aboutsummaryrefslogtreecommitdiffstats
path: root/sound
diff options
context:
space:
mode:
authorMark Brown <broonie@kernel.org>2014-10-28 18:15:31 -0400
committerMark Brown <broonie@kernel.org>2014-10-29 07:15:10 -0400
commit7077148fb50a120d20a50516a332ed6eb9233c16 (patch)
treec057c8f5ef91ed7191e92bebe65d691b022fb405 /sound
parentc1b4d1c7774189002bc08766ec10e339dfbc98d6 (diff)
ASoC: core: Split ops out of soc-core.c
The main ASoC source file is getting quite large and the standard ops don't really have anything to do with the rest of the file so split them out into a separate file. Signed-off-by: Mark Brown <broonie@kernel.org>
Diffstat (limited to 'sound')
-rw-r--r--sound/soc/Makefile2
-rw-r--r--sound/soc/soc-core.c919
-rw-r--r--sound/soc/soc-ops.c952
3 files changed, 953 insertions, 920 deletions
diff --git a/sound/soc/Makefile b/sound/soc/Makefile
index 534714a1ca44..a384d145e4d2 100644
--- a/sound/soc/Makefile
+++ b/sound/soc/Makefile
@@ -1,5 +1,5 @@
1snd-soc-core-objs := soc-core.o soc-dapm.o soc-jack.o soc-cache.o soc-utils.o 1snd-soc-core-objs := soc-core.o soc-dapm.o soc-jack.o soc-cache.o soc-utils.o
2snd-soc-core-objs += soc-pcm.o soc-compress.o soc-io.o soc-devres.o 2snd-soc-core-objs += soc-pcm.o soc-compress.o soc-io.o soc-devres.o soc-ops.o
3 3
4ifneq ($(CONFIG_SND_SOC_GENERIC_DMAENGINE_PCM),) 4ifneq ($(CONFIG_SND_SOC_GENERIC_DMAENGINE_PCM),)
5snd-soc-core-objs += soc-generic-dmaengine-pcm.o 5snd-soc-core-objs += soc-generic-dmaengine-pcm.o
diff --git a/sound/soc/soc-core.c b/sound/soc/soc-core.c
index 47c378abb9a2..a2b51edf6d83 100644
--- a/sound/soc/soc-core.c
+++ b/sound/soc/soc-core.c
@@ -2334,925 +2334,6 @@ int snd_soc_add_dai_controls(struct snd_soc_dai *dai,
2334EXPORT_SYMBOL_GPL(snd_soc_add_dai_controls); 2334EXPORT_SYMBOL_GPL(snd_soc_add_dai_controls);
2335 2335
2336/** 2336/**
2337 * snd_soc_info_enum_double - enumerated double mixer info callback
2338 * @kcontrol: mixer control
2339 * @uinfo: control element information
2340 *
2341 * Callback to provide information about a double enumerated
2342 * mixer control.
2343 *
2344 * Returns 0 for success.
2345 */
2346int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
2347 struct snd_ctl_elem_info *uinfo)
2348{
2349 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2350
2351 return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
2352 e->items, e->texts);
2353}
2354EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
2355
2356/**
2357 * snd_soc_get_enum_double - enumerated double mixer get callback
2358 * @kcontrol: mixer control
2359 * @ucontrol: control element information
2360 *
2361 * Callback to get the value of a double enumerated mixer.
2362 *
2363 * Returns 0 for success.
2364 */
2365int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
2366 struct snd_ctl_elem_value *ucontrol)
2367{
2368 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2369 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2370 unsigned int val, item;
2371 unsigned int reg_val;
2372 int ret;
2373
2374 ret = snd_soc_component_read(component, e->reg, &reg_val);
2375 if (ret)
2376 return ret;
2377 val = (reg_val >> e->shift_l) & e->mask;
2378 item = snd_soc_enum_val_to_item(e, val);
2379 ucontrol->value.enumerated.item[0] = item;
2380 if (e->shift_l != e->shift_r) {
2381 val = (reg_val >> e->shift_l) & e->mask;
2382 item = snd_soc_enum_val_to_item(e, val);
2383 ucontrol->value.enumerated.item[1] = item;
2384 }
2385
2386 return 0;
2387}
2388EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
2389
2390/**
2391 * snd_soc_put_enum_double - enumerated double mixer put callback
2392 * @kcontrol: mixer control
2393 * @ucontrol: control element information
2394 *
2395 * Callback to set the value of a double enumerated mixer.
2396 *
2397 * Returns 0 for success.
2398 */
2399int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
2400 struct snd_ctl_elem_value *ucontrol)
2401{
2402 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2403 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2404 unsigned int *item = ucontrol->value.enumerated.item;
2405 unsigned int val;
2406 unsigned int mask;
2407
2408 if (item[0] >= e->items)
2409 return -EINVAL;
2410 val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
2411 mask = e->mask << e->shift_l;
2412 if (e->shift_l != e->shift_r) {
2413 if (item[1] >= e->items)
2414 return -EINVAL;
2415 val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
2416 mask |= e->mask << e->shift_r;
2417 }
2418
2419 return snd_soc_component_update_bits(component, e->reg, mask, val);
2420}
2421EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
2422
2423/**
2424 * snd_soc_read_signed - Read a codec register and interprete as signed value
2425 * @component: component
2426 * @reg: Register to read
2427 * @mask: Mask to use after shifting the register value
2428 * @shift: Right shift of register value
2429 * @sign_bit: Bit that describes if a number is negative or not.
2430 * @signed_val: Pointer to where the read value should be stored
2431 *
2432 * This functions reads a codec register. The register value is shifted right
2433 * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
2434 * the given registervalue into a signed integer if sign_bit is non-zero.
2435 *
2436 * Returns 0 on sucess, otherwise an error value
2437 */
2438static int snd_soc_read_signed(struct snd_soc_component *component,
2439 unsigned int reg, unsigned int mask, unsigned int shift,
2440 unsigned int sign_bit, int *signed_val)
2441{
2442 int ret;
2443 unsigned int val;
2444
2445 ret = snd_soc_component_read(component, reg, &val);
2446 if (ret < 0)
2447 return ret;
2448
2449 val = (val >> shift) & mask;
2450
2451 if (!sign_bit) {
2452 *signed_val = val;
2453 return 0;
2454 }
2455
2456 /* non-negative number */
2457 if (!(val & BIT(sign_bit))) {
2458 *signed_val = val;
2459 return 0;
2460 }
2461
2462 ret = val;
2463
2464 /*
2465 * The register most probably does not contain a full-sized int.
2466 * Instead we have an arbitrary number of bits in a signed
2467 * representation which has to be translated into a full-sized int.
2468 * This is done by filling up all bits above the sign-bit.
2469 */
2470 ret |= ~((int)(BIT(sign_bit) - 1));
2471
2472 *signed_val = ret;
2473
2474 return 0;
2475}
2476
2477/**
2478 * snd_soc_info_volsw - single mixer info callback
2479 * @kcontrol: mixer control
2480 * @uinfo: control element information
2481 *
2482 * Callback to provide information about a single mixer control, or a double
2483 * mixer control that spans 2 registers.
2484 *
2485 * Returns 0 for success.
