diff options
-rw-r--r-- | Documentation/00-INDEX | 2 | ||||
-rw-r--r-- | Documentation/prio_tree.txt | 107 | ||||
-rw-r--r-- | include/linux/prio_tree.h | 120 | ||||
-rw-r--r-- | init/main.c | 2 | ||||
-rw-r--r-- | lib/Kconfig.debug | 6 | ||||
-rw-r--r-- | lib/Makefile | 3 | ||||
-rw-r--r-- | lib/prio_tree.c | 455 | ||||
-rw-r--r-- | lib/prio_tree_test.c | 106 |
8 files changed, 1 insertions, 800 deletions
diff --git a/Documentation/00-INDEX b/Documentation/00-INDEX index 49c051380daf..f54273e2ac97 100644 --- a/Documentation/00-INDEX +++ b/Documentation/00-INDEX | |||
@@ -270,8 +270,6 @@ preempt-locking.txt | |||
270 | - info on locking under a preemptive kernel. | 270 | - info on locking under a preemptive kernel. |
271 | printk-formats.txt | 271 | printk-formats.txt |
272 | - how to get printk format specifiers right | 272 | - how to get printk format specifiers right |
273 | prio_tree.txt | ||
274 | - info on radix-priority-search-tree use for indexing vmas. | ||
275 | ramoops.txt | 273 | ramoops.txt |
276 | - documentation of the ramoops oops/panic logging module. | 274 | - documentation of the ramoops oops/panic logging module. |
277 | rbtree.txt | 275 | rbtree.txt |
diff --git a/Documentation/prio_tree.txt b/Documentation/prio_tree.txt deleted file mode 100644 index 3aa68f9a117b..000000000000 --- a/Documentation/prio_tree.txt +++ /dev/null | |||
@@ -1,107 +0,0 @@ | |||
1 | The prio_tree.c code indexes vmas using 3 different indexes: | ||
2 | * heap_index = vm_pgoff + vm_size_in_pages : end_vm_pgoff | ||
3 | * radix_index = vm_pgoff : start_vm_pgoff | ||
4 | * size_index = vm_size_in_pages | ||
5 | |||
6 | A regular radix-priority-search-tree indexes vmas using only heap_index and | ||
7 | radix_index. The conditions for indexing are: | ||
8 | * ->heap_index >= ->left->heap_index && | ||
9 | ->heap_index >= ->right->heap_index | ||
10 | * if (->heap_index == ->left->heap_index) | ||
11 | then ->radix_index < ->left->radix_index; | ||
12 | * if (->heap_index == ->right->heap_index) | ||
13 | then ->radix_index < ->right->radix_index; | ||
14 | * nodes are hashed to left or right subtree using radix_index | ||
15 | similar to a pure binary radix tree. | ||
16 | |||
17 | A regular radix-priority-search-tree helps to store and query | ||
18 | intervals (vmas). However, a regular radix-priority-search-tree is only | ||
19 | suitable for storing vmas with different radix indices (vm_pgoff). | ||
20 | |||
21 | Therefore, the prio_tree.c extends the regular radix-priority-search-tree | ||
22 | to handle many vmas with the same vm_pgoff. Such vmas are handled in | ||
23 | 2 different ways: 1) All vmas with the same radix _and_ heap indices are | ||
24 | linked using vm_set.list, 2) if there are many vmas with the same radix | ||
25 | index, but different heap indices and if the regular radix-priority-search | ||
26 | tree cannot index them all, we build an overflow-sub-tree that indexes such | ||
27 | vmas using heap and size indices instead of heap and radix indices. For | ||
28 | example, in the figure below some vmas with vm_pgoff = 0 (zero) are | ||
29 | indexed by regular radix-priority-search-tree whereas others are pushed | ||
30 | into an overflow-subtree. Note that all vmas in an overflow-sub-tree have | ||
31 | the same vm_pgoff (radix_index) and if necessary we build different | ||
32 | overflow-sub-trees to handle each possible radix_index. For example, | ||
33 | in figure we have 3 overflow-sub-trees corresponding to radix indices | ||
34 | 0, 2, and 4. | ||
35 | |||
36 | In the final tree the first few (prio_tree_root->index_bits) levels | ||
37 | are indexed using heap and radix indices whereas the overflow-sub-trees below | ||
38 | those levels (i.e. levels prio_tree_root->index_bits + 1 and higher) are | ||
39 | indexed using heap and size indices. In overflow-sub-trees the size_index | ||
40 | is used for hashing the nodes to appropriate places. | ||
41 | |||
42 | Now, an example prio_tree: | ||
43 | |||
44 | vmas are represented [radix_index, size_index, heap_index] | ||
45 | i.e., [start_vm_pgoff, vm_size_in_pages, end_vm_pgoff] | ||
46 | |||
47 | level prio_tree_root->index_bits = 3 | ||
48 | ----- | ||
49 | _ | ||
50 | 0 [0,7,7] | | ||
51 | / \ | | ||
52 | ------------------ ------------ | Regular | ||
53 | / \ | radix priority | ||
54 | 1 [1,6,7] [4,3,7] | search tree | ||
