@ int jffs2_register_compressor(struct jffs2_compressor *comp)
309 comp->stat_compr_new_size=0; 313 comp->stat_compr_new_size=0;
310 comp->stat_compr_blocks=0; 314 comp->stat_compr_blocks=0;
311 comp->stat_decompr_blocks=0; 315 comp->stat_decompr_blocks=0;
312 D1(printk(KERN_DEBUG "Registering JFFS2 compressor \"%s\"\n", comp->name)); 316 jffs2_dbg(1, "Registering JFFS2 compressor \"%s\"\n", comp->name);
313 317
314 spin_lock(&jffs2_compressor_list_lock); 318 spin_lock(&jffs2_compressor_list_lock);
315 319
@@ -332,15 +336,15 @@ out:
332 336
333int jffs2_unregister_compressor(struct jffs2_compressor *comp) 337int jffs2_unregister_compressor(struct jffs2_compressor *comp)
334{ 338{
335 D2(struct jffs2_compressor *this;) 339 D2(struct jffs2_compressor *this);
336 340
337 D1(printk(KERN_DEBUG "Unregistering JFFS2 compressor \"%s\"\n", comp->name)); 341 jffs2_dbg(1, "Unregistering JFFS2 compressor \"%s\"\n", comp->name);
338 342
339 spin_lock(&jffs2_compressor_list_lock); 343 spin_lock(&jffs2_compressor_list_lock);
340 344
341 if (comp->usecount) { 345 if (comp->usecount) {
342 spin_unlock(&jffs2_compressor_list_lock); 346 spin_unlock(&jffs2_compressor_list_lock);
343 printk(KERN_WARNING "JFFS2: Compressor module is in use. Unregister failed.\n"); 347 pr_warn("Compressor module is in use. Unregister failed.\n");
344 return -1; 348 return -1;
345 } 349 }
346 list_del(&comp->list); 350 list_del(&comp->list);
@@ -377,17 +381,17 @@ int __init jffs2_compressors_init(void)
377/* Setting default compression mode */ 381/* Setting default compression mode */
378#ifdef CONFIG_JFFS2_CMODE_NONE 382#ifdef CONFIG_JFFS2_CMODE_NONE
379 jffs2_compression_mode = JFFS2_COMPR_MODE_NONE; 383 jffs2_compression_mode = JFFS2_COMPR_MODE_NONE;
380 D1(printk(KERN_INFO "JFFS2: default compression mode: none\n");) 384 jffs2_dbg(1, "default compression mode: none\n");
381#else 385#else
382#ifdef CONFIG_JFFS2_CMODE_SIZE 386#ifdef CONFIG_JFFS2_CMODE_SIZE
383 jffs2_compression_mode = JFFS2_COMPR_MODE_SIZE; 387 jffs2_compression_mode = JFFS2_COMPR_MODE_SIZE;
384 D1(printk(KERN_INFO "JFFS2: default compression mode: size\n");) 388 jffs2_dbg(1, "default compression mode: size\n");
385#else 389#else
386#ifdef CONFIG_JFFS2_CMODE_FAVOURLZO 390#ifdef CONFIG_JFFS2_CMODE_FAVOURLZO
387 jffs2_compression_mode = JFFS2_COMPR_MODE_FAVOURLZO; 391 jffs2_compression_mode = JFFS2_COMPR_MODE_FAVOURLZO;
388 D1(printk(KERN_INFO "JFFS2: default compression mode: favourlzo\n");) 392 jffs2_dbg(1, "default compression mode: favourlzo\n");
389#else 393#else
390 D1(printk(KERN_INFO "JFFS2: default compression mode: priority\n");) 394 jffs2_dbg(1, "default compression mode: priority\n");
391#endif 395#endif
392#endif 396#endif
393#endif 397#endif
diff --git a/fs/jffs2/compr_lzo.c b/fs/jffs2/compr_lzo.c
index af186ee674d8..c553bd6506da 100644
--- a/fs/jffs2/compr_lzo.c
+++ b/fs/jffs2/compr_lzo.c
@@ -33,7 +33,6 @@ static int __init alloc_workspace(void)
33 lzo_compress_buf = vmalloc(lzo1x_worst_compress(PAGE_SIZE)); 33 lzo_compress_buf = vmalloc(lzo1x_worst_compress(PAGE_SIZE));
34 34
35 if (!lzo_mem || !lzo_compress_buf) { 35 if (!lzo_mem || !lzo_compress_buf) {
36 printk(KERN_WARNING "Failed to allocate lzo deflate workspace\n");
37 free_workspace(); 36 free_workspace();
38 return -ENOMEM; 37 return -ENOMEM;
39 } 38 }
diff --git a/fs/jffs2/compr_rubin.c b/fs/jffs2/compr_rubin.c
index 9e7cec808c4c..92e0644bf867 100644
--- a/fs/jffs2/compr_rubin.c
+++ b/fs/jffs2/compr_rubin.c
@@ -10,6 +10,8 @@
10 * 10 *
11 */ 11 */
12 12
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
13#include <linux/string.h> 15#include <linux/string.h>
14#include <linux/types.h> 16#include <linux/types.h>
15#include <linux/jffs2.h> 17#include <linux/jffs2.h>
diff --git a/fs/jffs2/compr_zlib.c b/fs/jffs2/compr_zlib.c
index 5a001020c542..0b9a1e44e833 100644
--- a/fs/jffs2/compr_zlib.c
+++ b/fs/jffs2/compr_zlib.c
@@ -14,6 +14,8 @@
14#error "The userspace support got too messy and was removed. Update your mkfs.jffs2" 14#error "The userspace support got too messy and was removed. Update your mkfs.jffs2"
15#endif 15#endif
16 16
17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
17#include <linux/kernel.h> 19#include <linux/kernel.h>
18#include <linux/zlib.h> 20#include <linux/zlib.h>
19#include <linux/zutil.h> 21#include <linux/zutil.h>
@@ -42,18 +44,18 @@ static int __init alloc_workspaces(void)
42{ 44{
43 def_strm.workspace = vmalloc(zlib_deflate_workspacesize(MAX_WBITS, 45 def_strm.workspace = vmalloc(zlib_deflate_workspacesize(MAX_WBITS,
44 MAX_MEM_LEVEL)); 46 MAX_MEM_LEVEL));
45 if (!def_strm.workspace) { 47 if (!def_strm.workspace)
46 printk(KERN_WARNING "Failed to allocate %d bytes for deflate workspace\n", zlib_deflate_workspacesize(MAX_WBITS, MAX_MEM_LEVEL));
47 return -ENOMEM; 48 return -ENOMEM;
48 } 49
49 D1(printk(KERN_DEBUG "Allocated %d bytes for deflate workspace\n", zlib_deflate_workspacesize(MAX_WBITS, MAX_MEM_LEVEL))); 50 jffs2_dbg(1, "Allocated %d bytes for deflate workspace\n",
51 zlib_deflate_workspacesize(MAX_WBITS, MAX_MEM_LEVEL));
50 inf_strm.workspace = vmalloc(zlib_inflate_workspacesize()); 52 inf_strm.workspace = vmalloc(zlib_inflate_workspacesize());
51 if (!inf_strm.workspace) { 53 if (!inf_strm.workspace) {
52 printk(KERN_WARNING "Failed to allocate %d bytes for inflate workspace\n", zlib_inflate_workspacesize());
53 vfree(def_strm.workspace); 54 vfree(def_strm.workspace);
54 return -ENOMEM; 55 return -ENOMEM;
55 } 56 }
56 D1(printk(KERN_DEBUG "Allocated %d bytes for inflate workspace\n", zlib_inflate_workspacesize())); 57 jffs2_dbg(1, "Allocated %d bytes for inflate workspace\n",
58 zlib_inflate_workspacesize());
57 return 0; 59 return 0;
58} 60}
59 61
@@ -79,7 +81,7 @@ static int jffs2_zlib_compress(unsigned char *data_in,
79 mutex_lock(&deflate_mutex); 81 mutex_lock(&deflate_mutex);
80 82
81 if (Z_OK != zlib_deflateInit(&def_strm, 3)) { 83 if (Z_OK != zlib_deflateInit(&def_strm, 3)) {
82 printk(KERN_WARNING "deflateInit failed\n"); 84 pr_warn("deflateInit failed\n");
83 mutex_unlock(&deflate_mutex); 85 mutex_unlock(&deflate_mutex);
84 return -1; 86 return -1;
85 } 87 }
@@ -93,13 +95,14 @@ static int jffs2_zlib_compress(unsigned char *data_in,
93 while (def_strm.total_out < *dstlen - STREAM_END_SPACE && def_strm.total_in < *sourcelen) { 95 while (def_strm.total_out < *dstlen - STREAM_END_SPACE && def_strm.total_in < *sourcelen) {
94 def_strm.avail_out = *dstlen - (def_strm.total_out + STREAM_END_SPACE); 96 def_strm.avail_out = *dstlen - (def_strm.total_out + STREAM_END_SPACE);
95 def_strm.avail_in = min((unsigned)(*sourcelen-def_strm.total_in), def_strm.avail_out); 97 def_strm.avail_in = min((unsigned)(*sourcelen-def_strm.total_in), def_strm.avail_out);
96 D1(printk(KERN_DEBUG "calling deflate with avail_in %d, avail_out %d\n", 98 jffs2_dbg(1, "calling deflate with avail_in %d, avail_out %d\n",
97 def_strm.avail_in, def_strm.avail_out)); 99 def_strm.avail_in, def_strm.avail_out);
98 ret = zlib_deflate(&def_strm, Z_PARTIAL_FLUSH); 100 ret = zlib_deflate(&def_strm, Z_PARTIAL_FLUSH);
99 D1(printk(KERN_DEBUG "deflate returned with avail_in %d, avail_out %d, total_in %ld, total_out %ld\n", 101 jffs2_dbg(1, "deflate returned with avail_in %d, avail_out %d, total_in %ld, total_out %ld\n",
100 def_strm.avail_in, def_strm.avail_out, def_strm.total_in, def_strm.total_out)); 102 def_strm.avail_in, def_strm.avail_out,
103 def_strm.total_in, def_strm.total_out);
101 if (ret != Z_OK) { 104 if (ret != Z_OK) {
102 D1(printk(KERN_DEBUG "deflate in loop returned %d\n", ret)); 105 jffs2_dbg(1, "deflate in loop returned %d\n", ret);
103 zlib_deflateEnd(&def_strm); 106 zlib_deflateEnd(&def_strm);
104 mutex_unlock(&deflate_mutex); 107 mutex_unlock(&deflate_mutex);
105 return -1; 108 return -1;
@@ -111,20 +114,20 @@ static int jffs2_zlib_compress(unsigned char *data_in,
111 zlib_deflateEnd(&def_strm); 114 zlib_deflateEnd(&def_strm);
112 115
113 if (ret != Z_STREAM_END) { 116 if (ret != Z_STREAM_END) {
114 D1(printk(KERN_DEBUG "final deflate returned %d\n", ret)); 117 jffs2_dbg(1, "final deflate returned %d\n", ret);
115 ret = -1; 118 ret = -1;
116 goto out; 119 goto out;
117 } 120 }
118 121
119 if (def_strm.total_out >= def_strm.total_in) { 122 if (def_strm.total_out >= def_strm.total_in) {
120 D1(printk(KERN_DEBUG "zlib compressed %ld bytes into %ld; failing\n", 123 jffs2_dbg(1, "zlib compressed %ld bytes into %ld; failing\n",
121 def_strm.total_in, def_strm.total_out)); 124 def_strm.total_in, def_strm.total_out);
122 ret = -1; 125 ret = -1;
123 goto out; 126 goto out;
124 } 127 }
125 128
126 D1(printk(KERN_DEBUG "zlib compressed %ld bytes into %ld\n", 129 jffs2_dbg(1, "zlib compressed %ld bytes into %ld\n",
127 def_strm.total_in, def_strm.total_out)); 130 def_strm.total_in, def_strm.total_out);
128 131
129 *dstlen = def_strm.total_out; 132 *dstlen = def_strm.total_out;
130 *sourcelen = def_strm.total_in; 133 *sourcelen = def_strm.total_in;
@@ -157,18 +160,18 @@ static int jffs2_zlib_decompress(unsigned char *data_in,
157 ((data_in[0] & 0x0f) == Z_DEFLATED) && 160 ((data_in[0] & 0x0f) == Z_DEFLATED) &&
158 !(((data_in[0]<<8) + data_in[1]) % 31)) { 161 !(((data_in[0]<<8) + data_in[1]) % 31)) {
159 162
160 D2(printk(KERN_DEBUG "inflate skipping adler32\n")); 163 jffs2_dbg(2, "inflate skipping adler32\n");
161 wbits = -((data_in[0] >> 4) + 8); 164 wbits = -((data_in[0] >> 4) + 8);
162 inf_strm.next_in += 2; 165 inf_strm.next_in += 2;
163 inf_strm.avail_in -= 2; 166 inf_strm.avail_in -= 2;
164 } else { 167 } else {
165 /* Let this remain D1 for now -- it should never happen */ 168 /* Let this remain D1 for now -- it should never happen */
166 D1(printk(KERN_DEBUG "inflate not skipping adler32\n")); 169 jffs2_dbg(1, "inflate not skipping adler32\n");
167 } 170 }
168 171
169 172
170 if (Z_OK != zlib_inflateInit2(&inf_strm, wbits)) { 173 if (Z_OK != zlib_inflateInit2(&inf_strm, wbits)) {
171 printk(KERN_WARNING "inflateInit failed\n"); 174 pr_warn("inflateInit failed\n");
172 mutex_unlock(&inflate_mutex); 175 mutex_unlock(&inflate_mutex);
173 return 1; 176 return 1;
174 } 177 }
@@ -176,7 +179,7 @@ static int jffs2_zlib_decompress(unsigned char *data_in,
176 while((ret = zlib_inflate(&inf_strm, Z_FINISH)) == Z_OK) 179 while((ret = zlib_inflate(&inf_strm, Z_FINISH)) == Z_OK)
177 ; 180 ;
178 if (ret != Z_STREAM_END) { 181 if (ret != Z_STREAM_END) {
179 printk(KERN_NOTICE "inflate returned %d\n", ret); 182 pr_notice("inflate returned %d\n", ret);
180 } 183 }
181 zlib_inflateEnd(&inf_strm); 184 zlib_inflateEnd(&inf_strm);
182 mutex_unlock(&inflate_mutex); 185 mutex_unlock(&inflate_mutex);
diff --git a/fs/jffs2/debug.c b/fs/jffs2/debug.c
index e0b76c87a91a..1090eb64b90d 100644
--- a/fs/jffs2/debug.c
+++ b/fs/jffs2/debug.c
@@ -10,6 +10,8 @@
10 * 10 *
11 */ 11 */
12 12
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
13#include <linux/kernel.h> 15#include <linux/kernel.h>
14#include <linux/types.h> 16#include <linux/types.h>
15#include <linux/pagemap.h> 17#include <linux/pagemap.h>
@@ -261,12 +263,15 @@ void __jffs2_dbg_superblock_counts(struct jffs2_sb_info *c)
261 bad += c->sector_size; 263 bad += c->sector_size;
262 } 264 }
263 265
264#define check(sz) \ 266#define check(sz) \
265 if (sz != c->sz##_size) { \ 267do { \
266 printk(KERN_WARNING #sz "_size mismatch counted 0x%x, c->" #sz "_size 0x%x\n", \ 268 if (sz != c->sz##_size) { \
267 sz, c->sz##_size); \ 269 pr_warn("%s_size mismatch counted 0x%x, c->%s_size 0x%x\n", \
268 dump = 1; \ 270 #sz, sz, #sz, c->sz##_size); \
269 } 271 dump = 1; \
272 } \
273} while (0)
274
270 check(free); 275 check(free);
271 check(dirty); 276 check(dirty);
272 check(used); 277 check(used);
@@ -274,11 +279,12 @@ void __jffs2_dbg_superblock_counts(struct jffs2_sb_info *c)
274 check(unchecked); 279 check(unchecked);
275 check(bad); 280 check(bad);
276 check(erasing); 281 check(erasing);
282
277#undef check 283#undef check
278 284
279 if (nr_counted != c->nr_blocks) { 285 if (nr_counted != c->nr_blocks) {
280 printk(KERN_WARNING "%s counted only 0x%x blocks of 0x%x. Where are the others?\n", 286 pr_warn("%s counted only 0x%x blocks of 0x%x. Where are the others?\n",
281 __func__, nr_counted, c->nr_blocks); 287 __func__, nr_counted, c->nr_blocks);
282 dump = 1; 288 dump = 1;
283 } 289 }
284 290
diff --git a/fs/jffs2/debug.h b/fs/jffs2/debug.h
index c4f8eef5ca68..4fd9be4cbc98 100644
--- a/fs/jffs2/debug.h
+++ b/fs/jffs2/debug.h
@@ -51,6 +51,7 @@
51 * superseded by nicer dbg_xxx() macros... 51 * superseded by nicer dbg_xxx() macros...
52 */ 52 */
53#if CONFIG_JFFS2_FS_DEBUG > 0 53#if CONFIG_JFFS2_FS_DEBUG > 0
54#define DEBUG
54#define D1(x) x 55#define D1(x) x
55#else 56#else
56#define D1(x) 57#define D1(x)
@@ -62,50 +63,33 @@
62#define D2(x) 63#define D2(x)
63#endif 64#endif
64 65
66#define jffs2_dbg(level, fmt, ...) \
67do { \
68 if (CONFIG_JFFS2_FS_DEBUG >= level) \
69 pr_debug(fmt, ##__VA_ARGS__); \
70} while (0)
71
65/* The prefixes of JFFS2 messages */ 72/* The prefixes of JFFS2 messages */
73#define JFFS2_DBG KERN_DEBUG
66#define JFFS2_DBG_PREFIX "[JFFS2 DBG]" 74#define JFFS2_DBG_PREFIX "[JFFS2 DBG]"
67#define JFFS2_ERR_PREFIX "JFFS2 error:"
68#define JFFS2_WARN_PREFIX "JFFS2 warning:"
69#define JFFS2_NOTICE_PREFIX "JFFS2 notice:"
70
71#define JFFS2_ERR KERN_ERR
72#define JFFS2_WARN KERN_WARNING
73#define JFFS2_NOT KERN_NOTICE
74#define JFFS2_DBG KERN_DEBUG
75
76#define JFFS2_DBG_MSG_PREFIX JFFS2_DBG JFFS2_DBG_PREFIX 75#define JFFS2_DBG_MSG_PREFIX JFFS2_DBG JFFS2_DBG_PREFIX
77#define JFFS2_ERR_MSG_PREFIX JFFS2_ERR JFFS2_ERR_PREFIX
78#define JFFS2_WARN_MSG_PREFIX JFFS2_WARN JFFS2_WARN_PREFIX
79#define JFFS2_NOTICE_MSG_PREFIX JFFS2_NOT JFFS2_NOTICE_PREFIX
80 76
81/* JFFS2 message macros */ 77/* JFFS2 message macros */
82#define JFFS2_ERROR(fmt, ...) \ 78#define JFFS2_ERROR(fmt, ...) \
83 do { \ 79 pr_err("error: (%d) %s: " fmt, \
84 printk(JFFS2_ERR_MSG_PREFIX \ 80 task_pid_nr(current), __func__, ##__VA_ARGS__)
85 " (%d) %s: " fmt, task_pid_nr(current), \
86 __func__ , ##__VA_ARGS__); \
87 } while(0)
88 81
89#define JFFS2_WARNING(fmt, ...) \ 82#define JFFS2_WARNING(fmt, ...) \
90 do { \ 83 pr_warn("warning: (%d) %s: " fmt, \
91 printk(JFFS2_WARN_MSG_PREFIX \ 84 task_pid_nr(current), __func__, ##__VA_ARGS__)
92 " (%d) %s: " fmt, task_pid_nr(current), \
93 __func__ , ##__VA_ARGS__); \
94 } while(0)
95 85
96#define JFFS2_NOTICE(fmt, ...) \ 86#define JFFS2_NOTICE(fmt, ...) \
97 do { \ 87 pr_notice("notice: (%d) %s: " fmt, \
98 printk(JFFS2_NOTICE_MSG_PREFIX \ 88 task_pid_nr(current), __func__, ##__VA_ARGS__)
99 " (%d) %s: " fmt, task_pid_nr(current), \
100 __func__ , ##__VA_ARGS__); \
101 } while(0)
102 89
103#define JFFS2_DEBUG(fmt, ...) \ 90#define JFFS2_DEBUG(fmt, ...) \
104 do { \ 91 printk(KERN_DEBUG "[JFFS2 DBG] (%d) %s: " fmt, \
105 printk(JFFS2_DBG_MSG_PREFIX \ 92 task_pid_nr(current), __func__, ##__VA_ARGS__)
106 " (%d) %s: " fmt, task_pid_nr(current), \
107 __func__ , ##__VA_ARGS__); \
108 } while(0)
109 93
110/* 94/*
111 * We split our debugging messages on several parts, depending on the JFFS2 95 * We split our debugging messages on several parts, depending on the JFFS2
diff --git a/fs/jffs2/dir.c b/fs/jffs2/dir.c
index 973ac5822bd7..b56018896d5e 100644
--- a/fs/jffs2/dir.c
+++ b/fs/jffs2/dir.c
@@ -10,6 +10,8 @@
10 * 10 *
11 */ 11 */
12 12
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
13#include <linux/kernel.h> 15#include <linux/kernel.h>
14#include <linux/slab.h> 16#include <linux/slab.h>
15#include <linux/fs.h> 17#include <linux/fs.h>
@@ -79,7 +81,7 @@ static struct dentry *jffs2_lookup(struct inode *dir_i, struct dentry *target,
79 uint32_t ino = 0; 81 uint32_t ino = 0;
80 struct inode *inode = NULL; 82 struct inode *inode = NULL;
81 83
82 D1(printk(KERN_DEBUG "jffs2_lookup()\n")); 84 jffs2_dbg(1, "jffs2_lookup()\n");
83 85
84 if (target->d_name.len > JFFS2_MAX_NAME_LEN) 86 if (target->d_name.len > JFFS2_MAX_NAME_LEN)
85 return ERR_PTR(-ENAMETOOLONG); 87 return ERR_PTR(-ENAMETOOLONG);
@@ -103,7 +105,7 @@ static struct dentry *jffs2_lookup(struct inode *dir_i, struct dentry *target,
103 if (ino) { 105 if (ino) {
104 inode = jffs2_iget(dir_i->i_sb, ino); 106 inode = jffs2_iget(dir_i->i_sb, ino);
105 if (IS_ERR(inode)) 107 if (IS_ERR(inode))
106 printk(KERN_WARNING "iget() failed for ino #%u\n", ino); 108 pr_warn("iget() failed for ino #%u\n", ino);
107 } 109 }
108 110
109 return d_splice_alias(inode, target); 111 return d_splice_alias(inode, target);
@@ -119,21 +121,22 @@ static int jffs2_readdir(struct file *filp, void *dirent, filldir_t filldir)
119 struct jffs2_full_dirent *fd; 121 struct jffs2_full_dirent *fd;
120 unsigned long offset, curofs; 122 unsigned long offset, curofs;
121 123
122 D1(printk(KERN_DEBUG "jffs2_readdir() for dir_i #%lu\n", filp->f_path.dentry->d_inode->i_ino)); 124 jffs2_dbg(1, "jffs2_readdir() for dir_i #%lu\n",
125 filp->f_path.dentry->d_inode->i_ino);
123 126
124 f = JFFS2_INODE_INFO(inode); 127 f = JFFS2_INODE_INFO(inode);
125 128
126 offset = filp->f_pos; 129 offset = filp->f_pos;
127 130
128 if (offset == 0) { 131 if (offset == 0) {
129 D1(printk(KERN_DEBUG "Dirent 0: \".\", ino #%lu\n", inode->i_ino)); 132 jffs2_dbg(1, "Dirent 0: \".\", ino #%lu\n", inode->i_ino);
130 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0) 133 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
131 goto out; 134 goto out;
132 offset++; 135 offset++;
133 } 136 }
134 if (offset == 1) { 137 if (offset == 1) {
135 unsigned long pino = parent_ino(filp->f_path.dentry); 138 unsigned long pino = parent_ino(filp->f_path.dentry);
136 D1(printk(KERN_DEBUG "Dirent 1: \"..\", ino #%lu\n", pino)); 139 jffs2_dbg(1, "Dirent 1: \"..\", ino #%lu\n", pino);
137 if (filldir(dirent, "..", 2, 1, pino, DT_DIR) < 0) 140 if (filldir(dirent, "..", 2, 1, pino, DT_DIR) < 0)
138 goto out; 141 goto out;
139 offset++; 142 offset++;
@@ -146,16 +149,18 @@ static int jffs2_readdir(struct file *filp, void *dirent, filldir_t filldir)
146 curofs++; 149 curofs++;
147 /* First loop: curofs = 2; offset = 2 */ 150 /* First loop: curofs = 2; offset = 2 */
148 if (curofs < offset) { 151 if (curofs < offset) {
149 D2(printk(KERN_DEBUG "Skipping dirent: \"%s\", ino #%u, type %d, because curofs %ld < offset %ld\n", 152 jffs2_dbg(2, "Skipping dirent: \"%s\", ino #%u, type %d, because curofs %ld < offset %ld\n",
150 fd->name, fd->ino, fd->type, curofs, offset)); 153 fd->name, fd->ino, fd->type, curofs, offset);
151 continue; 154 continue;
152 } 155 }
153 if (!fd->ino) { 156 if (!fd->ino) {
154 D2(printk(KERN_DEBUG "Skipping deletion dirent \"%s\"\n", fd->name)); 157 jffs2_dbg(2, "Skipping deletion dirent \"%s\"\n",
158 fd->name);
155 offset++; 159 offset++;
156 continue; 160 continue;
157 } 161 }
158 D2(printk(KERN_DEBUG "Dirent %ld: \"%s\", ino #%u, type %d\n", offset, fd->name, fd->ino, fd->type)); 162 jffs2_dbg(2, "Dirent %ld: \"%s\", ino #%u, type %d\n",
163 offset, fd->name, fd->ino, fd->type);
159 if (filldir(dirent, fd->name, strlen(fd->name), offset, fd->ino, fd->type) < 0) 164 if (filldir(dirent, fd->name, strlen(fd->name), offset, fd->ino, fd->type) < 0)
160 break; 165 break;
161 offset++; 166 offset++;
@@ -184,12 +189,12 @@ static int jffs2_create(struct inode *dir_i, struct dentry *dentry,
184 189
185 c = JFFS2_SB_INFO(dir_i->i_sb); 190 c = JFFS2_SB_INFO(dir_i->i_sb);
186 191
187 D1(printk(KERN_DEBUG "jffs2_create()\n")); 192 jffs2_dbg(1, "%s()\n", __func__);
188 193
189 inode = jffs2_new_inode(dir_i, mode, ri); 194 inode = jffs2_new_inode(dir_i, mode, ri);
190 195
191 if (IS_ERR(inode)) { 196 if (IS_ERR(inode)) {
192 D1(printk(KERN_DEBUG "jffs2_new_inode() failed\n")); 197 jffs2_dbg(1, "jffs2_new_inode() failed\n");
193 jffs2_free_raw_inode(ri); 198 jffs2_free_raw_inode(ri);
194 return PTR_ERR(inode); 199 return PTR_ERR(inode);
195 } 200 }
@@ -217,9 +222,9 @@ static int jffs2_create(struct inode *dir_i, struct dentry *dentry,
217 222
218 jffs2_free_raw_inode(ri); 223 jffs2_free_raw_inode(ri);
219 224
220 D1(printk(KERN_DEBUG "jffs2_create: Created ino #%lu with mode %o, nlink %d(%d). nrpages %ld\n", 225 jffs2_dbg(1, "%s(): Created ino #%lu with mode %o, nlink %d(%d). nrpages %ld\n",
221 inode->i_ino, inode->i_mode, inode->i_nlink, 226 __func__, inode->i_ino, inode->i_mode, inode->i_nlink,
222 f->inocache->pino_nlink, inode->i_mapping->nrpages)); 227 f->inocache->pino_nlink, inode->i_mapping->nrpages);
223 228
224 d_instantiate(dentry, inode); 229 d_instantiate(dentry, inode);
225 unlock_new_inode(inode); 230 unlock_new_inode(inode);
@@ -362,14 +367,15 @@ static int jffs2_symlink (struct inode *dir_i, struct dentry *dentry, const char
362 /* We use f->target field to store the target path. */ 367 /* We use f->target field to store the target path. */
363 f->target = kmemdup(target, targetlen + 1, GFP_KERNEL); 368 f->target = kmemdup(target, targetlen + 1, GFP_KERNEL);
364 if (!f->target) { 369 if (!f->target) {
365 printk(KERN_WARNING "Can't allocate %d bytes of memory\n", targetlen + 1); 370 pr_warn("Can't allocate %d bytes of memory\n", targetlen + 1);
366 mutex_unlock(&f->sem); 371 mutex_unlock(&f->sem);
367 jffs2_complete_reservation(c); 372 jffs2_complete_reservation(c);
368 ret = -ENOMEM; 373 ret = -ENOMEM;
369 goto fail; 374 goto fail;
370 } 375 }
371 376
372 D1(printk(KERN_DEBUG "jffs2_symlink: symlink's target '%s' cached\n", (char *)f->target)); 377 jffs2_dbg(1, "%s(): symlink's target '%s' cached\n",
378 __func__, (char *)f->target);
373 379
374 /* No data here. Only a metadata node, which will be 380 /* No data here. Only a metadata node, which will be
375 obsoleted by the first data write 381 obsoleted by the first data write
@@ -856,7 +862,8 @@ static int jffs2_rename (struct inode *old_dir_i, struct dentry *old_dentry,
856 f->inocache->pino_nlink++; 862 f->inocache->pino_nlink++;
857 mutex_unlock(&f->sem); 863 mutex_unlock(&f->sem);
858 864
859 printk(KERN_NOTICE "jffs2_rename(): Link succeeded, unlink failed (err %d). You now have a hard link\n", ret); 865 pr_notice("%s(): Link succeeded, unlink failed (err %d). You now have a hard link\n",
866 __func__, ret);
860 /* Might as well let the VFS know */ 867 /* Might as well let the VFS know */
861 d_instantiate(new_dentry, old_dentry->d_inode); 868 d_instantiate(new_dentry, old_dentry->d_inode);
862 ihold(old_dentry->d_inode); 869 ihold(old_dentry->d_inode);
diff --git a/fs/jffs2/erase.c b/fs/jffs2/erase.c
index eafb8d37a6fb..4a6cf289be24 100644
--- a/fs/jffs2/erase.c
+++ b/fs/jffs2/erase.c
@@ -10,6 +10,8 @@
10 * 10 *
11 */ 11 */
12 12
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
13#include <linux/kernel.h> 15#include <linux/kernel.h>
14#include <linux/slab.h> 16#include <linux/slab.h>
15#include <linux/mtd/mtd.h> 17#include <linux/mtd/mtd.h>
@@ -46,11 +48,12 @@ static void jffs2_erase_block(struct jffs2_sb_info *c,
46#else /* Linux */ 48#else /* Linux */
47 struct erase_info *instr; 49 struct erase_info *instr;
48 50
49 D1(printk(KERN_DEBUG "jffs2_erase_block(): erase block %#08x (range %#08x-%#08x)\n", 51 jffs2_dbg(1, "%s(): erase block %#08x (range %#08x-%#08x)\n",
50 jeb->offset, jeb->offset, jeb->offset + c->sector_size)); 52 __func__,
53 jeb->offset, jeb->offset, jeb->offset + c->sector_size);
51 instr = kmalloc(sizeof(struct erase_info) + sizeof(struct erase_priv_struct), GFP_KERNEL); 54 instr = kmalloc(sizeof(struct erase_info) + sizeof(struct erase_priv_struct), GFP_KERNEL);
52 if (!instr) { 55 if (!instr) {
53 printk(KERN_WARNING "kmalloc for struct erase_info in jffs2_erase_block failed. Refiling block for later\n"); 56 pr_warn("kmalloc for struct erase_info in jffs2_erase_block failed. Refiling block for later\n");
54 mutex_lock(&c->erase_free_sem); 57 mutex_lock(&c->erase_free_sem);
55 spin_lock(&c->erase_completion_lock); 58 spin_lock(&c->erase_completion_lock);
56 list_move(&jeb->list, &c->erase_pending_list); 59 list_move(&jeb->list, &c->erase_pending_list);
@@ -69,7 +72,6 @@ static void jffs2_erase_block(struct jffs2_sb_info *c,
69 instr->len = c->sector_size; 72 instr->len = c->sector_size;
70 instr->callback = jffs2_erase_callback; 73 instr->callback = jffs2_erase_callback;
71 instr->priv = (unsigned long)(&instr[1]); 74 instr->priv = (unsigned long)(&instr[1]);
72 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
73 75
74 ((struct erase_priv_struct *)instr->priv)->jeb = jeb; 76 ((struct erase_priv_struct *)instr->priv)->jeb = jeb;
75 ((struct erase_priv_struct *)instr->priv)->c = c; 77 ((struct erase_priv_struct *)instr->priv)->c = c;
@@ -84,7 +86,8 @@ static void jffs2_erase_block(struct jffs2_sb_info *c,
84 86
85 if (ret == -ENOMEM || ret == -EAGAIN) { 87 if (ret == -ENOMEM || ret == -EAGAIN) {
86 /* Erase failed immediately. Refile it on the list */ 88 /* Erase failed immediately. Refile it on the list */
87 D1(printk(KERN_DEBUG "Erase at 0x%08x failed: %d. Refiling on erase_pending_list\n", jeb->offset, ret)); 89 jffs2_dbg(1, "Erase at 0x%08x failed: %d. Refiling on erase_pending_list\n",
90 jeb->offset, ret);
88 mutex_lock(&c->erase_free_sem); 91 mutex_lock(&c->erase_free_sem);
89 spin_lock(&c->erase_completion_lock); 92 spin_lock(&c->erase_completion_lock);
90 list_move(&jeb->list, &c->erase_pending_list); 93 list_move(&jeb->list, &c->erase_pending_list);
@@ -97,9 +100,11 @@ static void jffs2_erase_block(struct jffs2_sb_info *c,
97 } 100 }
98 101
99 if (ret == -EROFS) 102 if (ret == -EROFS)
100 printk(KERN_WARNING "Erase at 0x%08x failed immediately: -EROFS. Is the sector locked?\n", jeb->offset); 103 pr_warn("Erase at 0x%08x failed immediately: -EROFS. Is the sector locked?\n",
104 jeb->offset);
101 else 105 else
102 printk(KERN_WARNING "Erase at 0x%08x failed immediately: errno %d\n", jeb->offset, ret); 106 pr_warn("Erase at 0x%08x failed immediately: errno %d\n",
107 jeb->offset, ret);
103 108
104 jffs2_erase_failed(c, jeb, bad_offset); 109 jffs2_erase_failed(c, jeb, bad_offset);
105} 110}
@@ -125,13 +130,14 @@ int jffs2_erase_pending_blocks(struct jffs2_sb_info *c, int count)
125 130
126 work_done++; 131 work_done++;
127 if (!--count) { 132 if (!--count) {
128 D1(printk(KERN_DEBUG "Count reached. jffs2_erase_pending_blocks leaving\n")); 133 jffs2_dbg(1, "Count reached. jffs2_erase_pending_blocks leaving\n");
129 goto done; 134 goto done;
130 } 135 }
131 136
132 } else if (!list_empty(&c->erase_pending_list)) { 137 } else if (!list_empty(&c->erase_pending_list)) {
133 jeb = list_entry(c->erase_pending_list.next, struct jffs2_eraseblock, list); 138 jeb = list_entry(c->erase_pending_list.next, struct jffs2_eraseblock, list);
134 D1(printk(KERN_DEBUG "Starting erase of pending block 0x%08x\n", jeb->offset)); 139 jffs2_dbg(1, "Starting erase of pending block 0x%08x\n",
140 jeb->offset);
135 list_del(&jeb->list); 141 list_del(&jeb->list);
136 c->erasing_size += c->sector_size; 142 c->erasing_size += c->sector_size;
137 c->wasted_size -= jeb->wasted_size; 143 c->wasted_size -= jeb->wasted_size;
@@ -159,13 +165,13 @@ int jffs2_erase_pending_blocks(struct jffs2_sb_info *c, int count)
159 spin_unlock(&c->erase_completion_lock); 165 spin_unlock(&c->erase_completion_lock);
160 mutex_unlock(&c->erase_free_sem); 166 mutex_unlock(&c->erase_free_sem);
161 done: 167 done:
162 D1(printk(KERN_DEBUG "jffs2_erase_pending_blocks completed\n")); 168 jffs2_dbg(1, "jffs2_erase_pending_blocks completed\n");
163 return work_done; 169 return work_done;
164} 170}
165 171
166static void jffs2_erase_succeeded(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb) 172static void jffs2_erase_succeeded(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
167{ 173{
168 D1(printk(KERN_DEBUG "Erase completed successfully at 0x%08x\n", jeb->offset)); 174 jffs2_dbg(1, "Erase completed successfully at 0x%08x\n", jeb->offset);
169 mutex_lock(&c->erase_free_sem); 175 mutex_lock(&c->erase_free_sem);
170 spin_lock(&c->erase_completion_lock); 176 spin_lock(&c->erase_completion_lock);
171 list_move_tail(&jeb->list, &c->erase_complete_list); 177 list_move_tail(&jeb->list, &c->erase_complete_list);
@@ -214,7 +220,7 @@ static void jffs2_erase_callback(struct erase_info *instr)
214 struct erase_priv_struct *priv = (void *)instr->priv; 220 struct erase_priv_struct *priv = (void *)instr->priv;
215 221
216 if(instr->state != MTD_ERASE_DONE) { 222 if(instr->state != MTD_ERASE_DONE) {
217 printk(KERN_WARNING "Erase at 0x%08llx finished, but state != MTD_ERASE_DONE. State is 0x%x instead.\n", 223 pr_warn("Erase at 0x%08llx finished, but state != MTD_ERASE_DONE. State is 0x%x instead.\n",
218 (unsigned long long)instr->addr, instr->state); 224 (unsigned long long)instr->addr, instr->state);
219 jffs2_erase_failed(priv->c, priv->jeb, instr->fail_addr); 225 jffs2_erase_failed(priv->c, priv->jeb, instr->fail_addr);
220 } else { 226 } else {
@@ -269,8 +275,8 @@ static inline void jffs2_remove_node_refs_from_ino_list(struct jffs2_sb_info *c,
269 return; 275 return;
270 } 276 }
271 277
272 D1(printk(KERN_DEBUG "Removed nodes in range 0x%08x-0x%08x from ino #%u\n", 278 jffs2_dbg(1, "Removed nodes in range 0x%08x-0x%08x from ino #%u\n",
273 jeb->offset, jeb->offset + c->sector_size, ic->ino)); 279 jeb->offset, jeb->offset + c->sector_size, ic->ino);
274 280
275 D2({ 281 D2({
276 int i=0; 282 int i=0;
@@ -281,7 +287,7 @@ static inline void jffs2_remove_node_refs_from_ino_list(struct jffs2_sb_info *c,
281 287
282 printk(KERN_DEBUG); 288 printk(KERN_DEBUG);
283 while(this) { 289 while(this) {
284 printk(KERN_CONT "0x%08x(%d)->", 290 pr_cont("0x%08x(%d)->",
285 ref_offset(this), ref_flags(this)); 291 ref_offset(this), ref_flags(this));
286 if (++i == 5) { 292 if (++i == 5) {
287 printk(KERN_DEBUG); 293 printk(KERN_DEBUG);
@@ -289,7 +295,7 @@ static inline void jffs2_remove_node_refs_from_ino_list(struct jffs2_sb_info *c,
289 } 295 }
290 this = this->next_in_ino; 296 this = this->next_in_ino;
291 } 297 }
292 printk(KERN_CONT "\n"); 298 pr_cont("\n");
293 }); 299 });
294 300
295 switch (ic->class) { 301 switch (ic->class) {
@@ -310,7 +316,8 @@ static inline void jffs2_remove_node_refs_from_ino_list(struct jffs2_sb_info *c,
310void jffs2_free_jeb_node_refs(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb) 316void jffs2_free_jeb_node_refs(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
311{ 317{
312 struct jffs2_raw_node_ref *block, *ref; 318 struct jffs2_raw_node_ref *block, *ref;
313 D1(printk(KERN_DEBUG "Freeing all node refs for eraseblock offset 0x%08x\n", jeb->offset)); 319 jffs2_dbg(1, "Freeing all node refs for eraseblock offset 0x%08x\n",
320 jeb->offset);
314 321
315 block = ref = jeb->first_node; 322 block = ref = jeb->first_node;
316 323
@@ -342,12 +349,13 @@ static int jffs2_block_check_erase(struct jffs2_sb_info *c, struct jffs2_erasebl
342 &ebuf, NULL); 349 &ebuf, NULL);
343 if (ret != -EOPNOTSUPP) { 350 if (ret != -EOPNOTSUPP) {
344 if (ret) { 351 if (ret) {
345 D1(printk(KERN_DEBUG "MTD point failed %d\n", ret)); 352 jffs2_dbg(1, "MTD point failed %d\n", ret);
346 goto do_flash_read; 353 goto do_flash_read;
347 } 354 }
348 if (retlen < c->sector_size) { 355 if (retlen < c->sector_size) {
349 /* Don't muck about if it won't let us point to the whole erase sector */ 356 /* Don't muck about if it won't let us point to the whole erase sector */
350 D1(printk(KERN_DEBUG "MTD point returned len too short: 0x%zx\n", retlen)); 357 jffs2_dbg(1, "MTD point returned len too short: 0x%zx\n",
358 retlen);
351 mtd_unpoint(c->mtd, jeb->offset, retlen); 359 mtd_unpoint(c->mtd, jeb->offset, retlen);
352 goto do_flash_read; 360 goto do_flash_read;
353 } 361 }
@@ -359,8 +367,10 @@ static int jffs2_block_check_erase(struct jffs2_sb_info *c, struct jffs2_erasebl
359 } while(--retlen); 367 } while(--retlen);
360 mtd_unpoint(c->mtd, jeb->offset, c->sector_size); 368 mtd_unpoint(c->mtd, jeb->offset, c->sector_size);
361 if (retlen) { 369 if (retlen) {
362 printk(KERN_WARNING "Newly-erased block contained word 0x%lx at offset 0x%08tx\n", 370 pr_warn("Newly-erased block contained word 0x%lx at offset 0x%08tx\n",
363 *wordebuf, jeb->offset + c->sector_size-retlen*sizeof(*wordebuf)); 371 *wordebuf,
372 jeb->offset +
373 c->sector_size-retlen * sizeof(*wordebuf));
364 return -EIO; 374 return -EIO;
365 } 375 }
366 return 0; 376 return 0;
@@ -368,11 +378,12 @@ static int jffs2_block_check_erase(struct jffs2_sb_info *c, struct jffs2_erasebl
368 do_flash_read: 378 do_flash_read:
369 ebuf = kmalloc(PAGE_SIZE, GFP_KERNEL); 379 ebuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
370 if (!ebuf) { 380 if (!ebuf) {
371 printk(KERN_WARNING "Failed to allocate page buffer for verifying erase at 0x%08x. Refiling\n", jeb->offset); 381 pr_warn("Failed to allocate page buffer for verifying erase at 0x%08x. Refiling\n",
382 jeb->offset);
372 return -EAGAIN; 383 return -EAGAIN;
373 } 384 }
374 385
375 D1(printk(KERN_DEBUG "Verifying erase at 0x%08x\n", jeb->offset)); 386 jffs2_dbg(1, "Verifying erase at 0x%08x\n", jeb->offset);
376 387
377 for (ofs = jeb->offset; ofs < jeb->offset + c->sector_size; ) { 388 for (ofs = jeb->offset; ofs < jeb->offset + c->sector_size; ) {
378 uint32_t readlen = min((uint32_t)PAGE_SIZE, jeb->offset + c->sector_size - ofs); 389 uint32_t readlen = min((uint32_t)PAGE_SIZE, jeb->offset + c->sector_size - ofs);
@@ -382,12 +393,14 @@ static int jffs2_block_check_erase(struct jffs2_sb_info *c, struct jffs2_erasebl
382 393
383 ret = mtd_read(c->mtd, ofs, readlen, &retlen, ebuf); 394 ret = mtd_read(c->mtd, ofs, readlen, &retlen, ebuf);
384 if (ret) { 395 if (ret) {
385 printk(KERN_WARNING "Read of newly-erased block at 0x%08x failed: %d. Putting on bad_list\n", ofs, ret); 396 pr_warn("Read of newly-erased block at 0x%08x failed: %d. Putting on bad_list\n",
397 ofs, ret);
386 ret = -EIO; 398 ret = -EIO;
387 goto fail; 399 goto fail;
388 } 400 }
389 if (retlen != readlen) { 401 if (retlen != readlen) {
390 printk(KERN_WARNING "Short read from newly-erased block at 0x%08x. Wanted %d, got %zd\n", ofs, readlen, retlen); 402 pr_warn("Short read from newly-erased block at 0x%08x. Wanted %d, got %zd\n",
