diff options
-rw-r--r-- | drivers/cpufreq/Makefile | 2 | ||||
-rw-r--r-- | drivers/cpufreq/powernow-k8.c | 392 | ||||
-rw-r--r-- | drivers/cpufreq/powernow-k8.h | 32 |
3 files changed, 29 insertions, 397 deletions
diff --git a/drivers/cpufreq/Makefile b/drivers/cpufreq/Makefile index 9531fc2eda22..b99790f400c4 100644 --- a/drivers/cpufreq/Makefile +++ b/drivers/cpufreq/Makefile | |||
@@ -19,7 +19,7 @@ obj-$(CONFIG_CPU_FREQ_TABLE) += freq_table.o | |||
19 | # K8 systems. ACPI is preferred to all other hardware-specific drivers. | 19 | # K8 systems. ACPI is preferred to all other hardware-specific drivers. |
20 | # speedstep-* is preferred over p4-clockmod. | 20 | # speedstep-* is preferred over p4-clockmod. |
21 | 21 | ||
22 | obj-$(CONFIG_X86_POWERNOW_K8) += powernow-k8.o mperf.o | 22 | obj-$(CONFIG_X86_POWERNOW_K8) += powernow-k8.o |
23 | obj-$(CONFIG_X86_ACPI_CPUFREQ) += acpi-cpufreq.o mperf.o | 23 | obj-$(CONFIG_X86_ACPI_CPUFREQ) += acpi-cpufreq.o mperf.o |
24 | obj-$(CONFIG_X86_PCC_CPUFREQ) += pcc-cpufreq.o | 24 | obj-$(CONFIG_X86_PCC_CPUFREQ) += pcc-cpufreq.o |
25 | obj-$(CONFIG_X86_POWERNOW_K6) += powernow-k6.o | 25 | obj-$(CONFIG_X86_POWERNOW_K6) += powernow-k6.o |
diff --git a/drivers/cpufreq/powernow-k8.c b/drivers/cpufreq/powernow-k8.c index f1035a920b0a..0b19faf002ee 100644 --- a/drivers/cpufreq/powernow-k8.c +++ b/drivers/cpufreq/powernow-k8.c | |||
@@ -49,22 +49,12 @@ | |||
49 | #define PFX "powernow-k8: " | 49 | #define PFX "powernow-k8: " |
50 | #define VERSION "version 2.20.00" | 50 | #define VERSION "version 2.20.00" |
51 | #include "powernow-k8.h" | 51 | #include "powernow-k8.h" |
52 | #include "mperf.h" | ||
53 | 52 | ||
54 | /* serialize freq changes */ | 53 | /* serialize freq changes */ |
55 | static DEFINE_MUTEX(fidvid_mutex); | 54 | static DEFINE_MUTEX(fidvid_mutex); |
56 | 55 | ||
57 | static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data); | 56 | static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data); |
58 | 57 | ||
59 | static int cpu_family = CPU_OPTERON; | ||
60 | |||
61 | /* array to map SW pstate number to acpi state */ | ||
62 | static u32 ps_to_as[8]; | ||
63 | |||
64 | /* core performance boost */ | ||
65 | static bool cpb_capable, cpb_enabled; | ||
66 | static struct msr __percpu *msrs; | ||
67 | |||
68 | static struct cpufreq_driver cpufreq_amd64_driver; | 58 | static struct cpufreq_driver cpufreq_amd64_driver; |
69 | 59 | ||
70 | #ifndef CONFIG_SMP | 60 | #ifndef CONFIG_SMP |
@@ -86,12 +76,6 @@ static u32 find_khz_freq_from_fid(u32 fid) | |||
86 | return 1000 * find_freq_from_fid(fid); | 76 | return 1000 * find_freq_from_fid(fid); |
87 | } | 77 | } |
88 | 78 | ||
89 | static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data, | ||
90 | u32 pstate) | ||
91 | { | ||
92 | return data[ps_to_as[pstate]].frequency; | ||
93 | } | ||
94 | |||
95 | /* Return the vco fid for an input fid | 79 | /* Return the vco fid for an input fid |
96 | * | 80 | * |
97 | * Each "low" fid has corresponding "high" fid, and you can get to "low" fids | 81 | * Each "low" fid has corresponding "high" fid, and you can get to "low" fids |
@@ -114,9 +98,6 @@ static int pending_bit_stuck(void) | |||
114 | { | 98 | { |
115 | u32 lo, hi; | 99 | u32 lo, hi; |
116 | 100 | ||
117 | if (cpu_family == CPU_HW_PSTATE) | ||
118 | return 0; | ||
119 | |||
120 | rdmsr(MSR_FIDVID_STATUS, lo, hi); | 101 | rdmsr(MSR_FIDVID_STATUS, lo, hi); |
121 | return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0; | 102 | return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0; |
122 | } | 103 | } |
@@ -130,20 +111,6 @@ static int query_current_values_with_pending_wait(struct powernow_k8_data *data) | |||
130 | u32 lo, hi; | 111 | u32 lo, hi; |
131 | u32 i = 0; | 112 | u32 i = 0; |
132 | 113 | ||
133 | if (cpu_family == CPU_HW_PSTATE) { | ||
134 | rdmsr(MSR_PSTATE_STATUS, lo, hi); | ||
135 | i = lo & HW_PSTATE_MASK; | ||
136 | data->currpstate = i; | ||
137 | |||
138 | /* | ||