55 | / \ / \ | | ||
56 | ------- ----- ------ ----- | heap-and-radix | ||
57 | / \ / \ | indexed | ||
58 | 2 [0,6,6] [2,5,7] [5,2,7] [6,1,7] | | ||
59 | / \ / \ / \ / \ | | ||
60 | 3 [0,5,5] [1,5,6] [2,4,6] [3,4,7] [4,2,6] [5,1,6] [6,0,6] [7,0,7] | | ||
61 | / / / _ | ||
62 | / / / _ | ||
63 | 4 [0,4,4] [2,3,5] [4,1,5] | | ||
64 | / / / | | ||
65 | 5 [0,3,3] [2,2,4] [4,0,4] | Overflow-sub-trees | ||
66 | / / | | ||
67 | 6 [0,2,2] [2,1,3] | heap-and-size | ||
68 | / / | indexed | ||
69 | 7 [0,1,1] [2,0,2] | | ||
70 | / | | ||
71 | 8 [0,0,0] | | ||
72 | _ | ||
73 | |||
74 | Note that we use prio_tree_root->index_bits to optimize the height | ||
75 | of the heap-and-radix indexed tree. Since prio_tree_root->index_bits is | ||
76 | set according to the maximum end_vm_pgoff mapped, we are sure that all | ||
77 | bits (in vm_pgoff) above prio_tree_root->index_bits are 0 (zero). Therefore, | ||
78 | we only use the first prio_tree_root->index_bits as radix_index. | ||
79 | Whenever index_bits is increased in prio_tree_expand, we shuffle the tree | ||
80 | to make sure that the first prio_tree_root->index_bits levels of the tree | ||
81 | is indexed properly using heap and radix indices. | ||
82 | |||
83 | We do not optimize the height of overflow-sub-trees using index_bits. | ||
84 | The reason is: there can be many such overflow-sub-trees and all of | ||
85 | them have to be suffled whenever the index_bits increases. This may involve | ||
86 | walking the whole prio_tree in prio_tree_insert->prio_tree_expand code | ||
87 | path which is not desirable. Hence, we do not optimize the height of the | ||
88 | heap-and-size indexed overflow-sub-trees using prio_tree->index_bits. | ||
89 | Instead the overflow sub-trees are indexed using full BITS_PER_LONG bits | ||
90 | of size_index. This may lead to skewed sub-trees because most of the | ||
91 | higher significant bits of the size_index are likely to be 0 (zero). In | ||
92 | the example above, all 3 overflow-sub-trees are skewed. This may marginally | ||
93 | affect the performance. However, processes rarely map many vmas with the | ||
94 | same start_vm_pgoff but different end_vm_pgoffs. Therefore, we normally | ||
95 | do not require overflow-sub-trees to index all vmas. | ||
96 | |||
97 | From the above discussion it is clear that the maximum height of | ||
98 | a prio_tree can be prio_tree_root->index_bits + BITS_PER_LONG. | ||
99 | However, in most of the common cases we do not need overflow-sub-trees, | ||
100 | so the tree height in the common cases will be prio_tree_root->index_bits. | ||
101 | |||
102 | It is fair to mention here that the prio_tree_root->index_bits | ||
103 | is increased on demand, however, the index_bits is not decreased when | ||
104 | vmas are removed from the prio_tree. That's tricky to do. Hence, it's | ||
105 | left as a home work problem. | ||
106 | |||
107 | |||
diff --git a/include/linux/prio_tree.h b/include/linux/prio_tree.h deleted file mode 100644 index db04abb557e0..000000000000 --- a/include/linux/prio_tree.h +++ /dev/null | |||
@@ -1,120 +0,0 @@ | |||
1 | #ifndef _LINUX_PRIO_TREE_H | ||
2 | #define _LINUX_PRIO_TREE_H | ||
3 | |||
4 | /* | ||
5 | * K&R 2nd ed. A8.3 somewhat obliquely hints that initial sequences of struct | ||
6 | * fields with identical types should end up at the same location. We'll use | ||
7 | * this until we can scrap struct raw_prio_tree_node. | ||
8 | * | ||
9 | * Note: all this could be done more elegantly by using unnamed union/struct | ||
10 | * fields. However, gcc 2.95.3 and apparently also gcc 3.0.4 don't support this | ||
11 | * language extension. | ||
12 | */ | ||
13 | |||
14 | struct raw_prio_tree_node { | ||
15 | struct prio_tree_node *left; | ||
16 | struct prio_tree_node *right; | ||
17 | struct prio_tree_node *parent; | ||
18 | }; | ||
19 | |||
20 | struct prio_tree_node { | ||
21 | struct prio_tree_node *left; | ||
22 | struct prio_tree_node *right; | ||
23 | struct prio_tree_node *parent; | ||
24 | unsigned long start; | ||
25 | unsigned long last; /* last location _in_ interval */ | ||
26 | }; | ||
27 | |||
28 | struct prio_tree_root { | ||
29 | struct prio_tree_node *prio_tree_node; | ||
30 | unsigned short index_bits; | ||
31 | unsigned short raw; | ||
32 | /* | ||
33 | * 0: nodes are of type struct prio_tree_node | ||
34 | * 1: nodes are of type raw_prio_tree_node | ||