403 ofs, readlen, retlen);
391 ret = -EIO; 404 ret = -EIO;
392 goto fail; 405 goto fail;
393 } 406 }
@@ -396,7 +409,8 @@ static int jffs2_block_check_erase(struct jffs2_sb_info *c, struct jffs2_erasebl
396 unsigned long *datum = ebuf + i; 409 unsigned long *datum = ebuf + i;
397 if (*datum + 1) { 410 if (*datum + 1) {
398 *bad_offset += i; 411 *bad_offset += i;
399 printk(KERN_WARNING "Newly-erased block contained word 0x%lx at offset 0x%08x\n", *datum, *bad_offset); 412 pr_warn("Newly-erased block contained word 0x%lx at offset 0x%08x\n",
413 *datum, *bad_offset);
400 ret = -EIO; 414 ret = -EIO;
401 goto fail; 415 goto fail;
402 } 416 }
@@ -422,7 +436,7 @@ static void jffs2_mark_erased_block(struct jffs2_sb_info *c, struct jffs2_eraseb
422 } 436 }
423 437
424 /* Write the erase complete marker */ 438 /* Write the erase complete marker */
425 D1(printk(KERN_DEBUG "Writing erased marker to block at 0x%08x\n", jeb->offset)); 439 jffs2_dbg(1, "Writing erased marker to block at 0x%08x\n", jeb->offset);
426 bad_offset = jeb->offset; 440 bad_offset = jeb->offset;
427 441
428 /* Cleanmarker in oob area or no cleanmarker at all ? */ 442 /* Cleanmarker in oob area or no cleanmarker at all ? */
@@ -451,10 +465,10 @@ static void jffs2_mark_erased_block(struct jffs2_sb_info *c, struct jffs2_eraseb
451 465
452 if (ret || retlen != sizeof(marker)) { 466 if (ret || retlen != sizeof(marker)) {
453 if (ret) 467 if (ret)
454 printk(KERN_WARNING "Write clean marker to block at 0x%08x failed: %d\n", 468 pr_warn("Write clean marker to block at 0x%08x failed: %d\n",
455 jeb->offset, ret); 469 jeb->offset, ret);
456 else 470 else
457 printk(KERN_WARNING "Short write to newly-erased block at 0x%08x: Wanted %zd, got %zd\n", 471 pr_warn("Short write to newly-erased block at 0x%08x: Wanted %zd, got %zd\n",
458 jeb->offset, sizeof(marker), retlen); 472 jeb->offset, sizeof(marker), retlen);
459 473
460 goto filebad; 474 goto filebad;
diff --git a/fs/jffs2/file.c b/fs/jffs2/file.c
index 61e6723535b9..db3889ba8818 100644
--- a/fs/jffs2/file.c
+++ b/fs/jffs2/file.c
@@ -10,6 +10,8 @@
10 * 10 *
11 */ 11 */
12 12
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
13#include <linux/kernel.h> 15#include <linux/kernel.h>
14#include <linux/fs.h> 16#include <linux/fs.h>
15#include <linux/time.h> 17#include <linux/time.h>
@@ -85,7 +87,8 @@ static int jffs2_do_readpage_nolock (struct inode *inode, struct page *pg)
85 unsigned char *pg_buf; 87 unsigned char *pg_buf;
86 int ret; 88 int ret;
87 89
88 D2(printk(KERN_DEBUG "jffs2_do_readpage_nolock(): ino #%lu, page at offset 0x%lx\n", inode->i_ino, pg->index << PAGE_CACHE_SHIFT)); 90 jffs2_dbg(2, "%s(): ino #%lu, page at offset 0x%lx\n",
91 __func__, inode->i_ino, pg->index << PAGE_CACHE_SHIFT);
89 92
90 BUG_ON(!PageLocked(pg)); 93 BUG_ON(!PageLocked(pg));
91 94
@@ -105,7 +108,7 @@ static int jffs2_do_readpage_nolock (struct inode *inode, struct page *pg)
105 flush_dcache_page(pg); 108 flush_dcache_page(pg);
106 kunmap(pg); 109 kunmap(pg);
107 110
108 D2(printk(KERN_DEBUG "readpage finished\n")); 111 jffs2_dbg(2, "readpage finished\n");
109 return ret; 112 return ret;
110} 113}
111 114
@@ -144,7 +147,7 @@ static int jffs2_write_begin(struct file *filp, struct address_space *mapping,
144 return -ENOMEM; 147 return -ENOMEM;
145 *pagep = pg; 148 *pagep = pg;
146 149
147 D1(printk(KERN_DEBUG "jffs2_write_begin()\n")); 150 jffs2_dbg(1, "%s()\n", __func__);
148 151
149 if (pageofs > inode->i_size) { 152 if (pageofs > inode->i_size) {
150 /* Make new hole frag from old EOF to new page */ 153 /* Make new hole frag from old EOF to new page */
@@ -153,8 +156,8 @@ static int jffs2_write_begin(struct file *filp, struct address_space *mapping,
153 struct jffs2_full_dnode *fn; 156 struct jffs2_full_dnode *fn;
154 uint32_t alloc_len; 157 uint32_t alloc_len;
155 158
156 D1(printk(KERN_DEBUG "Writing new hole frag 0x%x-0x%x between current EOF and new page\n", 159 jffs2_dbg(1, "Writing new hole frag 0x%x-0x%x between current EOF and new page\n",
157 (unsigned int)inode->i_size, pageofs)); 160 (unsigned int)inode->i_size, pageofs);
158 161
159 ret = jffs2_reserve_space(c, sizeof(ri), &alloc_len, 162 ret = jffs2_reserve_space(c, sizeof(ri), &alloc_len,
160 ALLOC_NORMAL, JFFS2_SUMMARY_INODE_SIZE); 163 ALLOC_NORMAL, JFFS2_SUMMARY_INODE_SIZE);
@@ -198,7 +201,8 @@ static int jffs2_write_begin(struct file *filp, struct address_space *mapping,
198 f->metadata = NULL; 201 f->metadata = NULL;
199 } 202 }
200 if (ret) { 203 if (ret) {
201 D1(printk(KERN_DEBUG "Eep. add_full_dnode_to_inode() failed in write_begin, returned %d\n", ret)); 204 jffs2_dbg(1, "Eep. add_full_dnode_to_inode() failed in write_begin, returned %d\n",
205 ret);
202 jffs2_mark_node_obsolete(c, fn->raw); 206 jffs2_mark_node_obsolete(c, fn->raw);
203 jffs2_free_full_dnode(fn); 207 jffs2_free_full_dnode(fn);
204 jffs2_complete_reservation(c); 208 jffs2_complete_reservation(c);
@@ -222,7 +226,7 @@ static int jffs2_write_begin(struct file *filp, struct address_space *mapping,
222 if (ret) 226 if (ret)
223 goto out_page; 227 goto out_page;
224 } 228 }
225 D1(printk(KERN_DEBUG "end write_begin(). pg->flags %lx\n", pg->flags)); 229 jffs2_dbg(1, "end write_begin(). pg->flags %lx\n", pg->flags);
226 return ret; 230 return ret;
227 231
228out_page: 232out_page:
@@ -248,8 +252,9 @@ static int jffs2_write_end(struct file *filp, struct address_space *mapping,
248 int ret = 0; 252 int ret = 0;
249 uint32_t writtenlen = 0; 253 uint32_t writtenlen = 0;
250 254
251 D1(printk(KERN_DEBUG "jffs2_write_end(): ino #%lu, page at 0x%lx, range %d-%d, flags %lx\n", 255 jffs2_dbg(1, "%s(): ino #%lu, page at 0x%lx, range %d-%d, flags %lx\n",
252 inode->i_ino, pg->index << PAGE_CACHE_SHIFT, start, end, pg->flags)); 256 __func__, inode->i_ino, pg->index << PAGE_CACHE_SHIFT,
257 start, end, pg->flags);
253 258
254 /* We need to avoid deadlock with page_cache_read() in 259 /* We need to avoid deadlock with page_cache_read() in
255 jffs2_garbage_collect_pass(). So the page must be 260 jffs2_garbage_collect_pass(). So the page must be
@@ -268,7 +273,8 @@ static int jffs2_write_end(struct file *filp, struct address_space *mapping,
268 ri = jffs2_alloc_raw_inode(); 273 ri = jffs2_alloc_raw_inode();
269 274
270 if (!ri) { 275 if (!ri) {
271 D1(printk(KERN_DEBUG "jffs2_write_end(): Allocation of raw inode failed\n")); 276 jffs2_dbg(1, "%s(): Allocation of raw inode failed\n",
277 __func__);
272 unlock_page(pg); 278 unlock_page(pg);
273 page_cache_release(pg); 279 page_cache_release(pg);
274 return -ENOMEM; 280 return -ENOMEM;
@@ -315,13 +321,14 @@ static int jffs2_write_end(struct file *filp, struct address_space *mapping,
315 /* generic_file_write has written more to the page cache than we've 321 /* generic_file_write has written more to the page cache than we've
316 actually written to the medium. Mark the page !Uptodate so that 322 actually written to the medium. Mark the page !Uptodate so that
317 it gets reread */ 323 it gets reread */
318 D1(printk(KERN_DEBUG "jffs2_write_end(): Not all bytes written. Marking page !uptodate\n")); 324 jffs2_dbg(1, "%s(): Not all bytes written. Marking page !uptodate\n",
325 __func__);
319 SetPageError(pg); 326 SetPageError(pg);
320 ClearPageUptodate(pg); 327 ClearPageUptodate(pg);
321 } 328 }
322 329
323 D1(printk(KERN_DEBUG "jffs2_write_end() returning %d\n", 330 jffs2_dbg(1, "%s() returning %d\n",
324 writtenlen > 0 ? writtenlen : ret)); 331 __func__, writtenlen > 0 ? writtenlen : ret);
325 unlock_page(pg); 332 unlock_page(pg);
326 page_cache_release(pg); 333 page_cache_release(pg);
327 return writtenlen > 0 ? writtenlen : ret; 334 return writtenlen > 0 ? writtenlen : ret;
diff --git a/fs/jffs2/fs.c b/fs/jffs2/fs.c
index c0d5c9d770da..bb6f993ebca9 100644
--- a/fs/jffs2/fs.c
+++ b/fs/jffs2/fs.c
@@ -10,6 +10,8 @@
10 * 10 *
11 */ 11 */
12 12
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
13#include <linux/capability.h> 15#include <linux/capability.h>
14#include <linux/kernel.h> 16#include <linux/kernel.h>
15#include <linux/sched.h> 17#include <linux/sched.h>
@@ -39,7 +41,7 @@ int jffs2_do_setattr (struct inode *inode, struct iattr *iattr)
39 int ret; 41 int ret;
40 int alloc_type = ALLOC_NORMAL; 42 int alloc_type = ALLOC_NORMAL;
41 43
42 D1(printk(KERN_DEBUG "jffs2_setattr(): ino #%lu\n", inode->i_ino)); 44 jffs2_dbg(1, "%s(): ino #%lu\n", __func__, inode->i_ino);
43 45
44 /* Special cases - we don't want more than one data node 46 /* Special cases - we don't want more than one data node
45 for these types on the medium at any time. So setattr 47 for these types on the medium at any time. So setattr
@@ -50,7 +52,8 @@ int jffs2_do_setattr (struct inode *inode, struct iattr *iattr)
50 /* For these, we don't actually need to read the old node */ 52 /* For these, we don't actually need to read the old node */
51 mdatalen = jffs2_encode_dev(&dev, inode->i_rdev); 53 mdatalen = jffs2_encode_dev(&dev, inode->i_rdev);
52 mdata = (char *)&dev; 54 mdata = (char *)&dev;
53 D1(printk(KERN_DEBUG "jffs2_setattr(): Writing %d bytes of kdev_t\n", mdatalen)); 55 jffs2_dbg(1, "%s(): Writing %d bytes of kdev_t\n",
56 __func__, mdatalen);
54 } else if (S_ISLNK(inode->i_mode)) { 57 } else if (S_ISLNK(inode->i_mode)) {
55 mutex_lock(&f->sem); 58 mutex_lock(&f->sem);
56 mdatalen = f->metadata->size; 59 mdatalen = f->metadata->size;
@@ -66,7 +69,8 @@ int jffs2_do_setattr (struct inode *inode, struct iattr *iattr)
66 return ret; 69 return ret;
67 } 70 }
68 mutex_unlock(&f->sem); 71 mutex_unlock(&f->sem);
69 D1(printk(KERN_DEBUG "jffs2_setattr(): Writing %d bytes of symlink target\n", mdatalen)); 72 jffs2_dbg(1, "%s(): Writing %d bytes of symlink target\n",
73 __func__, mdatalen);
70 } 74 }
71 75
72 ri = jffs2_alloc_raw_inode(); 76 ri = jffs2_alloc_raw_inode();
@@ -233,7 +237,8 @@ void jffs2_evict_inode (struct inode *inode)
233 struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb); 237 struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
234 struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode); 238 struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
235 239
236 D1(printk(KERN_DEBUG "jffs2_evict_inode(): ino #%lu mode %o\n", inode->i_ino, inode->i_mode)); 240 jffs2_dbg(1, "%s(): ino #%lu mode %o\n",
241 __func__, inode->i_ino, inode->i_mode);
237 truncate_inode_pages(&inode->i_data, 0); 242 truncate_inode_pages(&inode->i_data, 0);
238 end_writeback(inode); 243 end_writeback(inode);
239 jffs2_do_clear_inode(c, f); 244 jffs2_do_clear_inode(c, f);
@@ -249,7 +254,7 @@ struct inode *jffs2_iget(struct super_block *sb, unsigned long ino)
249 dev_t rdev = 0; 254 dev_t rdev = 0;
250 int ret; 255 int ret;
251 256
252 D1(printk(KERN_DEBUG "jffs2_iget(): ino == %lu\n", ino)); 257 jffs2_dbg(1, "%s(): ino == %lu\n", __func__, ino);
253 258
254 inode = iget_locked(sb, ino); 259 inode = iget_locked(sb, ino);
255 if (!inode) 260 if (!inode)
@@ -317,14 +322,16 @@ struct inode *jffs2_iget(struct super_block *sb, unsigned long ino)
317 /* Read the device numbers from the media */ 322 /* Read the device numbers from the media */
318 if (f->metadata->size != sizeof(jdev.old_id) && 323 if (f->metadata->size != sizeof(jdev.old_id) &&
319 f->metadata->size != sizeof(jdev.new_id)) { 324 f->metadata->size != sizeof(jdev.new_id)) {
320 printk(KERN_NOTICE "Device node has strange size %d\n", f->metadata->size); 325 pr_notice("Device node has strange size %d\n",
326 f->metadata->size);
321 goto error_io; 327 goto error_io;
322 } 328 }
323 D1(printk(KERN_DEBUG "Reading device numbers from flash\n")); 329 jffs2_dbg(1, "Reading device numbers from flash\n");
324 ret = jffs2_read_dnode(c, f, f->metadata, (char *)&jdev, 0, f->metadata->size); 330 ret = jffs2_read_dnode(c, f, f->metadata, (char *)&jdev, 0, f->metadata->size);
325 if (ret < 0) { 331 if (ret < 0) {
326 /* Eep */ 332 /* Eep */
327 printk(KERN_NOTICE "Read device numbers for inode %lu failed\n", (unsigned long)inode->i_ino); 333 pr_notice("Read device numbers for inode %lu failed\n",
334 (unsigned long)inode->i_ino);
328 goto error; 335 goto error;
329 } 336 }
330 if (f->metadata->size == sizeof(jdev.old_id)) 337 if (f->metadata->size == sizeof(jdev.old_id))
@@ -339,12 +346,13 @@ struct inode *jffs2_iget(struct super_block *sb, unsigned long ino)
339 break; 346 break;
340 347
341 default: 348 default:
342 printk(KERN_WARNING "jffs2_read_inode(): Bogus imode %o for ino %lu\n", inode->i_mode, (unsigned long)inode->i_ino); 349 pr_warn("%s(): Bogus i_mode %o for ino %lu\n",
350 __func__, inode->i_mode, (unsigned long)inode->i_ino);
343 } 351 }
344 352
345 mutex_unlock(&f->sem); 353 mutex_unlock(&f->sem);
346 354
347 D1(printk(KERN_DEBUG "jffs2_read_inode() returning\n")); 355 jffs2_dbg(1, "jffs2_read_inode() returning\n");
348 unlock_new_inode(inode); 356 unlock_new_inode(inode);
349 return inode; 357 return inode;
350 358
@@ -362,11 +370,13 @@ void jffs2_dirty_inode(struct inode *inode, int flags)
362 struct iattr iattr; 370 struct iattr iattr;
363 371
364 if (!(inode->i_state & I_DIRTY_DATASYNC)) { 372 if (!(inode->i_state & I_DIRTY_DATASYNC)) {
365 D2(printk(KERN_DEBUG "jffs2_dirty_inode() not calling setattr() for ino #%lu\n", inode->i_ino)); 373 jffs2_dbg(2, "%s(): not calling setattr() for ino #%lu\n",
374 __func__, inode->i_ino);
366 return; 375 return;
367 } 376 }
368 377
369 D1(printk(KERN_DEBUG "jffs2_dirty_inode() calling setattr() for ino #%lu\n", inode->i_ino)); 378 jffs2_dbg(1, "%s(): calling setattr() for ino #%lu\n",
379 __func__, inode->i_ino);
370 380
371 iattr.ia_valid = ATTR_MODE|ATTR_UID|ATTR_GID|ATTR_ATIME|ATTR_MTIME|ATTR_CTIME; 381 iattr.ia_valid = ATTR_MODE|ATTR_UID|ATTR_GID|ATTR_ATIME|ATTR_MTIME|ATTR_CTIME;
372 iattr.ia_mode = inode->i_mode; 382 iattr.ia_mode = inode->i_mode;
@@ -414,7 +424,8 @@ struct inode *jffs2_new_inode (struct inode *dir_i, umode_t mode, struct jffs2_r
414 struct jffs2_inode_info *f; 424 struct jffs2_inode_info *f;
415 int ret; 425 int ret;
416 426
417 D1(printk(KERN_DEBUG "jffs2_new_inode(): dir_i %ld, mode 0x%x\n", dir_i->i_ino, mode)); 427 jffs2_dbg(1, "%s(): dir_i %ld, mode 0x%x\n",
428 __func__, dir_i->i_ino, mode);
418 429
419 c = JFFS2_SB_INFO(sb); 430 c = JFFS2_SB_INFO(sb);
420 431
@@ -504,11 +515,11 @@ int jffs2_do_fill_super(struct super_block *sb, void *data, int silent)
504 515
505#ifndef CONFIG_JFFS2_FS_WRITEBUFFER 516#ifndef CONFIG_JFFS2_FS_WRITEBUFFER
506 if (c->mtd->type == MTD_NANDFLASH) { 517 if (c->mtd->type == MTD_NANDFLASH) {
507 printk(KERN_ERR "jffs2: Cannot operate on NAND flash unless jffs2 NAND support is compiled in.\n"); 518 pr_err("Cannot operate on NAND flash unless jffs2 NAND support is compiled in\n");
508 return -EINVAL; 519 return -EINVAL;
509 } 520 }
510 if (c->mtd->type == MTD_DATAFLASH) { 521 if (c->mtd->type == MTD_DATAFLASH) {
511 printk(KERN_ERR "jffs2: Cannot operate on DataFlash unless jffs2 DataFlash support is compiled in.\n"); 522 pr_err("Cannot operate on DataFlash unless jffs2 DataFlash support is compiled in\n");
512 return -EINVAL; 523 return -EINVAL;
513 } 524 }
514#endif 525#endif
@@ -522,12 +533,13 @@ int jffs2_do_fill_super(struct super_block *sb, void *data, int silent)
522 */ 533 */
523 if ((c->sector_size * blocks) != c->flash_size) { 534 if ((c->sector_size * blocks) != c->flash_size) {
524 c->flash_size = c->sector_size * blocks; 535 c->flash_size = c->sector_size * blocks;
525 printk(KERN_INFO "jffs2: Flash size not aligned to erasesize, reducing to %dKiB\n", 536 pr_info("Flash size not aligned to erasesize, reducing to %dKiB\n",
526 c->flash_size / 1024); 537 c->flash_size / 1024);
527 } 538 }
528 539
529 if (c->flash_size < 5*c->sector_size) { 540 if (c->flash_size < 5*c->sector_size) {
530 printk(KERN_ERR "jffs2: Too few erase blocks (%d)\n", c->flash_size / c->sector_size); 541 pr_err("Too few erase blocks (%d)\n",
542 c->flash_size / c->sector_size);
531 return -EINVAL; 543 return -EINVAL;
532 } 544 }
533 545
@@ -550,17 +562,17 @@ int jffs2_do_fill_super(struct super_block *sb, void *data, int silent)
550 if ((ret = jffs2_do_mount_fs(c))) 562 if ((ret = jffs2_do_mount_fs(c)))
551 goto out_inohash; 563 goto out_inohash;
552 564
553 D1(printk(KERN_DEBUG "jffs2_do_fill_super(): Getting root inode\n")); 565 jffs2_dbg(1, "%s(): Getting root inode\n", __func__);
554 root_i = jffs2_iget(sb, 1); 566 root_i = jffs2_iget(sb, 1);
555 if (IS_ERR(root_i)) { 567 if (IS_ERR(root_i)) {
556 D1(printk(KERN_WARNING "get root inode failed\n")); 568 jffs2_dbg(1, "get root inode failed\n");
557 ret = PTR_ERR(root_i); 569 ret = PTR_ERR(root_i);
558 goto out_root; 570 goto out_root;
559 } 571 }
560 572
561 ret = -ENOMEM; 573 ret = -ENOMEM;
562 574
563 D1(printk(KERN_DEBUG "jffs2_do_fill_super(): d_alloc_root()\n")); 575 jffs2_dbg(1, "%s(): d_make_root()\n", __func__);
564 sb->s_root = d_make_root(root_i); 576 sb->s_root = d_make_root(root_i);
565 if (!sb->s_root) 577 if (!sb->s_root)
566 goto out_root; 578 goto out_root;
@@ -618,20 +630,21 @@ struct jffs2_inode_info *jffs2_gc_fetch_inode(struct jffs2_sb_info *c,
618 */ 630 */
619 inode = ilookup(OFNI_BS_2SFFJ(c), inum); 631 inode = ilookup(OFNI_BS_2SFFJ(c), inum);
620 if (!inode) { 632 if (!inode) {
621 D1(printk(KERN_DEBUG "ilookup() failed for ino #%u; inode is probably deleted.\n", 633 jffs2_dbg(1, "ilookup() failed for ino #%u; inode is probably deleted.\n",
622 inum)); 634 inum);
623 635
624 spin_lock(&c->inocache_lock); 636 spin_lock(&c->inocache_lock);
625 ic = jffs2_get_ino_cache(c, inum); 637 ic = jffs2_get_ino_cache(c, inum);
626 if (!ic) { 638 if (!ic) {
627 D1(printk(KERN_DEBUG "Inode cache for ino #%u is gone.\n", inum)); 639 jffs2_dbg(1, "Inode cache for ino #%u is gone\n",
640 inum);
628 spin_unlock(&c->inocache_lock); 641 spin_unlock(&c->inocache_lock);
629 return NULL; 642 return NULL;
630 } 643 }
631 if (ic->state != INO_STATE_CHECKEDABSENT) { 644 if (ic->state != INO_STATE_CHECKEDABSENT) {
632 /* Wait for progress. Don't just loop */ 645 /* Wait for progress. Don't just loop */
633 D1(printk(KERN_DEBUG "Waiting for ino #%u in state %d\n", 646 jffs2_dbg(1, "Waiting for ino #%u in state %d\n",
634 ic->ino, ic->state)); 647 ic->ino, ic->state);
635 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock); 648 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
636 } else { 649 } else {
637 spin_unlock(&c->inocache_lock); 650 spin_unlock(&c->inocache_lock);
@@ -649,8 +662,8 @@ struct jffs2_inode_info *jffs2_gc_fetch_inode(struct jffs2_sb_info *c,
649 return ERR_CAST(inode); 662 return ERR_CAST(inode);
650 } 663 }
651 if (is_bad_inode(inode)) { 664 if (is_bad_inode(inode)) {
652 printk(KERN_NOTICE "Eep. read_inode() failed for ino #%u. unlinked %d\n", 665 pr_notice("Eep. read_inode() failed for ino #%u. unlinked %d\n",
653 inum, unlinked); 666 inum, unlinked);
654 /* NB. This will happen again. We need to do something appropriate here. */ 667 /* NB. This will happen again. We need to do something appropriate here. */
655 iput(inode); 668 iput(inode);
656 return ERR_PTR(-EIO); 669 return ERR_PTR(-EIO);
diff --git a/fs/jffs2/gc.c b/fs/jffs2/gc.c
index 31dce611337c..ad271c70aa25 100644
--- a/fs/jffs2/gc.c
+++ b/fs/jffs2/gc.c
@@ -10,6 +10,8 @@
10 * 10 *
11 */ 11 */
12 12
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
13#include <linux/kernel.h> 15#include <linux/kernel.h>
14#include <linux/mtd/mtd.h> 16#include <linux/mtd/mtd.h>
15#include <linux/slab.h> 17#include <linux/slab.h>
@@ -51,44 +53,44 @@ static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c)
51 number of free blocks is low. */ 53 number of free blocks is low. */
52again: 54again:
53 if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > c->resv_blocks_gcbad) { 55 if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > c->resv_blocks_gcbad) {
54 D1(printk(KERN_DEBUG "Picking block from bad_used_list to GC next\n")); 56 jffs2_dbg(1, "Picking block from bad_used_list to GC next\n");
55 nextlist = &c->bad_used_list; 57 nextlist = &c->bad_used_list;
56 } else if (n < 50 && !list_empty(&c->erasable_list)) { 58 } else if (n < 50 && !list_empty(&c->erasable_list)) {
57 /* Note that most of them will have gone directly to be erased. 59 /* Note that most of them will have gone directly to be erased.
58 So don't favour the erasable_list _too_ much. */ 60 So don't favour the erasable_list _too_ much. */
59 D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next\n")); 61 jffs2_dbg(1, "Picking block from erasable_list to GC next\n");
60 nextlist = &c->erasable_list; 62 nextlist = &c->erasable_list;
61 } else if (n < 110 && !list_empty(&c->very_dirty_list)) { 63 } else if (n < 110 && !list_empty(&c->very_dirty_list)) {
62 /* Most of the time, pick one off the very_dirty list */ 64 /* Most of the time, pick one off the very_dirty list */
63 D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next\n")); 65 jffs2_dbg(1, "Picking block from very_dirty_list to GC next\n");
64 nextlist = &c->very_dirty_list; 66 nextlist = &c->very_dirty_list;
65 } else if (n < 126 && !list_empty(&c->dirty_list)) { 67 } else if (n < 126 && !list_empty(&c->dirty_list)) {
66 D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next\n")); 68 jffs2_dbg(1, "Picking block from dirty_list to GC next\n");
67 nextlist = &c->dirty_list; 69 nextlist = &c->dirty_list;
68 } else if (!list_empty(&c->clean_list)) { 70 } else if (!list_empty(&c->clean_list)) {
69 D1(printk(KERN_DEBUG "Picking block from clean_list to GC next\n")); 71 jffs2_dbg(1, "Picking block from clean_list to GC next\n");
70 nextlist = &c->clean_list; 72 nextlist = &c->clean_list;
71 } else if (!list_empty(&c->dirty_list)) { 73 } else if (!list_empty(&c->dirty_list)) {
72 D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next (clean_list was empty)\n")); 74 jffs2_dbg(1, "Picking block from dirty_list to GC next (clean_list was empty)\n");
73 75
74 nextlist = &c->dirty_list; 76 nextlist = &c->dirty_list;
75 } else if (!list_empty(&c->very_dirty_list)) { 77 } else if (!list_empty(&c->very_dirty_list)) {
76 D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next (clean_list and dirty_list were empty)\n")); 78 jffs2_dbg(1, "Picking block from very_dirty_list to GC next (clean_list and dirty_list were empty)\n");
77 nextlist = &c->very_dirty_list; 79 nextlist = &c->very_dirty_list;
78 } else if (!list_empty(&c->erasable_list)) { 80 } else if (!list_empty(&c->erasable_list)) {
79 D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next (clean_list and {very_,}dirty_list were empty)\n")); 81 jffs2_dbg(1, "Picking block from erasable_list to GC next (clean_list and {very_,}dirty_list were empty)\n");
80 82
81 nextlist = &c->erasable_list; 83 nextlist = &c->erasable_list;
82 } else if (!list_empty(&c->erasable_pending_wbuf_list)) { 84 } else if (!list_empty(&c->erasable_pending_wbuf_list)) {
83 /* There are blocks are wating for the wbuf sync */ 85 /* There are blocks are wating for the wbuf sync */
84 D1(printk(KERN_DEBUG "Synching wbuf in order to reuse erasable_pending_wbuf_list blocks\n")); 86 jffs2_dbg(1, "Synching wbuf in order to reuse erasable_pending_wbuf_list blocks\n");
85 spin_unlock(&c->erase_completion_lock); 87 spin_unlock(&c->erase_completion_lock);
86 jffs2_flush_wbuf_pad(c); 88 jffs2_flush_wbuf_pad(c);
87 spin_lock(&c->erase_completion_lock); 89 spin_lock(&c->erase_completion_lock);
88 goto again; 90 goto again;
89 } else { 91 } else {
90 /* Eep. All were empty */ 92 /* Eep. All were empty */
91 D1(printk(KERN_NOTICE "jffs2: No clean, dirty _or_ erasable blocks to GC from! Where are they all?\n")); 93 jffs2_dbg(1, "No clean, dirty _or_ erasable blocks to GC from! Where are they all?\n");
92 return NULL; 94 return NULL;
93 } 95 }
94 96
@@ -97,13 +99,15 @@ again:
97 c->gcblock = ret; 99 c->gcblock = ret;
98 ret->gc_node = ret->first_node; 100 ret->gc_node = ret->first_node;
99 if (!ret->gc_node) { 101 if (!ret->gc_node) {
100 printk(KERN_WARNING "Eep. ret->gc_node for block at 0x%08x is NULL\n", ret->offset); 102 pr_warn("Eep. ret->gc_node for block at 0x%08x is NULL\n",
103 ret->offset);
101 BUG(); 104 BUG();
102 } 105 }
103 106
104 /* Have we accidentally picked a clean block with wasted space ? */ 107 /* Have we accidentally picked a clean block with wasted space ? */
105 if (ret->wasted_size) { 108 if (ret->wasted_size) {
106 D1(printk(KERN_DEBUG "Converting wasted_size %08x to dirty_size\n", ret->wasted_size)); 109 jffs2_dbg(1, "Converting wasted_size %08x to dirty_size\n",
110 ret->wasted_size);
107 ret->dirty_size += ret->wasted_size; 111 ret->dirty_size += ret->wasted_size;
108 c->wasted_size -= ret->wasted_size; 112 c->wasted_size -= ret->wasted_size;
109 c->dirty_size += ret->wasted_size; 113 c->dirty_size += ret->wasted_size;
@@ -140,8 +144,8 @@ int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
140 144
141 /* checked_ino is protected by the alloc_sem */ 145 /* checked_ino is protected by the alloc_sem */
142 if (c->checked_ino > c->highest_ino && xattr) { 146 if (c->checked_ino > c->highest_ino && xattr) {
143 printk(KERN_CRIT "Checked all inodes but still 0x%x bytes of unchecked space?\n", 147 pr_crit("Checked all inodes but still 0x%x bytes of unchecked space?\n",
144 c->unchecked_size); 148 c->unchecked_size);
145 jffs2_dbg_dump_block_lists_nolock(c); 149 jffs2_dbg_dump_block_lists_nolock(c);
146 spin_unlock(&c->erase_completion_lock); 150 spin_unlock(&c->erase_completion_lock);
147 mutex_unlock(&c->alloc_sem); 151 mutex_unlock(&c->alloc_sem);
@@ -163,8 +167,8 @@ int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
163 } 167 }
164 168
165 if (!ic->pino_nlink) { 169 if (!ic->pino_nlink) {
166 D1(printk(KERN_DEBUG "Skipping check of ino #%d with nlink/pino zero\n", 170 jffs2_dbg(1, "Skipping check of ino #%d with nlink/pino zero\n",
167 ic->ino)); 171 ic->ino);
168 spin_unlock(&c->inocache_lock); 172 spin_unlock(&c->inocache_lock);
169 jffs2_xattr_delete_inode(c, ic); 173 jffs2_xattr_delete_inode(c, ic);
170 continue; 174 continue;
@@ -172,13 +176,15 @@ int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
172 switch(ic->state) { 176 switch(ic->state) {
173 case INO_STATE_CHECKEDABSENT: 177 case INO_STATE_CHECKEDABSENT:
174 case INO_STATE_PRESENT: 178 case INO_STATE_PRESENT:
175 D1(printk(KERN_DEBUG "Skipping ino #%u already checked\n", ic->ino)); 179 jffs2_dbg(1, "Skipping ino #%u already checked\n",
180 ic->ino);
176 spin_unlock(&c->inocache_lock); 181 spin_unlock(&c->inocache_lock);
177 continue; 182 continue;
178 183
179 case INO_STATE_GC: 184 case INO_STATE_GC:
180 case INO_STATE_CHECKING: 185 case INO_STATE_CHECKING:
181 printk(KERN_WARNING "Inode #%u is in state %d during CRC check phase!\n", ic->ino, ic->state); 186 pr_warn("Inode #%u is in state %d during CRC check phase!\n",
187 ic->ino, ic->state);
182 spin_unlock(&c->inocache_lock); 188 spin_unlock(&c->inocache_lock);
183 BUG(); 189 BUG();
184 190
@@ -186,7 +192,8 @@ int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
186 /* We need to wait for it to finish, lest we move on 192 /* We need to wait for it to finish, lest we move on
187 and trigger the BUG() above while we haven't yet 193 and trigger the BUG() above while we haven't yet
188 finished checking all its nodes */ 194 finished checking all its nodes */
189 D1(printk(KERN_DEBUG "Waiting for ino #%u to finish reading\n", ic->ino)); 195 jffs2_dbg(1, "Waiting for ino #%u to finish reading\n",
196 ic->ino);
190 /* We need to come back again for the _same_ inode. We've 197 /* We need to come back again for the _same_ inode. We've
191 made no progress in this case, but that should be OK */ 198 made no progress in this case, but that should be OK */
192 c->checked_ino--; 199 c->checked_ino--;
@@ -204,11 +211,13 @@ int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
204 ic->state = INO_STATE_CHECKING; 211 ic->state = INO_STATE_CHECKING;
205 spin_unlock(&c->inocache_lock); 212 spin_unlock(&c->inocache_lock);
206 213
207 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() triggering inode scan of ino#%u\n", ic->ino)); 214 jffs2_dbg(1, "%s(): triggering inode scan of ino#%u\n",
215 __func__, ic->ino);
208 216
209 ret = jffs2_do_crccheck_inode(c, ic); 217 ret = jffs2_do_crccheck_inode(c, ic);
210 if (ret) 218 if (ret)
211 printk(KERN_WARNING "Returned error for crccheck of ino #%u. Expect badness...\n", ic->ino); 219 pr_warn("Returned error for crccheck of ino #%u. Expect badness...\n",
220 ic->ino);
212 221
213 jffs2_set_inocache_state(c, ic, INO_STATE_CHECKEDABSENT); 222 jffs2_set_inocache_state(c, ic, INO_STATE_CHECKEDABSENT);
214 mutex_unlock(&c->alloc_sem); 223 mutex_unlock(&c->alloc_sem);
@@ -220,11 +229,11 @@ int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
220 !list_empty(&c->erase_pending_list)) { 229 !list_empty(&c->erase_pending_list)) {
221 spin_unlock(&c->erase_completion_lock); 230 spin_unlock(&c->erase_completion_lock);
222 mutex_unlock(&c->alloc_sem); 231 mutex_unlock(&c->alloc_sem);
223 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() erasing pending blocks\n")); 232 jffs2_dbg(1, "%s(): erasing pending blocks\n", __func__);
224 if (jffs2_erase_pending_blocks(c, 1)) 233 if (jffs2_erase_pending_blocks(c, 1))
225 return 0; 234 return 0;
226 235
227 D1(printk(KERN_DEBUG "No progress from erasing blocks; doing GC anyway\n")); 236 jffs2_dbg(1, "No progress from erasing block; doing GC anyway\n");
228 spin_lock(&c->erase_completion_lock); 237 spin_lock(&c->erase_completion_lock);
229 mutex_lock(&c->alloc_sem); 238 mutex_lock(&c->alloc_sem);
230 } 239 }
@@ -242,13 +251,14 @@ int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
242 mutex_unlock(&c->alloc_sem); 251 mutex_unlock(&c->alloc_sem);
243 return -EAGAIN; 252 return -EAGAIN;
244 } 253 }
245 D1(printk(KERN_NOTICE "jffs2: Couldn't find erase block to garbage collect!\n")); 254 jffs2_dbg(1, "Couldn't find erase block to garbage collect!\n");
246 spin_unlock(&c->erase_completion_lock); 255 spin_unlock(&c->erase_completion_lock);
247 mutex_unlock(&c->alloc_sem); 256 mutex_unlock(&c->alloc_sem);
248 return -EIO; 257 return -EIO;
249 } 258 }
250 259
251 D1(printk(KERN_DEBUG "GC from block %08x, used_size %08x, dirty_size %08x, free_size %08x\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->free_size)); 260 jffs2_dbg(1, "GC from block %08x, used_size %08x, dirty_size %08x, free_size %08x\n",
261 jeb->offset, jeb->used_size, jeb->dirty_size, jeb->free_size);
252 D1(if (c->nextblock) 262 D1(if (c->nextblock)
253 printk(KERN_DEBUG "Nextblock at %08x, used_size %08x, dirty_size %08x, wasted_size %08x, free_size %08x\n", c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->free_size)); 263 printk(KERN_DEBUG "Nextblock at %08x, used_size %08x, dirty_size %08x, wasted_size %08x, free_size %08x\n", c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->free_size));
254 264
@@ -261,12 +271,14 @@ int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
261 gcblock_dirty = jeb->dirty_size; 271 gcblock_dirty = jeb->dirty_size;
262 272
263 while(ref_obsolete(raw)) { 273 while(ref_obsolete(raw)) {
264 D1(printk(KERN_DEBUG "Node at 0x%08x is obsolete... skipping\n", ref_offset(raw))); 274 jffs2_dbg(1, "Node at 0x%08x is obsolete... skipping\n",
275 ref_offset(raw));
265 raw = ref_next(raw); 276 raw = ref_next(raw);
266 if (unlikely(!raw)) { 277 if (unlikely(!raw)) {
267 printk(KERN_WARNING "eep. End of raw list while still supposedly nodes to GC\n"); 278 pr_warn("eep. End of raw list while still supposedly nodes to GC\n");
268 printk(KERN_WARNING "erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n", 279 pr_warn("erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n",
269 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size); 280 jeb->offset, jeb->free_size,
281 jeb->dirty_size, jeb->used_size);
270 jeb->gc_node = raw; 282 jeb->gc_node = raw;
271 spin_unlock(&c->erase_completion_lock); 283 spin_unlock(&c->erase_completion_lock);
272 mutex_unlock(&c->alloc_sem); 284 mutex_unlock(&c->alloc_sem);
@@ -275,7 +287,8 @@ int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
275 } 287 }
276 jeb->gc_node = raw; 288 jeb->gc_node = raw;
277 289
278 D1(printk(KERN_DEBUG "Going to garbage collect node at 0x%08x\n", ref_offset(raw))); 290 jffs2_dbg(1, "Going to garbage collect node at 0x%08x\n",
291 ref_offset(raw));
279 292
280 if (!raw->next_in_ino) { 293 if (!raw->next_in_ino) {
281 /* Inode-less node. Clean marker, snapshot or something like that */ 294 /* Inode-less node. Clean marker, snapshot or something like that */
@@ -316,7 +329,9 @@ int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
316 329
317 spin_unlock(&c->erase_completion_lock); 330 spin_unlock(&c->erase_completion_lock);
318 331
319 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass collecting from block @0x%08x. Node @0x%08x(%d), ino #%u\n", jeb->offset, ref_offset(raw), ref_flags(raw), ic->ino)); 332 jffs2_dbg(1, "%s(): collecting from block @0x%08x. Node @0x%08x(%d), ino #%u\n",
333 __func__, jeb->offset, ref_offset(raw), ref_flags(raw),
334 ic->ino);
320 335
321 /* Three possibilities: 336 /* Three possibilities:
322 1. Inode is already in-core. We must iget it and do proper 337 1. Inode is already in-core. We must iget it and do proper
@@ -336,8 +351,8 @@ int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
336 if (ref_flags(raw) == REF_PRISTINE) 351 if (ref_flags(raw) == REF_PRISTINE)
337 ic->state = INO_STATE_GC; 352 ic->state = INO_STATE_GC;
338 else { 353 else {
339 D1(printk(KERN_DEBUG "Ino #%u is absent but node not REF_PRISTINE. Reading.\n", 354 jffs2_dbg(1, "Ino #%u is absent but node not REF_PRISTINE. Reading.\n",
340 ic->ino)); 355 ic->ino);
341 } 356 }
342 break; 357 break;
343 358
@@ -353,8 +368,8 @@ int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
353 we're holding the alloc_sem, no other garbage collection 368 we're holding the alloc_sem, no other garbage collection
354 can happen. 369 can happen.
