aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Documentation/lguest/lguest.c599
-rw-r--r--drivers/lguest/core.c24
-rw-r--r--drivers/lguest/io.c247
-rw-r--r--drivers/lguest/lg.h25
-rw-r--r--drivers/lguest/lguest_user.c159
5 files changed, 982 insertions, 72 deletions
diff --git a/Documentation/lguest/lguest.c b/Documentation/lguest/lguest.c
index fc1bf70abfb1..d7e26f025959 100644
--- a/Documentation/lguest/lguest.c
+++ b/Documentation/lguest/lguest.c
@@ -34,12 +34,20 @@
34#include <termios.h> 34#include <termios.h>
35#include <getopt.h> 35#include <getopt.h>
36#include <zlib.h> 36#include <zlib.h>
37/*L:110 We can ignore the 28 include files we need for this program, but I do
38 * want to draw attention to the use of kernel-style types.
39 *
40 * As Linus said, "C is a Spartan language, and so should your naming be." I
41 * like these abbreviations and the header we need uses them, so we define them
42 * here.
43 */
37typedef unsigned long long u64; 44typedef unsigned long long u64;
38typedef uint32_t u32; 45typedef uint32_t u32;
39typedef uint16_t u16; 46typedef uint16_t u16;
40typedef uint8_t u8; 47typedef uint8_t u8;
41#include "../../include/linux/lguest_launcher.h" 48#include "../../include/linux/lguest_launcher.h"
42#include "../../include/asm-i386/e820.h" 49#include "../../include/asm-i386/e820.h"
50/*:*/
43 51
44#define PAGE_PRESENT 0x7 /* Present, RW, Execute */ 52#define PAGE_PRESENT 0x7 /* Present, RW, Execute */
45#define NET_PEERNUM 1 53#define NET_PEERNUM 1
@@ -48,33 +56,52 @@ typedef uint8_t u8;
48#define SIOCBRADDIF 0x89a2 /* add interface to bridge */ 56#define SIOCBRADDIF 0x89a2 /* add interface to bridge */
49#endif 57#endif
50 58
59/*L:120 verbose is both a global flag and a macro. The C preprocessor allows
60 * this, and although I wouldn't recommend it, it works quite nicely here. */
51static bool verbose; 61static bool verbose;
52#define verbose(args...) \ 62#define verbose(args...) \
53 do { if (verbose) printf(args); } while(0) 63 do { if (verbose) printf(args); } while(0)
64/*:*/
65
66/* The pipe to send commands to the waker process */
54static int waker_fd; 67static int waker_fd;
68/* The top of guest physical memory. */
55static u32 top; 69static u32 top;
56 70
71/* This is our list of devices. */
57struct device_list 72struct device_list
58{ 73{
74 /* Summary information about the devices in our list: ready to pass to
75 * select() to ask which need servicing.*/
59 fd_set infds; 76 fd_set infds;
60 int max_infd; 77 int max_infd;
61 78
79 /* The descriptor page for the devices. */
62 struct lguest_device_desc *descs; 80 struct lguest_device_desc *descs;
81
82 /* A single linked list of devices. */
63 struct device *dev; 83 struct device *dev;
84 /* ... And an end pointer so we can easily append new devices */
64 struct device **lastdev; 85 struct device **lastdev;
65}; 86};
66 87
88/* The device structure describes a single device. */
67struct device 89struct device
68{ 90{
91 /* The linked-list pointer. */
69 struct device *next; 92 struct device *next;
93 /* The descriptor for this device, as mapped into the Guest. */
70 struct lguest_device_desc *desc; 94 struct lguest_device_desc *desc;
95 /* The memory page(s) of this device, if any. Also mapped in Guest. */
71 void *mem; 96 void *mem;
72 97
73 /* Watch this fd if handle_input non-NULL. */ 98 /* If handle_input is set, it wants to be called when this file
99 * descriptor is ready. */
74 int fd; 100 int fd;
75 bool (*handle_input)(int fd, struct device *me); 101 bool (*handle_input)(int fd, struct device *me);
76 102
77 /* Watch DMA to this key if handle_input non-NULL. */ 103 /* If handle_output is set, it wants to be called when the Guest sends
104 * DMA to this key. */
78 unsigned long watch_key; 105 unsigned long watch_key;
79 u32 (*handle_output)(int fd, const struct iovec *iov, 106 u32 (*handle_output)(int fd, const struct iovec *iov,
80 unsigned int num, struct device *me); 107 unsigned int num, struct device *me);
@@ -83,6 +110,11 @@ struct device
83 void *priv; 110 void *priv;
84}; 111};
85 112
113/*L:130
114 * Loading the Kernel.
115 *
116 * We start with couple of simple helper routines. open_or_die() avoids
117 * error-checking code cluttering the callers: */
86static int open_or_die(const char *name, int flags) 118static int open_or_die(const char *name, int flags)
87{ 119{
88 int fd = open(name, flags); 120 int fd = open(name, flags);
@@ -91,26 +123,38 @@ static int open_or_die(const char *name, int flags)
91 return fd; 123 return fd;
92} 124}
93 125
126/* map_zeroed_pages() takes a (page-aligned) address and a number of pages. */
94static void *map_zeroed_pages(unsigned long addr, unsigned int num) 127static void *map_zeroed_pages(unsigned long addr, unsigned int num)
95{ 128{
129 /* We cache the /dev/zero file-descriptor so we only open it once. */
96 static int fd = -1; 130 static int fd = -1;
97 131
98 if (fd == -1) 132 if (fd == -1)
99 fd = open_or_die("/dev/zero", O_RDONLY); 133 fd = open_or_die("/dev/zero", O_RDONLY);
100 134
135 /* We use a private mapping (ie. if we write to the page, it will be
136 * copied), and obviously we insist that it be mapped where we ask. */
101 if (mmap((void *)addr, getpagesize() * num, 137 if (mmap((void *)addr, getpagesize() * num,
102 PROT_READ|PROT_WRITE|PROT_EXEC, MAP_FIXED|MAP_PRIVATE, fd, 0) 138 PROT_READ|PROT_WRITE|PROT_EXEC, MAP_FIXED|MAP_PRIVATE, fd, 0)
103 != (void *)addr) 139 != (void *)addr)
104 err(1, "Mmaping %u pages of /dev/zero @%p", num, (void *)addr); 140 err(1, "Mmaping %u pages of /dev/zero @%p", num, (void *)addr);
141
142 /* Returning the address is just a courtesy: can simplify callers. */
105 return (void *)addr; 143 return (void *)addr;
106} 144}
107 145
108/* Find magic string marking entry point, return entry point. */ 146/* To find out where to start we look for the magic Guest string, which marks
147 * the code we see in lguest_asm.S. This is a hack which we are currently
148 * plotting to replace with the normal Linux entry point. */
109static unsigned long entry_point(void *start, void *end, 149static unsigned long entry_point(void *start, void *end,
110 unsigned long page_offset) 150 unsigned long page_offset)
111{ 151{
112 void *p; 152 void *p;
113 153
154 /* The scan gives us the physical starting address. We want the
155 * virtual address in this case, and fortunately, we already figured
156 * out the physical-virtual difference and passed it here in
157 * "page_offset". */
114 for (p = start; p < end; p++) 158 for (p = start; p < end; p++)
115 if (memcmp(p, "GenuineLguest", strlen("GenuineLguest")) == 0) 159 if (memcmp(p, "GenuineLguest", strlen("GenuineLguest")) == 0)
116 return (long)p + strlen("GenuineLguest") + page_offset; 160 return (long)p + strlen("GenuineLguest") + page_offset;
@@ -118,7 +162,17 @@ static unsigned long entry_point(void *start, void *end,
118 err(1, "Is this image a genuine lguest?"); 162 err(1, "Is this image a genuine lguest?");
119} 163}
120 164
121/* Returns the entry point */ 165/* This routine takes an open vmlinux image, which is in ELF, and maps it into
166 * the Guest memory. ELF = Embedded Linking Format, which is the format used
167 * by all modern binaries on Linux including the kernel.
168 *
169 * The ELF headers give *two* addresses: a physical address, and a virtual
170 * address. The Guest kernel expects to be placed in memory at the physical
171 * address, and the page tables set up so it will correspond to that virtual
172 * address. We return the difference between the virtual and physical
173 * addresses in the "page_offset" pointer.
174 *
175 * We return the starting address. */
122static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr, 176static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr,
123 unsigned long *page_offset) 177 unsigned long *page_offset)
124{ 178{
@@ -127,40 +181,61 @@ static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr,
127 unsigned int i; 181 unsigned int i;
128 unsigned long start = -1UL, end = 0; 182 unsigned long start = -1UL, end = 0;
129 183
130 /* Sanity checks. */ 184 /* Sanity checks on the main ELF header: an x86 executable with a
185 * reasonable number of correctly-sized program headers. */
131 if (ehdr->e_type != ET_EXEC 186 if (ehdr->e_type != ET_EXEC
132 || ehdr->e_machine != EM_386 187 || ehdr->e_machine != EM_386
133 || ehdr->e_phentsize != sizeof(Elf32_Phdr) 188 || ehdr->e_phentsize != sizeof(Elf32_Phdr)
134 || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr)) 189 || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
135 errx(1, "Malformed elf header"); 190 errx(1, "Malformed elf header");
136 191
192 /* An ELF executable contains an ELF header and a number of "program"
193 * headers which indicate which parts ("segments") of the program to
194 * load where. */
195
196 /* We read in all the program headers at once: */
137 if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0) 197 if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
138 err(1, "Seeking to program headers"); 198 err(1, "Seeking to program headers");
139 if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr)) 199 if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
140 err(1, "Reading program headers"); 200 err(1, "Reading program headers");
141 201
202 /* We don't know page_offset yet. */
142 *page_offset = 0; 203 *page_offset = 0;
143 /* We map the loadable segments at virtual addresses corresponding 204
144 * to their physical addresses (our virtual == guest physical). */ 205 /* Try all the headers: there are usually only three. A read-only one,
206 * a read-write one, and a "note" section which isn't loadable. */
145 for (i = 0; i < ehdr->e_phnum; i++) { 207 for (i = 0; i < ehdr->e_phnum; i++) {
208 /* If this isn't a loadable segment, we ignore it */
146 if (phdr[i].p_type != PT_LOAD) 209 if (phdr[i].p_type != PT_LOAD)
147 continue; 210 continue;
148 211
149 verbose("Section %i: size %i addr %p\n", 212 verbose("Section %i: size %i addr %p\n",
150 i, phdr[i].p_memsz, (void *)phdr[i].p_paddr); 213 i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
151 214
152 /* We expect linear address space. */ 215 /* We expect a simple linear address space: every segment must
216 * have the same difference between virtual (p_vaddr) and
217 * physical (p_paddr) address. */
153 if (!*page_offset) 218 if (!*page_offset)
154 *page_offset = phdr[i].p_vaddr - phdr[i].p_paddr; 219 *page_offset = phdr[i].p_vaddr - phdr[i].p_paddr;
155 else if (*page_offset != phdr[i].p_vaddr - phdr[i].p_paddr) 220 else if (*page_offset != phdr[i].p_vaddr - phdr[i].p_paddr)
156 errx(1, "Page offset of section %i different", i); 221 errx(1, "Page offset of section %i different", i);
157 222
223 /* We track the first and last address we mapped, so we can
224 * tell entry_point() where to scan. */
158 if (phdr[i].p_paddr < start) 225 if (phdr[i].p_paddr < start)
159 start = phdr[i].p_paddr; 226 start = phdr[i].p_paddr;
160 if (phdr[i].p_paddr + phdr[i].p_filesz > end) 227 if (phdr[i].p_paddr + phdr[i].p_filesz > end)
161 end = phdr[i].p_paddr + phdr[i].p_filesz; 228 end = phdr[i].p_paddr + phdr[i].p_filesz;
162 229
163 /* We map everything private, writable. */ 230 /* We map this section of the file at its physical address. We
231 * map it read & write even if the header says this segment is
232 * read-only. The kernel really wants to be writable: it
233 * patches its own instructions which would normally be
234 * read-only.
235 *
236 * MAP_PRIVATE means that the page won't be copied until a
237 * write is done to it. This allows us to share much of the
238 * kernel memory between Guests. */
164 addr = mmap((void *)phdr[i].p_paddr, 239 addr = mmap((void *)phdr[i].p_paddr,
165 phdr[i].p_filesz, 240 phdr[i].p_filesz,
166 PROT_READ|PROT_WRITE|PROT_EXEC, 241 PROT_READ|PROT_WRITE|PROT_EXEC,
@@ -174,7 +249,31 @@ static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr,
174 return entry_point((void *)start, (void *)end, *page_offset); 249 return entry_point((void *)start, (void *)end, *page_offset);
175} 250}
176 251
177/* This is amazingly reliable. */ 252/*L:170 Prepare to be SHOCKED and AMAZED. And possibly a trifle nauseated.
253 *
254 * We know that CONFIG_PAGE_OFFSET sets what virtual address the kernel expects
255 * to be. We don't know what that option was, but we can figure it out
256 * approximately by looking at the addresses in the code. I chose the common
257 * case of reading a memory location into the %eax register:
258 *
259 * movl <some-address>, %eax
260 *
261 * This gets encoded as five bytes: "0xA1 <4-byte-address>". For example,
262 * "0xA1 0x18 0x60 0x47 0xC0" reads the address 0xC0476018 into %eax.
263 *
264 * In this example can guess that the kernel was compiled with
265 * CONFIG_PAGE_OFFSET set to 0xC0000000 (it's always a round number). If the
266 * kernel were larger than 16MB, we might see 0xC1 addresses show up, but our
267 * kernel isn't that bloated yet.
268 *
269 * Unfortunately, x86 has variable-length instructions, so finding this
270 * particular instruction properly involves writing a disassembler. Instead,
271 * we rely on statistics. We look for "0xA1" and tally the different bytes
272 * which occur 4 bytes later (the "0xC0" in our example above). When one of
273 * those bytes appears three times, we can be reasonably confident that it
274 * forms the start of CONFIG_PAGE_OFFSET.
275 *
276 * This is amazingly reliable. */
178static unsigned long intuit_page_offset(unsigned char *img, unsigned long len) 277static unsigned long intuit_page_offset(unsigned char *img, unsigned long len)
179{ 278{
180 unsigned int i, possibilities[256] = { 0 }; 279 unsigned int i, possibilities[256] = { 0 };
@@ -187,30 +286,52 @@ static unsigned long intuit_page_offset(unsigned char *img, unsigned long len)
187 errx(1, "could not determine page offset"); 286 errx(1, "could not determine page offset");
188} 287}
189 288
289/*L:160 Unfortunately the entire ELF image isn't compressed: the segments
290 * which need loading are extracted and compressed raw. This denies us the
291 * information we need to make a fully-general loader. */
190static unsigned long unpack_bzimage(int fd, unsigned long *page_offset) 292static unsigned long unpack_bzimage(int fd, unsigned long *page_offset)
191{ 293{
192 gzFile f; 294 gzFile f;
193 int ret, len = 0; 295 int ret, len = 0;
296 /* A bzImage always gets loaded at physical address 1M. This is
297 * actually configurable as CONFIG_PHYSICAL_START, but as the comment
298 * there says, "Don't change this unless you know what you are doing".
299 * Indeed. */
194 void *img = (void *)0x100000; 300 void *img = (void *)0x100000;
195 301
302 /* gzdopen takes our file descriptor (carefully placed at the start of
303 * the GZIP header we found) and returns a gzFile. */
196 f = gzdopen(fd, "rb"); 304 f = gzdopen(fd, "rb");
305 /* We read it into memory in 64k chunks until we hit the end. */
197 while ((ret = gzread(f, img + len, 65536)) > 0) 306 while ((ret = gzread(f, img + len, 65536)) > 0)
198 len += ret; 307 len += ret;
199 if (ret < 0) 308 if (ret < 0)
200 err(1, "reading image from bzImage"); 309 err(1, "reading image from bzImage");
201 310
202 verbose("Unpacked size %i addr %p\n", len, img); 311 verbose("Unpacked size %i addr %p\n", len, img);
312
313 /* Without the ELF header, we can't tell virtual-physical gap. This is
314 * CONFIG_PAGE_OFFSET, and people do actually change it. Fortunately,
315 * I have a clever way of figuring it out from the code itself. */
203 *page_offset = intuit_page_offset(img, len); 316 *page_offset = intuit_page_offset(img, len);
204 317
205 return entry_point(img, img + len, *page_offset); 318 return entry_point(img, img + len, *page_offset);
206} 319}
207 320
321/*L:150 A bzImage, unlike an ELF file, is not meant to be loaded. You're
322 * supposed to jump into it and it will unpack itself. We can't do that
323 * because the Guest can't run the unpacking code, and adding features to
324 * lguest kills puppies, so we don't want to.
