diff options
-rw-r--r-- | crypto/Kconfig | 10 | ||||
-rw-r--r-- | crypto/Makefile | 1 | ||||
-rw-r--r-- | crypto/gf128mul.c | 466 | ||||
-rw-r--r-- | include/crypto/gf128mul.h | 198 |
4 files changed, 675 insertions, 0 deletions
diff --git a/crypto/Kconfig b/crypto/Kconfig index 4495e46660bf..f941ffb2a087 100644 --- a/crypto/Kconfig +++ b/crypto/Kconfig | |||
@@ -139,6 +139,16 @@ config CRYPTO_TGR192 | |||
139 | See also: | 139 | See also: |
140 | <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. | 140 | <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. |
141 | 141 | ||
142 | config CRYPTO_GF128MUL | ||
143 | tristate "GF(2^128) multiplication functions (EXPERIMENTAL)" | ||
144 | depends on EXPERIMENTAL | ||
145 | help | ||
146 | Efficient table driven implementation of multiplications in the | ||
147 | field GF(2^128). This is needed by some cypher modes. This | ||
148 | option will be selected automatically if you select such a | ||
149 | cipher mode. Only select this option by hand if you expect to load | ||
150 | an external module that requires these functions. | ||
151 | |||
142 | config CRYPTO_ECB | 152 | config CRYPTO_ECB |
143 | tristate "ECB support" | 153 | tristate "ECB support" |
144 | select CRYPTO_BLKCIPHER | 154 | select CRYPTO_BLKCIPHER |
diff --git a/crypto/Makefile b/crypto/Makefile index aba9625fb429..0ab9ff045e9a 100644 --- a/crypto/Makefile +++ b/crypto/Makefile | |||
@@ -24,6 +24,7 @@ obj-$(CONFIG_CRYPTO_SHA256) += sha256.o | |||
24 | obj-$(CONFIG_CRYPTO_SHA512) += sha512.o | 24 | obj-$(CONFIG_CRYPTO_SHA512) += sha512.o |
25 | obj-$(CONFIG_CRYPTO_WP512) += wp512.o | 25 | obj-$(CONFIG_CRYPTO_WP512) += wp512.o |
26 | obj-$(CONFIG_CRYPTO_TGR192) += tgr192.o | 26 | obj-$(CONFIG_CRYPTO_TGR192) += tgr192.o |
27 | obj-$(CONFIG_CRYPTO_GF128MUL) += gf128mul.o | ||
27 | obj-$(CONFIG_CRYPTO_ECB) += ecb.o | 28 | obj-$(CONFIG_CRYPTO_ECB) += ecb.o |
28 | obj-$(CONFIG_CRYPTO_CBC) += cbc.o | 29 | obj-$(CONFIG_CRYPTO_CBC) += cbc.o |
29 | obj-$(CONFIG_CRYPTO_DES) += des.o | 30 | obj-$(CONFIG_CRYPTO_DES) += des.o |
diff --git a/crypto/gf128mul.c b/crypto/gf128mul.c new file mode 100644 index 000000000000..0a2aadfa1d85 --- /dev/null +++ b/crypto/gf128mul.c | |||
@@ -0,0 +1,466 @@ | |||
1 | /* gf128mul.c - GF(2^128) multiplication functions | ||
2 | * | ||
3 | * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. | ||
4 | * Copyright (c) 2006, Rik Snel <rsnel@cube.dyndns.org> | ||
5 | * | ||
6 | * Based on Dr Brian Gladman's (GPL'd) work published at | ||
7 | * http://fp.gladman.plus.com/cryptography_technology/index.htm | ||
8 | * See the original copyright notice below. | ||
9 | * | ||
10 | * This program is free software; you can redistribute it and/or modify it | ||
11 | * under the terms of the GNU General Public License as published by the Free | ||
12 | * Software Foundation; either version 2 of the License, or (at your option) | ||
13 | * any later version. | ||
14 | */ | ||
15 | |||
16 | /* | ||
17 | --------------------------------------------------------------------------- | ||
18 | Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved. | ||
19 | |||
20 | LICENSE TERMS | ||
21 | |||
22 | The free distribution and use of this software in both source and binary | ||
23 | form is allowed (with or without changes) provided that: | ||
24 | |||
25 | 1. distributions of this source code include the above copyright | ||
26 | notice, this list of conditions and the following disclaimer; | ||
27 | |||
28 | 2. distributions in binary form include the above copyright | ||
29 | notice, this list of conditions and the following disclaimer | ||
30 | in the documentation and/or other associated materials; | ||
