aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--crypto/Kconfig10
-rw-r--r--crypto/Makefile1
-rw-r--r--crypto/gf128mul.c466
-rw-r--r--include/crypto/gf128mul.h198
4 files changed, 675 insertions, 0 deletions
diff --git a/crypto/Kconfig b/crypto/Kconfig
index 4495e46660bf..f941ffb2a087 100644
--- a/crypto/Kconfig
+++ b/crypto/Kconfig
@@ -139,6 +139,16 @@ config CRYPTO_TGR192
139 See also: 139 See also:
140 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 140 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
141 141
142config CRYPTO_GF128MUL
143 tristate "GF(2^128) multiplication functions (EXPERIMENTAL)"
144 depends on EXPERIMENTAL
145 help
146 Efficient table driven implementation of multiplications in the
147 field GF(2^128). This is needed by some cypher modes. This
148 option will be selected automatically if you select such a
149 cipher mode. Only select this option by hand if you expect to load
150 an external module that requires these functions.
151
142config CRYPTO_ECB 152config CRYPTO_ECB
143 tristate "ECB support" 153 tristate "ECB support"
144 select CRYPTO_BLKCIPHER 154 select CRYPTO_BLKCIPHER
diff --git a/crypto/Makefile b/crypto/Makefile
index aba9625fb429..0ab9ff045e9a 100644
--- a/crypto/Makefile
+++ b/crypto/Makefile
@@ -24,6 +24,7 @@ obj-$(CONFIG_CRYPTO_SHA256) += sha256.o
24obj-$(CONFIG_CRYPTO_SHA512) += sha512.o 24obj-$(CONFIG_CRYPTO_SHA512) += sha512.o
25obj-$(CONFIG_CRYPTO_WP512) += wp512.o 25obj-$(CONFIG_CRYPTO_WP512) += wp512.o
26obj-$(CONFIG_CRYPTO_TGR192) += tgr192.o 26obj-$(CONFIG_CRYPTO_TGR192) += tgr192.o
27obj-$(CONFIG_CRYPTO_GF128MUL) += gf128mul.o
27obj-$(CONFIG_CRYPTO_ECB) += ecb.o 28obj-$(CONFIG_CRYPTO_ECB) += ecb.o
28obj-$(CONFIG_CRYPTO_CBC) += cbc.o 29obj-$(CONFIG_CRYPTO_CBC) += cbc.o
29obj-$(CONFIG_CRYPTO_DES) += des.o 30obj-$(CONFIG_CRYPTO_DES) += des.o
diff --git a/crypto/gf128mul.c b/crypto/gf128mul.c
new file mode 100644
index 000000000000..0a2aadfa1d85
--- /dev/null
+++ b/crypto/gf128mul.c
@@ -0,0 +1,466 @@
1/* gf128mul.c - GF(2^128) multiplication functions
2 *
3 * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.
4 * Copyright (c) 2006, Rik Snel <rsnel@cube.dyndns.org>
5 *
6 * Based on Dr Brian Gladman's (GPL'd) work published at
7 * http://fp.gladman.plus.com/cryptography_technology/index.htm
8 * See the original copyright notice below.
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the Free
12 * Software Foundation; either version 2 of the License, or (at your option)
13 * any later version.
14 */
15
16/*
17 ---------------------------------------------------------------------------
18 Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved.
19
20 LICENSE TERMS
21
22 The free distribution and use of this software in both source and binary
23 form is allowed (with or without changes) provided that:
24
25 1. distributions of this source code include the above copyright
26 notice, this list of conditions and the following disclaimer;
27
28 2. distributions in binary form include the above copyright
29 notice, this list of conditions and the following disclaimer
30 in the documentation and/or other associated materials;
31
32 3. the copyright holder's name is not used to endorse products
33 built using this software without specific written permission.