355 */ 370 */
356 printk(KERN_CRIT "Inode #%u already in state %d in jffs2_garbage_collect_pass()!\n", 371 pr_crit("Inode #%u already in state %d in jffs2_garbage_collect_pass()!\n",
357 ic->ino, ic->state); 372 ic->ino, ic->state);
358 mutex_unlock(&c->alloc_sem); 373 mutex_unlock(&c->alloc_sem);
359 spin_unlock(&c->inocache_lock); 374 spin_unlock(&c->inocache_lock);
360 BUG(); 375 BUG();
@@ -367,8 +382,8 @@ int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
367 drop the alloc_sem before sleeping. */ 382 drop the alloc_sem before sleeping. */
368 383
369 mutex_unlock(&c->alloc_sem); 384 mutex_unlock(&c->alloc_sem);
370 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() waiting for ino #%u in state %d\n", 385 jffs2_dbg(1, "%s(): waiting for ino #%u in state %d\n",
371 ic->ino, ic->state)); 386 __func__, ic->ino, ic->state);
372 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock); 387 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
373 /* And because we dropped the alloc_sem we must start again from the 388 /* And because we dropped the alloc_sem we must start again from the
374 beginning. Ponder chance of livelock here -- we're returning success 389 beginning. Ponder chance of livelock here -- we're returning success
@@ -433,7 +448,8 @@ int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
433 test_gcnode: 448 test_gcnode:
434 if (jeb->dirty_size == gcblock_dirty && !ref_obsolete(jeb->gc_node)) { 449 if (jeb->dirty_size == gcblock_dirty && !ref_obsolete(jeb->gc_node)) {
435 /* Eep. This really should never happen. GC is broken */ 450 /* Eep. This really should never happen. GC is broken */
436 printk(KERN_ERR "Error garbage collecting node at %08x!\n", ref_offset(jeb->gc_node)); 451 pr_err("Error garbage collecting node at %08x!\n",
452 ref_offset(jeb->gc_node));
437 ret = -ENOSPC; 453 ret = -ENOSPC;
438 } 454 }
439 release_sem: 455 release_sem:
@@ -445,7 +461,8 @@ int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
445 461
446 eraseit: 462 eraseit:
447 if (c->gcblock && !c->gcblock->used_size) { 463 if (c->gcblock && !c->gcblock->used_size) {
448 D1(printk(KERN_DEBUG "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n", c->gcblock->offset)); 464 jffs2_dbg(1, "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n",
465 c->gcblock->offset);
449 /* We're GC'ing an empty block? */ 466 /* We're GC'ing an empty block? */
450 list_add_tail(&c->gcblock->list, &c->erase_pending_list); 467 list_add_tail(&c->gcblock->list, &c->erase_pending_list);
451 c->gcblock = NULL; 468 c->gcblock = NULL;
@@ -475,12 +492,12 @@ static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_era
475 492
476 if (c->gcblock != jeb) { 493 if (c->gcblock != jeb) {
477 spin_unlock(&c->erase_completion_lock); 494 spin_unlock(&c->erase_completion_lock);
478 D1(printk(KERN_DEBUG "GC block is no longer gcblock. Restart\n")); 495 jffs2_dbg(1, "GC block is no longer gcblock. Restart\n");
479 goto upnout; 496 goto upnout;
480 } 497 }
481 if (ref_obsolete(raw)) { 498 if (ref_obsolete(raw)) {
482 spin_unlock(&c->erase_completion_lock); 499 spin_unlock(&c->erase_completion_lock);
483 D1(printk(KERN_DEBUG "node to be GC'd was obsoleted in the meantime.\n")); 500 jffs2_dbg(1, "node to be GC'd was obsoleted in the meantime.\n");
484 /* They'll call again */ 501 /* They'll call again */
485 goto upnout; 502 goto upnout;
486 } 503 }
@@ -536,10 +553,10 @@ static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_era
536 } else if (fd) { 553 } else if (fd) {
537 ret = jffs2_garbage_collect_deletion_dirent(c, jeb, f, fd); 554 ret = jffs2_garbage_collect_deletion_dirent(c, jeb, f, fd);
538 } else { 555 } else {
539 printk(KERN_WARNING "Raw node at 0x%08x wasn't in node lists for ino #%u\n", 556 pr_warn("Raw node at 0x%08x wasn't in node lists for ino #%u\n",
540 ref_offset(raw), f->inocache->ino); 557 ref_offset(raw), f->inocache->ino);
541 if (ref_obsolete(raw)) { 558 if (ref_obsolete(raw)) {
542 printk(KERN_WARNING "But it's obsolete so we don't mind too much\n"); 559 pr_warn("But it's obsolete so we don't mind too much\n");
543 } else { 560 } else {
544 jffs2_dbg_dump_node(c, ref_offset(raw)); 561 jffs2_dbg_dump_node(c, ref_offset(raw));
545 BUG(); 562 BUG();
@@ -562,7 +579,8 @@ static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
562 uint32_t crc, rawlen; 579 uint32_t crc, rawlen;
563 int retried = 0; 580 int retried = 0;
564 581
565 D1(printk(KERN_DEBUG "Going to GC REF_PRISTINE node at 0x%08x\n", ref_offset(raw))); 582 jffs2_dbg(1, "Going to GC REF_PRISTINE node at 0x%08x\n",
583 ref_offset(raw));
566 584
567 alloclen = rawlen = ref_totlen(c, c->gcblock, raw); 585 alloclen = rawlen = ref_totlen(c, c->gcblock, raw);
568 586
@@ -595,8 +613,8 @@ static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
595 613
596 crc = crc32(0, node, sizeof(struct jffs2_unknown_node)-4); 614 crc = crc32(0, node, sizeof(struct jffs2_unknown_node)-4);
597 if (je32_to_cpu(node->u.hdr_crc) != crc) { 615 if (je32_to_cpu(node->u.hdr_crc) != crc) {
598 printk(KERN_WARNING "Header CRC failed on REF_PRISTINE node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", 616 pr_warn("Header CRC failed on REF_PRISTINE node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
599 ref_offset(raw), je32_to_cpu(node->u.hdr_crc), crc); 617 ref_offset(raw), je32_to_cpu(node->u.hdr_crc), crc);
600 goto bail; 618 goto bail;
601 } 619 }
602 620
@@ -604,16 +622,18 @@ static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
604 case JFFS2_NODETYPE_INODE: 622 case JFFS2_NODETYPE_INODE:
605 crc = crc32(0, node, sizeof(node->i)-8); 623 crc = crc32(0, node, sizeof(node->i)-8);
606 if (je32_to_cpu(node->i.node_crc) != crc) { 624 if (je32_to_cpu(node->i.node_crc) != crc) {
607 printk(KERN_WARNING "Node CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", 625 pr_warn("Node CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
608 ref_offset(raw), je32_to_cpu(node->i.node_crc), crc); 626 ref_offset(raw), je32_to_cpu(node->i.node_crc),
627 crc);
609 goto bail; 628 goto bail;
610 } 629 }
611 630
612 if (je32_to_cpu(node->i.dsize)) { 631 if (je32_to_cpu(node->i.dsize)) {
613 crc = crc32(0, node->i.data, je32_to_cpu(node->i.csize)); 632 crc = crc32(0, node->i.data, je32_to_cpu(node->i.csize));
614 if (je32_to_cpu(node->i.data_crc) != crc) { 633 if (je32_to_cpu(node->i.data_crc) != crc) {
615 printk(KERN_WARNING "Data CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", 634 pr_warn("Data CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
616 ref_offset(raw), je32_to_cpu(node->i.data_crc), crc); 635 ref_offset(raw),
636 je32_to_cpu(node->i.data_crc), crc);
617 goto bail; 637 goto bail;
618 } 638 }
619 } 639 }
@@ -622,21 +642,24 @@ static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
622 case JFFS2_NODETYPE_DIRENT: 642 case JFFS2_NODETYPE_DIRENT:
623 crc = crc32(0, node, sizeof(node->d)-8); 643 crc = crc32(0, node, sizeof(node->d)-8);
624 if (je32_to_cpu(node->d.node_crc) != crc) { 644 if (je32_to_cpu(node->d.node_crc) != crc) {
625 printk(KERN_WARNING "Node CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", 645 pr_warn("Node CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
626 ref_offset(raw), je32_to_cpu(node->d.node_crc), crc); 646 ref_offset(raw),
647 je32_to_cpu(node->d.node_crc), crc);
627 goto bail; 648 goto bail;
628 } 649 }
629 650
630 if (strnlen(node->d.name, node->d.nsize) != node->d.nsize) { 651 if (strnlen(node->d.name, node->d.nsize) != node->d.nsize) {
631 printk(KERN_WARNING "Name in dirent node at 0x%08x contains zeroes\n", ref_offset(raw)); 652 pr_warn("Name in dirent node at 0x%08x contains zeroes\n",
653 ref_offset(raw));
632 goto bail; 654 goto bail;
633 } 655 }
634 656
635 if (node->d.nsize) { 657 if (node->d.nsize) {
636 crc = crc32(0, node->d.name, node->d.nsize); 658 crc = crc32(0, node->d.name, node->d.nsize);
637 if (je32_to_cpu(node->d.name_crc) != crc) { 659 if (je32_to_cpu(node->d.name_crc) != crc) {
638 printk(KERN_WARNING "Name CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", 660 pr_warn("Name CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
639 ref_offset(raw), je32_to_cpu(node->d.name_crc), crc); 661 ref_offset(raw),
662 je32_to_cpu(node->d.name_crc), crc);
640 goto bail; 663 goto bail;
641 } 664 }
642 } 665 }
@@ -644,8 +667,8 @@ static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
644 default: 667 default:
645 /* If it's inode-less, we don't _know_ what it is. Just copy it intact */ 668 /* If it's inode-less, we don't _know_ what it is. Just copy it intact */
646 if (ic) { 669 if (ic) {
647 printk(KERN_WARNING "Unknown node type for REF_PRISTINE node at 0x%08x: 0x%04x\n", 670 pr_warn("Unknown node type for REF_PRISTINE node at 0x%08x: 0x%04x\n",
648 ref_offset(raw), je16_to_cpu(node->u.nodetype)); 671 ref_offset(raw), je16_to_cpu(node->u.nodetype));
649 goto bail; 672 goto bail;
650 } 673 }
651 } 674 }
@@ -657,12 +680,13 @@ static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
657 ret = jffs2_flash_write(c, phys_ofs, rawlen, &retlen, (char *)node); 680 ret = jffs2_flash_write(c, phys_ofs, rawlen, &retlen, (char *)node);
658 681
659 if (ret || (retlen != rawlen)) { 682 if (ret || (retlen != rawlen)) {
660 printk(KERN_NOTICE "Write of %d bytes at 0x%08x failed. returned %d, retlen %zd\n", 683 pr_notice("Write of %d bytes at 0x%08x failed. returned %d, retlen %zd\n",
661 rawlen, phys_ofs, ret, retlen); 684 rawlen, phys_ofs, ret, retlen);
662 if (retlen) { 685 if (retlen) {
663 jffs2_add_physical_node_ref(c, phys_ofs | REF_OBSOLETE, rawlen, NULL); 686 jffs2_add_physical_node_ref(c, phys_ofs | REF_OBSOLETE, rawlen, NULL);
664 } else { 687 } else {
665 printk(KERN_NOTICE "Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n", phys_ofs); 688 pr_notice("Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n",
689 phys_ofs);
666 } 690 }
667 if (!retried) { 691 if (!retried) {
668 /* Try to reallocate space and retry */ 692 /* Try to reallocate space and retry */
@@ -671,7 +695,7 @@ static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
671 695
672 retried = 1; 696 retried = 1;
673 697
674 D1(printk(KERN_DEBUG "Retrying failed write of REF_PRISTINE node.\n")); 698 jffs2_dbg(1, "Retrying failed write of REF_PRISTINE node.\n");
675 699
676 jffs2_dbg_acct_sanity_check(c,jeb); 700 jffs2_dbg_acct_sanity_check(c,jeb);
677 jffs2_dbg_acct_paranoia_check(c, jeb); 701 jffs2_dbg_acct_paranoia_check(c, jeb);
@@ -681,14 +705,16 @@ static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
681 it is only an upper estimation */ 705 it is only an upper estimation */
682 706
683 if (!ret) { 707 if (!ret) {
684 D1(printk(KERN_DEBUG "Allocated space at 0x%08x to retry failed write.\n", phys_ofs)); 708 jffs2_dbg(1, "Allocated space at 0x%08x to retry failed write.\n",
709 phys_ofs);
685 710
686 jffs2_dbg_acct_sanity_check(c,jeb); 711 jffs2_dbg_acct_sanity_check(c,jeb);
687 jffs2_dbg_acct_paranoia_check(c, jeb); 712 jffs2_dbg_acct_paranoia_check(c, jeb);
688 713
689 goto retry; 714 goto retry;
690 } 715 }
691 D1(printk(KERN_DEBUG "Failed to allocate space to retry failed write: %d!\n", ret)); 716 jffs2_dbg(1, "Failed to allocate space to retry failed write: %d!\n",
717 ret);
692 } 718 }
693 719
694 if (!ret) 720 if (!ret)
@@ -698,7 +724,8 @@ static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
698 jffs2_add_physical_node_ref(c, phys_ofs | REF_PRISTINE, rawlen, ic); 724 jffs2_add_physical_node_ref(c, phys_ofs | REF_PRISTINE, rawlen, ic);
699 725
700 jffs2_mark_node_obsolete(c, raw); 726 jffs2_mark_node_obsolete(c, raw);
701 D1(printk(KERN_DEBUG "WHEEE! GC REF_PRISTINE node at 0x%08x succeeded\n", ref_offset(raw))); 727 jffs2_dbg(1, "WHEEE! GC REF_PRISTINE node at 0x%08x succeeded\n",
728 ref_offset(raw));
702 729
703 out_node: 730 out_node:
704 kfree(node); 731 kfree(node);
@@ -725,29 +752,32 @@ static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_
725 /* For these, we don't actually need to read the old node */ 752 /* For these, we don't actually need to read the old node */
726 mdatalen = jffs2_encode_dev(&dev, JFFS2_F_I_RDEV(f)); 753 mdatalen = jffs2_encode_dev(&dev, JFFS2_F_I_RDEV(f));
727 mdata = (char *)&dev; 754 mdata = (char *)&dev;
728 D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bytes of kdev_t\n", mdatalen)); 755 jffs2_dbg(1, "%s(): Writing %d bytes of kdev_t\n",
756 __func__, mdatalen);
729 } else if (S_ISLNK(JFFS2_F_I_MODE(f))) { 757 } else if (S_ISLNK(JFFS2_F_I_MODE(f))) {
730 mdatalen = fn->size; 758 mdatalen = fn->size;
731 mdata = kmalloc(fn->size, GFP_KERNEL); 759 mdata = kmalloc(fn->size, GFP_KERNEL);
732 if (!mdata) { 760 if (!mdata) {
733 printk(KERN_WARNING "kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n"); 761 pr_warn("kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n");
734 return -ENOMEM; 762 return -ENOMEM;
735 } 763 }
736 ret = jffs2_read_dnode(c, f, fn, mdata, 0, mdatalen); 764 ret = jffs2_read_dnode(c, f, fn, mdata, 0, mdatalen);
737 if (ret) { 765 if (ret) {
738 printk(KERN_WARNING "read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n", ret); 766 pr_warn("read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n",
767 ret);
739 kfree(mdata); 768 kfree(mdata);
740 return ret; 769 return ret;
741 } 770 }
742 D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bites of symlink target\n", mdatalen)); 771 jffs2_dbg(1, "%s(): Writing %d bites of symlink target\n",
772 __func__, mdatalen);
743 773
744 } 774 }
745 775
746 ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &alloclen, 776 ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &alloclen,
747 JFFS2_SUMMARY_INODE_SIZE); 777 JFFS2_SUMMARY_INODE_SIZE);
748 if (ret) { 778 if (ret) {
749 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_metadata failed: %d\n", 779 pr_warn("jffs2_reserve_space_gc of %zd bytes for garbage_collect_metadata failed: %d\n",
750 sizeof(ri)+ mdatalen, ret); 780 sizeof(ri) + mdatalen, ret);
751 goto out; 781 goto out;
752 } 782 }
753 783
@@ -784,7 +814,7 @@ static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_
784 new_fn = jffs2_write_dnode(c, f, &ri, mdata, mdatalen, ALLOC_GC); 814 new_fn = jffs2_write_dnode(c, f, &ri, mdata, mdatalen, ALLOC_GC);
785 815
786 if (IS_ERR(new_fn)) { 816 if (IS_ERR(new_fn)) {
787 printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn)); 817 pr_warn("Error writing new dnode: %ld\n", PTR_ERR(new_fn));
788 ret = PTR_ERR(new_fn); 818 ret = PTR_ERR(new_fn);
789 goto out; 819 goto out;
790 } 820 }
@@ -827,14 +857,15 @@ static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_er
827 ret = jffs2_reserve_space_gc(c, sizeof(rd)+rd.nsize, &alloclen, 857 ret = jffs2_reserve_space_gc(c, sizeof(rd)+rd.nsize, &alloclen,
828 JFFS2_SUMMARY_DIRENT_SIZE(rd.nsize)); 858 JFFS2_SUMMARY_DIRENT_SIZE(rd.nsize));
829 if (ret) { 859 if (ret) {
830 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dirent failed: %d\n", 860 pr_warn("jffs2_reserve_space_gc of %zd bytes for garbage_collect_dirent failed: %d\n",
831 sizeof(rd)+rd.nsize, ret); 861 sizeof(rd)+rd.nsize, ret);
832 return ret; 862 return ret;
833 } 863 }
834 new_fd = jffs2_write_dirent(c, f, &rd, fd->name, rd.nsize, ALLOC_GC); 864 new_fd = jffs2_write_dirent(c, f, &rd, fd->name, rd.nsize, ALLOC_GC);
835 865
836 if (IS_ERR(new_fd)) { 866 if (IS_ERR(new_fd)) {
837 printk(KERN_WARNING "jffs2_write_dirent in garbage_collect_dirent failed: %ld\n", PTR_ERR(new_fd)); 867 pr_warn("jffs2_write_dirent in garbage_collect_dirent failed: %ld\n",
868 PTR_ERR(new_fd));
838 return PTR_ERR(new_fd); 869 return PTR_ERR(new_fd);
839 } 870 }
840 jffs2_add_fd_to_list(c, new_fd, &f->dents); 871 jffs2_add_fd_to_list(c, new_fd, &f->dents);
@@ -887,19 +918,22 @@ static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct
887 if (SECTOR_ADDR(raw->flash_offset) == SECTOR_ADDR(fd->raw->flash_offset)) 918 if (SECTOR_ADDR(raw->flash_offset) == SECTOR_ADDR(fd->raw->flash_offset))
888 continue; 919 continue;
889 920
890 D1(printk(KERN_DEBUG "Check potential deletion dirent at %08x\n", ref_offset(raw))); 921 jffs2_dbg(1, "Check potential deletion dirent at %08x\n",
922 ref_offset(raw));
891 923
892 /* This is an obsolete node belonging to the same directory, and it's of the right 924 /* This is an obsolete node belonging to the same directory, and it's of the right
893 length. We need to take a closer look...*/ 925 length. We need to take a closer look...*/
894 ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)rd); 926 ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)rd);
895 if (ret) { 927 if (ret) {
896 printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Read error (%d) reading obsolete node at %08x\n", ret, ref_offset(raw)); 928 pr_warn("%s(): Read error (%d) reading obsolete node at %08x\n",
929 __func__, ret, ref_offset(raw));
897 /* If we can't read it, we don't need to continue to obsolete it. Continue */ 930 /* If we can't read it, we don't need to continue to obsolete it. Continue */
898 continue; 931 continue;
899 } 932 }
900 if (retlen != rawlen) { 933 if (retlen != rawlen) {
901 printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Short read (%zd not %u) reading header from obsolete node at %08x\n", 934 pr_warn("%s(): Short read (%zd not %u) reading header from obsolete node at %08x\n",
902 retlen, rawlen, ref_offset(raw)); 935 __func__, retlen, rawlen,
936 ref_offset(raw));
903 continue; 937 continue;
904 } 938 }
905 939
@@ -923,8 +957,9 @@ static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct
923 a new deletion dirent to replace it */ 957 a new deletion dirent to replace it */
924 mutex_unlock(&c->erase_free_sem); 958 mutex_unlock(&c->erase_free_sem);
925 959
926 D1(printk(KERN_DEBUG "Deletion dirent at %08x still obsoletes real dirent \"%s\" at %08x for ino #%u\n", 960 jffs2_dbg(1, "Deletion dirent at %08x still obsoletes real dirent \"%s\" at %08x for ino #%u\n",
927 ref_offset(fd->raw), fd->name, ref_offset(raw), je32_to_cpu(rd->ino))); 961 ref_offset(fd->raw), fd->name,
962 ref_offset(raw), je32_to_cpu(rd->ino));
928 kfree(rd); 963 kfree(rd);
929 964
930 return jffs2_garbage_collect_dirent(c, jeb, f, fd); 965 return jffs2_garbage_collect_dirent(c, jeb, f, fd);
@@ -947,7 +982,8 @@ static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct
947 fdp = &(*fdp)->next; 982 fdp = &(*fdp)->next;
948 } 983 }
949 if (!found) { 984 if (!found) {
950 printk(KERN_WARNING "Deletion dirent \"%s\" not found in list for ino #%u\n", fd->name, f->inocache->ino); 985 pr_warn("Deletion dirent \"%s\" not found in list for ino #%u\n",
986 fd->name, f->inocache->ino);
951 } 987 }
952 jffs2_mark_node_obsolete(c, fd->raw); 988 jffs2_mark_node_obsolete(c, fd->raw);
953 jffs2_free_full_dirent(fd); 989 jffs2_free_full_dirent(fd);
@@ -964,8 +1000,8 @@ static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eras
964 uint32_t alloclen, ilen; 1000 uint32_t alloclen, ilen;
965 int ret; 1001 int ret;
966 1002
967 D1(printk(KERN_DEBUG "Writing replacement hole node for ino #%u from offset 0x%x to 0x%x\n", 1003 jffs2_dbg(1, "Writing replacement hole node for ino #%u from offset 0x%x to 0x%x\n",
968 f->inocache->ino, start, end)); 1004 f->inocache->ino, start, end);
969 1005
970 memset(&ri, 0, sizeof(ri)); 1006 memset(&ri, 0, sizeof(ri));
971 1007
@@ -976,35 +1012,37 @@ static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eras
976 write it out again with the _same_ version as before */ 1012 write it out again with the _same_ version as before */
977 ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(ri), &readlen, (char *)&ri); 1013 ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(ri), &readlen, (char *)&ri);
978 if (readlen != sizeof(ri) || ret) { 1014 if (readlen != sizeof(ri) || ret) {
979 printk(KERN_WARNING "Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %zd. Data will be lost by writing new hole node\n", ret, readlen); 1015 pr_warn("Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %zd. Data will be lost by writing new hole node\n",
1016 ret, readlen);
980 goto fill; 1017 goto fill;
981 } 1018 }
982 if (je16_to_cpu(ri.nodetype) != JFFS2_NODETYPE_INODE) { 1019 if (je16_to_cpu(ri.nodetype) != JFFS2_NODETYPE_INODE) {
983 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had node type 0x%04x instead of JFFS2_NODETYPE_INODE(0x%04x)\n", 1020 pr_warn("%s(): Node at 0x%08x had node type 0x%04x instead of JFFS2_NODETYPE_INODE(0x%04x)\n",
984 ref_offset(fn->raw), 1021 __func__, ref_offset(fn->raw),
985 je16_to_cpu(ri.nodetype), JFFS2_NODETYPE_INODE); 1022 je16_to_cpu(ri.nodetype), JFFS2_NODETYPE_INODE);
986 return -EIO; 1023 return -EIO;
987 } 1024 }
988 if (je32_to_cpu(ri.totlen) != sizeof(ri)) { 1025 if (je32_to_cpu(ri.totlen) != sizeof(ri)) {
989 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had totlen 0x%x instead of expected 0x%zx\n", 1026 pr_warn("%s(): Node at 0x%08x had totlen 0x%x instead of expected 0x%zx\n",
990 ref_offset(fn->raw), 1027 __func__, ref_offset(fn->raw),
991 je32_to_cpu(ri.totlen), sizeof(ri)); 1028 je32_to_cpu(ri.totlen), sizeof(ri));
992 return -EIO; 1029 return -EIO;
993 } 1030 }
994 crc = crc32(0, &ri, sizeof(ri)-8); 1031 crc = crc32(0, &ri, sizeof(ri)-8);
995 if (crc != je32_to_cpu(ri.node_crc)) { 1032 if (crc != je32_to_cpu(ri.node_crc)) {
996 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had CRC 0x%08x which doesn't match calculated CRC 0x%08x\n", 1033 pr_warn("%s: Node at 0x%08x had CRC 0x%08x which doesn't match calculated CRC 0x%08x\n",
997 ref_offset(fn->raw), 1034 __func__, ref_offset(fn->raw),
998 je32_to_cpu(ri.node_crc), crc); 1035 je32_to_cpu(ri.node_crc), crc);
999 /* FIXME: We could possibly deal with this by writing new holes for each frag */ 1036 /* FIXME: We could possibly deal with this by writing new holes for each frag */
1000 printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n", 1037 pr_warn("Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
1001 start, end, f->inocache->ino); 1038 start, end, f->inocache->ino);
1002 goto fill; 1039 goto fill;
1003 } 1040 }
1004 if (ri.compr != JFFS2_COMPR_ZERO) { 1041 if (ri.compr != JFFS2_COMPR_ZERO) {
1005 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node 0x%08x wasn't a hole node!\n", ref_offset(fn->raw)); 1042 pr_warn("%s(): Node 0x%08x wasn't a hole node!\n",
1006 printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n", 1043 __func__, ref_offset(fn->raw));
1007 start, end, f->inocache->ino); 1044 pr_warn("Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
1045 start, end, f->inocache->ino);
1008 goto fill; 1046 goto fill;
1009 } 1047 }
1010 } else { 1048 } else {
@@ -1043,14 +1081,14 @@ static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eras
1043 ret = jffs2_reserve_space_gc(c, sizeof(ri), &alloclen, 1081 ret = jffs2_reserve_space_gc(c, sizeof(ri), &alloclen,
1044 JFFS2_SUMMARY_INODE_SIZE); 1082 JFFS2_SUMMARY_INODE_SIZE);
1045 if (ret) { 1083 if (ret) {
1046 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_hole failed: %d\n", 1084 pr_warn("jffs2_reserve_space_gc of %zd bytes for garbage_collect_hole failed: %d\n",
1047 sizeof(ri), ret); 1085 sizeof(ri), ret);
1048 return ret; 1086 return ret;
1049 } 1087 }
1050 new_fn = jffs2_write_dnode(c, f, &ri, NULL, 0, ALLOC_GC); 1088 new_fn = jffs2_write_dnode(c, f, &ri, NULL, 0, ALLOC_GC);
1051 1089
1052 if (IS_ERR(new_fn)) { 1090 if (IS_ERR(new_fn)) {
1053 printk(KERN_WARNING "Error writing new hole node: %ld\n", PTR_ERR(new_fn)); 1091 pr_warn("Error writing new hole node: %ld\n", PTR_ERR(new_fn));
1054 return PTR_ERR(new_fn); 1092 return PTR_ERR(new_fn);
1055 } 1093 }
1056 if (je32_to_cpu(ri.version) == f->highest_version) { 1094 if (je32_to_cpu(ri.version) == f->highest_version) {
@@ -1070,9 +1108,9 @@ static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eras
1070 * above.) 1108 * above.)
1071 */ 1109 */
1072 D1(if(unlikely(fn->frags <= 1)) { 1110 D1(if(unlikely(fn->frags <= 1)) {
1073 printk(KERN_WARNING "jffs2_garbage_collect_hole: Replacing fn with %d frag(s) but new ver %d != highest_version %d of ino #%d\n", 1111 pr_warn("%s(): Replacing fn with %d frag(s) but new ver %d != highest_version %d of ino #%d\n",
1074 fn->frags, je32_to_cpu(ri.version), f->highest_version, 1112 __func__, fn->frags, je32_to_cpu(ri.version),
1075 je32_to_cpu(ri.ino)); 1113 f->highest_version, je32_to_cpu(ri.ino));
1076 }); 1114 });
1077 1115
1078 /* This is a partially-overlapped hole node. Mark it REF_NORMAL not REF_PRISTINE */ 1116 /* This is a partially-overlapped hole node. Mark it REF_NORMAL not REF_PRISTINE */
@@ -1089,11 +1127,11 @@ static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eras
1089 } 1127 }
1090 } 1128 }
1091 if (fn->frags) { 1129 if (fn->frags) {
1092 printk(KERN_WARNING "jffs2_garbage_collect_hole: Old node still has frags!\n"); 1130 pr_warn("%s(): Old node still has frags!\n", __func__);
1093 BUG(); 1131 BUG();
1094 } 1132 }
1095 if (!new_fn->frags) { 1133 if (!new_fn->frags) {
1096 printk(KERN_WARNING "jffs2_garbage_collect_hole: New node has no frags!\n"); 1134 pr_warn("%s(): New node has no frags!\n", __func__);
1097 BUG(); 1135 BUG();
1098 } 1136 }
1099 1137
@@ -1117,8 +1155,8 @@ static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_era
1117 1155
1118 memset(&ri, 0, sizeof(ri)); 1156 memset(&ri, 0, sizeof(ri));
1119 1157
1120 D1(printk(KERN_DEBUG "Writing replacement dnode for ino #%u from offset 0x%x to 0x%x\n", 1158 jffs2_dbg(1, "Writing replacement dnode for ino #%u from offset 0x%x to 0x%x\n",
1121 f->inocache->ino, start, end)); 1159 f->inocache->ino, start, end);
1122 1160
1123 orig_end = end; 1161 orig_end = end;
1124 orig_start = start; 1162 orig_start = start;
@@ -1149,15 +1187,15 @@ static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_era
1149 /* If the previous frag doesn't even reach the beginning, there's 1187 /* If the previous frag doesn't even reach the beginning, there's
1150 excessive fragmentation. Just merge. */ 1188 excessive fragmentation. Just merge. */
1151 if (frag->ofs > min) { 1189 if (frag->ofs > min) {
1152 D1(printk(KERN_DEBUG "Expanding down to cover partial frag (0x%x-0x%x)\n", 1190 jffs2_dbg(1, "Expanding down to cover partial frag (0x%x-0x%x)\n",
1153 frag->ofs, frag->ofs+frag->size)); 1191 frag->ofs, frag->ofs+frag->size);
1154 start = frag->ofs; 1192 start = frag->ofs;
1155 continue; 1193 continue;
1156 } 1194 }
1157 /* OK. This frag holds the first byte of the page. */ 1195 /* OK. This frag holds the first byte of the page. */
1158 if (!frag->node || !frag->node->raw) { 1196 if (!frag->node || !frag->node->raw) {
1159 D1(printk(KERN_DEBUG "First frag in page is hole (0x%x-0x%x). Not expanding down.\n", 1197 jffs2_dbg(1, "First frag in page is hole (0x%x-0x%x). Not expanding down.\n",
1160 frag->ofs, frag->ofs+frag->size)); 1198 frag->ofs, frag->ofs+frag->size);
1161 break; 1199 break;
1162 } else { 1200 } else {
1163 1201
@@ -1171,19 +1209,25 @@ static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_era
1171 jeb = &c->blocks[raw->flash_offset / c->sector_size]; 1209 jeb = &c->blocks[raw->flash_offset / c->sector_size];
1172 1210
1173 if (jeb == c->gcblock) { 1211 if (jeb == c->gcblock) {
1174 D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in gcblock at %08x\n", 1212 jffs2_dbg(1, "Expanding down to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1175 frag->ofs, frag->ofs+frag->size, ref_offset(raw))); 1213 frag->ofs,
1214 frag->ofs + frag->size,
1215 ref_offset(raw));
1176 start = frag->ofs; 1216 start = frag->ofs;
1177 break; 1217 break;
1178 } 1218 }
1179 if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) { 1219 if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1180 D1(printk(KERN_DEBUG "Not expanding down to cover frag (0x%x-0x%x) in clean block %08x\n", 1220 jffs2_dbg(1, "Not expanding down to cover frag (0x%x-0x%x) in clean block %08x\n",
1181 frag->ofs, frag->ofs+frag->size, jeb->offset)); 1221 frag->ofs,
1222 frag->ofs + frag->size,
1223 jeb->offset);
1182 break; 1224 break;
1183 } 1225 }
1184 1226
1185 D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in dirty block %08x\n", 1227 jffs2_dbg(1, "Expanding down to cover frag (0x%x-0x%x) in dirty block %08x\n",
1186 frag->ofs, frag->ofs+frag->size, jeb->offset)); 1228 frag->ofs,
1229 frag->ofs + frag->size,
1230 jeb->offset);
1187 start = frag->ofs; 1231 start = frag->ofs;
1188 break; 1232 break;
1189 } 1233 }
@@ -1199,15 +1243,15 @@ static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_era
1199 /* If the previous frag doesn't even reach the beginning, there's lots 1243 /* If the previous frag doesn't even reach the beginning, there's lots
1200 of fragmentation. Just merge. */ 1244 of fragmentation. Just merge. */
1201 if (frag->ofs+frag->size < max) { 1245 if (frag->ofs+frag->size < max) {
1202 D1(printk(KERN_DEBUG "Expanding up to cover partial frag (0x%x-0x%x)\n", 1246 jffs2_dbg(1, "Expanding up to cover partial frag (0x%x-0x%x)\n",
1203 frag->ofs, frag->ofs+frag->size)); 1247 frag->ofs, frag->ofs+frag->size);
1204 end = frag->ofs + frag->size; 1248 end = frag->ofs + frag->size;
1205 continue; 1249 continue;
1206 } 1250 }
1207 1251
1208 if (!frag->node || !frag->node->raw) { 1252 if (!frag->node || !frag->node->raw) {
1209 D1(printk(KERN_DEBUG "Last frag in page is hole (0x%x-0x%x). Not expanding up.\n", 1253 jffs2_dbg(1, "Last frag in page is hole (0x%x-0x%x). Not expanding up.\n",
1210 frag->ofs, frag->ofs+frag->size)); 1254 frag->ofs, frag->ofs+frag->size);
1211 break; 1255 break;
1212 } else { 1256 } else {
1213 1257
@@ -1221,25 +1265,31 @@ static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_era
1221 jeb = &c->blocks[raw->flash_offset / c->sector_size]; 1265 jeb = &c->blocks[raw->flash_offset / c->sector_size];
1222 1266
1223 if (jeb == c->gcblock) { 1267 if (jeb == c->gcblock) {
1224 D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in gcblock at %08x\n", 1268 jffs2_dbg(1, "Expanding up to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1225 frag->ofs, frag->ofs+frag->size, ref_offset(raw))); 1269 frag->ofs,
1270 frag->ofs + frag->size,
1271 ref_offset(raw));
1226 end = frag->ofs + frag->size; 1272 end = frag->ofs + frag->size;
1227 break; 1273 break;
1228 } 1274 }
1229 if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) { 1275 if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1230 D1(printk(KERN_DEBUG "Not expanding up to cover frag (0x%x-0x%x) in clean block %08x\n", 1276 jffs2_dbg(1, "Not expanding up to cover frag (0x%x-0x%x) in clean block %08x\n",
1231 frag->ofs, frag->ofs+frag->size, jeb->offset)); 1277 frag->ofs,
1278 frag->ofs + frag->size,
1279 jeb->offset);
1232 break; 1280 break;
1233 } 1281 }
1234 1282
1235 D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in dirty block %08x\n", 1283 jffs2_dbg(1, "Expanding up to cover frag (0x%x-0x%x) in dirty block %08x\n",
1236 frag->ofs, frag->ofs+frag->size, jeb->offset)); 1284 frag->ofs,
1285 frag->ofs + frag->size,
1286 jeb->offset);
1237 end = frag->ofs + frag->size; 1287 end = frag->ofs + frag->size;
1238 break; 1288 break;
1239 } 1289 }
1240 } 1290 }
1241 D1(printk(KERN_DEBUG "Expanded dnode to write from (0x%x-0x%x) to (0x%x-0x%x)\n", 1291 jffs2_dbg(1, "Expanded dnode to write from (0x%x-0x%x) to (0x%x-0x%x)\n",
1242 orig_start, orig_end, start, end)); 1292 orig_start, orig_end, start, end);
1243 1293
1244 D1(BUG_ON(end > frag_last(&f->fragtree)->ofs + frag_last(&f->fragtree)->size)); 1294 D1(BUG_ON(end > frag_last(&f->fragtree)->ofs + frag_last(&f->fragtree)->size));
1245 BUG_ON(end < orig_end); 1295 BUG_ON(end < orig_end);
@@ -1256,7 +1306,8 @@ static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_era
1256 pg_ptr = jffs2_gc_fetch_page(c, f, start, &pg); 1306 pg_ptr = jffs2_gc_fetch_page(c, f, start, &pg);
1257 1307
1258 if (IS_ERR(pg_ptr)) { 1308 if (IS_ERR(pg_ptr)) {
1259 printk(KERN_WARNING "read_cache_page() returned error: %ld\n", PTR_ERR(pg_ptr)); 1309 pr_warn("read_cache_page() returned error: %ld\n",
1310 PTR_ERR(pg_ptr));
1260 return PTR_ERR(pg_ptr); 1311 return PTR_ERR(pg_ptr);
1261 } 1312 }
1262 1313
@@ -1270,8 +1321,8 @@ static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_era
1270 &alloclen, JFFS2_SUMMARY_INODE_SIZE); 1321 &alloclen, JFFS2_SUMMARY_INODE_SIZE);
1271 1322
1272 if (ret) { 1323 if (ret) {
1273 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dnode failed: %d\n", 1324 pr_warn("jffs2_reserve_space_gc of %zd bytes for garbage_collect_dnode failed: %d\n",
1274 sizeof(ri)+ JFFS2_MIN_DATA_LEN, ret); 1325 sizeof(ri) + JFFS2_MIN_DATA_LEN, ret);
1275 break; 1326 break;
1276 } 1327 }
1277 cdatalen = min_t(uint32_t, alloclen - sizeof(ri), end - offset); 1328 cdatalen = min_t(uint32_t, alloclen - sizeof(ri), end - offset);
@@ -1308,7 +1359,8 @@ static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_era
1308 jffs2_free_comprbuf(comprbuf, writebuf); 1359 jffs2_free_comprbuf(comprbuf, writebuf);
1309 1360
1310 if (IS_ERR(new_fn)) { 1361 if (IS_ERR(new_fn)) {
1311 printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn)); 1362 pr_warn("Error writing new dnode: %ld\n",
1363 PTR_ERR(new_fn));
1312 ret = PTR_ERR(new_fn); 1364 ret = PTR_ERR(new_fn);
1313 break; 1365 break;
1314 } 1366 }
diff --git a/fs/jffs2/malloc.c b/fs/jffs2/malloc.c
index c082868910f2..4f47aa24b556 100644
--- a/fs/jffs2/malloc.c
+++ b/fs/jffs2/malloc.c
@@ -9,6 +9,8 @@
9 * 9 *
10 */ 10 */
11 11
12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
12#include <linux/kernel.h> 14#include <linux/kernel.h>
13#include <linux/slab.h> 15#include <linux/slab.h>
14#include <linux/init.h> 16#include <linux/init.h>
diff --git a/fs/jffs2/nodelist.c b/fs/jffs2/nodelist.c
index 5e03233c2363..975a1f562c10 100644
--- a/fs/jffs2/nodelist.c
+++ b/fs/jffs2/nodelist.c
@@ -9,6 +9,8 @@
9 * 9 *
10 */ 10 */
11 11
12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
12#include <linux/kernel.h> 14#include <linux/kernel.h>
13#include <linux/sched.h> 15#include <linux/sched.h>
14#include <linux/fs.h> 16#include <linux/fs.h>
@@ -687,8 +689,8 @@ int jffs2_scan_dirty_space(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb
687 if (!size) 689 if (!size)
688 return 0; 690 return 0;
689 if (unlikely(size > jeb->free_size)) { 691 if (unlikely(size > jeb->free_size)) {
690 printk(KERN_CRIT "Dirty space 0x%x larger then free_size 0x%x (wasted 0x%x)\n", 692 pr_crit("Dirty space 0x%x larger then free_size 0x%x (wasted 0x%x)\n",
691 size, jeb->free_size, jeb->wasted_size); 693 size, jeb->free_size, jeb->wasted_size);
692 BUG(); 694 BUG();
693 } 695 }
694 /* REF_EMPTY_NODE is !obsolete, so that works OK */ 696 /* REF_EMPTY_NODE is !obsolete, so that works OK */
@@ -726,8 +728,10 @@ static inline uint32_t __ref_totlen(struct jffs2_sb_info *c,
726 728
727 /* Last node in block. Use free_space */ 729 /* Last node in block. Use free_space */
728 if (unlikely(ref != jeb->last_node)) { 730 if (unlikely(ref != jeb->last_node)) {
729 printk(KERN_CRIT "ref %p @0x%08x is not jeb->last_node (%p @0x%08x)\n", 731 pr_crit("ref %p @0x%08x is not jeb->last_node (%p @0x%08x)\n",
730 ref, ref_offset(ref), jeb->last_node, jeb->last_node?ref_offset(jeb->last_node):0); 732 ref, ref_offset(ref), jeb->last_node,
733 jeb->last_node ?