325 *
326 * The bzImage is formed by putting the decompressing code in front of the
327 * compressed kernel code. So we can simple scan through it looking for the
328 * first "gzip" header, and start decompressing from there. */
208static unsigned long load_bzimage(int fd, unsigned long *page_offset) 329static unsigned long load_bzimage(int fd, unsigned long *page_offset)
209{ 330{
210 unsigned char c; 331 unsigned char c;
211 int state = 0; 332 int state = 0;
212 333
213 /* Ugly brute force search for gzip header. */ 334 /* GZIP header is 0x1F 0x8B <method> <flags>... <compressed-by>. */
214 while (read(fd, &c, 1) == 1) { 335 while (read(fd, &c, 1) == 1) {
215 switch (state) { 336 switch (state) {
216 case 0: 337 case 0:
@@ -227,8 +348,10 @@ static unsigned long load_bzimage(int fd, unsigned long *page_offset)
227 state++; 348 state++;
228 break; 349 break;
229 case 9: 350 case 9:
351 /* Seek back to the start of the gzip header. */
230 lseek(fd, -10, SEEK_CUR); 352 lseek(fd, -10, SEEK_CUR);
231 if (c != 0x03) /* Compressed under UNIX. */ 353 /* One final check: "compressed under UNIX". */
354 if (c != 0x03)
232 state = -1; 355 state = -1;
233 else 356 else
234 return unpack_bzimage(fd, page_offset); 357 return unpack_bzimage(fd, page_offset);
@@ -237,25 +360,43 @@ static unsigned long load_bzimage(int fd, unsigned long *page_offset)
237 errx(1, "Could not find kernel in bzImage"); 360 errx(1, "Could not find kernel in bzImage");
238} 361}
239 362
363/*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels
364 * come wrapped up in the self-decompressing "bzImage" format. With some funky
365 * coding, we can load those, too. */
240static unsigned long load_kernel(int fd, unsigned long *page_offset) 366static unsigned long load_kernel(int fd, unsigned long *page_offset)
241{ 367{
242 Elf32_Ehdr hdr; 368 Elf32_Ehdr hdr;
243 369
370 /* Read in the first few bytes. */
244 if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr)) 371 if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
245 err(1, "Reading kernel"); 372 err(1, "Reading kernel");
246 373
374 /* If it's an ELF file, it starts with "\177ELF" */
247 if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0) 375 if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
248 return map_elf(fd, &hdr, page_offset); 376 return map_elf(fd, &hdr, page_offset);
249 377
378 /* Otherwise we assume it's a bzImage, and try to unpack it */
250 return load_bzimage(fd, page_offset); 379 return load_bzimage(fd, page_offset);
251} 380}
252 381
382/* This is a trivial little helper to align pages. Andi Kleen hated it because
383 * it calls getpagesize() twice: "it's dumb code."
384 *
385 * Kernel guys get really het up about optimization, even when it's not
386 * necessary. I leave this code as a reaction against that. */
253static inline unsigned long page_align(unsigned long addr) 387static inline unsigned long page_align(unsigned long addr)
254{ 388{
389 /* Add upwards and truncate downwards. */
255 return ((addr + getpagesize()-1) & ~(getpagesize()-1)); 390 return ((addr + getpagesize()-1) & ~(getpagesize()-1));
256} 391}
257 392
258/* initrd gets loaded at top of memory: return length. */ 393/*L:180 An "initial ram disk" is a disk image loaded into memory along with
394 * the kernel which the kernel can use to boot from without needing any
395 * drivers. Most distributions now use this as standard: the initrd contains
396 * the code to load the appropriate driver modules for the current machine.
397 *
398 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
399 * kernels. He sent me this (and tells me when I break it). */
259static unsigned long load_initrd(const char *name, unsigned long mem) 400static unsigned long load_initrd(const char *name, unsigned long mem)
260{ 401{
261 int ifd; 402 int ifd;
@@ -264,21 +405,35 @@ static unsigned long load_initrd(const char *name, unsigned long mem)
264 void *iaddr; 405 void *iaddr;
265 406
266 ifd = open_or_die(name, O_RDONLY); 407 ifd = open_or_die(name, O_RDONLY);
408 /* fstat() is needed to get the file size. */
267 if (fstat(ifd, &st) < 0) 409 if (fstat(ifd, &st) < 0)
268 err(1, "fstat() on initrd '%s'", name); 410 err(1, "fstat() on initrd '%s'", name);
269 411
412 /* The length needs to be rounded up to a page size: mmap needs the
413 * address to be page aligned. */
270 len = page_align(st.st_size); 414 len = page_align(st.st_size);
415 /* We map the initrd at the top of memory. */
271 iaddr = mmap((void *)mem - len, st.st_size, 416 iaddr = mmap((void *)mem - len, st.st_size,
272 PROT_READ|PROT_EXEC|PROT_WRITE, 417 PROT_READ|PROT_EXEC|PROT_WRITE,
273 MAP_FIXED|MAP_PRIVATE, ifd, 0); 418 MAP_FIXED|MAP_PRIVATE, ifd, 0);
274 if (iaddr != (void *)mem - len) 419 if (iaddr != (void *)mem - len)
275 err(1, "Mmaping initrd '%s' returned %p not %p", 420 err(1, "Mmaping initrd '%s' returned %p not %p",
276 name, iaddr, (void *)mem - len); 421 name, iaddr, (void *)mem - len);
422 /* Once a file is mapped, you can close the file descriptor. It's a
423 * little odd, but quite useful. */
277 close(ifd); 424 close(ifd);
278 verbose("mapped initrd %s size=%lu @ %p\n", name, st.st_size, iaddr); 425 verbose("mapped initrd %s size=%lu @ %p\n", name, st.st_size, iaddr);
426
427 /* We return the initrd size. */
279 return len; 428 return len;
280} 429}
281 430
431/* Once we know how much memory we have, and the address the Guest kernel
432 * expects, we can construct simple linear page tables which will get the Guest
433 * far enough into the boot to create its own.
434 *
435 * We lay them out of the way, just below the initrd (which is why we need to
436 * know its size). */
282static unsigned long setup_pagetables(unsigned long mem, 437static unsigned long setup_pagetables(unsigned long mem,
283 unsigned long initrd_size, 438 unsigned long initrd_size,
284 unsigned long page_offset) 439 unsigned long page_offset)
@@ -287,23 +442,32 @@ static unsigned long setup_pagetables(unsigned long mem,
287 unsigned int mapped_pages, i, linear_pages; 442 unsigned int mapped_pages, i, linear_pages;
288 unsigned int ptes_per_page = getpagesize()/sizeof(u32); 443 unsigned int ptes_per_page = getpagesize()/sizeof(u32);
289 444
290 /* If we can map all of memory above page_offset, we do so. */ 445 /* Ideally we map all physical memory starting at page_offset.
446 * However, if page_offset is 0xC0000000 we can only map 1G of physical
447 * (0xC0000000 + 1G overflows). */
291 if (mem <= -page_offset) 448 if (mem <= -page_offset)
292 mapped_pages = mem/getpagesize(); 449 mapped_pages = mem/getpagesize();
293 else 450 else
294 mapped_pages = -page_offset/getpagesize(); 451 mapped_pages = -page_offset/getpagesize();
295 452
296 /* Each linear PTE page can map ptes_per_page pages. */ 453 /* Each PTE page can map ptes_per_page pages: how many do we need? */
297 linear_pages = (mapped_pages + ptes_per_page-1)/ptes_per_page; 454 linear_pages = (mapped_pages + ptes_per_page-1)/ptes_per_page;
298 455
299 /* We lay out top-level then linear mapping immediately below initrd */ 456 /* We put the toplevel page directory page at the top of memory. */
300 pgdir = (void *)mem - initrd_size - getpagesize(); 457 pgdir = (void *)mem - initrd_size - getpagesize();
458
459 /* Now we use the next linear_pages pages as pte pages */
301 linear = (void *)pgdir - linear_pages*getpagesize(); 460 linear = (void *)pgdir - linear_pages*getpagesize();
302 461
462 /* Linear mapping is easy: put every page's address into the mapping in
463 * order. PAGE_PRESENT contains the flags Present, Writable and
464 * Executable. */
303 for (i = 0; i < mapped_pages; i++) 465 for (i = 0; i < mapped_pages; i++)
304 linear[i] = ((i * getpagesize()) | PAGE_PRESENT); 466 linear[i] = ((i * getpagesize()) | PAGE_PRESENT);
305 467
306 /* Now set up pgd so that this memory is at page_offset */ 468 /* The top level points to the linear page table pages above. The
469 * entry representing page_offset points to the first one, and they
470 * continue from there. */
307 for (i = 0; i < mapped_pages; i += ptes_per_page) { 471 for (i = 0; i < mapped_pages; i += ptes_per_page) {
308 pgdir[(i + page_offset/getpagesize())/ptes_per_page] 472 pgdir[(i + page_offset/getpagesize())/ptes_per_page]
309 = (((u32)linear + i*sizeof(u32)) | PAGE_PRESENT); 473 = (((u32)linear + i*sizeof(u32)) | PAGE_PRESENT);
@@ -312,9 +476,13 @@ static unsigned long setup_pagetables(unsigned long mem,
312 verbose("Linear mapping of %u pages in %u pte pages at %p\n", 476 verbose("Linear mapping of %u pages in %u pte pages at %p\n",
313 mapped_pages, linear_pages, linear); 477 mapped_pages, linear_pages, linear);
314 478
479 /* We return the top level (guest-physical) address: the kernel needs
480 * to know where it is. */
315 return (unsigned long)pgdir; 481 return (unsigned long)pgdir;
316} 482}
317 483
484/* Simple routine to roll all the commandline arguments together with spaces
485 * between them. */
318static void concat(char *dst, char *args[]) 486static void concat(char *dst, char *args[])
319{ 487{
320 unsigned int i, len = 0; 488 unsigned int i, len = 0;
@@ -328,6 +496,10 @@ static void concat(char *dst, char *args[])
328 dst[len] = '\0'; 496 dst[len] = '\0';
329} 497}
330 498
499/* This is where we actually tell the kernel to initialize the Guest. We saw
500 * the arguments it expects when we looked at initialize() in lguest_user.c:
501 * the top physical page to allow, the top level pagetable, the entry point and
502 * the page_offset constant for the Guest. */
331static int tell_kernel(u32 pgdir, u32 start, u32 page_offset) 503static int tell_kernel(u32 pgdir, u32 start, u32 page_offset)
332{ 504{
333 u32 args[] = { LHREQ_INITIALIZE, 505 u32 args[] = { LHREQ_INITIALIZE,
@@ -337,8 +509,11 @@ static int tell_kernel(u32 pgdir, u32 start, u32 page_offset)
337 fd = open_or_die("/dev/lguest", O_RDWR); 509 fd = open_or_die("/dev/lguest", O_RDWR);
338 if (write(fd, args, sizeof(args)) < 0) 510 if (write(fd, args, sizeof(args)) < 0)
339 err(1, "Writing to /dev/lguest"); 511 err(1, "Writing to /dev/lguest");
512
513 /* We return the /dev/lguest file descriptor to control this Guest */
340 return fd; 514 return fd;
341} 515}
516/*:*/
342 517
343static void set_fd(int fd, struct device_list *devices) 518static void set_fd(int fd, struct device_list *devices)
344{ 519{
@@ -347,61 +522,108 @@ static void set_fd(int fd, struct device_list *devices)
347 devices->max_infd = fd; 522 devices->max_infd = fd;
348} 523}
349 524
350/* When input arrives, we tell the kernel to kick lguest out with -EAGAIN. */ 525/*L:200
526 * The Waker.
527 *
528 * With a console and network devices, we can have lots of input which we need
529 * to process. We could try to tell the kernel what file descriptors to watch,
530 * but handing a file descriptor mask through to the kernel is fairly icky.
531 *
532 * Instead, we fork off a process which watches the file descriptors and writes
533 * the LHREQ_BREAK command to the /dev/lguest filedescriptor to tell the Host
534 * loop to stop running the Guest. This causes it to return from the
535 * /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset
536 * the LHREQ_BREAK and wake us up again.
537 *
538 * This, of course, is merely a different *kind* of icky.
539 */
351static void wake_parent(int pipefd, int lguest_fd, struct device_list *devices) 540static void wake_parent(int pipefd, int lguest_fd, struct device_list *devices)
352{ 541{
542 /* Add the pipe from the Launcher to the fdset in the device_list, so
543 * we watch it, too. */
353 set_fd(pipefd, devices); 544 set_fd(pipefd, devices);
354 545
355 for (;;) { 546 for (;;) {
356 fd_set rfds = devices->infds; 547 fd_set rfds = devices->infds;
357 u32 args[] = { LHREQ_BREAK, 1 }; 548 u32 args[] = { LHREQ_BREAK, 1 };
358 549
550 /* Wait until input is ready from one of the devices. */
359 select(devices->max_infd+1, &rfds, NULL, NULL, NULL); 551 select(devices->max_infd+1, &rfds, NULL, NULL, NULL);
552 /* Is it a message from the Launcher? */
360 if (FD_ISSET(pipefd, &rfds)) { 553 if (FD_ISSET(pipefd, &rfds)) {
361 int ignorefd; 554 int ignorefd;
555 /* If read() returns 0, it means the Launcher has
556 * exited. We silently follow. */
362 if (read(pipefd, &ignorefd, sizeof(ignorefd)) == 0) 557 if (read(pipefd, &ignorefd, sizeof(ignorefd)) == 0)
363 exit(0); 558 exit(0);
559 /* Otherwise it's telling us there's a problem with one
560 * of the devices, and we should ignore that file
561 * descriptor from now on. */
364 FD_CLR(ignorefd, &devices->infds); 562 FD_CLR(ignorefd, &devices->infds);
365 } else 563 } else /* Send LHREQ_BREAK command. */
366 write(lguest_fd, args, sizeof(args)); 564 write(lguest_fd, args, sizeof(args));
367 } 565 }
368} 566}
369 567
568/* This routine just sets up a pipe to the Waker process. */
370static int setup_waker(int lguest_fd, struct device_list *device_list) 569static int setup_waker(int lguest_fd, struct device_list *device_list)
371{ 570{
372 int pipefd[2], child; 571 int pipefd[2], child;
373 572
573 /* We create a pipe to talk to the waker, and also so it knows when the
574 * Launcher dies (and closes pipe). */
374 pipe(pipefd); 575 pipe(pipefd);
375 child = fork(); 576 child = fork();
376 if (child == -1) 577 if (child == -1)
377 err(1, "forking"); 578 err(1, "forking");
378 579
379 if (child == 0) { 580 if (child == 0) {
581 /* Close the "writing" end of our copy of the pipe */
380 close(pipefd[1]); 582 close(pipefd[1]);
381 wake_parent(pipefd[0], lguest_fd, device_list); 583 wake_parent(pipefd[0], lguest_fd, device_list);
382 } 584 }
585 /* Close the reading end of our copy of the pipe. */
383 close(pipefd[0]); 586 close(pipefd[0]);
384 587
588 /* Here is the fd used to talk to the waker. */
385 return pipefd[1]; 589 return pipefd[1];
386} 590}
387 591
592/*L:210
593 * Device Handling.
594 *
595 * When the Guest sends DMA to us, it sends us an array of addresses and sizes.
596 * We need to make sure it's not trying to reach into the Launcher itself, so
597 * we have a convenient routine which check it and exits with an error message
598 * if something funny is going on:
599 */
388static void *_check_pointer(unsigned long addr, unsigned int size, 600static void *_check_pointer(unsigned long addr, unsigned int size,
389 unsigned int line) 601 unsigned int line)
390{ 602{
603 /* We have to separately check addr and addr+size, because size could
604 * be huge and addr + size might wrap around. */
391 if (addr >= top || addr + size >= top) 605 if (addr >= top || addr + size >= top)
392 errx(1, "%s:%i: Invalid address %li", __FILE__, line, addr); 606 errx(1, "%s:%i: Invalid address %li", __FILE__, line, addr);
607 /* We return a pointer for the caller's convenience, now we know it's
608 * safe to use. */
393 return (void *)addr; 609 return (void *)addr;
394} 610}
611/* A macro which transparently hands the line number to the real function. */
395#define check_pointer(addr,size) _check_pointer(addr, size, __LINE__) 612#define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
396 613
397/* Returns pointer to dma->used_len */ 614/* The Guest has given us the address of a "struct lguest_dma". We check it's
615 * OK and convert it to an iovec (which is a simple array of ptr/size
616 * pairs). */
398static u32 *dma2iov(unsigned long dma, struct iovec iov[], unsigned *num) 617static u32 *dma2iov(unsigned long dma, struct iovec iov[], unsigned *num)
399{ 618{
400 unsigned int i; 619 unsigned int i;
401 struct lguest_dma *udma; 620 struct lguest_dma *udma;
402 621
622 /* First we make sure that the array memory itself is valid. */
403 udma = check_pointer(dma, sizeof(*udma)); 623 udma = check_pointer(dma, sizeof(*udma));
624 /* Now we check each element */
404 for (i = 0; i < LGUEST_MAX_DMA_SECTIONS; i++) { 625 for (i = 0; i < LGUEST_MAX_DMA_SECTIONS; i++) {
626 /* A zero length ends the array. */
405 if (!udma->len[i]) 627 if (!udma->len[i])
406 break; 628 break;
407 629
@@ -409,9 +631,15 @@ static u32 *dma2iov(unsigned long dma, struct iovec iov[], unsigned *num)
409 iov[i].iov_len = udma->len[i]; 631 iov[i].iov_len = udma->len[i];
410 } 632 }
411 *num = i; 633 *num = i;
634
635 /* We return the pointer to where the caller should write the amount of
636 * the buffer used. */
412 return &udma->used_len; 637 return &udma->used_len;
413} 638}
414 639
640/* This routine gets a DMA buffer from the Guest for a given key, and converts
641 * it to an iovec array. It returns the interrupt the Guest wants when we're
642 * finished, and a pointer to the "used_len" field to fill in. */
415static u32 *get_dma_buffer(int fd, void *key, 643static u32 *get_dma_buffer(int fd, void *key,
416 struct iovec iov[], unsigned int *num, u32 *irq) 644 struct iovec iov[], unsigned int *num, u32 *irq)
417{ 645{
@@ -419,16 +647,21 @@ static u32 *get_dma_buffer(int fd, void *key,
419 unsigned long udma; 647 unsigned long udma;
420 u32 *res; 648 u32 *res;
421 649
650 /* Ask the kernel for a DMA buffer corresponding to this key. */
422 udma = write(fd, buf, sizeof(buf)); 651 udma = write(fd, buf, sizeof(buf));
652 /* They haven't registered any, or they're all used? */
423 if (udma == (unsigned long)-1) 653 if (udma == (unsigned long)-1)
424 return NULL; 654 return NULL;
425 655
426 /* Kernel stashes irq in ->used_len. */ 656 /* Convert it into our iovec array */
427 res = dma2iov(udma, iov, num); 657 res = dma2iov(udma, iov, num);
658 /* The kernel stashes irq in ->used_len to get it out to us. */
428 *irq = *res; 659 *irq = *res;
660 /* Return a pointer to ((struct lguest_dma *)udma)->used_len. */
429 return res; 661 return res;
430} 662}
431 663
664/* This is a convenient routine to send the Guest an interrupt. */
432static void trigger_irq(int fd, u32 irq) 665static void trigger_irq(int fd, u32 irq)
433{ 666{
434 u32 buf[] = { LHREQ_IRQ, irq }; 667 u32 buf[] = { LHREQ_IRQ, irq };
@@ -436,6 +669,10 @@ static void trigger_irq(int fd, u32 irq)
436 err(1, "Triggering irq %i", irq); 669 err(1, "Triggering irq %i", irq);
437} 670}
438 671
672/* This simply sets up an iovec array where we can put data to be discarded.