34
35 ALTERNATIVELY, provided that this notice is retained in full, this product
36 may be distributed under the terms of the GNU General Public License (GPL),
37 in which case the provisions of the GPL apply INSTEAD OF those given above.
38
39 DISCLAIMER
40
41 This software is provided 'as is' with no explicit or implied warranties
42 in respect of its properties, including, but not limited to, correctness
43 and/or fitness for purpose.
44 ---------------------------------------------------------------------------
45 Issue 31/01/2006
46
47 This file provides fast multiplication in GF(128) as required by several
48 cryptographic authentication modes
49*/
50
51#include <crypto/gf128mul.h>
52#include <linux/kernel.h>
53#include <linux/module.h>
54#include <linux/slab.h>
55
56#define gf128mul_dat(q) { \
57 q(0x00), q(0x01), q(0x02), q(0x03), q(0x04), q(0x05), q(0x06), q(0x07),\
58 q(0x08), q(0x09), q(0x0a), q(0x0b), q(0x0c), q(0x0d), q(0x0e), q(0x0f),\
59 q(0x10), q(0x11), q(0x12), q(0x13), q(0x14), q(0x15), q(0x16), q(0x17),\
60 q(0x18), q(0x19), q(0x1a), q(0x1b), q(0x1c), q(0x1d), q(0x1e), q(0x1f),\
61 q(0x20), q(0x21), q(0x22), q(0x23), q(0x24), q(0x25), q(0x26), q(0x27),\
62 q(0x28), q(0x29), q(0x2a), q(0x2b), q(0x2c), q(0x2d), q(0x2e), q(0x2f),\
63 q(0x30), q(0x31), q(0x32), q(0x33), q(0x34), q(0x35), q(0x36), q(0x37),\
64 q(0x38), q(0x39), q(0x3a), q(0x3b), q(0x3c), q(0x3d), q(0x3e), q(0x3f),\
65 q(0x40), q(0x41), q(0x42), q(0x43), q(0x44), q(0x45), q(0x46), q(0x47),\
66 q(0x48), q(0x49), q(0x4a), q(0x4b), q(0x4c), q(0x4d), q(0x4e), q(0x4f),\
67 q(0x50), q(0x51), q(0x52), q(0x53), q(0x54), q(0x55), q(0x56), q(0x57),\
68 q(0x58), q(0x59), q(0x5a), q(0x5b), q(0x5c), q(0x5d), q(0x5e), q(0x5f),\
69 q(0x60), q(0x61), q(0x62), q(0x63), q(0x64), q(0x65), q(0x66), q(0x67),\
70 q(0x68), q(0x69), q(0x6a), q(0x6b), q(0x6c), q(0x6d), q(0x6e), q(0x6f),\
71 q(0x70), q(0x71), q(0x72), q(0x73), q(0x74), q(0x75), q(0x76), q(0x77),\
72 q(0x78), q(0x79), q(0x7a), q(0x7b), q(0x7c), q(0x7d), q(0x7e), q(0x7f),\
73 q(0x80), q(0x81), q(0x82), q(0x83), q(0x84), q(0x85), q(0x86), q(0x87),\
74 q(0x88), q(0x89), q(0x8a), q(0x8b), q(0x8c), q(0x8d), q(0x8e), q(0x8f),\
75 q(0x90), q(0x91), q(0x92), q(0x93), q(0x94), q(0x95), q(0x96), q(0x97),\
76 q(0x98), q(0x99), q(0x9a), q(0x9b), q(0x9c), q(0x9d), q(0x9e), q(0x9f),\
77 q(0xa0), q(0xa1), q(0xa2), q(0xa3), q(0xa4), q(0xa5), q(0xa6), q(0xa7),\