31 | |||
32 | 3. the copyright holder's name is not used to endorse products | ||
33 | built using this software without specific written permission. | ||
34 | |||
35 | ALTERNATIVELY, provided that this notice is retained in full, this product | ||
36 | may be distributed under the terms of the GNU General Public License (GPL), | ||
37 | in which case the provisions of the GPL apply INSTEAD OF those given above. | ||
38 | |||
39 | DISCLAIMER | ||
40 | |||
41 | This software is provided 'as is' with no explicit or implied warranties | ||
42 | in respect of its properties, including, but not limited to, correctness | ||
43 | and/or fitness for purpose. | ||
44 | --------------------------------------------------------------------------- | ||
45 | Issue 31/01/2006 | ||
46 | |||
47 | This file provides fast multiplication in GF(128) as required by several | ||
48 | cryptographic authentication modes | ||
49 | */ | ||
50 | |||
51 | #include <crypto/gf128mul.h> | ||
52 | #include <linux/kernel.h> | ||
53 | #include <linux/module.h> | ||
54 | #include <linux/slab.h> | ||
55 | |||
56 | #define gf128mul_dat(q) { \ | ||
57 | q(0x00), q(0x01), q(0x02), q(0x03), q(0x04), q(0x05), q(0x06), q(0x07),\ | ||
58 | q(0x08), q(0x09), q(0x0a), q(0x0b), q(0x0c), q(0x0d), q(0x0e), q(0x0f),\ | ||
59 | q(0x10), q(0x11), q(0x12), q(0x13), q(0x14), q(0x15), q(0x16), q(0x17),\ | ||
60 | q(0x18), q(0x19), q(0x1a), q(0x1b), q(0x1c), q(0x1d), q(0x1e), q(0x1f),\ | ||
61 | q(0x20), q(0x21), q(0x22), q(0x23), q(0x24), q(0x25), q(0x26), q(0x27),\ | ||
62 | q(0x28), q(0x29), q(0x2a), q(0x2b), q(0x2c), q(0x2d), q(0x2e), q(0x2f),\ | ||
63 | q(0x30), q(0x31), q(0x32), q(0x33), q(0x34), q(0x35), q(0x36), q(0x37),\ | ||
64 | q(0x38), q(0x39), q(0x3a), q(0x3b), q(0x3c), q(0x3d), q(0x3e), q(0x3f),\ | ||
65 | q(0x40), q(0x41), q(0x42), q(0x43), q(0x44), q(0x45), q(0x46), q(0x47),\ | ||
66 | q(0x48), q(0x49), q(0x4a), q(0x4b), q(0x4c), q(0x4d), q(0x4e), q(0x4f),\ | ||
67 | q(0x50), q(0x51), q(0x52), q(0x53), q(0x54), q(0x55), q(0x56), q(0x57),\ | ||
68 | q(0x58), q(0x59), q(0x5a), q(0x5b), q(0x5c), q(0x5d), q(0x5e), q(0x5f),\ | ||
69 | q(0x60), q(0x61), q(0x62), q(0x63), q(0x64), q(0x65), q(0x66), q(0x67),\ | ||
70 | q(0x68), q(0x69), q(0x6a), q(0x6b), q(0x6c), q(0x6d), q(0x6e), q(0x6f),\ | ||
71 | q(0x70), q(0x71), q(0x72), q(0x73), q(0x74), q(0x75), q(0x76), q(0x77),\ | ||
72 | q(0x78), q(0x79), q(0x7a), q(0x7b), q(0x7c), q(0x7d), q(0x7e), q(0x7f),\ | ||
73 | q(0x80), q(0x81), q(0x82), q(0x83), q(0x84), q(0x85), q(0x86), q(0x87),\ | ||
74 | q(0x88), q(0x89), q(0x8a), q(0x8b), q(0x8c), q(0x8d), q(0x8e), q(0x8f),\ | ||
75 | q(0x90), q(0x91), q(0x92), q(0x93), q(0x94), q(0x95), q(0x96), q(0x97),\ | ||
76 | q(0x98), q(0x99), q(0x9a), q(0x9b), q(0x9c), q(0x9d), q(0x9e), q(0x9f),\ | ||
77 | q(0xa0), q(0xa1), q(0xa2), q(0xa3), q(0xa4), q(0xa5), q(0xa6), q(0xa7),\ | ||
78 | q(0xa8), q(0xa9), q(0xaa), q(0xab), q(0xac), q(0xad), q(0xae), q(0xaf),\ | ||
79 | q(0xb0), q(0xb1), q(0xb2), q(0xb3), q(0xb4), q(0xb5), q(0xb6), q(0xb7),\ | ||
80 | q(0xb8), q(0xb9), q(0xba), q(0xbb), q(0xbc), q(0xbd), q(0xbe), q(0xbf),\ | ||
81 | q(0xc0), q(0xc1), q(0xc2), q(0xc3), q(0xc4), q(0xc5), q(0xc6), q(0xc7),\ | ||
82 | q(0xc8), q(0xc9), q(0xca), q(0xcb), q(0xcc), q(0xcd), q(0xce), q(0xcf),\ | ||
83 | q(0xd0), q(0xd1), q(0xd2), q(0xd3), q(0xd4), q(0xd5), q(0xd6), q(0xd7),\ | ||
84 | q(0xd8), q(0xd9), q(0xda), q(0xdb), q(0xdc), q(0xdd), q(0xde), q(0xdf),\ | ||
85 | q(0xe0), q(0xe1), q(0xe2), q(0xe3), q(0xe4), q(0xe5), q(0xe6), q(0xe7),\ | ||
86 | q(0xe8), q(0xe9), q(0xea), q(0xeb), q(0xec), q(0xed), q(0xee), q(0xef),\ | ||
87 | q(0xf0), q(0xf1), q(0xf2), q(0xf3), q(0xf4), q(0xf5), q(0xf6), q(0xf7),\ | ||