673 * This happens when the Guest doesn't want or can't handle the input: we have
674 * to get rid of it somewhere, and if we bury it in the ceiling space it will
675 * start to smell after a week. */
439static void discard_iovec(struct iovec *iov, unsigned int *num) 676static void discard_iovec(struct iovec *iov, unsigned int *num)
440{ 677{
441 static char discard_buf[1024]; 678 static char discard_buf[1024];
@@ -444,19 +681,24 @@ static void discard_iovec(struct iovec *iov, unsigned int *num)
444 iov->iov_len = sizeof(discard_buf); 681 iov->iov_len = sizeof(discard_buf);
445} 682}
446 683
684/* Here is the input terminal setting we save, and the routine to restore them
685 * on exit so the user can see what they type next. */
447static struct termios orig_term; 686static struct termios orig_term;
448static void restore_term(void) 687static void restore_term(void)
449{ 688{
450 tcsetattr(STDIN_FILENO, TCSANOW, &orig_term); 689 tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
451} 690}
452 691
692/* We associate some data with the console for our exit hack. */
453struct console_abort 693struct console_abort
454{ 694{
695 /* How many times have they hit ^C? */
455 int count; 696 int count;
697 /* When did they start? */
456 struct timeval start; 698 struct timeval start;
457}; 699};
458 700
459/* We DMA input to buffer bound at start of console page. */ 701/* This is the routine which handles console input (ie. stdin). */
460static bool handle_console_input(int fd, struct device *dev) 702static bool handle_console_input(int fd, struct device *dev)
461{ 703{
462 u32 irq = 0, *lenp; 704 u32 irq = 0, *lenp;
@@ -465,24 +707,38 @@ static bool handle_console_input(int fd, struct device *dev)
465 struct iovec iov[LGUEST_MAX_DMA_SECTIONS]; 707 struct iovec iov[LGUEST_MAX_DMA_SECTIONS];
466 struct console_abort *abort = dev->priv; 708 struct console_abort *abort = dev->priv;
467 709
710 /* First we get the console buffer from the Guest. The key is dev->mem
711 * which was set to 0 in setup_console(). */
468 lenp = get_dma_buffer(fd, dev->mem, iov, &num, &irq); 712 lenp = get_dma_buffer(fd, dev->mem, iov, &num, &irq);
469 if (!lenp) { 713 if (!lenp) {
714 /* If it's not ready for input, warn and set up to discard. */
470 warn("console: no dma buffer!"); 715 warn("console: no dma buffer!");
471 discard_iovec(iov, &num); 716 discard_iovec(iov, &num);
472 } 717 }
473 718
719 /* This is why we convert to iovecs: the readv() call uses them, and so
720 * it reads straight into the Guest's buffer. */
474 len = readv(dev->fd, iov, num); 721 len = readv(dev->fd, iov, num);
475 if (len <= 0) { 722 if (len <= 0) {
723 /* This implies that the console is closed, is /dev/null, or
724 * something went terribly wrong. We still go through the rest
725 * of the logic, though, especially the exit handling below. */
476 warnx("Failed to get console input, ignoring console."); 726 warnx("Failed to get console input, ignoring console.");
477 len = 0; 727 len = 0;
478 } 728 }
479 729
730 /* If we read the data into the Guest, fill in the length and send the
731 * interrupt. */
480 if (lenp) { 732 if (lenp) {
481 *lenp = len; 733 *lenp = len;
482 trigger_irq(fd, irq); 734 trigger_irq(fd, irq);
483 } 735 }
484 736
485 /* Three ^C within one second? Exit. */ 737 /* Three ^C within one second? Exit.
738 *
739 * This is such a hack, but works surprisingly well. Each ^C has to be
740 * in a buffer by itself, so they can't be too fast. But we check that
741 * we get three within about a second, so they can't be too slow. */
486 if (len == 1 && ((char *)iov[0].iov_base)[0] == 3) { 742 if (len == 1 && ((char *)iov[0].iov_base)[0] == 3) {
487 if (!abort->count++) 743 if (!abort->count++)
488 gettimeofday(&abort->start, NULL); 744 gettimeofday(&abort->start, NULL);
@@ -490,43 +746,60 @@ static bool handle_console_input(int fd, struct device *dev)
490 struct timeval now; 746 struct timeval now;
491 gettimeofday(&now, NULL); 747 gettimeofday(&now, NULL);
492 if (now.tv_sec <= abort->start.tv_sec+1) { 748 if (now.tv_sec <= abort->start.tv_sec+1) {
493 /* Make sure waker is not blocked in BREAK */
494 u32 args[] = { LHREQ_BREAK, 0 }; 749 u32 args[] = { LHREQ_BREAK, 0 };
750 /* Close the fd so Waker will know it has to
751 * exit. */
495 close(waker_fd); 752 close(waker_fd);
753 /* Just in case waker is blocked in BREAK, send
754 * unbreak now. */
496 write(fd, args, sizeof(args)); 755 write(fd, args, sizeof(args));
497 exit(2); 756 exit(2);
498 } 757 }
499 abort->count = 0; 758 abort->count = 0;
500 } 759 }
501 } else 760 } else
761 /* Any other key resets the abort counter. */
502 abort->count = 0; 762 abort->count = 0;
503 763
764 /* Now, if we didn't read anything, put the input terminal back and
765 * return failure (meaning, don't call us again). */
504 if (!len) { 766 if (!len) {
505 restore_term(); 767 restore_term();
506 return false; 768 return false;
507 } 769 }
770 /* Everything went OK! */
508 return true; 771 return true;
509} 772}
510 773
774/* Handling console output is much simpler than input. */
511static u32 handle_console_output(int fd, const struct iovec *iov, 775static u32 handle_console_output(int fd, const struct iovec *iov,
512 unsigned num, struct device*dev) 776 unsigned num, struct device*dev)
513{ 777{
778 /* Whatever the Guest sends, write it to standard output. Return the
779 * number of bytes written. */
514 return writev(STDOUT_FILENO, iov, num); 780 return writev(STDOUT_FILENO, iov, num);
515} 781}
516 782
783/* Guest->Host network output is also pretty easy. */
517static u32 handle_tun_output(int fd, const struct iovec *iov, 784static u32 handle_tun_output(int fd, const struct iovec *iov,
518 unsigned num, struct device *dev) 785 unsigned num, struct device *dev)
519{ 786{
520 /* Now we've seen output, we should warn if we can't get buffers. */ 787 /* We put a flag in the "priv" pointer of the network device, and set
788 * it as soon as we see output. We'll see why in handle_tun_input() */
521 *(bool *)dev->priv = true; 789 *(bool *)dev->priv = true;
790 /* Whatever packet the Guest sent us, write it out to the tun
791 * device. */
522 return writev(dev->fd, iov, num); 792 return writev(dev->fd, iov, num);
523} 793}
524 794
795/* This matches the peer_key() in lguest_net.c. The key for any given slot
796 * is the address of the network device's page plus 4 * the slot number. */
525static unsigned long peer_offset(unsigned int peernum) 797static unsigned long peer_offset(unsigned int peernum)
526{ 798{
527 return 4 * peernum; 799 return 4 * peernum;
528} 800}
529 801
802/* This is where we handle a packet coming in from the tun device */
530static bool handle_tun_input(int fd, struct device *dev) 803static bool handle_tun_input(int fd, struct device *dev)
531{ 804{
532 u32 irq = 0, *lenp; 805 u32 irq = 0, *lenp;
@@ -534,17 +807,28 @@ static bool handle_tun_input(int fd, struct device *dev)
534 unsigned num; 807 unsigned num;
535 struct iovec iov[LGUEST_MAX_DMA_SECTIONS]; 808 struct iovec iov[LGUEST_MAX_DMA_SECTIONS];
536 809
810 /* First we get a buffer the Guest has bound to its key. */
537 lenp = get_dma_buffer(fd, dev->mem+peer_offset(NET_PEERNUM), iov, &num, 811 lenp = get_dma_buffer(fd, dev->mem+peer_offset(NET_PEERNUM), iov, &num,
538 &irq); 812 &irq);
539 if (!lenp) { 813 if (!lenp) {
814 /* Now, it's expected that if we try to send a packet too
815 * early, the Guest won't be ready yet. This is why we set a
816 * flag when the Guest sends its first packet. If it's sent a
817 * packet we assume it should be ready to receive them.
818 *
819 * Actually, this is what the status bits in the descriptor are
820 * for: we should *use* them. FIXME! */
540 if (*(bool *)dev->priv) 821 if (*(bool *)dev->priv)
541 warn("network: no dma buffer!"); 822 warn("network: no dma buffer!");
542 discard_iovec(iov, &num); 823 discard_iovec(iov, &num);
543 } 824 }
544 825
826 /* Read the packet from the device directly into the Guest's buffer. */
545 len = readv(dev->fd, iov, num); 827 len = readv(dev->fd, iov, num);
546 if (len <= 0) 828 if (len <= 0)
547 err(1, "reading network"); 829 err(1, "reading network");
830
831 /* Write the used_len, and trigger the interrupt for the Guest */
548 if (lenp) { 832 if (lenp) {
549 *lenp = len; 833 *lenp = len;
550 trigger_irq(fd, irq); 834 trigger_irq(fd, irq);
@@ -552,9 +836,13 @@ static bool handle_tun_input(int fd, struct device *dev)
552 verbose("tun input packet len %i [%02x %02x] (%s)\n", len, 836 verbose("tun input packet len %i [%02x %02x] (%s)\n", len,
553 ((u8 *)iov[0].iov_base)[0], ((u8 *)iov[0].iov_base)[1], 837 ((u8 *)iov[0].iov_base)[0], ((u8 *)iov[0].iov_base)[1],
554 lenp ? "sent" : "discarded"); 838 lenp ? "sent" : "discarded");
839 /* All good. */
555 return true; 840 return true;
556} 841}
557 842
843/* The last device handling routine is block output: the Guest has sent a DMA
844 * to the block device. It will have placed the command it wants in the
845 * "struct lguest_block_page". */
558static u32 handle_block_output(int fd, const struct iovec *iov, 846static u32 handle_block_output(int fd, const struct iovec *iov,
559 unsigned num, struct device *dev) 847 unsigned num, struct device *dev)
560{ 848{
@@ -564,36 +852,64 @@ static u32 handle_block_output(int fd, const struct iovec *iov,
564 struct iovec reply[LGUEST_MAX_DMA_SECTIONS]; 852 struct iovec reply[LGUEST_MAX_DMA_SECTIONS];
565 off64_t device_len, off = (off64_t)p->sector * 512; 853 off64_t device_len, off = (off64_t)p->sector * 512;
566 854
855 /* First we extract the device length from the dev->priv pointer. */
567 device_len = *(off64_t *)dev->priv; 856 device_len = *(off64_t *)dev->priv;
568 857
858 /* We first check that the read or write is within the length of the
859 * block file. */
569 if (off >= device_len) 860 if (off >= device_len)
570 err(1, "Bad offset %llu vs %llu", off, device_len); 861 err(1, "Bad offset %llu vs %llu", off, device_len);
862 /* Move to the right location in the block file. This shouldn't fail,
863 * but best to check. */
571 if (lseek64(dev->fd, off, SEEK_SET) != off) 864 if (lseek64(dev->fd, off, SEEK_SET) != off)
572 err(1, "Bad seek to sector %i", p->sector); 865 err(1, "Bad seek to sector %i", p->sector);
573 866
574 verbose("Block: %s at offset %llu\n", p->type ? "WRITE" : "READ", off); 867 verbose("Block: %s at offset %llu\n", p->type ? "WRITE" : "READ", off);
575 868
869 /* They were supposed to bind a reply buffer at key equal to the start
870 * of the block device memory. We need this to tell them when the
871 * request is finished. */
576 lenp = get_dma_buffer(fd, dev->mem, reply, &reply_num, &irq); 872 lenp = get_dma_buffer(fd, dev->mem, reply, &reply_num, &irq);
577 if (!lenp) 873 if (!lenp)
578 err(1, "Block request didn't give us a dma buffer"); 874 err(1, "Block request didn't give us a dma buffer");
579 875
580 if (p->type) { 876 if (p->type) {
877 /* A write request. The DMA they sent contained the data, so
878 * write it out. */
581 len = writev(dev->fd, iov, num); 879 len = writev(dev->fd, iov, num);
880 /* Grr... Now we know how long the "struct lguest_dma" they
881 * sent was, we make sure they didn't try to write over the end
882 * of the block file (possibly extending it). */
582 if (off + len > device_len) { 883 if (off + len > device_len) {
884 /* Trim it back to the correct length */
583 ftruncate(dev->fd, device_len); 885 ftruncate(dev->fd, device_len);
886 /* Die, bad Guest, die. */
584 errx(1, "Write past end %llu+%u", off, len); 887 errx(1, "Write past end %llu+%u", off, len);
585 } 888 }
889 /* The reply length is 0: we just send back an empty DMA to
890 * interrupt them and tell them the write is finished. */
586 *lenp = 0; 891 *lenp = 0;
587 } else { 892 } else {
893 /* A read request. They sent an empty DMA to start the
894 * request, and we put the read contents into the reply
895 * buffer. */
588 len = readv(dev->fd, reply, reply_num); 896 len = readv(dev->fd, reply, reply_num);
589 *lenp = len; 897 *lenp = len;
590 } 898 }
591 899
900 /* The result is 1 (done), 2 if there was an error (short read or
901 * write). */
592 p->result = 1 + (p->bytes != len); 902 p->result = 1 + (p->bytes != len);
903 /* Now tell them we've used their reply buffer. */
593 trigger_irq(fd, irq); 904 trigger_irq(fd, irq);
905
906 /* We're supposed to return the number of bytes of the output buffer we
907 * used. But the block device uses the "result" field instead, so we
908 * don't bother. */
594 return 0; 909 return 0;
595} 910}
596 911
912/* This is the generic routine we call when the Guest sends some DMA out. */
597static void handle_output(int fd, unsigned long dma, unsigned long key, 913static void handle_output(int fd, unsigned long dma, unsigned long key,
598 struct device_list *devices) 914 struct device_list *devices)
599{ 915{
@@ -602,30 +918,53 @@ static void handle_output(int fd, unsigned long dma, unsigned long key,
602 struct iovec iov[LGUEST_MAX_DMA_SECTIONS]; 918 struct iovec iov[LGUEST_MAX_DMA_SECTIONS];
603 unsigned num = 0; 919 unsigned num = 0;
604 920
921 /* Convert the "struct lguest_dma" they're sending to a "struct
922 * iovec". */
605 lenp = dma2iov(dma, iov, &num); 923 lenp = dma2iov(dma, iov, &num);
924
925 /* Check each device: if they expect output to this key, tell them to
926 * handle it. */
606 for (i = devices->dev; i; i = i->next) { 927 for (i = devices->dev; i; i = i->next) {
607 if (i->handle_output && key == i->watch_key) { 928 if (i->handle_output && key == i->watch_key) {
929 /* We write the result straight into the used_len field
930 * for them. */
608 *lenp = i->handle_output(fd, iov, num, i); 931 *lenp = i->handle_output(fd, iov, num, i);
609 return; 932 return;
610 } 933 }
611 } 934 }
935
936 /* This can happen: the kernel sends any SEND_DMA which doesn't match
937 * another Guest to us. It could be that another Guest just left a
938 * network, for example. But it's unusual. */
612 warnx("Pending dma %p, key %p", (void *)dma, (void *)key); 939 warnx("Pending dma %p, key %p", (void *)dma, (void *)key);
613} 940}
614 941
942/* This is called when the waker wakes us up: check for incoming file
943 * descriptors. */
615static void handle_input(int fd, struct device_list *devices) 944static void handle_input(int fd, struct device_list *devices)
616{ 945{
946 /* select() wants a zeroed timeval to mean "don't wait". */
617 struct timeval poll = { .tv_sec = 0, .tv_usec = 0 }; 947 struct timeval poll = { .tv_sec = 0, .tv_usec = 0 };
618 948
619 for (;;) { 949 for (;;) {
620 struct device *i; 950 struct device *i;
621 fd_set fds = devices->infds; 951 fd_set fds = devices->infds;
622 952
953 /* If nothing is ready, we're done. */
623 if (select(devices->max_infd+1, &fds, NULL, NULL, &poll) == 0) 954 if (select(devices->max_infd+1, &fds, NULL, NULL, &poll) == 0)
624 break; 955 break;
625 956
957 /* Otherwise, call the device(s) which have readable
958 * file descriptors and a method of handling them. */
626 for (i = devices->dev; i; i = i->next) { 959 for (i = devices->dev; i; i = i->next) {
627 if (i->handle_input && FD_ISSET(i->fd, &fds)) { 960 if (i->handle_input && FD_ISSET(i->fd, &fds)) {
961 /* If handle_input() returns false, it means we
962 * should no longer service it.
