aboutsummaryrefslogtreecommitdiffstats
path: root/sound
diff options
context:
space:
mode:
authorThomas Bogendoerfer <tsbogend@alpha.franken.de>2008-07-12 06:12:20 -0400
committerJaroslav Kysela <perex@perex.cz>2008-07-14 03:00:57 -0400
commit787dba37a6ff5c80c67f37c081712a6e4af92e25 (patch)
tree46fb52cca0a1f9d629d6602e4b5747425353af8f /sound
parent9e4641541e9681a568483133813332cfafa34d86 (diff)
ALSA: ALSA driver for SGI HAL2 audio device
This patch adds a new ALSA driver for the audio device found inside many older SGI workstation (Indy, Indigo2). The hardware uses a SGI custom chip, which feeds two codec chips, an IEC chip and a synth chip. Currently only one of the codecs is supported. This driver already has the same functionality as the HAL2 OSS driver and will replace it. Signed-off-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@perex.cz>
Diffstat (limited to 'sound')
-rw-r--r--sound/mips/Kconfig7
-rw-r--r--sound/mips/Makefile2
-rw-r--r--sound/mips/hal2.c947
-rw-r--r--sound/mips/hal2.h245
4 files changed, 1201 insertions, 0 deletions
diff --git a/sound/mips/Kconfig b/sound/mips/Kconfig
index bb26f6cf4c0a..2a61cade4ac3 100644
--- a/sound/mips/Kconfig
+++ b/sound/mips/Kconfig
@@ -9,6 +9,13 @@ menuconfig SND_MIPS
9 9
10if SND_MIPS 10if SND_MIPS
11 11
12config SND_SGI_HAL2
13 tristate "SGI HAL2 Audio"
14 depends on SGI_HAS_HAL2
15 help
16 Sound support for the SGI Indy and Indigo2 Workstation.
17
18
12config SND_AU1X00 19config SND_AU1X00
13 tristate "Au1x00 AC97 Port Driver" 20 tristate "Au1x00 AC97 Port Driver"
14 depends on SOC_AU1000 || SOC_AU1100 || SOC_AU1500 21 depends on SOC_AU1000 || SOC_AU1100 || SOC_AU1500
diff --git a/sound/mips/Makefile b/sound/mips/Makefile
index 47afed971fba..63f4a9c0a8d9 100644
--- a/sound/mips/Makefile
+++ b/sound/mips/Makefile
@@ -3,6 +3,8 @@
3# 3#
4 4
5snd-au1x00-objs := au1x00.o 5snd-au1x00-objs := au1x00.o
6snd-sgi-hal2-objs := hal2.o
6 7
7# Toplevel Module Dependency 8# Toplevel Module Dependency
8obj-$(CONFIG_SND_AU1X00) += snd-au1x00.o 9obj-$(CONFIG_SND_AU1X00) += snd-au1x00.o
10obj-$(CONFIG_SND_SGI_HAL2) += snd-sgi-hal2.o
diff --git a/sound/mips/hal2.c b/sound/mips/hal2.c
new file mode 100644
index 000000000000..db495be01861
--- /dev/null
+++ b/sound/mips/hal2.c
@@ -0,0 +1,947 @@
1/*
2 * Driver for A2 audio system used in SGI machines
3 * Copyright (c) 2008 Thomas Bogendoerfer <tsbogend@alpha.fanken.de>
4 *
5 * Based on OSS code from Ladislav Michl <ladis@linux-mips.org>, which
6 * was based on code from Ulf Carlsson
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 *
21 */
22#include <linux/kernel.h>
23#include <linux/init.h>
24#include <linux/interrupt.h>
25#include <linux/dma-mapping.h>
26#include <linux/platform_device.h>
27#include <linux/io.h>
28
29#include <asm/sgi/hpc3.h>
30#include <asm/sgi/ip22.h>
31
32#include <sound/core.h>
33#include <sound/control.h>
34#include <sound/pcm.h>
35#include <sound/pcm-indirect.h>
36#include <sound/initval.h>
37
38#include "hal2.h"
39
40static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */
41static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */
42
43module_param(index, int, 0444);
44MODULE_PARM_DESC(index, "Index value for SGI HAL2 soundcard.");
45module_param(id, charp, 0444);
46MODULE_PARM_DESC(id, "ID string for SGI HAL2 soundcard.");
47MODULE_DESCRIPTION("ALSA driver for SGI HAL2 audio");
48MODULE_AUTHOR("Thomas Bogendoerfer");
49MODULE_LICENSE("GPL");
50
51
52#define H2_BLOCK_SIZE 1024
53#define H2_BUF_SIZE 16384
54
55struct hal2_pbus {
56 struct hpc3_pbus_dmacregs *pbus;
57 int pbusnr;