734 ref_offset(jeb->last_node) : 0);
731 BUG(); 735 BUG();
732 } 736 }
733 ref_end = jeb->offset + c->sector_size - jeb->free_size; 737 ref_end = jeb->offset + c->sector_size - jeb->free_size;
@@ -747,16 +751,20 @@ uint32_t __jffs2_ref_totlen(struct jffs2_sb_info *c, struct jffs2_eraseblock *je
747 if (!jeb) 751 if (!jeb)
748 jeb = &c->blocks[ref->flash_offset / c->sector_size]; 752 jeb = &c->blocks[ref->flash_offset / c->sector_size];
749 753
750 printk(KERN_CRIT "Totlen for ref at %p (0x%08x-0x%08x) miscalculated as 0x%x instead of %x\n", 754 pr_crit("Totlen for ref at %p (0x%08x-0x%08x) miscalculated as 0x%x instead of %x\n",
751 ref, ref_offset(ref), ref_offset(ref)+ref->__totlen, 755 ref, ref_offset(ref), ref_offset(ref) + ref->__totlen,
752 ret, ref->__totlen); 756 ret, ref->__totlen);
753 if (ref_next(ref)) { 757 if (ref_next(ref)) {
754 printk(KERN_CRIT "next %p (0x%08x-0x%08x)\n", ref_next(ref), ref_offset(ref_next(ref)), 758 pr_crit("next %p (0x%08x-0x%08x)\n",
755 ref_offset(ref_next(ref))+ref->__totlen); 759 ref_next(ref), ref_offset(ref_next(ref)),
760 ref_offset(ref_next(ref)) + ref->__totlen);
756 } else 761 } else
757 printk(KERN_CRIT "No next ref. jeb->last_node is %p\n", jeb->last_node); 762 pr_crit("No next ref. jeb->last_node is %p\n",
763 jeb->last_node);
758 764
759 printk(KERN_CRIT "jeb->wasted_size %x, dirty_size %x, used_size %x, free_size %x\n", jeb->wasted_size, jeb->dirty_size, jeb->used_size, jeb->free_size); 765 pr_crit("jeb->wasted_size %x, dirty_size %x, used_size %x, free_size %x\n",
766 jeb->wasted_size, jeb->dirty_size, jeb->used_size,
767 jeb->free_size);
760 768
761#if defined(JFFS2_DBG_DUMPS) || defined(JFFS2_DBG_PARANOIA_CHECKS) 769#if defined(JFFS2_DBG_DUMPS) || defined(JFFS2_DBG_PARANOIA_CHECKS)
762 __jffs2_dbg_dump_node_refs_nolock(c, jeb); 770 __jffs2_dbg_dump_node_refs_nolock(c, jeb);
diff --git a/fs/jffs2/nodemgmt.c b/fs/jffs2/nodemgmt.c
index 694aa5b03505..6784d1e7a7eb 100644
--- a/fs/jffs2/nodemgmt.c
+++ b/fs/jffs2/nodemgmt.c
@@ -9,6 +9,8 @@
9 * 9 *
10 */ 10 */
11 11
12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
12#include <linux/kernel.h> 14#include <linux/kernel.h>
13#include <linux/mtd/mtd.h> 15#include <linux/mtd/mtd.h>
14#include <linux/compiler.h> 16#include <linux/compiler.h>
@@ -46,10 +48,10 @@ int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
46 /* align it */ 48 /* align it */
47 minsize = PAD(minsize); 49 minsize = PAD(minsize);
48 50
49 D1(printk(KERN_DEBUG "jffs2_reserve_space(): Requested 0x%x bytes\n", minsize)); 51 jffs2_dbg(1, "%s(): Requested 0x%x bytes\n", __func__, minsize);
50 mutex_lock(&c->alloc_sem); 52 mutex_lock(&c->alloc_sem);
51 53
52 D1(printk(KERN_DEBUG "jffs2_reserve_space(): alloc sem got\n")); 54 jffs2_dbg(1, "%s(): alloc sem got\n", __func__);
53 55
54 spin_lock(&c->erase_completion_lock); 56 spin_lock(&c->erase_completion_lock);
55 57
@@ -73,11 +75,13 @@ int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
73 dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size; 75 dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size;
74 if (dirty < c->nospc_dirty_size) { 76 if (dirty < c->nospc_dirty_size) {
75 if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) { 77 if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
76 D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on dirty space to GC, but it's a deletion. Allowing...\n")); 78 jffs2_dbg(1, "%s(): Low on dirty space to GC, but it's a deletion. Allowing...\n",
79 __func__);
77 break; 80 break;
78 } 81 }
79 D1(printk(KERN_DEBUG "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n", 82 jffs2_dbg(1, "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n",
80 dirty, c->unchecked_size, c->sector_size)); 83 dirty, c->unchecked_size,
84 c->sector_size);
81 85
82 spin_unlock(&c->erase_completion_lock); 86 spin_unlock(&c->erase_completion_lock);
83 mutex_unlock(&c->alloc_sem); 87 mutex_unlock(&c->alloc_sem);
@@ -96,12 +100,13 @@ int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
96 avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size; 100 avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size;
97 if ( (avail / c->sector_size) <= blocksneeded) { 101 if ( (avail / c->sector_size) <= blocksneeded) {
98 if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) { 102 if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
99 D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on possibly available space, but it's a deletion. Allowing...\n")); 103 jffs2_dbg(1, "%s(): Low on possibly available space, but it's a deletion. Allowing...\n",
104 __func__);
100 break; 105 break;
101 } 106 }
102 107
103 D1(printk(KERN_DEBUG "max. available size 0x%08x < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n", 108 jffs2_dbg(1, "max. available size 0x%08x < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n",
104 avail, blocksneeded * c->sector_size)); 109 avail, blocksneeded * c->sector_size);
105 spin_unlock(&c->erase_completion_lock); 110 spin_unlock(&c->erase_completion_lock);
106 mutex_unlock(&c->alloc_sem); 111 mutex_unlock(&c->alloc_sem);
107 return -ENOSPC; 112 return -ENOSPC;
@@ -109,9 +114,14 @@ int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
109 114
110 mutex_unlock(&c->alloc_sem); 115 mutex_unlock(&c->alloc_sem);
111 116
112 D1(printk(KERN_DEBUG "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n", 117 jffs2_dbg(1, "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n",
113 c->nr_free_blocks, c->nr_erasing_blocks, c->free_size, c->dirty_size, c->wasted_size, c->used_size, c->erasing_size, c->bad_size, 118 c->nr_free_blocks, c->nr_erasing_blocks,
114 c->free_size + c->dirty_size + c->wasted_size + c->used_size + c->erasing_size + c->bad_size, c->flash_size)); 119 c->free_size, c->dirty_size, c->wasted_size,
120 c->used_size, c->erasing_size, c->bad_size,
121 c->free_size + c->dirty_size +
122 c->wasted_size + c->used_size +
123 c->erasing_size + c->bad_size,
124 c->flash_size);
115 spin_unlock(&c->erase_completion_lock); 125 spin_unlock(&c->erase_completion_lock);
116 126
117 ret = jffs2_garbage_collect_pass(c); 127 ret = jffs2_garbage_collect_pass(c);
@@ -124,7 +134,8 @@ int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
124 DECLARE_WAITQUEUE(wait, current); 134 DECLARE_WAITQUEUE(wait, current);
125 set_current_state(TASK_UNINTERRUPTIBLE); 135 set_current_state(TASK_UNINTERRUPTIBLE);
126 add_wait_queue(&c->erase_wait, &wait); 136 add_wait_queue(&c->erase_wait, &wait);
127 D1(printk(KERN_DEBUG "%s waiting for erase to complete\n", __func__)); 137 jffs2_dbg(1, "%s waiting for erase to complete\n",
138 __func__);
128 spin_unlock(&c->erase_completion_lock); 139 spin_unlock(&c->erase_completion_lock);
129 140
130 schedule(); 141 schedule();
@@ -144,7 +155,7 @@ int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
144 155
145 ret = jffs2_do_reserve_space(c, minsize, len, sumsize); 156 ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
146 if (ret) { 157 if (ret) {
147 D1(printk(KERN_DEBUG "jffs2_reserve_space: ret is %d\n", ret)); 158 jffs2_dbg(1, "%s(): ret is %d\n", __func__, ret);
148 } 159 }
149 } 160 }
150 spin_unlock(&c->erase_completion_lock); 161 spin_unlock(&c->erase_completion_lock);
@@ -161,13 +172,14 @@ int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize,
161 int ret = -EAGAIN; 172 int ret = -EAGAIN;
162 minsize = PAD(minsize); 173 minsize = PAD(minsize);
163 174
164 D1(printk(KERN_DEBUG "jffs2_reserve_space_gc(): Requested 0x%x bytes\n", minsize)); 175 jffs2_dbg(1, "%s(): Requested 0x%x bytes\n", __func__, minsize);
165 176
166 spin_lock(&c->erase_completion_lock); 177 spin_lock(&c->erase_completion_lock);
167 while(ret == -EAGAIN) { 178 while(ret == -EAGAIN) {
168 ret = jffs2_do_reserve_space(c, minsize, len, sumsize); 179 ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
169 if (ret) { 180 if (ret) {
170 D1(printk(KERN_DEBUG "jffs2_reserve_space_gc: looping, ret is %d\n", ret)); 181 jffs2_dbg(1, "%s(): looping, ret is %d\n",
182 __func__, ret);
171 } 183 }
172 } 184 }
173 spin_unlock(&c->erase_completion_lock); 185 spin_unlock(&c->erase_completion_lock);
@@ -184,8 +196,8 @@ static void jffs2_close_nextblock(struct jffs2_sb_info *c, struct jffs2_eraseblo
184{ 196{
185 197
186 if (c->nextblock == NULL) { 198 if (c->nextblock == NULL) {
187 D1(printk(KERN_DEBUG "jffs2_close_nextblock: Erase block at 0x%08x has already been placed in a list\n", 199 jffs2_dbg(1, "%s(): Erase block at 0x%08x has already been placed in a list\n",
188 jeb->offset)); 200 __func__, jeb->offset);
189 return; 201 return;
190 } 202 }
191 /* Check, if we have a dirty block now, or if it was dirty already */ 203 /* Check, if we have a dirty block now, or if it was dirty already */
@@ -195,17 +207,20 @@ static void jffs2_close_nextblock(struct jffs2_sb_info *c, struct jffs2_eraseblo
195 jeb->dirty_size += jeb->wasted_size; 207 jeb->dirty_size += jeb->wasted_size;
196 jeb->wasted_size = 0; 208 jeb->wasted_size = 0;
197 if (VERYDIRTY(c, jeb->dirty_size)) { 209 if (VERYDIRTY(c, jeb->dirty_size)) {
198 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n", 210 jffs2_dbg(1, "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
199 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); 211 jeb->offset, jeb->free_size, jeb->dirty_size,
212 jeb->used_size);
200 list_add_tail(&jeb->list, &c->very_dirty_list); 213 list_add_tail(&jeb->list, &c->very_dirty_list);
201 } else { 214 } else {
202 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n", 215 jffs2_dbg(1, "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
203 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); 216 jeb->offset, jeb->free_size, jeb->dirty_size,
217 jeb->used_size);
204 list_add_tail(&jeb->list, &c->dirty_list); 218 list_add_tail(&jeb->list, &c->dirty_list);
205 } 219 }
206 } else { 220 } else {
207 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n", 221 jffs2_dbg(1, "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
208 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); 222 jeb->offset, jeb->free_size, jeb->dirty_size,
223 jeb->used_size);
209 list_add_tail(&jeb->list, &c->clean_list); 224 list_add_tail(&jeb->list, &c->clean_list);
210 } 225 }
211 c->nextblock = NULL; 226 c->nextblock = NULL;
@@ -230,13 +245,14 @@ static int jffs2_find_nextblock(struct jffs2_sb_info *c)
230 list_move_tail(&ejeb->list, &c->erase_pending_list); 245 list_move_tail(&ejeb->list, &c->erase_pending_list);
231 c->nr_erasing_blocks++; 246 c->nr_erasing_blocks++;
232 jffs2_garbage_collect_trigger(c); 247 jffs2_garbage_collect_trigger(c);
233 D1(printk(KERN_DEBUG "jffs2_find_nextblock: Triggering erase of erasable block at 0x%08x\n", 248 jffs2_dbg(1, "%s(): Triggering erase of erasable block at 0x%08x\n",
234 ejeb->offset)); 249 __func__, ejeb->offset);
235 } 250 }
236 251
237 if (!c->nr_erasing_blocks && 252 if (!c->nr_erasing_blocks &&
238 !list_empty(&c->erasable_pending_wbuf_list)) { 253 !list_empty(&c->erasable_pending_wbuf_list)) {
239 D1(printk(KERN_DEBUG "jffs2_find_nextblock: Flushing write buffer\n")); 254 jffs2_dbg(1, "%s(): Flushing write buffer\n",
255 __func__);
240 /* c->nextblock is NULL, no update to c->nextblock allowed */ 256 /* c->nextblock is NULL, no update to c->nextblock allowed */
241 spin_unlock(&c->erase_completion_lock); 257 spin_unlock(&c->erase_completion_lock);
242 jffs2_flush_wbuf_pad(c); 258 jffs2_flush_wbuf_pad(c);
@@ -248,9 +264,11 @@ static int jffs2_find_nextblock(struct jffs2_sb_info *c)
248 if (!c->nr_erasing_blocks) { 264 if (!c->nr_erasing_blocks) {
249 /* Ouch. We're in GC, or we wouldn't have got here. 265 /* Ouch. We're in GC, or we wouldn't have got here.
250 And there's no space left. At all. */ 266 And there's no space left. At all. */
251 printk(KERN_CRIT "Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n", 267 pr_crit("Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n",
252 c->nr_erasing_blocks, c->nr_free_blocks, list_empty(&c->erasable_list)?"yes":"no", 268 c->nr_erasing_blocks, c->nr_free_blocks,
253 list_empty(&c->erasing_list)?"yes":"no", list_empty(&c->erase_pending_list)?"yes":"no"); 269 list_empty(&c->erasable_list) ? "yes" : "no",
270 list_empty(&c->erasing_list) ? "yes" : "no",
271 list_empty(&c->erase_pending_list) ? "yes" : "no");
254 return -ENOSPC; 272 return -ENOSPC;
255 } 273 }
256 274
@@ -278,7 +296,8 @@ static int jffs2_find_nextblock(struct jffs2_sb_info *c)
278 c->wbuf_ofs = 0xffffffff; 296 c->wbuf_ofs = 0xffffffff;
279#endif 297#endif
280 298
281 D1(printk(KERN_DEBUG "jffs2_find_nextblock(): new nextblock = 0x%08x\n", c->nextblock->offset)); 299 jffs2_dbg(1, "%s(): new nextblock = 0x%08x\n",
300 __func__, c->nextblock->offset);
282 301
283 return 0; 302 return 0;
284} 303}
@@ -345,7 +364,8 @@ static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
345 364
346 if (jffs2_wbuf_dirty(c)) { 365 if (jffs2_wbuf_dirty(c)) {
347 spin_unlock(&c->erase_completion_lock); 366 spin_unlock(&c->erase_completion_lock);
348 D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n")); 367 jffs2_dbg(1, "%s(): Flushing write buffer\n",
368 __func__);
349 jffs2_flush_wbuf_pad(c); 369 jffs2_flush_wbuf_pad(c);
350 spin_lock(&c->erase_completion_lock); 370 spin_lock(&c->erase_completion_lock);
351 jeb = c->nextblock; 371 jeb = c->nextblock;
@@ -387,7 +407,8 @@ static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
387 jeb = c->nextblock; 407 jeb = c->nextblock;
388 408
389 if (jeb->free_size != c->sector_size - c->cleanmarker_size) { 409 if (jeb->free_size != c->sector_size - c->cleanmarker_size) {
390 printk(KERN_WARNING "Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n", jeb->offset, jeb->free_size); 410 pr_warn("Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n",
411 jeb->offset, jeb->free_size);
391 goto restart; 412 goto restart;
392 } 413 }
393 } 414 }
@@ -408,8 +429,9 @@ static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
408 spin_lock(&c->erase_completion_lock); 429 spin_lock(&c->erase_completion_lock);
409 } 430 }
410 431
411 D1(printk(KERN_DEBUG "jffs2_do_reserve_space(): Giving 0x%x bytes at 0x%x\n", 432 jffs2_dbg(1, "%s(): Giving 0x%x bytes at 0x%x\n",
412 *len, jeb->offset + (c->sector_size - jeb->free_size))); 433 __func__,
434 *len, jeb->offset + (c->sector_size - jeb->free_size));
413 return 0; 435 return 0;
414} 436}
415 437
@@ -434,20 +456,22 @@ struct jffs2_raw_node_ref *jffs2_add_physical_node_ref(struct jffs2_sb_info *c,
434 456
435 jeb = &c->blocks[ofs / c->sector_size]; 457 jeb = &c->blocks[ofs / c->sector_size];
436 458
437 D1(printk(KERN_DEBUG "jffs2_add_physical_node_ref(): Node at 0x%x(%d), size 0x%x\n", 459 jffs2_dbg(1, "%s(): Node at 0x%x(%d), size 0x%x\n",
438 ofs & ~3, ofs & 3, len)); 460 __func__, ofs & ~3, ofs & 3, len);
439#if 1 461#if 1
440 /* Allow non-obsolete nodes only to be added at the end of c->nextblock, 462 /* Allow non-obsolete nodes only to be added at the end of c->nextblock,
441 if c->nextblock is set. Note that wbuf.c will file obsolete nodes 463 if c->nextblock is set. Note that wbuf.c will file obsolete nodes
442 even after refiling c->nextblock */ 464 even after refiling c->nextblock */
443 if ((c->nextblock || ((ofs & 3) != REF_OBSOLETE)) 465 if ((c->nextblock || ((ofs & 3) != REF_OBSOLETE))
444 && (jeb != c->nextblock || (ofs & ~3) != jeb->offset + (c->sector_size - jeb->free_size))) { 466 && (jeb != c->nextblock || (ofs & ~3) != jeb->offset + (c->sector_size - jeb->free_size))) {
445 printk(KERN_WARNING "argh. node added in wrong place at 0x%08x(%d)\n", ofs & ~3, ofs & 3); 467 pr_warn("argh. node added in wrong place at 0x%08x(%d)\n",
468 ofs & ~3, ofs & 3);
446 if (c->nextblock) 469 if (c->nextblock)
447 printk(KERN_WARNING "nextblock 0x%08x", c->nextblock->offset); 470 pr_warn("nextblock 0x%08x", c->nextblock->offset);
448 else 471 else
449 printk(KERN_WARNING "No nextblock"); 472 pr_warn("No nextblock");
450 printk(", expected at %08x\n", jeb->offset + (c->sector_size - jeb->free_size)); 473 pr_cont(", expected at %08x\n",
474 jeb->offset + (c->sector_size - jeb->free_size));
451 return ERR_PTR(-EINVAL); 475 return ERR_PTR(-EINVAL);
452 } 476 }
453#endif 477#endif
@@ -457,8 +481,9 @@ struct jffs2_raw_node_ref *jffs2_add_physical_node_ref(struct jffs2_sb_info *c,
457 481
458 if (!jeb->free_size && !jeb->dirty_size && !ISDIRTY(jeb->wasted_size)) { 482 if (!jeb->free_size && !jeb->dirty_size && !ISDIRTY(jeb->wasted_size)) {
459 /* If it lives on the dirty_list, jffs2_reserve_space will put it there */ 483 /* If it lives on the dirty_list, jffs2_reserve_space will put it there */
460 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n", 484 jffs2_dbg(1, "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
461 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); 485 jeb->offset, jeb->free_size, jeb->dirty_size,
486 jeb->used_size);
462 if (jffs2_wbuf_dirty(c)) { 487 if (jffs2_wbuf_dirty(c)) {
463 /* Flush the last write in the block if it's outstanding */ 488 /* Flush the last write in the block if it's outstanding */
464 spin_unlock(&c->erase_completion_lock); 489 spin_unlock(&c->erase_completion_lock);
@@ -480,7 +505,7 @@ struct jffs2_raw_node_ref *jffs2_add_physical_node_ref(struct jffs2_sb_info *c,
480 505
481void jffs2_complete_reservation(struct jffs2_sb_info *c) 506void jffs2_complete_reservation(struct jffs2_sb_info *c)
482{ 507{
483 D1(printk(KERN_DEBUG "jffs2_complete_reservation()\n")); 508 jffs2_dbg(1, "jffs2_complete_reservation()\n");
484 spin_lock(&c->erase_completion_lock); 509 spin_lock(&c->erase_completion_lock);
485 jffs2_garbage_collect_trigger(c); 510 jffs2_garbage_collect_trigger(c);
486 spin_unlock(&c->erase_completion_lock); 511 spin_unlock(&c->erase_completion_lock);
@@ -493,7 +518,7 @@ static inline int on_list(struct list_head *obj, struct list_head *head)
493 518
494 list_for_each(this, head) { 519 list_for_each(this, head) {
495 if (this == obj) { 520 if (this == obj) {
496 D1(printk("%p is on list at %p\n", obj, head)); 521 jffs2_dbg(1, "%p is on list at %p\n", obj, head);
497 return 1; 522 return 1;
498 523
499 } 524 }
@@ -511,16 +536,18 @@ void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref
511 uint32_t freed_len; 536 uint32_t freed_len;
512 537
513 if(unlikely(!ref)) { 538 if(unlikely(!ref)) {
514 printk(KERN_NOTICE "EEEEEK. jffs2_mark_node_obsolete called with NULL node\n"); 539 pr_notice("EEEEEK. jffs2_mark_node_obsolete called with NULL node\n");
515 return; 540 return;
516 } 541 }
517 if (ref_obsolete(ref)) { 542 if (ref_obsolete(ref)) {
518 D1(printk(KERN_DEBUG "jffs2_mark_node_obsolete called with already obsolete node at 0x%08x\n", ref_offset(ref))); 543 jffs2_dbg(1, "%s(): called with already obsolete node at 0x%08x\n",
544 __func__, ref_offset(ref));
519 return; 545 return;
520 } 546 }
521 blocknr = ref->flash_offset / c->sector_size; 547 blocknr = ref->flash_offset / c->sector_size;
522 if (blocknr >= c->nr_blocks) { 548 if (blocknr >= c->nr_blocks) {
523 printk(KERN_NOTICE "raw node at 0x%08x is off the end of device!\n", ref->flash_offset); 549 pr_notice("raw node at 0x%08x is off the end of device!\n",
550 ref->flash_offset);
524 BUG(); 551 BUG();
525 } 552 }
526 jeb = &c->blocks[blocknr]; 553 jeb = &c->blocks[blocknr];
@@ -542,27 +569,31 @@ void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref
542 569
543 if (ref_flags(ref) == REF_UNCHECKED) { 570 if (ref_flags(ref) == REF_UNCHECKED) {
544 D1(if (unlikely(jeb->unchecked_size < freed_len)) { 571 D1(if (unlikely(jeb->unchecked_size < freed_len)) {
545 printk(KERN_NOTICE "raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n", 572 pr_notice("raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n",
546 freed_len, blocknr, ref->flash_offset, jeb->used_size); 573 freed_len, blocknr,
574 ref->flash_offset, jeb->used_size);
547 BUG(); 575 BUG();
548 }) 576 })
549 D1(printk(KERN_DEBUG "Obsoleting previously unchecked node at 0x%08x of len %x: ", ref_offset(ref), freed_len)); 577 jffs2_dbg(1, "Obsoleting previously unchecked node at 0x%08x of len %x\n",
578 ref_offset(ref), freed_len);
550 jeb->unchecked_size -= freed_len; 579 jeb->unchecked_size -= freed_len;
551 c->unchecked_size -= freed_len; 580 c->unchecked_size -= freed_len;
552 } else { 581 } else {
553 D1(if (unlikely(jeb->used_size < freed_len)) { 582 D1(if (unlikely(jeb->used_size < freed_len)) {
554 printk(KERN_NOTICE "raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n", 583 pr_notice("raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n",
555 freed_len, blocknr, ref->flash_offset, jeb->used_size); 584 freed_len, blocknr,
585 ref->flash_offset, jeb->used_size);
556 BUG(); 586 BUG();
557 }) 587 })
558 D1(printk(KERN_DEBUG "Obsoleting node at 0x%08x of len %#x: ", ref_offset(ref), freed_len)); 588 jffs2_dbg(1, "Obsoleting node at 0x%08x of len %#x: ",
589 ref_offset(ref), freed_len);
559 jeb->used_size -= freed_len; 590 jeb->used_size -= freed_len;
560 c->used_size -= freed_len; 591 c->used_size -= freed_len;
561 } 592 }
562 593
563 // Take care, that wasted size is taken into concern 594 // Take care, that wasted size is taken into concern
564 if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + freed_len)) && jeb != c->nextblock) { 595 if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + freed_len)) && jeb != c->nextblock) {
565 D1(printk("Dirtying\n")); 596 jffs2_dbg(1, "Dirtying\n");
566 addedsize = freed_len; 597 addedsize = freed_len;
567 jeb->dirty_size += freed_len; 598 jeb->dirty_size += freed_len;
568 c->dirty_size += freed_len; 599 c->dirty_size += freed_len;
@@ -570,12 +601,12 @@ void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref
570 /* Convert wasted space to dirty, if not a bad block */ 601 /* Convert wasted space to dirty, if not a bad block */
571 if (jeb->wasted_size) { 602 if (jeb->wasted_size) {
572 if (on_list(&jeb->list, &c->bad_used_list)) { 603 if (on_list(&jeb->list, &c->bad_used_list)) {
573 D1(printk(KERN_DEBUG "Leaving block at %08x on the bad_used_list\n", 604 jffs2_dbg(1, "Leaving block at %08x on the bad_used_list\n",
574 jeb->offset)); 605 jeb->offset);
575 addedsize = 0; /* To fool the refiling code later */ 606 addedsize = 0; /* To fool the refiling code later */
576 } else { 607 } else {
577 D1(printk(KERN_DEBUG "Converting %d bytes of wasted space to dirty in block at %08x\n", 608 jffs2_dbg(1, "Converting %d bytes of wasted space to dirty in block at %08x\n",
578 jeb->wasted_size, jeb->offset)); 609 jeb->wasted_size, jeb->offset);
579 addedsize += jeb->wasted_size; 610 addedsize += jeb->wasted_size;
580 jeb->dirty_size += jeb->wasted_size; 611 jeb->dirty_size += jeb->wasted_size;
581 c->dirty_size += jeb->wasted_size; 612 c->dirty_size += jeb->wasted_size;
@@ -584,7 +615,7 @@ void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref
584 } 615 }
585 } 616 }
586 } else { 617 } else {
587 D1(printk("Wasting\n")); 618 jffs2_dbg(1, "Wasting\n");
588 addedsize = 0; 619 addedsize = 0;
589 jeb->wasted_size += freed_len; 620 jeb->wasted_size += freed_len;
590 c->wasted_size += freed_len; 621 c->wasted_size += freed_len;
@@ -606,50 +637,57 @@ void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref
606 } 637 }
607 638
608 if (jeb == c->nextblock) { 639 if (jeb == c->nextblock) {
609 D2(printk(KERN_DEBUG "Not moving nextblock 0x%08x to dirty/erase_pending list\n", jeb->offset)); 640 jffs2_dbg(2, "Not moving nextblock 0x%08x to dirty/erase_pending list\n",
641 jeb->offset);
610 } else if (!jeb->used_size && !jeb->unchecked_size) { 642 } else if (!jeb->used_size && !jeb->unchecked_size) {
611 if (jeb == c->gcblock) { 643 if (jeb == c->gcblock) {
612 D1(printk(KERN_DEBUG "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n", jeb->offset)); 644 jffs2_dbg(1, "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n",
645 jeb->offset);
613 c->gcblock = NULL; 646 c->gcblock = NULL;
614 } else { 647 } else {
615 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n", jeb->offset)); 648 jffs2_dbg(1, "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n",
649 jeb->offset);
616 list_del(&jeb->list); 650 list_del(&jeb->list);
617 } 651 }
618 if (jffs2_wbuf_dirty(c)) { 652 if (jffs2_wbuf_dirty(c)) {
619 D1(printk(KERN_DEBUG "...and adding to erasable_pending_wbuf_list\n")); 653 jffs2_dbg(1, "...and adding to erasable_pending_wbuf_list\n");
620 list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list); 654 list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list);
621 } else { 655 } else {
622 if (jiffies & 127) { 656 if (jiffies & 127) {
623 /* Most of the time, we just erase it immediately. Otherwise we 657 /* Most of the time, we just erase it immediately. Otherwise we
624 spend ages scanning it on mount, etc. */ 658 spend ages scanning it on mount, etc. */
625 D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n")); 659 jffs2_dbg(1, "...and adding to erase_pending_list\n");
626 list_add_tail(&jeb->list, &c->erase_pending_list); 660 list_add_tail(&jeb->list, &c->erase_pending_list);
627 c->nr_erasing_blocks++; 661 c->nr_erasing_blocks++;
628 jffs2_garbage_collect_trigger(c); 662 jffs2_garbage_collect_trigger(c);
629 } else { 663 } else {
630 /* Sometimes, however, we leave it elsewhere so it doesn't get 664 /* Sometimes, however, we leave it elsewhere so it doesn't get
631 immediately reused, and we spread the load a bit. */ 665 immediately reused, and we spread the load a bit. */
632 D1(printk(KERN_DEBUG "...and adding to erasable_list\n")); 666 jffs2_dbg(1, "...and adding to erasable_list\n");
633 list_add_tail(&jeb->list, &c->erasable_list); 667 list_add_tail(&jeb->list, &c->erasable_list);
634 } 668 }
635 } 669 }
636 D1(printk(KERN_DEBUG "Done OK\n")); 670 jffs2_dbg(1, "Done OK\n");
637 } else if (jeb == c->gcblock) { 671 } else if (jeb == c->gcblock) {
638 D2(printk(KERN_DEBUG "Not moving gcblock 0x%08x to dirty_list\n", jeb->offset)); 672 jffs2_dbg(2, "Not moving gcblock 0x%08x to dirty_list\n",
673 jeb->offset);
639 } else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - addedsize)) { 674 } else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - addedsize)) {
640 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n", jeb->offset)); 675 jffs2_dbg(1, "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n",
676 jeb->offset);
641 list_del(&jeb->list); 677 list_del(&jeb->list);
642 D1(printk(KERN_DEBUG "...and adding to dirty_list\n")); 678 jffs2_dbg(1, "...and adding to dirty_list\n");
643 list_add_tail(&jeb->list, &c->dirty_list); 679 list_add_tail(&jeb->list, &c->dirty_list);
644 } else if (VERYDIRTY(c, jeb->dirty_size) && 680 } else if (VERYDIRTY(c, jeb->dirty_size) &&
645 !VERYDIRTY(c, jeb->dirty_size - addedsize)) { 681 !VERYDIRTY(c, jeb->dirty_size - addedsize)) {
646 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n", jeb->offset)); 682 jffs2_dbg(1, "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n",
683 jeb->offset);
647 list_del(&jeb->list); 684 list_del(&jeb->list);
648 D1(printk(KERN_DEBUG "...and adding to very_dirty_list\n")); 685 jffs2_dbg(1, "...and adding to very_dirty_list\n");
649 list_add_tail(&jeb->list, &c->very_dirty_list); 686 list_add_tail(&jeb->list, &c->very_dirty_list);
650 } else { 687 } else {
651 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n", 688 jffs2_dbg(1, "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n",
652 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); 689 jeb->offset, jeb->free_size, jeb->dirty_size,
690 jeb->used_size);
653 } 691 }
654 692
655 spin_unlock(&c->erase_completion_lock); 693 spin_unlock(&c->erase_completion_lock);
@@ -665,33 +703,40 @@ void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref
665 the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet 703 the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet
666 by jffs2_free_jeb_node_refs() in erase.c. Which is nice. */ 704 by jffs2_free_jeb_node_refs() in erase.c. Which is nice. */
667 705
668 D1(printk(KERN_DEBUG "obliterating obsoleted node at 0x%08x\n", ref_offset(ref))); 706 jffs2_dbg(1, "obliterating obsoleted node at 0x%08x\n",
707 ref_offset(ref));
669 ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n); 708 ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
670 if (ret) { 709 if (ret) {
671 printk(KERN_WARNING "Read error reading from obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret); 710 pr_warn("Read error reading from obsoleted node at 0x%08x: %d\n",
711 ref_offset(ref), ret);
672 goto out_erase_sem; 712 goto out_erase_sem;
673 } 713 }
674 if (retlen != sizeof(n)) { 714 if (retlen != sizeof(n)) {
675 printk(KERN_WARNING "Short read from obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen); 715 pr_warn("Short read from obsoleted node at 0x%08x: %zd\n",
716 ref_offset(ref), retlen);
676 goto out_erase_sem; 717 goto out_erase_sem;
677 } 718 }
678 if (PAD(je32_to_cpu(n.totlen)) != PAD(freed_len)) { 719 if (PAD(je32_to_cpu(n.totlen)) != PAD(freed_len)) {
679 printk(KERN_WARNING "Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n", je32_to_cpu(n.totlen), freed_len); 720 pr_warn("Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n",
721 je32_to_cpu(n.totlen), freed_len);
680 goto out_erase_sem; 722 goto out_erase_sem;
681 } 723 }
682 if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) { 724 if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) {
683 D1(printk(KERN_DEBUG "Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n", ref_offset(ref), je16_to_cpu(n.nodetype))); 725 jffs2_dbg(1, "Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n",
726 ref_offset(ref), je16_to_cpu(n.nodetype));
684 goto out_erase_sem; 727 goto out_erase_sem;
685 } 728 }
686 /* XXX FIXME: This is ugly now */ 729 /* XXX FIXME: This is ugly now */
687 n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE); 730 n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE);
688 ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n); 731 ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
689 if (ret) { 732 if (ret) {
690 printk(KERN_WARNING "Write error in obliterating obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret); 733 pr_warn("Write error in obliterating obsoleted node at 0x%08x: %d\n",
734 ref_offset(ref), ret);
691 goto out_erase_sem; 735 goto out_erase_sem;
692 } 736 }
693 if (retlen != sizeof(n)) { 737 if (retlen != sizeof(n)) {
694 printk(KERN_WARNING "Short write in obliterating obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen); 738 pr_warn("Short write in obliterating obsoleted node at 0x%08x: %zd\n",
739 ref_offset(ref), retlen);
695 goto out_erase_sem; 740 goto out_erase_sem;
696 } 741 }
697 742
@@ -751,8 +796,8 @@ int jffs2_thread_should_wake(struct jffs2_sb_info *c)
751 return 1; 796 return 1;
752 797
753 if (c->unchecked_size) { 798 if (c->unchecked_size) {
754 D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): unchecked_size %d, checked_ino #%d\n", 799 jffs2_dbg(1, "jffs2_thread_should_wake(): unchecked_size %d, checked_ino #%d\n",
755 c->unchecked_size, c->checked_ino)); 800 c->unchecked_size, c->checked_ino);
756 return 1; 801 return 1;
757 } 802 }
758 803
@@ -780,8 +825,9 @@ int jffs2_thread_should_wake(struct jffs2_sb_info *c)
780 } 825 }
781 } 826 }
782 827
783 D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x, vdirty_blocks %d: %s\n", 828 jffs2_dbg(1, "%s(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x, vdirty_blocks %d: %s\n",
784 c->nr_free_blocks, c->nr_erasing_blocks, c->dirty_size, nr_very_dirty, ret?"yes":"no")); 829 __func__, c->nr_free_blocks, c->nr_erasing_blocks,
830 c->dirty_size, nr_very_dirty, ret ? "yes" : "no");
785 831
786 return ret; 832 return ret;
787} 833}
diff --git a/fs/jffs2/os-linux.h b/fs/jffs2/os-linux.h
index ab65ee3ec858..1cd3aec9d9ae 100644
--- a/fs/jffs2/os-linux.h
+++ b/fs/jffs2/os-linux.h
@@ -76,7 +76,7 @@ static inline void jffs2_init_inode_info(struct jffs2_inode_info *f)
76#define jffs2_write_nand_cleanmarker(c,jeb) (-EIO) 76#define jffs2_write_nand_cleanmarker(c,jeb) (-EIO)
77 77
78#define jffs2_flash_write(c, ofs, len, retlen, buf) jffs2_flash_direct_write(c, ofs, len, retlen, buf) 78#define jffs2_flash_write(c, ofs, len, retlen, buf) jffs2_flash_direct_write(c, ofs, len, retlen, buf)
79#define jffs2_flash_read(c, ofs, len, retlen, buf) ((c)->mtd->read((c)->mtd, ofs, len, retlen, buf)) 79#define jffs2_flash_read(c, ofs, len, retlen, buf) (mtd_read((c)->mtd, ofs, len, retlen, buf))
80#define jffs2_flush_wbuf_pad(c) ({ do{} while(0); (void)(c), 0; }) 80#define jffs2_flush_wbuf_pad(c) ({ do{} while(0); (void)(c), 0; })
81#define jffs2_flush_wbuf_gc(c, i) ({ do{} while(0); (void)(c), (void) i, 0; }) 81#define jffs2_flush_wbuf_gc(c, i) ({ do{} while(0); (void)(c), (void) i, 0; })
82#define jffs2_write_nand_badblock(c,jeb,bad_offset) (1) 82#define jffs2_write_nand_badblock(c,jeb,bad_offset) (1)
@@ -108,8 +108,6 @@ static inline void jffs2_init_inode_info(struct jffs2_inode_info *f)
108 108
109#define jffs2_cleanmarker_oob(c) (c->mtd->type == MTD_NANDFLASH) 109#define jffs2_cleanmarker_oob(c) (c->mtd->type == MTD_NANDFLASH)
110 110
111#define jffs2_flash_write_oob(c, ofs, len, retlen, buf) ((c)->mtd->write_oob((c)->mtd, ofs, len, retlen, buf))
112#define jffs2_flash_read_oob(c, ofs, len, retlen, buf) ((c)->mtd->read_oob((c)->mtd, ofs, len, retlen, buf))
113#define jffs2_wbuf_dirty(c) (!!(c)->wbuf_len) 111#define jffs2_wbuf_dirty(c) (!!(c)->wbuf_len)
114 112
115/* wbuf.c */ 113/* wbuf.c */
diff --git a/fs/jffs2/read.c b/fs/jffs2/read.c
index 3f39be1b0455..0b042b1fc82f 100644
--- a/fs/jffs2/read.c
+++ b/fs/jffs2/read.c
@@ -9,6 +9,8 @@
9 * 9 *
10 */ 10 */
11 11
12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
12#include <linux/kernel.h> 14#include <linux/kernel.h>
13#include <linux/slab.h> 15#include <linux/slab.h>
14#include <linux/crc32.h> 16#include <linux/crc32.h>
@@ -36,24 +38,25 @@ int jffs2_read_dnode(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
36 ret = jffs2_flash_read(c, ref_offset(fd->raw), sizeof(*ri), &readlen, (char *)ri); 38 ret = jffs2_flash_read(c, ref_offset(fd->raw), sizeof(*ri), &readlen, (char *)ri);
37 if (ret) { 39 if (ret) {
38 jffs2_free_raw_inode(ri); 40 jffs2_free_raw_inode(ri);
39 printk(KERN_WARNING "Error reading node from 0x%08x: %d\n", ref_offset(fd->raw), ret); 41 pr_warn("Error reading node from 0x%08x: %d\n",
42 ref_offset(fd->raw), ret);
40 return ret; 43 return ret;
41 } 44 }
42 if (readlen != sizeof(*ri)) { 45 if (readlen != sizeof(*ri)) {
43 jffs2_free_raw_inode(ri); 46 jffs2_free_raw_inode(ri);
44 printk(KERN_WARNING "Short read from 0x%08x: wanted 0x%zx bytes, got 0x%zx\n", 47 pr_warn("Short read from 0x%08x: wanted 0x%zx bytes, got 0x%zx\n",
45 ref_offset(fd->raw), sizeof(*ri), readlen); 48 ref_offset(fd->raw), sizeof(*ri), readlen);
46 return -EIO; 49 return -EIO;
47 } 50 }
48 crc = crc32(0, ri, sizeof(*ri)-8); 51 crc = crc32(0, ri, sizeof(*ri)-8);
49 52
50 D1(printk(KERN_DEBUG "Node read from %08x: node_crc %08x, calculated CRC %08x. dsize %x, csize %x, offset %x, buf %p\n", 53 jffs2_dbg(1, "Node read from %08x: node_crc %08x, calculated CRC %08x. dsize %x, csize %x, offset %x, buf %p\n",
51 ref_offset(fd->raw), je32_to_cpu(ri->node_crc), 54 ref_offset(fd->raw), je32_to_cpu(ri->node_crc),
52 crc, je32_to_cpu(ri->dsize), je32_to_cpu(ri->csize), 55 crc, je32_to_cpu(ri->dsize), je32_to_cpu(ri->csize),
53 je32_to_cpu(ri->offset), buf)); 56 je32_to_cpu(ri->offset), buf);
54 if (crc != je32_to_cpu(ri->node_crc)) { 57 if (crc != je32_to_cpu(ri->node_crc)) {
55 printk(KERN_WARNING "Node CRC %08x != calculated CRC %08x for node at %08x\n", 58 pr_warn("Node CRC %08x != calculated CRC %08x for node at %08x\n",
56 je32_to_cpu(ri->node_crc), crc, ref_offset(fd->raw)); 59 je32_to_cpu(ri->node_crc), crc, ref_offset(fd->raw));
57 ret = -EIO; 60 ret = -EIO;
58 goto out_ri; 61 goto out_ri;
59 } 62 }
@@ -66,8 +69,8 @@ int jffs2_read_dnode(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
66 } 69 }
67 70
68 D1(if(ofs + len > je32_to_cpu(ri->dsize)) { 71 D1(if(ofs + len > je32_to_cpu(ri->dsize)) {
69 printk(KERN_WARNING "jffs2_read_dnode() asked for %d bytes at %d from %d-byte node\n", 72 pr_warn("jffs2_read_dnode() asked for %d bytes at %d from %d-byte node\n",
70 len, ofs, je32_to_cpu(ri->dsize)); 73 len, ofs, je32_to_cpu(ri->dsize));
71 ret = -EINVAL; 74 ret = -EINVAL;
72 goto out_ri; 75 goto out_ri;
73 }); 76 });
@@ -107,8 +110,8 @@ int jffs2_read_dnode(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
107 decomprbuf = readbuf; 110 decomprbuf = readbuf;
108 } 111 }
109 112
110 D2(printk(KERN_DEBUG "Read %d bytes to %p\n", je32_to_cpu(ri->csize), 113 jffs2_dbg(2, "Read %d bytes to %p\n", je32_to_cpu(ri->csize),
111 readbuf)); 114 readbuf);
112 ret = jffs2_flash_read(c, (ref_offset(fd->raw)) + sizeof(*ri), 115 ret = jffs2_flash_read(c, (ref_offset(fd->raw)) + sizeof(*ri),
113 je32_to_cpu(ri->csize), &readlen, readbuf); 116 je32_to_cpu(ri->csize), &readlen, readbuf);
114 117
@@ -119,18 +122,19 @@ int jffs2_read_dnode(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
119 122
120 crc = crc32(0, readbuf, je32_to_cpu(ri->csize)); 123 crc = crc32(0, readbuf, je32_to_cpu(ri->csize));
121 if (crc != je32_to_cpu(ri->data_crc)) { 124 if (crc != je32_to_cpu(ri->data_crc)) {
122 printk(KERN_WARNING "Data CRC %08x != calculated CRC %08x for node at %08x\n", 125 pr_warn("Data CRC %08x != calculated CRC %08x for node at %08x\n",
123 je32_to_cpu(ri->data_crc), crc, ref_offset(fd->raw)); 126 je32_to_cpu(ri->data_crc), crc, ref_offset(fd->raw));