139 | * a workaround for family 11h erratum 311 might cause | ||
140 | * an "out-of-range Pstate if the core is in Pstate-0 | ||
141 | */ | ||
142 | if ((boot_cpu_data.x86 == 0x11) && (i >= data->numps)) | ||
143 | data->currpstate = HW_PSTATE_0; | ||
144 | |||
145 | return 0; | ||
146 | } | ||
147 | do { | 114 | do { |
148 | if (i++ > 10000) { | 115 | if (i++ > 10000) { |
149 | pr_debug("detected change pending stuck\n"); | 116 | pr_debug("detected change pending stuck\n"); |
@@ -300,14 +267,6 @@ static int decrease_vid_code_by_step(struct powernow_k8_data *data, | |||
300 | return 0; | 267 | return 0; |
301 | } | 268 | } |
302 | 269 | ||
303 | /* Change hardware pstate by single MSR write */ | ||
304 | static int transition_pstate(struct powernow_k8_data *data, u32 pstate) | ||
305 | { | ||
306 | wrmsr(MSR_PSTATE_CTRL, pstate, 0); | ||
307 | data->currpstate = pstate; | ||
308 | return 0; | ||
309 | } | ||
310 | |||
311 | /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */ | 270 | /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */ |
312 | static int transition_fid_vid(struct powernow_k8_data *data, | 271 | static int transition_fid_vid(struct powernow_k8_data *data, |
313 | u32 reqfid, u32 reqvid) | 272 | u32 reqfid, u32 reqvid) |
@@ -524,8 +483,6 @@ static int core_voltage_post_transition(struct powernow_k8_data *data, | |||
524 | static const struct x86_cpu_id powernow_k8_ids[] = { | 483 | static const struct x86_cpu_id powernow_k8_ids[] = { |
525 | /* IO based frequency switching */ | 484 | /* IO based frequency switching */ |
526 | { X86_VENDOR_AMD, 0xf }, | 485 | { X86_VENDOR_AMD, 0xf }, |
527 | /* MSR based frequency switching supported */ | ||
528 | X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE), | ||
529 | {} | 486 | {} |
530 | }; | 487 | }; |
531 | MODULE_DEVICE_TABLE(x86cpu, powernow_k8_ids); | 488 | MODULE_DEVICE_TABLE(x86cpu, powernow_k8_ids); |
@@ -561,15 +518,8 @@ static void check_supported_cpu(void *_rc) | |||
561 | "Power state transitions not supported\n"); | 518 | "Power state transitions not supported\n"); |
562 | return; | 519 | return; |
563 | } | 520 | } |
564 | } else { /* must be a HW Pstate capable processor */ | 521 | *rc = 0; |
565 | cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx); | ||
566 | if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE) | ||
567 | cpu_family = CPU_HW_PSTATE; | ||
568 | else | ||
569 | return; | ||
570 | } | 522 | } |
571 | |||
572 | *rc = 0; | ||
573 | } | 523 | } |
574 | 524 | ||
575 | static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst, | 525 | static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst, |
@@ -633,18 +583,11 @@ static void print_basics(struct powernow_k8_data *data) | |||
633 | for (j = 0; j < data->numps; j++) { | 583 | for (j = 0; j < data->numps; j++) { |
634 | if (data->powernow_table[j].frequency != | 584 | if (data->powernow_table[j].frequency != |
635 | CPUFREQ_ENTRY_INVALID) { | 585 | CPUFREQ_ENTRY_INVALID) { |
636 | if (cpu_family == CPU_HW_PSTATE) { | ||
637 | printk(KERN_INFO PFX | ||
638 | " %d : pstate %d (%d MHz)\n", j, | ||
639 | data->powernow_table[j].index, | ||
640 | data->powernow_table[j].frequency/1000); | ||
641 | } else { | ||
642 | printk(KERN_INFO PFX | 586 | printk(KERN_INFO PFX |
643 | "fid 0x%x (%d MHz), vid 0x%x\n", | 587 | "fid 0x%x (%d MHz), vid 0x%x\n", |
644 | data->powernow_table[j].index & 0xff, | 588 | data->powernow_table[j].index & 0xff, |
645 | data->powernow_table[j].frequency/1000, | 589 | data->powernow_table[j].frequency/1000, |
646 | data->powernow_table[j].index >> 8); | 590 | data->powernow_table[j].index >> 8); |
647 | } | ||
648 | } | 591 | } |
649 | } | 592 | } |
650 | if (data->batps) | 593 | if (data->batps) |
@@ -652,20 +595,6 @@ static void print_basics(struct powernow_k8_data *data) | |||
652 | data->batps); | 595 | data->batps); |
653 | } | 596 | } |
654 | 597 | ||
655 | static u32 freq_from_fid_did(u32 fid, u32 did) | ||
656 | { | ||