88 | q(0xf8), q(0xf9), q(0xfa), q(0xfb), q(0xfc), q(0xfd), q(0xfe), q(0xff) \ | ||
89 | } | ||
90 | |||
91 | /* Given the value i in 0..255 as the byte overflow when a field element | ||
92 | in GHASH is multipled by x^8, this function will return the values that | ||
93 | are generated in the lo 16-bit word of the field value by applying the | ||
94 | modular polynomial. The values lo_byte and hi_byte are returned via the | ||
95 | macro xp_fun(lo_byte, hi_byte) so that the values can be assembled into | ||
96 | memory as required by a suitable definition of this macro operating on | ||
97 | the table above | ||
98 | */ | ||
99 | |||
100 | #define xx(p, q) 0x##p##q | ||
101 | |||
102 | #define xda_bbe(i) ( \ | ||
103 | (i & 0x80 ? xx(43, 80) : 0) ^ (i & 0x40 ? xx(21, c0) : 0) ^ \ | ||
104 | (i & 0x20 ? xx(10, e0) : 0) ^ (i & 0x10 ? xx(08, 70) : 0) ^ \ | ||
105 | (i & 0x08 ? xx(04, 38) : 0) ^ (i & 0x04 ? xx(02, 1c) : 0) ^ \ | ||
106 | (i & 0x02 ? xx(01, 0e) : 0) ^ (i & 0x01 ? xx(00, 87) : 0) \ | ||
107 | ) | ||
108 | |||
109 | #define xda_lle(i) ( \ | ||
110 | (i & 0x80 ? xx(e1, 00) : 0) ^ (i & 0x40 ? xx(70, 80) : 0) ^ \ | ||
111 | (i & 0x20 ? xx(38, 40) : 0) ^ (i & 0x10 ? xx(1c, 20) : 0) ^ \ | ||
112 | (i & 0x08 ? xx(0e, 10) : 0) ^ (i & 0x04 ? xx(07, 08) : 0) ^ \ | ||
113 | (i & 0x02 ? xx(03, 84) : 0) ^ (i & 0x01 ? xx(01, c2) : 0) \ | ||
114 | ) | ||
115 | |||
116 | static const u16 gf128mul_table_lle[256] = gf128mul_dat(xda_lle); | ||
117 | static const u16 gf128mul_table_bbe[256] = gf128mul_dat(xda_bbe); | ||
118 | |||
119 | /* These functions multiply a field element by x, by x^4 and by x^8 | ||
120 | * in the polynomial field representation. It uses 32-bit word operations | ||
121 | * to gain speed but compensates for machine endianess and hence works | ||
122 | * correctly on both styles of machine. | ||
123 | */ | ||
124 | |||
125 | static void gf128mul_x_lle(be128 *r, const be128 *x) | ||
126 | { | ||
127 | u64 a = be64_to_cpu(x->a); | ||
128 | u64 b = be64_to_cpu(x->b); | ||
129 | u64 _tt = gf128mul_table_lle[(b << 7) & 0xff]; | ||
130 | |||
131 | r->b = cpu_to_be64((b >> 1) | (a << 63)); | ||
132 | r->a = cpu_to_be64((a >> 1) ^ (_tt << 48)); | ||
133 | } | ||
134 | |||
135 | static void gf128mul_x_bbe(be128 *r, const be128 *x) | ||
136 | { | ||
137 | u64 a = be64_to_cpu(x->a); | ||
138 | u64 b = be64_to_cpu(x->b); | ||
139 | u64 _tt = gf128mul_table_bbe[a >> 63]; | ||
140 | |||
141 | r->a = cpu_to_be64((a << 1) | (b >> 63)); | ||
142 | r->b = cpu_to_be64((b << 1) ^ _tt); | ||
143 | } | ||
144 | |||
145 | static void gf128mul_x8_lle(be128 *x) | ||
146 | { | ||
147 | u64 a = be64_to_cpu(x->a); | ||
148 | u64 b = be64_to_cpu(x->b); | ||
149 | u64 _tt = gf128mul_table_lle[b & 0xff]; | ||
150 | |||
151 | x->b = cpu_to_be64((b >> 8) | (a << 56)); | ||
152 | x->a = cpu_to_be64((a >> 8) ^ (_tt << 48)); | ||
153 | } | ||
154 | |||
155 | static void gf128mul_x8_bbe(be128 *x) | ||
156 | { | ||
157 | u64 a = be64_to_cpu(x->a); | ||
158 | u64 b = be64_to_cpu(x->b); | ||
159 | u64 _tt = gf128mul_table_bbe[a >> 56]; | ||
160 | |||
161 | x->a = cpu_to_be64((a << 8) | (b >> 56)); | ||
162 | x->b = cpu_to_be64((b << 8) ^ _tt); | ||
163 | } | ||
164 | |||
165 | void gf128mul_lle(be128 *r, const be128 *b) | ||
166 | { | ||
167 | be128 p[8]; | ||
168 | int i; | ||
169 | |||
170 | p[0] = *r; | ||
171 | for (i = 0; i < 7; ++i) | ||
172 | gf128mul_x_lle(&p[i + 1], &p[i]); | ||
173 | |||
174 | memset(r, 0, sizeof(r)); | ||
175 | for (i = 0;;) { | ||
176 | u8 ch = ((u8 *)b)[15 - i]; | ||
177 | |||
178 | if (ch & 0x80) | ||
179 | be128_xor(r, r, &p[0]); | ||
180 | if (ch & 0x40) | ||
181 | be128_xor(r, r, &p[1]); | ||
