aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--drivers/staging/lirc/lirc_sir.c1282
1 files changed, 1282 insertions, 0 deletions
diff --git a/drivers/staging/lirc/lirc_sir.c b/drivers/staging/lirc/lirc_sir.c
new file mode 100644
index 000000000000..97146d1ee79f
--- /dev/null
+++ b/drivers/staging/lirc/lirc_sir.c
@@ -0,0 +1,1282 @@
1/*
2 * LIRC SIR driver, (C) 2000 Milan Pikula <www@fornax.sk>
3 *
4 * lirc_sir - Device driver for use with SIR (serial infra red)
5 * mode of IrDA on many notebooks.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 *
22 * 2000/09/16 Frank Przybylski <mail@frankprzybylski.de> :
23 * added timeout and relaxed pulse detection, removed gap bug
24 *
25 * 2000/12/15 Christoph Bartelmus <lirc@bartelmus.de> :
26 * added support for Tekram Irmate 210 (sending does not work yet,
27 * kind of disappointing that nobody was able to implement that
28 * before),
29 * major clean-up
30 *
31 * 2001/02/27 Christoph Bartelmus <lirc@bartelmus.de> :
32 * added support for StrongARM SA1100 embedded microprocessor
33 * parts cut'n'pasted from sa1100_ir.c (C) 2000 Russell King
34 */
35
36#include <linux/module.h>
37#include <linux/sched.h>
38#include <linux/errno.h>
39#include <linux/signal.h>
40#include <linux/fs.h>
41#include <linux/interrupt.h>
42#include <linux/ioport.h>
43#include <linux/kernel.h>
44#include <linux/serial_reg.h>
45#include <linux/time.h>
46#include <linux/string.h>
47#include <linux/types.h>
48#include <linux/wait.h>
49#include <linux/mm.h>
50#include <linux/delay.h>
51#include <linux/poll.h>
52#include <asm/system.h>
53#include <linux/io.h>
54#include <asm/irq.h>
55#include <linux/fcntl.h>
56#ifdef LIRC_ON_SA1100
57#include <asm/hardware.h>
58#ifdef CONFIG_SA1100_COLLIE
59#include <asm/arch/tc35143.h>
60#include <asm/ucb1200.h>
61#endif
62#endif
63
64#include <linux/timer.h>
65
66#include <media/lirc.h>
67#include <media/lirc_dev.h>
68
69/* SECTION: Definitions */
70
71/*** Tekram dongle ***/
72#ifdef LIRC_SIR_TEKRAM
73/* stolen from kernel source */
74/* definitions for Tekram dongle */
75#define TEKRAM_115200 0x00
76#define TEKRAM_57600 0x01
77#define TEKRAM_38400 0x02
78#define TEKRAM_19200 0x03
79#define TEKRAM_9600 0x04
80#define TEKRAM_2400 0x08
81
82#define TEKRAM_PW 0x10 /* Pulse select bit */
83
84/* 10bit * 1s/115200bit in milliseconds = 87ms*/
85#define TIME_CONST (10000000ul/115200ul)
86
87#endif
88
89#ifdef LIRC_SIR_ACTISYS_ACT200L
90static void init_act200(void);
91#elif defined(LIRC_SIR_ACTISYS_ACT220L)
92static void init_act220(void);
93#endif
94
95/*** SA1100 ***/
96#ifdef LIRC_ON_SA1100
97struct sa1100_ser2_registers {
98 /* HSSP control register */
99 unsigned char hscr0;
100 /* UART registers */
101 unsigned char utcr0;
102 unsigned char utcr1;
103 unsigned char utcr2;
104 unsigned char utcr3;
105 unsigned char utcr4;
106 unsigned char utdr;
107 unsigned char utsr0;
108 unsigned char utsr1;
109} sr;
110
111static int irq = IRQ_Ser2ICP;
112
113#define LIRC_ON_SA1100_TRANSMITTER_LATENCY 0
114
115/* pulse/space ratio of 50/50 */
116static unsigned long pulse_width = (13-LIRC_ON_SA1100_TRANSMITTER_LATENCY);
117/* 1000000/freq-pulse_width */
118static unsigned long space_width = (13-LIRC_ON_SA1100_TRANSMITTER_LATENCY);
119static unsigned int freq = 38000; /* modulation frequency */
120static unsigned int duty_cycle = 50; /* duty cycle of 50% */
121
122#endif
123
124#define RBUF_LEN 1024
125#define WBUF_LEN 1024
126
127#define LIRC_DRIVER_NAME "lirc_sir"
128
129#define PULSE '['
130
131#ifndef LIRC_SIR_TEKRAM
132/* 9bit * 1s/115200bit in milli seconds = 78.125ms*/
133#define TIME_CONST (9000000ul/115200ul)
134#endif
135
136
137/* timeout for sequences in jiffies (=5/100s), must be longer than TIME_CONST */
138#define SIR_TIMEOUT (HZ*5/100)
139
140#ifndef LIRC_ON_SA1100
141#ifndef LIRC_IRQ
142#define LIRC_IRQ 4
143#endif
144#ifndef LIRC_PORT
145/* for external dongles, default to com1 */
146#if defined(LIRC_SIR_ACTISYS_ACT200L) || \
147 defined(LIRC_SIR_ACTISYS_ACT220L) || \
148 defined(LIRC_SIR_TEKRAM)
149#define LIRC_PORT 0x3f8
150#else
151/* onboard sir ports are typically com3 */
152#define LIRC_PORT 0x3e8
153#endif
154#endif
155
156static int io = LIRC_PORT;
157static int irq = LIRC_IRQ;
158static int threshold = 3;
159#endif
160
161static DEFINE_SPINLOCK(timer_lock);
162static struct timer_list timerlist;
163/* time of last signal change detected */
164static struct timeval last_tv = {0, 0};
165/* time of last UART data ready interrupt */
166static struct timeval last_intr_tv = {0, 0};