35 | */ | ||
36 | }; | ||
37 | |||
38 | struct prio_tree_iter { | ||
39 | struct prio_tree_node *cur; | ||
40 | unsigned long mask; | ||
41 | unsigned long value; | ||
42 | int size_level; | ||
43 | |||
44 | struct prio_tree_root *root; | ||
45 | pgoff_t r_index; | ||
46 | pgoff_t h_index; | ||
47 | }; | ||
48 | |||
49 | static inline void prio_tree_iter_init(struct prio_tree_iter *iter, | ||
50 | struct prio_tree_root *root, pgoff_t r_index, pgoff_t h_index) | ||
51 | { | ||
52 | iter->root = root; | ||
53 | iter->r_index = r_index; | ||
54 | iter->h_index = h_index; | ||
55 | iter->cur = NULL; | ||
56 | } | ||
57 | |||
58 | #define __INIT_PRIO_TREE_ROOT(ptr, _raw) \ | ||
59 | do { \ | ||
60 | (ptr)->prio_tree_node = NULL; \ | ||
61 | (ptr)->index_bits = 1; \ | ||
62 | (ptr)->raw = (_raw); \ | ||
63 | } while (0) | ||
64 | |||
65 | #define INIT_PRIO_TREE_ROOT(ptr) __INIT_PRIO_TREE_ROOT(ptr, 0) | ||
66 | #define INIT_RAW_PRIO_TREE_ROOT(ptr) __INIT_PRIO_TREE_ROOT(ptr, 1) | ||
67 | |||
68 | #define INIT_PRIO_TREE_NODE(ptr) \ | ||
69 | do { \ | ||
70 | (ptr)->left = (ptr)->right = (ptr)->parent = (ptr); \ | ||
71 | } while (0) | ||
72 | |||
73 | #define INIT_PRIO_TREE_ITER(ptr) \ | ||
74 | do { \ | ||
75 | (ptr)->cur = NULL; \ | ||
76 | (ptr)->mask = 0UL; \ | ||
77 | (ptr)->value = 0UL; \ | ||
78 | (ptr)->size_level = 0; \ | ||
79 | } while (0) | ||
80 | |||
81 | #define prio_tree_entry(ptr, type, member) \ | ||
82 | ((type *)((char *)(ptr)-(unsigned long)(&((type *)0)->member))) | ||
83 | |||
84 | static inline int prio_tree_empty(const struct prio_tree_root *root) | ||
85 | { | ||
86 | return root->prio_tree_node == NULL; | ||
87 | } | ||
88 | |||
89 | static inline int prio_tree_root(const struct prio_tree_node *node) | ||
90 | { | ||
91 | return node->parent == node; | ||
92 | } | ||
93 | |||
94 | static inline int prio_tree_left_empty(const struct prio_tree_node *node) | ||
95 | { | ||
96 | return node->left == node; | ||
97 | } | ||
98 | |||
99 | static inline int prio_tree_right_empty(const struct prio_tree_node *node) | ||
100 | { | ||
101 | return node->right == node; | ||
102 | } | ||
103 | |||
104 | |||
105 | struct prio_tree_node *prio_tree_replace(struct prio_tree_root *root, | ||
106 | struct prio_tree_node *old, struct prio_tree_node *node); | ||
107 | struct prio_tree_node *prio_tree_insert(struct prio_tree_root *root, | ||
108 | struct prio_tree_node *node); | ||
109 | void prio_tree_remove(struct prio_tree_root *root, struct prio_tree_node *node); | ||
110 | struct prio_tree_node *prio_tree_next(struct prio_tree_iter *iter); | ||
111 | |||
112 | #define raw_prio_tree_replace(root, old, node) \ | ||
113 | prio_tree_replace(root, (struct prio_tree_node *) (old), \ | ||
114 | (struct prio_tree_node *) (node)) | ||
115 | #define raw_prio_tree_insert(root, node) \ | ||
116 | prio_tree_insert(root, (struct prio_tree_node *) (node)) | ||
117 | #define raw_prio_tree_remove(root, node) \ | ||
118 | prio_tree_remove(root, (struct prio_tree_node *) (node)) | ||
119 | |||
120 | #endif /* _LINUX_PRIO_TREE_H */ | ||
diff --git a/init/main.c b/init/main.c index db34c0ec4711..313360fe1118 100644 --- a/init/main.c +++ b/init/main.c | |||
@@ -86,7 +86,6 @@ extern void init_IRQ(void); | |||
86 | extern void fork_init(unsigned long); | 86 | extern void fork_init(unsigned long); |
87 | extern void mca_init(void); | 87 | extern void mca_init(void); |
88 | extern void sbus_init(void); | 88 | extern void sbus_init(void); |
89 | extern void prio_tree_init(void); | ||
90 | extern void radix_tree_init(void); | 89 | extern void radix_tree_init(void); |
91 | #ifndef CONFIG_DEBUG_RODATA | 90 | #ifndef CONFIG_DEBUG_RODATA |
92 | static inline void mark_rodata_ro(void) { } | 91 | static inline void mark_rodata_ro(void) { } |
@@ -547,7 +546,6 @@ asmlinkage void __init start_kernel(void) | |||
547 | /* init some links before init_ISA_irqs() */ | 546 | /* init some links before init_ISA_irqs() */ |
548 | early_irq_init(); | 547 | early_irq_init(); |
549 | init_IRQ(); | 548 | init_IRQ(); |
550 | prio_tree_init(); | ||
551 | init_timers(); | 549 | init_timers(); |
552 | hrtimers_init(); | 550 | hrtimers_init(); |
553 | softirq_init(); | 551 | softirq_init(); |
diff --git a/lib/Kconfig.debug b/lib/Kconfig.debug index ee9f030b6951..a6e7e7741523 100644 --- a/lib/Kconfig.debug +++ b/lib/Kconfig.debug | |||