657 | u32 mhz = 0; | ||
658 | |||
659 | if (boot_cpu_data.x86 == 0x10) | ||
660 | mhz = (100 * (fid + 0x10)) >> did; | ||
661 | else if (boot_cpu_data.x86 == 0x11) | ||
662 | mhz = (100 * (fid + 8)) >> did; | ||
663 | else | ||
664 | BUG(); | ||
665 | |||
666 | return mhz * 1000; | ||
667 | } | ||
668 | |||
669 | static int fill_powernow_table(struct powernow_k8_data *data, | 598 | static int fill_powernow_table(struct powernow_k8_data *data, |
670 | struct pst_s *pst, u8 maxvid) | 599 | struct pst_s *pst, u8 maxvid) |
671 | { | 600 | { |
@@ -825,7 +754,7 @@ static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, | |||
825 | { | 754 | { |
826 | u64 control; | 755 | u64 control; |
827 | 756 | ||
828 | if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE)) | 757 | if (!data->acpi_data.state_count) |
829 | return; | 758 | return; |
830 | 759 | ||
831 | control = data->acpi_data.states[index].control; | 760 | control = data->acpi_data.states[index].control; |
@@ -876,10 +805,7 @@ static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) | |||
876 | data->numps = data->acpi_data.state_count; | 805 | data->numps = data->acpi_data.state_count; |
877 | powernow_k8_acpi_pst_values(data, 0); | 806 | powernow_k8_acpi_pst_values(data, 0); |
878 | 807 | ||
879 | if (cpu_family == CPU_HW_PSTATE) | 808 | ret_val = fill_powernow_table_fidvid(data, powernow_table); |
880 | ret_val = fill_powernow_table_pstate(data, powernow_table); | ||
881 | else | ||
882 | ret_val = fill_powernow_table_fidvid(data, powernow_table); | ||
883 | if (ret_val) | 809 | if (ret_val) |
884 | goto err_out_mem; | 810 | goto err_out_mem; |
885 | 811 | ||
@@ -916,51 +842,6 @@ err_out: | |||
916 | return ret_val; | 842 | return ret_val; |
917 | } | 843 | } |
918 | 844 | ||
919 | static int fill_powernow_table_pstate(struct powernow_k8_data *data, | ||
920 | struct cpufreq_frequency_table *powernow_table) | ||
921 | { | ||
922 | int i; | ||
923 | u32 hi = 0, lo = 0; | ||
924 | rdmsr(MSR_PSTATE_CUR_LIMIT, lo, hi); | ||
925 | data->max_hw_pstate = (lo & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT; | ||
926 | |||
927 | for (i = 0; i < data->acpi_data.state_count; i++) { | ||
928 | u32 index; | ||
929 | |||
930 | index = data->acpi_data.states[i].control & HW_PSTATE_MASK; | ||
931 | if (index > data->max_hw_pstate) { | ||
932 | printk(KERN_ERR PFX "invalid pstate %d - " | ||
933 | "bad value %d.\n", i, index); | ||
934 | printk(KERN_ERR PFX "Please report to BIOS " | ||
935 | "manufacturer\n"); | ||
936 | invalidate_entry(powernow_table, i); | ||
937 | continue; | ||
938 | } | ||
939 | |||
940 | ps_to_as[index] = i; | ||
941 | |||
942 | /* Frequency may be rounded for these */ | ||
943 | if ((boot_cpu_data.x86 == 0x10 && boot_cpu_data.x86_model < 10) | ||
944 | || boot_cpu_data.x86 == 0x11) { | ||
945 | |||
946 | rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi); | ||
947 | if (!(hi & HW_PSTATE_VALID_MASK)) { | ||
948 | pr_debug("invalid pstate %d, ignoring\n", index); | ||
949 | invalidate_entry(powernow_table, i); | ||
950 | continue; | ||
951 | } | ||
952 | |||
953 | powernow_table[i].frequency = | ||
954 | freq_from_fid_did(lo & 0x3f, (lo >> 6) & 7); | ||
955 | } else | ||
956 | powernow_table[i].frequency = | ||
957 | data->acpi_data.states[i].core_frequency * 1000; | ||
958 | |||
959 | powernow_table[i].index = index; | ||
960 | } | ||
961 | return 0; | ||
962 | } | ||
963 | |||
964 | static int fill_powernow_table_fidvid(struct powernow_k8_data *data, | 845 | static int fill_powernow_table_fidvid(struct powernow_k8_data *data, |
965 | struct cpufreq_frequency_table *powernow_table) | 846 | struct cpufreq_frequency_table *powernow_table) |
966 | { | 847 | { |
@@ -1037,15 +918,7 @@ static int get_transition_latency(struct powernow_k8_data *data) | |||
1037 | max_latency = cur_latency; | 918 | max_latency = cur_latency; |
1038 | } | 919 | } |
1039 | if (max_latency == 0) { | 920 | if (max_latency == 0) { |