2486 */
2487int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
2488 struct snd_ctl_elem_info *uinfo)
2489{
2490 struct soc_mixer_control *mc =
2491 (struct soc_mixer_control *)kcontrol->private_value;
2492 int platform_max;
2493
2494 if (!mc->platform_max)
2495 mc->platform_max = mc->max;
2496 platform_max = mc->platform_max;
2497
2498 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2499 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2500 else
2501 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2502
2503 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
2504 uinfo->value.integer.min = 0;
2505 uinfo->value.integer.max = platform_max - mc->min;
2506 return 0;
2507}
2508EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
2509
2510/**
2511 * snd_soc_get_volsw - single mixer get callback
2512 * @kcontrol: mixer control
2513 * @ucontrol: control element information
2514 *
2515 * Callback to get the value of a single mixer control, or a double mixer
2516 * control that spans 2 registers.
2517 *
2518 * Returns 0 for success.
2519 */
2520int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
2521 struct snd_ctl_elem_value *ucontrol)
2522{
2523 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2524 struct soc_mixer_control *mc =
2525 (struct soc_mixer_control *)kcontrol->private_value;
2526 unsigned int reg = mc->reg;
2527 unsigned int reg2 = mc->rreg;
2528 unsigned int shift = mc->shift;
2529 unsigned int rshift = mc->rshift;
2530 int max = mc->max;
2531 int min = mc->min;
2532 int sign_bit = mc->sign_bit;
2533 unsigned int mask = (1 << fls(max)) - 1;
2534 unsigned int invert = mc->invert;
2535 int val;
2536 int ret;
2537
2538 if (sign_bit)
2539 mask = BIT(sign_bit + 1) - 1;
2540
2541 ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
2542 if (ret)
2543 return ret;
2544
2545 ucontrol->value.integer.value[0] = val - min;
2546 if (invert)
2547 ucontrol->value.integer.value[0] =
2548 max - ucontrol->value.integer.value[0];
2549
2550 if (snd_soc_volsw_is_stereo(mc)) {
2551 if (reg == reg2)
2552 ret = snd_soc_read_signed(component, reg, mask, rshift,
2553 sign_bit, &val);
2554 else
2555 ret = snd_soc_read_signed(component, reg2, mask, shift,
2556 sign_bit, &val);
2557 if (ret)
2558 return ret;
2559
2560 ucontrol->value.integer.value[1] = val - min;
2561 if (invert)
2562 ucontrol->value.integer.value[1] =
2563 max - ucontrol->value.integer.value[1];
2564 }
2565
2566 return 0;
2567}
2568EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
2569
2570/**
2571 * snd_soc_put_volsw - single mixer put callback
2572 * @kcontrol: mixer control
2573 * @ucontrol: control element information
2574 *
2575 * Callback to set the value of a single mixer control, or a double mixer
2576 * control that spans 2 registers.
2577 *
2578 * Returns 0 for success.
2579 */
2580int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
2581 struct snd_ctl_elem_value *ucontrol)
2582{
2583 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2584 struct soc_mixer_control *mc =
2585 (struct soc_mixer_control *)kcontrol->private_value;
2586 unsigned int reg = mc->reg;
2587 unsigned int reg2 = mc->rreg;
2588 unsigned int shift = mc->shift;
2589 unsigned int rshift = mc->rshift;
2590 int max = mc->max;
2591 int min = mc->min;
2592 unsigned int sign_bit = mc->sign_bit;
2593 unsigned int mask = (1 << fls(max)) - 1;
2594 unsigned int invert = mc->invert;
2595 int err;
2596 bool type_2r = false;
2597 unsigned int val2 = 0;
2598 unsigned int val, val_mask;
2599
2600 if (sign_bit)
2601 mask = BIT(sign_bit + 1) - 1;
2602
2603 val = ((ucontrol->value.integer.value[0] + min) & mask);
2604 if (invert)
2605 val = max - val;
2606 val_mask = mask << shift;
2607 val = val << shift;
2608 if (snd_soc_volsw_is_stereo(mc)) {
2609 val2 = ((ucontrol->value.integer.value[1] + min) & mask);
2610 if (invert)
2611 val2 = max - val2;
2612 if (reg == reg2) {
2613 val_mask |= mask << rshift;
2614 val |= val2 << rshift;
2615 } else {
2616 val2 = val2 << shift;
2617 type_2r = true;
2618 }
2619 }
2620 err = snd_soc_component_update_bits(component, reg, val_mask, val);
2621 if (err < 0)
2622 return err;
2623
2624 if (type_2r)
2625 err = snd_soc_component_update_bits(component, reg2, val_mask,
2626 val2);
2627
2628 return err;
2629}
2630EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
2631
2632/**
2633 * snd_soc_get_volsw_sx - single mixer get callback
2634 * @kcontrol: mixer control
2635 * @ucontrol: control element information
2636 *
2637 * Callback to get the value of a single mixer control, or a double mixer
2638 * control that spans 2 registers.
2639 *
2640 * Returns 0 for success.
2641 */
2642int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
2643 struct snd_ctl_elem_value *ucontrol)
2644{
2645 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2646 struct soc_mixer_control *mc =
2647 (struct soc_mixer_control *)kcontrol->private_value;
2648 unsigned int reg = mc->reg;
2649 unsigned int reg2 = mc->rreg;
2650 unsigned int shift = mc->shift;
2651 unsigned int rshift = mc->rshift;
2652 int max = mc->max;
2653 int min = mc->min;
2654 int mask = (1 << (fls(min + max) - 1)) - 1;
2655 unsigned int val;
2656 int ret;
2657
2658 ret = snd_soc_component_read(component, reg, &val);
2659 if (ret < 0)
2660 return ret;
2661
2662 ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
2663
2664 if (snd_soc_volsw_is_stereo(mc)) {
2665 ret = snd_soc_component_read(component, reg2, &val);
2666 if (ret < 0)
2667 return ret;
2668
2669 val = ((val >> rshift) - min) & mask;
2670 ucontrol->value.integer.value[1] = val;
2671 }
2672
2673 return 0;
2674}
2675EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
2676
2677/**
2678 * snd_soc_put_volsw_sx - double mixer set callback
2679 * @kcontrol: mixer control
2680 * @uinfo: control element information
2681 *
2682 * Callback to set the value of a double mixer control that spans 2 registers.
2683 *
2684 * Returns 0 for success.
2685 */
2686int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
2687 struct snd_ctl_elem_value *ucontrol)
2688{
2689 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2690 struct soc_mixer_control *mc =
2691 (struct soc_mixer_control *)kcontrol->private_value;
2692
2693 unsigned int reg = mc->reg;
2694 unsigned int reg2 = mc->rreg;
2695 unsigned int shift = mc->shift;
2696 unsigned int rshift = mc->rshift;
2697 int max = mc->max;
2698 int min = mc->min;
2699 int mask = (1 << (fls(min + max) - 1)) - 1;
2700 int err = 0;
2701 unsigned int val, val_mask, val2 = 0;
2702
2703 val_mask = mask << shift;
2704 val = (ucontrol->value.integer.value[0] + min) & mask;
2705 val = val << shift;
2706
2707 err = snd_soc_component_update_bits(component, reg, val_mask, val);
2708 if (err < 0)
2709 return err;
2710
2711 if (snd_soc_volsw_is_stereo(mc)) {
2712 val_mask = mask << rshift;
2713 val2 = (ucontrol->value.integer.value[1] + min) & mask;
2714 val2 = val2 << rshift;
2715
2716 err = snd_soc_component_update_bits(component, reg2, val_mask,
2717 val2);
2718 }
2719 return err;
2720}
2721EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
2722
2723/**
2724 * snd_soc_info_volsw_range - single mixer info callback with range.