@@ -1289,12 +1289,6 @@ config RBTREE_TEST | |||
1289 | A benchmark measuring the performance of the rbtree library. | 1289 | A benchmark measuring the performance of the rbtree library. |
1290 | Also includes rbtree invariant checks. | 1290 | Also includes rbtree invariant checks. |
1291 | 1291 | ||
1292 | config PRIO_TREE_TEST | ||
1293 | tristate "Prio tree test" | ||
1294 | depends on m && DEBUG_KERNEL | ||
1295 | help | ||
1296 | A benchmark measuring the performance of the prio tree library | ||
1297 | |||
1298 | config INTERVAL_TREE_TEST | 1292 | config INTERVAL_TREE_TEST |
1299 | tristate "Interval tree test" | 1293 | tristate "Interval tree test" |
1300 | depends on m && DEBUG_KERNEL | 1294 | depends on m && DEBUG_KERNEL |
diff --git a/lib/Makefile b/lib/Makefile index 26f578bf616a..3128e357e286 100644 --- a/lib/Makefile +++ b/lib/Makefile | |||
@@ -9,7 +9,7 @@ endif | |||
9 | 9 | ||
10 | lib-y := ctype.o string.o vsprintf.o cmdline.o \ | 10 | lib-y := ctype.o string.o vsprintf.o cmdline.o \ |
11 | rbtree.o radix-tree.o dump_stack.o timerqueue.o\ | 11 | rbtree.o radix-tree.o dump_stack.o timerqueue.o\ |
12 | idr.o int_sqrt.o extable.o prio_tree.o \ | 12 | idr.o int_sqrt.o extable.o \ |
13 | sha1.o md5.o irq_regs.o reciprocal_div.o argv_split.o \ | 13 | sha1.o md5.o irq_regs.o reciprocal_div.o argv_split.o \ |
14 | proportions.o flex_proportions.o prio_heap.o ratelimit.o show_mem.o \ | 14 | proportions.o flex_proportions.o prio_heap.o ratelimit.o show_mem.o \ |
15 | is_single_threaded.o plist.o decompress.o | 15 | is_single_threaded.o plist.o decompress.o |
@@ -141,7 +141,6 @@ $(foreach file, $(libfdt_files), \ | |||
141 | lib-$(CONFIG_LIBFDT) += $(libfdt_files) | 141 | lib-$(CONFIG_LIBFDT) += $(libfdt_files) |
142 | 142 | ||
143 | obj-$(CONFIG_RBTREE_TEST) += rbtree_test.o | 143 | obj-$(CONFIG_RBTREE_TEST) += rbtree_test.o |
144 | obj-$(CONFIG_PRIO_TREE_TEST) += prio_tree_test.o | ||
145 | obj-$(CONFIG_INTERVAL_TREE_TEST) += interval_tree_test.o | 144 | obj-$(CONFIG_INTERVAL_TREE_TEST) += interval_tree_test.o |
146 | 145 | ||
147 | interval_tree_test-objs := interval_tree_test_main.o interval_tree.o | 146 | interval_tree_test-objs := interval_tree_test_main.o interval_tree.o |
diff --git a/lib/prio_tree.c b/lib/prio_tree.c deleted file mode 100644 index bba37148c15e..000000000000 --- a/lib/prio_tree.c +++ /dev/null | |||
@@ -1,455 +0,0 @@ | |||
1 | /* | ||
2 | * lib/prio_tree.c - priority search tree | ||
3 | * | ||
4 | * Copyright (C) 2004, Rajesh Venkatasubramanian <vrajesh@umich.edu> | ||
5 | * | ||
6 | * This file is released under the GPL v2. | ||
7 | * | ||
8 | * Based on the radix priority search tree proposed by Edward M. McCreight | ||
9 | * SIAM Journal of Computing, vol. 14, no.2, pages 257-276, May 1985 | ||
10 | * | ||
11 | * 02Feb2004 Initial version | ||
12 | */ | ||
13 | |||
14 | #include <linux/init.h> | ||
15 | #include <linux/mm.h> | ||
16 | #include <linux/prio_tree.h> | ||
17 | #include <linux/export.h> | ||
18 | |||
19 | /* | ||
20 | * A clever mix of heap and radix trees forms a radix priority search tree (PST) | ||
21 | * which is useful for storing intervals, e.g, we can consider a vma as a closed | ||
22 | * interval of file pages [offset_begin, offset_end], and store all vmas that | ||
23 | * map a file in a PST. Then, using the PST, we can answer a stabbing query, | ||
24 | * i.e., selecting a set of stored intervals (vmas) that overlap with (map) a | ||
25 | * given input interval X (a set of consecutive file pages), in "O(log n + m)" | ||
26 | * time where 'log n' is the height of the PST, and 'm' is the number of stored | ||
27 | * intervals (vmas) that overlap (map) with the input interval X (the set of | ||
28 | * consecutive file pages). | ||
29 | * | ||
30 | * In our implementation, we store closed intervals of the form [radix_index, | ||
31 | * heap_index]. We assume that always radix_index <= heap_index. McCreight's PST | ||
32 | * is designed for storing intervals with unique radix indices, i.e., each | ||
33 | * interval have different radix_index. However, this limitation can be easily | ||
34 | * overcome by using the size, i.e., heap_index - radix_index, as part of the | ||
35 | * index, so we index the tree using [(radix_index,size), heap_index]. | ||
36 | * | ||
37 | * When the above-mentioned indexing scheme is used, theoretically, in a 32 bit | ||