1040 | /* | 921 | pr_err(FW_WARN PFX "Invalid zero transition latency\n"); |
1041 | * Fam 11h and later may return 0 as transition latency. This | ||
1042 | * is intended and means "very fast". While cpufreq core and | ||
1043 | * governors currently can handle that gracefully, better set it | ||
1044 | * to 1 to avoid problems in the future. | ||
1045 | */ | ||
1046 | if (boot_cpu_data.x86 < 0x11) | ||
1047 | printk(KERN_ERR FW_WARN PFX "Invalid zero transition " | ||
1048 | "latency\n"); | ||
1049 | max_latency = 1; | 922 | max_latency = 1; |
1050 | } | 923 | } |
1051 | /* value in usecs, needs to be in nanoseconds */ | 924 | /* value in usecs, needs to be in nanoseconds */ |
@@ -1105,40 +978,6 @@ static int transition_frequency_fidvid(struct powernow_k8_data *data, | |||
1105 | return res; | 978 | return res; |
1106 | } | 979 | } |
1107 | 980 | ||
1108 | /* Take a frequency, and issue the hardware pstate transition command */ | ||
1109 | static int transition_frequency_pstate(struct powernow_k8_data *data, | ||
1110 | unsigned int index) | ||
1111 | { | ||
1112 | u32 pstate = 0; | ||
1113 | int res, i; | ||
1114 | struct cpufreq_freqs freqs; | ||
1115 | |||
1116 | pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index); | ||
1117 | |||
1118 | /* get MSR index for hardware pstate transition */ | ||
1119 | pstate = index & HW_PSTATE_MASK; | ||
1120 | if (pstate > data->max_hw_pstate) | ||
1121 | return -EINVAL; | ||
1122 | |||
1123 | freqs.old = find_khz_freq_from_pstate(data->powernow_table, | ||
1124 | data->currpstate); | ||
1125 | freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate); | ||
1126 | |||
1127 | for_each_cpu(i, data->available_cores) { | ||
1128 | freqs.cpu = i; | ||
1129 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); | ||
1130 | } | ||
1131 | |||
1132 | res = transition_pstate(data, pstate); | ||
1133 | freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate); | ||
1134 | |||
1135 | for_each_cpu(i, data->available_cores) { | ||
1136 | freqs.cpu = i; | ||
1137 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | ||
1138 | } | ||
1139 | return res; | ||
1140 | } | ||
1141 | |||
1142 | /* Driver entry point to switch to the target frequency */ | 981 | /* Driver entry point to switch to the target frequency */ |
1143 | static int powernowk8_target(struct cpufreq_policy *pol, | 982 | static int powernowk8_target(struct cpufreq_policy *pol, |
1144 | unsigned targfreq, unsigned relation) | 983 | unsigned targfreq, unsigned relation) |
@@ -1180,18 +1019,15 @@ static int powernowk8_target(struct cpufreq_policy *pol, | |||
1180 | if (query_current_values_with_pending_wait(data)) | 1019 | if (query_current_values_with_pending_wait(data)) |
1181 | goto err_out; | 1020 | goto err_out; |
1182 | 1021 | ||
1183 | if (cpu_family != CPU_HW_PSTATE) { | 1022 | pr_debug("targ: curr fid 0x%x, vid 0x%x\n", |
1184 | pr_debug("targ: curr fid 0x%x, vid 0x%x\n", | 1023 | data->currfid, data->currvid); |
1185 | data->currfid, data->currvid); | ||
1186 | 1024 | ||
1187 | if ((checkvid != data->currvid) || | 1025 | if ((checkvid != data->currvid) || |
1188 | (checkfid != data->currfid)) { | 1026 | (checkfid != data->currfid)) { |
1189 | printk(KERN_INFO PFX | 1027 | pr_info(PFX |
1190 | "error - out of sync, fix 0x%x 0x%x, " | 1028 | "error - out of sync, fix 0x%x 0x%x, vid 0x%x 0x%x\n", |
1191 | "vid 0x%x 0x%x\n", | 1029 | checkfid, data->currfid, |
1192 | checkfid, data->currfid, | 1030 | checkvid, data->currvid); |
1193 | checkvid, data->currvid); | ||
1194 | } | ||
1195 | } | 1031 | } |
1196 | 1032 | ||
1197 | if (cpufreq_frequency_table_target(pol, data->powernow_table, | 1033 | if (cpufreq_frequency_table_target(pol, data->powernow_table, |
@@ -1202,11 +1038,8 @@ static int powernowk8_target(struct cpufreq_policy *pol, | |||
1202 | 1038 | ||
1203 | powernow_k8_acpi_pst_values(data, newstate); | 1039 | powernow_k8_acpi_pst_values(data, newstate); |
1204 | 1040 | ||