124 ret = -EIO; 127 ret = -EIO;
125 goto out_decomprbuf; 128 goto out_decomprbuf;
126 } 129 }
127 D2(printk(KERN_DEBUG "Data CRC matches calculated CRC %08x\n", crc)); 130 jffs2_dbg(2, "Data CRC matches calculated CRC %08x\n", crc);
128 if (ri->compr != JFFS2_COMPR_NONE) { 131 if (ri->compr != JFFS2_COMPR_NONE) {
129 D2(printk(KERN_DEBUG "Decompress %d bytes from %p to %d bytes at %p\n", 132 jffs2_dbg(2, "Decompress %d bytes from %p to %d bytes at %p\n",
130 je32_to_cpu(ri->csize), readbuf, je32_to_cpu(ri->dsize), decomprbuf)); 133 je32_to_cpu(ri->csize), readbuf,
134 je32_to_cpu(ri->dsize), decomprbuf);
131 ret = jffs2_decompress(c, f, ri->compr | (ri->usercompr << 8), readbuf, decomprbuf, je32_to_cpu(ri->csize), je32_to_cpu(ri->dsize)); 135 ret = jffs2_decompress(c, f, ri->compr | (ri->usercompr << 8), readbuf, decomprbuf, je32_to_cpu(ri->csize), je32_to_cpu(ri->dsize));
132 if (ret) { 136 if (ret) {
133 printk(KERN_WARNING "Error: jffs2_decompress returned %d\n", ret); 137 pr_warn("Error: jffs2_decompress returned %d\n", ret);
134 goto out_decomprbuf; 138 goto out_decomprbuf;
135 } 139 }
136 } 140 }
@@ -157,8 +161,8 @@ int jffs2_read_inode_range(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
157 struct jffs2_node_frag *frag; 161 struct jffs2_node_frag *frag;
158 int ret; 162 int ret;
159 163
160 D1(printk(KERN_DEBUG "jffs2_read_inode_range: ino #%u, range 0x%08x-0x%08x\n", 164 jffs2_dbg(1, "%s(): ino #%u, range 0x%08x-0x%08x\n",
161 f->inocache->ino, offset, offset+len)); 165 __func__, f->inocache->ino, offset, offset + len);
162 166
163 frag = jffs2_lookup_node_frag(&f->fragtree, offset); 167 frag = jffs2_lookup_node_frag(&f->fragtree, offset);
164 168
@@ -168,22 +172,27 @@ int jffs2_read_inode_range(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
168 * (or perhaps is before it, if we've been asked to read off the 172 * (or perhaps is before it, if we've been asked to read off the
169 * end of the file). */ 173 * end of the file). */
170 while(offset < end) { 174 while(offset < end) {
171 D2(printk(KERN_DEBUG "jffs2_read_inode_range: offset %d, end %d\n", offset, end)); 175 jffs2_dbg(2, "%s(): offset %d, end %d\n",
176 __func__, offset, end);
172 if (unlikely(!frag || frag->ofs > offset || 177 if (unlikely(!frag || frag->ofs > offset ||
173 frag->ofs + frag->size <= offset)) { 178 frag->ofs + frag->size <= offset)) {
174 uint32_t holesize = end - offset; 179 uint32_t holesize = end - offset;
175 if (frag && frag->ofs > offset) { 180 if (frag && frag->ofs > offset) {
176 D1(printk(KERN_NOTICE "Eep. Hole in ino #%u fraglist. frag->ofs = 0x%08x, offset = 0x%08x\n", f->inocache->ino, frag->ofs, offset)); 181 jffs2_dbg(1, "Eep. Hole in ino #%u fraglist. frag->ofs = 0x%08x, offset = 0x%08x\n",
182 f->inocache->ino, frag->ofs, offset);
177 holesize = min(holesize, frag->ofs - offset); 183 holesize = min(holesize, frag->ofs - offset);
178 } 184 }
179 D1(printk(KERN_DEBUG "Filling non-frag hole from %d-%d\n", offset, offset+holesize)); 185 jffs2_dbg(1, "Filling non-frag hole from %d-%d\n",
186 offset, offset + holesize);
180 memset(buf, 0, holesize); 187 memset(buf, 0, holesize);
181 buf += holesize; 188 buf += holesize;
182 offset += holesize; 189 offset += holesize;
183 continue; 190 continue;
184 } else if (unlikely(!frag->node)) { 191 } else if (unlikely(!frag->node)) {
185 uint32_t holeend = min(end, frag->ofs + frag->size); 192 uint32_t holeend = min(end, frag->ofs + frag->size);
186 D1(printk(KERN_DEBUG "Filling frag hole from %d-%d (frag 0x%x 0x%x)\n", offset, holeend, frag->ofs, frag->ofs + frag->size)); 193 jffs2_dbg(1, "Filling frag hole from %d-%d (frag 0x%x 0x%x)\n",
194 offset, holeend, frag->ofs,
195 frag->ofs + frag->size);
187 memset(buf, 0, holeend - offset); 196 memset(buf, 0, holeend - offset);
188 buf += holeend - offset; 197 buf += holeend - offset;
189 offset = holeend; 198 offset = holeend;
@@ -195,20 +204,23 @@ int jffs2_read_inode_range(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
195 204
196 fragofs = offset - frag->ofs; 205 fragofs = offset - frag->ofs;
197 readlen = min(frag->size - fragofs, end - offset); 206 readlen = min(frag->size - fragofs, end - offset);
198 D1(printk(KERN_DEBUG "Reading %d-%d from node at 0x%08x (%d)\n", 207 jffs2_dbg(1, "Reading %d-%d from node at 0x%08x (%d)\n",
199 frag->ofs+fragofs, frag->ofs+fragofs+readlen, 208 frag->ofs+fragofs,
200 ref_offset(frag->node->raw), ref_flags(frag->node->raw))); 209 frag->ofs + fragofs+readlen,
210 ref_offset(frag->node->raw),
211 ref_flags(frag->node->raw));
201 ret = jffs2_read_dnode(c, f, frag->node, buf, fragofs + frag->ofs - frag->node->ofs, readlen); 212 ret = jffs2_read_dnode(c, f, frag->node, buf, fragofs + frag->ofs - frag->node->ofs, readlen);
202 D2(printk(KERN_DEBUG "node read done\n")); 213 jffs2_dbg(2, "node read done\n");
203 if (ret) { 214 if (ret) {
204 D1(printk(KERN_DEBUG"jffs2_read_inode_range error %d\n",ret)); 215 jffs2_dbg(1, "%s(): error %d\n",
216 __func__, ret);
205 memset(buf, 0, readlen); 217 memset(buf, 0, readlen);
206 return ret; 218 return ret;
207 } 219 }
208 buf += readlen; 220 buf += readlen;
209 offset += readlen; 221 offset += readlen;
210 frag = frag_next(frag); 222 frag = frag_next(frag);
211 D2(printk(KERN_DEBUG "node read was OK. Looping\n")); 223 jffs2_dbg(2, "node read was OK. Looping\n");
212 } 224 }
213 } 225 }
214 return 0; 226 return 0;
diff --git a/fs/jffs2/readinode.c b/fs/jffs2/readinode.c
index 3093ac4fb24c..dc0437e84763 100644
--- a/fs/jffs2/readinode.c
+++ b/fs/jffs2/readinode.c
@@ -9,6 +9,8 @@
9 * 9 *
10 */ 10 */
11 11
12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
12#include <linux/kernel.h> 14#include <linux/kernel.h>
13#include <linux/sched.h> 15#include <linux/sched.h>
14#include <linux/slab.h> 16#include <linux/slab.h>
diff --git a/fs/jffs2/scan.c b/fs/jffs2/scan.c
index f99464833bb2..7654e87b0428 100644
--- a/fs/jffs2/scan.c
+++ b/fs/jffs2/scan.c
@@ -9,6 +9,8 @@
9 * 9 *
10 */ 10 */
11 11
12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
12#include <linux/kernel.h> 14#include <linux/kernel.h>
13#include <linux/sched.h> 15#include <linux/sched.h>
14#include <linux/slab.h> 16#include <linux/slab.h>
@@ -22,15 +24,15 @@
22 24
23#define DEFAULT_EMPTY_SCAN_SIZE 256 25#define DEFAULT_EMPTY_SCAN_SIZE 256
24 26
25#define noisy_printk(noise, args...) do { \ 27#define noisy_printk(noise, fmt, ...) \
26 if (*(noise)) { \ 28do { \
27 printk(KERN_NOTICE args); \ 29 if (*(noise)) { \
28 (*(noise))--; \ 30 pr_notice(fmt, ##__VA_ARGS__); \
29 if (!(*(noise))) { \ 31 (*(noise))--; \
30 printk(KERN_NOTICE "Further such events for this erase block will not be printed\n"); \ 32 if (!(*(noise))) \
31 } \ 33 pr_notice("Further such events for this erase block will not be printed\n"); \
32 } \ 34 } \
33} while(0) 35} while (0)
34 36
35static uint32_t pseudo_random; 37static uint32_t pseudo_random;
36 38
@@ -96,18 +98,17 @@ int jffs2_scan_medium(struct jffs2_sb_info *c)
96#ifndef __ECOS 98#ifndef __ECOS
97 size_t pointlen, try_size; 99 size_t pointlen, try_size;
98 100
99 if (c->mtd->point) { 101 ret = mtd_point(c->mtd, 0, c->mtd->size, &pointlen,
100 ret = mtd_point(c->mtd, 0, c->mtd->size, &pointlen, 102 (void **)&flashbuf, NULL);
101 (void **)&flashbuf, NULL); 103 if (!ret && pointlen < c->mtd->size) {
102 if (!ret && pointlen < c->mtd->size) { 104 /* Don't muck about if it won't let us point to the whole flash */
103 /* Don't muck about if it won't let us point to the whole flash */ 105 jffs2_dbg(1, "MTD point returned len too short: 0x%zx\n",
104 D1(printk(KERN_DEBUG "MTD point returned len too short: 0x%zx\n", pointlen)); 106 pointlen);
105 mtd_unpoint(c->mtd, 0, pointlen); 107 mtd_unpoint(c->mtd, 0, pointlen);
106 flashbuf = NULL; 108 flashbuf = NULL;
107 }
108 if (ret && ret != -EOPNOTSUPP)
109 D1(printk(KERN_DEBUG "MTD point failed %d\n", ret));
110 } 109 }
110 if (ret && ret != -EOPNOTSUPP)
111 jffs2_dbg(1, "MTD point failed %d\n", ret);
111#endif 112#endif
112 if (!flashbuf) { 113 if (!flashbuf) {
113 /* For NAND it's quicker to read a whole eraseblock at a time, 114 /* For NAND it's quicker to read a whole eraseblock at a time,
@@ -117,15 +118,15 @@ int jffs2_scan_medium(struct jffs2_sb_info *c)
117 else 118 else
118 try_size = PAGE_SIZE; 119 try_size = PAGE_SIZE;
119 120
120 D1(printk(KERN_DEBUG "Trying to allocate readbuf of %zu " 121 jffs2_dbg(1, "Trying to allocate readbuf of %zu "
121 "bytes\n", try_size)); 122 "bytes\n", try_size);
122 123
123 flashbuf = mtd_kmalloc_up_to(c->mtd, &try_size); 124 flashbuf = mtd_kmalloc_up_to(c->mtd, &try_size);
124 if (!flashbuf) 125 if (!flashbuf)
125 return -ENOMEM; 126 return -ENOMEM;
126 127
127 D1(printk(KERN_DEBUG "Allocated readbuf of %zu bytes\n", 128 jffs2_dbg(1, "Allocated readbuf of %zu bytes\n",
128 try_size)); 129 try_size);
129 130
130 buf_size = (uint32_t)try_size; 131 buf_size = (uint32_t)try_size;
131 } 132 }
@@ -178,7 +179,8 @@ int jffs2_scan_medium(struct jffs2_sb_info *c)
178 c->nr_free_blocks++; 179 c->nr_free_blocks++;
179 } else { 180 } else {
180 /* Dirt */ 181 /* Dirt */
181 D1(printk(KERN_DEBUG "Adding all-dirty block at 0x%08x to erase_pending_list\n", jeb->offset)); 182 jffs2_dbg(1, "Adding all-dirty block at 0x%08x to erase_pending_list\n",
183 jeb->offset);
182 list_add(&jeb->list, &c->erase_pending_list); 184 list_add(&jeb->list, &c->erase_pending_list);
183 c->nr_erasing_blocks++; 185 c->nr_erasing_blocks++;
184 } 186 }
@@ -205,7 +207,8 @@ int jffs2_scan_medium(struct jffs2_sb_info *c)
205 } 207 }
206 /* update collected summary information for the current nextblock */ 208 /* update collected summary information for the current nextblock */
207 jffs2_sum_move_collected(c, s); 209 jffs2_sum_move_collected(c, s);
208 D1(printk(KERN_DEBUG "jffs2_scan_medium(): new nextblock = 0x%08x\n", jeb->offset)); 210 jffs2_dbg(1, "%s(): new nextblock = 0x%08x\n",
211 __func__, jeb->offset);
209 c->nextblock = jeb; 212 c->nextblock = jeb;
210 } else { 213 } else {
211 ret = file_dirty(c, jeb); 214 ret = file_dirty(c, jeb);
@@ -217,20 +220,21 @@ int jffs2_scan_medium(struct jffs2_sb_info *c)
217 case BLK_STATE_ALLDIRTY: 220 case BLK_STATE_ALLDIRTY:
218 /* Nothing valid - not even a clean marker. Needs erasing. */ 221 /* Nothing valid - not even a clean marker. Needs erasing. */
219 /* For now we just put it on the erasing list. We'll start the erases later */ 222 /* For now we just put it on the erasing list. We'll start the erases later */
220 D1(printk(KERN_NOTICE "JFFS2: Erase block at 0x%08x is not formatted. It will be erased\n", jeb->offset)); 223 jffs2_dbg(1, "Erase block at 0x%08x is not formatted. It will be erased\n",
224 jeb->offset);
221 list_add(&jeb->list, &c->erase_pending_list); 225 list_add(&jeb->list, &c->erase_pending_list);
222 c->nr_erasing_blocks++; 226 c->nr_erasing_blocks++;
223 break; 227 break;
224 228
225 case BLK_STATE_BADBLOCK: 229 case BLK_STATE_BADBLOCK:
226 D1(printk(KERN_NOTICE "JFFS2: Block at 0x%08x is bad\n", jeb->offset)); 230 jffs2_dbg(1, "Block at 0x%08x is bad\n", jeb->offset);
227 list_add(&jeb->list, &c->bad_list); 231 list_add(&jeb->list, &c->bad_list);
228 c->bad_size += c->sector_size; 232 c->bad_size += c->sector_size;
229 c->free_size -= c->sector_size; 233 c->free_size -= c->sector_size;
230 bad_blocks++; 234 bad_blocks++;
231 break; 235 break;
232 default: 236 default:
233 printk(KERN_WARNING "jffs2_scan_medium(): unknown block state\n"); 237 pr_warn("%s(): unknown block state\n", __func__);
234 BUG(); 238 BUG();
235 } 239 }
236 } 240 }
@@ -250,16 +254,17 @@ int jffs2_scan_medium(struct jffs2_sb_info *c)
250 254
251 uint32_t skip = c->nextblock->free_size % c->wbuf_pagesize; 255 uint32_t skip = c->nextblock->free_size % c->wbuf_pagesize;
252 256
253 D1(printk(KERN_DEBUG "jffs2_scan_medium(): Skipping %d bytes in nextblock to ensure page alignment\n", 257 jffs2_dbg(1, "%s(): Skipping %d bytes in nextblock to ensure page alignment\n",
254 skip)); 258 __func__, skip);
255 jffs2_prealloc_raw_node_refs(c, c->nextblock, 1); 259 jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
256 jffs2_scan_dirty_space(c, c->nextblock, skip); 260 jffs2_scan_dirty_space(c, c->nextblock, skip);
257 } 261 }
258#endif 262#endif
259 if (c->nr_erasing_blocks) { 263 if (c->nr_erasing_blocks) {
260 if ( !c->used_size && ((c->nr_free_blocks+empty_blocks+bad_blocks)!= c->nr_blocks || bad_blocks == c->nr_blocks) ) { 264 if ( !c->used_size && ((c->nr_free_blocks+empty_blocks+bad_blocks)!= c->nr_blocks || bad_blocks == c->nr_blocks) ) {
261 printk(KERN_NOTICE "Cowardly refusing to erase blocks on filesystem with no valid JFFS2 nodes\n"); 265 pr_notice("Cowardly refusing to erase blocks on filesystem with no valid JFFS2 nodes\n");
262 printk(KERN_NOTICE "empty_blocks %d, bad_blocks %d, c->nr_blocks %d\n",empty_blocks,bad_blocks,c->nr_blocks); 266 pr_notice("empty_blocks %d, bad_blocks %d, c->nr_blocks %d\n",
267 empty_blocks, bad_blocks, c->nr_blocks);
263 ret = -EIO; 268 ret = -EIO;
264 goto out; 269 goto out;
265 } 270 }
@@ -287,11 +292,13 @@ static int jffs2_fill_scan_buf(struct jffs2_sb_info *c, void *buf,
287 292
288 ret = jffs2_flash_read(c, ofs, len, &retlen, buf); 293 ret = jffs2_flash_read(c, ofs, len, &retlen, buf);
289 if (ret) { 294 if (ret) {
290 D1(printk(KERN_WARNING "mtd->read(0x%x bytes from 0x%x) returned %d\n", len, ofs, ret)); 295 jffs2_dbg(1, "mtd->read(0x%x bytes from 0x%x) returned %d\n",
296 len, ofs, ret);
291 return ret; 297 return ret;
292 } 298 }
293 if (retlen < len) { 299 if (retlen < len) {
294 D1(printk(KERN_WARNING "Read at 0x%x gave only 0x%zx bytes\n", ofs, retlen)); 300 jffs2_dbg(1, "Read at 0x%x gave only 0x%zx bytes\n",
301 ofs, retlen);
295 return -EIO; 302 return -EIO;
296 } 303 }
297 return 0; 304 return 0;
@@ -368,7 +375,7 @@ static int jffs2_scan_xattr_node(struct jffs2_sb_info *c, struct jffs2_erasebloc
368 375
369 if (jffs2_sum_active()) 376 if (jffs2_sum_active())
370 jffs2_sum_add_xattr_mem(s, rx, ofs - jeb->offset); 377 jffs2_sum_add_xattr_mem(s, rx, ofs - jeb->offset);
371 dbg_xattr("scaning xdatum at %#08x (xid=%u, version=%u)\n", 378 dbg_xattr("scanning xdatum at %#08x (xid=%u, version=%u)\n",
372 ofs, xd->xid, xd->version); 379 ofs, xd->xid, xd->version);
373 return 0; 380 return 0;
374} 381}
@@ -449,7 +456,7 @@ static int jffs2_scan_eraseblock (struct jffs2_sb_info *c, struct jffs2_eraseblo
449 ofs = jeb->offset; 456 ofs = jeb->offset;
450 prevofs = jeb->offset - 1; 457 prevofs = jeb->offset - 1;
451 458
452 D1(printk(KERN_DEBUG "jffs2_scan_eraseblock(): Scanning block at 0x%x\n", ofs)); 459 jffs2_dbg(1, "%s(): Scanning block at 0x%x\n", __func__, ofs);
453 460
454#ifdef CONFIG_JFFS2_FS_WRITEBUFFER 461#ifdef CONFIG_JFFS2_FS_WRITEBUFFER
455 if (jffs2_cleanmarker_oob(c)) { 462 if (jffs2_cleanmarker_oob(c)) {
@@ -459,7 +466,7 @@ static int jffs2_scan_eraseblock (struct jffs2_sb_info *c, struct jffs2_eraseblo
459 return BLK_STATE_BADBLOCK; 466 return BLK_STATE_BADBLOCK;
460 467
461 ret = jffs2_check_nand_cleanmarker(c, jeb); 468 ret = jffs2_check_nand_cleanmarker(c, jeb);
462 D2(printk(KERN_NOTICE "jffs_check_nand_cleanmarker returned %d\n",ret)); 469 jffs2_dbg(2, "jffs_check_nand_cleanmarker returned %d\n", ret);
463 470
464 /* Even if it's not found, we still scan to see 471 /* Even if it's not found, we still scan to see
465 if the block is empty. We use this information 472 if the block is empty. We use this information
@@ -561,7 +568,8 @@ static int jffs2_scan_eraseblock (struct jffs2_sb_info *c, struct jffs2_eraseblo
561 if (jffs2_cleanmarker_oob(c)) { 568 if (jffs2_cleanmarker_oob(c)) {
562 /* scan oob, take care of cleanmarker */ 569 /* scan oob, take care of cleanmarker */
563 int ret = jffs2_check_oob_empty(c, jeb, cleanmarkerfound); 570 int ret = jffs2_check_oob_empty(c, jeb, cleanmarkerfound);
564 D2(printk(KERN_NOTICE "jffs2_check_oob_empty returned %d\n",ret)); 571 jffs2_dbg(2, "jffs2_check_oob_empty returned %d\n",
572 ret);
565 switch (ret) { 573 switch (ret) {
566 case 0: return cleanmarkerfound ? BLK_STATE_CLEANMARKER : BLK_STATE_ALLFF; 574 case 0: return cleanmarkerfound ? BLK_STATE_CLEANMARKER : BLK_STATE_ALLFF;
567 case 1: return BLK_STATE_ALLDIRTY; 575 case 1: return BLK_STATE_ALLDIRTY;
@@ -569,15 +577,16 @@ static int jffs2_scan_eraseblock (struct jffs2_sb_info *c, struct jffs2_eraseblo
569 } 577 }
570 } 578 }
571#endif 579#endif
572 D1(printk(KERN_DEBUG "Block at 0x%08x is empty (erased)\n", jeb->offset)); 580 jffs2_dbg(1, "Block at 0x%08x is empty (erased)\n",
581 jeb->offset);
573 if (c->cleanmarker_size == 0) 582 if (c->cleanmarker_size == 0)
574 return BLK_STATE_CLEANMARKER; /* don't bother with re-erase */ 583 return BLK_STATE_CLEANMARKER; /* don't bother with re-erase */
575 else 584 else
576 return BLK_STATE_ALLFF; /* OK to erase if all blocks are like this */ 585 return BLK_STATE_ALLFF; /* OK to erase if all blocks are like this */
577 } 586 }
578 if (ofs) { 587 if (ofs) {
579 D1(printk(KERN_DEBUG "Free space at %08x ends at %08x\n", jeb->offset, 588 jffs2_dbg(1, "Free space at %08x ends at %08x\n", jeb->offset,
580 jeb->offset + ofs)); 589 jeb->offset + ofs);
581 if ((err = jffs2_prealloc_raw_node_refs(c, jeb, 1))) 590 if ((err = jffs2_prealloc_raw_node_refs(c, jeb, 1)))
582 return err; 591 return err;
583 if ((err = jffs2_scan_dirty_space(c, jeb, ofs))) 592 if ((err = jffs2_scan_dirty_space(c, jeb, ofs)))
@@ -604,12 +613,13 @@ scan_more:
604 cond_resched(); 613 cond_resched();
605 614
606 if (ofs & 3) { 615 if (ofs & 3) {
607 printk(KERN_WARNING "Eep. ofs 0x%08x not word-aligned!\n", ofs); 616 pr_warn("Eep. ofs 0x%08x not word-aligned!\n", ofs);
608 ofs = PAD(ofs); 617 ofs = PAD(ofs);
609 continue; 618 continue;
610 } 619 }
611 if (ofs == prevofs) { 620 if (ofs == prevofs) {
612 printk(KERN_WARNING "ofs 0x%08x has already been seen. Skipping\n", ofs); 621 pr_warn("ofs 0x%08x has already been seen. Skipping\n",
622 ofs);
613 if ((err = jffs2_scan_dirty_space(c, jeb, 4))) 623 if ((err = jffs2_scan_dirty_space(c, jeb, 4)))
614 return err; 624 return err;
615 ofs += 4; 625 ofs += 4;
@@ -618,8 +628,10 @@ scan_more:
618 prevofs = ofs; 628 prevofs = ofs;
619 629
620 if (jeb->offset + c->sector_size < ofs + sizeof(*node)) { 630 if (jeb->offset + c->sector_size < ofs + sizeof(*node)) {
621 D1(printk(KERN_DEBUG "Fewer than %zd bytes left to end of block. (%x+%x<%x+%zx) Not reading\n", sizeof(struct jffs2_unknown_node), 631 jffs2_dbg(1, "Fewer than %zd bytes left to end of block. (%x+%x<%x+%zx) Not reading\n",
622 jeb->offset, c->sector_size, ofs, sizeof(*node))); 632 sizeof(struct jffs2_unknown_node),
633 jeb->offset, c->sector_size, ofs,
634 sizeof(*node));
623 if ((err = jffs2_scan_dirty_space(c, jeb, (jeb->offset + c->sector_size)-ofs))) 635 if ((err = jffs2_scan_dirty_space(c, jeb, (jeb->offset + c->sector_size)-ofs)))
624 return err; 636 return err;
625 break; 637 break;
@@ -627,8 +639,9 @@ scan_more:
627 639
628 if (buf_ofs + buf_len < ofs + sizeof(*node)) { 640 if (buf_ofs + buf_len < ofs + sizeof(*node)) {
629 buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs); 641 buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
630 D1(printk(KERN_DEBUG "Fewer than %zd bytes (node header) left to end of buf. Reading 0x%x at 0x%08x\n", 642 jffs2_dbg(1, "Fewer than %zd bytes (node header) left to end of buf. Reading 0x%x at 0x%08x\n",
631 sizeof(struct jffs2_unknown_node), buf_len, ofs)); 643 sizeof(struct jffs2_unknown_node),
644 buf_len, ofs);
632 err = jffs2_fill_scan_buf(c, buf, ofs, buf_len); 645 err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
633 if (err) 646 if (err)
634 return err; 647 return err;
@@ -645,13 +658,13 @@ scan_more:
645 ofs += 4; 658 ofs += 4;
646 scan_end = min_t(uint32_t, EMPTY_SCAN_SIZE(c->sector_size)/8, buf_len); 659 scan_end = min_t(uint32_t, EMPTY_SCAN_SIZE(c->sector_size)/8, buf_len);
647 660
648 D1(printk(KERN_DEBUG "Found empty flash at 0x%08x\n", ofs)); 661 jffs2_dbg(1, "Found empty flash at 0x%08x\n", ofs);
649 more_empty: 662 more_empty:
650 inbuf_ofs = ofs - buf_ofs; 663 inbuf_ofs = ofs - buf_ofs;
651 while (inbuf_ofs < scan_end) { 664 while (inbuf_ofs < scan_end) {
652 if (unlikely(*(uint32_t *)(&buf[inbuf_ofs]) != 0xffffffff)) { 665 if (unlikely(*(uint32_t *)(&buf[inbuf_ofs]) != 0xffffffff)) {
653 printk(KERN_WARNING "Empty flash at 0x%08x ends at 0x%08x\n", 666 pr_warn("Empty flash at 0x%08x ends at 0x%08x\n",
654 empty_start, ofs); 667 empty_start, ofs);
655 if ((err = jffs2_scan_dirty_space(c, jeb, ofs-empty_start))) 668 if ((err = jffs2_scan_dirty_space(c, jeb, ofs-empty_start)))
656 return err; 669 return err;
657 goto scan_more; 670 goto scan_more;
@@ -661,13 +674,15 @@ scan_more:
661 ofs += 4; 674 ofs += 4;
662 } 675 }
663 /* Ran off end. */ 676 /* Ran off end. */
664 D1(printk(KERN_DEBUG "Empty flash to end of buffer at 0x%08x\n", ofs)); 677 jffs2_dbg(1, "Empty flash to end of buffer at 0x%08x\n",
678 ofs);
665 679
666 /* If we're only checking the beginning of a block with a cleanmarker, 680 /* If we're only checking the beginning of a block with a cleanmarker,
667 bail now */ 681 bail now */
668 if (buf_ofs == jeb->offset && jeb->used_size == PAD(c->cleanmarker_size) && 682 if (buf_ofs == jeb->offset && jeb->used_size == PAD(c->cleanmarker_size) &&
669 c->cleanmarker_size && !jeb->dirty_size && !ref_next(jeb->first_node)) { 683 c->cleanmarker_size && !jeb->dirty_size && !ref_next(jeb->first_node)) {
670 D1(printk(KERN_DEBUG "%d bytes at start of block seems clean... assuming all clean\n", EMPTY_SCAN_SIZE(c->sector_size))); 684 jffs2_dbg(1, "%d bytes at start of block seems clean... assuming all clean\n",
685 EMPTY_SCAN_SIZE(c->sector_size));
671 return BLK_STATE_CLEANMARKER; 686 return BLK_STATE_CLEANMARKER;
672 } 687 }
673 if (!buf_size && (scan_end != buf_len)) {/* XIP/point case */ 688 if (!buf_size && (scan_end != buf_len)) {/* XIP/point case */
@@ -680,13 +695,14 @@ scan_more:
680 if (!buf_len) { 695 if (!buf_len) {
681 /* No more to read. Break out of main loop without marking 696 /* No more to read. Break out of main loop without marking
682 this range of empty space as dirty (because it's not) */ 697 this range of empty space as dirty (because it's not) */
683 D1(printk(KERN_DEBUG "Empty flash at %08x runs to end of block. Treating as free_space\n", 698 jffs2_dbg(1, "Empty flash at %08x runs to end of block. Treating as free_space\n",
684 empty_start)); 699 empty_start);
685 break; 700 break;
686 } 701 }
687 /* point never reaches here */ 702 /* point never reaches here */
688 scan_end = buf_len; 703 scan_end = buf_len;
689 D1(printk(KERN_DEBUG "Reading another 0x%x at 0x%08x\n", buf_len, ofs)); 704 jffs2_dbg(1, "Reading another 0x%x at 0x%08x\n",
705 buf_len, ofs);
690 err = jffs2_fill_scan_buf(c, buf, ofs, buf_len); 706 err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
691 if (err) 707 if (err)
692 return err; 708 return err;
@@ -695,22 +711,23 @@ scan_more:
695 } 711 }
696 712
697 if (ofs == jeb->offset && je16_to_cpu(node->magic) == KSAMTIB_CIGAM_2SFFJ) { 713 if (ofs == jeb->offset && je16_to_cpu(node->magic) == KSAMTIB_CIGAM_2SFFJ) {
698 printk(KERN_WARNING "Magic bitmask is backwards at offset 0x%08x. Wrong endian filesystem?\n", ofs); 714 pr_warn("Magic bitmask is backwards at offset 0x%08x. Wrong endian filesystem?\n",
715 ofs);
699 if ((err = jffs2_scan_dirty_space(c, jeb, 4))) 716 if ((err = jffs2_scan_dirty_space(c, jeb, 4)))
700 return err; 717 return err;
701 ofs += 4; 718 ofs += 4;
702 continue; 719 continue;
703 } 720 }
704 if (je16_to_cpu(node->magic) == JFFS2_DIRTY_BITMASK) { 721 if (je16_to_cpu(node->magic) == JFFS2_DIRTY_BITMASK) {
705 D1(printk(KERN_DEBUG "Dirty bitmask at 0x%08x\n", ofs)); 722 jffs2_dbg(1, "Dirty bitmask at 0x%08x\n", ofs);
706 if ((err = jffs2_scan_dirty_space(c, jeb, 4))) 723 if ((err = jffs2_scan_dirty_space(c, jeb, 4)))
707 return err; 724 return err;
708 ofs += 4; 725 ofs += 4;
709 continue; 726 continue;
710 } 727 }
711 if (je16_to_cpu(node->magic) == JFFS2_OLD_MAGIC_BITMASK) { 728 if (je16_to_cpu(node->magic) == JFFS2_OLD_MAGIC_BITMASK) {
712 printk(KERN_WARNING "Old JFFS2 bitmask found at 0x%08x\n", ofs); 729 pr_warn("Old JFFS2 bitmask found at 0x%08x\n", ofs);
713 printk(KERN_WARNING "You cannot use older JFFS2 filesystems with newer kernels\n"); 730 pr_warn("You cannot use older JFFS2 filesystems with newer kernels\n");
714 if ((err = jffs2_scan_dirty_space(c, jeb, 4))) 731 if ((err = jffs2_scan_dirty_space(c, jeb, 4)))
715 return err; 732 return err;
716 ofs += 4; 733 ofs += 4;
@@ -718,7 +735,8 @@ scan_more:
718 } 735 }
719 if (je16_to_cpu(node->magic) != JFFS2_MAGIC_BITMASK) { 736 if (je16_to_cpu(node->magic) != JFFS2_MAGIC_BITMASK) {
720 /* OK. We're out of possibilities. Whinge and move on */ 737 /* OK. We're out of possibilities. Whinge and move on */
721 noisy_printk(&noise, "jffs2_scan_eraseblock(): Magic bitmask 0x%04x not found at 0x%08x: 0x%04x instead\n", 738 noisy_printk(&noise, "%s(): Magic bitmask 0x%04x not found at 0x%08x: 0x%04x instead\n",
739 __func__,
722 JFFS2_MAGIC_BITMASK, ofs, 740 JFFS2_MAGIC_BITMASK, ofs,
723 je16_to_cpu(node->magic)); 741 je16_to_cpu(node->magic));
724 if ((err = jffs2_scan_dirty_space(c, jeb, 4))) 742 if ((err = jffs2_scan_dirty_space(c, jeb, 4)))
@@ -733,7 +751,8 @@ scan_more:
733 hdr_crc = crc32(0, &crcnode, sizeof(crcnode)-4); 751 hdr_crc = crc32(0, &crcnode, sizeof(crcnode)-4);
734 752
735 if (hdr_crc != je32_to_cpu(node->hdr_crc)) { 753 if (hdr_crc != je32_to_cpu(node->hdr_crc)) {
736 noisy_printk(&noise, "jffs2_scan_eraseblock(): Node at 0x%08x {0x%04x, 0x%04x, 0x%08x) has invalid CRC 0x%08x (calculated 0x%08x)\n", 754 noisy_printk(&noise, "%s(): Node at 0x%08x {0x%04x, 0x%04x, 0x%08x) has invalid CRC 0x%08x (calculated 0x%08x)\n",
755 __func__,
737 ofs, je16_to_cpu(node->magic), 756 ofs, je16_to_cpu(node->magic),
738 je16_to_cpu(node->nodetype), 757 je16_to_cpu(node->nodetype),
739 je32_to_cpu(node->totlen), 758 je32_to_cpu(node->totlen),
@@ -747,9 +766,9 @@ scan_more:
747 766
748 if (ofs + je32_to_cpu(node->totlen) > jeb->offset + c->sector_size) { 767 if (ofs + je32_to_cpu(node->totlen) > jeb->offset + c->sector_size) {
749 /* Eep. Node goes over the end of the erase block. */ 768 /* Eep. Node goes over the end of the erase block. */
750 printk(KERN_WARNING "Node at 0x%08x with length 0x%08x would run over the end of the erase block\n", 769 pr_warn("Node at 0x%08x with length 0x%08x would run over the end of the erase block\n",
751 ofs, je32_to_cpu(node->totlen)); 770 ofs, je32_to_cpu(node->totlen));
752 printk(KERN_WARNING "Perhaps the file system was created with the wrong erase size?\n"); 771 pr_warn("Perhaps the file system was created with the wrong erase size?\n");
753 if ((err = jffs2_scan_dirty_space(c, jeb, 4))) 772 if ((err = jffs2_scan_dirty_space(c, jeb, 4)))
754 return err; 773 return err;
755 ofs += 4; 774 ofs += 4;
@@ -758,7 +777,8 @@ scan_more:
758 777
759 if (!(je16_to_cpu(node->nodetype) & JFFS2_NODE_ACCURATE)) { 778 if (!(je16_to_cpu(node->nodetype) & JFFS2_NODE_ACCURATE)) {
760 /* Wheee. This is an obsoleted node */ 779 /* Wheee. This is an obsoleted node */
761 D2(printk(KERN_DEBUG "Node at 0x%08x is obsolete. Skipping\n", ofs)); 780 jffs2_dbg(2, "Node at 0x%08x is obsolete. Skipping\n",
781 ofs);
762 if ((err = jffs2_scan_dirty_space(c, jeb, PAD(je32_to_cpu(node->totlen))))) 782 if ((err = jffs2_scan_dirty_space(c, jeb, PAD(je32_to_cpu(node->totlen)))))
763 return err; 783 return err;
764 ofs += PAD(je32_to_cpu(node->totlen)); 784 ofs += PAD(je32_to_cpu(node->totlen));
@@ -769,8 +789,9 @@ scan_more:
769 case JFFS2_NODETYPE_INODE: 789 case JFFS2_NODETYPE_INODE:
770 if (buf_ofs + buf_len < ofs + sizeof(struct jffs2_raw_inode)) { 790 if (buf_ofs + buf_len < ofs + sizeof(struct jffs2_raw_inode)) {
771 buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs); 791 buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
772 D1(printk(KERN_DEBUG "Fewer than %zd bytes (inode node) left to end of buf. Reading 0x%x at 0x%08x\n", 792 jffs2_dbg(1, "Fewer than %zd bytes (inode node) left to end of buf. Reading 0x%x at 0x%08x\n",
773 sizeof(struct jffs2_raw_inode), buf_len, ofs)); 793 sizeof(struct jffs2_raw_inode),
794 buf_len, ofs);
774 err = jffs2_fill_scan_buf(c, buf, ofs, buf_len); 795 err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
775 if (err) 796 if (err)
776 return err; 797 return err;
@@ -785,8 +806,9 @@ scan_more:
785 case JFFS2_NODETYPE_DIRENT: 806 case JFFS2_NODETYPE_DIRENT:
786 if (buf_ofs + buf_len < ofs + je32_to_cpu(node->totlen)) { 807 if (buf_ofs + buf_len < ofs + je32_to_cpu(node->totlen)) {
787 buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs); 808 buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
788 D1(printk(KERN_DEBUG "Fewer than %d bytes (dirent node) left to end of buf. Reading 0x%x at 0x%08x\n", 809 jffs2_dbg(1, "Fewer than %d bytes (dirent node) left to end of buf. Reading 0x%x at 0x%08x\n",
789 je32_to_cpu(node->totlen), buf_len, ofs)); 810 je32_to_cpu(node->totlen), buf_len,
811 ofs);
790 err = jffs2_fill_scan_buf(c, buf, ofs, buf_len); 812 err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
791 if (err) 813 if (err)
792 return err; 814 return err;
@@ -802,9 +824,9 @@ scan_more:
802 case JFFS2_NODETYPE_XATTR: 824 case JFFS2_NODETYPE_XATTR:
803 if (buf_ofs + buf_len < ofs + je32_to_cpu(node->totlen)) { 825 if (buf_ofs + buf_len < ofs + je32_to_cpu(node->totlen)) {
804 buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs); 826 buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
805 D1(printk(KERN_DEBUG "Fewer than %d bytes (xattr node)" 827 jffs2_dbg(1, "Fewer than %d bytes (xattr node) left to end of buf. Reading 0x%x at 0x%08x\n",
806 " left to end of buf. Reading 0x%x at 0x%08x\n", 828 je32_to_cpu(node->totlen), buf_len,
807 je32_to_cpu(node->totlen), buf_len, ofs)); 829 ofs);
808 err = jffs2_fill_scan_buf(c, buf, ofs, buf_len); 830 err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
809 if (err) 831 if (err)
810 return err; 832 return err;
@@ -819,9 +841,9 @@ scan_more:
819 case JFFS2_NODETYPE_XREF: 841 case JFFS2_NODETYPE_XREF:
820 if (buf_ofs + buf_len < ofs + je32_to_cpu(node->totlen)) { 842 if (buf_ofs + buf_len < ofs + je32_to_cpu(node->totlen)) {
821 buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs); 843 buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
822 D1(printk(KERN_DEBUG "Fewer than %d bytes (xref node)" 844 jffs2_dbg(1, "Fewer than %d bytes (xref node) left to end of buf. Reading 0x%x at 0x%08x\n",
823 " left to end of buf. Reading 0x%x at 0x%08x\n", 845 je32_to_cpu(node->totlen), buf_len,
824 je32_to_cpu(node->totlen), buf_len, ofs)); 846 ofs);
825 err = jffs2_fill_scan_buf(c, buf, ofs, buf_len); 847 err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
826 if (err) 848 if (err)
827 return err; 849 return err;
@@ -836,15 +858,17 @@ scan_more:
836#endif /* CONFIG_JFFS2_FS_XATTR */ 858#endif /* CONFIG_JFFS2_FS_XATTR */
837 859
838 case JFFS2_NODETYPE_CLEANMARKER: 860 case JFFS2_NODETYPE_CLEANMARKER:
839 D1(printk(KERN_DEBUG "CLEANMARKER node found at 0x%08x\n", ofs)); 861 jffs2_dbg(1, "CLEANMARKER node found at 0x%08x\n", ofs);
840 if (je32_to_cpu(node->totlen) != c->cleanmarker_size) { 862 if (je32_to_cpu(node->totlen) != c->cleanmarker_size) {
841 printk(KERN_NOTICE "CLEANMARKER node found at 0x%08x has totlen 0x%x != normal 0x%x\n", 863 pr_notice("CLEANMARKER node found at 0x%08x has totlen 0x%x != normal 0x%x\n",
842 ofs, je32_to_cpu(node->totlen), c->cleanmarker_size); 864 ofs, je32_to_cpu(node->totlen),
865 c->cleanmarker_size);
843 if ((err = jffs2_scan_dirty_space(c, jeb, PAD(sizeof(struct jffs2_unknown_node))))) 866 if ((err = jffs2_scan_dirty_space(c, jeb, PAD(sizeof(struct jffs2_unknown_node)))))
844 return err; 867 return err;
845 ofs += PAD(sizeof(struct jffs2_unknown_node)); 868 ofs += PAD(sizeof(struct jffs2_unknown_node));
846 } else if (jeb->first_node) { 869 } else if (jeb->first_node) {
847 printk(KERN_NOTICE "CLEANMARKER node found at 0x%08x, not first node in block (0x%08x)\n", ofs, jeb->offset); 870 pr_notice("CLEANMARKER node found at 0x%08x, not first node in block (0x%08x)\n",
871 ofs, jeb->offset);
848 if ((err = jffs2_scan_dirty_space(c, jeb, PAD(sizeof(struct jffs2_unknown_node))))) 872 if ((err = jffs2_scan_dirty_space(c, jeb, PAD(sizeof(struct jffs2_unknown_node)))))
849 return err; 873 return err;
850 ofs += PAD(sizeof(struct jffs2_unknown_node)); 874 ofs += PAD(sizeof(struct jffs2_unknown_node));
@@ -866,7 +890,8 @@ scan_more:
866 default: 890 default:
867 switch (je16_to_cpu(node->nodetype) & JFFS2_COMPAT_MASK) { 891 switch (je16_to_cpu(node->nodetype) & JFFS2_COMPAT_MASK) {
868 case JFFS2_FEATURE_ROCOMPAT: 892 case JFFS2_FEATURE_ROCOMPAT:
869 printk(KERN_NOTICE "Read-only compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs); 893 pr_notice("Read-only compatible feature node (0x%04x) found at offset 0x%08x\n",
894 je16_to_cpu(node->nodetype), ofs);
870 c->flags |= JFFS2_SB_FLAG_RO; 895 c->flags |= JFFS2_SB_FLAG_RO;
871 if (!(jffs2_is_readonly(c))) 896 if (!(jffs2_is_readonly(c)))
872 return -EROFS; 897 return -EROFS;
@@ -876,18 +901,21 @@ scan_more:
876 break; 901 break;
877 902
878 case JFFS2_FEATURE_INCOMPAT: 903 case JFFS2_FEATURE_INCOMPAT:
879 printk(KERN_NOTICE "Incompatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs); 904 pr_notice("Incompatible feature node (0x%04x) found at offset 0x%08x\n",
905 je16_to_cpu(node->nodetype), ofs);
880 return -EINVAL; 906 return -EINVAL;
881 907
882 case JFFS2_FEATURE_RWCOMPAT_DELETE: 908 case JFFS2_FEATURE_RWCOMPAT_DELETE:
883 D1(printk(KERN_NOTICE "Unknown but compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs)); 909 jffs2_dbg(1, "Unknown but compatible feature node (0x%04x) found at offset 0x%08x\n",
910 je16_to_cpu(node->nodetype), ofs);
884 if ((err = jffs2_scan_dirty_space(c, jeb, PAD(je32_to_cpu(node->totlen))))) 911 if ((err = jffs2_scan_dirty_space(c, jeb, PAD(je32_to_cpu(node->totlen)))))
885 return err; 912 return err;
886 ofs += PAD(je32_to_cpu(node->totlen)); 913 ofs += PAD(je32_to_cpu(node->totlen));
887 break; 914 break;
888 915
889 case JFFS2_FEATURE_RWCOMPAT_COPY: { 916 case JFFS2_FEATURE_RWCOMPAT_COPY: {
890 D1(printk(KERN_NOTICE "Unknown but compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs)); 917 jffs2_dbg(1, "Unknown but compatible feature node (0x%04x) found at offset 0x%08x\n",
918 je16_to_cpu(node->nodetype), ofs);
891 919
892 jffs2_link_node_ref(c, jeb, ofs | REF_PRISTINE, PAD(je32_to_cpu(node->totlen)), NULL); 920 jffs2_link_node_ref(c, jeb, ofs | REF_PRISTINE, PAD(je32_to_cpu(node->totlen)), NULL);
893 921
@@ -908,8 +936,9 @@ scan_more:
908 } 936 }
909 } 937 }
910 938
911 D1(printk(KERN_DEBUG "Block at 0x%08x: free 0x%08x, dirty 0x%08x, unchecked 0x%08x, used 0x%08x, wasted 0x%08x\n", 939 jffs2_dbg(1, "Block at 0x%08x: free 0x%08x, dirty 0x%08x, unchecked 0x%08x, used 0x%08x, wasted 0x%08x\n",
912 jeb->offset,jeb->free_size, jeb->dirty_size, jeb->unchecked_size, jeb->used_size, jeb->wasted_size)); 940 jeb->offset, jeb->free_size, jeb->dirty_size,
941 jeb->unchecked_size, jeb->used_size, jeb->wasted_size);
913 942
914 /* mark_node_obsolete can add to wasted !! */ 943 /* mark_node_obsolete can add to wasted !! */
915 if (jeb->wasted_size) { 944 if (jeb->wasted_size) {
@@ -935,7 +964,7 @@ struct jffs2_inode_cache *jffs2_scan_make_ino_cache(struct jffs2_sb_info *c, uin
935 964
936 ic = jffs2_alloc_inode_cache(); 965 ic = jffs2_alloc_inode_cache();
937 if (!ic) { 966 if (!ic) {
938 printk(KERN_NOTICE "jffs2_scan_make_inode_cache(): allocation of inode cache failed\n"); 967 pr_notice("%s(): allocation of inode cache failed\n", __func__);
939 return NULL; 968 return NULL;
940 } 969 }
941 memset(ic, 0, sizeof(*ic)); 970 memset(ic, 0, sizeof(*ic));
@@ -954,7 +983,7 @@ static int jffs2_scan_inode_node(struct jffs2_sb_info *c, struct jffs2_erasebloc
954 struct jffs2_inode_cache *ic; 983 struct jffs2_inode_cache *ic;
955 uint32_t crc, ino = je32_to_cpu(ri->ino); 984 uint32_t crc, ino = je32_to_cpu(ri->ino);
956 985
957 D1(printk(KERN_DEBUG "jffs2_scan_inode_node(): Node at 0x%08x\n", ofs)); 986 jffs2_dbg(1, "%s(): Node at 0x%08x\n", __func__, ofs);
958 987
959 /* We do very little here now. Just check the ino# to which we should attribute 988 /* We do very little here now. Just check the ino# to which we should attribute
960 this node; we can do all the CRC checking etc. later. There's a tradeoff here -- 989 this node; we can do all the CRC checking etc. later. There's a tradeoff here --
@@ -968,9 +997,8 @@ static int jffs2_scan_inode_node(struct jffs2_sb_info *c, struct jffs2_erasebloc
968 /* Check the node CRC in any case. */ 997 /* Check the node CRC in any case. */
969 crc = crc32(0, ri, sizeof(*ri)-8); 998 crc = crc32(0, ri, sizeof(*ri)-8);
970 if (crc != je32_to_cpu(ri->node_crc)) { 999 if (crc != je32_to_cpu(ri->node_crc)) {
971 printk(KERN_NOTICE "jffs2_scan_inode_node(): CRC failed on " 1000 pr_notice("%s(): CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
972 "node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", 1001 __func__, ofs, je32_to_cpu(ri->node_crc), crc);
973 ofs, je32_to_cpu(ri->node_crc), crc);
974 /* 1002 /*
975 * We believe totlen because the CRC on the node 1003 * We believe totlen because the CRC on the node
976 * _header_ was OK, just the node itself failed. 1004 * _header_ was OK, just the node itself failed.