182 | if (ch & 0x20) | ||
183 | be128_xor(r, r, &p[2]); | ||
184 | if (ch & 0x10) | ||
185 | be128_xor(r, r, &p[3]); | ||
186 | if (ch & 0x08) | ||
187 | be128_xor(r, r, &p[4]); | ||
188 | if (ch & 0x04) | ||
189 | be128_xor(r, r, &p[5]); | ||
190 | if (ch & 0x02) | ||
191 | be128_xor(r, r, &p[6]); | ||
192 | if (ch & 0x01) | ||
193 | be128_xor(r, r, &p[7]); | ||
194 | |||
195 | if (++i >= 16) | ||
196 | break; | ||
197 | |||
198 | gf128mul_x8_lle(r); | ||
199 | } | ||
200 | } | ||
201 | EXPORT_SYMBOL(gf128mul_lle); | ||
202 | |||
203 | void gf128mul_bbe(be128 *r, const be128 *b) | ||
204 | { | ||
205 | be128 p[8]; | ||
206 | int i; | ||
207 | |||
208 | p[0] = *r; | ||
209 | for (i = 0; i < 7; ++i) | ||
210 | gf128mul_x_bbe(&p[i + 1], &p[i]); | ||
211 | |||
212 | memset(r, 0, sizeof(r)); | ||
213 | for (i = 0;;) { | ||
214 | u8 ch = ((u8 *)b)[i]; | ||
215 | |||
216 | if (ch & 0x80) | ||
217 | be128_xor(r, r, &p[7]); | ||
218 | if (ch & 0x40) | ||
219 | be128_xor(r, r, &p[6]); | ||
220 | if (ch & 0x20) | ||
221 | be128_xor(r, r, &p[5]); | ||
222 | if (ch & 0x10) | ||
223 | be128_xor(r, r, &p[4]); | ||
224 | if (ch & 0x08) | ||
225 | be128_xor(r, r, &p[3]); | ||
226 | if (ch & 0x04) | ||
227 | be128_xor(r, r, &p[2]); | ||
228 | if (ch & 0x02) | ||
229 | be128_xor(r, r, &p[1]); | ||
230 | if (ch & 0x01) | ||
231 | be128_xor(r, r, &p[0]); | ||
232 | |||
233 | if (++i >= 16) | ||
234 | break; | ||
235 | |||
236 | gf128mul_x8_bbe(r); | ||
237 | } | ||
238 | } | ||
239 | EXPORT_SYMBOL(gf128mul_bbe); | ||
240 | |||
241 | /* This version uses 64k bytes of table space. | ||
242 | A 16 byte buffer has to be multiplied by a 16 byte key | ||
243 | value in GF(128). If we consider a GF(128) value in | ||
244 | the buffer's lowest byte, we can construct a table of | ||
245 | the 256 16 byte values that result from the 256 values | ||
246 | of this byte. This requires 4096 bytes. But we also | ||
247 | need tables for each of the 16 higher bytes in the | ||
248 | buffer as well, which makes 64 kbytes in total. | ||
249 | */ | ||
250 | /* additional explanation | ||
251 | * t[0][BYTE] contains g*BYTE | ||
252 | * t[1][BYTE] contains g*x^8*BYTE | ||
253 | * .. | ||
254 | * t[15][BYTE] contains g*x^120*BYTE */ | ||
255 | struct gf128mul_64k *gf128mul_init_64k_lle(const be128 *g) | ||
256 | { | ||
257 | struct gf128mul_64k *t; | ||
258 | int i, j, k; | ||
259 | |||
260 | t = kzalloc(sizeof(*t), GFP_KERNEL); | ||
261 | if (!t) | ||
262 | goto out; | ||
263 | |||
264 | for (i = 0; i < 16; i++) { | ||
265 | t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL); | ||
266 | if (!t->t[i]) { | ||
267 | gf128mul_free_64k(t); | ||
268 | t = NULL; | ||
269 | goto out; | ||
270 | } | ||
271 | } | ||
272 | |||
273 | t->t[0]->t[128] = *g; | ||
274 | for (j = 64; j > 0; j >>= 1) | ||
275 | gf128mul_x_lle(&t->t[0]->t[j], &t->t[0]->t[j + j]); | ||
276 | |||
277 | for (i = 0;;) { | ||
278 | for (j = 2; j < 256; j += j) | ||
279 | for (k = 1; k < j; ++k) | ||
280 | be128_xor(&t->t[i]->t[j + k], | ||
281 | &t->t[i]->t[j], &t->t[i]->t[k]); | ||
282 | |||
283 | if (++i >= 16) | ||
284 | break; | ||
285 | |||
286 | for (j = 128; j > 0; j >>= 1) { | ||
287 | t->t[i]->t[j] = t->t[i - 1]->t[j]; | ||
288 | gf128mul_x8_lle(&t->t[i]->t[j]); | ||
289 | } | ||
290 | } | ||
291 | |||
292 | out: | ||
293 | return t; | ||
294 | } | ||
295 | EXPORT_SYMBOL(gf128mul_init_64k_lle); | ||
296 | |||
297 | struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g) | ||
298 | { | ||
299 | struct gf128mul_64k *t; | ||
300 | int i, j, k; | ||
301 | |||
302 | t = kzalloc(sizeof(*t), GFP_KERNEL); | ||
303 | if (!t) | ||
304 | goto out; | ||
305 | |||
