aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--include/linux/slub_def.h21
-rw-r--r--mm/slob.c43
-rw-r--r--mm/slub.c82
3 files changed, 96 insertions, 50 deletions
diff --git a/include/linux/slub_def.h b/include/linux/slub_def.h
index 2f5c16b1aacd..e37b6aa8a9fb 100644
--- a/include/linux/slub_def.h
+++ b/include/linux/slub_def.h
@@ -46,7 +46,6 @@ struct kmem_cache_cpu {
46struct kmem_cache_node { 46struct kmem_cache_node {
47 spinlock_t list_lock; /* Protect partial list and nr_partial */ 47 spinlock_t list_lock; /* Protect partial list and nr_partial */
48 unsigned long nr_partial; 48 unsigned long nr_partial;
49 unsigned long min_partial;
50 struct list_head partial; 49 struct list_head partial;
51#ifdef CONFIG_SLUB_DEBUG 50#ifdef CONFIG_SLUB_DEBUG
52 atomic_long_t nr_slabs; 51 atomic_long_t nr_slabs;
@@ -89,6 +88,7 @@ struct kmem_cache {
89 void (*ctor)(void *); 88 void (*ctor)(void *);
90 int inuse; /* Offset to metadata */ 89 int inuse; /* Offset to metadata */
91 int align; /* Alignment */ 90 int align; /* Alignment */
91 unsigned long min_partial;
92 const char *name; /* Name (only for display!) */ 92 const char *name; /* Name (only for display!) */
93 struct list_head list; /* List of slab caches */ 93 struct list_head list; /* List of slab caches */
94#ifdef CONFIG_SLUB_DEBUG 94#ifdef CONFIG_SLUB_DEBUG
@@ -121,10 +121,23 @@ struct kmem_cache {
121#define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE) 121#define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
122 122
123/* 123/*
124 * Maximum kmalloc object size handled by SLUB. Larger object allocations
125 * are passed through to the page allocator. The page allocator "fastpath"
126 * is relatively slow so we need this value sufficiently high so that
127 * performance critical objects are allocated through the SLUB fastpath.
128 *
129 * This should be dropped to PAGE_SIZE / 2 once the page allocator
130 * "fastpath" becomes competitive with the slab allocator fastpaths.
131 */
132#define SLUB_MAX_SIZE (2 * PAGE_SIZE)
133
134#define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
135
136/*
124 * We keep the general caches in an array of slab caches that are used for 137 * We keep the general caches in an array of slab caches that are used for
125 * 2^x bytes of allocations. 138 * 2^x bytes of allocations.
126 */ 139 */
127extern struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1]; 140extern struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT];
128 141
129/* 142/*
130 * Sorry that the following has to be that ugly but some versions of GCC 143 * Sorry that the following has to be that ugly but some versions of GCC
@@ -212,7 +225,7 @@ static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
212static __always_inline void *kmalloc(size_t size, gfp_t flags) 225static __always_inline void *kmalloc(size_t size, gfp_t flags)
213{ 226{
214 if (__builtin_constant_p(size)) { 227 if (__builtin_constant_p(size)) {
215 if (size > PAGE_SIZE) 228 if (size > SLUB_MAX_SIZE)
216 return kmalloc_large(size, flags); 229 return kmalloc_large(size, flags);
217 230
218 if (!(flags & SLUB_DMA)) { 231 if (!(flags & SLUB_DMA)) {
@@ -234,7 +247,7 @@ void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
234static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node) 247static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
235{ 248{
236 if (__builtin_constant_p(size) && 249 if (__builtin_constant_p(size) &&
237 size <= PAGE_SIZE && !(flags & SLUB_DMA)) { 250 size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