@@ -989,10 +1017,10 @@ static int jffs2_scan_inode_node(struct jffs2_sb_info *c, struct jffs2_erasebloc
989 /* Wheee. It worked */ 1017 /* Wheee. It worked */
990 jffs2_link_node_ref(c, jeb, ofs | REF_UNCHECKED, PAD(je32_to_cpu(ri->totlen)), ic); 1018 jffs2_link_node_ref(c, jeb, ofs | REF_UNCHECKED, PAD(je32_to_cpu(ri->totlen)), ic);
991 1019
992 D1(printk(KERN_DEBUG "Node is ino #%u, version %d. Range 0x%x-0x%x\n", 1020 jffs2_dbg(1, "Node is ino #%u, version %d. Range 0x%x-0x%x\n",
993 je32_to_cpu(ri->ino), je32_to_cpu(ri->version), 1021 je32_to_cpu(ri->ino), je32_to_cpu(ri->version),
994 je32_to_cpu(ri->offset), 1022 je32_to_cpu(ri->offset),
995 je32_to_cpu(ri->offset)+je32_to_cpu(ri->dsize))); 1023 je32_to_cpu(ri->offset)+je32_to_cpu(ri->dsize));
996 1024
997 pseudo_random += je32_to_cpu(ri->version); 1025 pseudo_random += je32_to_cpu(ri->version);
998 1026
@@ -1012,15 +1040,15 @@ static int jffs2_scan_dirent_node(struct jffs2_sb_info *c, struct jffs2_eraseblo
1012 uint32_t crc; 1040 uint32_t crc;
1013 int err; 1041 int err;
1014 1042
1015 D1(printk(KERN_DEBUG "jffs2_scan_dirent_node(): Node at 0x%08x\n", ofs)); 1043 jffs2_dbg(1, "%s(): Node at 0x%08x\n", __func__, ofs);
1016 1044
1017 /* We don't get here unless the node is still valid, so we don't have to 1045 /* We don't get here unless the node is still valid, so we don't have to
1018 mask in the ACCURATE bit any more. */ 1046 mask in the ACCURATE bit any more. */
1019 crc = crc32(0, rd, sizeof(*rd)-8); 1047 crc = crc32(0, rd, sizeof(*rd)-8);
1020 1048
1021 if (crc != je32_to_cpu(rd->node_crc)) { 1049 if (crc != je32_to_cpu(rd->node_crc)) {
1022 printk(KERN_NOTICE "jffs2_scan_dirent_node(): Node CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", 1050 pr_notice("%s(): Node CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
1023 ofs, je32_to_cpu(rd->node_crc), crc); 1051 __func__, ofs, je32_to_cpu(rd->node_crc), crc);
1024 /* We believe totlen because the CRC on the node _header_ was OK, just the node itself failed. */ 1052 /* We believe totlen because the CRC on the node _header_ was OK, just the node itself failed. */
1025 if ((err = jffs2_scan_dirty_space(c, jeb, PAD(je32_to_cpu(rd->totlen))))) 1053 if ((err = jffs2_scan_dirty_space(c, jeb, PAD(je32_to_cpu(rd->totlen)))))
1026 return err; 1054 return err;
@@ -1032,7 +1060,7 @@ static int jffs2_scan_dirent_node(struct jffs2_sb_info *c, struct jffs2_eraseblo
1032 /* Should never happen. Did. (OLPC trac #4184)*/ 1060 /* Should never happen. Did. (OLPC trac #4184)*/
1033 checkedlen = strnlen(rd->name, rd->nsize); 1061 checkedlen = strnlen(rd->name, rd->nsize);
1034 if (checkedlen < rd->nsize) { 1062 if (checkedlen < rd->nsize) {
1035 printk(KERN_ERR "Dirent at %08x has zeroes in name. Truncating to %d chars\n", 1063 pr_err("Dirent at %08x has zeroes in name. Truncating to %d chars\n",
1036 ofs, checkedlen); 1064 ofs, checkedlen);
1037 } 1065 }
1038 fd = jffs2_alloc_full_dirent(checkedlen+1); 1066 fd = jffs2_alloc_full_dirent(checkedlen+1);
@@ -1044,9 +1072,10 @@ static int jffs2_scan_dirent_node(struct jffs2_sb_info *c, struct jffs2_eraseblo
1044 1072
1045 crc = crc32(0, fd->name, rd->nsize); 1073 crc = crc32(0, fd->name, rd->nsize);
1046 if (crc != je32_to_cpu(rd->name_crc)) { 1074 if (crc != je32_to_cpu(rd->name_crc)) {
1047 printk(KERN_NOTICE "jffs2_scan_dirent_node(): Name CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", 1075 pr_notice("%s(): Name CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
1048 ofs, je32_to_cpu(rd->name_crc), crc); 1076 __func__, ofs, je32_to_cpu(rd->name_crc), crc);
1049 D1(printk(KERN_NOTICE "Name for which CRC failed is (now) '%s', ino #%d\n", fd->name, je32_to_cpu(rd->ino))); 1077 jffs2_dbg(1, "Name for which CRC failed is (now) '%s', ino #%d\n",
1078 fd->name, je32_to_cpu(rd->ino));
1050 jffs2_free_full_dirent(fd); 1079 jffs2_free_full_dirent(fd);
1051 /* FIXME: Why do we believe totlen? */ 1080 /* FIXME: Why do we believe totlen? */
1052 /* We believe totlen because the CRC on the node _header_ was OK, just the name failed. */ 1081 /* We believe totlen because the CRC on the node _header_ was OK, just the name failed. */
diff --git a/fs/jffs2/security.c b/fs/jffs2/security.c
index 0f20208df602..aca97f35b292 100644
--- a/fs/jffs2/security.c
+++ b/fs/jffs2/security.c
@@ -23,8 +23,8 @@
23#include "nodelist.h" 23#include "nodelist.h"
24 24
25/* ---- Initial Security Label(s) Attachment callback --- */ 25/* ---- Initial Security Label(s) Attachment callback --- */
26int jffs2_initxattrs(struct inode *inode, const struct xattr *xattr_array, 26static int jffs2_initxattrs(struct inode *inode,
27 void *fs_info) 27 const struct xattr *xattr_array, void *fs_info)
28{ 28{
29 const struct xattr *xattr; 29 const struct xattr *xattr;
30 int err = 0; 30 int err = 0;
diff --git a/fs/jffs2/summary.c b/fs/jffs2/summary.c
index e537fb0e0184..c522d098bb4f 100644
--- a/fs/jffs2/summary.c
+++ b/fs/jffs2/summary.c
@@ -11,6 +11,8 @@
11 * 11 *
12 */ 12 */
13 13
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
14#include <linux/kernel.h> 16#include <linux/kernel.h>
15#include <linux/slab.h> 17#include <linux/slab.h>
16#include <linux/mtd/mtd.h> 18#include <linux/mtd/mtd.h>
@@ -442,13 +444,16 @@ static int jffs2_sum_process_sum_data(struct jffs2_sb_info *c, struct jffs2_eras
442 /* This should never happen, but https://dev.laptop.org/ticket/4184 */ 444 /* This should never happen, but https://dev.laptop.org/ticket/4184 */
443 checkedlen = strnlen(spd->name, spd->nsize); 445 checkedlen = strnlen(spd->name, spd->nsize);
444 if (!checkedlen) { 446 if (!checkedlen) {
445 printk(KERN_ERR "Dirent at %08x has zero at start of name. Aborting mount.\n", 447 pr_err("Dirent at %08x has zero at start of name. Aborting mount.\n",
446 jeb->offset + je32_to_cpu(spd->offset)); 448 jeb->offset +
449 je32_to_cpu(spd->offset));
447 return -EIO; 450 return -EIO;
448 } 451 }
449 if (checkedlen < spd->nsize) { 452 if (checkedlen < spd->nsize) {
450 printk(KERN_ERR "Dirent at %08x has zeroes in name. Truncating to %d chars\n", 453 pr_err("Dirent at %08x has zeroes in name. Truncating to %d chars\n",
451 jeb->offset + je32_to_cpu(spd->offset), checkedlen); 454 jeb->offset +
455 je32_to_cpu(spd->offset),
456 checkedlen);
452 } 457 }
453 458
454 459
@@ -808,8 +813,7 @@ static int jffs2_sum_write_data(struct jffs2_sb_info *c, struct jffs2_eraseblock
808 813
809 sum_ofs = jeb->offset + c->sector_size - jeb->free_size; 814 sum_ofs = jeb->offset + c->sector_size - jeb->free_size;
810 815
811 dbg_summary("JFFS2: writing out data to flash to pos : 0x%08x\n", 816 dbg_summary("writing out data to flash to pos : 0x%08x\n", sum_ofs);
812 sum_ofs);
813 817
814 ret = jffs2_flash_writev(c, vecs, 2, sum_ofs, &retlen, 0); 818 ret = jffs2_flash_writev(c, vecs, 2, sum_ofs, &retlen, 0);
815 819
diff --git a/fs/jffs2/super.c b/fs/jffs2/super.c
index f2d96b5e64f6..f9916f312bd8 100644
--- a/fs/jffs2/super.c
+++ b/fs/jffs2/super.c
@@ -9,6 +9,8 @@
9 * 9 *
10 */ 10 */
11 11
12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
12#include <linux/kernel.h> 14#include <linux/kernel.h>
13#include <linux/module.h> 15#include <linux/module.h>
14#include <linux/slab.h> 16#include <linux/slab.h>
@@ -69,7 +71,7 @@ static void jffs2_write_super(struct super_block *sb)
69 sb->s_dirt = 0; 71 sb->s_dirt = 0;
70 72
71 if (!(sb->s_flags & MS_RDONLY)) { 73 if (!(sb->s_flags & MS_RDONLY)) {
72 D1(printk(KERN_DEBUG "jffs2_write_super()\n")); 74 jffs2_dbg(1, "%s()\n", __func__);
73 jffs2_flush_wbuf_gc(c, 0); 75 jffs2_flush_wbuf_gc(c, 0);
74 } 76 }
75 77
@@ -214,8 +216,8 @@ static int jffs2_parse_options(struct jffs2_sb_info *c, char *data)
214 JFFS2_COMPR_MODE_FORCEZLIB; 216 JFFS2_COMPR_MODE_FORCEZLIB;
215#endif 217#endif
216 else { 218 else {
217 printk(KERN_ERR "JFFS2 Error: unknown compressor \"%s\"", 219 pr_err("Error: unknown compressor \"%s\"\n",
218 name); 220 name);
219 kfree(name); 221 kfree(name);
220 return -EINVAL; 222 return -EINVAL;
221 } 223 }
@@ -223,8 +225,8 @@ static int jffs2_parse_options(struct jffs2_sb_info *c, char *data)
223 c->mount_opts.override_compr = true; 225 c->mount_opts.override_compr = true;
224 break; 226 break;
225 default: 227 default:
226 printk(KERN_ERR "JFFS2 Error: unrecognized mount option '%s' or missing value\n", 228 pr_err("Error: unrecognized mount option '%s' or missing value\n",
227 p); 229 p);
228 return -EINVAL; 230 return -EINVAL;
229 } 231 }
230 } 232 }
@@ -266,9 +268,9 @@ static int jffs2_fill_super(struct super_block *sb, void *data, int silent)
266 struct jffs2_sb_info *c; 268 struct jffs2_sb_info *c;
267 int ret; 269 int ret;
268 270
269 D1(printk(KERN_DEBUG "jffs2_get_sb_mtd():" 271 jffs2_dbg(1, "jffs2_get_sb_mtd():"
270 " New superblock for device %d (\"%s\")\n", 272 " New superblock for device %d (\"%s\")\n",
271 sb->s_mtd->index, sb->s_mtd->name)); 273 sb->s_mtd->index, sb->s_mtd->name);
272 274
273 c = kzalloc(sizeof(*c), GFP_KERNEL); 275 c = kzalloc(sizeof(*c), GFP_KERNEL);
274 if (!c) 276 if (!c)
@@ -315,7 +317,7 @@ static void jffs2_put_super (struct super_block *sb)
315{ 317{
316 struct jffs2_sb_info *c = JFFS2_SB_INFO(sb); 318 struct jffs2_sb_info *c = JFFS2_SB_INFO(sb);
317 319
318 D2(printk(KERN_DEBUG "jffs2: jffs2_put_super()\n")); 320 jffs2_dbg(2, "%s()\n", __func__);
319 321
320 if (sb->s_dirt) 322 if (sb->s_dirt)
321 jffs2_write_super(sb); 323 jffs2_write_super(sb);
@@ -336,7 +338,7 @@ static void jffs2_put_super (struct super_block *sb)
336 kfree(c->inocache_list); 338 kfree(c->inocache_list);
337 jffs2_clear_xattr_subsystem(c); 339 jffs2_clear_xattr_subsystem(c);
338 mtd_sync(c->mtd); 340 mtd_sync(c->mtd);
339 D1(printk(KERN_DEBUG "jffs2_put_super returning\n")); 341 jffs2_dbg(1, "%s(): returning\n", __func__);
340} 342}
341 343
342static void jffs2_kill_sb(struct super_block *sb) 344static void jffs2_kill_sb(struct super_block *sb)
@@ -371,7 +373,7 @@ static int __init init_jffs2_fs(void)
371 BUILD_BUG_ON(sizeof(struct jffs2_raw_inode) != 68); 373 BUILD_BUG_ON(sizeof(struct jffs2_raw_inode) != 68);
372 BUILD_BUG_ON(sizeof(struct jffs2_raw_summary) != 32); 374 BUILD_BUG_ON(sizeof(struct jffs2_raw_summary) != 32);
373 375
374 printk(KERN_INFO "JFFS2 version 2.2." 376 pr_info("version 2.2."
375#ifdef CONFIG_JFFS2_FS_WRITEBUFFER 377#ifdef CONFIG_JFFS2_FS_WRITEBUFFER
376 " (NAND)" 378 " (NAND)"
377#endif 379#endif
@@ -386,22 +388,22 @@ static int __init init_jffs2_fs(void)
386 SLAB_MEM_SPREAD), 388 SLAB_MEM_SPREAD),
387 jffs2_i_init_once); 389 jffs2_i_init_once);
388 if (!jffs2_inode_cachep) { 390 if (!jffs2_inode_cachep) {
389 printk(KERN_ERR "JFFS2 error: Failed to initialise inode cache\n"); 391 pr_err("error: Failed to initialise inode cache\n");
390 return -ENOMEM; 392 return -ENOMEM;
391 } 393 }
392 ret = jffs2_compressors_init(); 394 ret = jffs2_compressors_init();
393 if (ret) { 395 if (ret) {
394 printk(KERN_ERR "JFFS2 error: Failed to initialise compressors\n"); 396 pr_err("error: Failed to initialise compressors\n");
395 goto out; 397 goto out;
396 } 398 }
397 ret = jffs2_create_slab_caches(); 399 ret = jffs2_create_slab_caches();
398 if (ret) { 400 if (ret) {
399 printk(KERN_ERR "JFFS2 error: Failed to initialise slab caches\n"); 401 pr_err("error: Failed to initialise slab caches\n");
400 goto out_compressors; 402 goto out_compressors;
401 } 403 }
402 ret = register_filesystem(&jffs2_fs_type); 404 ret = register_filesystem(&jffs2_fs_type);
403 if (ret) { 405 if (ret) {
404 printk(KERN_ERR "JFFS2 error: Failed to register filesystem\n"); 406 pr_err("error: Failed to register filesystem\n");
405 goto out_slab; 407 goto out_slab;
406 } 408 }
407 return 0; 409 return 0;
diff --git a/fs/jffs2/symlink.c b/fs/jffs2/symlink.c
index e3035afb1814..6e563332bb24 100644
--- a/fs/jffs2/symlink.c
+++ b/fs/jffs2/symlink.c
@@ -9,6 +9,8 @@
9 * 9 *
10 */ 10 */
11 11
12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
12#include <linux/kernel.h> 14#include <linux/kernel.h>
13#include <linux/fs.h> 15#include <linux/fs.h>
14#include <linux/namei.h> 16#include <linux/namei.h>
@@ -47,10 +49,11 @@ static void *jffs2_follow_link(struct dentry *dentry, struct nameidata *nd)
47 */ 49 */
48 50
49 if (!p) { 51 if (!p) {
50 printk(KERN_ERR "jffs2_follow_link(): can't find symlink target\n"); 52 pr_err("%s(): can't find symlink target\n", __func__);
51 p = ERR_PTR(-EIO); 53 p = ERR_PTR(-EIO);
52 } 54 }
53 D1(printk(KERN_DEBUG "jffs2_follow_link(): target path is '%s'\n", (char *) f->target)); 55 jffs2_dbg(1, "%s(): target path is '%s'\n",
56 __func__, (char *)f->target);
54 57
55 nd_set_link(nd, p); 58 nd_set_link(nd, p);
56 59
diff --git a/fs/jffs2/wbuf.c b/fs/jffs2/wbuf.c
index 30e8f47e8a23..74d9be19df3f 100644
--- a/fs/jffs2/wbuf.c
+++ b/fs/jffs2/wbuf.c
@@ -11,6 +11,8 @@
11 * 11 *
12 */ 12 */
13 13
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
14#include <linux/kernel.h> 16#include <linux/kernel.h>
15#include <linux/slab.h> 17#include <linux/slab.h>
16#include <linux/mtd/mtd.h> 18#include <linux/mtd/mtd.h>
@@ -91,7 +93,7 @@ static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino)
91 93
92 new = kmalloc(sizeof(*new), GFP_KERNEL); 94 new = kmalloc(sizeof(*new), GFP_KERNEL);
93 if (!new) { 95 if (!new) {
94 D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n")); 96 jffs2_dbg(1, "No memory to allocate inodirty. Fallback to all considered dirty\n");
95 jffs2_clear_wbuf_ino_list(c); 97 jffs2_clear_wbuf_ino_list(c);
96 c->wbuf_inodes = &inodirty_nomem; 98 c->wbuf_inodes = &inodirty_nomem;
97 return; 99 return;
@@ -113,19 +115,20 @@ static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c)
113 list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) { 115 list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) {
114 struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); 116 struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
115 117
116 D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset)); 118 jffs2_dbg(1, "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n",
119 jeb->offset);
117 list_del(this); 120 list_del(this);
118 if ((jiffies + (n++)) & 127) { 121 if ((jiffies + (n++)) & 127) {
119 /* Most of the time, we just erase it immediately. Otherwise we 122 /* Most of the time, we just erase it immediately. Otherwise we
120 spend ages scanning it on mount, etc. */ 123 spend ages scanning it on mount, etc. */
121 D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n")); 124 jffs2_dbg(1, "...and adding to erase_pending_list\n");
122 list_add_tail(&jeb->list, &c->erase_pending_list); 125 list_add_tail(&jeb->list, &c->erase_pending_list);
123 c->nr_erasing_blocks++; 126 c->nr_erasing_blocks++;
124 jffs2_garbage_collect_trigger(c); 127 jffs2_garbage_collect_trigger(c);
125 } else { 128 } else {
126 /* Sometimes, however, we leave it elsewhere so it doesn't get 129 /* Sometimes, however, we leave it elsewhere so it doesn't get
127 immediately reused, and we spread the load a bit. */ 130 immediately reused, and we spread the load a bit. */
128 D1(printk(KERN_DEBUG "...and adding to erasable_list\n")); 131 jffs2_dbg(1, "...and adding to erasable_list\n");
129 list_add_tail(&jeb->list, &c->erasable_list); 132 list_add_tail(&jeb->list, &c->erasable_list);
130 } 133 }
131 } 134 }
@@ -136,7 +139,7 @@ static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c)
136 139
137static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty) 140static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty)
138{ 141{
139 D1(printk("About to refile bad block at %08x\n", jeb->offset)); 142 jffs2_dbg(1, "About to refile bad block at %08x\n", jeb->offset);
140 143
141 /* File the existing block on the bad_used_list.... */ 144 /* File the existing block on the bad_used_list.... */
142 if (c->nextblock == jeb) 145 if (c->nextblock == jeb)
@@ -144,12 +147,14 @@ static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock
144 else /* Not sure this should ever happen... need more coffee */ 147 else /* Not sure this should ever happen... need more coffee */
145 list_del(&jeb->list); 148 list_del(&jeb->list);
146 if (jeb->first_node) { 149 if (jeb->first_node) {
147 D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset)); 150 jffs2_dbg(1, "Refiling block at %08x to bad_used_list\n",
151 jeb->offset);
148 list_add(&jeb->list, &c->bad_used_list); 152 list_add(&jeb->list, &c->bad_used_list);
149 } else { 153 } else {
150 BUG_ON(allow_empty == REFILE_NOTEMPTY); 154 BUG_ON(allow_empty == REFILE_NOTEMPTY);
151 /* It has to have had some nodes or we couldn't be here */ 155 /* It has to have had some nodes or we couldn't be here */
152 D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset)); 156 jffs2_dbg(1, "Refiling block at %08x to erase_pending_list\n",
157 jeb->offset);
153 list_add(&jeb->list, &c->erase_pending_list); 158 list_add(&jeb->list, &c->erase_pending_list);
154 c->nr_erasing_blocks++; 159 c->nr_erasing_blocks++;
155 jffs2_garbage_collect_trigger(c); 160 jffs2_garbage_collect_trigger(c);
@@ -230,10 +235,12 @@ static int jffs2_verify_write(struct jffs2_sb_info *c, unsigned char *buf,
230 235
231 ret = mtd_read(c->mtd, ofs, c->wbuf_pagesize, &retlen, c->wbuf_verify); 236 ret = mtd_read(c->mtd, ofs, c->wbuf_pagesize, &retlen, c->wbuf_verify);
232 if (ret && ret != -EUCLEAN && ret != -EBADMSG) { 237 if (ret && ret != -EUCLEAN && ret != -EBADMSG) {
233 printk(KERN_WARNING "jffs2_verify_write(): Read back of page at %08x failed: %d\n", c->wbuf_ofs, ret); 238 pr_warn("%s(): Read back of page at %08x failed: %d\n",
239 __func__, c->wbuf_ofs, ret);
234 return ret; 240 return ret;
235 } else if (retlen != c->wbuf_pagesize) { 241 } else if (retlen != c->wbuf_pagesize) {
236 printk(KERN_WARNING "jffs2_verify_write(): Read back of page at %08x gave short read: %zd not %d.\n", ofs, retlen, c->wbuf_pagesize); 242 pr_warn("%s(): Read back of page at %08x gave short read: %zd not %d\n",
243 __func__, ofs, retlen, c->wbuf_pagesize);
237 return -EIO; 244 return -EIO;
238 } 245 }
239 if (!memcmp(buf, c->wbuf_verify, c->wbuf_pagesize)) 246 if (!memcmp(buf, c->wbuf_verify, c->wbuf_pagesize))
@@ -246,12 +253,12 @@ static int jffs2_verify_write(struct jffs2_sb_info *c, unsigned char *buf,
246 else 253 else
247 eccstr = "OK or unused"; 254 eccstr = "OK or unused";
248 255
249 printk(KERN_WARNING "Write verify error (ECC %s) at %08x. Wrote:\n", 256 pr_warn("Write verify error (ECC %s) at %08x. Wrote:\n",
250 eccstr, c->wbuf_ofs); 257 eccstr, c->wbuf_ofs);
251 print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1, 258 print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1,
252 c->wbuf, c->wbuf_pagesize, 0); 259 c->wbuf, c->wbuf_pagesize, 0);
253 260
254 printk(KERN_WARNING "Read back:\n"); 261 pr_warn("Read back:\n");
255 print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1, 262 print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1,
256 c->wbuf_verify, c->wbuf_pagesize, 0); 263 c->wbuf_verify, c->wbuf_pagesize, 0);
257 264
@@ -308,7 +315,7 @@ static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
308 315
309 if (!first_raw) { 316 if (!first_raw) {
310 /* All nodes were obsolete. Nothing to recover. */ 317 /* All nodes were obsolete. Nothing to recover. */
311 D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n")); 318 jffs2_dbg(1, "No non-obsolete nodes to be recovered. Just filing block bad\n");
312 c->wbuf_len = 0; 319 c->wbuf_len = 0;
313 return; 320 return;
314 } 321 }
@@ -331,7 +338,7 @@ static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
331 338
332 buf = kmalloc(end - start, GFP_KERNEL); 339 buf = kmalloc(end - start, GFP_KERNEL);
333 if (!buf) { 340 if (!buf) {
334 printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n"); 341 pr_crit("Malloc failure in wbuf recovery. Data loss ensues.\n");
335 342
336 goto read_failed; 343 goto read_failed;
337 } 344 }
@@ -346,7 +353,7 @@ static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
346 ret = 0; 353 ret = 0;
347 354
348 if (ret || retlen != c->wbuf_ofs - start) { 355 if (ret || retlen != c->wbuf_ofs - start) {
349 printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n"); 356 pr_crit("Old data are already lost in wbuf recovery. Data loss ensues.\n");
350 357
351 kfree(buf); 358 kfree(buf);
352 buf = NULL; 359 buf = NULL;
@@ -380,7 +387,7 @@ static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
380 /* ... and get an allocation of space from a shiny new block instead */ 387 /* ... and get an allocation of space from a shiny new block instead */
381 ret = jffs2_reserve_space_gc(c, end-start, &len, JFFS2_SUMMARY_NOSUM_SIZE); 388 ret = jffs2_reserve_space_gc(c, end-start, &len, JFFS2_SUMMARY_NOSUM_SIZE);
382 if (ret) { 389 if (ret) {
383 printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n"); 390 pr_warn("Failed to allocate space for wbuf recovery. Data loss ensues.\n");
384 kfree(buf); 391 kfree(buf);
385 return; 392 return;
386 } 393 }
@@ -390,7 +397,7 @@ static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
390 397
391 ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, nr_refile); 398 ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, nr_refile);
392 if (ret) { 399 if (ret) {
393 printk(KERN_WARNING "Failed to allocate node refs for wbuf recovery. Data loss ensues.\n"); 400 pr_warn("Failed to allocate node refs for wbuf recovery. Data loss ensues.\n");
394 kfree(buf); 401 kfree(buf);
395 return; 402 return;
396 } 403 }
@@ -406,13 +413,13 @@ static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
406 unsigned char *rewrite_buf = buf?:c->wbuf; 413 unsigned char *rewrite_buf = buf?:c->wbuf;
407 uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize); 414 uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize);
408 415
409 D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n", 416 jffs2_dbg(1, "Write 0x%x bytes at 0x%08x in wbuf recover\n",
410 towrite, ofs)); 417 towrite, ofs);
411 418
412#ifdef BREAKMEHEADER 419#ifdef BREAKMEHEADER
413 static int breakme; 420 static int breakme;
414 if (breakme++ == 20) { 421 if (breakme++ == 20) {
415 printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs); 422 pr_notice("Faking write error at 0x%08x\n", ofs);
416 breakme = 0; 423 breakme = 0;
417 mtd_write(c->mtd, ofs, towrite, &retlen, brokenbuf); 424 mtd_write(c->mtd, ofs, towrite, &retlen, brokenbuf);
418 ret = -EIO; 425 ret = -EIO;
@@ -423,7 +430,7 @@ static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
423 430
424 if (ret || retlen != towrite || jffs2_verify_write(c, rewrite_buf, ofs)) { 431 if (ret || retlen != towrite || jffs2_verify_write(c, rewrite_buf, ofs)) {
425 /* Argh. We tried. Really we did. */ 432 /* Argh. We tried. Really we did. */
426 printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n"); 433 pr_crit("Recovery of wbuf failed due to a second write error\n");
427 kfree(buf); 434 kfree(buf);
428 435
429 if (retlen) 436 if (retlen)
@@ -431,7 +438,7 @@ static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
431 438
432 return; 439 return;
433 } 440 }
434 printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs); 441 pr_notice("Recovery of wbuf succeeded to %08x\n", ofs);
435 442
436 c->wbuf_len = (end - start) - towrite; 443 c->wbuf_len = (end - start) - towrite;
437 c->wbuf_ofs = ofs + towrite; 444 c->wbuf_ofs = ofs + towrite;
@@ -459,8 +466,8 @@ static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
459 struct jffs2_raw_node_ref **adjust_ref = NULL; 466 struct jffs2_raw_node_ref **adjust_ref = NULL;
460 struct jffs2_inode_info *f = NULL; 467 struct jffs2_inode_info *f = NULL;
461 468
462 D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n", 469 jffs2_dbg(1, "Refiling block of %08x at %08x(%d) to %08x\n",
463 rawlen, ref_offset(raw), ref_flags(raw), ofs)); 470 rawlen, ref_offset(raw), ref_flags(raw), ofs);
464 471
465 ic = jffs2_raw_ref_to_ic(raw); 472 ic = jffs2_raw_ref_to_ic(raw);
466 473
@@ -540,7 +547,8 @@ static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
540 547
541 /* Fix up the original jeb now it's on the bad_list */ 548 /* Fix up the original jeb now it's on the bad_list */
542 if (first_raw == jeb->first_node) { 549 if (first_raw == jeb->first_node) {
543 D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset)); 550 jffs2_dbg(1, "Failing block at %08x is now empty. Moving to erase_pending_list\n",
551 jeb->offset);
544 list_move(&jeb->list, &c->erase_pending_list); 552 list_move(&jeb->list, &c->erase_pending_list);
545 c->nr_erasing_blocks++; 553 c->nr_erasing_blocks++;
546 jffs2_garbage_collect_trigger(c); 554 jffs2_garbage_collect_trigger(c);
@@ -554,7 +562,8 @@ static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
554 562
555 spin_unlock(&c->erase_completion_lock); 563 spin_unlock(&c->erase_completion_lock);
556 564
557 D1(printk(KERN_DEBUG "wbuf recovery completed OK. wbuf_ofs 0x%08x, len 0x%x\n", c->wbuf_ofs, c->wbuf_len)); 565 jffs2_dbg(1, "wbuf recovery completed OK. wbuf_ofs 0x%08x, len 0x%x\n",
566 c->wbuf_ofs, c->wbuf_len);
558 567
559} 568}
560 569
@@ -579,7 +588,7 @@ static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
579 return 0; 588 return 0;
580 589
581 if (!mutex_is_locked(&c->alloc_sem)) { 590 if (!mutex_is_locked(&c->alloc_sem)) {
582 printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n"); 591 pr_crit("jffs2_flush_wbuf() called with alloc_sem not locked!\n");
583 BUG(); 592 BUG();
584 } 593 }
585 594
@@ -617,7 +626,7 @@ static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
617#ifdef BREAKME 626#ifdef BREAKME
618 static int breakme; 627 static int breakme;
619 if (breakme++ == 20) { 628 if (breakme++ == 20) {
620 printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs); 629 pr_notice("Faking write error at 0x%08x\n", c->wbuf_ofs);
621 breakme = 0; 630 breakme = 0;
622 mtd_write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, 631 mtd_write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen,
623 brokenbuf); 632 brokenbuf);
@@ -629,11 +638,11 @@ static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
629 &retlen, c->wbuf); 638 &retlen, c->wbuf);
630 639
631 if (ret) { 640 if (ret) {
632 printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n", ret); 641 pr_warn("jffs2_flush_wbuf(): Write failed with %d\n", ret);
633 goto wfail; 642 goto wfail;
634 } else if (retlen != c->wbuf_pagesize) { 643 } else if (retlen != c->wbuf_pagesize) {
635 printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n", 644 pr_warn("jffs2_flush_wbuf(): Write was short: %zd instead of %d\n",
636 retlen, c->wbuf_pagesize); 645 retlen, c->wbuf_pagesize);
637 ret = -EIO; 646 ret = -EIO;
638 goto wfail; 647 goto wfail;
639 } else if ((ret = jffs2_verify_write(c, c->wbuf, c->wbuf_ofs))) { 648 } else if ((ret = jffs2_verify_write(c, c->wbuf, c->wbuf_ofs))) {
@@ -647,17 +656,18 @@ static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
647 if (pad) { 656 if (pad) {
648 uint32_t waste = c->wbuf_pagesize - c->wbuf_len; 657 uint32_t waste = c->wbuf_pagesize - c->wbuf_len;
649 658
650 D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n", 659 jffs2_dbg(1, "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n",
651 (wbuf_jeb==c->nextblock)?"next":"", wbuf_jeb->offset)); 660 (wbuf_jeb == c->nextblock) ? "next" : "",
661 wbuf_jeb->offset);
652 662
653 /* wbuf_pagesize - wbuf_len is the amount of space that's to be 663 /* wbuf_pagesize - wbuf_len is the amount of space that's to be
654 padded. If there is less free space in the block than that, 664 padded. If there is less free space in the block than that,
655 something screwed up */ 665 something screwed up */
656 if (wbuf_jeb->free_size < waste) { 666 if (wbuf_jeb->free_size < waste) {
657 printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n", 667 pr_crit("jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n",
658 c->wbuf_ofs, c->wbuf_len, waste); 668 c->wbuf_ofs, c->wbuf_len, waste);
659 printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n", 669 pr_crit("jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n",
660 wbuf_jeb->offset, wbuf_jeb->free_size); 670 wbuf_jeb->offset, wbuf_jeb->free_size);
661 BUG(); 671 BUG();
662 } 672 }
663 673
@@ -694,14 +704,14 @@ int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
694 uint32_t old_wbuf_len; 704 uint32_t old_wbuf_len;
695 int ret = 0; 705 int ret = 0;
696 706
697 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino)); 707 jffs2_dbg(1, "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino);
698 708
699 if (!c->wbuf) 709 if (!c->wbuf)
700 return 0; 710 return 0;
701 711
702 mutex_lock(&c->alloc_sem); 712 mutex_lock(&c->alloc_sem);
703 if (!jffs2_wbuf_pending_for_ino(c, ino)) { 713 if (!jffs2_wbuf_pending_for_ino(c, ino)) {
704 D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino)); 714 jffs2_dbg(1, "Ino #%d not pending in wbuf. Returning\n", ino);
705 mutex_unlock(&c->alloc_sem); 715 mutex_unlock(&c->alloc_sem);
706 return 0; 716 return 0;
707 } 717 }
@@ -711,7 +721,8 @@ int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
711 721
712 if (c->unchecked_size) { 722 if (c->unchecked_size) {
713 /* GC won't make any progress for a while */ 723 /* GC won't make any progress for a while */
714 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n")); 724 jffs2_dbg(1, "%s(): padding. Not finished checking\n",
725 __func__);
715 down_write(&c->wbuf_sem); 726 down_write(&c->wbuf_sem);
716 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); 727 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
717 /* retry flushing wbuf in case jffs2_wbuf_recover 728 /* retry flushing wbuf in case jffs2_wbuf_recover
@@ -724,7 +735,7 @@ int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
724 735
725 mutex_unlock(&c->alloc_sem); 736 mutex_unlock(&c->alloc_sem);
726 737
727 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n")); 738 jffs2_dbg(1, "%s(): calls gc pass\n", __func__);
728 739