78 q(0xa8), q(0xa9), q(0xaa), q(0xab), q(0xac), q(0xad), q(0xae), q(0xaf),\
79 q(0xb0), q(0xb1), q(0xb2), q(0xb3), q(0xb4), q(0xb5), q(0xb6), q(0xb7),\
80 q(0xb8), q(0xb9), q(0xba), q(0xbb), q(0xbc), q(0xbd), q(0xbe), q(0xbf),\
81 q(0xc0), q(0xc1), q(0xc2), q(0xc3), q(0xc4), q(0xc5), q(0xc6), q(0xc7),\
82 q(0xc8), q(0xc9), q(0xca), q(0xcb), q(0xcc), q(0xcd), q(0xce), q(0xcf),\
83 q(0xd0), q(0xd1), q(0xd2), q(0xd3), q(0xd4), q(0xd5), q(0xd6), q(0xd7),\
84 q(0xd8), q(0xd9), q(0xda), q(0xdb), q(0xdc), q(0xdd), q(0xde), q(0xdf),\
85 q(0xe0), q(0xe1), q(0xe2), q(0xe3), q(0xe4), q(0xe5), q(0xe6), q(0xe7),\
86 q(0xe8), q(0xe9), q(0xea), q(0xeb), q(0xec), q(0xed), q(0xee), q(0xef),\
87 q(0xf0), q(0xf1), q(0xf2), q(0xf3), q(0xf4), q(0xf5), q(0xf6), q(0xf7),\
88 q(0xf8), q(0xf9), q(0xfa), q(0xfb), q(0xfc), q(0xfd), q(0xfe), q(0xff) \
89}
90
91/* Given the value i in 0..255 as the byte overflow when a field element
92 in GHASH is multipled by x^8, this function will return the values that
93 are generated in the lo 16-bit word of the field value by applying the
94 modular polynomial. The values lo_byte and hi_byte are returned via the
95 macro xp_fun(lo_byte, hi_byte) so that the values can be assembled into
96 memory as required by a suitable definition of this macro operating on
97 the table above
98*/
99
100#define xx(p, q) 0x##p##q
101
102#define xda_bbe(i) ( \
103 (i & 0x80 ? xx(43, 80) : 0) ^ (i & 0x40 ? xx(21, c0) : 0) ^ \
104 (i & 0x20 ? xx(10, e0) : 0) ^ (i & 0x10 ? xx(08, 70) : 0) ^ \
105 (i & 0x08 ? xx(04, 38) : 0) ^ (i & 0x04 ? xx(02, 1c) : 0) ^ \
106 (i & 0x02 ? xx(01, 0e) : 0) ^ (i & 0x01 ? xx(00, 87) : 0) \
107)
108
109#define xda_lle(i) ( \
110 (i & 0x80 ? xx(e1, 00) : 0) ^ (i & 0x40 ? xx(70, 80) : 0) ^ \
111 (i & 0x20 ? xx(38, 40) : 0) ^ (i & 0x10 ? xx(1c, 20) : 0) ^ \
112 (i & 0x08 ? xx(0e, 10) : 0) ^ (i & 0x04 ? xx(07, 08) : 0) ^ \
113 (i & 0x02 ? xx(03, 84) : 0) ^ (i & 0x01 ? xx(01, c2) : 0) \
114)
115
116static const u16 gf128mul_table_lle[256] = gf128mul_dat(xda_lle);
117static const u16 gf128mul_table_bbe[256] = gf128mul_dat(xda_bbe);
118
119/* These functions multiply a field element by x, by x^4 and by x^8
120 * in the polynomial field representation. It uses 32-bit word operations
121 * to gain speed but compensates for machine endianess and hence works
122 * correctly on both styles of machine.