2725 * @kcontrol: mixer control
2726 * @uinfo: control element information
2727 *
2728 * Callback to provide information, within a range, about a single
2729 * mixer control.
2730 *
2731 * returns 0 for success.
2732 */
2733int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
2734 struct snd_ctl_elem_info *uinfo)
2735{
2736 struct soc_mixer_control *mc =
2737 (struct soc_mixer_control *)kcontrol->private_value;
2738 int platform_max;
2739 int min = mc->min;
2740
2741 if (!mc->platform_max)
2742 mc->platform_max = mc->max;
2743 platform_max = mc->platform_max;
2744
2745 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2746 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
2747 uinfo->value.integer.min = 0;
2748 uinfo->value.integer.max = platform_max - min;
2749
2750 return 0;
2751}
2752EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
2753
2754/**
2755 * snd_soc_put_volsw_range - single mixer put value callback with range.
2756 * @kcontrol: mixer control
2757 * @ucontrol: control element information
2758 *
2759 * Callback to set the value, within a range, for a single mixer control.
2760 *
2761 * Returns 0 for success.
2762 */
2763int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
2764 struct snd_ctl_elem_value *ucontrol)
2765{
2766 struct soc_mixer_control *mc =
2767 (struct soc_mixer_control *)kcontrol->private_value;
2768 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2769 unsigned int reg = mc->reg;
2770 unsigned int rreg = mc->rreg;
2771 unsigned int shift = mc->shift;
2772 int min = mc->min;
2773 int max = mc->max;
2774 unsigned int mask = (1 << fls(max)) - 1;
2775 unsigned int invert = mc->invert;
2776 unsigned int val, val_mask;
2777 int ret;
2778
2779 if (invert)
2780 val = (max - ucontrol->value.integer.value[0]) & mask;
2781 else
2782 val = ((ucontrol->value.integer.value[0] + min) & mask);
2783 val_mask = mask << shift;
2784 val = val << shift;
2785
2786 ret = snd_soc_component_update_bits(component, reg, val_mask, val);
2787 if (ret < 0)
2788 return ret;
2789
2790 if (snd_soc_volsw_is_stereo(mc)) {
2791 if (invert)
2792 val = (max - ucontrol->value.integer.value[1]) & mask;
2793 else
2794 val = ((ucontrol->value.integer.value[1] + min) & mask);
2795 val_mask = mask << shift;
2796 val = val << shift;
2797
2798 ret = snd_soc_component_update_bits(component, rreg, val_mask,
2799 val);
2800 }
2801
2802 return ret;
2803}
2804EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
2805
2806/**
2807 * snd_soc_get_volsw_range - single mixer get callback with range
2808 * @kcontrol: mixer control
2809 * @ucontrol: control element information
2810 *
2811 * Callback to get the value, within a range, of a single mixer control.
2812 *
2813 * Returns 0 for success.
2814 */
2815int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
2816 struct snd_ctl_elem_value *ucontrol)
2817{
2818 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2819 struct soc_mixer_control *mc =
2820 (struct soc_mixer_control *)kcontrol->private_value;
2821 unsigned int reg = mc->reg;
2822 unsigned int rreg = mc->rreg;
2823 unsigned int shift = mc->shift;
2824 int min = mc->min;
2825 int max = mc->max;
2826 unsigned int mask = (1 << fls(max)) - 1;
2827 unsigned int invert = mc->invert;
2828 unsigned int val;
2829 int ret;
2830
2831 ret = snd_soc_component_read(component, reg, &val);
2832 if (ret)
2833 return ret;
2834
2835 ucontrol->value.integer.value[0] = (val >> shift) & mask;
2836 if (invert)
2837 ucontrol->value.integer.value[0] =
2838 max - ucontrol->value.integer.value[0];
2839 else
2840 ucontrol->value.integer.value[0] =
2841 ucontrol->value.integer.value[0] - min;
2842
2843 if (snd_soc_volsw_is_stereo(mc)) {
2844 ret = snd_soc_component_read(component, rreg, &val);
2845 if (ret)
2846 return ret;
2847
2848 ucontrol->value.integer.value[1] = (val >> shift) & mask;
2849 if (invert)
2850 ucontrol->value.integer.value[1] =
2851 max - ucontrol->value.integer.value[1];
2852 else
2853 ucontrol->value.integer.value[1] =
2854 ucontrol->value.integer.value[1] - min;
2855 }
2856
2857 return 0;
2858}
2859EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
2860
2861/**
2862 * snd_soc_limit_volume - Set new limit to an existing volume control.
2863 *
2864 * @codec: where to look for the control
2865 * @name: Name of the control
2866 * @max: new maximum limit
2867 *
2868 * Return 0 for success, else error.
2869 */
2870int snd_soc_limit_volume(struct snd_soc_codec *codec,
2871 const char *name, int max)
2872{
2873 struct snd_card *card = codec->component.card->snd_card;
2874 struct snd_kcontrol *kctl;
2875 struct soc_mixer_control *mc;
2876 int found = 0;
2877 int ret = -EINVAL;
2878
2879 /* Sanity check for name and max */
2880 if (unlikely(!name || max <= 0))
2881 return -EINVAL;
2882
2883 list_for_each_entry(kctl, &card->controls, list) {
2884 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
2885 found = 1;
2886 break;
2887 }
2888 }
2889 if (found) {
2890 mc = (struct soc_mixer_control *)kctl->private_value;
2891 if (max <= mc->max) {
2892 mc->platform_max = max;
2893 ret = 0;
2894 }
2895 }
2896 return ret;
2897}
2898EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
2899
2900int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
2901 struct snd_ctl_elem_info *uinfo)
2902{
2903 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2904 struct soc_bytes *params = (void *)kcontrol->private_value;
2905
2906 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
2907 uinfo->count = params->num_regs * component->val_bytes;
2908
2909 return 0;
2910}
2911EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
2912
2913int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
2914 struct snd_ctl_elem_value *ucontrol)
2915{
2916 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2917 struct soc_bytes *params = (void *)kcontrol->private_value;
2918 int ret;
2919
2920 if (component->regmap)
2921 ret = regmap_raw_read(component->regmap, params->base,
2922 ucontrol->value.bytes.data,
2923 params->num_regs * component->val_bytes);
2924 else
2925 ret = -EINVAL;
2926
2927 /* Hide any masked bytes to ensure consistent data reporting */
2928 if (ret == 0 && params->mask) {
2929 switch (component->val_bytes) {
2930 case 1:
2931 ucontrol->value.bytes.data[0] &= ~params->mask;
2932 break;
2933 case 2:
2934 ((u16 *)(&ucontrol->value.bytes.data))[0]
2935 &= cpu_to_be16(~params->mask);
2936 break;
2937 case 4:
2938 ((u32 *)(&ucontrol->value.bytes.data))[0]
2939 &= cpu_to_be32(~params->mask);
2940 break;
2941 default:
2942 return -EINVAL;
2943 }
2944 }
2945
2946 return ret;
2947}
2948EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
2949
2950int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
2951 struct snd_ctl_elem_value *ucontrol)
2952{
2953 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2954 struct soc_bytes *params = (void *)kcontrol->private_value;
2955 int ret, len;
2956 unsigned int val, mask;
2957 void *data;
2958
2959 if (!component->regmap || !params->num_regs)
2960 return -EINVAL;
2961
2962 len = params->num_regs * component->val_bytes;
2963
2964 data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
2965 if (!data)
2966 return -ENOMEM;
2967
2968 /*
2969 * If we've got a mask then we need to preserve the register
2970 * bits. We shouldn't modify the incoming data so take a
2971 * copy.