1205 | if (cpu_family == CPU_HW_PSTATE) | 1041 | ret = transition_frequency_fidvid(data, newstate); |
1206 | ret = transition_frequency_pstate(data, | 1042 | |
1207 | data->powernow_table[newstate].index); | ||
1208 | else | ||
1209 | ret = transition_frequency_fidvid(data, newstate); | ||
1210 | if (ret) { | 1043 | if (ret) { |
1211 | printk(KERN_ERR PFX "transition frequency failed\n"); | 1044 | printk(KERN_ERR PFX "transition frequency failed\n"); |
1212 | ret = 1; | 1045 | ret = 1; |
@@ -1215,11 +1048,7 @@ static int powernowk8_target(struct cpufreq_policy *pol, | |||
1215 | } | 1048 | } |
1216 | mutex_unlock(&fidvid_mutex); | 1049 | mutex_unlock(&fidvid_mutex); |
1217 | 1050 | ||
1218 | if (cpu_family == CPU_HW_PSTATE) | 1051 | pol->cur = find_khz_freq_from_fid(data->currfid); |
1219 | pol->cur = find_khz_freq_from_pstate(data->powernow_table, | ||
1220 | data->powernow_table[newstate].index); | ||
1221 | else | ||
1222 | pol->cur = find_khz_freq_from_fid(data->currfid); | ||
1223 | ret = 0; | 1052 | ret = 0; |
1224 | 1053 | ||
1225 | err_out: | 1054 | err_out: |
@@ -1259,8 +1088,7 @@ static void __cpuinit powernowk8_cpu_init_on_cpu(void *_init_on_cpu) | |||
1259 | return; | 1088 | return; |
1260 | } | 1089 | } |
1261 | 1090 | ||
1262 | if (cpu_family == CPU_OPTERON) | 1091 | fidvid_msr_init(); |
1263 | fidvid_msr_init(); | ||
1264 | 1092 | ||
1265 | init_on_cpu->rc = 0; | 1093 | init_on_cpu->rc = 0; |
1266 | } | 1094 | } |
@@ -1277,7 +1105,6 @@ static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol) | |||
1277 | struct powernow_k8_data *data; | 1105 | struct powernow_k8_data *data; |
1278 | struct init_on_cpu init_on_cpu; | 1106 | struct init_on_cpu init_on_cpu; |
1279 | int rc; | 1107 | int rc; |
1280 | struct cpuinfo_x86 *c = &cpu_data(pol->cpu); | ||
1281 | 1108 | ||
1282 | if (!cpu_online(pol->cpu)) | 1109 | if (!cpu_online(pol->cpu)) |
1283 | return -ENODEV; | 1110 | return -ENODEV; |
@@ -1293,7 +1120,6 @@ static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol) | |||
1293 | } | 1120 | } |
1294 | 1121 | ||
1295 | data->cpu = pol->cpu; | 1122 | data->cpu = pol->cpu; |
1296 | data->currpstate = HW_PSTATE_INVALID; | ||
1297 | 1123 | ||
1298 | if (powernow_k8_cpu_init_acpi(data)) { | 1124 | if (powernow_k8_cpu_init_acpi(data)) { |
1299 | /* | 1125 | /* |
@@ -1330,17 +1156,10 @@ static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol) | |||
1330 | if (rc != 0) | 1156 | if (rc != 0) |
1331 | goto err_out_exit_acpi; | 1157 | goto err_out_exit_acpi; |
1332 | 1158 | ||
1333 | if (cpu_family == CPU_HW_PSTATE) | 1159 | cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu)); |
1334 | cpumask_copy(pol->cpus, cpumask_of(pol->cpu)); | ||
1335 | else | ||
1336 | cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu)); | ||
1337 | data->available_cores = pol->cpus; | 1160 | data->available_cores = pol->cpus; |
1338 | 1161 | ||
1339 | if (cpu_family == CPU_HW_PSTATE) | 1162 | pol->cur = find_khz_freq_from_fid(data->currfid); |
1340 | pol->cur = find_khz_freq_from_pstate(data->powernow_table, | ||
1341 | data->currpstate); | ||
1342 | else | ||
1343 | pol->cur = find_khz_freq_from_fid(data->currfid); | ||
1344 | pr_debug("policy current frequency %d kHz\n", pol->cur); | 1163 | pr_debug("policy current frequency %d kHz\n", pol->cur); |
1345 | 1164 | ||
1346 | /* min/max the cpu is capable of */ | 1165 | /* min/max the cpu is capable of */ |
@@ -1352,18 +1171,10 @@ static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol) | |||
1352 | return -EINVAL; | 1171 | return -EINVAL; |
1353 | } | 1172 | } |
1354 | 1173 | ||
1355 | /* Check for APERF/MPERF support in hardware */ | ||
1356 | if (cpu_has(c, X86_FEATURE_APERFMPERF)) | ||
1357 | cpufreq_amd64_driver.getavg = cpufreq_get_measured_perf; | ||
1358 | |||
1359 | cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu); | 1174 | cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu); |
1360 | 1175 | ||
1361 | if (cpu_family == CPU_HW_PSTATE) | 1176 | pr_debug("cpu_init done, current fid 0x%x, vid 0x%x\n", |