123 */
124
125static void gf128mul_x_lle(be128 *r, const be128 *x)
126{
127 u64 a = be64_to_cpu(x->a);
128 u64 b = be64_to_cpu(x->b);
129 u64 _tt = gf128mul_table_lle[(b << 7) & 0xff];
130
131 r->b = cpu_to_be64((b >> 1) | (a << 63));
132 r->a = cpu_to_be64((a >> 1) ^ (_tt << 48));
133}
134
135static void gf128mul_x_bbe(be128 *r, const be128 *x)
136{
137 u64 a = be64_to_cpu(x->a);
138 u64 b = be64_to_cpu(x->b);
139 u64 _tt = gf128mul_table_bbe[a >> 63];
140
141 r->a = cpu_to_be64((a << 1) | (b >> 63));
142 r->b = cpu_to_be64((b << 1) ^ _tt);
143}
144
145static void gf128mul_x8_lle(be128 *x)
146{
147 u64 a = be64_to_cpu(x->a);
148 u64 b = be64_to_cpu(x->b);
149 u64 _tt = gf128mul_table_lle[b & 0xff];
150
151 x->b = cpu_to_be64((b >> 8) | (a << 56));
152 x->a = cpu_to_be64((a >> 8) ^ (_tt << 48));
153}
154
155static void gf128mul_x8_bbe(be128 *x)
156{
157 u64 a = be64_to_cpu(x->a);
158 u64 b = be64_to_cpu(x->b);
159 u64 _tt = gf128mul_table_bbe[a >> 56];
160
161 x->a = cpu_to_be64((a << 8) | (b >> 56));
162 x->b = cpu_to_be64((b << 8) ^ _tt);
163}
164
165void gf128mul_lle(be128 *r, const be128 *b)
166{
167 be128 p[8];
168 int i;
169
170 p[0] = *r;
171 for (i = 0; i < 7; ++i)
172 gf128mul_x_lle(&p[i + 1], &p[i]);
173
174 memset(r, 0, sizeof(r));
175 for (i = 0;;) {
176 u8 ch = ((u8 *)b)[15 - i];
177
178 if (ch & 0x80)
179 be128_xor(r, r, &p[0]);
180 if (ch & 0x40)
181 be128_xor(r, r, &p[1]);
182 if (ch & 0x20)
183 be128_xor(r, r, &p[2]);
184 if (ch & 0x10)
185 be128_xor(r, r, &p[3]);
186 if (ch & 0x08)
187 be128_xor(r, r, &p[4]);
188 if (ch & 0x04)
189 be128_xor(r, r, &p[5]);
190 if (ch & 0x02)
191 be128_xor(r, r, &p[6]);
192 if (ch & 0x01)
193 be128_xor(r, r, &p[7]);
194
195 if (++i >= 16)
196 break;
197
198 gf128mul_x8_lle(r);
199 }
200}
201EXPORT_SYMBOL(gf128mul_lle);
202
203void gf128mul_bbe(be128 *r, const be128 *b)
204{
205 be128 p[8];
206 int i;
207
208 p[0] = *r;
209 for (i = 0; i < 7; ++i)
210 gf128mul_x_bbe(&p[i + 1], &p[i]);
211
212 memset(r, 0, sizeof(r));
213 for (i = 0;;) {
214 u8 ch = ((u8 *)b)[i];
215
216 if (ch & 0x80)
217 be128_xor(r, r, &p[7]);
218 if (ch & 0x40)
219 be128_xor(r, r, &p[6]);
220 if (ch & 0x20)
221 be128_xor(r, r, &p[5]);
222 if (ch & 0x10)
223 be128_xor(r, r, &p[4]);
224 if (ch & 0x08)
225 be128_xor(r, r, &p[3]);
226 if (ch & 0x04)
227 be128_xor(r, r, &p[2]);
228 if (ch & 0x02)
229 be128_xor(r, r, &p[1]);
230 if (ch & 0x01)
231 be128_xor(r, r, &p[0]);
232
233 if (++i >= 16)
234 break;
235
236 gf128mul_x8_bbe(r);
237 }
238}
239EXPORT_SYMBOL(gf128mul_bbe);
240
241/* This version uses 64k bytes of table space.