729 ret = jffs2_garbage_collect_pass(c); 740 ret = jffs2_garbage_collect_pass(c);
730 if (ret) { 741 if (ret) {
@@ -742,7 +753,7 @@ int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
742 mutex_lock(&c->alloc_sem); 753 mutex_lock(&c->alloc_sem);
743 } 754 }
744 755
745 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n")); 756 jffs2_dbg(1, "%s(): ends...\n", __func__);
746 757
747 mutex_unlock(&c->alloc_sem); 758 mutex_unlock(&c->alloc_sem);
748 return ret; 759 return ret;
@@ -811,9 +822,8 @@ int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs,
811 if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) { 822 if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) {
812 /* It's a write to a new block */ 823 /* It's a write to a new block */
813 if (c->wbuf_len) { 824 if (c->wbuf_len) {
814 D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx " 825 jffs2_dbg(1, "%s(): to 0x%lx causes flush of wbuf at 0x%08x\n",
815 "causes flush of wbuf at 0x%08x\n", 826 __func__, (unsigned long)to, c->wbuf_ofs);
816 (unsigned long)to, c->wbuf_ofs));
817 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); 827 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
818 if (ret) 828 if (ret)
819 goto outerr; 829 goto outerr;
@@ -825,11 +835,11 @@ int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs,
825 835
826 if (to != PAD(c->wbuf_ofs + c->wbuf_len)) { 836 if (to != PAD(c->wbuf_ofs + c->wbuf_len)) {
827 /* We're not writing immediately after the writebuffer. Bad. */ 837 /* We're not writing immediately after the writebuffer. Bad. */
828 printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write " 838 pr_crit("%s(): Non-contiguous write to %08lx\n",
829 "to %08lx\n", (unsigned long)to); 839 __func__, (unsigned long)to);
830 if (c->wbuf_len) 840 if (c->wbuf_len)
831 printk(KERN_CRIT "wbuf was previously %08x-%08x\n", 841 pr_crit("wbuf was previously %08x-%08x\n",
832 c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len); 842 c->wbuf_ofs, c->wbuf_ofs + c->wbuf_len);
833 BUG(); 843 BUG();
834 } 844 }
835 845
@@ -957,8 +967,8 @@ int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *re
957 967
958 if ( (ret == -EBADMSG || ret == -EUCLEAN) && (*retlen == len) ) { 968 if ( (ret == -EBADMSG || ret == -EUCLEAN) && (*retlen == len) ) {
959 if (ret == -EBADMSG) 969 if (ret == -EBADMSG)
960 printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx)" 970 pr_warn("mtd->read(0x%zx bytes from 0x%llx) returned ECC error\n",
961 " returned ECC error\n", len, ofs); 971 len, ofs);
962 /* 972 /*
963 * We have the raw data without ECC correction in the buffer, 973 * We have the raw data without ECC correction in the buffer,
964 * maybe we are lucky and all data or parts are correct. We 974 * maybe we are lucky and all data or parts are correct. We
@@ -1034,9 +1044,8 @@ int jffs2_check_oob_empty(struct jffs2_sb_info *c,
1034 1044
1035 ret = mtd_read_oob(c->mtd, jeb->offset, &ops); 1045 ret = mtd_read_oob(c->mtd, jeb->offset, &ops);
1036 if (ret || ops.oobretlen != ops.ooblen) { 1046 if (ret || ops.oobretlen != ops.ooblen) {
1037 printk(KERN_ERR "cannot read OOB for EB at %08x, requested %zd" 1047 pr_err("cannot read OOB for EB at %08x, requested %zd bytes, read %zd bytes, error %d\n",
1038 " bytes, read %zd bytes, error %d\n", 1048 jeb->offset, ops.ooblen, ops.oobretlen, ret);
1039 jeb->offset, ops.ooblen, ops.oobretlen, ret);
1040 if (!ret) 1049 if (!ret)
1041 ret = -EIO; 1050 ret = -EIO;
1042 return ret; 1051 return ret;
@@ -1048,8 +1057,8 @@ int jffs2_check_oob_empty(struct jffs2_sb_info *c,
1048 continue; 1057 continue;
1049 1058
1050 if (ops.oobbuf[i] != 0xFF) { 1059 if (ops.oobbuf[i] != 0xFF) {
1051 D2(printk(KERN_DEBUG "Found %02x at %x in OOB for " 1060 jffs2_dbg(2, "Found %02x at %x in OOB for "
1052 "%08x\n", ops.oobbuf[i], i, jeb->offset)); 1061 "%08x\n", ops.oobbuf[i], i, jeb->offset);
1053 return 1; 1062 return 1;
1054 } 1063 }
1055 } 1064 }
@@ -1077,9 +1086,8 @@ int jffs2_check_nand_cleanmarker(struct jffs2_sb_info *c,
1077 1086
1078 ret = mtd_read_oob(c->mtd, jeb->offset, &ops); 1087 ret = mtd_read_oob(c->mtd, jeb->offset, &ops);
1079 if (ret || ops.oobretlen != ops.ooblen) { 1088 if (ret || ops.oobretlen != ops.ooblen) {
1080 printk(KERN_ERR "cannot read OOB for EB at %08x, requested %zd" 1089 pr_err("cannot read OOB for EB at %08x, requested %zd bytes, read %zd bytes, error %d\n",
1081 " bytes, read %zd bytes, error %d\n", 1090 jeb->offset, ops.ooblen, ops.oobretlen, ret);
1082 jeb->offset, ops.ooblen, ops.oobretlen, ret);
1083 if (!ret) 1091 if (!ret)
1084 ret = -EIO; 1092 ret = -EIO;
1085 return ret; 1093 return ret;
@@ -1103,9 +1111,8 @@ int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c,
1103 1111
1104 ret = mtd_write_oob(c->mtd, jeb->offset, &ops); 1112 ret = mtd_write_oob(c->mtd, jeb->offset, &ops);
1105 if (ret || ops.oobretlen != ops.ooblen) { 1113 if (ret || ops.oobretlen != ops.ooblen) {
1106 printk(KERN_ERR "cannot write OOB for EB at %08x, requested %zd" 1114 pr_err("cannot write OOB for EB at %08x, requested %zd bytes, read %zd bytes, error %d\n",
1107 " bytes, read %zd bytes, error %d\n", 1115 jeb->offset, ops.ooblen, ops.oobretlen, ret);
1108 jeb->offset, ops.ooblen, ops.oobretlen, ret);
1109 if (!ret) 1116 if (!ret)
1110 ret = -EIO; 1117 ret = -EIO;
1111 return ret; 1118 return ret;
@@ -1130,11 +1137,12 @@ int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *
1130 if( ++jeb->bad_count < MAX_ERASE_FAILURES) 1137 if( ++jeb->bad_count < MAX_ERASE_FAILURES)
1131 return 0; 1138 return 0;
1132 1139
1133 printk(KERN_WARNING "JFFS2: marking eraseblock at %08x\n as bad", bad_offset); 1140 pr_warn("marking eraseblock at %08x as bad\n", bad_offset);
1134 ret = mtd_block_markbad(c->mtd, bad_offset); 1141 ret = mtd_block_markbad(c->mtd, bad_offset);
1135 1142
1136 if (ret) { 1143 if (ret) {
1137 D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret)); 1144 jffs2_dbg(1, "%s(): Write failed for block at %08x: error %d\n",
1145 __func__, jeb->offset, ret);
1138 return ret; 1146 return ret;
1139 } 1147 }
1140 return 1; 1148 return 1;
@@ -1151,11 +1159,11 @@ int jffs2_nand_flash_setup(struct jffs2_sb_info *c)
1151 c->cleanmarker_size = 0; 1159 c->cleanmarker_size = 0;
1152 1160
1153 if (!oinfo || oinfo->oobavail == 0) { 1161 if (!oinfo || oinfo->oobavail == 0) {
1154 printk(KERN_ERR "inconsistent device description\n"); 1162 pr_err("inconsistent device description\n");
1155 return -EINVAL; 1163 return -EINVAL;
1156 } 1164 }
1157 1165
1158 D1(printk(KERN_DEBUG "JFFS2 using OOB on NAND\n")); 1166 jffs2_dbg(1, "using OOB on NAND\n");
1159 1167
1160 c->oobavail = oinfo->oobavail; 1168 c->oobavail = oinfo->oobavail;
1161 1169
@@ -1222,7 +1230,7 @@ int jffs2_dataflash_setup(struct jffs2_sb_info *c) {
1222 1230
1223 if ((c->flash_size % c->sector_size) != 0) { 1231 if ((c->flash_size % c->sector_size) != 0) {
1224 c->flash_size = (c->flash_size / c->sector_size) * c->sector_size; 1232 c->flash_size = (c->flash_size / c->sector_size) * c->sector_size;
1225 printk(KERN_WARNING "JFFS2 flash size adjusted to %dKiB\n", c->flash_size); 1233 pr_warn("flash size adjusted to %dKiB\n", c->flash_size);
1226 }; 1234 };
1227 1235
1228 c->wbuf_ofs = 0xFFFFFFFF; 1236 c->wbuf_ofs = 0xFFFFFFFF;
@@ -1239,7 +1247,8 @@ int jffs2_dataflash_setup(struct jffs2_sb_info *c) {
1239 } 1247 }
1240#endif 1248#endif
1241 1249
1242 printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size); 1250 pr_info("write-buffering enabled buffer (%d) erasesize (%d)\n",
1251 c->wbuf_pagesize, c->sector_size);
1243 1252
1244 return 0; 1253 return 0;
1245} 1254}
@@ -1297,7 +1306,8 @@ int jffs2_ubivol_setup(struct jffs2_sb_info *c) {
1297 if (!c->wbuf) 1306 if (!c->wbuf)
1298 return -ENOMEM; 1307 return -ENOMEM;
1299 1308
1300 printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size); 1309 pr_info("write-buffering enabled buffer (%d) erasesize (%d)\n",
1310 c->wbuf_pagesize, c->sector_size);
1301 1311
1302 return 0; 1312 return 0;
1303} 1313}
diff --git a/fs/jffs2/write.c b/fs/jffs2/write.c
index 30d175b6d290..b634de4c8101 100644
--- a/fs/jffs2/write.c
+++ b/fs/jffs2/write.c
@@ -9,6 +9,8 @@
9 * 9 *
10 */ 10 */
11 11
12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
12#include <linux/kernel.h> 14#include <linux/kernel.h>
13#include <linux/fs.h> 15#include <linux/fs.h>
14#include <linux/crc32.h> 16#include <linux/crc32.h>
@@ -36,7 +38,7 @@ int jffs2_do_new_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
36 f->inocache->state = INO_STATE_PRESENT; 38 f->inocache->state = INO_STATE_PRESENT;
37 39
38 jffs2_add_ino_cache(c, f->inocache); 40 jffs2_add_ino_cache(c, f->inocache);
39 D1(printk(KERN_DEBUG "jffs2_do_new_inode(): Assigned ino# %d\n", f->inocache->ino)); 41 jffs2_dbg(1, "%s(): Assigned ino# %d\n", __func__, f->inocache->ino);
40 ri->ino = cpu_to_je32(f->inocache->ino); 42 ri->ino = cpu_to_je32(f->inocache->ino);
41 43
42 ri->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); 44 ri->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
@@ -68,7 +70,7 @@ struct jffs2_full_dnode *jffs2_write_dnode(struct jffs2_sb_info *c, struct jffs2
68 unsigned long cnt = 2; 70 unsigned long cnt = 2;
69 71
70 D1(if(je32_to_cpu(ri->hdr_crc) != crc32(0, ri, sizeof(struct jffs2_unknown_node)-4)) { 72 D1(if(je32_to_cpu(ri->hdr_crc) != crc32(0, ri, sizeof(struct jffs2_unknown_node)-4)) {
71 printk(KERN_CRIT "Eep. CRC not correct in jffs2_write_dnode()\n"); 73 pr_crit("Eep. CRC not correct in jffs2_write_dnode()\n");
72 BUG(); 74 BUG();
73 } 75 }
74 ); 76 );
@@ -78,7 +80,9 @@ struct jffs2_full_dnode *jffs2_write_dnode(struct jffs2_sb_info *c, struct jffs2
78 vecs[1].iov_len = datalen; 80 vecs[1].iov_len = datalen;
79 81
80 if (je32_to_cpu(ri->totlen) != sizeof(*ri) + datalen) { 82 if (je32_to_cpu(ri->totlen) != sizeof(*ri) + datalen) {
81 printk(KERN_WARNING "jffs2_write_dnode: ri->totlen (0x%08x) != sizeof(*ri) (0x%08zx) + datalen (0x%08x)\n", je32_to_cpu(ri->totlen), sizeof(*ri), datalen); 83 pr_warn("%s(): ri->totlen (0x%08x) != sizeof(*ri) (0x%08zx) + datalen (0x%08x)\n",
84 __func__, je32_to_cpu(ri->totlen),
85 sizeof(*ri), datalen);
82 } 86 }
83 87
84 fn = jffs2_alloc_full_dnode(); 88 fn = jffs2_alloc_full_dnode();
@@ -95,9 +99,9 @@ struct jffs2_full_dnode *jffs2_write_dnode(struct jffs2_sb_info *c, struct jffs2
95 99
96 if ((alloc_mode!=ALLOC_GC) && (je32_to_cpu(ri->version) < f->highest_version)) { 100 if ((alloc_mode!=ALLOC_GC) && (je32_to_cpu(ri->version) < f->highest_version)) {
97 BUG_ON(!retried); 101 BUG_ON(!retried);
98 D1(printk(KERN_DEBUG "jffs2_write_dnode : dnode_version %d, " 102 jffs2_dbg(1, "%s(): dnode_version %d, highest version %d -> updating dnode\n",
99 "highest version %d -> updating dnode\n", 103 __func__,
100 je32_to_cpu(ri->version), f->highest_version)); 104 je32_to_cpu(ri->version), f->highest_version);
101 ri->version = cpu_to_je32(++f->highest_version); 105 ri->version = cpu_to_je32(++f->highest_version);
102 ri->node_crc = cpu_to_je32(crc32(0, ri, sizeof(*ri)-8)); 106 ri->node_crc = cpu_to_je32(crc32(0, ri, sizeof(*ri)-8));
103 } 107 }
@@ -106,8 +110,8 @@ struct jffs2_full_dnode *jffs2_write_dnode(struct jffs2_sb_info *c, struct jffs2
106 (alloc_mode==ALLOC_GC)?0:f->inocache->ino); 110 (alloc_mode==ALLOC_GC)?0:f->inocache->ino);
107 111
108 if (ret || (retlen != sizeof(*ri) + datalen)) { 112 if (ret || (retlen != sizeof(*ri) + datalen)) {
109 printk(KERN_NOTICE "Write of %zd bytes at 0x%08x failed. returned %d, retlen %zd\n", 113 pr_notice("Write of %zd bytes at 0x%08x failed. returned %d, retlen %zd\n",
110 sizeof(*ri)+datalen, flash_ofs, ret, retlen); 114 sizeof(*ri) + datalen, flash_ofs, ret, retlen);
111 115
112 /* Mark the space as dirtied */ 116 /* Mark the space as dirtied */
113 if (retlen) { 117 if (retlen) {
@@ -118,7 +122,8 @@ struct jffs2_full_dnode *jffs2_write_dnode(struct jffs2_sb_info *c, struct jffs2
118 this node */ 122 this node */
119 jffs2_add_physical_node_ref(c, flash_ofs | REF_OBSOLETE, PAD(sizeof(*ri)+datalen), NULL); 123 jffs2_add_physical_node_ref(c, flash_ofs | REF_OBSOLETE, PAD(sizeof(*ri)+datalen), NULL);
120 } else { 124 } else {
121 printk(KERN_NOTICE "Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n", flash_ofs); 125 pr_notice("Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n",
126 flash_ofs);
122 } 127 }
123 if (!retried && alloc_mode != ALLOC_NORETRY) { 128 if (!retried && alloc_mode != ALLOC_NORETRY) {
124 /* Try to reallocate space and retry */ 129 /* Try to reallocate space and retry */
@@ -127,7 +132,7 @@ struct jffs2_full_dnode *jffs2_write_dnode(struct jffs2_sb_info *c, struct jffs2
127 132
128 retried = 1; 133 retried = 1;
129 134
130 D1(printk(KERN_DEBUG "Retrying failed write.\n")); 135 jffs2_dbg(1, "Retrying failed write.\n");
131 136
132 jffs2_dbg_acct_sanity_check(c,jeb); 137 jffs2_dbg_acct_sanity_check(c,jeb);
133 jffs2_dbg_acct_paranoia_check(c, jeb); 138 jffs2_dbg_acct_paranoia_check(c, jeb);
@@ -147,14 +152,16 @@ struct jffs2_full_dnode *jffs2_write_dnode(struct jffs2_sb_info *c, struct jffs2
147 152
148 if (!ret) { 153 if (!ret) {
149 flash_ofs = write_ofs(c); 154 flash_ofs = write_ofs(c);
150 D1(printk(KERN_DEBUG "Allocated space at 0x%08x to retry failed write.\n", flash_ofs)); 155 jffs2_dbg(1, "Allocated space at 0x%08x to retry failed write.\n",
156 flash_ofs);
151 157
152 jffs2_dbg_acct_sanity_check(c,jeb); 158 jffs2_dbg_acct_sanity_check(c,jeb);
153 jffs2_dbg_acct_paranoia_check(c, jeb); 159 jffs2_dbg_acct_paranoia_check(c, jeb);
154 160
155 goto retry; 161 goto retry;
156 } 162 }
157 D1(printk(KERN_DEBUG "Failed to allocate space to retry failed write: %d!\n", ret)); 163 jffs2_dbg(1, "Failed to allocate space to retry failed write: %d!\n",
164 ret);
158 } 165 }
159 /* Release the full_dnode which is now useless, and return */ 166 /* Release the full_dnode which is now useless, and return */
160 jffs2_free_full_dnode(fn); 167 jffs2_free_full_dnode(fn);
@@ -183,10 +190,10 @@ struct jffs2_full_dnode *jffs2_write_dnode(struct jffs2_sb_info *c, struct jffs2
183 fn->size = je32_to_cpu(ri->dsize); 190 fn->size = je32_to_cpu(ri->dsize);
184 fn->frags = 0; 191 fn->frags = 0;
185 192
186 D1(printk(KERN_DEBUG "jffs2_write_dnode wrote node at 0x%08x(%d) with dsize 0x%x, csize 0x%x, node_crc 0x%08x, data_crc 0x%08x, totlen 0x%08x\n", 193 jffs2_dbg(1, "jffs2_write_dnode wrote node at 0x%08x(%d) with dsize 0x%x, csize 0x%x, node_crc 0x%08x, data_crc 0x%08x, totlen 0x%08x\n",
187 flash_ofs & ~3, flash_ofs & 3, je32_to_cpu(ri->dsize), 194 flash_ofs & ~3, flash_ofs & 3, je32_to_cpu(ri->dsize),
188 je32_to_cpu(ri->csize), je32_to_cpu(ri->node_crc), 195 je32_to_cpu(ri->csize), je32_to_cpu(ri->node_crc),
189 je32_to_cpu(ri->data_crc), je32_to_cpu(ri->totlen))); 196 je32_to_cpu(ri->data_crc), je32_to_cpu(ri->totlen));
190 197
191 if (retried) { 198 if (retried) {
192 jffs2_dbg_acct_sanity_check(c,NULL); 199 jffs2_dbg_acct_sanity_check(c,NULL);
@@ -206,22 +213,23 @@ struct jffs2_full_dirent *jffs2_write_dirent(struct jffs2_sb_info *c, struct jff
206 int retried = 0; 213 int retried = 0;
207 int ret; 214 int ret;
208 215
209 D1(printk(KERN_DEBUG "jffs2_write_dirent(ino #%u, name at *0x%p \"%s\"->ino #%u, name_crc 0x%08x)\n", 216 jffs2_dbg(1, "%s(ino #%u, name at *0x%p \"%s\"->ino #%u, name_crc 0x%08x)\n",
217 __func__,
210 je32_to_cpu(rd->pino), name, name, je32_to_cpu(rd->ino), 218 je32_to_cpu(rd->pino), name, name, je32_to_cpu(rd->ino),
211 je32_to_cpu(rd->name_crc))); 219 je32_to_cpu(rd->name_crc));
212 220
213 D1(if(je32_to_cpu(rd->hdr_crc) != crc32(0, rd, sizeof(struct jffs2_unknown_node)-4)) { 221 D1(if(je32_to_cpu(rd->hdr_crc) != crc32(0, rd, sizeof(struct jffs2_unknown_node)-4)) {
214 printk(KERN_CRIT "Eep. CRC not correct in jffs2_write_dirent()\n"); 222 pr_crit("Eep. CRC not correct in jffs2_write_dirent()\n");
215 BUG(); 223 BUG();
216 }); 224 });
217 225
218 if (strnlen(name, namelen) != namelen) { 226 if (strnlen(name, namelen) != namelen) {
219 /* This should never happen, but seems to have done on at least one 227 /* This should never happen, but seems to have done on at least one
220 occasion: https://dev.laptop.org/ticket/4184 */ 228 occasion: https://dev.laptop.org/ticket/4184 */
221 printk(KERN_CRIT "Error in jffs2_write_dirent() -- name contains zero bytes!\n"); 229 pr_crit("Error in jffs2_write_dirent() -- name contains zero bytes!\n");
222 printk(KERN_CRIT "Directory inode #%u, name at *0x%p \"%s\"->ino #%u, name_crc 0x%08x\n", 230 pr_crit("Directory inode #%u, name at *0x%p \"%s\"->ino #%u, name_crc 0x%08x\n",
223 je32_to_cpu(rd->pino), name, name, je32_to_cpu(rd->ino), 231 je32_to_cpu(rd->pino), name, name, je32_to_cpu(rd->ino),
224 je32_to_cpu(rd->name_crc)); 232 je32_to_cpu(rd->name_crc));
225 WARN_ON(1); 233 WARN_ON(1);
226 return ERR_PTR(-EIO); 234 return ERR_PTR(-EIO);
227 } 235 }
@@ -249,9 +257,9 @@ struct jffs2_full_dirent *jffs2_write_dirent(struct jffs2_sb_info *c, struct jff
249 257
250 if ((alloc_mode!=ALLOC_GC) && (je32_to_cpu(rd->version) < f->highest_version)) { 258 if ((alloc_mode!=ALLOC_GC) && (je32_to_cpu(rd->version) < f->highest_version)) {
251 BUG_ON(!retried); 259 BUG_ON(!retried);
252 D1(printk(KERN_DEBUG "jffs2_write_dirent : dirent_version %d, " 260 jffs2_dbg(1, "%s(): dirent_version %d, highest version %d -> updating dirent\n",
253 "highest version %d -> updating dirent\n", 261 __func__,
254 je32_to_cpu(rd->version), f->highest_version)); 262 je32_to_cpu(rd->version), f->highest_version);
255 rd->version = cpu_to_je32(++f->highest_version); 263 rd->version = cpu_to_je32(++f->highest_version);
256 fd->version = je32_to_cpu(rd->version); 264 fd->version = je32_to_cpu(rd->version);
257 rd->node_crc = cpu_to_je32(crc32(0, rd, sizeof(*rd)-8)); 265 rd->node_crc = cpu_to_je32(crc32(0, rd, sizeof(*rd)-8));
@@ -260,13 +268,14 @@ struct jffs2_full_dirent *jffs2_write_dirent(struct jffs2_sb_info *c, struct jff
260 ret = jffs2_flash_writev(c, vecs, 2, flash_ofs, &retlen, 268 ret = jffs2_flash_writev(c, vecs, 2, flash_ofs, &retlen,
261 (alloc_mode==ALLOC_GC)?0:je32_to_cpu(rd->pino)); 269 (alloc_mode==ALLOC_GC)?0:je32_to_cpu(rd->pino));
262 if (ret || (retlen != sizeof(*rd) + namelen)) { 270 if (ret || (retlen != sizeof(*rd) + namelen)) {
263 printk(KERN_NOTICE "Write of %zd bytes at 0x%08x failed. returned %d, retlen %zd\n", 271 pr_notice("Write of %zd bytes at 0x%08x failed. returned %d, retlen %zd\n",
264 sizeof(*rd)+namelen, flash_ofs, ret, retlen); 272 sizeof(*rd) + namelen, flash_ofs, ret, retlen);
265 /* Mark the space as dirtied */ 273 /* Mark the space as dirtied */
266 if (retlen) { 274 if (retlen) {
267 jffs2_add_physical_node_ref(c, flash_ofs | REF_OBSOLETE, PAD(sizeof(*rd)+namelen), NULL); 275 jffs2_add_physical_node_ref(c, flash_ofs | REF_OBSOLETE, PAD(sizeof(*rd)+namelen), NULL);
268 } else { 276 } else {
269 printk(KERN_NOTICE "Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n", flash_ofs); 277 pr_notice("Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n",
278 flash_ofs);
270 } 279 }
271 if (!retried) { 280 if (!retried) {
272 /* Try to reallocate space and retry */ 281 /* Try to reallocate space and retry */
@@ -275,7 +284,7 @@ struct jffs2_full_dirent *jffs2_write_dirent(struct jffs2_sb_info *c, struct jff
275 284
276 retried = 1; 285 retried = 1;
277 286
278 D1(printk(KERN_DEBUG "Retrying failed write.\n")); 287 jffs2_dbg(1, "Retrying failed write.\n");
279 288
280 jffs2_dbg_acct_sanity_check(c,jeb); 289 jffs2_dbg_acct_sanity_check(c,jeb);
281 jffs2_dbg_acct_paranoia_check(c, jeb); 290 jffs2_dbg_acct_paranoia_check(c, jeb);
@@ -295,12 +304,14 @@ struct jffs2_full_dirent *jffs2_write_dirent(struct jffs2_sb_info *c, struct jff
295 304
296 if (!ret) { 305 if (!ret) {
297 flash_ofs = write_ofs(c); 306 flash_ofs = write_ofs(c);
298 D1(printk(KERN_DEBUG "Allocated space at 0x%08x to retry failed write.\n", flash_ofs)); 307 jffs2_dbg(1, "Allocated space at 0x%08x to retry failed write\n",
308 flash_ofs);
299 jffs2_dbg_acct_sanity_check(c,jeb); 309 jffs2_dbg_acct_sanity_check(c,jeb);
300 jffs2_dbg_acct_paranoia_check(c, jeb); 310 jffs2_dbg_acct_paranoia_check(c, jeb);
301 goto retry; 311 goto retry;
302 } 312 }
303 D1(printk(KERN_DEBUG "Failed to allocate space to retry failed write: %d!\n", ret)); 313 jffs2_dbg(1, "Failed to allocate space to retry failed write: %d!\n",
314 ret);
304 } 315 }
305 /* Release the full_dnode which is now useless, and return */ 316 /* Release the full_dnode which is now useless, and return */
306 jffs2_free_full_dirent(fd); 317 jffs2_free_full_dirent(fd);
@@ -333,8 +344,8 @@ int jffs2_write_inode_range(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
333 int ret = 0; 344 int ret = 0;
334 uint32_t writtenlen = 0; 345 uint32_t writtenlen = 0;
335 346
336 D1(printk(KERN_DEBUG "jffs2_write_inode_range(): Ino #%u, ofs 0x%x, len 0x%x\n", 347 jffs2_dbg(1, "%s(): Ino #%u, ofs 0x%x, len 0x%x\n",
337 f->inocache->ino, offset, writelen)); 348 __func__, f->inocache->ino, offset, writelen);
338 349
339 while(writelen) { 350 while(writelen) {
340 struct jffs2_full_dnode *fn; 351 struct jffs2_full_dnode *fn;
@@ -345,12 +356,13 @@ int jffs2_write_inode_range(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
345 int retried = 0; 356 int retried = 0;
346 357
347 retry: 358 retry:
348 D2(printk(KERN_DEBUG "jffs2_commit_write() loop: 0x%x to write to 0x%x\n", writelen, offset)); 359 jffs2_dbg(2, "jffs2_commit_write() loop: 0x%x to write to 0x%x\n",
360 writelen, offset);
349 361
350 ret = jffs2_reserve_space(c, sizeof(*ri) + JFFS2_MIN_DATA_LEN, 362 ret = jffs2_reserve_space(c, sizeof(*ri) + JFFS2_MIN_DATA_LEN,
351 &alloclen, ALLOC_NORMAL, JFFS2_SUMMARY_INODE_SIZE); 363 &alloclen, ALLOC_NORMAL, JFFS2_SUMMARY_INODE_SIZE);
352 if (ret) { 364 if (ret) {
353 D1(printk(KERN_DEBUG "jffs2_reserve_space returned %d\n", ret)); 365 jffs2_dbg(1, "jffs2_reserve_space returned %d\n", ret);
354 break; 366 break;
355 } 367 }
356 mutex_lock(&f->sem); 368 mutex_lock(&f->sem);
@@ -386,7 +398,7 @@ int jffs2_write_inode_range(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
386 if (!retried) { 398 if (!retried) {
387 /* Write error to be retried */ 399 /* Write error to be retried */
388 retried = 1; 400 retried = 1;
389 D1(printk(KERN_DEBUG "Retrying node write in jffs2_write_inode_range()\n")); 401 jffs2_dbg(1, "Retrying node write in jffs2_write_inode_range()\n");
390 goto retry; 402 goto retry;
391 } 403 }
392 break; 404 break;
@@ -399,7 +411,8 @@ int jffs2_write_inode_range(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
399 } 411 }
400 if (ret) { 412 if (ret) {
401 /* Eep */ 413 /* Eep */
402 D1(printk(KERN_DEBUG "Eep. add_full_dnode_to_inode() failed in commit_write, returned %d\n", ret)); 414 jffs2_dbg(1, "Eep. add_full_dnode_to_inode() failed in commit_write, returned %d\n",
415 ret);
403 jffs2_mark_node_obsolete(c, fn->raw); 416 jffs2_mark_node_obsolete(c, fn->raw);
404 jffs2_free_full_dnode(fn); 417 jffs2_free_full_dnode(fn);
405 418
@@ -410,11 +423,11 @@ int jffs2_write_inode_range(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
410 mutex_unlock(&f->sem); 423 mutex_unlock(&f->sem);
411 jffs2_complete_reservation(c); 424 jffs2_complete_reservation(c);
412 if (!datalen) { 425 if (!datalen) {
413 printk(KERN_WARNING "Eep. We didn't actually write any data in jffs2_write_inode_range()\n"); 426 pr_warn("Eep. We didn't actually write any data in jffs2_write_inode_range()\n");
414 ret = -EIO; 427 ret = -EIO;
415 break; 428 break;
416 } 429 }
417 D1(printk(KERN_DEBUG "increasing writtenlen by %d\n", datalen)); 430 jffs2_dbg(1, "increasing writtenlen by %d\n", datalen);
418 writtenlen += datalen; 431 writtenlen += datalen;
419 offset += datalen; 432 offset += datalen;
420 writelen -= datalen; 433 writelen -= datalen;
@@ -439,7 +452,7 @@ int jffs2_do_create(struct jffs2_sb_info *c, struct jffs2_inode_info *dir_f,
439 */ 452 */
440 ret = jffs2_reserve_space(c, sizeof(*ri), &alloclen, ALLOC_NORMAL, 453 ret = jffs2_reserve_space(c, sizeof(*ri), &alloclen, ALLOC_NORMAL,
441 JFFS2_SUMMARY_INODE_SIZE); 454 JFFS2_SUMMARY_INODE_SIZE);
442 D1(printk(KERN_DEBUG "jffs2_do_create(): reserved 0x%x bytes\n", alloclen)); 455 jffs2_dbg(1, "%s(): reserved 0x%x bytes\n", __func__, alloclen);
443 if (ret) 456 if (ret)
444 return ret; 457 return ret;
445 458
@@ -450,11 +463,11 @@ int jffs2_do_create(struct jffs2_sb_info *c, struct jffs2_inode_info *dir_f,
450 463
451 fn = jffs2_write_dnode(c, f, ri, NULL, 0, ALLOC_NORMAL); 464 fn = jffs2_write_dnode(c, f, ri, NULL, 0, ALLOC_NORMAL);
452 465
453 D1(printk(KERN_DEBUG "jffs2_do_create created file with mode 0x%x\n", 466 jffs2_dbg(1, "jffs2_do_create created file with mode 0x%x\n",
454 jemode_to_cpu(ri->mode))); 467 jemode_to_cpu(ri->mode));
455 468
456 if (IS_ERR(fn)) { 469 if (IS_ERR(fn)) {
457 D1(printk(KERN_DEBUG "jffs2_write_dnode() failed\n")); 470 jffs2_dbg(1, "jffs2_write_dnode() failed\n");
458 /* Eeek. Wave bye bye */ 471 /* Eeek. Wave bye bye */
459 mutex_unlock(&f->sem); 472 mutex_unlock(&f->sem);
460 jffs2_complete_reservation(c); 473 jffs2_complete_reservation(c);
@@ -480,7 +493,7 @@ int jffs2_do_create(struct jffs2_sb_info *c, struct jffs2_inode_info *dir_f,
480 493
481 if (ret) { 494 if (ret) {
482 /* Eep. */ 495 /* Eep. */
483 D1(printk(KERN_DEBUG "jffs2_reserve_space() for dirent failed\n")); 496 jffs2_dbg(1, "jffs2_reserve_space() for dirent failed\n");
484 return ret; 497 return ret;
485 } 498 }
486 499
@@ -597,8 +610,8 @@ int jffs2_do_unlink(struct jffs2_sb_info *c, struct jffs2_inode_info *dir_f,
597 !memcmp(fd->name, name, namelen) && 610 !memcmp(fd->name, name, namelen) &&
598 !fd->name[namelen]) { 611 !fd->name[namelen]) {
599 612
600 D1(printk(KERN_DEBUG "Marking old dirent node (ino #%u) @%08x obsolete\n", 613 jffs2_dbg(1, "Marking old dirent node (ino #%u) @%08x obsolete\n",
601 fd->ino, ref_offset(fd->raw))); 614 fd->ino, ref_offset(fd->raw));
602 jffs2_mark_node_obsolete(c, fd->raw); 615 jffs2_mark_node_obsolete(c, fd->raw);
603 /* We don't want to remove it from the list immediately, 616 /* We don't want to remove it from the list immediately,
604 because that screws up getdents()/seek() semantics even 617 because that screws up getdents()/seek() semantics even
@@ -627,11 +640,13 @@ int jffs2_do_unlink(struct jffs2_sb_info *c, struct jffs2_inode_info *dir_f,
627 dead_f->dents = fd->next; 640 dead_f->dents = fd->next;
628 641
629 if (fd->ino) { 642 if (fd->ino) {
630 printk(KERN_WARNING "Deleting inode #%u with active dentry \"%s\"->ino #%u\n", 643 pr_warn("Deleting inode #%u with active dentry \"%s\"->ino #%u\n",
631 dead_f->inocache->ino, fd->name, fd->ino); 644 dead_f->inocache->ino,
645 fd->name, fd->ino);
632 } else { 646 } else {
633 D1(printk(KERN_DEBUG "Removing deletion dirent for \"%s\" from dir ino #%u\n", 647 jffs2_dbg(1, "Removing deletion dirent for \"%s\" from dir ino #%u\n",
634 fd->name, dead_f->inocache->ino)); 648 fd->name,
649 dead_f->inocache->ino);
635 } 650 }
636 if (fd->raw) 651 if (fd->raw)
637 jffs2_mark_node_obsolete(c, fd->raw); 652 jffs2_mark_node_obsolete(c, fd->raw);
diff --git a/fs/jffs2/xattr.c b/fs/jffs2/xattr.c
index 3e93cdd19005..b55b803eddcb 100644
--- a/fs/jffs2/xattr.c
+++ b/fs/jffs2/xattr.c
@@ -9,6 +9,8 @@
9 * 9 *
10 */ 10 */
11 11
12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
12#include <linux/kernel.h> 14#include <linux/kernel.h>
13#include <linux/slab.h> 15#include <linux/slab.h>
14#include <linux/fs.h> 16#include <linux/fs.h>
diff --git a/fs/romfs/storage.c b/fs/romfs/storage.c
index 71e2b4d50a0a..f86f51f99ace 100644
--- a/fs/romfs/storage.c
+++ b/fs/romfs/storage.c
@@ -19,7 +19,7 @@
19#endif 19#endif
20 20
21#ifdef CONFIG_ROMFS_ON_MTD 21#ifdef CONFIG_ROMFS_ON_MTD
22#define ROMFS_MTD_READ(sb, ...) ((sb)->s_mtd->read((sb)->s_mtd, ##__VA_ARGS__)) 22#define ROMFS_MTD_READ(sb, ...) mtd_read((sb)->s_mtd, ##__VA_ARGS__)
23 23
24/* 24/*
25 * read data from an romfs image on an MTD device 25 * read data from an romfs image on an MTD device
diff --git a/arch/arm/mach-mxs/include/mach/dma.h b/include/linux/fsl/mxs-dma.h
index 203d7c4a3e11..203d7c4a3e11 100644
--- a/arch/arm/mach-mxs/include/mach/dma.h
+++ b/include/linux/fsl/mxs-dma.h
diff --git a/include/linux/mtd/bbm.h b/include/linux/mtd/bbm.h
index c4eec228eef9..650ef352f045 100644
--- a/include/linux/mtd/bbm.h
+++ b/include/linux/mtd/bbm.h
@@ -112,6 +112,11 @@ struct nand_bbt_descr {
112#define NAND_BBT_USE_FLASH 0x00020000 112#define NAND_BBT_USE_FLASH 0x00020000
113/* Do not store flash based bad block table in OOB area; store it in-band */ 113/* Do not store flash based bad block table in OOB area; store it in-band */
114#define NAND_BBT_NO_OOB 0x00040000 114#define NAND_BBT_NO_OOB 0x00040000
115/*
116 * Do not write new bad block markers to OOB; useful, e.g., when ECC covers
117 * entire spare area. Must be used with NAND_BBT_USE_FLASH.
118 */
119#define NAND_BBT_NO_OOB_BBM 0x00080000
115 120
116/* 121/*
117 * Flag set by nand_create_default_bbt_descr(), marking that the nand_bbt_descr 122 * Flag set by nand_create_default_bbt_descr(), marking that the nand_bbt_descr
diff --git a/include/linux/mtd/blktrans.h b/include/linux/mtd/blktrans.h
index 1bbd9f289245..ed270bd2e4df 100644
--- a/include/linux/mtd/blktrans.h
+++ b/include/linux/mtd/blktrans.h
@@ -47,6 +47,7 @@ struct mtd_blktrans_dev {
47 struct request_queue *rq; 47 struct request_queue *rq;
48 spinlock_t queue_lock; 48 spinlock_t queue_lock;
49 void *priv; 49 void *priv;
50 fmode_t file_mode;
50}; 51};
51 52
52struct mtd_blktrans_ops { 53struct mtd_blktrans_ops {
diff --git a/include/linux/mtd/fsmc.h b/include/linux/mtd/fsmc.h
index 6987995ad3cf..b20029221fb1 100644
--- a/include/linux/mtd/fsmc.h
+++ b/include/linux/mtd/fsmc.h
@@ -26,95 +26,83 @@
26#define FSMC_NAND_BW8 1 26#define FSMC_NAND_BW8 1
27#define FSMC_NAND_BW16 2 27#define FSMC_NAND_BW16 2
28 28
29/*
30 * The placement of the Command Latch Enable (CLE) and
31 * Address Latch Enable (ALE) is twisted around in the
32 * SPEAR310 implementation.