963 * handle_console_input() does this. */
628 if (!i->handle_input(fd, i)) { 964 if (!i->handle_input(fd, i)) {
965 /* Clear it from the set of input file
966 * descriptors kept at the head of the
967 * device list. */
629 FD_CLR(i->fd, &devices->infds); 968 FD_CLR(i->fd, &devices->infds);
630 /* Tell waker to ignore it too... */ 969 /* Tell waker to ignore it too... */
631 write(waker_fd, &i->fd, sizeof(i->fd)); 970 write(waker_fd, &i->fd, sizeof(i->fd));
@@ -635,6 +974,15 @@ static void handle_input(int fd, struct device_list *devices)
635 } 974 }
636} 975}
637 976
977/*L:190
978 * Device Setup
979 *
980 * All devices need a descriptor so the Guest knows it exists, and a "struct
981 * device" so the Launcher can keep track of it. We have common helper
982 * routines to allocate them.
983 *
984 * This routine allocates a new "struct lguest_device_desc" from descriptor
985 * table in the devices array just above the Guest's normal memory. */
638static struct lguest_device_desc * 986static struct lguest_device_desc *
639new_dev_desc(struct lguest_device_desc *descs, 987new_dev_desc(struct lguest_device_desc *descs,
640 u16 type, u16 features, u16 num_pages) 988 u16 type, u16 features, u16 num_pages)
@@ -646,6 +994,8 @@ new_dev_desc(struct lguest_device_desc *descs,
646 descs[i].type = type; 994 descs[i].type = type;
647 descs[i].features = features; 995 descs[i].features = features;
648 descs[i].num_pages = num_pages; 996 descs[i].num_pages = num_pages;
997 /* If they said the device needs memory, we allocate
998 * that now, bumping up the top of Guest memory. */
649 if (num_pages) { 999 if (num_pages) {
650 map_zeroed_pages(top, num_pages); 1000 map_zeroed_pages(top, num_pages);
651 descs[i].pfn = top/getpagesize(); 1001 descs[i].pfn = top/getpagesize();
@@ -657,6 +1007,9 @@ new_dev_desc(struct lguest_device_desc *descs,
657 errx(1, "too many devices"); 1007 errx(1, "too many devices");
658} 1008}
659 1009
1010/* This monster routine does all the creation and setup of a new device,
1011 * including caling new_dev_desc() to allocate the descriptor and device
1012 * memory. */
660static struct device *new_device(struct device_list *devices, 1013static struct device *new_device(struct device_list *devices,
661 u16 type, u16 num_pages, u16 features, 1014 u16 type, u16 num_pages, u16 features,
662 int fd, 1015 int fd,
@@ -669,12 +1022,18 @@ static struct device *new_device(struct device_list *devices,
669{ 1022{
670 struct device *dev = malloc(sizeof(*dev)); 1023 struct device *dev = malloc(sizeof(*dev));
671 1024
672 /* Append to device list. */ 1025 /* Append to device list. Prepending to a single-linked list is
1026 * easier, but the user expects the devices to be arranged on the bus
1027 * in command-line order. The first network device on the command line
1028 * is eth0, the first block device /dev/lgba, etc. */
673 *devices->lastdev = dev; 1029 *devices->lastdev = dev;
674 dev->next = NULL; 1030 dev->next = NULL;
675 devices->lastdev = &dev->next; 1031 devices->lastdev = &dev->next;
676 1032
1033 /* Now we populate the fields one at a time. */
677 dev->fd = fd; 1034 dev->fd = fd;
1035 /* If we have an input handler for this file descriptor, then we add it
1036 * to the device_list's fdset and maxfd. */
678 if (handle_input) 1037 if (handle_input)
679 set_fd(dev->fd, devices); 1038 set_fd(dev->fd, devices);
680 dev->desc = new_dev_desc(devices->descs, type, features, num_pages); 1039 dev->desc = new_dev_desc(devices->descs, type, features, num_pages);
@@ -685,27 +1044,37 @@ static struct device *new_device(struct device_list *devices,
685 return dev; 1044 return dev;
686} 1045}
687 1046
1047/* Our first setup routine is the console. It's a fairly simple device, but
1048 * UNIX tty handling makes it uglier than it could be. */
688static void setup_console(struct device_list *devices) 1049static void setup_console(struct device_list *devices)
689{ 1050{
690 struct device *dev; 1051 struct device *dev;
691 1052
1053 /* If we can save the initial standard input settings... */
692 if (tcgetattr(STDIN_FILENO, &orig_term) == 0) { 1054 if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
693 struct termios term = orig_term; 1055 struct termios term = orig_term;
1056 /* Then we turn off echo, line buffering and ^C etc. We want a
1057 * raw input stream to the Guest. */
694 term.c_lflag &= ~(ISIG|ICANON|ECHO); 1058 term.c_lflag &= ~(ISIG|ICANON|ECHO);
695 tcsetattr(STDIN_FILENO, TCSANOW, &term); 1059 tcsetattr(STDIN_FILENO, TCSANOW, &term);
1060 /* If we exit gracefully, the original settings will be
1061 * restored so the user can see what they're typing. */
696 atexit(restore_term); 1062 atexit(restore_term);
697 } 1063 }
698 1064
699 /* We don't currently require a page for the console. */ 1065 /* We don't currently require any memory for the console, so we ask for
1066 * 0 pages. */
700 dev = new_device(devices, LGUEST_DEVICE_T_CONSOLE, 0, 0, 1067 dev = new_device(devices, LGUEST_DEVICE_T_CONSOLE, 0, 0,
701 STDIN_FILENO, handle_console_input, 1068 STDIN_FILENO, handle_console_input,
702 LGUEST_CONSOLE_DMA_KEY, handle_console_output); 1069 LGUEST_CONSOLE_DMA_KEY, handle_console_output);
1070 /* We store the console state in dev->priv, and initialize it. */
703 dev->priv = malloc(sizeof(struct console_abort)); 1071 dev->priv = malloc(sizeof(struct console_abort));
704 ((struct console_abort *)dev->priv)->count = 0; 1072 ((struct console_abort *)dev->priv)->count = 0;
705 verbose("device %p: console\n", 1073 verbose("device %p: console\n",
706 (void *)(dev->desc->pfn * getpagesize())); 1074 (void *)(dev->desc->pfn * getpagesize()));
707} 1075}
708 1076
1077/* Setting up a block file is also fairly straightforward. */
709static void setup_block_file(const char *filename, struct device_list *devices) 1078static void setup_block_file(const char *filename, struct device_list *devices)
710{ 1079{
711 int fd; 1080 int fd;
@@ -713,20 +1082,47 @@ static void setup_block_file(const char *filename, struct device_list *devices)
713 off64_t *device_len; 1082 off64_t *device_len;
714 struct lguest_block_page *p; 1083 struct lguest_block_page *p;
715 1084
1085 /* We open with O_LARGEFILE because otherwise we get stuck at 2G. We
1086 * open with O_DIRECT because otherwise our benchmarks go much too
1087 * fast. */
716 fd = open_or_die(filename, O_RDWR|O_LARGEFILE|O_DIRECT); 1088 fd = open_or_die(filename, O_RDWR|O_LARGEFILE|O_DIRECT);
1089
1090 /* We want one page, and have no input handler (the block file never
1091 * has anything interesting to say to us). Our timing will be quite
1092 * random, so it should be a reasonable randomness source. */
717 dev = new_device(devices, LGUEST_DEVICE_T_BLOCK, 1, 1093 dev = new_device(devices, LGUEST_DEVICE_T_BLOCK, 1,
718 LGUEST_DEVICE_F_RANDOMNESS, 1094 LGUEST_DEVICE_F_RANDOMNESS,
719 fd, NULL, 0, handle_block_output); 1095 fd, NULL, 0, handle_block_output);
1096
1097 /* We store the device size in the private area */
720 device_len = dev->priv = malloc(sizeof(*device_len)); 1098 device_len = dev->priv = malloc(sizeof(*device_len));
1099 /* This is the safe way of establishing the size of our device: it
1100 * might be a normal file or an actual block device like /dev/hdb. */
721 *device_len = lseek64(fd, 0, SEEK_END); 1101 *device_len = lseek64(fd, 0, SEEK_END);
722 p = dev->mem;
723 1102
1103 /* The device memory is a "struct lguest_block_page". It's zeroed
1104 * already, we just need to put in the device size. Block devices
1105 * think in sectors (ie. 512 byte chunks), so we translate here. */
1106 p = dev->mem;
724 p->num_sectors = *device_len/512; 1107 p->num_sectors = *device_len/512;
725 verbose("device %p: block %i sectors\n", 1108 verbose("device %p: block %i sectors\n",
726 (void *)(dev->desc->pfn * getpagesize()), p->num_sectors); 1109 (void *)(dev->desc->pfn * getpagesize()), p->num_sectors);
727} 1110}
728 1111
729/* We use fnctl locks to reserve network slots (autocleanup!) */ 1112/*
1113 * Network Devices.
1114 *
1115 * Setting up network devices is quite a pain, because we have three types.
1116 * First, we have the inter-Guest network. This is a file which is mapped into
1117 * the address space of the Guests who are on the network. Because it is a
1118 * shared mapping, the same page underlies all the devices, and they can send
1119 * DMA to each other.
1120 *
1121 * Remember from our network driver, the Guest is told what slot in the page it
1122 * is to use. We use exclusive fnctl locks to reserve a slot. If another
1123 * Guest is using a slot, the lock will fail and we try another. Because fnctl
1124 * locks are cleaned up automatically when we die, this cleverly means that our
1125 * reservation on the slot will vanish if we crash. */
730static unsigned int find_slot(int netfd, const char *filename) 1126static unsigned int find_slot(int netfd, const char *filename)
731{ 1127{
732 struct flock fl; 1128 struct flock fl;
@@ -734,26 +1130,33 @@ static unsigned int find_slot(int netfd, const char *filename)
734 fl.l_type = F_WRLCK; 1130 fl.l_type = F_WRLCK;
735 fl.l_whence = SEEK_SET; 1131 fl.l_whence = SEEK_SET;
736 fl.l_len = 1; 1132 fl.l_len = 1;
1133 /* Try a 1 byte lock in each possible position number */
737 for (fl.l_start = 0; 1134 for (fl.l_start = 0;
738 fl.l_start < getpagesize()/sizeof(struct lguest_net); 1135 fl.l_start < getpagesize()/sizeof(struct lguest_net);
739 fl.l_start++) { 1136 fl.l_start++) {
1137 /* If we succeed, return the slot number. */
740 if (fcntl(netfd, F_SETLK, &fl) == 0) 1138 if (fcntl(netfd, F_SETLK, &fl) == 0)
741 return fl.l_start; 1139 return fl.l_start;
742 } 1140 }
743 errx(1, "No free slots in network file %s", filename); 1141 errx(1, "No free slots in network file %s", filename);
744} 1142}
745 1143
1144/* This function sets up the network file */
746static void setup_net_file(const char *filename, 1145static void setup_net_file(const char *filename,
747 struct device_list *devices) 1146 struct device_list *devices)
748{ 1147{
749 int netfd; 1148 int netfd;
750 struct device *dev; 1149 struct device *dev;
751 1150
1151 /* We don't use open_or_die() here: for friendliness we create the file
1152 * if it doesn't already exist. */
752 netfd = open(filename, O_RDWR, 0); 1153 netfd = open(filename, O_RDWR, 0);
753 if (netfd < 0) { 1154 if (netfd < 0) {
754 if (errno == ENOENT) { 1155 if (errno == ENOENT) {
755 netfd = open(filename, O_RDWR|O_CREAT, 0600); 1156 netfd = open(filename, O_RDWR|O_CREAT, 0600);
756 if (netfd >= 0) { 1157 if (netfd >= 0) {
1158 /* If we succeeded, initialize the file with a
1159 * blank page. */
757 char page[getpagesize()]; 1160 char page[getpagesize()];
758 memset(page, 0, sizeof(page)); 1161 memset(page, 0, sizeof(page));
759 write(netfd, page, sizeof(page)); 1162 write(netfd, page, sizeof(page));
@@ -763,11 +1166,15 @@ static void setup_net_file(const char *filename,
763 err(1, "cannot open net file '%s'", filename); 1166 err(1, "cannot open net file '%s'", filename);
764 } 1167 }
765 1168
1169 /* We need 1 page, and the features indicate the slot to use and that
1170 * no checksum is needed. We never touch this device again; it's
1171 * between the Guests on the network, so we don't register input or
1172 * output handlers. */
766 dev = new_device(devices, LGUEST_DEVICE_T_NET, 1, 1173 dev = new_device(devices, LGUEST_DEVICE_T_NET, 1,
767 find_slot(netfd, filename)|LGUEST_NET_F_NOCSUM, 1174 find_slot(netfd, filename)|LGUEST_NET_F_NOCSUM,
768 -1, NULL, 0, NULL); 1175 -1, NULL, 0, NULL);
769 1176
770 /* We overwrite the /dev/zero mapping with the actual file. */ 1177 /* Map the shared file. */
771 if (mmap(dev->mem, getpagesize(), PROT_READ|PROT_WRITE, 1178 if (mmap(dev->mem, getpagesize(), PROT_READ|PROT_WRITE,
772 MAP_FIXED|MAP_SHARED, netfd, 0) != dev->mem) 1179 MAP_FIXED|MAP_SHARED, netfd, 0) != dev->mem)
773 err(1, "could not mmap '%s'", filename); 1180 err(1, "could not mmap '%s'", filename);
@@ -775,6 +1182,7 @@ static void setup_net_file(const char *filename,
775 (void *)(dev->desc->pfn * getpagesize()), filename, 1182 (void *)(dev->desc->pfn * getpagesize()), filename,
776 dev->desc->features & ~LGUEST_NET_F_NOCSUM); 1183 dev->desc->features & ~LGUEST_NET_F_NOCSUM);
777} 1184}
1185/*:*/
778 1186
779static u32 str2ip(const char *ipaddr) 1187static u32 str2ip(const char *ipaddr)
780{ 1188{
@@ -784,7 +1192,11 @@ static u32 str2ip(const char *ipaddr)
784 return (byte[0] << 24) | (byte[1] << 16) | (byte[2] << 8) | byte[3]; 1192 return (byte[0] << 24) | (byte[1] << 16) | (byte[2] << 8) | byte[3];
785} 1193}
786 1194
787/* adapted from libbridge */ 1195/* This code is "adapted" from libbridge: it attaches the Host end of the
1196 * network device to the bridge device specified by the command line.
1197 *
1198 * This is yet another James Morris contribution (I'm an IP-level guy, so I
1199 * dislike bridging), and I just try not to break it. */
788static void add_to_bridge(int fd, const char *if_name, const char *br_name) 1200static void add_to_bridge(int fd, const char *if_name, const char *br_name)
789{ 1201{
790 int ifidx; 1202 int ifidx;
@@ -803,12 +1215,16 @@ static void add_to_bridge(int fd, const char *if_name, const char *br_name)
803 err(1, "can't add %s to bridge %s", if_name, br_name); 1215 err(1, "can't add %s to bridge %s", if_name, br_name);
804} 1216}
805 1217
1218/* This sets up the Host end of the network device with an IP address, brings
1219 * it up so packets will flow, the copies the MAC address into the hwaddr
1220 * pointer (in practice, the Host's slot in the network device's memory). */
806static void configure_device(int fd, const char *devname, u32 ipaddr, 1221static void configure_device(int fd, const char *devname, u32 ipaddr,
807 unsigned char hwaddr[6]) 1222 unsigned char hwaddr[6])
808{ 1223{
809 struct ifreq ifr; 1224 struct ifreq ifr;
810 struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr; 1225 struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
811 1226
1227 /* Don't read these incantations. Just cut & paste them like I did! */
812 memset(&ifr, 0, sizeof(ifr)); 1228 memset(&ifr, 0, sizeof(ifr));
813 strcpy(ifr.ifr_name, devname); 1229 strcpy(ifr.ifr_name, devname);
814 sin->sin_family = AF_INET; 1230 sin->sin_family = AF_INET;
@@ -819,12 +1235,19 @@ static void configure_device(int fd, const char *devname, u32 ipaddr,
819 if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0) 1235 if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
820 err(1, "Bringing interface %s up", devname); 1236 err(1, "Bringing interface %s up", devname);
821 1237
1238 /* SIOC stands for Socket I/O Control. G means Get (vs S for Set
1239 * above). IF means Interface, and HWADDR is hardware address.
1240 * Simple! */
822 if (ioctl(fd, SIOCGIFHWADDR, &ifr) != 0) 1241 if (ioctl(fd, SIOCGIFHWADDR, &ifr) != 0)
823 err(1, "getting hw address for %s", devname); 1242 err(1, "getting hw address for %s", devname);
824
825 memcpy(hwaddr, ifr.ifr_hwaddr.sa_data, 6); 1243 memcpy(hwaddr, ifr.ifr_hwaddr.sa_data, 6);
826} 1244}
827 1245
1246/*L:195 The other kind of network is a Host<->Guest network. This can either
1247 * use briding or routing, but the principle is the same: it uses the "tun"
1248 * device to inject packets into the Host as if they came in from a normal
1249 * network card. We just shunt packets between the Guest and the tun
1250 * device. */
828static void setup_tun_net(const char *arg, struct device_list *devices) 1251static void setup_tun_net(const char *arg, struct device_list *devices)
829{ 1252{
830 struct device *dev; 1253 struct device *dev;
@@ -833,36 +1256,56 @@ static void setup_tun_net(const char *arg, struct device_list *devices)
833 u32 ip; 1256 u32 ip;
834 const char *br_name = NULL; 1257 const char *br_name = NULL;
835 1258
1259 /* We open the /dev/net/tun device and tell it we want a tap device. A
1260 * tap device is like a tun device, only somehow different. To tell
1261 * the truth, I completely blundered my way through this code, but it
1262 * works now! */
836 netfd = open_or_die("/dev/net/tun", O_RDWR); 1263 netfd = open_or_die("/dev/net/tun", O_RDWR);
837 memset(&ifr, 0, sizeof(ifr)); 1264 memset(&ifr, 0, sizeof(ifr));
838 ifr.ifr_flags = IFF_TAP | IFF_NO_PI; 1265 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
839 strcpy(ifr.ifr_name, "tap%d"); 1266 strcpy(ifr.ifr_name, "tap%d");
840 if (ioctl(netfd, TUNSETIFF, &ifr) != 0) 1267 if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
841 err(1, "configuring /dev/net/tun"); 1268 err(1, "configuring /dev/net/tun");
1269 /* We don't need checksums calculated for packets coming in this
1270 * device: trust us! */
842 ioctl(netfd, TUNSETNOCSUM, 1); 1271 ioctl(netfd, TUNSETNOCSUM, 1);
843 1272
844 /* You will be peer 1: we should create enough jitter to randomize */ 1273 /* We create the net device with 1 page, using the features field of
1274 * the descriptor to tell the Guest it is in slot 1 (NET_PEERNUM), and
1275 * that the device has fairly random timing. We do *not* specify
1276 * LGUEST_NET_F_NOCSUM: these packets can reach the real world.