242 A 16 byte buffer has to be multiplied by a 16 byte key
243 value in GF(128). If we consider a GF(128) value in
244 the buffer's lowest byte, we can construct a table of
245 the 256 16 byte values that result from the 256 values
246 of this byte. This requires 4096 bytes. But we also
247 need tables for each of the 16 higher bytes in the
248 buffer as well, which makes 64 kbytes in total.
249*/
250/* additional explanation
251 * t[0][BYTE] contains g*BYTE
252 * t[1][BYTE] contains g*x^8*BYTE
253 * ..
254 * t[15][BYTE] contains g*x^120*BYTE */
255struct gf128mul_64k *gf128mul_init_64k_lle(const be128 *g)
256{
257 struct gf128mul_64k *t;
258 int i, j, k;
259
260 t = kzalloc(sizeof(*t), GFP_KERNEL);
261 if (!t)
262 goto out;
263
264 for (i = 0; i < 16; i++) {
265 t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL);
266 if (!t->t[i]) {
267 gf128mul_free_64k(t);
268 t = NULL;
269 goto out;
270 }
271 }
272
273 t->t[0]->t[128] = *g;
274 for (j = 64; j > 0; j >>= 1)
275 gf128mul_x_lle(&t->t[0]->t[j], &t->t[0]->t[j + j]);
276
277 for (i = 0;;) {
278 for (j = 2; j < 256; j += j)
279 for (k = 1; k < j; ++k)
280 be128_xor(&t->t[i]->t[j + k],
281 &t->t[i]->t[j], &t->t[i]->t[k]);
282
283 if (++i >= 16)
284 break;
285
286 for (j = 128; j > 0; j >>= 1) {
287 t->t[i]->t[j] = t->t[i - 1]->t[j];
288 gf128mul_x8_lle(&t->t[i]->t[j]);
289 }
290 }
291
292out:
293 return t;
294}
295EXPORT_SYMBOL(gf128mul_init_64k_lle);
296
297struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g)
298{
299 struct gf128mul_64k *t;
300 int i, j, k;
301
302 t = kzalloc(sizeof(*t), GFP_KERNEL);
303 if (!t)
304 goto out;
305
306 for (i = 0; i < 16; i++) {
307 t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL);
308 if (!t->t[i]) {
309 gf128mul_free_64k(t);
310 t = NULL;
311 goto out;
312 }
313 }
314
315 t->t[0]->t[1] = *g;
316 for (j = 1; j <= 64; j <<= 1)
317 gf128mul_x_bbe(&t->t[0]->t[j + j], &t->t[0]->t[j]);
318
319 for (i = 0;;) {
320 for (j = 2; j < 256; j += j)
321 for (k = 1; k < j; ++k)
322 be128_xor(&t->t[i]->t[j + k],
323 &t->t[i]->t[j], &t->t[i]->t[k]);
324
325 if (++i >= 16)
326 break;
327
328 for (j = 128; j > 0; j >>= 1) {
329 t->t[i]->t[j] = t->t[i - 1]->t[j];
330 gf128mul_x8_bbe(&t->t[i]->t[j]);
331 }
332 }
333
334out:
335 return t;
336}
337EXPORT_SYMBOL(gf128mul_init_64k_bbe);
338
339void gf128mul_free_64k(struct gf128mul_64k *t)
340{
341 int i;
342
343 for (i = 0; i < 16; i++)
344 kfree(t->t[i]);
345 kfree(t);
346}
347EXPORT_SYMBOL(gf128mul_free_64k);
348
349void gf128mul_64k_lle(be128 *a, struct gf128mul_64k *t)
350{
351 u8 *ap = (u8 *)a;
352 be128 r[1];
353 int i;
354
355 *r = t->t[0]->t[ap[0]];
356 for (i = 1; i < 16; ++i)
357 be128_xor(r, r, &t->t[i]->t[ap[i]]);
358 *a = *r;
359}
360EXPORT_SYMBOL(gf128mul_64k_lle);
361
362void gf128mul_64k_bbe(be128 *a, struct gf128mul_64k *t)
363{
364 u8 *ap = (u8 *)a;
365 be128 r[1];
366 int i;
367
368 *r = t->t[0]->t[ap[15]];
369 for (i = 1; i < 16; ++i)
370 be128_xor(r, r, &t->t[i]->t[ap[15 - i]]);
371 *a = *r;
372}
373EXPORT_SYMBOL(gf128mul_64k_bbe);
374
375/* This version uses 4k bytes of table space.