58 unsigned int ctrl; /* Current state of pbus->pbdma_ctrl */
59};
60
61struct hal2_desc {
62 struct hpc_dma_desc desc;
63 u32 pad; /* padding */
64};
65
66struct hal2_codec {
67 struct snd_pcm_indirect pcm_indirect;
68 struct snd_pcm_substream *substream;
69
70 unsigned char *buffer;
71 dma_addr_t buffer_dma;
72 struct hal2_desc *desc;
73 dma_addr_t desc_dma;
74 int desc_count;
75 struct hal2_pbus pbus;
76 int voices; /* mono/stereo */
77 unsigned int sample_rate;
78 unsigned int master; /* Master frequency */
79 unsigned short mod; /* MOD value */
80 unsigned short inc; /* INC value */
81};
82
83#define H2_MIX_OUTPUT_ATT 0
84#define H2_MIX_INPUT_GAIN 1
85
86struct snd_hal2 {
87 struct snd_card *card;
88
89 struct hal2_ctl_regs *ctl_regs; /* HAL2 ctl registers */
90 struct hal2_aes_regs *aes_regs; /* HAL2 aes registers */
91 struct hal2_vol_regs *vol_regs; /* HAL2 vol registers */
92 struct hal2_syn_regs *syn_regs; /* HAL2 syn registers */
93
94 struct hal2_codec dac;
95 struct hal2_codec adc;
96};
97
98#define H2_INDIRECT_WAIT(regs) while (hal2_read(&regs->isr) & H2_ISR_TSTATUS);
99
100#define H2_READ_ADDR(addr) (addr | (1<<7))
101#define H2_WRITE_ADDR(addr) (addr)
102
103static inline u32 hal2_read(u32 *reg)
104{
105 return __raw_readl(reg);
106}
107
108static inline void hal2_write(u32 val, u32 *reg)
109{
110 __raw_writel(val, reg);
111}
112
113
114static u32 hal2_i_read32(struct snd_hal2 *hal2, u16 addr)
115{
116 u32 ret;
117 struct hal2_ctl_regs *regs = hal2->ctl_regs;
118
119 hal2_write(H2_READ_ADDR(addr), &regs->iar);
120 H2_INDIRECT_WAIT(regs);
121 ret = hal2_read(&regs->idr0) & 0xffff;
122 hal2_write(H2_READ_ADDR(addr) | 0x1, &regs->iar);
123 H2_INDIRECT_WAIT(regs);
124 ret |= (hal2_read(&regs->idr0) & 0xffff) << 16;
125 return ret;
126}
127
128static void hal2_i_write16(struct snd_hal2 *hal2, u16 addr, u16 val)
129{
130 struct hal2_ctl_regs *regs = hal2->ctl_regs;
131
132 hal2_write(val, &regs->idr0);
133 hal2_write(0, &regs->idr1);
134 hal2_write(0, &regs->idr2);
135 hal2_write(0, &regs->idr3);
136 hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
137 H2_INDIRECT_WAIT(regs);
138}
139
140static void hal2_i_write32(struct snd_hal2 *hal2, u16 addr, u32 val)
141{
142 struct hal2_ctl_regs *regs = hal2->ctl_regs;
143
144 hal2_write(val & 0xffff, &regs->idr0);
145 hal2_write(val >> 16, &regs->idr1);
146 hal2_write(0, &regs->idr2);
147 hal2_write(0, &regs->idr3);
148 hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
149 H2_INDIRECT_WAIT(regs);
150}
151
152static void hal2_i_setbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
153{
154 struct hal2_ctl_regs *regs = hal2->ctl_regs;
155
156 hal2_write(H2_READ_ADDR(addr), &regs->iar);
157 H2_INDIRECT_WAIT(regs);
158 hal2_write((hal2_read(&regs->idr0) & 0xffff) | bit, &regs->idr0);
159 hal2_write(0, &regs->idr1);
160 hal2_write(0, &regs->idr2);
161 hal2_write(0, &regs->idr3);
162 hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
163 H2_INDIRECT_WAIT(regs);
164}
165
166static void hal2_i_clearbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
167{
168 struct hal2_ctl_regs *regs = hal2->ctl_regs;
169
170 hal2_write(H2_READ_ADDR(addr), &regs->iar);
171 H2_INDIRECT_WAIT(regs);
172 hal2_write((hal2_read(&regs->idr0) & 0xffff) & ~bit, &regs->idr0);
173 hal2_write(0, &regs->idr1);
174 hal2_write(0, &regs->idr2);
175 hal2_write(0, &regs->idr3);
176 hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
177 H2_INDIRECT_WAIT(regs);
178}
179
180static int hal2_gain_info(struct snd_kcontrol *kcontrol,
181 struct snd_ctl_elem_info *uinfo)