306 | for (i = 0; i < 16; i++) { | ||
307 | t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL); | ||
308 | if (!t->t[i]) { | ||
309 | gf128mul_free_64k(t); | ||
310 | t = NULL; | ||
311 | goto out; | ||
312 | } | ||
313 | } | ||
314 | |||
315 | t->t[0]->t[1] = *g; | ||
316 | for (j = 1; j <= 64; j <<= 1) | ||
317 | gf128mul_x_bbe(&t->t[0]->t[j + j], &t->t[0]->t[j]); | ||
318 | |||
319 | for (i = 0;;) { | ||
320 | for (j = 2; j < 256; j += j) | ||
321 | for (k = 1; k < j; ++k) | ||
322 | be128_xor(&t->t[i]->t[j + k], | ||
323 | &t->t[i]->t[j], &t->t[i]->t[k]); | ||
324 | |||
325 | if (++i >= 16) | ||
326 | break; | ||
327 | |||
328 | for (j = 128; j > 0; j >>= 1) { | ||
329 | t->t[i]->t[j] = t->t[i - 1]->t[j]; | ||
330 | gf128mul_x8_bbe(&t->t[i]->t[j]); | ||
331 | } | ||
332 | } | ||
333 | |||
334 | out: | ||
335 | return t; | ||
336 | } | ||
337 | EXPORT_SYMBOL(gf128mul_init_64k_bbe); | ||
338 | |||
339 | void gf128mul_free_64k(struct gf128mul_64k *t) | ||
340 | { | ||
341 | int i; | ||
342 | |||
343 | for (i = 0; i < 16; i++) | ||
344 | kfree(t->t[i]); | ||
345 | kfree(t); | ||
346 | } | ||
347 | EXPORT_SYMBOL(gf128mul_free_64k); | ||
348 | |||
349 | void gf128mul_64k_lle(be128 *a, struct gf128mul_64k *t) | ||
350 | { | ||
351 | u8 *ap = (u8 *)a; | ||
352 | be128 r[1]; | ||
353 | int i; | ||
354 | |||
355 | *r = t->t[0]->t[ap[0]]; | ||
356 | for (i = 1; i < 16; ++i) | ||
357 | be128_xor(r, r, &t->t[i]->t[ap[i]]); | ||
358 | *a = *r; | ||
359 | } | ||
360 | EXPORT_SYMBOL(gf128mul_64k_lle); | ||
361 | |||
362 | void gf128mul_64k_bbe(be128 *a, struct gf128mul_64k *t) | ||
363 | { | ||
364 | u8 *ap = (u8 *)a; | ||
365 | be128 r[1]; | ||
366 | int i; | ||
367 | |||
368 | *r = t->t[0]->t[ap[15]]; | ||
369 | for (i = 1; i < 16; ++i) | ||
370 | be128_xor(r, r, &t->t[i]->t[ap[15 - i]]); | ||
371 | *a = *r; | ||
372 | } | ||
373 | EXPORT_SYMBOL(gf128mul_64k_bbe); | ||
374 | |||
375 | /* This version uses 4k bytes of table space. | ||
376 | A 16 byte buffer has to be multiplied by a 16 byte key | ||
377 | value in GF(128). If we consider a GF(128) value in a | ||
378 | single byte, we can construct a table of the 256 16 byte | ||
379 | values that result from the 256 values of this byte. | ||
380 | This requires 4096 bytes. If we take the highest byte in | ||
381 | the buffer and use this table to get the result, we then | ||
382 | have to multiply by x^120 to get the final value. For the | ||
383 | next highest byte the result has to be multiplied by x^112 | ||
384 | and so on. But we can do this by accumulating the result | ||
385 | in an accumulator starting with the result for the top | ||
386 | byte. We repeatedly multiply the accumulator value by | ||
387 | x^8 and then add in (i.e. xor) the 16 bytes of the next | ||
388 | lower byte in the buffer, stopping when we reach the | ||
389 | lowest byte. This requires a 4096 byte table. | ||
390 | */ | ||
391 | struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g) | ||
392 | { | ||
393 | struct gf128mul_4k *t; | ||
394 | int j, k; | ||
395 | |||
396 | t = kzalloc(sizeof(*t), GFP_KERNEL); | ||
397 | if (!t) | ||
398 | goto out; | ||
399 | |||
400 | t->t[128] = *g; | ||
401 | for (j = 64; j > 0; j >>= 1) | ||
402 | gf128mul_x_lle(&t->t[j], &t->t[j+j]); | ||
403 | |||
404 | for (j = 2; j < 256; j += j) | ||
405 | for (k = 1; k < j; ++k) | ||
406 | be128_xor(&t->t[j + k], &t->t[j], &t->t[k]); | ||
407 | |||
408 | out: | ||
409 | return t; | ||
410 | } | ||
411 | EXPORT_SYMBOL(gf128mul_init_4k_lle); | ||
412 | |||
413 | struct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g) | ||
414 | { | ||
415 | struct gf128mul_4k *t; | ||
416 | int j, k; | ||
417 | |||