1362 | pr_debug("cpu_init done, current pstate 0x%x\n", | 1177 | data->currfid, data->currvid); |
1363 | data->currpstate); | ||
1364 | else | ||
1365 | pr_debug("cpu_init done, current fid 0x%x, vid 0x%x\n", | ||
1366 | data->currfid, data->currvid); | ||
1367 | 1178 | ||
1368 | per_cpu(powernow_data, pol->cpu) = data; | 1179 | per_cpu(powernow_data, pol->cpu) = data; |
1369 | 1180 | ||
@@ -1416,88 +1227,15 @@ static unsigned int powernowk8_get(unsigned int cpu) | |||
1416 | if (err) | 1227 | if (err) |
1417 | goto out; | 1228 | goto out; |
1418 | 1229 | ||
1419 | if (cpu_family == CPU_HW_PSTATE) | 1230 | khz = find_khz_freq_from_fid(data->currfid); |
1420 | khz = find_khz_freq_from_pstate(data->powernow_table, | ||
1421 | data->currpstate); | ||
1422 | else | ||
1423 | khz = find_khz_freq_from_fid(data->currfid); | ||
1424 | 1231 | ||
1425 | 1232 | ||
1426 | out: | 1233 | out: |
1427 | return khz; | 1234 | return khz; |
1428 | } | 1235 | } |
1429 | 1236 | ||
1430 | static void _cpb_toggle_msrs(bool t) | ||
1431 | { | ||
1432 | int cpu; | ||
1433 | |||
1434 | get_online_cpus(); | ||
1435 | |||
1436 | rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs); | ||
1437 | |||
1438 | for_each_cpu(cpu, cpu_online_mask) { | ||
1439 | struct msr *reg = per_cpu_ptr(msrs, cpu); | ||
1440 | if (t) | ||
1441 | reg->l &= ~BIT(25); | ||
1442 | else | ||
1443 | reg->l |= BIT(25); | ||
1444 | } | ||
1445 | wrmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs); | ||
1446 | |||
1447 | put_online_cpus(); | ||
1448 | } | ||
1449 | |||
1450 | /* | ||
1451 | * Switch on/off core performance boosting. | ||
1452 | * | ||
1453 | * 0=disable | ||
1454 | * 1=enable. | ||
1455 | */ | ||
1456 | static void cpb_toggle(bool t) | ||
1457 | { | ||
1458 | if (!cpb_capable) | ||
1459 | return; | ||
1460 | |||
1461 | if (t && !cpb_enabled) { | ||
1462 | cpb_enabled = true; | ||
1463 | _cpb_toggle_msrs(t); | ||
1464 | printk(KERN_INFO PFX "Core Boosting enabled.\n"); | ||
1465 | } else if (!t && cpb_enabled) { | ||
1466 | cpb_enabled = false; | ||
1467 | _cpb_toggle_msrs(t); | ||
1468 | printk(KERN_INFO PFX "Core Boosting disabled.\n"); | ||
1469 | } | ||
1470 | } | ||
1471 | |||
1472 | static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf, | ||
1473 | size_t count) | ||
1474 | { | ||
1475 | int ret = -EINVAL; | ||
1476 | unsigned long val = 0; | ||
1477 | |||
1478 | ret = strict_strtoul(buf, 10, &val); | ||
1479 | if (!ret && (val == 0 || val == 1) && cpb_capable) | ||
1480 | cpb_toggle(val); | ||
1481 | else | ||
1482 | return -EINVAL; | ||
1483 | |||
1484 | return count; | ||
1485 | } | ||
1486 | |||
1487 | static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf) | ||
1488 | { | ||
1489 | return sprintf(buf, "%u\n", cpb_enabled); | ||
1490 | } | ||
1491 | |||
1492 | #define define_one_rw(_name) \ | ||
1493 | static struct freq_attr _name = \ | ||
1494 | __ATTR(_name, 0644, show_##_name, store_##_name) | ||
1495 | |||
1496 | define_one_rw(cpb); | ||
1497 | |||
1498 | static struct freq_attr *powernow_k8_attr[] = { | 1237 | static struct freq_attr *powernow_k8_attr[] = { |
1499 | &cpufreq_freq_attr_scaling_available_freqs, | 1238 | &cpufreq_freq_attr_scaling_available_freqs, |
1500 | &cpb, | ||
1501 | NULL, | 1239 | NULL, |
1502 | }; | 1240 | }; |
1503 | 1241 | ||
@@ -1513,58 +1251,20 @@ static struct cpufreq_driver cpufreq_amd64_driver = { | |||
1513 | .attr = powernow_k8_attr, | 1251 | .attr = powernow_k8_attr, |
1514 | }; | 1252 | }; |
1515 | 1253 | ||
1516 | /* | ||
1517 | * Clear the boost-disable flag on the CPU_DOWN path so that this cpu | ||
1518 | * cannot block the remaining ones from boosting. On the CPU_UP path we | ||
1519 | * simply keep the boost-disable flag in sync with the current global | ||
1520 | * state. | ||
1521 | */ | ||
1522 | static int cpb_notify(struct notifier_block *nb, unsigned long action, | ||
1523 | void *hcpu) | ||
1524 | { | ||
1525 | unsigned cpu = (long)hcpu; | ||