376 A 16 byte buffer has to be multiplied by a 16 byte key
377 value in GF(128). If we consider a GF(128) value in a
378 single byte, we can construct a table of the 256 16 byte
379 values that result from the 256 values of this byte.
380 This requires 4096 bytes. If we take the highest byte in
381 the buffer and use this table to get the result, we then
382 have to multiply by x^120 to get the final value. For the
383 next highest byte the result has to be multiplied by x^112
384 and so on. But we can do this by accumulating the result
385 in an accumulator starting with the result for the top
386 byte. We repeatedly multiply the accumulator value by
387 x^8 and then add in (i.e. xor) the 16 bytes of the next
388 lower byte in the buffer, stopping when we reach the
389 lowest byte. This requires a 4096 byte table.
390*/
391struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g)
392{
393 struct gf128mul_4k *t;
394 int j, k;
395
396 t = kzalloc(sizeof(*t), GFP_KERNEL);
397 if (!t)
398 goto out;
399
400 t->t[128] = *g;
401 for (j = 64; j > 0; j >>= 1)
402 gf128mul_x_lle(&t->t[j], &t->t[j+j]);
403
404 for (j = 2; j < 256; j += j)
405 for (k = 1; k < j; ++k)
406 be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);
407
408out:
409 return t;
410}
411EXPORT_SYMBOL(gf128mul_init_4k_lle);
412
413struct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g)
414{
415 struct gf128mul_4k *t;
416 int j, k;
417
418 t = kzalloc(sizeof(*t), GFP_KERNEL);
419 if (!t)
420 goto out;
421
422 t->t[1] = *g;
423 for (j = 1; j <= 64; j <<= 1)
424 gf128mul_x_bbe(&t->t[j + j], &t->t[j]);
425
426 for (j = 2; j < 256; j += j)
427 for (k = 1; k < j; ++k)
428 be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);
429
430out:
431 return t;
432}
433EXPORT_SYMBOL(gf128mul_init_4k_bbe);
434
435void gf128mul_4k_lle(be128 *a, struct gf128mul_4k *t)
436{
437 u8 *ap = (u8 *)a;
438 be128 r[1];
439 int i = 15;
440
441 *r = t->t[ap[15]];
442 while (i--) {
443 gf128mul_x8_lle(r);
444 be128_xor(r, r, &t->t[ap[i]]);
445 }
446 *a = *r;
447}
448EXPORT_SYMBOL(gf128mul_4k_lle);
449
450void gf128mul_4k_bbe(be128 *a, struct gf128mul_4k *t)
451{
452 u8 *ap = (u8 *)a;
453 be128 r[1];
454 int i = 0;
455
456 *r = t->t[ap[0]];
457 while (++i < 16) {
458 gf128mul_x8_bbe(r);
459 be128_xor(r, r, &t->t[ap[i]]);
460 }
461 *a = *r;
462}
463EXPORT_SYMBOL(gf128mul_4k_bbe);
464
465MODULE_LICENSE("GPL");
466MODULE_DESCRIPTION("Functions for multiplying elements of GF(2^128)");
diff --git a/include/crypto/gf128mul.h b/include/crypto/gf128mul.h
new file mode 100644
index 000000000000..4fd315202442
--- /dev/null
+++ b/include/crypto/gf128mul.h
@@ -0,0 +1,198 @@
1/* gf128mul.h - GF(2^128) multiplication functions
2 *
3 * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.