238 struct kmem_cache *s = kmalloc_slab(size); 251 struct kmem_cache *s = kmalloc_slab(size);
239 252
240 if (!s) 253 if (!s)
diff --git a/mm/slob.c b/mm/slob.c
index 52bc8a2bd9ef..0bfa680a8981 100644
--- a/mm/slob.c
+++ b/mm/slob.c
@@ -126,9 +126,9 @@ static LIST_HEAD(free_slob_medium);
126static LIST_HEAD(free_slob_large); 126static LIST_HEAD(free_slob_large);
127 127
128/* 128/*
129 * slob_page: True for all slob pages (false for bigblock pages) 129 * is_slob_page: True for all slob pages (false for bigblock pages)
130 */ 130 */
131static inline int slob_page(struct slob_page *sp) 131static inline int is_slob_page(struct slob_page *sp)
132{ 132{
133 return PageSlobPage((struct page *)sp); 133 return PageSlobPage((struct page *)sp);
134} 134}
@@ -143,6 +143,11 @@ static inline void clear_slob_page(struct slob_page *sp)
143 __ClearPageSlobPage((struct page *)sp); 143 __ClearPageSlobPage((struct page *)sp);
144} 144}
145 145
146static inline struct slob_page *slob_page(const void *addr)
147{
148 return (struct slob_page *)virt_to_page(addr);
149}
150
146/* 151/*
147 * slob_page_free: true for pages on free_slob_pages list. 152 * slob_page_free: true for pages on free_slob_pages list.
148 */ 153 */
@@ -230,7 +235,7 @@ static int slob_last(slob_t *s)
230 return !((unsigned long)slob_next(s) & ~PAGE_MASK); 235 return !((unsigned long)slob_next(s) & ~PAGE_MASK);
231} 236}
232 237
233static void *slob_new_page(gfp_t gfp, int order, int node) 238static void *slob_new_pages(gfp_t gfp, int order, int node)
234{ 239{
235 void *page; 240 void *page;
236 241
@@ -247,12 +252,17 @@ static void *slob_new_page(gfp_t gfp, int order, int node)
247 return page_address(page); 252 return page_address(page);
248} 253}
249 254
255static void slob_free_pages(void *b, int order)
256{
257 free_pages((unsigned long)b, order);
258}
259
250/* 260/*
251 * Allocate a slob block within a given slob_page sp. 261 * Allocate a slob block within a given slob_page sp.
252 */ 262 */
253static void *slob_page_alloc(struct slob_page *sp, size_t size, int align) 263static void *slob_page_alloc(struct slob_page *sp, size_t size, int align)
254{ 264{
255 slob_t *prev, *cur, *aligned = 0; 265 slob_t *prev, *cur, *aligned = NULL;
256 int delta = 0, units = SLOB_UNITS(size); 266 int delta = 0, units = SLOB_UNITS(size);
257 267
258 for (prev = NULL, cur = sp->free; ; prev = cur, cur = slob_next(cur)) { 268 for (prev = NULL, cur = sp->free; ; prev = cur, cur = slob_next(cur)) {
@@ -349,10 +359,10 @@ static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
349 359
350 /* Not enough space: must allocate a new page */ 360 /* Not enough space: must allocate a new page */
351 if (!b) { 361 if (!b) {
352 b = slob_new_page(gfp & ~__GFP_ZERO, 0, node); 362 b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
353 if (!b) 363 if (!b)
354 return 0; 364 return NULL;
355 sp = (struct slob_page *)virt_to_page(b); 365 sp = slob_page(b);
356 set_slob_page(sp); 366 set_slob_page(sp);
357 367
358 spin_lock_irqsave(&slob_lock, flags); 368 spin_lock_irqsave(&slob_lock, flags);
@@ -384,7 +394,7 @@ static void slob_free(void *block, int size)
384 return; 394 return;
385 BUG_ON(!size); 395 BUG_ON(!size);
386 396
387 sp = (struct slob_page *)virt_to_page(block); 397 sp = slob_page(block);
388 units = SLOB_UNITS(size); 398 units = SLOB_UNITS(size);
389 399
390 spin_lock_irqsave(&slob_lock, flags); 400 spin_lock_irqsave(&slob_lock, flags);
@@ -393,10 +403,11 @@ static void slob_free(void *block, int size)