38 | * machine, the maximum height of a PST can be 64. We can use a balanced version | ||
39 | * of the priority search tree to optimize the tree height, but the balanced | ||
40 | * tree proposed by McCreight is too complex and memory-hungry for our purpose. | ||
41 | */ | ||
42 | |||
43 | /* | ||
44 | * The following macros are used for implementing prio_tree for i_mmap | ||
45 | */ | ||
46 | |||
47 | static void get_index(const struct prio_tree_root *root, | ||
48 | const struct prio_tree_node *node, | ||
49 | unsigned long *radix, unsigned long *heap) | ||
50 | { | ||
51 | *radix = node->start; | ||
52 | *heap = node->last; | ||
53 | } | ||
54 | |||
55 | static unsigned long index_bits_to_maxindex[BITS_PER_LONG]; | ||
56 | |||
57 | void __init prio_tree_init(void) | ||
58 | { | ||
59 | unsigned int i; | ||
60 | |||
61 | for (i = 0; i < ARRAY_SIZE(index_bits_to_maxindex) - 1; i++) | ||
62 | index_bits_to_maxindex[i] = (1UL << (i + 1)) - 1; | ||
63 | index_bits_to_maxindex[ARRAY_SIZE(index_bits_to_maxindex) - 1] = ~0UL; | ||
64 | } | ||
65 | |||
66 | /* | ||
67 | * Maximum heap_index that can be stored in a PST with index_bits bits | ||
68 | */ | ||
69 | static inline unsigned long prio_tree_maxindex(unsigned int bits) | ||
70 | { | ||
71 | return index_bits_to_maxindex[bits - 1]; | ||
72 | } | ||
73 | |||
74 | static void prio_set_parent(struct prio_tree_node *parent, | ||
75 | struct prio_tree_node *child, bool left) | ||
76 | { | ||
77 | if (left) | ||
78 | parent->left = child; | ||
79 | else | ||
80 | parent->right = child; | ||
81 | |||
82 | child->parent = parent; | ||
83 | } | ||
84 | |||
85 | /* | ||
86 | * Extend a priority search tree so that it can store a node with heap_index | ||
87 | * max_heap_index. In the worst case, this algorithm takes O((log n)^2). | ||
88 | * However, this function is used rarely and the common case performance is | ||
89 | * not bad. | ||
90 | */ | ||
91 | static struct prio_tree_node *prio_tree_expand(struct prio_tree_root *root, | ||
92 | struct prio_tree_node *node, unsigned long max_heap_index) | ||
93 | { | ||
94 | struct prio_tree_node *prev; | ||
95 | |||
96 | if (max_heap_index > prio_tree_maxindex(root->index_bits)) | ||
97 | root->index_bits++; | ||
98 | |||
99 | prev = node; | ||
100 | INIT_PRIO_TREE_NODE(node); | ||
101 | |||
102 | while (max_heap_index > prio_tree_maxindex(root->index_bits)) { | ||
103 | struct prio_tree_node *tmp = root->prio_tree_node; | ||
104 | |||
105 | root->index_bits++; | ||
106 | |||
107 | if (prio_tree_empty(root)) | ||
108 | continue; | ||
109 | |||
110 | prio_tree_remove(root, root->prio_tree_node); | ||
111 | INIT_PRIO_TREE_NODE(tmp); | ||
112 | |||
113 | prio_set_parent(prev, tmp, true); | ||
114 | prev = tmp; | ||
115 | } | ||
116 | |||
117 | if (!prio_tree_empty(root)) | ||
118 | prio_set_parent(prev, root->prio_tree_node, true); | ||
119 | |||
120 | root->prio_tree_node = node; | ||
121 | return node; | ||
122 | } | ||
123 | |||
124 | /* | ||
125 | * Replace a prio_tree_node with a new node and return the old node | ||
126 | */ | ||
127 | struct prio_tree_node *prio_tree_replace(struct prio_tree_root *root, | ||
128 | struct prio_tree_node *old, struct prio_tree_node *node) | ||
129 | { | ||
130 | INIT_PRIO_TREE_NODE(node); | ||
131 | |||
132 | if (prio_tree_root(old)) { | ||
133 | BUG_ON(root->prio_tree_node != old); | ||
134 | /* | ||
135 | * We can reduce root->index_bits here. However, it is complex | ||
136 | * and does not help much to improve performance (IMO). | ||
137 | */ | ||
138 | root->prio_tree_node = node; | ||
139 | } else | ||
140 | prio_set_parent(old->parent, node, old->parent->left == old); | ||
141 | |||
142 | if (!prio_tree_left_empty(old)) | ||
143 | prio_set_parent(node, old->left, true); | ||
144 | |||
145 | if (!prio_tree_right_empty(old)) | ||
146 | prio_set_parent(node, old->right, false); | ||
147 | |||
148 | return old; | ||
149 | } | ||
150 | |||
151 | /* | ||
152 | * Insert a prio_tree_node @node into a radix priority search tree @root. The | ||
153 | * algorithm typically takes O(log n) time where 'log n' is the number of bits | ||
154 | * required to represent the maximum heap_index. In the worst case, the algo | ||
155 | * can take O((log n)^2) - check prio_tree_expand. | ||
156 | * | ||