1526 | u32 lo, hi; | ||
1527 | |||
1528 | switch (action) { | ||
1529 | case CPU_UP_PREPARE: | ||
1530 | case CPU_UP_PREPARE_FROZEN: | ||
1531 | |||
1532 | if (!cpb_enabled) { | ||
1533 | rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi); | ||
1534 | lo |= BIT(25); | ||
1535 | wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi); | ||
1536 | } | ||
1537 | break; | ||
1538 | |||
1539 | case CPU_DOWN_PREPARE: | ||
1540 | case CPU_DOWN_PREPARE_FROZEN: | ||
1541 | rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi); | ||
1542 | lo &= ~BIT(25); | ||
1543 | wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi); | ||
1544 | break; | ||
1545 | |||
1546 | default: | ||
1547 | break; | ||
1548 | } | ||
1549 | |||
1550 | return NOTIFY_OK; | ||
1551 | } | ||
1552 | |||
1553 | static struct notifier_block cpb_nb = { | ||
1554 | .notifier_call = cpb_notify, | ||
1555 | }; | ||
1556 | |||
1557 | /* driver entry point for init */ | 1254 | /* driver entry point for init */ |
1558 | static int __cpuinit powernowk8_init(void) | 1255 | static int __cpuinit powernowk8_init(void) |
1559 | { | 1256 | { |
1560 | unsigned int i, supported_cpus = 0, cpu; | 1257 | unsigned int i, supported_cpus = 0; |
1561 | int rv; | 1258 | int rv; |
1562 | 1259 | ||
1563 | if (!x86_match_cpu(powernow_k8_ids)) | 1260 | if (static_cpu_has(X86_FEATURE_HW_PSTATE)) { |
1261 | pr_warn(PFX "this CPU is not supported anymore, using acpi-cpufreq instead.\n"); | ||
1262 | request_module("acpi-cpufreq"); | ||
1564 | return -ENODEV; | 1263 | return -ENODEV; |
1264 | } | ||
1565 | 1265 | ||
1566 | if (static_cpu_has(X86_FEATURE_HW_PSTATE)) | 1266 | if (!x86_match_cpu(powernow_k8_ids)) |
1567 | pr_warn(PFX "support for this CPU is deprecated, use acpi-cpufreq instead.\n"); | 1267 | return -ENODEV; |
1568 | 1268 | ||
1569 | for_each_online_cpu(i) { | 1269 | for_each_online_cpu(i) { |
1570 | int rc; | 1270 | int rc; |
@@ -1576,26 +1276,6 @@ static int __cpuinit powernowk8_init(void) | |||
1576 | if (supported_cpus != num_online_cpus()) | 1276 | if (supported_cpus != num_online_cpus()) |
1577 | return -ENODEV; | 1277 | return -ENODEV; |
1578 | 1278 | ||
1579 | if (boot_cpu_has(X86_FEATURE_CPB)) { | ||
1580 | |||
1581 | cpb_capable = true; | ||
1582 | |||
1583 | msrs = msrs_alloc(); | ||
1584 | if (!msrs) { | ||
1585 | printk(KERN_ERR "%s: Error allocating msrs!\n", __func__); | ||
1586 | return -ENOMEM; | ||
1587 | } | ||
1588 | |||
1589 | register_cpu_notifier(&cpb_nb); | ||
1590 | |||
1591 | rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs); | ||
1592 | |||
1593 | for_each_cpu(cpu, cpu_online_mask) { | ||
1594 | struct msr *reg = per_cpu_ptr(msrs, cpu); | ||
1595 | cpb_enabled |= !(!!(reg->l & BIT(25))); | ||
1596 | } | ||
1597 | } | ||
1598 | |||
1599 | rv = cpufreq_register_driver(&cpufreq_amd64_driver); | 1279 | rv = cpufreq_register_driver(&cpufreq_amd64_driver); |
1600 | 1280 | ||
1601 | if (!rv) | 1281 | if (!rv) |
@@ -1603,15 +1283,6 @@ static int __cpuinit powernowk8_init(void) | |||
1603 | num_online_nodes(), boot_cpu_data.x86_model_id, | 1283 | num_online_nodes(), boot_cpu_data.x86_model_id, |
1604 | supported_cpus); | 1284 | supported_cpus); |
1605 | 1285 | ||
1606 | if (boot_cpu_has(X86_FEATURE_CPB)) { | ||
1607 | if (rv < 0) { | ||
1608 | unregister_cpu_notifier(&cpb_nb); | ||
1609 | msrs_free(msrs); | ||
1610 | msrs = NULL; | ||
1611 | } else | ||
1612 | pr_info(PFX "Core Performance Boosting: %s.\n", | ||
1613 | (cpb_enabled ? "on" : "off")); | ||
1614 | } | ||
1615 | return rv; | 1286 | return rv; |
1616 | } | 1287 | } |
1617 | 1288 | ||
@@ -1620,13 +1291,6 @@ static void __exit powernowk8_exit(void) | |||
1620 | { | 1291 | { |
1621 | pr_debug("exit\n"); | 1292 | pr_debug("exit\n"); |
1622 | 1293 | ||
1623 | if (boot_cpu_has(X86_FEATURE_CPB)) { | ||
1624 | msrs_free(msrs); | ||
1625 | msrs = NULL; | ||
1626 | |||
1627 | unregister_cpu_notifier(&cpb_nb); | ||
1628 | } | ||
1629 | |||