393 /* Go directly to page allocator. Do not pass slob allocator */ 403 /* Go directly to page allocator. Do not pass slob allocator */
394 if (slob_page_free(sp)) 404 if (slob_page_free(sp))
395 clear_slob_page_free(sp); 405 clear_slob_page_free(sp);
406 spin_unlock_irqrestore(&slob_lock, flags);
396 clear_slob_page(sp); 407 clear_slob_page(sp);
397 free_slob_page(sp); 408 free_slob_page(sp);
398 free_page((unsigned long)b); 409 free_page((unsigned long)b);
399 goto out; 410 return;
400 } 411 }
401 412
402 if (!slob_page_free(sp)) { 413 if (!slob_page_free(sp)) {
@@ -476,7 +487,7 @@ void *__kmalloc_node(size_t size, gfp_t gfp, int node)
476 } else { 487 } else {
477 void *ret; 488 void *ret;
478 489
479 ret = slob_new_page(gfp | __GFP_COMP, get_order(size), node); 490 ret = slob_new_pages(gfp | __GFP_COMP, get_order(size), node);
480 if (ret) { 491 if (ret) {
481 struct page *page; 492 struct page *page;
482 page = virt_to_page(ret); 493 page = virt_to_page(ret);
@@ -494,8 +505,8 @@ void kfree(const void *block)
494 if (unlikely(ZERO_OR_NULL_PTR(block))) 505 if (unlikely(ZERO_OR_NULL_PTR(block)))
495 return; 506 return;
496 507
497 sp = (struct slob_page *)virt_to_page(block); 508 sp = slob_page(block);
498 if (slob_page(sp)) { 509 if (is_slob_page(sp)) {
499 int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); 510 int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
500 unsigned int *m = (unsigned int *)(block - align); 511 unsigned int *m = (unsigned int *)(block - align);
501 slob_free(m, *m + align); 512 slob_free(m, *m + align);
@@ -513,8 +524,8 @@ size_t ksize(const void *block)
513 if (unlikely(block == ZERO_SIZE_PTR)) 524 if (unlikely(block == ZERO_SIZE_PTR))
514 return 0; 525 return 0;
515 526
516 sp = (struct slob_page *)virt_to_page(block); 527 sp = slob_page(block);
517 if (slob_page(sp)) { 528 if (is_slob_page(sp)) {
518 int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); 529 int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
519 unsigned int *m = (unsigned int *)(block - align); 530 unsigned int *m = (unsigned int *)(block - align);
520 return SLOB_UNITS(*m) * SLOB_UNIT; 531 return SLOB_UNITS(*m) * SLOB_UNIT;
@@ -573,7 +584,7 @@ void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
573 if (c->size < PAGE_SIZE) 584 if (c->size < PAGE_SIZE)
574 b = slob_alloc(c->size, flags, c->align, node); 585 b = slob_alloc(c->size, flags, c->align, node);
575 else 586 else
576 b = slob_new_page(flags, get_order(c->size), node); 587 b = slob_new_pages(flags, get_order(c->size), node);
577 588
578 if (c->ctor) 589 if (c->ctor)
579 c->ctor(b); 590 c->ctor(b);
@@ -587,7 +598,7 @@ static void __kmem_cache_free(void *b, int size)
587 if (size < PAGE_SIZE) 598 if (size < PAGE_SIZE)
588 slob_free(b, size); 599 slob_free(b, size);
589 else 600 else
590 free_pages((unsigned long)b, get_order(size)); 601 slob_free_pages(b, get_order(size));
591} 602}
592 603
593static void kmem_rcu_free(struct rcu_head *head) 604static void kmem_rcu_free(struct rcu_head *head)
diff --git a/mm/slub.c b/mm/slub.c
index 0280eee6cf37..c65a4edafc33 100644
--- a/mm/slub.c
+++ b/mm/slub.c
@@ -374,14 +374,8 @@ static struct track *get_track(struct kmem_cache *s, void *object,
374static void set_track(struct kmem_cache *s, void *object, 374static void set_track(struct kmem_cache *s, void *object,
375 enum track_item alloc, unsigned long addr) 375 enum track_item alloc, unsigned long addr)
376{ 376{
377 struct track *p; 377 struct track *p = get_track(s, object, alloc);
378
379 if (s->offset)