167static int last_value;
168
169static DECLARE_WAIT_QUEUE_HEAD(lirc_read_queue);
170
171static DEFINE_SPINLOCK(hardware_lock);
172
173static int rx_buf[RBUF_LEN];
174static unsigned int rx_tail, rx_head;
175
176static int debug;
177#define dprintk(fmt, args...) \
178 do { \
179 if (debug) \
180 printk(KERN_DEBUG LIRC_DRIVER_NAME ": " \
181 fmt, ## args); \
182 } while (0)
183
184/* SECTION: Prototypes */
185
186/* Communication with user-space */
187static unsigned int lirc_poll(struct file *file, poll_table *wait);
188static ssize_t lirc_read(struct file *file, char *buf, size_t count,
189 loff_t *ppos);
190static ssize_t lirc_write(struct file *file, const char *buf, size_t n,
191 loff_t *pos);
192static long lirc_ioctl(struct file *filep, unsigned int cmd, unsigned long arg);
193static void add_read_queue(int flag, unsigned long val);
194static int init_chrdev(void);
195static void drop_chrdev(void);
196/* Hardware */
197static irqreturn_t sir_interrupt(int irq, void *dev_id);
198static void send_space(unsigned long len);
199static void send_pulse(unsigned long len);
200static int init_hardware(void);
201static void drop_hardware(void);
202/* Initialisation */
203static int init_port(void);
204static void drop_port(void);
205
206#ifdef LIRC_ON_SA1100
207static void on(void)
208{
209 PPSR |= PPC_TXD2;
210}
211
212static void off(void)
213{
214 PPSR &= ~PPC_TXD2;
215}
216#else
217static inline unsigned int sinp(int offset)
218{
219 return inb(io + offset);
220}
221
222static inline void soutp(int offset, int value)
223{
224 outb(value, io + offset);
225}
226#endif
227
228#ifndef MAX_UDELAY_MS
229#define MAX_UDELAY_US 5000
230#else
231#define MAX_UDELAY_US (MAX_UDELAY_MS*1000)
232#endif
233
234static void safe_udelay(unsigned long usecs)
235{
236 while (usecs > MAX_UDELAY_US) {
237 udelay(MAX_UDELAY_US);
238 usecs -= MAX_UDELAY_US;
239 }
240 udelay(usecs);
241}
242
243/* SECTION: Communication with user-space */
244
245static unsigned int lirc_poll(struct file *file, poll_table *wait)
246{
247 poll_wait(file, &lirc_read_queue, wait);
248 if (rx_head != rx_tail)
249 return POLLIN | POLLRDNORM;
250 return 0;
251}
252
253static ssize_t lirc_read(struct file *file, char *buf, size_t count,
254 loff_t *ppos)
255{
256 int n = 0;
257 int retval = 0;
258 DECLARE_WAITQUEUE(wait, current);
259
260 if (count % sizeof(int))
261 return -EINVAL;
262
263 add_wait_queue(&lirc_read_queue, &wait);
264 set_current_state(TASK_INTERRUPTIBLE);
265 while (n < count) {
266 if (rx_head != rx_tail) {
267 if (copy_to_user((void *) buf + n,
268 (void *) (rx_buf + rx_head),
269 sizeof(int))) {
270 retval = -EFAULT;
271 break;
272 }
273 rx_head = (rx_head + 1) & (RBUF_LEN - 1);
274 n += sizeof(int);
275 } else {
276 if (file->f_flags & O_NONBLOCK) {
277 retval = -EAGAIN;
278 break;
279 }
280 if (signal_pending(current)) {
281 retval = -ERESTARTSYS;
282 break;
283 }
284 schedule();
285 set_current_state(TASK_INTERRUPTIBLE);
286 }
287 }
288 remove_wait_queue(&lirc_read_queue, &wait);
289 set_current_state(TASK_RUNNING);
290 return n ? n : retval;
291}
292static ssize_t lirc_write(struct file *file, const char *buf, size_t n,
293 loff_t *pos)
294{
295 unsigned long flags;
296 int i, count;
297 int *tx_buf;
298
299 count = n / sizeof(int);
300 if (n % sizeof(int) || count % 2 == 0)
301 return -EINVAL;
302 tx_buf = memdup_user(buf, n);
303 if (IS_ERR(tx_buf))
304 return PTR_ERR(tx_buf);
305 i = 0;
306#ifdef LIRC_ON_SA1100
307 /* disable receiver */
308 Ser2UTCR3 = 0;
309#endif
310 local_irq_save(flags);
311 while (1) {
312 if (i >= count)
313 break;
314 if (tx_buf[i])
315 send_pulse(tx_buf[i]);
316 i++;
317 if (i >= count)
318 break;
319 if (tx_buf[i])
320 send_space(tx_buf[i]);
321 i++;
322 }
323 local_irq_restore(flags);
324#ifdef LIRC_ON_SA1100
325 off();
326 udelay(1000); /* wait 1ms for IR diode to recover */
327 Ser2UTCR3 = 0;
328 /* clear status register to prevent unwanted interrupts */
329 Ser2UTSR0 &= (UTSR0_RID | UTSR0_RBB | UTSR0_REB);
330 /* enable receiver */
331 Ser2UTCR3 = UTCR3_RXE|UTCR3_RIE;
332#endif
333 return count;
334}
335
336static long lirc_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
337{
338 int retval = 0;
339 unsigned long value = 0;
340#ifdef LIRC_ON_SA1100
341 unsigned int ivalue;
342
343 if (cmd == LIRC_GET_FEATURES)
344 value = LIRC_CAN_SEND_PULSE |
345 LIRC_CAN_SET_SEND_DUTY_CYCLE |
346 LIRC_CAN_SET_SEND_CARRIER |
347 LIRC_CAN_REC_MODE2;
348 else if (cmd == LIRC_GET_SEND_MODE)
349 value = LIRC_MODE_PULSE;
350 else if (cmd == LIRC_GET_REC_MODE)