2972 */
2973 if (params->mask) {
2974 ret = regmap_read(component->regmap, params->base, &val);
2975 if (ret != 0)
2976 goto out;
2977
2978 val &= params->mask;
2979
2980 switch (component->val_bytes) {
2981 case 1:
2982 ((u8 *)data)[0] &= ~params->mask;
2983 ((u8 *)data)[0] |= val;
2984 break;
2985 case 2:
2986 mask = ~params->mask;
2987 ret = regmap_parse_val(component->regmap,
2988 &mask, &mask);
2989 if (ret != 0)
2990 goto out;
2991
2992 ((u16 *)data)[0] &= mask;
2993
2994 ret = regmap_parse_val(component->regmap,
2995 &val, &val);
2996 if (ret != 0)
2997 goto out;
2998
2999 ((u16 *)data)[0] |= val;
3000 break;
3001 case 4:
3002 mask = ~params->mask;
3003 ret = regmap_parse_val(component->regmap,
3004 &mask, &mask);
3005 if (ret != 0)
3006 goto out;
3007
3008 ((u32 *)data)[0] &= mask;
3009
3010 ret = regmap_parse_val(component->regmap,
3011 &val, &val);
3012 if (ret != 0)
3013 goto out;
3014
3015 ((u32 *)data)[0] |= val;
3016 break;
3017 default:
3018 ret = -EINVAL;
3019 goto out;
3020 }
3021 }
3022
3023 ret = regmap_raw_write(component->regmap, params->base,
3024 data, len);
3025
3026out:
3027 kfree(data);
3028
3029 return ret;
3030}
3031EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
3032
3033int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
3034 struct snd_ctl_elem_info *ucontrol)
3035{
3036 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
3037
3038 ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
3039 ucontrol->count = params->max;
3040
3041 return 0;
3042}
3043EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
3044
3045int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
3046 unsigned int size, unsigned int __user *tlv)
3047{
3048 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
3049 unsigned int count = size < params->max ? size : params->max;
3050 int ret = -ENXIO;
3051
3052 switch (op_flag) {
3053 case SNDRV_CTL_TLV_OP_READ:
3054 if (params->get)
3055 ret = params->get(tlv, count);
3056 break;
3057 case SNDRV_CTL_TLV_OP_WRITE:
3058 if (params->put)
3059 ret = params->put(tlv, count);
3060 break;
3061 }
3062 return ret;
3063}
3064EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
3065
3066/**
3067 * snd_soc_info_xr_sx - signed multi register info callback
3068 * @kcontrol: mreg control
3069 * @uinfo: control element information
3070 *
3071 * Callback to provide information of a control that can
3072 * span multiple codec registers which together
3073 * forms a single signed value in a MSB/LSB manner.
3074 *
3075 * Returns 0 for success.
3076 */
3077int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
3078 struct snd_ctl_elem_info *uinfo)
3079{
3080 struct soc_mreg_control *mc =
3081 (struct soc_mreg_control *)kcontrol->private_value;
3082 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3083 uinfo->count = 1;
3084 uinfo->value.integer.min = mc->min;
3085 uinfo->value.integer.max = mc->max;
3086
3087 return 0;
3088}
3089EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
3090
3091/**
3092 * snd_soc_get_xr_sx - signed multi register get callback
3093 * @kcontrol: mreg control
3094 * @ucontrol: control element information
3095 *
3096 * Callback to get the value of a control that can span
3097 * multiple codec registers which together forms a single
3098 * signed value in a MSB/LSB manner. The control supports
3099 * specifying total no of bits used to allow for bitfields
3100 * across the multiple codec registers.
3101 *
3102 * Returns 0 for success.
3103 */
3104int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
3105 struct snd_ctl_elem_value *ucontrol)
3106{
3107 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
3108 struct soc_mreg_control *mc =
3109 (struct soc_mreg_control *)kcontrol->private_value;
3110 unsigned int regbase = mc->regbase;
3111 unsigned int regcount = mc->regcount;
3112 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
3113 unsigned int regwmask = (1<<regwshift)-1;
3114 unsigned int invert = mc->invert;
3115 unsigned long mask = (1UL<<mc->nbits)-1;
3116 long min = mc->min;
3117 long max = mc->max;
3118 long val = 0;
3119 unsigned int regval;
3120 unsigned int i;
3121 int ret;
3122
3123 for (i = 0; i < regcount; i++) {
3124 ret = snd_soc_component_read(component, regbase+i, &regval);
3125 if (ret)
3126 return ret;
3127 val |= (regval & regwmask) << (regwshift*(regcount-i-1));
3128 }
3129 val &= mask;
3130 if (min < 0 && val > max)
3131 val |= ~mask;
3132 if (invert)
3133 val = max - val;
3134 ucontrol->value.integer.value[0] = val;
3135
3136 return 0;
3137}
3138EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
3139
3140/**
3141 * snd_soc_put_xr_sx - signed multi register get callback
3142 * @kcontrol: mreg control
3143 * @ucontrol: control element information
3144 *
3145 * Callback to set the value of a control that can span
3146 * multiple codec registers which together forms a single
3147 * signed value in a MSB/LSB manner. The control supports
3148 * specifying total no of bits used to allow for bitfields
3149 * across the multiple codec registers.
3150 *
3151 * Returns 0 for success.
3152 */
3153int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
3154 struct snd_ctl_elem_value *ucontrol)
3155{
3156 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
3157 struct soc_mreg_control *mc =
3158 (struct soc_mreg_control *)kcontrol->private_value;
3159 unsigned int regbase = mc->regbase;
3160 unsigned int regcount = mc->regcount;
3161 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
3162 unsigned int regwmask = (1<<regwshift)-1;
3163 unsigned int invert = mc->invert;
3164 unsigned long mask = (1UL<<mc->nbits)-1;
3165 long max = mc->max;
3166 long val = ucontrol->value.integer.value[0];
3167 unsigned int i, regval, regmask;
3168 int err;
3169
3170 if (invert)
3171 val = max - val;
3172 val &= mask;
3173 for (i = 0; i < regcount; i++) {
3174 regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
3175 regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
3176 err = snd_soc_component_update_bits(component, regbase+i,
3177 regmask, regval);
3178 if (err < 0)
3179 return err;
3180 }
3181
3182 return 0;
3183}
3184EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
3185
3186/**
3187 * snd_soc_get_strobe - strobe get callback
3188 * @kcontrol: mixer control
3189 * @ucontrol: control element information
3190 *
3191 * Callback get the value of a strobe mixer control.
3192 *
3193 * Returns 0 for success.