1630 | cpufreq_unregister_driver(&cpufreq_amd64_driver); | 1294 | cpufreq_unregister_driver(&cpufreq_amd64_driver); |
1631 | } | 1295 | } |
1632 | 1296 | ||
diff --git a/drivers/cpufreq/powernow-k8.h b/drivers/cpufreq/powernow-k8.h index 3744d26cdc2b..79329d4d5abe 100644 --- a/drivers/cpufreq/powernow-k8.h +++ b/drivers/cpufreq/powernow-k8.h | |||
@@ -5,24 +5,11 @@ | |||
5 | * http://www.gnu.org/licenses/gpl.html | 5 | * http://www.gnu.org/licenses/gpl.html |
6 | */ | 6 | */ |
7 | 7 | ||
8 | enum pstate { | ||
9 | HW_PSTATE_INVALID = 0xff, | ||
10 | HW_PSTATE_0 = 0, | ||
11 | HW_PSTATE_1 = 1, | ||
12 | HW_PSTATE_2 = 2, | ||
13 | HW_PSTATE_3 = 3, | ||
14 | HW_PSTATE_4 = 4, | ||
15 | HW_PSTATE_5 = 5, | ||
16 | HW_PSTATE_6 = 6, | ||
17 | HW_PSTATE_7 = 7, | ||
18 | }; | ||
19 | |||
20 | struct powernow_k8_data { | 8 | struct powernow_k8_data { |
21 | unsigned int cpu; | 9 | unsigned int cpu; |
22 | 10 | ||
23 | u32 numps; /* number of p-states */ | 11 | u32 numps; /* number of p-states */ |
24 | u32 batps; /* number of p-states supported on battery */ | 12 | u32 batps; /* number of p-states supported on battery */ |
25 | u32 max_hw_pstate; /* maximum legal hardware pstate */ | ||
26 | 13 | ||
27 | /* these values are constant when the PSB is used to determine | 14 | /* these values are constant when the PSB is used to determine |
28 | * vid/fid pairings, but are modified during the ->target() call | 15 | * vid/fid pairings, but are modified during the ->target() call |
@@ -37,7 +24,6 @@ struct powernow_k8_data { | |||
37 | /* keep track of the current fid / vid or pstate */ | 24 | /* keep track of the current fid / vid or pstate */ |
38 | u32 currvid; | 25 | u32 currvid; |
39 | u32 currfid; | 26 | u32 currfid; |
40 | enum pstate currpstate; | ||
41 | 27 | ||
42 | /* the powernow_table includes all frequency and vid/fid pairings: | 28 | /* the powernow_table includes all frequency and vid/fid pairings: |
43 | * fid are the lower 8 bits of the index, vid are the upper 8 bits. | 29 | * fid are the lower 8 bits of the index, vid are the upper 8 bits. |
@@ -97,23 +83,6 @@ struct powernow_k8_data { | |||
97 | #define MSR_S_HI_CURRENT_VID 0x0000003f | 83 | #define MSR_S_HI_CURRENT_VID 0x0000003f |
98 | #define MSR_C_HI_STP_GNT_BENIGN 0x00000001 | 84 | #define MSR_C_HI_STP_GNT_BENIGN 0x00000001 |
99 | 85 | ||
100 | |||
101 | /* Hardware Pstate _PSS and MSR definitions */ | ||
102 | #define USE_HW_PSTATE 0x00000080 | ||
103 | #define HW_PSTATE_MASK 0x00000007 | ||
104 | #define HW_PSTATE_VALID_MASK 0x80000000 | ||
105 | #define HW_PSTATE_MAX_MASK 0x000000f0 | ||
106 | #define HW_PSTATE_MAX_SHIFT 4 | ||
107 | #define MSR_PSTATE_DEF_BASE 0xc0010064 /* base of Pstate MSRs */ | ||
108 | #define MSR_PSTATE_STATUS 0xc0010063 /* Pstate Status MSR */ | ||
109 | #define MSR_PSTATE_CTRL 0xc0010062 /* Pstate control MSR */ | ||
110 | #define MSR_PSTATE_CUR_LIMIT 0xc0010061 /* pstate current limit MSR */ | ||
111 | |||
112 | /* define the two driver architectures */ | ||
113 | #define CPU_OPTERON 0 | ||
114 | #define CPU_HW_PSTATE 1 | ||
115 | |||
116 | |||
117 | /* | 86 | /* |
118 | * There are restrictions frequencies have to follow: | 87 | * There are restrictions frequencies have to follow: |
119 | * - only 1 entry in the low fid table ( <=1.4GHz ) | 88 | * - only 1 entry in the low fid table ( <=1.4GHz ) |
@@ -218,5 +187,4 @@ static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid); | |||
218 | 187 | ||
219 | static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index); | 188 | static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index); |
220 | 189 | ||
221 | static int fill_powernow_table_pstate(struct powernow_k8_data *data, struct cpufreq_frequency_table *powernow_table); | ||
222 | static int fill_powernow_table_fidvid(struct powernow_k8_data *data, struct cpufreq_frequency_table *powernow_table); | 190 | static int fill_powernow_table_fidvid(struct powernow_k8_data *data, struct cpufreq_frequency_table *powernow_table); |