351 value = LIRC_MODE_MODE2;
352#else
353 if (cmd == LIRC_GET_FEATURES)
354 value = LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2;
355 else if (cmd == LIRC_GET_SEND_MODE)
356 value = LIRC_MODE_PULSE;
357 else if (cmd == LIRC_GET_REC_MODE)
358 value = LIRC_MODE_MODE2;
359#endif
360
361 switch (cmd) {
362 case LIRC_GET_FEATURES:
363 case LIRC_GET_SEND_MODE:
364 case LIRC_GET_REC_MODE:
365 retval = put_user(value, (unsigned long *) arg);
366 break;
367
368 case LIRC_SET_SEND_MODE:
369 case LIRC_SET_REC_MODE:
370 retval = get_user(value, (unsigned long *) arg);
371 break;
372#ifdef LIRC_ON_SA1100
373 case LIRC_SET_SEND_DUTY_CYCLE:
374 retval = get_user(ivalue, (unsigned int *) arg);
375 if (retval)
376 return retval;
377 if (ivalue <= 0 || ivalue > 100)
378 return -EINVAL;
379 /* (ivalue/100)*(1000000/freq) */
380 duty_cycle = ivalue;
381 pulse_width = (unsigned long) duty_cycle*10000/freq;
382 space_width = (unsigned long) 1000000L/freq-pulse_width;
383 if (pulse_width >= LIRC_ON_SA1100_TRANSMITTER_LATENCY)
384 pulse_width -= LIRC_ON_SA1100_TRANSMITTER_LATENCY;
385 if (space_width >= LIRC_ON_SA1100_TRANSMITTER_LATENCY)
386 space_width -= LIRC_ON_SA1100_TRANSMITTER_LATENCY;
387 break;
388 case LIRC_SET_SEND_CARRIER:
389 retval = get_user(ivalue, (unsigned int *) arg);
390 if (retval)
391 return retval;
392 if (ivalue > 500000 || ivalue < 20000)
393 return -EINVAL;
394 freq = ivalue;
395 pulse_width = (unsigned long) duty_cycle*10000/freq;
396 space_width = (unsigned long) 1000000L/freq-pulse_width;
397 if (pulse_width >= LIRC_ON_SA1100_TRANSMITTER_LATENCY)
398 pulse_width -= LIRC_ON_SA1100_TRANSMITTER_LATENCY;
399 if (space_width >= LIRC_ON_SA1100_TRANSMITTER_LATENCY)
400 space_width -= LIRC_ON_SA1100_TRANSMITTER_LATENCY;
401 break;
402#endif
403 default:
404 retval = -ENOIOCTLCMD;
405
406 }
407
408 if (retval)
409 return retval;
410 if (cmd == LIRC_SET_REC_MODE) {
411 if (value != LIRC_MODE_MODE2)
412 retval = -ENOSYS;
413 } else if (cmd == LIRC_SET_SEND_MODE) {
414 if (value != LIRC_MODE_PULSE)
415 retval = -ENOSYS;
416 }
417
418 return retval;
419}
420
421static void add_read_queue(int flag, unsigned long val)
422{
423 unsigned int new_rx_tail;
424 int newval;
425
426 dprintk("add flag %d with val %lu\n", flag, val);
427
428 newval = val & PULSE_MASK;
429
430 /*
431 * statistically, pulses are ~TIME_CONST/2 too long. we could
432 * maybe make this more exact, but this is good enough
433 */
434 if (flag) {
435 /* pulse */
436 if (newval > TIME_CONST/2)
437 newval -= TIME_CONST/2;
438 else /* should not ever happen */
439 newval = 1;
440 newval |= PULSE_BIT;
441 } else {
442 newval += TIME_CONST/2;
443 }
444 new_rx_tail = (rx_tail + 1) & (RBUF_LEN - 1);
445 if (new_rx_tail == rx_head) {
446 dprintk("Buffer overrun.\n");
447 return;
448 }
449 rx_buf[rx_tail] = newval;
450 rx_tail = new_rx_tail;
451 wake_up_interruptible(&lirc_read_queue);
452}
453
454static struct file_operations lirc_fops = {
455 .owner = THIS_MODULE,
456 .read = lirc_read,
457 .write = lirc_write,
458 .poll = lirc_poll,
459 .unlocked_ioctl = lirc_ioctl,
460 .open = lirc_dev_fop_open,
461 .release = lirc_dev_fop_close,
462};
463
464static int set_use_inc(void *data)
465{
466 return 0;
467}
468
469static void set_use_dec(void *data)
470{
471}
472
473static struct lirc_driver driver = {
474 .name = LIRC_DRIVER_NAME,
475 .minor = -1,
476 .code_length = 1,
477 .sample_rate = 0,
478 .data = NULL,
479 .add_to_buf = NULL,
480 .set_use_inc = set_use_inc,
481 .set_use_dec = set_use_dec,
482 .fops = &lirc_fops,
483 .dev = NULL,
484 .owner = THIS_MODULE,
485};
486
487
488static int init_chrdev(void)
489{
490 driver.minor = lirc_register_driver(&driver);
491 if (driver.minor < 0) {
492 printk(KERN_ERR LIRC_DRIVER_NAME ": init_chrdev() failed.\n");
493 return -EIO;
494 }
495 return 0;
496}
497
498static void drop_chrdev(void)
499{
500 lirc_unregister_driver(driver.minor);
501}
502
503/* SECTION: Hardware */
504static long delta(struct timeval *tv1, struct timeval *tv2)
505{
506 unsigned long deltv;
507
508 deltv = tv2->tv_sec - tv1->tv_sec;
509 if (deltv > 15)
510 deltv = 0xFFFFFF;
511 else
512 deltv = deltv*1000000 +
513 tv2->tv_usec -
514 tv1->tv_usec;
515 return deltv;
516}
517
518static void sir_timeout(unsigned long data)
519{
520 /*
521 * if last received signal was a pulse, but receiving stopped
522 * within the 9 bit frame, we need to finish this pulse and
523 * simulate a signal change to from pulse to space. Otherwise
524 * upper layers will receive two sequences next time.