4 * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
5 *
6 * Based on Dr Brian Gladman's (GPL'd) work published at
7 * http://fp.gladman.plus.com/cryptography_technology/index.htm
8 * See the original copyright notice below.
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the Free
12 * Software Foundation; either version 2 of the License, or (at your option)
13 * any later version.
14 */
15/*
16 ---------------------------------------------------------------------------
17 Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved.
18
19 LICENSE TERMS
20
21 The free distribution and use of this software in both source and binary
22 form is allowed (with or without changes) provided that:
23
24 1. distributions of this source code include the above copyright
25 notice, this list of conditions and the following disclaimer;
26
27 2. distributions in binary form include the above copyright
28 notice, this list of conditions and the following disclaimer
29 in the documentation and/or other associated materials;
30
31 3. the copyright holder's name is not used to endorse products
32 built using this software without specific written permission.
33
34 ALTERNATIVELY, provided that this notice is retained in full, this product
35 may be distributed under the terms of the GNU General Public License (GPL),
36 in which case the provisions of the GPL apply INSTEAD OF those given above.
37
38 DISCLAIMER
39
40 This software is provided 'as is' with no explicit or implied warranties
41 in respect of its properties, including, but not limited to, correctness
42 and/or fitness for purpose.
43 ---------------------------------------------------------------------------
44 Issue Date: 31/01/2006
45
46 An implementation of field multiplication in Galois Field GF(128)
47*/
48
49#ifndef _CRYPTO_GF128MUL_H
50#define _CRYPTO_GF128MUL_H
51
52#include <crypto/b128ops.h>
53#include <linux/slab.h>
54
55/* Comment by Rik:
56 *
57 * For some background on GF(2^128) see for example: http://-
58 * csrc.nist.gov/CryptoToolkit/modes/proposedmodes/gcm/gcm-revised-spec.pdf
59 *
60 * The elements of GF(2^128) := GF(2)[X]/(X^128-X^7-X^2-X^1-1) can
61 * be mapped to computer memory in a variety of ways. Let's examine
62 * three common cases.
63 *
64 * Take a look at the 16 binary octets below in memory order. The msb's
65 * are left and the lsb's are right. char b[16] is an array and b[0] is
66 * the first octet.
67 *
68 * 80000000 00000000 00000000 00000000 .... 00000000 00000000 00000000
69 * b[0] b[1] b[2] b[3] b[13] b[14] b[15]
70 *
71 * Every bit is a coefficient of some power of X. We can store the bits
72 * in every byte in little-endian order and the bytes themselves also in
73 * little endian order. I will call this lle (little-little-endian).
74 * The above buffer represents the polynomial 1, and X^7+X^2+X^1+1 looks
75 * like 11100001 00000000 .... 00000000 = { 0xE1, 0x00, }.
76 * This format was originally implemented in gf128mul and is used
77 * in GCM (Galois/Counter mode) and in ABL (Arbitrary Block Length).
78 *
79 * Another convention says: store the bits in bigendian order and the
80 * bytes also. This is bbe (big-big-endian). Now the buffer above
81 * represents X^127. X^7+X^2+X^1+1 looks like 00000000 .... 10000111,
82 * b[15] = 0x87 and the rest is 0. LRW uses this convention and bbe
83 * is partly implemented.
84 *
85 * Both of the above formats are easy to implement on big-endian
86 * machines.
87 *
88 * EME (which is patent encumbered) uses the ble format (bits are stored
89 * in big endian order and the bytes in little endian). The above buffer
90 * represents X^7 in this case and the primitive polynomial is b[0] = 0x87.
91 *
92 * The common machine word-size is smaller than 128 bits, so to make
93 * an efficient implementation we must split into machine word sizes.
94 * This file uses one 32bit for the moment. Machine endianness comes into
95 * play. The lle format in relation to machine endianness is discussed
96 * below by the original author of gf128mul Dr Brian Gladman.