33 */
34#if defined(CONFIG_MACH_SPEAR310)
35#define PLAT_NAND_CLE (1 << 17)
36#define PLAT_NAND_ALE (1 << 16)
37#else
38#define PLAT_NAND_CLE (1 << 16)
39#define PLAT_NAND_ALE (1 << 17)
40#endif
41
42#define FSMC_MAX_NOR_BANKS 4 29#define FSMC_MAX_NOR_BANKS 4
43#define FSMC_MAX_NAND_BANKS 4 30#define FSMC_MAX_NAND_BANKS 4
44 31
45#define FSMC_FLASH_WIDTH8 1 32#define FSMC_FLASH_WIDTH8 1
46#define FSMC_FLASH_WIDTH16 2 33#define FSMC_FLASH_WIDTH16 2
47 34
48struct fsmc_nor_bank_regs { 35/* fsmc controller registers for NOR flash */
49 uint32_t ctrl; 36#define CTRL 0x0
50 uint32_t ctrl_tim; 37 /* ctrl register definitions */
51}; 38 #define BANK_ENABLE (1 << 0)
52 39 #define MUXED (1 << 1)
53/* ctrl register definitions */ 40 #define NOR_DEV (2 << 2)
54#define BANK_ENABLE (1 << 0) 41 #define WIDTH_8 (0 << 4)
55#define MUXED (1 << 1) 42 #define WIDTH_16 (1 << 4)
56#define NOR_DEV (2 << 2) 43 #define RSTPWRDWN (1 << 6)
57#define WIDTH_8 (0 << 4) 44 #define WPROT (1 << 7)
58#define WIDTH_16 (1 << 4) 45 #define WRT_ENABLE (1 << 12)
59#define RSTPWRDWN (1 << 6) 46 #define WAIT_ENB (1 << 13)
60#define WPROT (1 << 7) 47
61#define WRT_ENABLE (1 << 12) 48#define CTRL_TIM 0x4
62#define WAIT_ENB (1 << 13) 49 /* ctrl_tim register definitions */
63 50
64/* ctrl_tim register definitions */ 51#define FSMC_NOR_BANK_SZ 0x8
65
66struct fsmc_nand_bank_regs {
67 uint32_t pc;
68 uint32_t sts;
69 uint32_t comm;
70 uint32_t attrib;
71 uint32_t ioata;
72 uint32_t ecc1;
73 uint32_t ecc2;
74 uint32_t ecc3;
75};
76
77#define FSMC_NOR_REG_SIZE 0x40 52#define FSMC_NOR_REG_SIZE 0x40
78 53
79struct fsmc_regs { 54#define FSMC_NOR_REG(base, bank, reg) (base + \
80 struct fsmc_nor_bank_regs nor_bank_regs[FSMC_MAX_NOR_BANKS]; 55 FSMC_NOR_BANK_SZ * (bank) + \
81 uint8_t reserved_1[0x40 - 0x20]; 56 reg)
82 struct fsmc_nand_bank_regs bank_regs[FSMC_MAX_NAND_BANKS]; 57
83 uint8_t reserved_2[0xfe0 - 0xc0]; 58/* fsmc controller registers for NAND flash */
84 uint32_t peripid0; /* 0xfe0 */ 59#define PC 0x00
85 uint32_t peripid1; /* 0xfe4 */ 60 /* pc register definitions */
86 uint32_t peripid2; /* 0xfe8 */ 61 #define FSMC_RESET (1 << 0)
87 uint32_t peripid3; /* 0xfec */ 62 #define FSMC_WAITON (1 << 1)
88 uint32_t pcellid0; /* 0xff0 */ 63 #define FSMC_ENABLE (1 << 2)
89 uint32_t pcellid1; /* 0xff4 */ 64 #define FSMC_DEVTYPE_NAND (1 << 3)
90 uint32_t pcellid2; /* 0xff8 */ 65 #define FSMC_DEVWID_8 (0 << 4)
91 uint32_t pcellid3; /* 0xffc */ 66 #define FSMC_DEVWID_16 (1 << 4)
92}; 67 #define FSMC_ECCEN (1 << 6)
68 #define FSMC_ECCPLEN_512 (0 << 7)
69 #define FSMC_ECCPLEN_256 (1 << 7)
70 #define FSMC_TCLR_1 (1)
71 #define FSMC_TCLR_SHIFT (9)
72 #define FSMC_TCLR_MASK (0xF)
73 #define FSMC_TAR_1 (1)
74 #define FSMC_TAR_SHIFT (13)
75 #define FSMC_TAR_MASK (0xF)
76#define STS 0x04
77 /* sts register definitions */
78 #define FSMC_CODE_RDY (1 << 15)
79#define COMM 0x08
80 /* comm register definitions */
81 #define FSMC_TSET_0 0
82 #define FSMC_TSET_SHIFT 0
83 #define FSMC_TSET_MASK 0xFF
84 #define FSMC_TWAIT_6 6
85 #define FSMC_TWAIT_SHIFT 8
86 #define FSMC_TWAIT_MASK 0xFF
87 #define FSMC_THOLD_4 4
88 #define FSMC_THOLD_SHIFT 16
89 #define FSMC_THOLD_MASK 0xFF
90 #define FSMC_THIZ_1 1
91 #define FSMC_THIZ_SHIFT 24
92 #define FSMC_THIZ_MASK 0xFF
93#define ATTRIB 0x0C
94#define IOATA 0x10
95#define ECC1 0x14
96#define ECC2 0x18
97#define ECC3 0x1C
98#define FSMC_NAND_BANK_SZ 0x20
99
100#define FSMC_NAND_REG(base, bank, reg) (base + FSMC_NOR_REG_SIZE + \
101 (FSMC_NAND_BANK_SZ * (bank)) + \
102 reg)
93 103
94#define FSMC_BUSY_WAIT_TIMEOUT (1 * HZ) 104#define FSMC_BUSY_WAIT_TIMEOUT (1 * HZ)
95 105
96/* pc register definitions */
97#define FSMC_RESET (1 << 0)
98#define FSMC_WAITON (1 << 1)
99#define FSMC_ENABLE (1 << 2)
100#define FSMC_DEVTYPE_NAND (1 << 3)
101#define FSMC_DEVWID_8 (0 << 4)
102#define FSMC_DEVWID_16 (1 << 4)
103#define FSMC_ECCEN (1 << 6)
104#define FSMC_ECCPLEN_512 (0 << 7)
105#define FSMC_ECCPLEN_256 (1 << 7)
106#define FSMC_TCLR_1 (1 << 9)
107#define FSMC_TAR_1 (1 << 13)
108
109/* sts register definitions */
110#define FSMC_CODE_RDY (1 << 15)
111
112/* comm register definitions */
113#define FSMC_TSET_0 (0 << 0)
114#define FSMC_TWAIT_6 (6 << 8)
115#define FSMC_THOLD_4 (4 << 16)
116#define FSMC_THIZ_1 (1 << 24)
117
118/* 106/*
119 * There are 13 bytes of ecc for every 512 byte block in FSMC version 8 107 * There are 13 bytes of ecc for every 512 byte block in FSMC version 8
120 * and it has to be read consecutively and immediately after the 512 108 * and it has to be read consecutively and immediately after the 512
@@ -133,6 +121,20 @@ struct fsmc_eccplace {
133 struct fsmc_nand_eccplace eccplace[MAX_ECCPLACE_ENTRIES]; 121 struct fsmc_nand_eccplace eccplace[MAX_ECCPLACE_ENTRIES];
134}; 122};
135 123
124struct fsmc_nand_timings {
125 uint8_t tclr;
126 uint8_t tar;
127 uint8_t thiz;
128 uint8_t thold;
129 uint8_t twait;
130 uint8_t tset;
131};
132
133enum access_mode {
134 USE_DMA_ACCESS = 1,
135 USE_WORD_ACCESS,
136};
137
136/** 138/**
137 * fsmc_nand_platform_data - platform specific NAND controller config 139 * fsmc_nand_platform_data - platform specific NAND controller config
138 * @partitions: partition table for the platform, use a default fallback 140 * @partitions: partition table for the platform, use a default fallback
@@ -146,12 +148,23 @@ struct fsmc_eccplace {
146 * this may be set to NULL 148 * this may be set to NULL
147 */ 149 */
148struct fsmc_nand_platform_data { 150struct fsmc_nand_platform_data {
151 struct fsmc_nand_timings *nand_timings;
149 struct mtd_partition *partitions; 152 struct mtd_partition *partitions;
150 unsigned int nr_partitions; 153 unsigned int nr_partitions;
151 unsigned int options; 154 unsigned int options;
152 unsigned int width; 155 unsigned int width;
153 unsigned int bank; 156 unsigned int bank;
157
158 /* CLE, ALE offsets */
159 unsigned int cle_off;
160 unsigned int ale_off;
161 enum access_mode mode;
162
154 void (*select_bank)(uint32_t bank, uint32_t busw); 163 void (*select_bank)(uint32_t bank, uint32_t busw);
164
165 /* priv structures for dma accesses */
166 void *read_dma_priv;
167 void *write_dma_priv;
155}; 168};
156 169
157extern int __init fsmc_nor_init(struct platform_device *pdev, 170extern int __init fsmc_nor_init(struct platform_device *pdev,
diff --git a/include/linux/mtd/mtd.h b/include/linux/mtd/mtd.h
index d43dc25af82e..cf5ea8cdcf8e 100644
--- a/include/linux/mtd/mtd.h
+++ b/include/linux/mtd/mtd.h
@@ -164,6 +164,9 @@ struct mtd_info {
164 /* ECC layout structure pointer - read only! */ 164 /* ECC layout structure pointer - read only! */
165 struct nand_ecclayout *ecclayout; 165 struct nand_ecclayout *ecclayout;
166 166
167 /* max number of correctible bit errors per writesize */
168 unsigned int ecc_strength;
169
167 /* Data for variable erase regions. If numeraseregions is zero, 170 /* Data for variable erase regions. If numeraseregions is zero,
168 * it means that the whole device has erasesize as given above. 171 * it means that the whole device has erasesize as given above.
169 */ 172 */
@@ -174,52 +177,52 @@ struct mtd_info {
174 * Do not call via these pointers, use corresponding mtd_*() 177 * Do not call via these pointers, use corresponding mtd_*()
175 * wrappers instead. 178 * wrappers instead.
176 */ 179 */
177 int (*erase) (struct mtd_info *mtd, struct erase_info *instr); 180 int (*_erase) (struct mtd_info *mtd, struct erase_info *instr);
178 int (*point) (struct mtd_info *mtd, loff_t from, size_t len, 181 int (*_point) (struct mtd_info *mtd, loff_t from, size_t len,
179 size_t *retlen, void **virt, resource_size_t *phys); 182 size_t *retlen, void **virt, resource_size_t *phys);
180 void (*unpoint) (struct mtd_info *mtd, loff_t from, size_t len); 183 int (*_unpoint) (struct mtd_info *mtd, loff_t from, size_t len);
181 unsigned long (*get_unmapped_area) (struct mtd_info *mtd, 184 unsigned long (*_get_unmapped_area) (struct mtd_info *mtd,
182 unsigned long len, 185 unsigned long len,
183 unsigned long offset, 186 unsigned long offset,
184 unsigned long flags); 187 unsigned long flags);
185 int (*read) (struct mtd_info *mtd, loff_t from, size_t len, 188 int (*_read) (struct mtd_info *mtd, loff_t from, size_t len,
186 size_t *retlen, u_char *buf); 189 size_t *retlen, u_char *buf);
187 int (*write) (struct mtd_info *mtd, loff_t to, size_t len, 190 int (*_write) (struct mtd_info *mtd, loff_t to, size_t len,
188 size_t *retlen, const u_char *buf); 191 size_t *retlen, const u_char *buf);
189 int (*panic_write) (struct mtd_info *mtd, loff_t to, size_t len, 192 int (*_panic_write) (struct mtd_info *mtd, loff_t to, size_t len,
190 size_t *retlen, const u_char *buf); 193 size_t *retlen, const u_char *buf);
191 int (*read_oob) (struct mtd_info *mtd, loff_t from, 194 int (*_read_oob) (struct mtd_info *mtd, loff_t from,
192 struct mtd_oob_ops *ops);
193 int (*write_oob) (struct mtd_info *mtd, loff_t to,
194 struct mtd_oob_ops *ops); 195 struct mtd_oob_ops *ops);
195 int (*get_fact_prot_info) (struct mtd_info *mtd, struct otp_info *buf, 196 int (*_write_oob) (struct mtd_info *mtd, loff_t to,
196 size_t len); 197 struct mtd_oob_ops *ops);
197 int (*read_fact_prot_reg) (struct mtd_info *mtd, loff_t from, 198 int (*_get_fact_prot_info) (struct mtd_info *mtd, struct otp_info *buf,
198 size_t len, size_t *retlen, u_char *buf); 199 size_t len);
199 int (*get_user_prot_info) (struct mtd_info *mtd, struct otp_info *buf, 200 int (*_read_fact_prot_reg) (struct mtd_info *mtd, loff_t from,
200 size_t len); 201 size_t len, size_t *retlen, u_char *buf);
201 int (*read_user_prot_reg) (struct mtd_info *mtd, loff_t from, 202 int (*_get_user_prot_info) (struct mtd_info *mtd, struct otp_info *buf,
202 size_t len, size_t *retlen, u_char *buf); 203 size_t len);
203 int (*write_user_prot_reg) (struct mtd_info *mtd, loff_t to, size_t len, 204 int (*_read_user_prot_reg) (struct mtd_info *mtd, loff_t from,
204 size_t *retlen, u_char *buf); 205 size_t len, size_t *retlen, u_char *buf);
205 int (*lock_user_prot_reg) (struct mtd_info *mtd, loff_t from, 206 int (*_write_user_prot_reg) (struct mtd_info *mtd, loff_t to,
206 size_t len); 207 size_t len, size_t *retlen, u_char *buf);
207 int (*writev) (struct mtd_info *mtd, const struct kvec *vecs, 208 int (*_lock_user_prot_reg) (struct mtd_info *mtd, loff_t from,
209 size_t len);
210 int (*_writev) (struct mtd_info *mtd, const struct kvec *vecs,
208 unsigned long count, loff_t to, size_t *retlen); 211 unsigned long count, loff_t to, size_t *retlen);
209 void (*sync) (struct mtd_info *mtd); 212 void (*_sync) (struct mtd_info *mtd);
210 int (*lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 213 int (*_lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
211 int (*unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 214 int (*_unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
212 int (*is_locked) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 215 int (*_is_locked) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
213 int (*block_isbad) (struct mtd_info *mtd, loff_t ofs); 216 int (*_block_isbad) (struct mtd_info *mtd, loff_t ofs);
214 int (*block_markbad) (struct mtd_info *mtd, loff_t ofs); 217 int (*_block_markbad) (struct mtd_info *mtd, loff_t ofs);
215 int (*suspend) (struct mtd_info *mtd); 218 int (*_suspend) (struct mtd_info *mtd);
216 void (*resume) (struct mtd_info *mtd); 219 void (*_resume) (struct mtd_info *mtd);
217 /* 220 /*
218 * If the driver is something smart, like UBI, it may need to maintain 221 * If the driver is something smart, like UBI, it may need to maintain
219 * its own reference counting. The below functions are only for driver. 222 * its own reference counting. The below functions are only for driver.
220 */ 223 */
221 int (*get_device) (struct mtd_info *mtd); 224 int (*_get_device) (struct mtd_info *mtd);
222 void (*put_device) (struct mtd_info *mtd); 225 void (*_put_device) (struct mtd_info *mtd);
223 226
224 /* Backing device capabilities for this device 227 /* Backing device capabilities for this device
225 * - provides mmap capabilities 228 * - provides mmap capabilities
@@ -240,214 +243,75 @@ struct mtd_info {
240 int usecount; 243 int usecount;
241}; 244};
242 245
243/* 246int mtd_erase(struct mtd_info *mtd, struct erase_info *instr);
244 * Erase is an asynchronous operation. Device drivers are supposed 247int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
245 * to call instr->callback() whenever the operation completes, even 248 void **virt, resource_size_t *phys);
246 * if it completes with a failure. 249int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len);
247 * Callers are supposed to pass a callback function and wait for it 250unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
248 * to be called before writing to the block. 251 unsigned long offset, unsigned long flags);
249 */ 252int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
250static inline int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 253 u_char *buf);
251{ 254int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
252 return mtd->erase(mtd, instr); 255 const u_char *buf);
253} 256int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
254 257 const u_char *buf);
255/*
256 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
257 */
258static inline int mtd_point(struct mtd_info *mtd, loff_t from, size_t len,
259 size_t *retlen, void **virt, resource_size_t *phys)
260{
261 *retlen = 0;
262 if (!mtd->point)
263 return -EOPNOTSUPP;
264 return mtd->point(mtd, from, len, retlen, virt, phys);
265}
266
267/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
268static inline void mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
269{
270 return mtd->unpoint(mtd, from, len);
271}
272
273/*
274 * Allow NOMMU mmap() to directly map the device (if not NULL)
275 * - return the address to which the offset maps
276 * - return -ENOSYS to indicate refusal to do the mapping
277 */
278static inline unsigned long mtd_get_unmapped_area(struct mtd_info *mtd,
279 unsigned long len,
280 unsigned long offset,
281 unsigned long flags)
282{
283 if (!mtd->get_unmapped_area)
284 return -EOPNOTSUPP;
285 return mtd->get_unmapped_area(mtd, len, offset, flags);
286}
287
288static inline int mtd_read(struct mtd_info *mtd, loff_t from, size_t len,
289 size_t *retlen, u_char *buf)
290{
291 return mtd->read(mtd, from, len, retlen, buf);
292}
293
294static inline int mtd_write(struct mtd_info *mtd, loff_t to, size_t len,
295 size_t *retlen, const u_char *buf)
296{
297 *retlen = 0;
298 if (!mtd->write)
299 return -EROFS;
300 return mtd->write(mtd, to, len, retlen, buf);
301}
302
303/*
304 * In blackbox flight recorder like scenarios we want to make successful writes
305 * in interrupt context. panic_write() is only intended to be called when its
306 * known the kernel is about to panic and we need the write to succeed. Since
307 * the kernel is not going to be running for much longer, this function can
308 * break locks and delay to ensure the write succeeds (but not sleep).
309 */
310static inline int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
311 size_t *retlen, const u_char *buf)
312{
313 *retlen = 0;
314 if (!mtd->panic_write)
315 return -EOPNOTSUPP;
316 return mtd->panic_write(mtd, to, len, retlen, buf);
317}
318 258
319static inline int mtd_read_oob(struct mtd_info *mtd, loff_t from, 259static inline int mtd_read_oob(struct mtd_info *mtd, loff_t from,
320 struct mtd_oob_ops *ops) 260 struct mtd_oob_ops *ops)
321{ 261{
322 ops->retlen = ops->oobretlen = 0; 262 ops->retlen = ops->oobretlen = 0;
323 if (!mtd->read_oob) 263 if (!mtd->_read_oob)
324 return -EOPNOTSUPP; 264 return -EOPNOTSUPP;
325 return mtd->read_oob(mtd, from, ops); 265 return mtd->_read_oob(mtd, from, ops);
326} 266}
327 267
328static inline int mtd_write_oob(struct mtd_info *mtd, loff_t to, 268static inline int mtd_write_oob(struct mtd_info *mtd, loff_t to,
329 struct mtd_oob_ops *ops) 269 struct mtd_oob_ops *ops)
330{ 270{
331 ops->retlen = ops->oobretlen = 0; 271 ops->retlen = ops->oobretlen = 0;
332 if (!mtd->write_oob) 272 if (!mtd->_write_oob)
333 return -EOPNOTSUPP;
334 return mtd->write_oob(mtd, to, ops);
335}
336
337/*
338 * Method to access the protection register area, present in some flash
339 * devices. The user data is one time programmable but the factory data is read
340 * only.
341 */
342static inline int mtd_get_fact_prot_info(struct mtd_info *mtd,
343 struct otp_info *buf, size_t len)
344{
345 if (!mtd->get_fact_prot_info)
346 return -EOPNOTSUPP; 273 return -EOPNOTSUPP;
347 return mtd->get_fact_prot_info(mtd, buf, len); 274 if (!(mtd->flags & MTD_WRITEABLE))
348} 275 return -EROFS;
349 276 return mtd->_write_oob(mtd, to, ops);
350static inline int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
351 size_t len, size_t *retlen,
352 u_char *buf)
353{
354 *retlen = 0;
355 if (!mtd->read_fact_prot_reg)
356 return -EOPNOTSUPP;
357 return mtd->read_fact_prot_reg(mtd, from, len, retlen, buf);
358}
359
360static inline int mtd_get_user_prot_info(struct mtd_info *mtd,
361 struct otp_info *buf,
362 size_t len)
363{
364 if (!mtd->get_user_prot_info)
365 return -EOPNOTSUPP;
366 return mtd->get_user_prot_info(mtd, buf, len);
367}
368
369static inline int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
370 size_t len, size_t *retlen,
371 u_char *buf)
372{
373 *retlen = 0;
374 if (!mtd->read_user_prot_reg)
375 return -EOPNOTSUPP;
376 return mtd->read_user_prot_reg(mtd, from, len, retlen, buf);
377}
378
379static inline int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to,
380 size_t len, size_t *retlen,
381 u_char *buf)
382{
383 *retlen = 0;
384 if (!mtd->write_user_prot_reg)
385 return -EOPNOTSUPP;
386 return mtd->write_user_prot_reg(mtd, to, len, retlen, buf);
387} 277}
388 278
389static inline int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, 279int mtd_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
390 size_t len) 280 size_t len);
391{ 281int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
392 if (!mtd->lock_user_prot_reg) 282 size_t *retlen, u_char *buf);
393 return -EOPNOTSUPP; 283int mtd_get_user_prot_info(struct mtd_info *mtd, struct otp_info *buf,
394 return mtd->lock_user_prot_reg(mtd, from, len); 284 size_t len);
395} 285int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
286 size_t *retlen, u_char *buf);
287int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
288 size_t *retlen, u_char *buf);
289int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len);
396 290
397int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 291int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
398 unsigned long count, loff_t to, size_t *retlen); 292 unsigned long count, loff_t to, size_t *retlen);
399 293
400static inline void mtd_sync(struct mtd_info *mtd) 294static inline void mtd_sync(struct mtd_info *mtd)
401{ 295{
402 if (mtd->sync) 296 if (mtd->_sync)
403 mtd->sync(mtd); 297 mtd->_sync(mtd);
404}
405
406/* Chip-supported device locking */
407static inline int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
408{
409 if (!mtd->lock)
410 return -EOPNOTSUPP;
411 return mtd->lock(mtd, ofs, len);
412} 298}
413 299
414static inline int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 300int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
415{ 301int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
416 if (!mtd->unlock) 302int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
417 return -EOPNOTSUPP; 303int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs);
418 return mtd->unlock(mtd, ofs, len); 304int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs);
419}
420
421static inline int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
422{
423 if (!mtd->is_locked)
424 return -EOPNOTSUPP;
425 return mtd->is_locked(mtd, ofs, len);
426}
427 305
428static inline int mtd_suspend(struct mtd_info *mtd) 306static inline int mtd_suspend(struct mtd_info *mtd)
429{ 307{
430 return mtd->suspend ? mtd->suspend(mtd) : 0; 308 return mtd->_suspend ? mtd->_suspend(mtd) : 0;
431} 309}
432 310
433static inline void mtd_resume(struct mtd_info *mtd) 311static inline void mtd_resume(struct mtd_info *mtd)
434{ 312{
435 if (mtd->resume) 313 if (mtd->_resume)
436 mtd->resume(mtd); 314 mtd->_resume(mtd);
437}
438
439static inline int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
440{
441 if (!mtd->block_isbad)
442 return 0;
443 return mtd->block_isbad(mtd, ofs);
444}
445
446static inline int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
447{
448 if (!mtd->block_markbad)
449 return -EOPNOTSUPP;
450 return mtd->block_markbad(mtd, ofs);
451} 315}
452 316
453static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd) 317static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd)
@@ -482,12 +346,12 @@ static inline uint32_t mtd_mod_by_ws(uint64_t sz, struct mtd_info *mtd)
482 346
483static inline int mtd_has_oob(const struct mtd_info *mtd) 347static inline int mtd_has_oob(const struct mtd_info *mtd)
484{ 348{
485 return mtd->read_oob && mtd->write_oob; 349 return mtd->_read_oob && mtd->_write_oob;
486} 350}
487 351
488static inline int mtd_can_have_bb(const struct mtd_info *mtd) 352static inline int mtd_can_have_bb(const struct mtd_info *mtd)
489{ 353{
490 return !!mtd->block_isbad; 354 return !!mtd->_block_isbad;
491} 355}
492 356
493 /* Kernel-side ioctl definitions */ 357 /* Kernel-side ioctl definitions */
diff --git a/include/linux/mtd/nand.h b/include/linux/mtd/nand.h
index 63b5a8b6dfbd..1482340d3d9f 100644
--- a/include/linux/mtd/nand.h
+++ b/include/linux/mtd/nand.h
@@ -324,6 +324,7 @@ struct nand_hw_control {
324 * @steps: number of ECC steps per page 324 * @steps: number of ECC steps per page
325 * @size: data bytes per ECC step 325 * @size: data bytes per ECC step
326 * @bytes: ECC bytes per step 326 * @bytes: ECC bytes per step
327 * @strength: max number of correctible bits per ECC step
327 * @total: total number of ECC bytes per page 328 * @total: total number of ECC bytes per page
328 * @prepad: padding information for syndrome based ECC generators 329 * @prepad: padding information for syndrome based ECC generators
329 * @postpad: padding information for syndrome based ECC generators 330 * @postpad: padding information for syndrome based ECC generators
@@ -351,6 +352,7 @@ struct nand_ecc_ctrl {
351 int size; 352 int size;
352 int bytes; 353 int bytes;
353 int total; 354 int total;
355 int strength;
354 int prepad; 356 int prepad;
355 int postpad; 357 int postpad;
356 struct nand_ecclayout *layout; 358 struct nand_ecclayout *layout;
@@ -448,8 +450,9 @@ struct nand_buffers {
448 * will be copied to the appropriate nand_bbt_descr's. 450 * will be copied to the appropriate nand_bbt_descr's.
449 * @badblockpos: [INTERN] position of the bad block marker in the oob 451 * @badblockpos: [INTERN] position of the bad block marker in the oob
450 * area. 452 * area.
451 * @badblockbits: [INTERN] number of bits to left-shift the bad block 453 * @badblockbits: [INTERN] minimum number of set bits in a good block's
452 * number 454 * bad block marker position; i.e., BBM == 11110111b is
455 * not bad when badblockbits == 7
453 * @cellinfo: [INTERN] MLC/multichip data from chip ident 456 * @cellinfo: [INTERN] MLC/multichip data from chip ident
454 * @numchips: [INTERN] number of physical chips 457 * @numchips: [INTERN] number of physical chips
455 * @chipsize: [INTERN] the size of one chip for multichip arrays 458 * @chipsize: [INTERN] the size of one chip for multichip arrays
diff --git a/include/linux/mtd/pmc551.h b/include/linux/mtd/pmc551.h
deleted file mode 100644
index 27ad40aed19f..000000000000
--- a/include/linux/mtd/pmc551.h
+++ /dev/null
@@ -1,78 +0,0 @@
1/*
2 * PMC551 PCI Mezzanine Ram Device
3 *
4 * Author:
5 * Mark Ferrell
6 * Copyright 1999,2000 Nortel Networks
7 *
8 * License:
9 * As part of this driver was derrived from the slram.c driver it falls
10 * under the same license, which is GNU General Public License v2
11 */
12
13#ifndef __MTD_PMC551_H__
14#define __MTD_PMC551_H__
15
16#include <linux/mtd/mtd.h>
17
18#define PMC551_VERSION \
19 "Ramix PMC551 PCI Mezzanine Ram Driver. (C) 1999,2000 Nortel Networks.\n"
20
21/*
22 * Our personal and private information
23 */
24struct mypriv {
25 struct pci_dev *dev;
26 u_char *start;
27 u32 base_map0;
28 u32 curr_map0;
29 u32 asize;
30 struct mtd_info *nextpmc551;
31};
32
33/*
34 * Function Prototypes
35 */
36static int pmc551_erase(struct mtd_info *, struct erase_info *);
37static void pmc551_unpoint(struct mtd_info *, loff_t, size_t);
38static int pmc551_point(struct mtd_info *mtd, loff_t from, size_t len,
39 size_t *retlen, void **virt, resource_size_t *phys);
40static int pmc551_read(struct mtd_info *, loff_t, size_t, size_t *, u_char *);
41static int pmc551_write(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
42
43
44/*
45 * Define the PCI ID's if the kernel doesn't define them for us
46 */
47#ifndef PCI_VENDOR_ID_V3_SEMI
48#define PCI_VENDOR_ID_V3_SEMI 0x11b0
49#endif
50
51#ifndef PCI_DEVICE_ID_V3_SEMI_V370PDC
52#define PCI_DEVICE_ID_V3_SEMI_V370PDC 0x0200
53#endif
54
55
56#define PMC551_PCI_MEM_MAP0 0x50
57#define PMC551_PCI_MEM_MAP1 0x54
58#define PMC551_PCI_MEM_MAP_MAP_ADDR_MASK 0x3ff00000
59#define PMC551_PCI_MEM_MAP_APERTURE_MASK 0x000000f0
60#define PMC551_PCI_MEM_MAP_REG_EN 0x00000002
61#define PMC551_PCI_MEM_MAP_ENABLE 0x00000001
62
63#define PMC551_SDRAM_MA 0x60
64#define PMC551_SDRAM_CMD 0x62
65#define PMC551_DRAM_CFG 0x64
66#define PMC551_SYS_CTRL_REG 0x78
67
68#define PMC551_DRAM_BLK0 0x68
69#define PMC551_DRAM_BLK1 0x6c
70#define PMC551_DRAM_BLK2 0x70
71#define PMC551_DRAM_BLK3 0x74
72#define PMC551_DRAM_BLK_GET_SIZE(x) (524288<<((x>>4)&0x0f))
73#define PMC551_DRAM_BLK_SET_COL_MUX(x,v) (((x) & ~0x00007000) | (((v) & 0x7) << 12))
74#define PMC551_DRAM_BLK_SET_ROW_MUX(x,v) (((x) & ~0x00000f00) | (((v) & 0xf) << 8))
75
76
77#endif /* __MTD_PMC551_H__ */
78
diff --git a/include/linux/mtd/sh_flctl.h b/include/linux/mtd/sh_flctl.h
index 9cf4c4c79555..a38e1fa8af01 100644
--- a/include/linux/mtd/sh_flctl.h
+++ b/include/linux/mtd/sh_flctl.h
@@ -23,6 +23,7 @@
23#include <linux/mtd/mtd.h> 23#include <linux/mtd/mtd.h>
24#include <linux/mtd/nand.h> 24#include <linux/mtd/nand.h>
25#include <linux/mtd/partitions.h> 25#include <linux/mtd/partitions.h>
26#include <linux/pm_qos.h>
26 27
27/* FLCTL registers */ 28/* FLCTL registers */
28#define FLCMNCR(f) (f->reg + 0x0) 29#define FLCMNCR(f) (f->reg + 0x0)
@@ -38,6 +39,7 @@
38#define FLDTFIFO(f) (f->reg + 0x24) 39#define FLDTFIFO(f) (f->reg + 0x24)
39#define FLECFIFO(f) (f->reg + 0x28) 40#define FLECFIFO(f) (f->reg + 0x28)
40#define FLTRCR(f) (f->reg + 0x2C) 41#define FLTRCR(f) (f->reg + 0x2C)
42#define FLHOLDCR(f) (f->reg + 0x38)
41#define FL4ECCRESULT0(f) (f->reg + 0x80) 43#define FL4ECCRESULT0(f) (f->reg + 0x80)
42#define FL4ECCRESULT1(f) (f->reg + 0x84) 44#define FL4ECCRESULT1(f) (f->reg + 0x84)
43#define FL4ECCRESULT2(f) (f->reg + 0x88) 45#define FL4ECCRESULT2(f) (f->reg + 0x88)
@@ -67,6 +69,30 @@
67#define CE0_ENABLE (0x1 << 3) /* Chip Enable 0 */ 69#define CE0_ENABLE (0x1 << 3) /* Chip Enable 0 */
68#define TYPESEL_SET (0x1 << 0) 70#define TYPESEL_SET (0x1 << 0)
69 71
72/*
73 * Clock settings using the PULSEx registers from FLCMNCR
74 *
75 * Some hardware uses bits called PULSEx instead of FCKSEL_E and QTSEL_E
76 * to control the clock divider used between the High-Speed Peripheral Clock
77 * and the FLCTL internal clock. If so, use CLK_8_BIT_xxx for connecting 8 bit
78 * and CLK_16_BIT_xxx for connecting 16 bit bus bandwith NAND chips. For the 16
79 * bit version the divider is seperate for the pulse width of high and low
80 * signals.
81 */
82#define PULSE3 (0x1 << 27)
83#define PULSE2 (0x1 << 17)
84#define PULSE1 (0x1 << 15)
85#define PULSE0 (0x1 << 9)
86#define CLK_8B_0_5 PULSE1
87#define CLK_8B_1 0x0
88#define CLK_8B_1_5 (PULSE1 | PULSE2)
89#define CLK_8B_2 PULSE0
90#define CLK_8B_3 (PULSE0 | PULSE1 | PULSE2)
91#define CLK_8B_4 (PULSE0 | PULSE2)
92#define CLK_16B_6L_2H PULSE0
93#define CLK_16B_9L_3H (PULSE0 | PULSE1 | PULSE2)
94#define CLK_16B_12L_4H (PULSE0 | PULSE2)
95
70/* FLCMDCR control bits */ 96/* FLCMDCR control bits */
71#define ADRCNT2_E (0x1 << 31) /* 5byte address enable */ 97#define ADRCNT2_E (0x1 << 31) /* 5byte address enable */
72#define ADRMD_E (0x1 << 26) /* Sector address access */ 98#define ADRMD_E (0x1 << 26) /* Sector address access */
@@ -85,6 +111,15 @@
85#define TRSTRT (0x1 << 0) /* translation start */ 111#define TRSTRT (0x1 << 0) /* translation start */
86#define TREND (0x1 << 1) /* translation end */ 112#define TREND (0x1 << 1) /* translation end */
87 113
114/*
115 * FLHOLDCR control bits
116 *
117 * HOLDEN: Bus Occupancy Enable (inverted)
118 * Enable this bit when the external bus might be used in between transfers.
119 * If not set and the bus gets used by other modules, a deadlock occurs.
120 */
121#define HOLDEN (0x1 << 0)
122
88/* FL4ECCCR control bits */ 123/* FL4ECCCR control bits */
89#define _4ECCFA (0x1 << 2) /* 4 symbols correct fault */ 124#define _4ECCFA (0x1 << 2) /* 4 symbols correct fault */
90#define _4ECCEND (0x1 << 1) /* 4 symbols end */ 125#define _4ECCEND (0x1 << 1) /* 4 symbols end */
@@ -97,6 +132,7 @@ struct sh_flctl {
97 struct mtd_info mtd; 132 struct mtd_info mtd;
98 struct nand_chip chip; 133 struct nand_chip chip;
99 struct platform_device *pdev; 134 struct platform_device *pdev;
135 struct dev_pm_qos_request pm_qos;
100 void __iomem *reg; 136 void __iomem *reg;
101 137
102 uint8_t done_buff[2048 + 64]; /* max size 2048 + 64 */ 138 uint8_t done_buff[2048 + 64]; /* max size 2048 + 64 */
@@ -108,11 +144,14 @@ struct sh_flctl {
108 int erase1_page_addr; /* page_addr in ERASE1 cmd */ 144 int erase1_page_addr; /* page_addr in ERASE1 cmd */
109 uint32_t erase_ADRCNT; /* bits of FLCMDCR in ERASE1 cmd */ 145 uint32_t erase_ADRCNT; /* bits of FLCMDCR in ERASE1 cmd */
110 uint32_t rw_ADRCNT; /* bits of FLCMDCR in READ WRITE cmd */ 146 uint32_t rw_ADRCNT; /* bits of FLCMDCR in READ WRITE cmd */
147 uint32_t flcmncr_base; /* base value of FLCMNCR */
111 148
112 int hwecc_cant_correct[4]; 149 int hwecc_cant_correct[4];
113 150
114 unsigned page_size:1; /* NAND page size (0 = 512, 1 = 2048) */ 151 unsigned page_size:1; /* NAND page size (0 = 512, 1 = 2048) */
115 unsigned hwecc:1; /* Hardware ECC (0 = disabled, 1 = enabled) */ 152 unsigned hwecc:1; /* Hardware ECC (0 = disabled, 1 = enabled) */
153 unsigned holden:1; /* Hardware has FLHOLDCR and HOLDEN is set */
154 unsigned qos_request:1; /* QoS request to prevent deep power shutdown */
116}; 155};
117 156
118struct sh_flctl_platform_data { 157struct sh_flctl_platform_data {
@@ -121,6 +160,7 @@ struct sh_flctl_platform_data {
121 unsigned long flcmncr_val; 160 unsigned long flcmncr_val;
122 161
123 unsigned has_hwecc:1; 162 unsigned has_hwecc:1;
163 unsigned use_holden:1;
124}; 164};
125 165
126static inline struct sh_flctl *mtd_to_flctl(struct mtd_info *mtdinfo) 166static inline struct sh_flctl *mtd_to_flctl(struct mtd_info *mtdinfo)
diff --git a/include/linux/mtd/spear_smi.h b/include/linux/mtd/spear_smi.h
new file mode 100644
index 000000000000..8ae1726044c3
--- /dev/null
+++ b/include/linux/mtd/spear_smi.h
@@ -0,0 +1,65 @@
1/*
2 * Copyright © 2010 ST Microelectronics
3 * Shiraz Hashim <shiraz.hashim@st.com>
4 *
5 * This file is licensed under the terms of the GNU General Public
6 * License version 2. This program is licensed "as is" without any
7 * warranty of any kind, whether express or implied.
8 */
9
10#ifndef __MTD_SPEAR_SMI_H
11#define __MTD_SPEAR_SMI_H
12
13#include <linux/types.h>
14#include <linux/mtd/mtd.h>
15#include <linux/mtd/partitions.h>
16#include <linux/platform_device.h>
17#include <linux/of.h>
18
19/* max possible slots for serial-nor flash chip in the SMI controller */
20#define MAX_NUM_FLASH_CHIP 4
21
22/* macro to define partitions for flash devices */
23#define DEFINE_PARTS(n, of, s) \
24{ \
25 .name = n, \
26 .offset = of, \
27 .size = s, \
28}
29
30/**
31 * struct spear_smi_flash_info - platform structure for passing flash
32 * information
33 *
34 * name: name of the serial nor flash for identification
35 * mem_base: the memory base on which the flash is mapped
36 * size: size of the flash in bytes
37 * partitions: parition details
38 * nr_partitions: number of partitions
39 * fast_mode: whether flash supports fast mode
40 */
41
42struct spear_smi_flash_info {
43 char *name;
44 unsigned long mem_base;
45 unsigned long size;
46 struct mtd_partition *partitions;
47 int nr_partitions;
48 u8 fast_mode;
49};
50
51/**
52 * struct spear_smi_plat_data - platform structure for configuring smi
53 *
54 * clk_rate: clk rate at which SMI must operate
55 * num_flashes: number of flashes present on board
56 * board_flash_info: specific details of each flash present on board
57 */
58struct spear_smi_plat_data {
59 unsigned long clk_rate;
60 int num_flashes;
61 struct spear_smi_flash_info *board_flash_info;
62 struct device_node *np[MAX_NUM_FLASH_CHIP];
63};
64
65#endif /* __MTD_SPEAR_SMI_H */
diff --git a/sound/soc/mxs/mxs-pcm.c b/sound/soc/mxs/mxs-pcm.c
index 6ca1f46d84a4..e373fbbc97a0 100644
--- a/sound/soc/mxs/mxs-pcm.c
+++ b/sound/soc/mxs/mxs-pcm.c
@@ -28,6 +28,7 @@
28#include <linux/platform_device.h> 28#include <linux/platform_device.h>
29#include <linux/slab.h> 29#include <linux/slab.h>
30#include <linux/dmaengine.h> 30#include <linux/dmaengine.h>
31#include <linux/fsl/mxs-dma.h>
31 32
32#include <sound/core.h> 33#include <sound/core.h>
33#include <sound/initval.h> 34#include <sound/initval.h>
@@ -36,7 +37,6 @@
36#include <sound/soc.h> 37#include <sound/soc.h>
37#include <sound/dmaengine_pcm.h> 38#include <sound/dmaengine_pcm.h>
38 39
39#include <mach/dma.h>
40#include "mxs-pcm.h" 40#include "mxs-pcm.h"
41 41
42struct mxs_pcm_dma_data { 42struct mxs_pcm_dma_data {
diff --git a/sound/soc/mxs/mxs-saif.c b/sound/soc/mxs/mxs-saif.c
index 12be05b16880..53f4fd8feced 100644
--- a/sound/soc/mxs/mxs-saif.c
+++ b/sound/soc/mxs/mxs-saif.c
@@ -24,12 +24,12 @@
24#include <linux/clk.h> 24#include <linux/clk.h>
25#include <linux/delay.h> 25#include <linux/delay.h>
26#include <linux/time.h> 26#include <linux/time.h>
27#include <linux/fsl/mxs-dma.h>
27#include <sound/core.h> 28#include <sound/core.h>
28#include <sound/pcm.h> 29#include <sound/pcm.h>
29#include <sound/pcm_params.h> 30#include <sound/pcm_params.h>
30#include <sound/soc.h> 31#include <sound/soc.h>
31#include <sound/saif.h> 32#include <sound/saif.h>
32#include <mach/dma.h>
33#include <asm/mach-types.h> 33#include <asm/mach-types.h>
34#include <mach/hardware.h> 34#include <mach/hardware.h>
35#include <mach/mxs.h> 35#include <mach/mxs.h>