525 */
526
527 unsigned long flags;
528 unsigned long pulse_end;
529
530 /* avoid interference with interrupt */
531 spin_lock_irqsave(&timer_lock, flags);
532 if (last_value) {
533#ifndef LIRC_ON_SA1100
534 /* clear unread bits in UART and restart */
535 outb(UART_FCR_CLEAR_RCVR, io + UART_FCR);
536#endif
537 /* determine 'virtual' pulse end: */
538 pulse_end = delta(&last_tv, &last_intr_tv);
539 dprintk("timeout add %d for %lu usec\n", last_value, pulse_end);
540 add_read_queue(last_value, pulse_end);
541 last_value = 0;
542 last_tv = last_intr_tv;
543 }
544 spin_unlock_irqrestore(&timer_lock, flags);
545}
546
547static irqreturn_t sir_interrupt(int irq, void *dev_id)
548{
549 unsigned char data;
550 struct timeval curr_tv;
551 static unsigned long deltv;
552#ifdef LIRC_ON_SA1100
553 int status;
554 static int n;
555
556 status = Ser2UTSR0;
557 /*
558 * Deal with any receive errors first. The bytes in error may be
559 * the only bytes in the receive FIFO, so we do this first.
560 */
561 while (status & UTSR0_EIF) {
562 int bstat;
563
564 if (debug) {
565 dprintk("EIF\n");
566 bstat = Ser2UTSR1;
567
568 if (bstat & UTSR1_FRE)
569 dprintk("frame error\n");
570 if (bstat & UTSR1_ROR)
571 dprintk("receive fifo overrun\n");
572 if (bstat & UTSR1_PRE)
573 dprintk("parity error\n");
574 }
575
576 bstat = Ser2UTDR;
577 n++;
578 status = Ser2UTSR0;
579 }
580
581 if (status & (UTSR0_RFS | UTSR0_RID)) {
582 do_gettimeofday(&curr_tv);
583 deltv = delta(&last_tv, &curr_tv);
584 do {
585 data = Ser2UTDR;
586 dprintk("%d data: %u\n", n, (unsigned int) data);
587 n++;
588 } while (status & UTSR0_RID && /* do not empty fifo in order to
589 * get UTSR0_RID in any case */
590 Ser2UTSR1 & UTSR1_RNE); /* data ready */
591
592 if (status&UTSR0_RID) {
593 add_read_queue(0 , deltv - n * TIME_CONST); /*space*/
594 add_read_queue(1, n * TIME_CONST); /*pulse*/
595 n = 0;
596 last_tv = curr_tv;
597 }
598 }
599
600 if (status & UTSR0_TFS)
601 printk(KERN_ERR "transmit fifo not full, shouldn't happen\n");
602
603 /* We must clear certain bits. */
604 status &= (UTSR0_RID | UTSR0_RBB | UTSR0_REB);
605 if (status)
606 Ser2UTSR0 = status;
607#else
608 unsigned long deltintrtv;
609 unsigned long flags;
610 int iir, lsr;
611
612 while ((iir = inb(io + UART_IIR) & UART_IIR_ID)) {
613 switch (iir&UART_IIR_ID) { /* FIXME toto treba preriedit */
614 case UART_IIR_MSI:
615 (void) inb(io + UART_MSR);
616 break;
617 case UART_IIR_RLSI:
618 (void) inb(io + UART_LSR);
619 break;
620 case UART_IIR_THRI:
621#if 0
622 if (lsr & UART_LSR_THRE) /* FIFO is empty */
623 outb(data, io + UART_TX)
624#endif
625 break;
626 case UART_IIR_RDI:
627 /* avoid interference with timer */
628 spin_lock_irqsave(&timer_lock, flags);
629 do {
630 del_timer(&timerlist);
631 data = inb(io + UART_RX);
632 do_gettimeofday(&curr_tv);
633 deltv = delta(&last_tv, &curr_tv);
634 deltintrtv = delta(&last_intr_tv, &curr_tv);
635 dprintk("t %lu, d %d\n", deltintrtv, (int)data);
636 /*
637 * if nothing came in last X cycles,
638 * it was gap
639 */
640 if (deltintrtv > TIME_CONST * threshold) {
641 if (last_value) {
642 dprintk("GAP\n");
643 /* simulate signal change */
644 add_read_queue(last_value,
645 deltv -
646 deltintrtv);
647 last_value = 0;
648 last_tv.tv_sec =
649 last_intr_tv.tv_sec;
650 last_tv.tv_usec =
651 last_intr_tv.tv_usec;
652 deltv = deltintrtv;
653 }
654 }
655 data = 1;
656 if (data ^ last_value) {
657 /*
658 * deltintrtv > 2*TIME_CONST, remember?