418 | t = kzalloc(sizeof(*t), GFP_KERNEL); | ||
419 | if (!t) | ||
420 | goto out; | ||
421 | |||
422 | t->t[1] = *g; | ||
423 | for (j = 1; j <= 64; j <<= 1) | ||
424 | gf128mul_x_bbe(&t->t[j + j], &t->t[j]); | ||
425 | |||
426 | for (j = 2; j < 256; j += j) | ||
427 | for (k = 1; k < j; ++k) | ||
428 | be128_xor(&t->t[j + k], &t->t[j], &t->t[k]); | ||
429 | |||
430 | out: | ||
431 | return t; | ||
432 | } | ||
433 | EXPORT_SYMBOL(gf128mul_init_4k_bbe); | ||
434 | |||
435 | void gf128mul_4k_lle(be128 *a, struct gf128mul_4k *t) | ||
436 | { | ||
437 | u8 *ap = (u8 *)a; | ||
438 | be128 r[1]; | ||
439 | int i = 15; | ||
440 | |||
441 | *r = t->t[ap[15]]; | ||
442 | while (i--) { | ||
443 | gf128mul_x8_lle(r); | ||
444 | be128_xor(r, r, &t->t[ap[i]]); | ||
445 | } | ||
446 | *a = *r; | ||
447 | } | ||
448 | EXPORT_SYMBOL(gf128mul_4k_lle); | ||
449 | |||
450 | void gf128mul_4k_bbe(be128 *a, struct gf128mul_4k *t) | ||
451 | { | ||
452 | u8 *ap = (u8 *)a; | ||
453 | be128 r[1]; | ||
454 | int i = 0; | ||
455 | |||
456 | *r = t->t[ap[0]]; | ||
457 | while (++i < 16) { | ||
458 | gf128mul_x8_bbe(r); | ||
459 | be128_xor(r, r, &t->t[ap[i]]); | ||
460 | } | ||
461 | *a = *r; | ||
462 | } | ||
463 | EXPORT_SYMBOL(gf128mul_4k_bbe); | ||
464 | |||
465 | MODULE_LICENSE("GPL"); | ||
466 | MODULE_DESCRIPTION("Functions for multiplying elements of GF(2^128)"); | ||
diff --git a/include/crypto/gf128mul.h b/include/crypto/gf128mul.h new file mode 100644 index 000000000000..4fd315202442 --- /dev/null +++ b/include/crypto/gf128mul.h | |||
@@ -0,0 +1,198 @@ | |||
1 | /* gf128mul.h - GF(2^128) multiplication functions | ||
2 | * | ||
3 | * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. | ||
4 | * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org> | ||
5 | * | ||
6 | * Based on Dr Brian Gladman's (GPL'd) work published at | ||
7 | * http://fp.gladman.plus.com/cryptography_technology/index.htm | ||
8 | * See the original copyright notice below. | ||
9 | * | ||
10 | * This program is free software; you can redistribute it and/or modify it | ||
11 | * under the terms of the GNU General Public License as published by the Free | ||
12 | * Software Foundation; either version 2 of the License, or (at your option) | ||
13 | * any later version. | ||
14 | */ | ||
15 | /* | ||
16 | --------------------------------------------------------------------------- | ||
17 | Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved. | ||
18 | |||
19 | LICENSE TERMS | ||
20 | |||
21 | The free distribution and use of this software in both source and binary | ||
22 | form is allowed (with or without changes) provided that: | ||
23 | |||
24 | 1. distributions of this source code include the above copyright | ||
25 | notice, this list of conditions and the following disclaimer; | ||
26 | |||
27 | 2. distributions in binary form include the above copyright | ||
28 | notice, this list of conditions and the following disclaimer | ||
29 | in the documentation and/or other associated materials; | ||
30 | |||
31 | 3. the copyright holder's name is not used to endorse products | ||
32 | built using this software without specific written permission. | ||
33 | |||
34 | ALTERNATIVELY, provided that this notice is retained in full, this product | ||
35 | may be distributed under the terms of the GNU General Public License (GPL), | ||
36 | in which case the provisions of the GPL apply INSTEAD OF those given above. | ||
37 | |||
38 | DISCLAIMER | ||
39 | |||
40 | This software is provided 'as is' with no explicit or implied warranties | ||
41 | in respect of its properties, including, but not limited to, correctness | ||
42 | and/or fitness for purpose. | ||