97 *
98 * Let's look at the bbe and ble format on a little endian machine.
99 *
100 * bbe on a little endian machine u32 x[4]:
101 *
102 * MS x[0] LS MS x[1] LS
103 * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls
104 * 103..96 111.104 119.112 127.120 71...64 79...72 87...80 95...88
105 *
106 * MS x[2] LS MS x[3] LS
107 * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls
108 * 39...32 47...40 55...48 63...56 07...00 15...08 23...16 31...24
109 *
110 * ble on a little endian machine
111 *
112 * MS x[0] LS MS x[1] LS
113 * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls
114 * 31...24 23...16 15...08 07...00 63...56 55...48 47...40 39...32
115 *
116 * MS x[2] LS MS x[3] LS
117 * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls
118 * 95...88 87...80 79...72 71...64 127.120 199.112 111.104 103..96
119 *
120 * Multiplications in GF(2^128) are mostly bit-shifts, so you see why
121 * ble (and lbe also) are easier to implement on a little-endian
122 * machine than on a big-endian machine. The converse holds for bbe
123 * and lle.
124 *
125 * Note: to have good alignment, it seems to me that it is sufficient
126 * to keep elements of GF(2^128) in type u64[2]. On 32-bit wordsize
127 * machines this will automatically aligned to wordsize and on a 64-bit
128 * machine also.
129 */
130/* Multiply a GF128 field element by x. Field elements are held in arrays
131 of bytes in which field bits 8n..8n + 7 are held in byte[n], with lower
132 indexed bits placed in the more numerically significant bit positions
133 within bytes.
134
135 On little endian machines the bit indexes translate into the bit
136 positions within four 32-bit words in the following way
137
138 MS x[0] LS MS x[1] LS
139 ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls
140 24...31 16...23 08...15 00...07 56...63 48...55 40...47 32...39
141
142 MS x[2] LS MS x[3] LS
143 ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls
144 88...95 80...87 72...79 64...71 120.127 112.119 104.111 96..103
145
146 On big endian machines the bit indexes translate into the bit
147 positions within four 32-bit words in the following way
148
149 MS x[0] LS MS x[1] LS
150 ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls
151 00...07 08...15 16...23 24...31 32...39 40...47 48...55 56...63
152
153 MS x[2] LS MS x[3] LS
154 ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls
155 64...71 72...79 80...87 88...95 96..103 104.111 112.119 120.127
156*/
157
158/* A slow generic version of gf_mul, implemented for lle and bbe
159 * It multiplies a and b and puts the result in a */
160void gf128mul_lle(be128 *a, const be128 *b);
161
162void gf128mul_bbe(be128 *a, const be128 *b);
163
164
165/* 4k table optimization */
166
167struct gf128mul_4k {
168 be128 t[256];
169};
170
171struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g);
172struct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g);
173void gf128mul_4k_lle(be128 *a, struct gf128mul_4k *t);
174void gf128mul_4k_bbe(be128 *a, struct gf128mul_4k *t);
175
176static inline void gf128mul_free_4k(struct gf128mul_4k *t)
177{
178 kfree(t);
179}
180
181
182/* 64k table optimization, implemented for lle and bbe */
183
184struct gf128mul_64k {
185 struct gf128mul_4k *t[16];
186};
187
188/* first initialize with the constant factor with which you
189 * want to multiply and then call gf128_64k_lle with the other
190 * factor in the first argument, the table in the second and a
191 * scratch register in the third. Afterwards *a = *r. */
192struct gf128mul_64k *gf128mul_init_64k_lle(const be128 *g);
193struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g);
194void gf128mul_free_64k(struct gf128mul_64k *t);
195void gf128mul_64k_lle(be128 *a, struct gf128mul_64k *t);
196void gf128mul_64k_bbe(be128 *a, struct gf128mul_64k *t);
197
198#endif /* _CRYPTO_GF128MUL_H */