659 * the other case is timeout
660 */
661 add_read_queue(last_value,
662 deltv-TIME_CONST);
663 last_value = data;
664 last_tv = curr_tv;
665 if (last_tv.tv_usec >= TIME_CONST) {
666 last_tv.tv_usec -= TIME_CONST;
667 } else {
668 last_tv.tv_sec--;
669 last_tv.tv_usec += 1000000 -
670 TIME_CONST;
671 }
672 }
673 last_intr_tv = curr_tv;
674 if (data) {
675 /*
676 * start timer for end of
677 * sequence detection
678 */
679 timerlist.expires = jiffies +
680 SIR_TIMEOUT;
681 add_timer(&timerlist);
682 }
683
684 lsr = inb(io + UART_LSR);
685 } while (lsr & UART_LSR_DR); /* data ready */
686 spin_unlock_irqrestore(&timer_lock, flags);
687 break;
688 default:
689 break;
690 }
691 }
692#endif
693 return IRQ_RETVAL(IRQ_HANDLED);
694}
695
696#ifdef LIRC_ON_SA1100
697static void send_pulse(unsigned long length)
698{
699 unsigned long k, delay;
700 int flag;
701
702 if (length == 0)
703 return;
704 /*
705 * this won't give us the carrier frequency we really want
706 * due to integer arithmetic, but we can accept this inaccuracy
707 */
708
709 for (k = flag = 0; k < length; k += delay, flag = !flag) {
710 if (flag) {
711 off();
712 delay = space_width;
713 } else {
714 on();
715 delay = pulse_width;
716 }
717 safe_udelay(delay);
718 }
719 off();
720}
721
722static void send_space(unsigned long length)
723{
724 if (length == 0)
725 return;
726 off();
727 safe_udelay(length);
728}
729#else
730static void send_space(unsigned long len)
731{
732 safe_udelay(len);
733}
734
735static void send_pulse(unsigned long len)
736{
737 long bytes_out = len / TIME_CONST;
738 long time_left;
739
740 time_left = (long)len - (long)bytes_out * (long)TIME_CONST;
741 if (bytes_out == 0) {
742 bytes_out++;
743 time_left = 0;
744 }
745 while (bytes_out--) {
746 outb(PULSE, io + UART_TX);
747 /* FIXME treba seriozne cakanie z char/serial.c */
748 while (!(inb(io + UART_LSR) & UART_LSR_THRE))
749 ;
750 }
751#if 0
752 if (time_left > 0)
753 safe_udelay(time_left);
754#endif
755}
756#endif
757
758#ifdef CONFIG_SA1100_COLLIE
759static int sa1100_irda_set_power_collie(int state)
760{
761 if (state) {
762 /*
763 * 0 - off
764 * 1 - short range, lowest power
765 * 2 - medium range, medium power
766 * 3 - maximum range, high power
767 */
768 ucb1200_set_io_direction(TC35143_GPIO_IR_ON,
769 TC35143_IODIR_OUTPUT);
770 ucb1200_set_io(TC35143_GPIO_IR_ON, TC35143_IODAT_LOW);
771 udelay(100);
772 } else {
773 /* OFF */
774 ucb1200_set_io_direction(TC35143_GPIO_IR_ON,
775 TC35143_IODIR_OUTPUT);
776 ucb1200_set_io(TC35143_GPIO_IR_ON, TC35143_IODAT_HIGH);
777 }
778 return 0;
779}
780#endif
781
782static int init_hardware(void)
783{
784 unsigned long flags;
785
786 spin_lock_irqsave(&hardware_lock, flags);
787 /* reset UART */
788#ifdef LIRC_ON_SA1100
789#ifdef CONFIG_SA1100_BITSY
790 if (machine_is_bitsy()) {
791 printk(KERN_INFO "Power on IR module\n");
792 set_bitsy_egpio(EGPIO_BITSY_IR_ON);
793 }
794#endif
795#ifdef CONFIG_SA1100_COLLIE
796 sa1100_irda_set_power_collie(3); /* power on */
797#endif
798 sr.hscr0 = Ser2HSCR0;
799
800 sr.utcr0 = Ser2UTCR0;
801 sr.utcr1 = Ser2UTCR1;
802 sr.utcr2 = Ser2UTCR2;
803 sr.utcr3 = Ser2UTCR3;
804 sr.utcr4 = Ser2UTCR4;
805
806 sr.utdr = Ser2UTDR;
807 sr.utsr0 = Ser2UTSR0;
808 sr.utsr1 = Ser2UTSR1;
809
810 /* configure GPIO */
811 /* output */
812 PPDR |= PPC_TXD2;
813 PSDR |= PPC_TXD2;
814 /* set output to 0 */
815 off();
816
817 /* Enable HP-SIR modulation, and ensure that the port is disabled. */
818 Ser2UTCR3 = 0;
819 Ser2HSCR0 = sr.hscr0 & (~HSCR0_HSSP);
820
821 /* clear status register to prevent unwanted interrupts */
822 Ser2UTSR0 &= (UTSR0_RID | UTSR0_RBB | UTSR0_REB);
823
824 /* 7N1 */
825 Ser2UTCR0 = UTCR0_1StpBit|UTCR0_7BitData;
826 /* 115200 */
827 Ser2UTCR1 = 0;
828 Ser2UTCR2 = 1;
829 /* use HPSIR, 1.6 usec pulses */
830 Ser2UTCR4 = UTCR4_HPSIR|UTCR4_Z1_6us;
831
832 /* enable receiver, receive fifo interrupt */
833 Ser2UTCR3 = UTCR3_RXE|UTCR3_RIE;
834
835 /* clear status register to prevent unwanted interrupts */
836 Ser2UTSR0 &= (UTSR0_RID | UTSR0_RBB | UTSR0_REB);
837
838#elif defined(LIRC_SIR_TEKRAM)
839 /* disable FIFO */
840 soutp(UART_FCR,
841 UART_FCR_CLEAR_RCVR|
842 UART_FCR_CLEAR_XMIT|
843 UART_FCR_TRIGGER_1);