43 | --------------------------------------------------------------------------- | ||
44 | Issue Date: 31/01/2006 | ||
45 | |||
46 | An implementation of field multiplication in Galois Field GF(128) | ||
47 | */ | ||
48 | |||
49 | #ifndef _CRYPTO_GF128MUL_H | ||
50 | #define _CRYPTO_GF128MUL_H | ||
51 | |||
52 | #include <crypto/b128ops.h> | ||
53 | #include <linux/slab.h> | ||
54 | |||
55 | /* Comment by Rik: | ||
56 | * | ||
57 | * For some background on GF(2^128) see for example: http://- | ||
58 | * csrc.nist.gov/CryptoToolkit/modes/proposedmodes/gcm/gcm-revised-spec.pdf | ||
59 | * | ||
60 | * The elements of GF(2^128) := GF(2)[X]/(X^128-X^7-X^2-X^1-1) can | ||
61 | * be mapped to computer memory in a variety of ways. Let's examine | ||
62 | * three common cases. | ||
63 | * | ||
64 | * Take a look at the 16 binary octets below in memory order. The msb's | ||
65 | * are left and the lsb's are right. char b[16] is an array and b[0] is | ||
66 | * the first octet. | ||
67 | * | ||
68 | * 80000000 00000000 00000000 00000000 .... 00000000 00000000 00000000 | ||
69 | * b[0] b[1] b[2] b[3] b[13] b[14] b[15] | ||
70 | * | ||
71 | * Every bit is a coefficient of some power of X. We can store the bits | ||
72 | * in every byte in little-endian order and the bytes themselves also in | ||
73 | * little endian order. I will call this lle (little-little-endian). | ||
74 | * The above buffer represents the polynomial 1, and X^7+X^2+X^1+1 looks | ||
75 | * like 11100001 00000000 .... 00000000 = { 0xE1, 0x00, }. | ||
76 | * This format was originally implemented in gf128mul and is used | ||
77 | * in GCM (Galois/Counter mode) and in ABL (Arbitrary Block Length). | ||
78 | * | ||
79 | * Another convention says: store the bits in bigendian order and the | ||
80 | * bytes also. This is bbe (big-big-endian). Now the buffer above | ||
81 | * represents X^127. X^7+X^2+X^1+1 looks like 00000000 .... 10000111, | ||
82 | * b[15] = 0x87 and the rest is 0. LRW uses this convention and bbe | ||
83 | * is partly implemented. | ||
84 | * | ||
85 | * Both of the above formats are easy to implement on big-endian | ||
86 | * machines. | ||
87 | * | ||
88 | * EME (which is patent encumbered) uses the ble format (bits are stored | ||
89 | * in big endian order and the bytes in little endian). The above buffer | ||
90 | * represents X^7 in this case and the primitive polynomial is b[0] = 0x87. | ||
91 | * | ||
92 | * The common machine word-size is smaller than 128 bits, so to make | ||
93 | * an efficient implementation we must split into machine word sizes. | ||
94 | * This file uses one 32bit for the moment. Machine endianness comes into | ||
95 | * play. The lle format in relation to machine endianness is discussed | ||
96 | * below by the original author of gf128mul Dr Brian Gladman. | ||
97 | * | ||
98 | * Let's look at the bbe and ble format on a little endian machine. | ||
99 | * | ||
100 | * bbe on a little endian machine u32 x[4]: | ||
101 | * | ||
102 | * MS x[0] LS MS x[1] LS | ||
103 | * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls | ||
104 | * 103..96 111.104 119.112 127.120 71...64 79...72 87...80 95...88 | ||
105 | * | ||
106 | * MS x[2] LS MS x[3] LS | ||
107 | * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls | ||
108 | * 39...32 47...40 55...48 63...56 07...00 15...08 23...16 31...24 | ||
109 | * | ||
110 | * ble on a little endian machine | ||
111 | * | ||
112 | * MS x[0] LS MS x[1] LS | ||
113 | * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls | ||
114 | * 31...24 23...16 15...08 07...00 63...56 55...48 47...40 39...32 | ||
115 | * | ||
116 | * MS x[2] LS MS x[3] LS | ||
117 | * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls | ||