380 p = object + s->offset + sizeof(void *);
381 else
382 p = object + s->inuse;
383 378
384 p += alloc;
385 if (addr) { 379 if (addr) {
386 p->addr = addr; 380 p->addr = addr;
387 p->cpu = smp_processor_id(); 381 p->cpu = smp_processor_id();
@@ -1335,7 +1329,7 @@ static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1335 n = get_node(s, zone_to_nid(zone)); 1329 n = get_node(s, zone_to_nid(zone));
1336 1330
1337 if (n && cpuset_zone_allowed_hardwall(zone, flags) && 1331 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1338 n->nr_partial > n->min_partial) { 1332 n->nr_partial > s->min_partial) {
1339 page = get_partial_node(n); 1333 page = get_partial_node(n);
1340 if (page) 1334 if (page)
1341 return page; 1335 return page;
@@ -1387,7 +1381,7 @@ static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1387 slab_unlock(page); 1381 slab_unlock(page);
1388 } else { 1382 } else {
1389 stat(c, DEACTIVATE_EMPTY); 1383 stat(c, DEACTIVATE_EMPTY);
1390 if (n->nr_partial < n->min_partial) { 1384 if (n->nr_partial < s->min_partial) {
1391 /* 1385 /*
1392 * Adding an empty slab to the partial slabs in order 1386 * Adding an empty slab to the partial slabs in order
1393 * to avoid page allocator overhead. This slab needs 1387 * to avoid page allocator overhead. This slab needs
@@ -1724,7 +1718,7 @@ static __always_inline void slab_free(struct kmem_cache *s,
1724 c = get_cpu_slab(s, smp_processor_id()); 1718 c = get_cpu_slab(s, smp_processor_id());
1725 debug_check_no_locks_freed(object, c->objsize); 1719 debug_check_no_locks_freed(object, c->objsize);
1726 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1720 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1727 debug_check_no_obj_freed(object, s->objsize); 1721 debug_check_no_obj_freed(object, c->objsize);
1728 if (likely(page == c->page && c->node >= 0)) { 1722 if (likely(page == c->page && c->node >= 0)) {
1729 object[c->offset] = c->freelist; 1723 object[c->offset] = c->freelist;
1730 c->freelist = object; 1724 c->freelist = object;
@@ -1844,6 +1838,7 @@ static inline int calculate_order(int size)
1844 int order; 1838 int order;
1845 int min_objects; 1839 int min_objects;
1846 int fraction; 1840 int fraction;
1841 int max_objects;
1847 1842
1848 /* 1843 /*
1849 * Attempt to find best configuration for a slab. This 1844 * Attempt to find best configuration for a slab. This
@@ -1856,6 +1851,9 @@ static inline int calculate_order(int size)
1856 min_objects = slub_min_objects; 1851 min_objects = slub_min_objects;
1857 if (!min_objects) 1852 if (!min_objects)
1858 min_objects = 4 * (fls(nr_cpu_ids) + 1); 1853 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1854 max_objects = (PAGE_SIZE << slub_max_order)/size;
1855 min_objects = min(min_objects, max_objects);
1856
1859 while (min_objects > 1) { 1857 while (min_objects > 1) {
1860 fraction = 16; 1858 fraction = 16;
1861 while (fraction >= 4) { 1859 while (fraction >= 4) {
@@ -1865,7 +1863,7 @@ static inline int calculate_order(int size)
1865 return order; 1863 return order;
1866 fraction /= 2; 1864 fraction /= 2;
1867 } 1865 }
1868 min_objects /= 2; 1866 min_objects --;
1869 } 1867 }
1870 1868
1871 /* 1869 /*
@@ -1928,17 +1926,6 @@ static void
1928init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s) 1926init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
1929{ 1927{
1930 n->nr_partial = 0; 1928 n->nr_partial = 0;
1931
1932 /*
1933 * The larger the object size is, the more pages we want on the partial
1934 * list to avoid pounding the page allocator excessively.