1277 *
1278 * We will put our MAC address is slot 0 for the Guest to see, so
1279 * it will send packets to us using the key "peer_offset(0)": */
845 dev = new_device(devices, LGUEST_DEVICE_T_NET, 1, 1280 dev = new_device(devices, LGUEST_DEVICE_T_NET, 1,
846 NET_PEERNUM|LGUEST_DEVICE_F_RANDOMNESS, netfd, 1281 NET_PEERNUM|LGUEST_DEVICE_F_RANDOMNESS, netfd,
847 handle_tun_input, peer_offset(0), handle_tun_output); 1282 handle_tun_input, peer_offset(0), handle_tun_output);
1283
1284 /* We keep a flag which says whether we've seen packets come out from
1285 * this network device. */
848 dev->priv = malloc(sizeof(bool)); 1286 dev->priv = malloc(sizeof(bool));
849 *(bool *)dev->priv = false; 1287 *(bool *)dev->priv = false;
850 1288
1289 /* We need a socket to perform the magic network ioctls to bring up the
1290 * tap interface, connect to the bridge etc. Any socket will do! */
851 ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP); 1291 ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
852 if (ipfd < 0) 1292 if (ipfd < 0)
853 err(1, "opening IP socket"); 1293 err(1, "opening IP socket");
854 1294
1295 /* If the command line was --tunnet=bridge:<name> do bridging. */
855 if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) { 1296 if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
856 ip = INADDR_ANY; 1297 ip = INADDR_ANY;
857 br_name = arg + strlen(BRIDGE_PFX); 1298 br_name = arg + strlen(BRIDGE_PFX);
858 add_to_bridge(ipfd, ifr.ifr_name, br_name); 1299 add_to_bridge(ipfd, ifr.ifr_name, br_name);
859 } else 1300 } else /* It is an IP address to set up the device with */
860 ip = str2ip(arg); 1301 ip = str2ip(arg);
861 1302
862 /* We are peer 0, ie. first slot. */ 1303 /* We are peer 0, ie. first slot, so we hand dev->mem to this routine
1304 * to write the MAC address at the start of the device memory. */
863 configure_device(ipfd, ifr.ifr_name, ip, dev->mem); 1305 configure_device(ipfd, ifr.ifr_name, ip, dev->mem);
864 1306
865 /* Set "promisc" bit: we want every single packet. */ 1307 /* Set "promisc" bit: we want every single packet if we're going to
1308 * bridge to other machines (and otherwise it doesn't matter). */
866 *((u8 *)dev->mem) |= 0x1; 1309 *((u8 *)dev->mem) |= 0x1;
867 1310
868 close(ipfd); 1311 close(ipfd);
@@ -873,7 +1316,10 @@ static void setup_tun_net(const char *arg, struct device_list *devices)
873 if (br_name) 1316 if (br_name)
874 verbose("attached to bridge: %s\n", br_name); 1317 verbose("attached to bridge: %s\n", br_name);
875} 1318}
1319/* That's the end of device setup. */
876 1320
1321/*L:220 Finally we reach the core of the Launcher, which runs the Guest, serves
1322 * its input and output, and finally, lays it to rest. */
877static void __attribute__((noreturn)) 1323static void __attribute__((noreturn))
878run_guest(int lguest_fd, struct device_list *device_list) 1324run_guest(int lguest_fd, struct device_list *device_list)
879{ 1325{
@@ -885,20 +1331,37 @@ run_guest(int lguest_fd, struct device_list *device_list)
885 /* We read from the /dev/lguest device to run the Guest. */ 1331 /* We read from the /dev/lguest device to run the Guest. */
886 readval = read(lguest_fd, arr, sizeof(arr)); 1332 readval = read(lguest_fd, arr, sizeof(arr));
887 1333
1334 /* The read can only really return sizeof(arr) (the Guest did a
1335 * SEND_DMA to us), or an error. */
1336
1337 /* For a successful read, arr[0] is the address of the "struct
1338 * lguest_dma", and arr[1] is the key the Guest sent to. */
888 if (readval == sizeof(arr)) { 1339 if (readval == sizeof(arr)) {
889 handle_output(lguest_fd, arr[0], arr[1], device_list); 1340 handle_output(lguest_fd, arr[0], arr[1], device_list);
890 continue; 1341 continue;
1342 /* ENOENT means the Guest died. Reading tells us why. */
891 } else if (errno == ENOENT) { 1343 } else if (errno == ENOENT) {
892 char reason[1024] = { 0 }; 1344 char reason[1024] = { 0 };
893 read(lguest_fd, reason, sizeof(reason)-1); 1345 read(lguest_fd, reason, sizeof(reason)-1);
894 errx(1, "%s", reason); 1346 errx(1, "%s", reason);
1347 /* EAGAIN means the waker wanted us to look at some input.
1348 * Anything else means a bug or incompatible change. */
895 } else if (errno != EAGAIN) 1349 } else if (errno != EAGAIN)
896 err(1, "Running guest failed"); 1350 err(1, "Running guest failed");
1351
1352 /* Service input, then unset the BREAK which releases
1353 * the Waker. */
897 handle_input(lguest_fd, device_list); 1354 handle_input(lguest_fd, device_list);
898 if (write(lguest_fd, args, sizeof(args)) < 0) 1355 if (write(lguest_fd, args, sizeof(args)) < 0)
899 err(1, "Resetting break"); 1356 err(1, "Resetting break");
900 } 1357 }
901} 1358}
1359/*
1360 * This is the end of the Launcher.
1361 *
1362 * But wait! We've seen I/O from the Launcher, and we've seen I/O from the
1363 * Drivers. If we were to see the Host kernel I/O code, our understanding
1364 * would be complete... :*/
902 1365
903static struct option opts[] = { 1366static struct option opts[] = {
904 { "verbose", 0, NULL, 'v' }, 1367 { "verbose", 0, NULL, 'v' },
@@ -916,20 +1379,49 @@ static void usage(void)
916 "<mem-in-mb> vmlinux [args...]"); 1379 "<mem-in-mb> vmlinux [args...]");
917} 1380}
918 1381
1382/*L:100 The Launcher code itself takes us out into userspace, that scary place
1383 * where pointers run wild and free! Unfortunately, like most userspace
1384 * programs, it's quite boring (which is why everyone like to hack on the
1385 * kernel!). Perhaps if you make up an Lguest Drinking Game at this point, it
1386 * will get you through this section. Or, maybe not.
1387 *
1388 * The Launcher binary sits up high, usually starting at address 0xB8000000.
1389 * Everything below this is the "physical" memory for the Guest. For example,
1390 * if the Guest were to write a "1" at physical address 0, we would see a "1"
1391 * in the Launcher at "(int *)0". Guest physical == Launcher virtual.
1392 *
1393 * This can be tough to get your head around, but usually it just means that we
1394 * don't need to do any conversion when the Guest gives us it's "physical"
1395 * addresses.
1396 */
919int main(int argc, char *argv[]) 1397int main(int argc, char *argv[])
920{ 1398{
1399 /* Memory, top-level pagetable, code startpoint, PAGE_OFFSET and size
1400 * of the (optional) initrd. */
921 unsigned long mem = 0, pgdir, start, page_offset, initrd_size = 0; 1401 unsigned long mem = 0, pgdir, start, page_offset, initrd_size = 0;
1402 /* A temporary and the /dev/lguest file descriptor. */
922 int i, c, lguest_fd; 1403 int i, c, lguest_fd;
1404 /* The list of Guest devices, based on command line arguments. */
923 struct device_list device_list; 1405 struct device_list device_list;
1406 /* The boot information for the Guest: at guest-physical address 0. */
924 void *boot = (void *)0; 1407 void *boot = (void *)0;
1408 /* If they specify an initrd file to load. */
925 const char *initrd_name = NULL; 1409 const char *initrd_name = NULL;
926 1410
1411 /* First we initialize the device list. Since console and network
1412 * device receive input from a file descriptor, we keep an fdset
1413 * (infds) and the maximum fd number (max_infd) with the head of the
1414 * list. We also keep a pointer to the last device, for easy appending
1415 * to the list. */
927 device_list.max_infd = -1; 1416 device_list.max_infd = -1;
928 device_list.dev = NULL; 1417 device_list.dev = NULL;
929 device_list.lastdev = &device_list.dev; 1418 device_list.lastdev = &device_list.dev;
930 FD_ZERO(&device_list.infds); 1419 FD_ZERO(&device_list.infds);
931 1420
932 /* We need to know how much memory so we can allocate devices. */ 1421 /* We need to know how much memory so we can set up the device
1422 * descriptor and memory pages for the devices as we parse the command
1423 * line. So we quickly look through the arguments to find the amount
1424 * of memory now. */
933 for (i = 1; i < argc; i++) { 1425 for (i = 1; i < argc; i++) {
934 if (argv[i][0] != '-') { 1426 if (argv[i][0] != '-') {
935 mem = top = atoi(argv[i]) * 1024 * 1024; 1427 mem = top = atoi(argv[i]) * 1024 * 1024;
@@ -938,6 +1430,8 @@ int main(int argc, char *argv[])
938 break; 1430 break;
939 } 1431 }
940 } 1432 }
1433
1434 /* The options are fairly straight-forward */
941 while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) { 1435 while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
942 switch (c) { 1436 switch (c) {
943 case 'v': 1437 case 'v':
@@ -960,42 +1454,59 @@ int main(int argc, char *argv[])
960 usage(); 1454 usage();
961 } 1455 }
962 } 1456 }
1457 /* After the other arguments we expect memory and kernel image name,
1458 * followed by command line arguments for the kernel. */
963 if (optind + 2 > argc) 1459 if (optind + 2 > argc)
964 usage(); 1460 usage();
965 1461
966 /* We need a console device */ 1462 /* We always have a console device */
967 setup_console(&device_list); 1463 setup_console(&device_list);
968 1464
969 /* First we map /dev/zero over all of guest-physical memory. */ 1465 /* We start by mapping anonymous pages over all of guest-physical
1466 * memory range. This fills it with 0, and ensures that the Guest
1467 * won't be killed when it tries to access it. */
970 map_zeroed_pages(0, mem / getpagesize()); 1468 map_zeroed_pages(0, mem / getpagesize());
971 1469
972 /* Now we load the kernel */ 1470 /* Now we load the kernel */
973 start = load_kernel(open_or_die(argv[optind+1], O_RDONLY), 1471 start = load_kernel(open_or_die(argv[optind+1], O_RDONLY),
974 &page_offset); 1472 &page_offset);
975 1473
976 /* Map the initrd image if requested */ 1474 /* Map the initrd image if requested (at top of physical memory) */
977 if (initrd_name) { 1475 if (initrd_name) {
978 initrd_size = load_initrd(initrd_name, mem); 1476 initrd_size = load_initrd(initrd_name, mem);
1477 /* These are the location in the Linux boot header where the
1478 * start and size of the initrd are expected to be found. */
979 *(unsigned long *)(boot+0x218) = mem - initrd_size; 1479 *(unsigned long *)(boot+0x218) = mem - initrd_size;
980 *(unsigned long *)(boot+0x21c) = initrd_size; 1480 *(unsigned long *)(boot+0x21c) = initrd_size;
1481 /* The bootloader type 0xFF means "unknown"; that's OK. */
981 *(unsigned char *)(boot+0x210) = 0xFF; 1482 *(unsigned char *)(boot+0x210) = 0xFF;
982 } 1483 }
983 1484
984 /* Set up the initial linar pagetables. */ 1485 /* Set up the initial linear pagetables, starting below the initrd. */
985 pgdir = setup_pagetables(mem, initrd_size, page_offset); 1486 pgdir = setup_pagetables(mem, initrd_size, page_offset);
986 1487
987 /* E820 memory map: ours is a simple, single region. */ 1488 /* The Linux boot header contains an "E820" memory map: ours is a
1489 * simple, single region. */
988 *(char*)(boot+E820NR) = 1; 1490 *(char*)(boot+E820NR) = 1;
989 *((struct e820entry *)(boot+E820MAP)) 1491 *((struct e820entry *)(boot+E820MAP))
990 = ((struct e820entry) { 0, mem, E820_RAM }); 1492 = ((struct e820entry) { 0, mem, E820_RAM });
991 /* Command line pointer and command line (at 4096) */ 1493 /* The boot header contains a command line pointer: we put the command
1494 * line after the boot header (at address 4096) */
992 *(void **)(boot + 0x228) = boot + 4096; 1495 *(void **)(boot + 0x228) = boot + 4096;
993 concat(boot + 4096, argv+optind+2); 1496 concat(boot + 4096, argv+optind+2);
994 /* Paravirt type: 1 == lguest */ 1497
1498 /* The guest type value of "1" tells the Guest it's under lguest. */
995 *(int *)(boot + 0x23c) = 1; 1499 *(int *)(boot + 0x23c) = 1;
996 1500
1501 /* We tell the kernel to initialize the Guest: this returns the open
1502 * /dev/lguest file descriptor. */
997 lguest_fd = tell_kernel(pgdir, start, page_offset); 1503 lguest_fd = tell_kernel(pgdir, start, page_offset);
1504
1505 /* We fork off a child process, which wakes the Launcher whenever one
1506 * of the input file descriptors needs attention. Otherwise we would
1507 * run the Guest until it tries to output something. */
998 waker_fd = setup_waker(lguest_fd, &device_list); 1508 waker_fd = setup_waker(lguest_fd, &device_list);
999 1509
1510 /* Finally, run the Guest. This doesn't return. */
1000 run_guest(lguest_fd, &device_list); 1511 run_guest(lguest_fd, &device_list);
1001} 1512}
diff --git a/drivers/lguest/core.c b/drivers/lguest/core.c
index 2cea0c80c992..1eb05f9a56b6 100644
--- a/drivers/lguest/core.c
+++ b/drivers/lguest/core.c
@@ -208,24 +208,39 @@ static int emulate_insn(struct lguest *lg)
208 return 1; 208 return 1;
209} 209}
210 210
211/*L:305
212 * Dealing With Guest Memory.
213 *
214 * When the Guest gives us (what it thinks is) a physical address, we can use
215 * the normal copy_from_user() & copy_to_user() on that address: remember,
216 * Guest physical == Launcher virtual.
217 *
218 * But we can't trust the Guest: it might be trying to access the Launcher
219 * code. We have to check that the range is below the pfn_limit the Launcher
220 * gave us. We have to make sure that addr + len doesn't give us a false
221 * positive by overflowing, too. */
211int lguest_address_ok(const struct lguest *lg, 222int lguest_address_ok(const struct lguest *lg,
212 unsigned long addr, unsigned long len) 223 unsigned long addr, unsigned long len)
213{ 224{
214 return (addr+len) / PAGE_SIZE < lg->pfn_limit && (addr+len >= addr); 225 return (addr+len) / PAGE_SIZE < lg->pfn_limit && (addr+len >= addr);
215} 226}
216 227
217/* Just like get_user, but don't let guest access lguest binary. */ 228/* This is a convenient routine to get a 32-bit value from the Guest (a very
229 * common operation). Here we can see how useful the kill_lguest() routine we
230 * met in the Launcher can be: we return a random value (0) instead of needing
231 * to return an error. */
218u32 lgread_u32(struct lguest *lg, unsigned long addr) 232u32 lgread_u32(struct lguest *lg, unsigned long addr)
219{ 233{
220 u32 val = 0; 234 u32 val = 0;
221 235
222 /* Don't let them access lguest binary */ 236 /* Don't let them access lguest binary. */
223 if (!lguest_address_ok(lg, addr, sizeof(val)) 237 if (!lguest_address_ok(lg, addr, sizeof(val))
224 || get_user(val, (u32 __user *)addr) != 0) 238 || get_user(val, (u32 __user *)addr) != 0)
225 kill_guest(lg, "bad read address %#lx", addr); 239 kill_guest(lg, "bad read address %#lx", addr);
226 return val; 240 return val;
227} 241}
228 242
243/* Same thing for writing a value. */
229void lgwrite_u32(struct lguest *lg, unsigned long addr, u32 val) 244void lgwrite_u32(struct lguest *lg, unsigned long addr, u32 val)
230{ 245{
231 if (!lguest_address_ok(lg, addr, sizeof(val)) 246 if (!lguest_address_ok(lg, addr, sizeof(val))
@@ -233,6 +248,9 @@ void lgwrite_u32(struct lguest *lg, unsigned long addr, u32 val)
233 kill_guest(lg, "bad write address %#lx", addr); 248 kill_guest(lg, "bad write address %#lx", addr);
234} 249}
235 250
251/* This routine is more generic, and copies a range of Guest bytes into a
252 * buffer. If the copy_from_user() fails, we fill the buffer with zeroes, so
253 * the caller doesn't end up using uninitialized kernel memory. */
236void lgread(struct lguest *lg, void *b, unsigned long addr, unsigned bytes) 254void lgread(struct lguest *lg, void *b, unsigned long addr, unsigned bytes)
237{ 255{
238 if (!lguest_address_ok(lg, addr, bytes) 256 if (!lguest_address_ok(lg, addr, bytes)
@@ -243,6 +261,7 @@ void lgread(struct lguest *lg, void *b, unsigned long addr, unsigned bytes)
243 } 261 }
244} 262}
245 263
264/* Similarly, our generic routine to copy into a range of Guest bytes. */
246void lgwrite(struct lguest *lg, unsigned long addr, const void *b, 265void lgwrite(struct lguest *lg, unsigned long addr, const void *b,
247 unsigned bytes) 266 unsigned bytes)
248{ 267{
@@ -250,6 +269,7 @@ void lgwrite(struct lguest *lg, unsigned long addr, const void *b,
250 || copy_to_user((void __user *)addr, b, bytes) != 0) 269 || copy_to_user((void __user *)addr, b, bytes) != 0)
251 kill_guest(lg, "bad write address %#lx len %u", addr, bytes); 270 kill_guest(lg, "bad write address %#lx len %u", addr, bytes);
252} 271}
272/* (end of memory access helper routines) :*/
253 273
254static void set_ts(void) 274static void set_ts(void)
255{ 275{
diff --git a/drivers/lguest/io.c b/drivers/lguest/io.c
index d2f02f0653ca..da288128e44f 100644
--- a/drivers/lguest/io.c
+++ b/drivers/lguest/io.c
@@ -27,8 +27,36 @@
27#include <linux/uaccess.h> 27#include <linux/uaccess.h>
28#include "lg.h" 28#include "lg.h"
29 29
30/*L:300
31 * I/O
32 *
33 * Getting data in and out of the Guest is quite an art. There are numerous
34 * ways to do it, and they all suck differently. We try to keep things fairly
35 * close to "real" hardware so our Guest's drivers don't look like an alien
36 * visitation in the middle of the Linux code, and yet make sure that Guests
37 * can talk directly to other Guests, not just the Launcher.