182{
183 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
184 uinfo->count = 2;
185 uinfo->value.integer.min = 0;
186 switch ((int)kcontrol->private_value) {
187 case H2_MIX_OUTPUT_ATT:
188 uinfo->value.integer.max = 31;
189 break;
190 case H2_MIX_INPUT_GAIN:
191 uinfo->value.integer.max = 15;
192 break;
193 }
194 return 0;
195}
196
197static int hal2_gain_get(struct snd_kcontrol *kcontrol,
198 struct snd_ctl_elem_value *ucontrol)
199{
200 struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
201 u32 tmp;
202 int l, r;
203
204 switch ((int)kcontrol->private_value) {
205 case H2_MIX_OUTPUT_ATT:
206 tmp = hal2_i_read32(hal2, H2I_DAC_C2);
207 if (tmp & H2I_C2_MUTE) {
208 l = 0;
209 r = 0;
210 } else {
211 l = 31 - ((tmp >> H2I_C2_L_ATT_SHIFT) & 31);
212 r = 31 - ((tmp >> H2I_C2_R_ATT_SHIFT) & 31);
213 }
214 break;
215 case H2_MIX_INPUT_GAIN:
216 tmp = hal2_i_read32(hal2, H2I_ADC_C2);
217 l = (tmp >> H2I_C2_L_GAIN_SHIFT) & 15;
218 r = (tmp >> H2I_C2_R_GAIN_SHIFT) & 15;
219 break;
220 }
221 ucontrol->value.integer.value[0] = l;
222 ucontrol->value.integer.value[1] = r;
223
224 return 0;
225}
226
227static int hal2_gain_put(struct snd_kcontrol *kcontrol,
228 struct snd_ctl_elem_value *ucontrol)
229{
230 struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
231 u32 old, new;
232 int l, r;
233
234 l = ucontrol->value.integer.value[0];
235 r = ucontrol->value.integer.value[1];
236
237 switch ((int)kcontrol->private_value) {
238 case H2_MIX_OUTPUT_ATT:
239 old = hal2_i_read32(hal2, H2I_DAC_C2);
240 new = old & ~(H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
241 if (l | r) {
242 l = 31 - l;
243 r = 31 - r;
244 new |= (l << H2I_C2_L_ATT_SHIFT);
245 new |= (r << H2I_C2_R_ATT_SHIFT);
246 } else
247 new |= H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE;
248 hal2_i_write32(hal2, H2I_DAC_C2, new);
249 break;
250 case H2_MIX_INPUT_GAIN:
251 old = hal2_i_read32(hal2, H2I_ADC_C2);
252 new = old & ~(H2I_C2_L_GAIN_M | H2I_C2_R_GAIN_M);
253 new |= (l << H2I_C2_L_GAIN_SHIFT);
254 new |= (r << H2I_C2_R_GAIN_SHIFT);
255 hal2_i_write32(hal2, H2I_ADC_C2, new);
256 break;
257 }
258 return old != new;
259}
260
261static struct snd_kcontrol_new hal2_ctrl_headphone __devinitdata = {
262 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
263 .name = "Headphone Playback Volume",
264 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
265 .private_value = H2_MIX_OUTPUT_ATT,
266 .info = hal2_gain_info,
267 .get = hal2_gain_get,
268 .put = hal2_gain_put,
269};
270
271static struct snd_kcontrol_new hal2_ctrl_mic __devinitdata = {
272 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
273 .name = "Mic Capture Volume",
274 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
275 .private_value = H2_MIX_INPUT_GAIN,
276 .info = hal2_gain_info,
277 .get = hal2_gain_get,
278 .put = hal2_gain_put,
279};
280
281static int __devinit hal2_mixer_create(struct snd_hal2 *hal2)
282{
283 int err;
284
285 /* mute DAC */
286 hal2_i_write32(hal2, H2I_DAC_C2,
287 H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
288 /* mute ADC */
289 hal2_i_write32(hal2, H2I_ADC_C2, 0);
290
291 err = snd_ctl_add(hal2->card,
292 snd_ctl_new1(&hal2_ctrl_headphone, hal2));
293 if (err < 0)
294 return err;
295
296 err = snd_ctl_add(hal2->card,
297 snd_ctl_new1(&hal2_ctrl_mic, hal2));
298 if (err < 0)
299 return err;
300
301 return 0;
302}
303
304static irqreturn_t hal2_interrupt(int irq, void *dev_id)
305{
306 struct snd_hal2 *hal2 = dev_id;
307 irqreturn_t ret = IRQ_NONE;
308
309 /* decide what caused this interrupt */