1935 */
1936 n->min_partial = ilog2(s->size);
1937 if (n->min_partial < MIN_PARTIAL)
1938 n->min_partial = MIN_PARTIAL;
1939 else if (n->min_partial > MAX_PARTIAL)
1940 n->min_partial = MAX_PARTIAL;
1941
1942 spin_lock_init(&n->list_lock); 1929 spin_lock_init(&n->list_lock);
1943 INIT_LIST_HEAD(&n->partial); 1930 INIT_LIST_HEAD(&n->partial);
1944#ifdef CONFIG_SLUB_DEBUG 1931#ifdef CONFIG_SLUB_DEBUG
@@ -2181,6 +2168,15 @@ static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2181} 2168}
2182#endif 2169#endif
2183 2170
2171static void set_min_partial(struct kmem_cache *s, unsigned long min)
2172{
2173 if (min < MIN_PARTIAL)
2174 min = MIN_PARTIAL;
2175 else if (min > MAX_PARTIAL)
2176 min = MAX_PARTIAL;
2177 s->min_partial = min;
2178}
2179
2184/* 2180/*
2185 * calculate_sizes() determines the order and the distribution of data within 2181 * calculate_sizes() determines the order and the distribution of data within
2186 * a slab object. 2182 * a slab object.
@@ -2319,6 +2315,11 @@ static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2319 if (!calculate_sizes(s, -1)) 2315 if (!calculate_sizes(s, -1))
2320 goto error; 2316 goto error;
2321 2317
2318 /*
2319 * The larger the object size is, the more pages we want on the partial
2320 * list to avoid pounding the page allocator excessively.
2321 */
2322 set_min_partial(s, ilog2(s->size));
2322 s->refcount = 1; 2323 s->refcount = 1;
2323#ifdef CONFIG_NUMA 2324#ifdef CONFIG_NUMA
2324 s->remote_node_defrag_ratio = 1000; 2325 s->remote_node_defrag_ratio = 1000;
@@ -2475,7 +2476,7 @@ EXPORT_SYMBOL(kmem_cache_destroy);
2475 * Kmalloc subsystem 2476 * Kmalloc subsystem
2476 *******************************************************************/ 2477 *******************************************************************/
2477 2478
2478struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned; 2479struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
2479EXPORT_SYMBOL(kmalloc_caches); 2480EXPORT_SYMBOL(kmalloc_caches);
2480 2481
2481static int __init setup_slub_min_order(char *str) 2482static int __init setup_slub_min_order(char *str)
@@ -2537,7 +2538,7 @@ panic:
2537} 2538}
2538 2539
2539#ifdef CONFIG_ZONE_DMA 2540#ifdef CONFIG_ZONE_DMA
2540static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1]; 2541static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2541 2542
2542static void sysfs_add_func(struct work_struct *w) 2543static void sysfs_add_func(struct work_struct *w)
2543{ 2544{
@@ -2658,7 +2659,7 @@ void *__kmalloc(size_t size, gfp_t flags)
2658{ 2659{
2659 struct kmem_cache *s; 2660 struct kmem_cache *s;
2660 2661
2661 if (unlikely(size > PAGE_SIZE)) 2662 if (unlikely(size > SLUB_MAX_SIZE))
2662 return kmalloc_large(size, flags); 2663 return kmalloc_large(size, flags);
2663 2664
2664 s = get_slab(size, flags); 2665 s = get_slab(size, flags);
@@ -2686,7 +2687,7 @@ void *__kmalloc_node(size_t size, gfp_t flags, int node)
2686{ 2687{
2687 struct kmem_cache *s; 2688 struct kmem_cache *s;
2688 2689
2689 if (unlikely(size > PAGE_SIZE)) 2690 if (unlikely(size > SLUB_MAX_SIZE))