38 *
39 * To do this, the Guest gives us a key when it binds or sends DMA buffers.
40 * The key corresponds to a "physical" address inside the Guest (ie. a virtual
41 * address inside the Launcher process). We don't, however, use this key
42 * directly.
43 *
44 * We want Guests which share memory to be able to DMA to each other: two
45 * Launchers can mmap memory the same file, then the Guests can communicate.
46 * Fortunately, the futex code provides us with a way to get a "union
47 * futex_key" corresponding to the memory lying at a virtual address: if the
48 * two processes share memory, the "union futex_key" for that memory will match
49 * even if the memory is mapped at different addresses in each. So we always
50 * convert the keys to "union futex_key"s to compare them.
51 *
52 * Before we dive into this though, we need to look at another set of helper
53 * routines used throughout the Host kernel code to access Guest memory.
54 :*/
30static struct list_head dma_hash[61]; 55static struct list_head dma_hash[61];
31 56
57/* An unfortunate side effect of the Linux double-linked list implementation is
58 * that there's no good way to statically initialize an array of linked
59 * lists. */
32void lguest_io_init(void) 60void lguest_io_init(void)
33{ 61{
34 unsigned int i; 62 unsigned int i;
@@ -60,6 +88,19 @@ kill:
60 return 0; 88 return 0;
61} 89}
62 90
91/*L:330 This is our hash function, using the wonderful Jenkins hash.
92 *
93 * The futex key is a union with three parts: an unsigned long word, a pointer,
94 * and an int "offset". We could use jhash_2words() which takes three u32s.
95 * (Ok, the hash functions are great: the naming sucks though).
96 *
97 * It's nice to be portable to 64-bit platforms, so we use the more generic
98 * jhash2(), which takes an array of u32, the number of u32s, and an initial
99 * u32 to roll in. This is uglier, but breaks down to almost the same code on
100 * 32-bit platforms like this one.
101 *
102 * We want a position in the array, so we modulo ARRAY_SIZE(dma_hash) (ie. 61).
103 */
63static unsigned int hash(const union futex_key *key) 104static unsigned int hash(const union futex_key *key)
64{ 105{
65 return jhash2((u32*)&key->both.word, 106 return jhash2((u32*)&key->both.word,
@@ -68,6 +109,9 @@ static unsigned int hash(const union futex_key *key)
68 % ARRAY_SIZE(dma_hash); 109 % ARRAY_SIZE(dma_hash);
69} 110}
70 111
112/* This is a convenience routine to compare two keys. It's a much bemoaned C
113 * weakness that it doesn't allow '==' on structures or unions, so we have to
114 * open-code it like this. */
71static inline int key_eq(const union futex_key *a, const union futex_key *b) 115static inline int key_eq(const union futex_key *a, const union futex_key *b)
72{ 116{
73 return (a->both.word == b->both.word 117 return (a->both.word == b->both.word
@@ -75,22 +119,36 @@ static inline int key_eq(const union futex_key *a, const union futex_key *b)
75 && a->both.offset == b->both.offset); 119 && a->both.offset == b->both.offset);
76} 120}
77 121
78/* Must hold read lock on dmainfo owner's current->mm->mmap_sem */ 122/*L:360 OK, when we need to actually free up a Guest's DMA array we do several
123 * things, so we have a convenient function to do it.
124 *
125 * The caller must hold a read lock on dmainfo owner's current->mm->mmap_sem
126 * for the drop_futex_key_refs(). */
79static void unlink_dma(struct lguest_dma_info *dmainfo) 127static void unlink_dma(struct lguest_dma_info *dmainfo)
80{ 128{
129 /* You locked this too, right? */
81 BUG_ON(!mutex_is_locked(&lguest_lock)); 130 BUG_ON(!mutex_is_locked(&lguest_lock));
131 /* This is how we know that the entry is free. */
82 dmainfo->interrupt = 0; 132 dmainfo->interrupt = 0;
133 /* Remove it from the hash table. */
83 list_del(&dmainfo->list); 134 list_del(&dmainfo->list);
135 /* Drop the references we were holding (to the inode or mm). */
84 drop_futex_key_refs(&dmainfo->key); 136 drop_futex_key_refs(&dmainfo->key);
85} 137}
86 138
139/*L:350 This is the routine which we call when the Guest asks to unregister a
140 * DMA array attached to a given key. Returns true if the array was found. */
87static int unbind_dma(struct lguest *lg, 141static int unbind_dma(struct lguest *lg,
88 const union futex_key *key, 142 const union futex_key *key,
89 unsigned long dmas) 143 unsigned long dmas)
90{ 144{
91 int i, ret = 0; 145 int i, ret = 0;
92 146
147 /* We don't bother with the hash table, just look through all this
148 * Guest's DMA arrays. */
93 for (i = 0; i < LGUEST_MAX_DMA; i++) { 149 for (i = 0; i < LGUEST_MAX_DMA; i++) {
150 /* In theory it could have more than one array on the same key,
151 * or one array on multiple keys, so we check both */
94 if (key_eq(key, &lg->dma[i].key) && dmas == lg->dma[i].dmas) { 152 if (key_eq(key, &lg->dma[i].key) && dmas == lg->dma[i].dmas) {
95 unlink_dma(&lg->dma[i]); 153 unlink_dma(&lg->dma[i]);
96 ret = 1; 154 ret = 1;
@@ -100,51 +158,91 @@ static int unbind_dma(struct lguest *lg,
100 return ret; 158 return ret;
101} 159}
102 160
161/*L:340 BIND_DMA: this is the hypercall which sets up an array of "struct
162 * lguest_dma" for receiving I/O.
163 *
164 * The Guest wants to bind an array of "struct lguest_dma"s to a particular key
165 * to receive input. This only happens when the Guest is setting up a new
166 * device, so it doesn't have to be very fast.
167 *
168 * It returns 1 on a successful registration (it can fail if we hit the limit
169 * of registrations for this Guest).
170 */
103int bind_dma(struct lguest *lg, 171int bind_dma(struct lguest *lg,
104 unsigned long ukey, unsigned long dmas, u16 numdmas, u8 interrupt) 172 unsigned long ukey, unsigned long dmas, u16 numdmas, u8 interrupt)
105{ 173{
106 unsigned int i; 174 unsigned int i;
107 int ret = 0; 175 int ret = 0;
108 union futex_key key; 176 union futex_key key;
177 /* Futex code needs the mmap_sem. */
109 struct rw_semaphore *fshared = &current->mm->mmap_sem; 178 struct rw_semaphore *fshared = &current->mm->mmap_sem;
110 179
180 /* Invalid interrupt? (We could kill the guest here). */
111 if (interrupt >= LGUEST_IRQS) 181 if (interrupt >= LGUEST_IRQS)
112 return 0; 182 return 0;
113 183
184 /* We need to grab the Big Lguest Lock, because other Guests may be
185 * trying to look through this Guest's DMAs to send something while
186 * we're doing this. */
114 mutex_lock(&lguest_lock); 187 mutex_lock(&lguest_lock);
115 down_read(fshared); 188 down_read(fshared);
116 if (get_futex_key((u32 __user *)ukey, fshared, &key) != 0) { 189 if (get_futex_key((u32 __user *)ukey, fshared, &key) != 0) {
117 kill_guest(lg, "bad dma key %#lx", ukey); 190 kill_guest(lg, "bad dma key %#lx", ukey);
118 goto unlock; 191 goto unlock;
119 } 192 }
193
194 /* We want to keep this key valid once we drop mmap_sem, so we have to
195 * hold a reference. */
120 get_futex_key_refs(&key); 196 get_futex_key_refs(&key);
121 197
198 /* If the Guest specified an interrupt of 0, that means they want to
199 * unregister this array of "struct lguest_dma"s. */
122 if (interrupt == 0) 200 if (interrupt == 0)
123 ret = unbind_dma(lg, &key, dmas); 201 ret = unbind_dma(lg, &key, dmas);
124 else { 202 else {
203 /* Look through this Guest's dma array for an unused entry. */
125 for (i = 0; i < LGUEST_MAX_DMA; i++) { 204 for (i = 0; i < LGUEST_MAX_DMA; i++) {
205 /* If the interrupt is non-zero, the entry is already
206 * used. */
126 if (lg->dma[i].interrupt) 207 if (lg->dma[i].interrupt)
127 continue; 208 continue;
128 209
210 /* OK, a free one! Fill on our details. */
129 lg->dma[i].dmas = dmas; 211 lg->dma[i].dmas = dmas;
130 lg->dma[i].num_dmas = numdmas; 212 lg->dma[i].num_dmas = numdmas;
131 lg->dma[i].next_dma = 0; 213 lg->dma[i].next_dma = 0;
132 lg->dma[i].key = key; 214 lg->dma[i].key = key;
133 lg->dma[i].guestid = lg->guestid; 215 lg->dma[i].guestid = lg->guestid;
134 lg->dma[i].interrupt = interrupt; 216 lg->dma[i].interrupt = interrupt;
217
218 /* Now we add it to the hash table: the position
219 * depends on the futex key that we got. */
135 list_add(&lg->dma[i].list, &dma_hash[hash(&key)]); 220 list_add(&lg->dma[i].list, &dma_hash[hash(&key)]);
221 /* Success! */
136 ret = 1; 222 ret = 1;
137 goto unlock; 223 goto unlock;
138 } 224 }
139 } 225 }
226 /* If we didn't find a slot to put the key in, drop the reference
227 * again. */
140 drop_futex_key_refs(&key); 228 drop_futex_key_refs(&key);
141unlock: 229unlock:
230 /* Unlock and out. */
142 up_read(fshared); 231 up_read(fshared);
143 mutex_unlock(&lguest_lock); 232 mutex_unlock(&lguest_lock);
144 return ret; 233 return ret;
145} 234}
146 235
147/* lgread from another guest */ 236/*L:385 Note that our routines to access a different Guest's memory are called
237 * lgread_other() and lgwrite_other(): these names emphasize that they are only
238 * used when the Guest is *not* the current Guest.
239 *
240 * The interface for copying from another process's memory is called
241 * access_process_vm(), with a final argument of 0 for a read, and 1 for a
242 * write.
243 *
244 * We need lgread_other() to read the destination Guest's "struct lguest_dma"
245 * array. */
148static int lgread_other(struct lguest *lg, 246static int lgread_other(struct lguest *lg,
149 void *buf, u32 addr, unsigned bytes) 247 void *buf, u32 addr, unsigned bytes)
150{ 248{
@@ -157,7 +255,8 @@ static int lgread_other(struct lguest *lg,
157 return 1; 255 return 1;
158} 256}
159 257
160/* lgwrite to another guest */ 258/* "lgwrite()" to another Guest: used to update the destination "used_len" once
259 * we've transferred data into the buffer. */
161static int lgwrite_other(struct lguest *lg, u32 addr, 260static int lgwrite_other(struct lguest *lg, u32 addr,
162 const void *buf, unsigned bytes) 261 const void *buf, unsigned bytes)
163{ 262{
@@ -170,6 +269,15 @@ static int lgwrite_other(struct lguest *lg, u32 addr,
170 return 1; 269 return 1;
171} 270}
172 271
272/*L:400 This is the generic engine which copies from a source "struct
273 * lguest_dma" from this Guest into another Guest's "struct lguest_dma". The
274 * destination Guest's pages have already been mapped, as contained in the
275 * pages array.
276 *
277 * If you're wondering if there's a nice "copy from one process to another"
278 * routine, so was I. But Linux isn't really set up to copy between two
279 * unrelated processes, so we have to write it ourselves.
280 */
173static u32 copy_data(struct lguest *srclg, 281static u32 copy_data(struct lguest *srclg,
174 const struct lguest_dma *src, 282 const struct lguest_dma *src,
175 const struct lguest_dma *dst, 283 const struct lguest_dma *dst,
@@ -178,33 +286,59 @@ static u32 copy_data(struct lguest *srclg,
178 unsigned int totlen, si, di, srcoff, dstoff; 286 unsigned int totlen, si, di, srcoff, dstoff;
179 void *maddr = NULL; 287 void *maddr = NULL;
180 288
289 /* We return the total length transferred. */
181 totlen = 0; 290 totlen = 0;
291
292 /* We keep indexes into the source and destination "struct lguest_dma",
293 * and an offset within each region. */
182 si = di = 0; 294 si = di = 0;
183 srcoff = dstoff = 0; 295 srcoff = dstoff = 0;
296
297 /* We loop until the source or destination is exhausted. */
184 while (si < LGUEST_MAX_DMA_SECTIONS && src->len[si] 298 while (si < LGUEST_MAX_DMA_SECTIONS && src->len[si]
185 && di < LGUEST_MAX_DMA_SECTIONS && dst->len[di]) { 299 && di < LGUEST_MAX_DMA_SECTIONS && dst->len[di]) {
300 /* We can only transfer the rest of the src buffer, or as much
301 * as will fit into the destination buffer. */
186 u32 len = min(src->len[si] - srcoff, dst->len[di] - dstoff); 302 u32 len = min(src->len[si] - srcoff, dst->len[di] - dstoff);
187 303
304 /* For systems using "highmem" we need to use kmap() to access
305 * the page we want. We often use the same page over and over,
306 * so rather than kmap() it on every loop, we set the maddr
307 * pointer to NULL when we need to move to the next
308 * destination page. */
188 if (!maddr) 309 if (!maddr)
189 maddr = kmap(pages[di]); 310 maddr = kmap(pages[di]);
190 311
191 /* FIXME: This is not completely portable, since 312 /* Copy directly from (this Guest's) source address to the
192 archs do different things for copy_to_user_page. */ 313 * destination Guest's kmap()ed buffer. Note that maddr points
314 * to the start of the page: we need to add the offset of the
315 * destination address and offset within the buffer. */
316
317 /* FIXME: This is not completely portable. I looked at
318 * copy_to_user_page(), and some arch's seem to need special
319 * flushes. x86 is fine. */
193 if (copy_from_user(maddr + (dst->addr[di] + dstoff)%PAGE_SIZE, 320 if (copy_from_user(maddr + (dst->addr[di] + dstoff)%PAGE_SIZE,
194 (void __user *)src->addr[si], len) != 0) { 321 (void __user *)src->addr[si], len) != 0) {
322 /* If a copy failed, it's the source's fault. */
195 kill_guest(srclg, "bad address in sending DMA"); 323 kill_guest(srclg, "bad address in sending DMA");
196 totlen = 0; 324 totlen = 0;
197 break; 325 break;
198 } 326 }
199 327
328 /* Increment the total and src & dst offsets */
200 totlen += len; 329 totlen += len;
201 srcoff += len; 330 srcoff += len;
202 dstoff += len; 331 dstoff += len;
332
333 /* Presumably we reached the end of the src or dest buffers: */
203 if (srcoff == src->len[si]) { 334 if (srcoff == src->len[si]) {
335 /* Move to the next buffer at offset 0 */
204 si++; 336 si++;
205 srcoff = 0; 337 srcoff = 0;
206 } 338 }
207 if (dstoff == dst->len[di]) { 339 if (dstoff == dst->len[di]) {
340 /* We need to unmap that destination page and reset
341 * maddr ready for the next one. */
208 kunmap(pages[di]); 342 kunmap(pages[di]);
209 maddr = NULL; 343 maddr = NULL;
210 di++; 344 di++;
@@ -212,13 +346,15 @@ static u32 copy_data(struct lguest *srclg,
212 } 346 }
213 } 347 }
214 348
349 /* If we still had a page mapped at the end, unmap now. */
215 if (maddr) 350 if (maddr)
216 kunmap(pages[di]); 351 kunmap(pages[di]);
217 352
218 return totlen; 353 return totlen;
219} 354}
220 355
221/* Src is us, ie. current. */ 356/*L:390 This is how we transfer a "struct lguest_dma" from the source Guest
357 * (the current Guest which called SEND_DMA) to another Guest. */
222static u32 do_dma(struct lguest *srclg, const struct lguest_dma *src, 358static u32 do_dma(struct lguest *srclg, const struct lguest_dma *src,
223 struct lguest *dstlg, const struct lguest_dma *dst) 359 struct lguest *dstlg, const struct lguest_dma *dst)
224{ 360{
@@ -226,23 +362,31 @@ static u32 do_dma(struct lguest *srclg, const struct lguest_dma *src,
226 u32 ret; 362 u32 ret;
227 struct page *pages[LGUEST_MAX_DMA_SECTIONS]; 363 struct page *pages[LGUEST_MAX_DMA_SECTIONS];
228 364
365 /* We check that both source and destination "struct lguest_dma"s are
366 * within the bounds of the source and destination Guests */
229 if (!check_dma_list(dstlg, dst) || !check_dma_list(srclg, src)) 367 if (!check_dma_list(dstlg, dst) || !check_dma_list(srclg, src))
230 return 0; 368 return 0;
231 369
232 /* First get the destination pages */ 370 /* We need to map the pages which correspond to each parts of
371 * destination buffer. */
233 for (i = 0; i < LGUEST_MAX_DMA_SECTIONS; i++) { 372 for (i = 0; i < LGUEST_MAX_DMA_SECTIONS; i++) {
234 if (dst->len[i] == 0) 373 if (dst->len[i] == 0)
235 break; 374 break;
375 /* get_user_pages() is a complicated function, especially since
376 * we only want a single page. But it works, and returns the
377 * number of pages. Note that we're holding the destination's
378 * mmap_sem, as get_user_pages() requires. */
236 if (get_user_pages(dstlg->tsk, dstlg->mm, 379 if (get_user_pages(dstlg->tsk, dstlg->mm,
237 dst->addr[i], 1, 1, 1, pages+i, NULL) 380 dst->addr[i], 1, 1, 1, pages+i, NULL)
238 != 1) { 381 != 1) {
382 /* This means the destination gave us a bogus buffer */
239 kill_guest(dstlg, "Error mapping DMA pages"); 383 kill_guest(dstlg, "Error mapping DMA pages");
240 ret = 0; 384 ret = 0;
241 goto drop_pages; 385 goto drop_pages;
242 } 386 }
243 } 387 }
244 388
245 /* Now copy until we run out of src or dst. */ 389 /* Now copy the data until we run out of src or dst. */
246 ret = copy_data(srclg, src, dst, pages); 390 ret = copy_data(srclg, src, dst, pages);
247 391
248drop_pages: 392drop_pages:
@@ -251,6 +395,11 @@ drop_pages:
251 return ret; 395 return ret;
252} 396}
253 397
398/*L:380 Transferring data from one Guest to another is not as simple as I'd
399 * like. We've found the "struct lguest_dma_info" bound to the same address as
400 * the send, we need to copy into it.