844
845 /* Set DLAB 0. */
846 soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
847
848 /* First of all, disable all interrupts */
849 soutp(UART_IER, sinp(UART_IER) &
850 (~(UART_IER_MSI|UART_IER_RLSI|UART_IER_THRI|UART_IER_RDI)));
851
852 /* Set DLAB 1. */
853 soutp(UART_LCR, sinp(UART_LCR) | UART_LCR_DLAB);
854
855 /* Set divisor to 12 => 9600 Baud */
856 soutp(UART_DLM, 0);
857 soutp(UART_DLL, 12);
858
859 /* Set DLAB 0. */
860 soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
861
862 /* power supply */
863 soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
864 safe_udelay(50*1000);
865
866 /* -DTR low -> reset PIC */
867 soutp(UART_MCR, UART_MCR_RTS|UART_MCR_OUT2);
868 udelay(1*1000);
869
870 soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
871 udelay(100);
872
873
874 /* -RTS low -> send control byte */
875 soutp(UART_MCR, UART_MCR_DTR|UART_MCR_OUT2);
876 udelay(7);
877 soutp(UART_TX, TEKRAM_115200|TEKRAM_PW);
878
879 /* one byte takes ~1042 usec to transmit at 9600,8N1 */
880 udelay(1500);
881
882 /* back to normal operation */
883 soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
884 udelay(50);
885
886 udelay(1500);
887
888 /* read previous control byte */
889 printk(KERN_INFO LIRC_DRIVER_NAME
890 ": 0x%02x\n", sinp(UART_RX));
891
892 /* Set DLAB 1. */
893 soutp(UART_LCR, sinp(UART_LCR) | UART_LCR_DLAB);
894
895 /* Set divisor to 1 => 115200 Baud */
896 soutp(UART_DLM, 0);
897 soutp(UART_DLL, 1);
898
899 /* Set DLAB 0, 8 Bit */
900 soutp(UART_LCR, UART_LCR_WLEN8);
901 /* enable interrupts */
902 soutp(UART_IER, sinp(UART_IER)|UART_IER_RDI);
903#else
904 outb(0, io + UART_MCR);
905 outb(0, io + UART_IER);
906 /* init UART */
907 /* set DLAB, speed = 115200 */
908 outb(UART_LCR_DLAB | UART_LCR_WLEN7, io + UART_LCR);
909 outb(1, io + UART_DLL); outb(0, io + UART_DLM);
910 /* 7N1+start = 9 bits at 115200 ~ 3 bits at 44000 */
911 outb(UART_LCR_WLEN7, io + UART_LCR);
912 /* FIFO operation */
913 outb(UART_FCR_ENABLE_FIFO, io + UART_FCR);
914 /* interrupts */
915 /* outb(UART_IER_RLSI|UART_IER_RDI|UART_IER_THRI, io + UART_IER); */
916 outb(UART_IER_RDI, io + UART_IER);
917 /* turn on UART */
918 outb(UART_MCR_DTR|UART_MCR_RTS|UART_MCR_OUT2, io + UART_MCR);
919#ifdef LIRC_SIR_ACTISYS_ACT200L
920 init_act200();
921#elif defined(LIRC_SIR_ACTISYS_ACT220L)
922 init_act220();
923#endif
924#endif
925 spin_unlock_irqrestore(&hardware_lock, flags);
926 return 0;
927}
928
929static void drop_hardware(void)
930{
931 unsigned long flags;
932
933 spin_lock_irqsave(&hardware_lock, flags);
934
935#ifdef LIRC_ON_SA1100
936 Ser2UTCR3 = 0;
937
938 Ser2UTCR0 = sr.utcr0;
939 Ser2UTCR1 = sr.utcr1;
940 Ser2UTCR2 = sr.utcr2;
941 Ser2UTCR4 = sr.utcr4;
942 Ser2UTCR3 = sr.utcr3;
943
944 Ser2HSCR0 = sr.hscr0;
945#ifdef CONFIG_SA1100_BITSY
946 if (machine_is_bitsy())
947 clr_bitsy_egpio(EGPIO_BITSY_IR_ON);
948#endif
949#ifdef CONFIG_SA1100_COLLIE
950 sa1100_irda_set_power_collie(0); /* power off */
951#endif
952#else
953 /* turn off interrupts */
954 outb(0, io + UART_IER);
955#endif
956 spin_unlock_irqrestore(&hardware_lock, flags);
957}
958
959/* SECTION: Initialisation */
960
961static int init_port(void)
962{
963 int retval;
964
965 /* get I/O port access and IRQ line */
966#ifndef LIRC_ON_SA1100
967 if (request_region(io, 8, LIRC_DRIVER_NAME) == NULL) {
968 printk(KERN_ERR LIRC_DRIVER_NAME
969 ": i/o port 0x%.4x already in use.\n", io);
970 return -EBUSY;
971 }
972#endif
973 retval = request_irq(irq, sir_interrupt, IRQF_DISABLED,
974 LIRC_DRIVER_NAME, NULL);
975 if (retval < 0) {
976# ifndef LIRC_ON_SA1100
977 release_region(io, 8);
978# endif
979 printk(KERN_ERR LIRC_DRIVER_NAME
980 ": IRQ %d already in use.\n",
981 irq);
982 return retval;
983 }
984#ifndef LIRC_ON_SA1100
985 printk(KERN_INFO LIRC_DRIVER_NAME
986 ": I/O port 0x%.4x, IRQ %d.\n",
987 io, irq);
988#endif
989
990 init_timer(&timerlist);
991 timerlist.function = sir_timeout;
992 timerlist.data = 0xabadcafe;
993
994 return 0;
995}
996
997static void drop_port(void)
998{
999 free_irq(irq, NULL);
1000 del_timer_sync(&timerlist);
1001#ifndef LIRC_ON_SA1100
1002 release_region(io, 8);
1003#endif
1004}
1005
1006#ifdef LIRC_SIR_ACTISYS_ACT200L