118 | * 95...88 87...80 79...72 71...64 127.120 199.112 111.104 103..96 | ||
119 | * | ||
120 | * Multiplications in GF(2^128) are mostly bit-shifts, so you see why | ||
121 | * ble (and lbe also) are easier to implement on a little-endian | ||
122 | * machine than on a big-endian machine. The converse holds for bbe | ||
123 | * and lle. | ||
124 | * | ||
125 | * Note: to have good alignment, it seems to me that it is sufficient | ||
126 | * to keep elements of GF(2^128) in type u64[2]. On 32-bit wordsize | ||
127 | * machines this will automatically aligned to wordsize and on a 64-bit | ||
128 | * machine also. | ||
129 | */ | ||
130 | /* Multiply a GF128 field element by x. Field elements are held in arrays | ||
131 | of bytes in which field bits 8n..8n + 7 are held in byte[n], with lower | ||
132 | indexed bits placed in the more numerically significant bit positions | ||
133 | within bytes. | ||
134 | |||
135 | On little endian machines the bit indexes translate into the bit | ||
136 | positions within four 32-bit words in the following way | ||
137 | |||
138 | MS x[0] LS MS x[1] LS | ||
139 | ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls | ||
140 | 24...31 16...23 08...15 00...07 56...63 48...55 40...47 32...39 | ||
141 | |||
142 | MS x[2] LS MS x[3] LS | ||
143 | ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls | ||
144 | 88...95 80...87 72...79 64...71 120.127 112.119 104.111 96..103 | ||
145 | |||
146 | On big endian machines the bit indexes translate into the bit | ||
147 | positions within four 32-bit words in the following way | ||
148 | |||
149 | MS x[0] LS MS x[1] LS | ||
150 | ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls | ||
151 | 00...07 08...15 16...23 24...31 32...39 40...47 48...55 56...63 | ||
152 | |||
153 | MS x[2] LS MS x[3] LS | ||
154 | ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls | ||
155 | 64...71 72...79 80...87 88...95 96..103 104.111 112.119 120.127 | ||
156 | */ | ||
157 | |||
158 | /* A slow generic version of gf_mul, implemented for lle and bbe | ||
159 | * It multiplies a and b and puts the result in a */ | ||
160 | void gf128mul_lle(be128 *a, const be128 *b); | ||
161 | |||
162 | void gf128mul_bbe(be128 *a, const be128 *b); | ||
163 | |||
164 | |||
165 | /* 4k table optimization */ | ||
166 | |||
167 | struct gf128mul_4k { | ||
168 | be128 t[256]; | ||
169 | }; | ||
170 | |||
171 | struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g); | ||
172 | struct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g); | ||
173 | void gf128mul_4k_lle(be128 *a, struct gf128mul_4k *t); | ||
174 | void gf128mul_4k_bbe(be128 *a, struct gf128mul_4k *t); | ||
175 | |||
176 | static inline void gf128mul_free_4k(struct gf128mul_4k *t) | ||
177 | { | ||
178 | kfree(t); | ||
179 | } | ||
180 | |||
181 | |||
182 | /* 64k table optimization, implemented for lle and bbe */ | ||
183 | |||
184 | struct gf128mul_64k { | ||
185 | struct gf128mul_4k *t[16]; | ||
186 | }; | ||
187 | |||
188 | /* first initialize with the constant factor with which you | ||
189 | * want to multiply and then call gf128_64k_lle with the other | ||
190 | * factor in the first argument, the table in the second and a | ||
191 | * scratch register in the third. Afterwards *a = *r. */ | ||
192 | struct gf128mul_64k *gf128mul_init_64k_lle(const be128 *g); | ||
193 | struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g); | ||
194 | void gf128mul_free_64k(struct gf128mul_64k *t); | ||
195 | void gf128mul_64k_lle(be128 *a, struct gf128mul_64k *t); | ||
196 | void gf128mul_64k_bbe(be128 *a, struct gf128mul_64k *t); | ||
197 | |||
198 | #endif /* _CRYPTO_GF128MUL_H */ | ||