3194 */
3195int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
3196 struct snd_ctl_elem_value *ucontrol)
3197{
3198 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
3199 struct soc_mixer_control *mc =
3200 (struct soc_mixer_control *)kcontrol->private_value;
3201 unsigned int reg = mc->reg;
3202 unsigned int shift = mc->shift;
3203 unsigned int mask = 1 << shift;
3204 unsigned int invert = mc->invert != 0;
3205 unsigned int val;
3206 int ret;
3207
3208 ret = snd_soc_component_read(component, reg, &val);
3209 if (ret)
3210 return ret;
3211
3212 val &= mask;
3213
3214 if (shift != 0 && val != 0)
3215 val = val >> shift;
3216 ucontrol->value.enumerated.item[0] = val ^ invert;
3217
3218 return 0;
3219}
3220EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
3221
3222/**
3223 * snd_soc_put_strobe - strobe put callback
3224 * @kcontrol: mixer control
3225 * @ucontrol: control element information
3226 *
3227 * Callback strobe a register bit to high then low (or the inverse)
3228 * in one pass of a single mixer enum control.
3229 *
3230 * Returns 1 for success.
3231 */
3232int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
3233 struct snd_ctl_elem_value *ucontrol)
3234{
3235 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
3236 struct soc_mixer_control *mc =
3237 (struct soc_mixer_control *)kcontrol->private_value;
3238 unsigned int reg = mc->reg;
3239 unsigned int shift = mc->shift;
3240 unsigned int mask = 1 << shift;
3241 unsigned int invert = mc->invert != 0;
3242 unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
3243 unsigned int val1 = (strobe ^ invert) ? mask : 0;
3244 unsigned int val2 = (strobe ^ invert) ? 0 : mask;
3245 int err;
3246
3247 err = snd_soc_component_update_bits(component, reg, mask, val1);
3248 if (err < 0)
3249 return err;
3250
3251 return snd_soc_component_update_bits(component, reg, mask, val2);
3252}
3253EXPORT_SYMBOL_GPL(snd_soc_put_strobe);
3254
3255/**
3256 * snd_soc_dai_set_sysclk - configure DAI system or master clock. 2337 * snd_soc_dai_set_sysclk - configure DAI system or master clock.
3257 * @dai: DAI 2338 * @dai: DAI
3258 * @clk_id: DAI specific clock ID 2339 * @clk_id: DAI specific clock ID
diff --git a/sound/soc/soc-ops.c b/sound/soc/soc-ops.c
new file mode 100644
index 000000000000..100d92b5b77e
--- /dev/null
+++ b/sound/soc/soc-ops.c
@@ -0,0 +1,952 @@
1/*
2 * soc-ops.c -- Generic ASoC operations
3 *
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Copyright 2005 Openedhand Ltd.
6 * Copyright (C) 2010 Slimlogic Ltd.
7 * Copyright (C) 2010 Texas Instruments Inc.
8 *
9 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
10 * with code, comments and ideas from :-
11 * Richard Purdie <richard@openedhand.com>
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
17 */
18
19#include <linux/module.h>
20#include <linux/moduleparam.h>
21#include <linux/init.h>
22#include <linux/delay.h>
23#include <linux/pm.h>
24#include <linux/bitops.h>
25#include <linux/ctype.h>
26#include <linux/slab.h>
27#include <sound/core.h>
28#include <sound/jack.h>
29#include <sound/pcm.h>
30#include <sound/pcm_params.h>
31#include <sound/soc.h>
32#include <sound/soc-dpcm.h>
33#include <sound/initval.h>
34
35/**
36 * snd_soc_info_enum_double - enumerated double mixer info callback
37 * @kcontrol: mixer control
38 * @uinfo: control element information
39 *
40 * Callback to provide information about a double enumerated
41 * mixer control.
42 *
43 * Returns 0 for success.
44 */
45int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
46 struct snd_ctl_elem_info *uinfo)
47{
48 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
49
50 return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
51 e->items, e->texts);
52}
53EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
54
55/**
56 * snd_soc_get_enum_double - enumerated double mixer get callback
57 * @kcontrol: mixer control
58 * @ucontrol: control element information
59 *
60 * Callback to get the value of a double enumerated mixer.
61 *
62 * Returns 0 for success.
63 */
64int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
65 struct snd_ctl_elem_value *ucontrol)
66{
67 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
68 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
69 unsigned int val, item;
70 unsigned int reg_val;
71 int ret;
72
73 ret = snd_soc_component_read(component, e->reg, &reg_val);
74 if (ret)
75 return ret;
76 val = (reg_val >> e->shift_l) & e->mask;
77 item = snd_soc_enum_val_to_item(e, val);
78 ucontrol->value.enumerated.item[0] = item;
79 if (e->shift_l != e->shift_r) {
80 val = (reg_val >> e->shift_l) & e->mask;
81 item = snd_soc_enum_val_to_item(e, val);
82 ucontrol->value.enumerated.item[1] = item;
83 }
84
85 return 0;
86}
87EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
88
89/**
90 * snd_soc_put_enum_double - enumerated double mixer put callback
91 * @kcontrol: mixer control
92 * @ucontrol: control element information
93 *
94 * Callback to set the value of a double enumerated mixer.
95 *
96 * Returns 0 for success.
97 */
98int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
99 struct snd_ctl_elem_value *ucontrol)
100{
101 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
102 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
103 unsigned int *item = ucontrol->value.enumerated.item;
104 unsigned int val;
105 unsigned int mask;
106
107 if (item[0] >= e->items)
108 return -EINVAL;
109 val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
110 mask = e->mask << e->shift_l;
111 if (e->shift_l != e->shift_r) {
112 if (item[1] >= e->items)
113 return -EINVAL;
114 val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
115 mask |= e->mask << e->shift_r;
116 }
117
118 return snd_soc_component_update_bits(component, e->reg, mask, val);
119}
120EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
121
122/**
123 * snd_soc_read_signed - Read a codec register and interprete as signed value
124 * @component: component
125 * @reg: Register to read
126 * @mask: Mask to use after shifting the register value
127 * @shift: Right shift of register value
128 * @sign_bit: Bit that describes if a number is negative or not.
129 * @signed_val: Pointer to where the read value should be stored
130 *
131 * This functions reads a codec register. The register value is shifted right
132 * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
133 * the given registervalue into a signed integer if sign_bit is non-zero.
134 *
135 * Returns 0 on sucess, otherwise an error value
136 */
137static int snd_soc_read_signed(struct snd_soc_component *component,
138 unsigned int reg, unsigned int mask, unsigned int shift,
139 unsigned int sign_bit, int *signed_val)
140{
141 int ret;
142 unsigned int val;
143
144 ret = snd_soc_component_read(component, reg, &val);
145 if (ret < 0)
146 return ret;
147
148 val = (val >> shift) & mask;
149
150 if (!sign_bit) {
151 *signed_val = val;
152 return 0;
153 }
154
155 /* non-negative number */
156 if (!(val & BIT(sign_bit))) {
157 *signed_val = val;
158 return 0;
159 }
160
161 ret = val;
162
163 /*
164 * The register most probably does not contain a full-sized int.
165 * Instead we have an arbitrary number of bits in a signed
166 * representation which has to be translated into a full-sized int.
167 * This is done by filling up all bits above the sign-bit.
168 */
169 ret |= ~((int)(BIT(sign_bit) - 1));
170
171 *signed_val = ret;
172
173 return 0;
174}
175
176/**
177 * snd_soc_info_volsw - single mixer info callback
178 * @kcontrol: mixer control
179 * @uinfo: control element information
180 *
181 * Callback to provide information about a single mixer control, or a double
182 * mixer control that spans 2 registers.