2690 return kmalloc_large_node(size, flags, node); 2691 return kmalloc_large_node(size, flags, node);
2691 2692
2692 s = get_slab(size, flags); 2693 s = get_slab(size, flags);
@@ -2986,7 +2987,7 @@ void __init kmem_cache_init(void)
2986 caches++; 2987 caches++;
2987 } 2988 }
2988 2989
2989 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) { 2990 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
2990 create_kmalloc_cache(&kmalloc_caches[i], 2991 create_kmalloc_cache(&kmalloc_caches[i],
2991 "kmalloc", 1 << i, GFP_KERNEL); 2992 "kmalloc", 1 << i, GFP_KERNEL);
2992 caches++; 2993 caches++;
@@ -3023,7 +3024,7 @@ void __init kmem_cache_init(void)
3023 slab_state = UP; 3024 slab_state = UP;
3024 3025
3025 /* Provide the correct kmalloc names now that the caches are up */ 3026 /* Provide the correct kmalloc names now that the caches are up */
3026 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) 3027 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
3027 kmalloc_caches[i]. name = 3028 kmalloc_caches[i]. name =
3028 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i); 3029 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3029 3030
@@ -3223,7 +3224,7 @@ void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3223{ 3224{
3224 struct kmem_cache *s; 3225 struct kmem_cache *s;
3225 3226
3226 if (unlikely(size > PAGE_SIZE)) 3227 if (unlikely(size > SLUB_MAX_SIZE))
3227 return kmalloc_large(size, gfpflags); 3228 return kmalloc_large(size, gfpflags);
3228 3229
3229 s = get_slab(size, gfpflags); 3230 s = get_slab(size, gfpflags);
@@ -3239,7 +3240,7 @@ void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3239{ 3240{
3240 struct kmem_cache *s; 3241 struct kmem_cache *s;
3241 3242
3242 if (unlikely(size > PAGE_SIZE)) 3243 if (unlikely(size > SLUB_MAX_SIZE))
3243 return kmalloc_large_node(size, gfpflags, node); 3244 return kmalloc_large_node(size, gfpflags, node);
3244 3245
3245 s = get_slab(size, gfpflags); 3246 s = get_slab(size, gfpflags);
@@ -3836,6 +3837,26 @@ static ssize_t order_show(struct kmem_cache *s, char *buf)
3836} 3837}
3837SLAB_ATTR(order); 3838SLAB_ATTR(order);
3838 3839
3840static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3841{
3842 return sprintf(buf, "%lu\n", s->min_partial);
3843}
3844
3845static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3846 size_t length)
3847{
3848 unsigned long min;
3849 int err;
3850
3851 err = strict_strtoul(buf, 10, &min);
3852 if (err)
3853 return err;
3854
3855 set_min_partial(s, min);
3856 return length;
3857}
3858SLAB_ATTR(min_partial);
3859
3839static ssize_t ctor_show(struct kmem_cache *s, char *buf) 3860static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3840{ 3861{
3841 if (s->ctor) { 3862 if (s->ctor) {
@@ -4151,6 +4172,7 @@ static struct attribute *slab_attrs[] = {
4151 &object_size_attr.attr, 4172 &object_size_attr.attr,
4152 &objs_per_slab_attr.attr, 4173 &objs_per_slab_attr.attr,
4153 &order_attr.attr, 4174 &order_attr.attr,
4175 &min_partial_attr.attr,
4154 &objects_attr.attr, 4176 &objects_attr.attr,
4155 &objects_partial_attr.attr, 4177 &objects_partial_attr.attr,
4156 &total_objects_attr.attr, 4178 &total_objects_attr.attr,