1007/* Crystal/Cirrus CS8130 IR transceiver, used in Actisys Act200L dongle */
1008/* some code borrowed from Linux IRDA driver */
1009
1010/* Register 0: Control register #1 */
1011#define ACT200L_REG0 0x00
1012#define ACT200L_TXEN 0x01 /* Enable transmitter */
1013#define ACT200L_RXEN 0x02 /* Enable receiver */
1014#define ACT200L_ECHO 0x08 /* Echo control chars */
1015
1016/* Register 1: Control register #2 */
1017#define ACT200L_REG1 0x10
1018#define ACT200L_LODB 0x01 /* Load new baud rate count value */
1019#define ACT200L_WIDE 0x04 /* Expand the maximum allowable pulse */
1020
1021/* Register 3: Transmit mode register #2 */
1022#define ACT200L_REG3 0x30
1023#define ACT200L_B0 0x01 /* DataBits, 0=6, 1=7, 2=8, 3=9(8P) */
1024#define ACT200L_B1 0x02 /* DataBits, 0=6, 1=7, 2=8, 3=9(8P) */
1025#define ACT200L_CHSY 0x04 /* StartBit Synced 0=bittime, 1=startbit */
1026
1027/* Register 4: Output Power register */
1028#define ACT200L_REG4 0x40
1029#define ACT200L_OP0 0x01 /* Enable LED1C output */
1030#define ACT200L_OP1 0x02 /* Enable LED2C output */
1031#define ACT200L_BLKR 0x04
1032
1033/* Register 5: Receive Mode register */
1034#define ACT200L_REG5 0x50
1035#define ACT200L_RWIDL 0x01 /* fixed 1.6us pulse mode */
1036 /*.. other various IRDA bit modes, and TV remote modes..*/
1037
1038/* Register 6: Receive Sensitivity register #1 */
1039#define ACT200L_REG6 0x60
1040#define ACT200L_RS0 0x01 /* receive threshold bit 0 */
1041#define ACT200L_RS1 0x02 /* receive threshold bit 1 */
1042
1043/* Register 7: Receive Sensitivity register #2 */
1044#define ACT200L_REG7 0x70
1045#define ACT200L_ENPOS 0x04 /* Ignore the falling edge */
1046
1047/* Register 8,9: Baud Rate Divider register #1,#2 */
1048#define ACT200L_REG8 0x80
1049#define ACT200L_REG9 0x90
1050
1051#define ACT200L_2400 0x5f
1052#define ACT200L_9600 0x17
1053#define ACT200L_19200 0x0b
1054#define ACT200L_38400 0x05
1055#define ACT200L_57600 0x03
1056#define ACT200L_115200 0x01
1057
1058/* Register 13: Control register #3 */
1059#define ACT200L_REG13 0xd0
1060#define ACT200L_SHDW 0x01 /* Enable access to shadow registers */
1061
1062/* Register 15: Status register */
1063#define ACT200L_REG15 0xf0
1064
1065/* Register 21: Control register #4 */
1066#define ACT200L_REG21 0x50
1067#define ACT200L_EXCK 0x02 /* Disable clock output driver */
1068#define ACT200L_OSCL 0x04 /* oscillator in low power, medium accuracy mode */
1069
1070static void init_act200(void)
1071{
1072 int i;
1073 __u8 control[] = {
1074 ACT200L_REG15,
1075 ACT200L_REG13 | ACT200L_SHDW,
1076 ACT200L_REG21 | ACT200L_EXCK | ACT200L_OSCL,
1077 ACT200L_REG13,
1078 ACT200L_REG7 | ACT200L_ENPOS,
1079 ACT200L_REG6 | ACT200L_RS0 | ACT200L_RS1,
1080 ACT200L_REG5 | ACT200L_RWIDL,
1081 ACT200L_REG4 | ACT200L_OP0 | ACT200L_OP1 | ACT200L_BLKR,
1082 ACT200L_REG3 | ACT200L_B0,
1083 ACT200L_REG0 | ACT200L_TXEN | ACT200L_RXEN,
1084 ACT200L_REG8 | (ACT200L_115200 & 0x0f),
1085 ACT200L_REG9 | ((ACT200L_115200 >> 4) & 0x0f),
1086 ACT200L_REG1 | ACT200L_LODB | ACT200L_WIDE
1087 };
1088
1089 /* Set DLAB 1. */
1090 soutp(UART_LCR, UART_LCR_DLAB | UART_LCR_WLEN8);
1091
1092 /* Set divisor to 12 => 9600 Baud */
1093 soutp(UART_DLM, 0);
1094 soutp(UART_DLL, 12);
1095
1096 /* Set DLAB 0. */
1097 soutp(UART_LCR, UART_LCR_WLEN8);
1098 /* Set divisor to 12 => 9600 Baud */
1099
1100 /* power supply */
1101 soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
1102 for (i = 0; i < 50; i++)
1103 safe_udelay(1000);
1104
1105 /* Reset the dongle : set RTS low for 25 ms */
1106 soutp(UART_MCR, UART_MCR_DTR|UART_MCR_OUT2);
1107 for (i = 0; i < 25; i++)
1108 udelay(1000);
1109
1110 soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
1111 udelay(100);
1112
1113 /* Clear DTR and set RTS to enter command mode */
1114 soutp(UART_MCR, UART_MCR_RTS|UART_MCR_OUT2);
1115 udelay(7);
1116
1117 /* send out the control register settings for 115K 7N1 SIR operation */
1118 for (i = 0; i < sizeof(control); i++) {
1119 soutp(UART_TX, control[i]);
1120 /* one byte takes ~1042 usec to transmit at 9600,8N1 */
1121 udelay(1500);
1122 }
1123
1124 /* back to normal operation */
1125 soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