401 *
402 * This function returns true if the destination array was empty. */
254static int dma_transfer(struct lguest *srclg, 403static int dma_transfer(struct lguest *srclg,
255 unsigned long udma, 404 unsigned long udma,
256 struct lguest_dma_info *dst) 405 struct lguest_dma_info *dst)
@@ -259,15 +408,23 @@ static int dma_transfer(struct lguest *srclg,
259 struct lguest *dstlg; 408 struct lguest *dstlg;
260 u32 i, dma = 0; 409 u32 i, dma = 0;
261 410
411 /* From the "struct lguest_dma_info" we found in the hash, grab the
412 * Guest. */
262 dstlg = &lguests[dst->guestid]; 413 dstlg = &lguests[dst->guestid];
263 /* Get our dma list. */ 414 /* Read in the source "struct lguest_dma" handed to SEND_DMA. */
264 lgread(srclg, &src_dma, udma, sizeof(src_dma)); 415 lgread(srclg, &src_dma, udma, sizeof(src_dma));
265 416
266 /* We can't deadlock against them dmaing to us, because this 417 /* We need the destination's mmap_sem, and we already hold the source's
267 * is all under the lguest_lock. */ 418 * mmap_sem for the futex key lookup. Normally this would suggest that
419 * we could deadlock if the destination Guest was trying to send to
420 * this source Guest at the same time, which is another reason that all
421 * I/O is done under the big lguest_lock. */
268 down_read(&dstlg->mm->mmap_sem); 422 down_read(&dstlg->mm->mmap_sem);
269 423
424 /* Look through the destination DMA array for an available buffer. */
270 for (i = 0; i < dst->num_dmas; i++) { 425 for (i = 0; i < dst->num_dmas; i++) {
426 /* We keep a "next_dma" pointer which often helps us avoid
427 * looking at lots of previously-filled entries. */
271 dma = (dst->next_dma + i) % dst->num_dmas; 428 dma = (dst->next_dma + i) % dst->num_dmas;
272 if (!lgread_other(dstlg, &dst_dma, 429 if (!lgread_other(dstlg, &dst_dma,
273 dst->dmas + dma * sizeof(struct lguest_dma), 430 dst->dmas + dma * sizeof(struct lguest_dma),
@@ -277,30 +434,46 @@ static int dma_transfer(struct lguest *srclg,
277 if (!dst_dma.used_len) 434 if (!dst_dma.used_len)
278 break; 435 break;
279 } 436 }
437
438 /* If we found a buffer, we do the actual data copy. */
280 if (i != dst->num_dmas) { 439 if (i != dst->num_dmas) {
281 unsigned long used_lenp; 440 unsigned long used_lenp;
282 unsigned int ret; 441 unsigned int ret;
283 442
284 ret = do_dma(srclg, &src_dma, dstlg, &dst_dma); 443 ret = do_dma(srclg, &src_dma, dstlg, &dst_dma);
285 /* Put used length in src. */ 444 /* Put used length in the source "struct lguest_dma"'s used_len
445 * field. It's a little tricky to figure out where that is,
446 * though. */
286 lgwrite_u32(srclg, 447 lgwrite_u32(srclg,
287 udma+offsetof(struct lguest_dma, used_len), ret); 448 udma+offsetof(struct lguest_dma, used_len), ret);
449 /* Tranferring 0 bytes is OK if the source buffer was empty. */
288 if (ret == 0 && src_dma.len[0] != 0) 450 if (ret == 0 && src_dma.len[0] != 0)
289 goto fail; 451 goto fail;
290 452
291 /* Make sure destination sees contents before length. */ 453 /* The destination Guest might be running on a different CPU:
454 * we have to make sure that it will see the "used_len" field
455 * change to non-zero *after* it sees the data we copied into
456 * the buffer. Hence a write memory barrier. */
292 wmb(); 457 wmb();
458 /* Figuring out where the destination's used_len field for this
459 * "struct lguest_dma" in the array is also a little ugly. */
293 used_lenp = dst->dmas 460 used_lenp = dst->dmas
294 + dma * sizeof(struct lguest_dma) 461 + dma * sizeof(struct lguest_dma)
295 + offsetof(struct lguest_dma, used_len); 462 + offsetof(struct lguest_dma, used_len);
296 lgwrite_other(dstlg, used_lenp, &ret, sizeof(ret)); 463 lgwrite_other(dstlg, used_lenp, &ret, sizeof(ret));
464 /* Move the cursor for next time. */
297 dst->next_dma++; 465 dst->next_dma++;
298 } 466 }
299 up_read(&dstlg->mm->mmap_sem); 467 up_read(&dstlg->mm->mmap_sem);
300 468
301 /* Do this last so dst doesn't simply sleep on lock. */ 469 /* We trigger the destination interrupt, even if the destination was
470 * empty and we didn't transfer anything: this gives them a chance to
471 * wake up and refill. */
302 set_bit(dst->interrupt, dstlg->irqs_pending); 472 set_bit(dst->interrupt, dstlg->irqs_pending);
473 /* Wake up the destination process. */
303 wake_up_process(dstlg->tsk); 474 wake_up_process(dstlg->tsk);
475 /* If we passed the last "struct lguest_dma", the receive had no
476 * buffers left. */
304 return i == dst->num_dmas; 477 return i == dst->num_dmas;
305 478
306fail: 479fail:
@@ -308,6 +481,8 @@ fail:
308 return 0; 481 return 0;
309} 482}
310 483
484/*L:370 This is the counter-side to the BIND_DMA hypercall; the SEND_DMA
485 * hypercall. We find out who's listening, and send to them. */
311void send_dma(struct lguest *lg, unsigned long ukey, unsigned long udma) 486void send_dma(struct lguest *lg, unsigned long ukey, unsigned long udma)
312{ 487{
313 union futex_key key; 488 union futex_key key;
@@ -317,31 +492,43 @@ void send_dma(struct lguest *lg, unsigned long ukey, unsigned long udma)
317again: 492again:
318 mutex_lock(&lguest_lock); 493 mutex_lock(&lguest_lock);
319 down_read(fshared); 494 down_read(fshared);
495 /* Get the futex key for the key the Guest gave us */
320 if (get_futex_key((u32 __user *)ukey, fshared, &key) != 0) { 496 if (get_futex_key((u32 __user *)ukey, fshared, &key) != 0) {
321 kill_guest(lg, "bad sending DMA key"); 497 kill_guest(lg, "bad sending DMA key");
322 goto unlock; 498 goto unlock;
323 } 499 }
324 /* Shared mapping? Look for other guests... */ 500 /* Since the key must be a multiple of 4, the futex key uses the lower
501 * bit of the "offset" field (which would always be 0) to indicate a
502 * mapping which is shared with other processes (ie. Guests). */
325 if (key.shared.offset & 1) { 503 if (key.shared.offset & 1) {
326 struct lguest_dma_info *i; 504 struct lguest_dma_info *i;
505 /* Look through the hash for other Guests. */
327 list_for_each_entry(i, &dma_hash[hash(&key)], list) { 506 list_for_each_entry(i, &dma_hash[hash(&key)], list) {
507 /* Don't send to ourselves. */
328 if (i->guestid == lg->guestid) 508 if (i->guestid == lg->guestid)
329 continue; 509 continue;
330 if (!key_eq(&key, &i->key)) 510 if (!key_eq(&key, &i->key))
331 continue; 511 continue;
332 512
513 /* If dma_transfer() tells us the destination has no
514 * available buffers, we increment "empty". */
333 empty += dma_transfer(lg, udma, i); 515 empty += dma_transfer(lg, udma, i);
334 break; 516 break;
335 } 517 }
518 /* If the destination is empty, we release our locks and
519 * give the destination Guest a brief chance to restock. */
336 if (empty == 1) { 520 if (empty == 1) {
337 /* Give any recipients one chance to restock. */ 521 /* Give any recipients one chance to restock. */
338 up_read(&current->mm->mmap_sem); 522 up_read(&current->mm->mmap_sem);
339 mutex_unlock(&lguest_lock); 523 mutex_unlock(&lguest_lock);
524 /* Next time, we won't try again. */
340 empty++; 525 empty++;
341 goto again; 526 goto again;
342 } 527 }
343 } else { 528 } else {
344 /* Private mapping: tell our userspace. */ 529 /* Private mapping: Guest is sending to its Launcher. We set
530 * the "dma_is_pending" flag so that the main loop will exit
531 * and the Launcher's read() from /dev/lguest will return. */
345 lg->dma_is_pending = 1; 532 lg->dma_is_pending = 1;
346 lg->pending_dma = udma; 533 lg->pending_dma = udma;
347 lg->pending_key = ukey; 534 lg->pending_key = ukey;
@@ -350,6 +537,7 @@ unlock:
350 up_read(fshared); 537 up_read(fshared);
351 mutex_unlock(&lguest_lock); 538 mutex_unlock(&lguest_lock);
352} 539}
540/*:*/
353 541
354void release_all_dma(struct lguest *lg) 542void release_all_dma(struct lguest *lg)
355{ 543{
@@ -365,7 +553,8 @@ void release_all_dma(struct lguest *lg)
365 up_read(&lg->mm->mmap_sem); 553 up_read(&lg->mm->mmap_sem);
366} 554}
367 555
368/* Userspace wants a dma buffer from this guest. */ 556/*L:320 This routine looks for a DMA buffer registered by the Guest on the
557 * given key (using the BIND_DMA hypercall). */
369unsigned long get_dma_buffer(struct lguest *lg, 558unsigned long get_dma_buffer(struct lguest *lg,
370 unsigned long ukey, unsigned long *interrupt) 559 unsigned long ukey, unsigned long *interrupt)
371{ 560{
@@ -374,15 +563,29 @@ unsigned long get_dma_buffer(struct lguest *lg,
374 struct lguest_dma_info *i; 563 struct lguest_dma_info *i;
375 struct rw_semaphore *fshared = &current->mm->mmap_sem; 564 struct rw_semaphore *fshared = &current->mm->mmap_sem;
376 565
566 /* Take the Big Lguest Lock to stop other Guests sending this Guest DMA
567 * at the same time. */
377 mutex_lock(&lguest_lock); 568 mutex_lock(&lguest_lock);
569 /* To match between Guests sharing the same underlying memory we steal
570 * code from the futex infrastructure. This requires that we hold the
571 * "mmap_sem" for our process (the Launcher), and pass it to the futex
572 * code. */
378 down_read(fshared); 573 down_read(fshared);
574
575 /* This can fail if it's not a valid address, or if the address is not
576 * divisible by 4 (the futex code needs that, we don't really). */
379 if (get_futex_key((u32 __user *)ukey, fshared, &key) != 0) { 577 if (get_futex_key((u32 __user *)ukey, fshared, &key) != 0) {
380 kill_guest(lg, "bad registered DMA buffer"); 578 kill_guest(lg, "bad registered DMA buffer");
381 goto unlock; 579 goto unlock;
382 } 580 }
581 /* Search the hash table for matching entries (the Launcher can only
582 * send to its own Guest for the moment, so the entry must be for this
583 * Guest) */
383 list_for_each_entry(i, &dma_hash[hash(&key)], list) { 584 list_for_each_entry(i, &dma_hash[hash(&key)], list) {
384 if (key_eq(&key, &i->key) && i->guestid == lg->guestid) { 585 if (key_eq(&key, &i->key) && i->guestid == lg->guestid) {
385 unsigned int j; 586 unsigned int j;
587 /* Look through the registered DMA array for an
588 * available buffer. */
386 for (j = 0; j < i->num_dmas; j++) { 589 for (j = 0; j < i->num_dmas; j++) {
387 struct lguest_dma dma; 590 struct lguest_dma dma;
388 591
@@ -391,6 +594,8 @@ unsigned long get_dma_buffer(struct lguest *lg,
391 if (dma.used_len == 0) 594 if (dma.used_len == 0)
392 break; 595 break;
393 } 596 }
597 /* Store the interrupt the Guest wants when the buffer
598 * is used. */
394 *interrupt = i->interrupt; 599 *interrupt = i->interrupt;
395 break; 600 break;
396 } 601 }
@@ -400,4 +605,12 @@ unlock:
400 mutex_unlock(&lguest_lock); 605 mutex_unlock(&lguest_lock);
401 return ret; 606 return ret;
402} 607}
608/*:*/
403 609
610/*L:410 This really has completed the Launcher. Not only have we now finished
611 * the longest chapter in our journey, but this also means we are over halfway
612 * through!
613 *
614 * Enough prevaricating around the bush: it is time for us to dive into the
615 * core of the Host, in "make Host".
616 */
diff --git a/drivers/lguest/lg.h b/drivers/lguest/lg.h
index 3e2ddfbc816e..3b9dc123a7df 100644
--- a/drivers/lguest/lg.h
+++ b/drivers/lguest/lg.h
@@ -244,6 +244,30 @@ unsigned long get_dma_buffer(struct lguest *lg, unsigned long key,
244/* hypercalls.c: */ 244/* hypercalls.c: */
245void do_hypercalls(struct lguest *lg); 245void do_hypercalls(struct lguest *lg);
246 246
247/*L:035
248 * Let's step aside for the moment, to study one important routine that's used
249 * widely in the Host code.
250 *
251 * There are many cases where the Guest does something invalid, like pass crap
252 * to a hypercall. Since only the Guest kernel can make hypercalls, it's quite
253 * acceptable to simply terminate the Guest and give the Launcher a nicely
254 * formatted reason. It's also simpler for the Guest itself, which doesn't
255 * need to check most hypercalls for "success"; if you're still running, it
256 * succeeded.
257 *
258 * Once this is called, the Guest will never run again, so most Host code can
259 * call this then continue as if nothing had happened. This means many
260 * functions don't have to explicitly return an error code, which keeps the
261 * code simple.
262 *
263 * It also means that this can be called more than once: only the first one is
264 * remembered. The only trick is that we still need to kill the Guest even if
265 * we can't allocate memory to store the reason. Linux has a neat way of
266 * packing error codes into invalid pointers, so we use that here.
267 *
268 * Like any macro which uses an "if", it is safely wrapped in a run-once "do {
269 * } while(0)".
270 */
247#define kill_guest(lg, fmt...) \ 271#define kill_guest(lg, fmt...) \
248do { \ 272do { \
249 if (!(lg)->dead) { \ 273 if (!(lg)->dead) { \
@@ -252,6 +276,7 @@ do { \
252 (lg)->dead = ERR_PTR(-ENOMEM); \ 276 (lg)->dead = ERR_PTR(-ENOMEM); \
253 } \ 277 } \
254} while(0) 278} while(0)
279/* (End of aside) :*/
255 280
256static inline unsigned long guest_pa(struct lguest *lg, unsigned long vaddr) 281static inline unsigned long guest_pa(struct lguest *lg, unsigned long vaddr)
257{ 282{
diff --git a/drivers/lguest/lguest_user.c b/drivers/lguest/lguest_user.c
index 6ae86f20ce3d..80d1b58c7698 100644
--- a/drivers/lguest/lguest_user.c
+++ b/drivers/lguest/lguest_user.c
@@ -9,33 +9,62 @@
9#include <linux/fs.h> 9#include <linux/fs.h>
10#include "lg.h" 10#include "lg.h"
11 11
12/*L:030 setup_regs() doesn't really belong in this file, but it gives us an
13 * early glimpse deeper into the Host so it's worth having here.