183 *
184 * Returns 0 for success.
185 */
186int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
187 struct snd_ctl_elem_info *uinfo)
188{
189 struct soc_mixer_control *mc =
190 (struct soc_mixer_control *)kcontrol->private_value;
191 int platform_max;
192
193 if (!mc->platform_max)
194 mc->platform_max = mc->max;
195 platform_max = mc->platform_max;
196
197 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
198 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
199 else
200 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
201
202 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
203 uinfo->value.integer.min = 0;
204 uinfo->value.integer.max = platform_max - mc->min;
205 return 0;
206}
207EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
208
209/**
210 * snd_soc_get_volsw - single mixer get callback
211 * @kcontrol: mixer control
212 * @ucontrol: control element information
213 *
214 * Callback to get the value of a single mixer control, or a double mixer
215 * control that spans 2 registers.
216 *
217 * Returns 0 for success.
218 */
219int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
220 struct snd_ctl_elem_value *ucontrol)
221{
222 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
223 struct soc_mixer_control *mc =
224 (struct soc_mixer_control *)kcontrol->private_value;
225 unsigned int reg = mc->reg;
226 unsigned int reg2 = mc->rreg;
227 unsigned int shift = mc->shift;
228 unsigned int rshift = mc->rshift;
229 int max = mc->max;
230 int min = mc->min;
231 int sign_bit = mc->sign_bit;
232 unsigned int mask = (1 << fls(max)) - 1;
233 unsigned int invert = mc->invert;
234 int val;
235 int ret;
236
237 if (sign_bit)
238 mask = BIT(sign_bit + 1) - 1;
239
240 ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
241 if (ret)
242 return ret;
243
244 ucontrol->value.integer.value[0] = val - min;
245 if (invert)
246 ucontrol->value.integer.value[0] =
247 max - ucontrol->value.integer.value[0];
248
249 if (snd_soc_volsw_is_stereo(mc)) {
250 if (reg == reg2)
251 ret = snd_soc_read_signed(component, reg, mask, rshift,
252 sign_bit, &val);
253 else
254 ret = snd_soc_read_signed(component, reg2, mask, shift,
255 sign_bit, &val);
256 if (ret)
257 return ret;
258
259 ucontrol->value.integer.value[1] = val - min;
260 if (invert)
261 ucontrol->value.integer.value[1] =
262 max - ucontrol->value.integer.value[1];
263 }
264
265 return 0;
266}
267EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
268
269/**
270 * snd_soc_put_volsw - single mixer put callback
271 * @kcontrol: mixer control
272 * @ucontrol: control element information
273 *
274 * Callback to set the value of a single mixer control, or a double mixer
275 * control that spans 2 registers.
276 *
277 * Returns 0 for success.
278 */
279int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
280 struct snd_ctl_elem_value *ucontrol)
281{
282 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
283 struct soc_mixer_control *mc =
284 (struct soc_mixer_control *)kcontrol->private_value;
285 unsigned int reg = mc->reg;
286 unsigned int reg2 = mc->rreg;
287 unsigned int shift = mc->shift;
288 unsigned int rshift = mc->rshift;
289 int max = mc->max;
290 int min = mc->min;
291 unsigned int sign_bit = mc->sign_bit;
292 unsigned int mask = (1 << fls(max)) - 1;
293 unsigned int invert = mc->invert;
294 int err;
295 bool type_2r = false;
296 unsigned int val2 = 0;
297 unsigned int val, val_mask;
298
299 if (sign_bit)
300 mask = BIT(sign_bit + 1) - 1;
301
302 val = ((ucontrol->value.integer.value[0] + min) & mask);
303 if (invert)
304 val = max - val;
305 val_mask = mask << shift;
306 val = val << shift;
307 if (snd_soc_volsw_is_stereo(mc)) {
308 val2 = ((ucontrol->value.integer.value[1] + min) & mask);
309 if (invert)
310 val2 = max - val2;
311 if (reg == reg2) {
312 val_mask |= mask << rshift;
313 val |= val2 << rshift;
314 } else {
315 val2 = val2 << shift;
316 type_2r = true;
317 }
318 }
319 err = snd_soc_component_update_bits(component, reg, val_mask, val);
320 if (err < 0)
321 return err;
322
323 if (type_2r)
324 err = snd_soc_component_update_bits(component, reg2, val_mask,
325 val2);
326
327 return err;
328}
329EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
330
331/**
332 * snd_soc_get_volsw_sx - single mixer get callback
333 * @kcontrol: mixer control
334 * @ucontrol: control element information
335 *
336 * Callback to get the value of a single mixer control, or a double mixer
337 * control that spans 2 registers.
338 *
339 * Returns 0 for success.
340 */
341int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
342 struct snd_ctl_elem_value *ucontrol)
343{
344 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
345 struct soc_mixer_control *mc =
346 (struct soc_mixer_control *)kcontrol->private_value;
347 unsigned int reg = mc->reg;
348 unsigned int reg2 = mc->rreg;
349 unsigned int shift = mc->shift;
350 unsigned int rshift = mc->rshift;
351 int max = mc->max;
352 int min = mc->min;
353 int mask = (1 << (fls(min + max) - 1)) - 1;
354 unsigned int val;
355 int ret;
356
357 ret = snd_soc_component_read(component, reg, &val);
358 if (ret < 0)
359 return ret;
360
361 ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
362
363 if (snd_soc_volsw_is_stereo(mc)) {
364 ret = snd_soc_component_read(component, reg2, &val);
365 if (ret < 0)
366 return ret;
367
368 val = ((val >> rshift) - min) & mask;
369 ucontrol->value.integer.value[1] = val;
370 }
371
372 return 0;
373}
374EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
375
376/**
377 * snd_soc_put_volsw_sx - double mixer set callback
378 * @kcontrol: mixer control
379 * @uinfo: control element information
380 *
381 * Callback to set the value of a double mixer control that spans 2 registers.
382 *
383 * Returns 0 for success.
384 */
385int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
386 struct snd_ctl_elem_value *ucontrol)
387{
388 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
389 struct soc_mixer_control *mc =
390 (struct soc_mixer_control *)kcontrol->private_value;
391
392 unsigned int reg = mc->reg;
393 unsigned int reg2 = mc->rreg;
394 unsigned int shift = mc->shift;
395 unsigned int rshift = mc->rshift;
396 int max = mc->max;
397 int min = mc->min;
398 int mask = (1 << (fls(min + max) - 1)) - 1;
399 int err = 0;
400 unsigned int val, val_mask, val2 = 0;
401
402 val_mask = mask << shift;
403 val = (ucontrol->value.integer.value[0] + min) & mask;
404 val = val << shift;
405
406 err = snd_soc_component_update_bits(component, reg, val_mask, val);
407 if (err < 0)
408 return err;
409
410 if (snd_soc_volsw_is_stereo(mc)) {
411 val_mask = mask << rshift;
412 val2 = (ucontrol->value.integer.value[1] + min) & mask;
413 val2 = val2 << rshift;
414
415 err = snd_soc_component_update_bits(component, reg2, val_mask,
416 val2);
417 }
418 return err;
419}
420EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
421
422/**
423 * snd_soc_info_volsw_range - single mixer info callback with range.
424 * @kcontrol: mixer control
425 * @uinfo: control element information
426 *
427 * Callback to provide information, within a range, about a single
428 * mixer control.
429 *
430 * returns 0 for success.