157 | * If a prior node with same radix_index and heap_index is already found in | ||
158 | * the tree, then returns the address of the prior node. Otherwise, inserts | ||
159 | * @node into the tree and returns @node. | ||
160 | */ | ||
161 | struct prio_tree_node *prio_tree_insert(struct prio_tree_root *root, | ||
162 | struct prio_tree_node *node) | ||
163 | { | ||
164 | struct prio_tree_node *cur, *res = node; | ||
165 | unsigned long radix_index, heap_index; | ||
166 | unsigned long r_index, h_index, index, mask; | ||
167 | int size_flag = 0; | ||
168 | |||
169 | get_index(root, node, &radix_index, &heap_index); | ||
170 | |||
171 | if (prio_tree_empty(root) || | ||
172 | heap_index > prio_tree_maxindex(root->index_bits)) | ||
173 | return prio_tree_expand(root, node, heap_index); | ||
174 | |||
175 | cur = root->prio_tree_node; | ||
176 | mask = 1UL << (root->index_bits - 1); | ||
177 | |||
178 | while (mask) { | ||
179 | get_index(root, cur, &r_index, &h_index); | ||
180 | |||
181 | if (r_index == radix_index && h_index == heap_index) | ||
182 | return cur; | ||
183 | |||
184 | if (h_index < heap_index || | ||
185 | (h_index == heap_index && r_index > radix_index)) { | ||
186 | struct prio_tree_node *tmp = node; | ||
187 | node = prio_tree_replace(root, cur, node); | ||
188 | cur = tmp; | ||
189 | /* swap indices */ | ||
190 | index = r_index; | ||
191 | r_index = radix_index; | ||
192 | radix_index = index; | ||
193 | index = h_index; | ||
194 | h_index = heap_index; | ||
195 | heap_index = index; | ||
196 | } | ||
197 | |||
198 | if (size_flag) | ||
199 | index = heap_index - radix_index; | ||
200 | else | ||
201 | index = radix_index; | ||
202 | |||
203 | if (index & mask) { | ||
204 | if (prio_tree_right_empty(cur)) { | ||
205 | INIT_PRIO_TREE_NODE(node); | ||
206 | prio_set_parent(cur, node, false); | ||
207 | return res; | ||
208 | } else | ||
209 | cur = cur->right; | ||
210 | } else { | ||
211 | if (prio_tree_left_empty(cur)) { | ||
212 | INIT_PRIO_TREE_NODE(node); | ||
213 | prio_set_parent(cur, node, true); | ||
214 | return res; | ||
215 | } else | ||
216 | cur = cur->left; | ||
217 | } | ||
218 | |||
219 | mask >>= 1; | ||
220 | |||
221 | if (!mask) { | ||
222 | mask = 1UL << (BITS_PER_LONG - 1); | ||
223 | size_flag = 1; | ||
224 | } | ||
225 | } | ||
226 | /* Should not reach here */ | ||
227 | BUG(); | ||
228 | return NULL; | ||
229 | } | ||
230 | EXPORT_SYMBOL(prio_tree_insert); | ||
231 | |||
232 | /* | ||
233 | * Remove a prio_tree_node @node from a radix priority search tree @root. The | ||
234 | * algorithm takes O(log n) time where 'log n' is the number of bits required | ||
235 | * to represent the maximum heap_index. | ||
236 | */ | ||
237 | void prio_tree_remove(struct prio_tree_root *root, struct prio_tree_node *node) | ||
238 | { | ||
239 | struct prio_tree_node *cur; | ||
240 | unsigned long r_index, h_index_right, h_index_left; | ||
241 | |||
242 | cur = node; | ||
243 | |||
244 | while (!prio_tree_left_empty(cur) || !prio_tree_right_empty(cur)) { | ||
245 | if (!prio_tree_left_empty(cur)) | ||
246 | get_index(root, cur->left, &r_index, &h_index_left); | ||
247 | else { | ||
248 | cur = cur->right; | ||
249 | continue; | ||
250 | } | ||
251 | |||
252 | if (!prio_tree_right_empty(cur)) | ||
253 | get_index(root, cur->right, &r_index, &h_index_right); | ||
254 | else { | ||
255 | cur = cur->left; | ||
256 | continue; | ||
257 | } | ||
258 | |||
259 | /* both h_index_left and h_index_right cannot be 0 */ | ||
260 | if (h_index_left >= h_index_right) | ||
261 | cur = cur->left; | ||
262 | else | ||
263 | cur = cur->right; | ||
264 | } | ||
265 | |||
266 | if (prio_tree_root(cur)) { | ||
267 | BUG_ON(root->prio_tree_node != cur); | ||
268 | __INIT_PRIO_TREE_ROOT(root, root->raw); | ||
269 | return; | ||
270 | } | ||
271 | |||
272 | if (cur->parent->right == cur) | ||
273 | cur->parent->right = cur->parent; | ||
274 | else | ||
275 | cur->parent->left = cur->parent; | ||
276 | |||
277 | while (cur != node) | ||
278 | cur = prio_tree_replace(root, cur->parent, cur); | ||
279 | } | ||
280 | EXPORT_SYMBOL(prio_tree_remove); | ||
281 | |||
282 | static void iter_walk_down(struct prio_tree_iter *iter) | ||
283 | { | ||
284 | iter->mask >>= 1; | ||
285 | if (iter->mask) { | ||
286 | if (iter->size_level) | ||
287 | iter->size_level++; | ||
288 | return; | ||
289 | } | ||
290 | |||