1126 udelay(50);
1127
1128 udelay(1500);
1129 soutp(UART_LCR, sinp(UART_LCR) | UART_LCR_DLAB);
1130
1131 /* Set DLAB 1. */
1132 soutp(UART_LCR, UART_LCR_DLAB | UART_LCR_WLEN7);
1133
1134 /* Set divisor to 1 => 115200 Baud */
1135 soutp(UART_DLM, 0);
1136 soutp(UART_DLL, 1);
1137
1138 /* Set DLAB 0. */
1139 soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
1140
1141 /* Set DLAB 0, 7 Bit */
1142 soutp(UART_LCR, UART_LCR_WLEN7);
1143
1144 /* enable interrupts */
1145 soutp(UART_IER, sinp(UART_IER)|UART_IER_RDI);
1146}
1147#endif
1148
1149#ifdef LIRC_SIR_ACTISYS_ACT220L
1150/*
1151 * Derived from linux IrDA driver (net/irda/actisys.c)
1152 * Drop me a mail for any kind of comment: maxx@spaceboyz.net
1153 */
1154
1155void init_act220(void)
1156{
1157 int i;
1158
1159 /* DLAB 1 */
1160 soutp(UART_LCR, UART_LCR_DLAB|UART_LCR_WLEN7);
1161
1162 /* 9600 baud */
1163 soutp(UART_DLM, 0);
1164 soutp(UART_DLL, 12);
1165
1166 /* DLAB 0 */
1167 soutp(UART_LCR, UART_LCR_WLEN7);
1168
1169 /* reset the dongle, set DTR low for 10us */
1170 soutp(UART_MCR, UART_MCR_RTS|UART_MCR_OUT2);
1171 udelay(10);
1172
1173 /* back to normal (still 9600) */
1174 soutp(UART_MCR, UART_MCR_DTR|UART_MCR_RTS|UART_MCR_OUT2);
1175
1176 /*
1177 * send RTS pulses until we reach 115200
1178 * i hope this is really the same for act220l/act220l+
1179 */
1180 for (i = 0; i < 3; i++) {
1181 udelay(10);
1182 /* set RTS low for 10 us */
1183 soutp(UART_MCR, UART_MCR_DTR|UART_MCR_OUT2);
1184 udelay(10);
1185 /* set RTS high for 10 us */
1186 soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
1187 }
1188
1189 /* back to normal operation */
1190 udelay(1500); /* better safe than sorry ;) */
1191
1192 /* Set DLAB 1. */
1193 soutp(UART_LCR, UART_LCR_DLAB | UART_LCR_WLEN7);
1194
1195 /* Set divisor to 1 => 115200 Baud */
1196 soutp(UART_DLM, 0);
1197 soutp(UART_DLL, 1);
1198
1199 /* Set DLAB 0, 7 Bit */
1200 /* The dongle doesn't seem to have any problems with operation at 7N1 */
1201 soutp(UART_LCR, UART_LCR_WLEN7);
1202
1203 /* enable interrupts */
1204 soutp(UART_IER, UART_IER_RDI);
1205}
1206#endif
1207
1208static int init_lirc_sir(void)
1209{
1210 int retval;
1211
1212 init_waitqueue_head(&lirc_read_queue);
1213 retval = init_port();
1214 if (retval < 0)
1215 return retval;
1216 init_hardware();
1217 printk(KERN_INFO LIRC_DRIVER_NAME
1218 ": Installed.\n");
1219 return 0;
1220}
1221
1222
1223static int __init lirc_sir_init(void)
1224{
1225 int retval;
1226
1227 retval = init_chrdev();
1228 if (retval < 0)
1229 return retval;
1230 retval = init_lirc_sir();
1231 if (retval) {
1232 drop_chrdev();
1233 return retval;
1234 }
1235 return 0;
1236}
1237
1238static void __exit lirc_sir_exit(void)
1239{
1240 drop_hardware();
1241 drop_chrdev();
1242 drop_port();
1243 printk(KERN_INFO LIRC_DRIVER_NAME ": Uninstalled.\n");
1244}
1245
1246module_init(lirc_sir_init);
1247module_exit(lirc_sir_exit);
1248
1249#ifdef LIRC_SIR_TEKRAM
1250MODULE_DESCRIPTION("Infrared receiver driver for Tekram Irmate 210");
1251MODULE_AUTHOR("Christoph Bartelmus");
1252#elif defined(LIRC_ON_SA1100)
1253MODULE_DESCRIPTION("LIRC driver for StrongARM SA1100 embedded microprocessor");
1254MODULE_AUTHOR("Christoph Bartelmus");
1255#elif defined(LIRC_SIR_ACTISYS_ACT200L)
1256MODULE_DESCRIPTION("LIRC driver for Actisys Act200L");
1257MODULE_AUTHOR("Karl Bongers");
1258#elif defined(LIRC_SIR_ACTISYS_ACT220L)
1259MODULE_DESCRIPTION("LIRC driver for Actisys Act220L(+)");
1260MODULE_AUTHOR("Jan Roemisch");
1261#else
1262MODULE_DESCRIPTION("Infrared receiver driver for SIR type serial ports");
1263MODULE_AUTHOR("Milan Pikula");
1264#endif
1265MODULE_LICENSE("GPL");
1266
1267#ifdef LIRC_ON_SA1100
1268module_param(irq, int, S_IRUGO);
1269MODULE_PARM_DESC(irq, "Interrupt (16)");
1270#else
1271module_param(io, int, S_IRUGO);
1272MODULE_PARM_DESC(io, "I/O address base (0x3f8 or 0x2f8)");
1273
1274module_param(irq, int, S_IRUGO);
1275MODULE_PARM_DESC(irq, "Interrupt (4 or 3)");
1276
1277module_param(threshold, int, S_IRUGO);
1278MODULE_PARM_DESC(threshold, "space detection threshold (3)");
1279#endif
1280
1281module_param(debug, bool, S_IRUGO | S_IWUSR);
1282MODULE_PARM_DESC(debug, "Enable debugging messages");