431 */
432int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
433 struct snd_ctl_elem_info *uinfo)
434{
435 struct soc_mixer_control *mc =
436 (struct soc_mixer_control *)kcontrol->private_value;
437 int platform_max;
438 int min = mc->min;
439
440 if (!mc->platform_max)
441 mc->platform_max = mc->max;
442 platform_max = mc->platform_max;
443
444 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
445 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
446 uinfo->value.integer.min = 0;
447 uinfo->value.integer.max = platform_max - min;
448
449 return 0;
450}
451EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
452
453/**
454 * snd_soc_put_volsw_range - single mixer put value callback with range.
455 * @kcontrol: mixer control
456 * @ucontrol: control element information
457 *
458 * Callback to set the value, within a range, for a single mixer control.
459 *
460 * Returns 0 for success.
461 */
462int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
463 struct snd_ctl_elem_value *ucontrol)
464{
465 struct soc_mixer_control *mc =
466 (struct soc_mixer_control *)kcontrol->private_value;
467 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
468 unsigned int reg = mc->reg;
469 unsigned int rreg = mc->rreg;
470 unsigned int shift = mc->shift;
471 int min = mc->min;
472 int max = mc->max;
473 unsigned int mask = (1 << fls(max)) - 1;
474 unsigned int invert = mc->invert;
475 unsigned int val, val_mask;
476 int ret;
477
478 if (invert)
479 val = (max - ucontrol->value.integer.value[0]) & mask;
480 else
481 val = ((ucontrol->value.integer.value[0] + min) & mask);
482 val_mask = mask << shift;
483 val = val << shift;
484
485 ret = snd_soc_component_update_bits(component, reg, val_mask, val);
486 if (ret < 0)
487 return ret;
488
489 if (snd_soc_volsw_is_stereo(mc)) {
490 if (invert)
491 val = (max - ucontrol->value.integer.value[1]) & mask;
492 else
493 val = ((ucontrol->value.integer.value[1] + min) & mask);
494 val_mask = mask << shift;
495 val = val << shift;
496
497 ret = snd_soc_component_update_bits(component, rreg, val_mask,
498 val);
499 }
500
501 return ret;
502}
503EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
504
505/**
506 * snd_soc_get_volsw_range - single mixer get callback with range
507 * @kcontrol: mixer control
508 * @ucontrol: control element information
509 *
510 * Callback to get the value, within a range, of a single mixer control.
511 *
512 * Returns 0 for success.
513 */
514int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
515 struct snd_ctl_elem_value *ucontrol)
516{
517 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
518 struct soc_mixer_control *mc =
519 (struct soc_mixer_control *)kcontrol->private_value;
520 unsigned int reg = mc->reg;
521 unsigned int rreg = mc->rreg;
522 unsigned int shift = mc->shift;
523 int min = mc->min;
524 int max = mc->max;
525 unsigned int mask = (1 << fls(max)) - 1;
526 unsigned int invert = mc->invert;
527 unsigned int val;
528 int ret;
529
530 ret = snd_soc_component_read(component, reg, &val);
531 if (ret)
532 return ret;
533
534 ucontrol->value.integer.value[0] = (val >> shift) & mask;
535 if (invert)
536 ucontrol->value.integer.value[0] =
537 max - ucontrol->value.integer.value[0];
538 else
539 ucontrol->value.integer.value[0] =
540 ucontrol->value.integer.value[0] - min;
541
542 if (snd_soc_volsw_is_stereo(mc)) {
543 ret = snd_soc_component_read(component, rreg, &val);
544 if (ret)
545 return ret;
546
547 ucontrol->value.integer.value[1] = (val >> shift) & mask;
548 if (invert)
549 ucontrol->value.integer.value[1] =
550 max - ucontrol->value.integer.value[1];
551 else
552 ucontrol->value.integer.value[1] =
553 ucontrol->value.integer.value[1] - min;
554 }
555
556 return 0;
557}
558EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
559
560/**
561 * snd_soc_limit_volume - Set new limit to an existing volume control.
562 *
563 * @codec: where to look for the control
564 * @name: Name of the control
565 * @max: new maximum limit
566 *
567 * Return 0 for success, else error.
568 */
569int snd_soc_limit_volume(struct snd_soc_codec *codec,
570 const char *name, int max)
571{
572 struct snd_card *card = codec->component.card->snd_card;
573 struct snd_kcontrol *kctl;
574 struct soc_mixer_control *mc;
575 int found = 0;
576 int ret = -EINVAL;
577
578 /* Sanity check for name and max */
579 if (unlikely(!name || max <= 0))
580 return -EINVAL;
581
582 list_for_each_entry(kctl, &card->controls, list) {
583 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
584 found = 1;
585 break;
586 }
587 }
588 if (found) {
589 mc = (struct soc_mixer_control *)kctl->private_value;
590 if (max <= mc->max) {
591 mc->platform_max = max;
592 ret = 0;
593 }
594 }
595 return ret;
596}
597EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
598
599int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
600 struct snd_ctl_elem_info *uinfo)
601{
602 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
603 struct soc_bytes *params = (void *)kcontrol->private_value;
604
605 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
606 uinfo->count = params->num_regs * component->val_bytes;
607
608 return 0;
609}
610EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
611
612int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
613 struct snd_ctl_elem_value *ucontrol)
614{
615 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
616 struct soc_bytes *params = (void *)kcontrol->private_value;
617 int ret;
618
619 if (component->regmap)
620 ret = regmap_raw_read(component->regmap, params->base,
621 ucontrol->value.bytes.data,
622 params->num_regs * component->val_bytes);
623 else
624 ret = -EINVAL;
625
626 /* Hide any masked bytes to ensure consistent data reporting */
627 if (ret == 0 && params->mask) {
628 switch (component->val_bytes) {
629 case 1:
630 ucontrol->value.bytes.data[0] &= ~params->mask;
631 break;
632 case 2:
633 ((u16 *)(&ucontrol->value.bytes.data))[0]
634 &= cpu_to_be16(~params->mask);
635 break;
636 case 4:
637 ((u32 *)(&ucontrol->value.bytes.data))[0]
638 &= cpu_to_be32(~params->mask);
639 break;
640 default:
641 return -EINVAL;
642 }
643 }
644
645 return ret;
646}
647EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
648
649int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
650 struct snd_ctl_elem_value *ucontrol)
651{
652 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
653 struct soc_bytes *params = (void *)kcontrol->private_value;
654 int ret, len;
655 unsigned int val, mask;
656 void *data;
657
658 if (!component->regmap || !params->num_regs)
659 return -EINVAL;
660
661 len = params->num_regs * component->val_bytes;
662
663 data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
664 if (!data)
665 return -ENOMEM;
666
667 /*
668 * If we've got a mask then we need to preserve the register
669 * bits. We shouldn't modify the incoming data so take a
670 * copy.