14 *
15 * Most of the Guest's registers are left alone: we used get_zeroed_page() to
16 * allocate the structure, so they will be 0. */
12static void setup_regs(struct lguest_regs *regs, unsigned long start) 17static void setup_regs(struct lguest_regs *regs, unsigned long start)
13{ 18{
14 /* Write out stack in format lguest expects, so we can switch to it. */ 19 /* There are four "segment" registers which the Guest needs to boot:
20 * The "code segment" register (cs) refers to the kernel code segment
21 * __KERNEL_CS, and the "data", "extra" and "stack" segment registers
22 * refer to the kernel data segment __KERNEL_DS.
23 *
24 * The privilege level is packed into the lower bits. The Guest runs
25 * at privilege level 1 (GUEST_PL).*/
15 regs->ds = regs->es = regs->ss = __KERNEL_DS|GUEST_PL; 26 regs->ds = regs->es = regs->ss = __KERNEL_DS|GUEST_PL;
16 regs->cs = __KERNEL_CS|GUEST_PL; 27 regs->cs = __KERNEL_CS|GUEST_PL;
17 regs->eflags = 0x202; /* Interrupts enabled. */ 28
29 /* The "eflags" register contains miscellaneous flags. Bit 1 (0x002)
30 * is supposed to always be "1". Bit 9 (0x200) controls whether
31 * interrupts are enabled. We always leave interrupts enabled while
32 * running the Guest. */
33 regs->eflags = 0x202;
34
35 /* The "Extended Instruction Pointer" register says where the Guest is
36 * running. */
18 regs->eip = start; 37 regs->eip = start;
19 /* esi points to our boot information (physical address 0) */ 38
39 /* %esi points to our boot information, at physical address 0, so don't
40 * touch it. */
20} 41}
21 42
22/* + addr */ 43/*L:310 To send DMA into the Guest, the Launcher needs to be able to ask for a
44 * DMA buffer. This is done by writing LHREQ_GETDMA and the key to
45 * /dev/lguest. */
23static long user_get_dma(struct lguest *lg, const u32 __user *input) 46static long user_get_dma(struct lguest *lg, const u32 __user *input)
24{ 47{
25 unsigned long key, udma, irq; 48 unsigned long key, udma, irq;
26 49
50 /* Fetch the key they wrote to us. */
27 if (get_user(key, input) != 0) 51 if (get_user(key, input) != 0)
28 return -EFAULT; 52 return -EFAULT;
53 /* Look for a free Guest DMA buffer bound to that key. */
29 udma = get_dma_buffer(lg, key, &irq); 54 udma = get_dma_buffer(lg, key, &irq);
30 if (!udma) 55 if (!udma)
31 return -ENOENT; 56 return -ENOENT;
32 57
33 /* We put irq number in udma->used_len. */ 58 /* We need to tell the Launcher what interrupt the Guest expects after
59 * the buffer is filled. We stash it in udma->used_len. */
34 lgwrite_u32(lg, udma + offsetof(struct lguest_dma, used_len), irq); 60 lgwrite_u32(lg, udma + offsetof(struct lguest_dma, used_len), irq);
61
62 /* The (guest-physical) address of the DMA buffer is returned from
63 * the write(). */
35 return udma; 64 return udma;
36} 65}
37 66
38/* To force the Guest to stop running and return to the Launcher, the 67/*L:315 To force the Guest to stop running and return to the Launcher, the
39 * Waker sets writes LHREQ_BREAK and the value "1" to /dev/lguest. The 68 * Waker sets writes LHREQ_BREAK and the value "1" to /dev/lguest. The
40 * Launcher then writes LHREQ_BREAK and "0" to release the Waker. */ 69 * Launcher then writes LHREQ_BREAK and "0" to release the Waker. */
41static int break_guest_out(struct lguest *lg, const u32 __user *input) 70static int break_guest_out(struct lguest *lg, const u32 __user *input)
@@ -59,7 +88,8 @@ static int break_guest_out(struct lguest *lg, const u32 __user *input)
59 } 88 }
60} 89}
61 90
62/* + irq */ 91/*L:050 Sending an interrupt is done by writing LHREQ_IRQ and an interrupt
92 * number to /dev/lguest. */
63static int user_send_irq(struct lguest *lg, const u32 __user *input) 93static int user_send_irq(struct lguest *lg, const u32 __user *input)
64{ 94{
65 u32 irq; 95 u32 irq;
@@ -68,14 +98,19 @@ static int user_send_irq(struct lguest *lg, const u32 __user *input)
68 return -EFAULT; 98 return -EFAULT;
69 if (irq >= LGUEST_IRQS) 99 if (irq >= LGUEST_IRQS)
70 return -EINVAL; 100 return -EINVAL;
101 /* Next time the Guest runs, the core code will see if it can deliver
102 * this interrupt. */
71 set_bit(irq, lg->irqs_pending); 103 set_bit(irq, lg->irqs_pending);
72 return 0; 104 return 0;
73} 105}
74 106
107/*L:040 Once our Guest is initialized, the Launcher makes it run by reading
108 * from /dev/lguest. */
75static ssize_t read(struct file *file, char __user *user, size_t size,loff_t*o) 109static ssize_t read(struct file *file, char __user *user, size_t size,loff_t*o)
76{ 110{
77 struct lguest *lg = file->private_data; 111 struct lguest *lg = file->private_data;
78 112
113 /* You must write LHREQ_INITIALIZE first! */
79 if (!lg) 114 if (!lg)
80 return -EINVAL; 115 return -EINVAL;
81 116
@@ -83,27 +118,52 @@ static ssize_t read(struct file *file, char __user *user, size_t size,loff_t*o)
83 if (current != lg->tsk) 118 if (current != lg->tsk)
84 return -EPERM; 119 return -EPERM;
85 120
121 /* If the guest is already dead, we indicate why */
86 if (lg->dead) { 122 if (lg->dead) {
87 size_t len; 123 size_t len;
88 124
125 /* lg->dead either contains an error code, or a string. */
89 if (IS_ERR(lg->dead)) 126 if (IS_ERR(lg->dead))
90 return PTR_ERR(lg->dead); 127 return PTR_ERR(lg->dead);
91 128
129 /* We can only return as much as the buffer they read with. */
92 len = min(size, strlen(lg->dead)+1); 130 len = min(size, strlen(lg->dead)+1);
93 if (copy_to_user(user, lg->dead, len) != 0) 131 if (copy_to_user(user, lg->dead, len) != 0)
94 return -EFAULT; 132 return -EFAULT;
95 return len; 133 return len;
96 } 134 }
97 135
136 /* If we returned from read() last time because the Guest sent DMA,
137 * clear the flag. */
98 if (lg->dma_is_pending) 138 if (lg->dma_is_pending)
99 lg->dma_is_pending = 0; 139 lg->dma_is_pending = 0;
100 140
141 /* Run the Guest until something interesting happens. */
101 return run_guest(lg, (unsigned long __user *)user); 142 return run_guest(lg, (unsigned long __user *)user);
102} 143}
103 144
104/* Take: pfnlimit, pgdir, start, pageoffset. */ 145/*L:020 The initialization write supplies 4 32-bit values (in addition to the
146 * 32-bit LHREQ_INITIALIZE value). These are:
147 *
148 * pfnlimit: The highest (Guest-physical) page number the Guest should be
149 * allowed to access. The Launcher has to live in Guest memory, so it sets
150 * this to ensure the Guest can't reach it.
151 *
152 * pgdir: The (Guest-physical) address of the top of the initial Guest
153 * pagetables (which are set up by the Launcher).
154 *
155 * start: The first instruction to execute ("eip" in x86-speak).
156 *
157 * page_offset: The PAGE_OFFSET constant in the Guest kernel. We should
158 * probably wean the code off this, but it's a very useful constant! Any
159 * address above this is within the Guest kernel, and any kernel address can
160 * quickly converted from physical to virtual by adding PAGE_OFFSET. It's
161 * 0xC0000000 (3G) by default, but it's configurable at kernel build time.
162 */
105static int initialize(struct file *file, const u32 __user *input) 163static int initialize(struct file *file, const u32 __user *input)
106{ 164{
165 /* "struct lguest" contains everything we (the Host) know about a
166 * Guest. */
107 struct lguest *lg; 167 struct lguest *lg;
108 int err, i; 168 int err, i;
109 u32 args[4]; 169 u32 args[4];
@@ -111,7 +171,7 @@ static int initialize(struct file *file, const u32 __user *input)
111 /* We grab the Big Lguest lock, which protects the global array 171 /* We grab the Big Lguest lock, which protects the global array
112 * "lguests" and multiple simultaneous initializations. */ 172 * "lguests" and multiple simultaneous initializations. */
113 mutex_lock(&lguest_lock); 173 mutex_lock(&lguest_lock);
114 174 /* You can't initialize twice! Close the device and start again... */
115 if (file->private_data) { 175 if (file->private_data) {
116 err = -EBUSY; 176 err = -EBUSY;
117 goto unlock; 177 goto unlock;
@@ -122,37 +182,70 @@ static int initialize(struct file *file, const u32 __user *input)
122 goto unlock; 182 goto unlock;
123 } 183 }
124 184
185 /* Find an unused guest. */
125 i = find_free_guest(); 186 i = find_free_guest();
126 if (i < 0) { 187 if (i < 0) {
127 err = -ENOSPC; 188 err = -ENOSPC;
128 goto unlock; 189 goto unlock;
129 } 190 }
191 /* OK, we have an index into the "lguest" array: "lg" is a convenient
192 * pointer. */
130 lg = &lguests[i]; 193 lg = &lguests[i];
194
195 /* Populate the easy fields of our "struct lguest" */
131 lg->guestid = i; 196 lg->guestid = i;
132 lg->pfn_limit = args[0]; 197 lg->pfn_limit = args[0];
133 lg->page_offset = args[3]; 198 lg->page_offset = args[3];
199
200 /* We need a complete page for the Guest registers: they are accessible
201 * to the Guest and we can only grant it access to whole pages. */
134 lg->regs_page = get_zeroed_page(GFP_KERNEL); 202 lg->regs_page = get_zeroed_page(GFP_KERNEL);
135 if (!lg->regs_page) { 203 if (!lg->regs_page) {
136 err = -ENOMEM; 204 err = -ENOMEM;
137 goto release_guest; 205 goto release_guest;
138 } 206 }
207 /* We actually put the registers at the bottom of the page. */
139 lg->regs = (void *)lg->regs_page + PAGE_SIZE - sizeof(*lg->regs); 208 lg->regs = (void *)lg->regs_page + PAGE_SIZE - sizeof(*lg->regs);
140 209
210 /* Initialize the Guest's shadow page tables, using the toplevel
211 * address the Launcher gave us. This allocates memory, so can
212 * fail. */
141 err = init_guest_pagetable(lg, args[1]); 213 err = init_guest_pagetable(lg, args[1]);
142 if (err) 214 if (err)
143 goto free_regs; 215 goto free_regs;
144 216
217 /* Now we initialize the Guest's registers, handing it the start
218 * address. */
145 setup_regs(lg->regs, args[2]); 219 setup_regs(lg->regs, args[2]);
220
221 /* There are a couple of GDT entries the Guest expects when first
222 * booting. */
146 setup_guest_gdt(lg); 223 setup_guest_gdt(lg);
224
225 /* The timer for lguest's clock needs initialization. */
147 init_clockdev(lg); 226 init_clockdev(lg);
227
228 /* We keep a pointer to the Launcher task (ie. current task) for when
229 * other Guests want to wake this one (inter-Guest I/O). */
148 lg->tsk = current; 230 lg->tsk = current;
231 /* We need to keep a pointer to the Launcher's memory map, because if
232 * the Launcher dies we need to clean it up. If we don't keep a
233 * reference, it is destroyed before close() is called. */
149 lg->mm = get_task_mm(lg->tsk); 234 lg->mm = get_task_mm(lg->tsk);
235
236 /* Initialize the queue for the waker to wait on */
150 init_waitqueue_head(&lg->break_wq); 237 init_waitqueue_head(&lg->break_wq);
238
239 /* We remember which CPU's pages this Guest used last, for optimization
240 * when the same Guest runs on the same CPU twice. */
151 lg->last_pages = NULL; 241 lg->last_pages = NULL;
242
243 /* We keep our "struct lguest" in the file's private_data. */
152 file->private_data = lg; 244 file->private_data = lg;
153 245
154 mutex_unlock(&lguest_lock); 246 mutex_unlock(&lguest_lock);
155 247
248 /* And because this is a write() call, we return the length used. */
156 return sizeof(args); 249 return sizeof(args);
157 250
158free_regs: 251free_regs:
@@ -164,9 +257,15 @@ unlock:
164 return err; 257 return err;
165} 258}
166 259
260/*L:010 The first operation the Launcher does must be a write. All writes
261 * start with a 32 bit number: for the first write this must be
262 * LHREQ_INITIALIZE to set up the Guest. After that the Launcher can use
263 * writes of other values to get DMA buffers and send interrupts. */
167static ssize_t write(struct file *file, const char __user *input, 264static ssize_t write(struct file *file, const char __user *input,
168 size_t size, loff_t *off) 265 size_t size, loff_t *off)
169{ 266{
267 /* Once the guest is initialized, we hold the "struct lguest" in the
268 * file private data. */
170 struct lguest *lg = file->private_data; 269 struct lguest *lg = file->private_data;
171 u32 req; 270 u32 req;
172 271
@@ -174,8 +273,11 @@ static ssize_t write(struct file *file, const char __user *input,
174 return -EFAULT; 273 return -EFAULT;
175 input += sizeof(req); 274 input += sizeof(req);
176 275
276 /* If you haven't initialized, you must do that first. */
177 if (req != LHREQ_INITIALIZE && !lg) 277 if (req != LHREQ_INITIALIZE && !lg)
178 return -EINVAL; 278 return -EINVAL;
279
280 /* Once the Guest is dead, all you can do is read() why it died. */
179 if (lg && lg->dead) 281 if (lg && lg->dead)
180 return -ENOENT; 282 return -ENOENT;
181 283
@@ -197,33 +299,72 @@ static ssize_t write(struct file *file, const char __user *input,
197 } 299 }
198} 300}
199 301
302/*L:060 The final piece of interface code is the close() routine. It reverses
303 * everything done in initialize(). This is usually called because the
304 * Launcher exited.
305 *
306 * Note that the close routine returns 0 or a negative error number: it can't
307 * really fail, but it can whine. I blame Sun for this wart, and K&R C for
308 * letting them do it. :*/
200static int close(struct inode *inode, struct file *file) 309static int close(struct inode *inode, struct file *file)
201{ 310{
202 struct lguest *lg = file->private_data; 311 struct lguest *lg = file->private_data;
203 312
313 /* If we never successfully initialized, there's nothing to clean up */
204 if (!lg) 314 if (!lg)
205 return 0; 315 return 0;
206 316
317 /* We need the big lock, to protect from inter-guest I/O and other
318 * Launchers initializing guests. */
207 mutex_lock(&lguest_lock); 319 mutex_lock(&lguest_lock);
208 /* Cancels the hrtimer set via LHCALL_SET_CLOCKEVENT. */ 320 /* Cancels the hrtimer set via LHCALL_SET_CLOCKEVENT. */
209 hrtimer_cancel(&lg->hrt); 321 hrtimer_cancel(&lg->hrt);
322 /* Free any DMA buffers the Guest had bound. */
210 release_all_dma(lg); 323 release_all_dma(lg);
324 /* Free up the shadow page tables for the Guest. */
211 free_guest_pagetable(lg); 325 free_guest_pagetable(lg);
326 /* Now all the memory cleanups are done, it's safe to release the
327 * Launcher's memory management structure. */
212 mmput(lg->mm); 328 mmput(lg->mm);
329 /* If lg->dead doesn't contain an error code it will be NULL or a
330 * kmalloc()ed string, either of which is ok to hand to kfree(). */
213 if (!IS_ERR(lg->dead)) 331 if (!IS_ERR(lg->dead))
214 kfree(lg->dead); 332 kfree(lg->dead);
333 /* We can free up the register page we allocated. */
215 free_page(lg->regs_page); 334 free_page(lg->regs_page);
335 /* We clear the entire structure, which also marks it as free for the
336 * next user. */
216 memset(lg, 0, sizeof(*lg)); 337 memset(lg, 0, sizeof(*lg));
338 /* Release lock and exit. */
217 mutex_unlock(&lguest_lock); 339 mutex_unlock(&lguest_lock);
340
218 return 0; 341 return 0;
219} 342}
220 343
344/*L:000
345 * Welcome to our journey through the Launcher!
346 *
347 * The Launcher is the Host userspace program which sets up, runs and services
348 * the Guest. In fact, many comments in the Drivers which refer to "the Host"
349 * doing things are inaccurate: the Launcher does all the device handling for
350 * the Guest. The Guest can't tell what's done by the the Launcher and what by
351 * the Host.
352 *
353 * Just to confuse you: to the Host kernel, the Launcher *is* the Guest and we
354 * shall see more of that later.
355 *
356 * We begin our understanding with the Host kernel interface which the Launcher
357 * uses: reading and writing a character device called /dev/lguest. All the
358 * work happens in the read(), write() and close() routines: */
221static struct file_operations lguest_fops = { 359static struct file_operations lguest_fops = {
222 .owner = THIS_MODULE, 360 .owner = THIS_MODULE,
223 .release = close, 361 .release = close,
224 .write = write, 362 .write = write,
225 .read = read, 363 .read = read,
226}; 364};
365
366/* This is a textbook example of a "misc" character device. Populate a "struct
367 * miscdevice" and register it with misc_register(). */
227static struct miscdevice lguest_dev = { 368static struct miscdevice lguest_dev = {
228 .minor = MISC_DYNAMIC_MINOR, 369 .minor = MISC_DYNAMIC_MINOR,
229 .name = "lguest", 370 .name = "lguest",