291 | if (iter->size_level) { | ||
292 | BUG_ON(!prio_tree_left_empty(iter->cur)); | ||
293 | BUG_ON(!prio_tree_right_empty(iter->cur)); | ||
294 | iter->size_level++; | ||
295 | iter->mask = ULONG_MAX; | ||
296 | } else { | ||
297 | iter->size_level = 1; | ||
298 | iter->mask = 1UL << (BITS_PER_LONG - 1); | ||
299 | } | ||
300 | } | ||
301 | |||
302 | static void iter_walk_up(struct prio_tree_iter *iter) | ||
303 | { | ||
304 | if (iter->mask == ULONG_MAX) | ||
305 | iter->mask = 1UL; | ||
306 | else if (iter->size_level == 1) | ||
307 | iter->mask = 1UL; | ||
308 | else | ||
309 | iter->mask <<= 1; | ||
310 | if (iter->size_level) | ||
311 | iter->size_level--; | ||
312 | if (!iter->size_level && (iter->value & iter->mask)) | ||
313 | iter->value ^= iter->mask; | ||
314 | } | ||
315 | |||
316 | /* | ||
317 | * Following functions help to enumerate all prio_tree_nodes in the tree that | ||
318 | * overlap with the input interval X [radix_index, heap_index]. The enumeration | ||
319 | * takes O(log n + m) time where 'log n' is the height of the tree (which is | ||
320 | * proportional to # of bits required to represent the maximum heap_index) and | ||
321 | * 'm' is the number of prio_tree_nodes that overlap the interval X. | ||
322 | */ | ||
323 | |||
324 | static struct prio_tree_node *prio_tree_left(struct prio_tree_iter *iter, | ||
325 | unsigned long *r_index, unsigned long *h_index) | ||
326 | { | ||
327 | if (prio_tree_left_empty(iter->cur)) | ||
328 | return NULL; | ||
329 | |||
330 | get_index(iter->root, iter->cur->left, r_index, h_index); | ||
331 | |||
332 | if (iter->r_index <= *h_index) { | ||
333 | iter->cur = iter->cur->left; | ||
334 | iter_walk_down(iter); | ||
335 | return iter->cur; | ||
336 | } | ||
337 | |||
338 | return NULL; | ||
339 | } | ||
340 | |||
341 | static struct prio_tree_node *prio_tree_right(struct prio_tree_iter *iter, | ||
342 | unsigned long *r_index, unsigned long *h_index) | ||
343 | { | ||
344 | unsigned long value; | ||
345 | |||
346 | if (prio_tree_right_empty(iter->cur)) | ||
347 | return NULL; | ||
348 | |||
349 | if (iter->size_level) | ||
350 | value = iter->value; | ||
351 | else | ||
352 | value = iter->value | iter->mask; | ||
353 | |||
354 | if (iter->h_index < value) | ||
355 | return NULL; | ||
356 | |||
357 | get_index(iter->root, iter->cur->right, r_index, h_index); | ||
358 | |||
359 | if (iter->r_index <= *h_index) { | ||
360 | iter->cur = iter->cur->right; | ||
361 | iter_walk_down(iter); | ||
362 | return iter->cur; | ||
363 | } | ||
364 | |||
365 | return NULL; | ||
366 | } | ||
367 | |||
368 | static struct prio_tree_node *prio_tree_parent(struct prio_tree_iter *iter) | ||
369 | { | ||
370 | iter->cur = iter->cur->parent; | ||
371 | iter_walk_up(iter); | ||
372 | return iter->cur; | ||
373 | } | ||
374 | |||
375 | static inline int overlap(struct prio_tree_iter *iter, | ||
376 | unsigned long r_index, unsigned long h_index) | ||
377 | { | ||
378 | return iter->h_index >= r_index && iter->r_index <= h_index; | ||
379 | } | ||
380 | |||
381 | /* | ||
382 | * prio_tree_first: | ||
383 | * | ||
384 | * Get the first prio_tree_node that overlaps with the interval [radix_index, | ||
385 | * heap_index]. Note that always radix_index <= heap_index. We do a pre-order | ||
386 | * traversal of the tree. | ||
387 | */ | ||
388 | static struct prio_tree_node *prio_tree_first(struct prio_tree_iter *iter) | ||
389 | { | ||
390 | struct prio_tree_root *root; | ||
391 | unsigned long r_index, h_index; | ||
392 | |||
393 | INIT_PRIO_TREE_ITER(iter); | ||
394 | |||
395 | root = iter->root; | ||
396 | if (prio_tree_empty(root)) | ||
397 | return NULL; | ||
398 | |||
399 | get_index(root, root->prio_tree_node, &r_index, &h_index); | ||
400 | |||
401 | if (iter->r_index > h_index) | ||
402 | return NULL; | ||
403 | |||
404 | iter->mask = 1UL << (root->index_bits - 1); | ||
405 | iter->cur = root->prio_tree_node; | ||
406 | |||
407 | while (1) { | ||
408 | if (overlap(iter, r_index, h_index)) | ||
409 | return iter->cur; | ||
410 | |||
411 | if (prio_tree_left(iter, &r_index, &h_index)) | ||
412 | continue; | ||
413 | |||
414 | if (prio_tree_right(iter, &r_index, &h_index)) | ||
415 | continue; | ||
416 | |||
417 | break; | ||
418 | } | ||
419 | return NULL; | ||
420 | } | ||
421 | |||
422 | /* | ||
423 | * prio_tree_next: | ||
424 | * | ||