671 */
672 if (params->mask) {
673 ret = regmap_read(component->regmap, params->base, &val);
674 if (ret != 0)
675 goto out;
676
677 val &= params->mask;
678
679 switch (component->val_bytes) {
680 case 1:
681 ((u8 *)data)[0] &= ~params->mask;
682 ((u8 *)data)[0] |= val;
683 break;
684 case 2:
685 mask = ~params->mask;
686 ret = regmap_parse_val(component->regmap,
687 &mask, &mask);
688 if (ret != 0)
689 goto out;
690
691 ((u16 *)data)[0] &= mask;
692
693 ret = regmap_parse_val(component->regmap,
694 &val, &val);
695 if (ret != 0)
696 goto out;
697
698 ((u16 *)data)[0] |= val;
699 break;
700 case 4:
701 mask = ~params->mask;
702 ret = regmap_parse_val(component->regmap,
703 &mask, &mask);
704 if (ret != 0)
705 goto out;
706
707 ((u32 *)data)[0] &= mask;
708
709 ret = regmap_parse_val(component->regmap,
710 &val, &val);
711 if (ret != 0)
712 goto out;
713
714 ((u32 *)data)[0] |= val;
715 break;
716 default:
717 ret = -EINVAL;
718 goto out;
719 }
720 }
721
722 ret = regmap_raw_write(component->regmap, params->base,
723 data, len);
724
725out:
726 kfree(data);
727
728 return ret;
729}
730EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
731
732int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
733 struct snd_ctl_elem_info *ucontrol)
734{
735 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
736
737 ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
738 ucontrol->count = params->max;
739
740 return 0;
741}
742EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
743
744int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
745 unsigned int size, unsigned int __user *tlv)
746{
747 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
748 unsigned int count = size < params->max ? size : params->max;
749 int ret = -ENXIO;
750
751 switch (op_flag) {
752 case SNDRV_CTL_TLV_OP_READ:
753 if (params->get)
754 ret = params->get(tlv, count);
755 break;
756 case SNDRV_CTL_TLV_OP_WRITE:
757 if (params->put)
758 ret = params->put(tlv, count);
759 break;
760 }
761 return ret;
762}
763EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
764
765/**
766 * snd_soc_info_xr_sx - signed multi register info callback
767 * @kcontrol: mreg control
768 * @uinfo: control element information
769 *
770 * Callback to provide information of a control that can
771 * span multiple codec registers which together
772 * forms a single signed value in a MSB/LSB manner.
773 *
774 * Returns 0 for success.
775 */
776int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
777 struct snd_ctl_elem_info *uinfo)
778{
779 struct soc_mreg_control *mc =
780 (struct soc_mreg_control *)kcontrol->private_value;
781 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
782 uinfo->count = 1;
783 uinfo->value.integer.min = mc->min;
784 uinfo->value.integer.max = mc->max;
785
786 return 0;
787}
788EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
789
790/**
791 * snd_soc_get_xr_sx - signed multi register get callback
792 * @kcontrol: mreg control
793 * @ucontrol: control element information
794 *
795 * Callback to get the value of a control that can span
796 * multiple codec registers which together forms a single
797 * signed value in a MSB/LSB manner. The control supports
798 * specifying total no of bits used to allow for bitfields
799 * across the multiple codec registers.
800 *
801 * Returns 0 for success.
802 */
803int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
804 struct snd_ctl_elem_value *ucontrol)
805{
806 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
807 struct soc_mreg_control *mc =
808 (struct soc_mreg_control *)kcontrol->private_value;
809 unsigned int regbase = mc->regbase;
810 unsigned int regcount = mc->regcount;
811 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
812 unsigned int regwmask = (1<<regwshift)-1;
813 unsigned int invert = mc->invert;
814 unsigned long mask = (1UL<<mc->nbits)-1;
815 long min = mc->min;
816 long max = mc->max;
817 long val = 0;
818 unsigned int regval;
819 unsigned int i;
820 int ret;
821
822 for (i = 0; i < regcount; i++) {
823 ret = snd_soc_component_read(component, regbase+i, &regval);
824 if (ret)
825 return ret;
826 val |= (regval & regwmask) << (regwshift*(regcount-i-1));
827 }
828 val &= mask;
829 if (min < 0 && val > max)
830 val |= ~mask;
831 if (invert)
832 val = max - val;
833 ucontrol->value.integer.value[0] = val;
834
835 return 0;
836}
837EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
838
839/**
840 * snd_soc_put_xr_sx - signed multi register get callback
841 * @kcontrol: mreg control
842 * @ucontrol: control element information
843 *
844 * Callback to set the value of a control that can span
845 * multiple codec registers which together forms a single
846 * signed value in a MSB/LSB manner. The control supports
847 * specifying total no of bits used to allow for bitfields
848 * across the multiple codec registers.
849 *
850 * Returns 0 for success.
851 */
852int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
853 struct snd_ctl_elem_value *ucontrol)
854{
855 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
856 struct soc_mreg_control *mc =
857 (struct soc_mreg_control *)kcontrol->private_value;
858 unsigned int regbase = mc->regbase;
859 unsigned int regcount = mc->regcount;
860 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
861 unsigned int regwmask = (1<<regwshift)-1;
862 unsigned int invert = mc->invert;
863 unsigned long mask = (1UL<<mc->nbits)-1;
864 long max = mc->max;
865 long val = ucontrol->value.integer.value[0];
866 unsigned int i, regval, regmask;
867 int err;
868
869 if (invert)
870 val = max - val;
871 val &= mask;
872 for (i = 0; i < regcount; i++) {
873 regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
874 regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
875 err = snd_soc_component_update_bits(component, regbase+i,
876 regmask, regval);
877 if (err < 0)
878 return err;
879 }
880
881 return 0;
882}
883EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
884
885/**
886 * snd_soc_get_strobe - strobe get callback
887 * @kcontrol: mixer control
888 * @ucontrol: control element information
889 *
890 * Callback get the value of a strobe mixer control.
891 *
892 * Returns 0 for success.
893 */
894int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
895 struct snd_ctl_elem_value *ucontrol)
896{
897 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
898 struct soc_mixer_control *mc =
899 (struct soc_mixer_control *)kcontrol->private_value;
900 unsigned int reg = mc->reg;
901 unsigned int shift = mc->shift;
902 unsigned int mask = 1 << shift;
903 unsigned int invert = mc->invert != 0;
904 unsigned int val;
905 int ret;
906
907 ret = snd_soc_component_read(component, reg, &val);
908 if (ret)
909 return ret;
910
911 val &= mask;
912
913 if (shift != 0 && val != 0)
914 val = val >> shift;
915 ucontrol->value.enumerated.item[0] = val ^ invert;
916
917 return 0;
918}
919EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
920
921/**
922 * snd_soc_put_strobe - strobe put callback
923 * @kcontrol: mixer control
924 * @ucontrol: control element information
925 *
926 * Callback strobe a register bit to high then low (or the inverse)
927 * in one pass of a single mixer enum control.
928 *
929 * Returns 1 for success.
930 */
931int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
932 struct snd_ctl_elem_value *ucontrol)
933{
934 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
935 struct soc_mixer_control *mc =
936 (struct soc_mixer_control *)kcontrol->private_value;
937 unsigned int reg = mc->reg;
938 unsigned int shift = mc->shift;
939 unsigned int mask = 1 << shift;
940 unsigned int invert = mc->invert != 0;
941 unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
942 unsigned int val1 = (strobe ^ invert) ? mask : 0;
943 unsigned int val2 = (strobe ^ invert) ? 0 : mask;
944 int err;
945
946 err = snd_soc_component_update_bits(component, reg, mask, val1);
947 if (err < 0)
948 return err;
949
950 return snd_soc_component_update_bits(component, reg, mask, val2);
951}
952EXPORT_SYMBOL_GPL(snd_soc_put_strobe);