425 | * Get the next prio_tree_node that overlaps with the input interval in iter | ||
426 | */ | ||
427 | struct prio_tree_node *prio_tree_next(struct prio_tree_iter *iter) | ||
428 | { | ||
429 | unsigned long r_index, h_index; | ||
430 | |||
431 | if (iter->cur == NULL) | ||
432 | return prio_tree_first(iter); | ||
433 | |||
434 | repeat: | ||
435 | while (prio_tree_left(iter, &r_index, &h_index)) | ||
436 | if (overlap(iter, r_index, h_index)) | ||
437 | return iter->cur; | ||
438 | |||
439 | while (!prio_tree_right(iter, &r_index, &h_index)) { | ||
440 | while (!prio_tree_root(iter->cur) && | ||
441 | iter->cur->parent->right == iter->cur) | ||
442 | prio_tree_parent(iter); | ||
443 | |||
444 | if (prio_tree_root(iter->cur)) | ||
445 | return NULL; | ||
446 | |||
447 | prio_tree_parent(iter); | ||
448 | } | ||
449 | |||
450 | if (overlap(iter, r_index, h_index)) | ||
451 | return iter->cur; | ||
452 | |||
453 | goto repeat; | ||
454 | } | ||
455 | EXPORT_SYMBOL(prio_tree_next); | ||
diff --git a/lib/prio_tree_test.c b/lib/prio_tree_test.c deleted file mode 100644 index c26084ddc6a4..000000000000 --- a/lib/prio_tree_test.c +++ /dev/null | |||
@@ -1,106 +0,0 @@ | |||
1 | #include <linux/module.h> | ||
2 | #include <linux/prio_tree.h> | ||
3 | #include <linux/random.h> | ||
4 | #include <asm/timex.h> | ||
5 | |||
6 | #define NODES 100 | ||
7 | #define PERF_LOOPS 100000 | ||
8 | #define SEARCHES 100 | ||
9 | #define SEARCH_LOOPS 10000 | ||
10 | |||
11 | static struct prio_tree_root root; | ||
12 | static struct prio_tree_node nodes[NODES]; | ||
13 | static u32 queries[SEARCHES]; | ||
14 | |||
15 | static struct rnd_state rnd; | ||
16 | |||
17 | static inline unsigned long | ||
18 | search(unsigned long query, struct prio_tree_root *root) | ||
19 | { | ||
20 | struct prio_tree_iter iter; | ||
21 | unsigned long results = 0; | ||
22 | |||
23 | prio_tree_iter_init(&iter, root, query, query); | ||
24 | while (prio_tree_next(&iter)) | ||
25 | results++; | ||
26 | return results; | ||
27 | } | ||
28 | |||
29 | static void init(void) | ||
30 | { | ||
31 | int i; | ||
32 | for (i = 0; i < NODES; i++) { | ||
33 | u32 a = prandom32(&rnd), b = prandom32(&rnd); | ||
34 | if (a <= b) { | ||
35 | nodes[i].start = a; | ||
36 | nodes[i].last = b; | ||
37 | } else { | ||
38 | nodes[i].start = b; | ||
39 | nodes[i].last = a; | ||
40 | } | ||
41 | } | ||
42 | for (i = 0; i < SEARCHES; i++) | ||
43 | queries[i] = prandom32(&rnd); | ||
44 | } | ||
45 | |||
46 | static int prio_tree_test_init(void) | ||
47 | { | ||
48 | int i, j; | ||
49 | unsigned long results; | ||
50 | cycles_t time1, time2, time; | ||
51 | |||
52 | printk(KERN_ALERT "prio tree insert/remove"); | ||
53 | |||
54 | prandom32_seed(&rnd, 3141592653589793238ULL); | ||
55 | INIT_PRIO_TREE_ROOT(&root); | ||
56 | init(); | ||
57 | |||
58 | time1 = get_cycles(); | ||
59 | |||
60 | for (i = 0; i < PERF_LOOPS; i++) { | ||
61 | for (j = 0; j < NODES; j++) | ||
62 | prio_tree_insert(&root, nodes + j); | ||
63 | for (j = 0; j < NODES; j++) | ||
64 | prio_tree_remove(&root, nodes + j); | ||
65 | } | ||
66 | |||
67 | time2 = get_cycles(); | ||
68 | time = time2 - time1; | ||
69 | |||
70 | time = div_u64(time, PERF_LOOPS); | ||
71 | printk(" -> %llu cycles\n", (unsigned long long)time); | ||
72 | |||
73 | printk(KERN_ALERT "prio tree search"); | ||
74 | |||
75 | for (j = 0; j < NODES; j++) | ||
76 | prio_tree_insert(&root, nodes + j); | ||
77 | |||
78 | time1 = get_cycles(); | ||
79 | |||
80 | results = 0; | ||
81 | for (i = 0; i < SEARCH_LOOPS; i++) | ||
82 | for (j = 0; j < SEARCHES; j++) | ||
83 | results += search(queries[j], &root); | ||
84 | |||
85 | time2 = get_cycles(); | ||
86 | time = time2 - time1; | ||
87 | |||
88 | time = div_u64(time, SEARCH_LOOPS); | ||
89 | results = div_u64(results, SEARCH_LOOPS); | ||
90 | printk(" -> %llu cycles (%lu results)\n", | ||
91 | (unsigned long long)time, results); | ||
92 | |||
93 | return -EAGAIN; /* Fail will directly unload the module */ | ||
94 | } | ||
95 | |||
96 | static void prio_tree_test_exit(void) | ||
97 | { | ||
98 | printk(KERN_ALERT "test exit\n"); | ||
99 | } | ||
100 | |||
101 | module_init(prio_tree_test_init) | ||
102 | module_exit(prio_tree_test_exit) | ||
103 | |||
104 | MODULE_LICENSE("GPL"); | ||
105 | MODULE_AUTHOR("Michel Lespinasse"); | ||
106 | MODULE_DESCRIPTION("Prio Tree test"); | ||