310 if (hal2->dac.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
311 snd_pcm_period_elapsed(hal2->dac.substream);
312 ret = IRQ_HANDLED;
313 }
314 if (hal2->adc.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
315 snd_pcm_period_elapsed(hal2->adc.substream);
316 ret = IRQ_HANDLED;
317 }
318 return ret;
319}
320
321static int hal2_compute_rate(struct hal2_codec *codec, unsigned int rate)
322{
323 unsigned short mod;
324
325 if (44100 % rate < 48000 % rate) {
326 mod = 4 * 44100 / rate;
327 codec->master = 44100;
328 } else {
329 mod = 4 * 48000 / rate;
330 codec->master = 48000;
331 }
332
333 codec->inc = 4;
334 codec->mod = mod;
335 rate = 4 * codec->master / mod;
336
337 return rate;
338}
339
340static void hal2_set_dac_rate(struct snd_hal2 *hal2)
341{
342 unsigned int master = hal2->dac.master;
343 int inc = hal2->dac.inc;
344 int mod = hal2->dac.mod;
345
346 hal2_i_write16(hal2, H2I_BRES1_C1, (master == 44100) ? 1 : 0);
347 hal2_i_write32(hal2, H2I_BRES1_C2,
348 ((0xffff & (inc - mod - 1)) << 16) | inc);
349}
350
351static void hal2_set_adc_rate(struct snd_hal2 *hal2)
352{
353 unsigned int master = hal2->adc.master;
354 int inc = hal2->adc.inc;
355 int mod = hal2->adc.mod;
356
357 hal2_i_write16(hal2, H2I_BRES2_C1, (master == 44100) ? 1 : 0);
358 hal2_i_write32(hal2, H2I_BRES2_C2,
359 ((0xffff & (inc - mod - 1)) << 16) | inc);
360}
361
362static void hal2_setup_dac(struct snd_hal2 *hal2)
363{
364 unsigned int fifobeg, fifoend, highwater, sample_size;
365 struct hal2_pbus *pbus = &hal2->dac.pbus;
366
367 /* Now we set up some PBUS information. The PBUS needs information about
368 * what portion of the fifo it will use. If it's receiving or
369 * transmitting, and finally whether the stream is little endian or big
370 * endian. The information is written later, on the start call.
371 */
372 sample_size = 2 * hal2->dac.voices;
373 /* Fifo should be set to hold exactly four samples. Highwater mark
374 * should be set to two samples. */
375 highwater = (sample_size * 2) >> 1; /* halfwords */
376 fifobeg = 0; /* playback is first */
377 fifoend = (sample_size * 4) >> 3; /* doublewords */
378 pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_LD |
379 (highwater << 8) | (fifobeg << 16) | (fifoend << 24);
380 /* We disable everything before we do anything at all */
381 pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
382 hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
383 /* Setup the HAL2 for playback */
384 hal2_set_dac_rate(hal2);
385 /* Set endianess */
386 hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX);
387 /* Set DMA bus */
388 hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
389 /* We are using 1st Bresenham clock generator for playback */
390 hal2_i_write16(hal2, H2I_DAC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
391 | (1 << H2I_C1_CLKID_SHIFT)
392 | (hal2->dac.voices << H2I_C1_DATAT_SHIFT));
393}
394
395static void hal2_setup_adc(struct snd_hal2 *hal2)
396{
397 unsigned int fifobeg, fifoend, highwater, sample_size;
398 struct hal2_pbus *pbus = &hal2->adc.pbus;
399
400 sample_size = 2 * hal2->adc.voices;
401 highwater = (sample_size * 2) >> 1; /* halfwords */
402 fifobeg = (4 * 4) >> 3; /* record is second */
403 fifoend = (4 * 4 + sample_size * 4) >> 3; /* doublewords */
404 pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_RCV | HPC3_PDMACTRL_LD |
405 (highwater << 8) | (fifobeg << 16) | (fifoend << 24);
406 pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
407 hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
408 /* Setup the HAL2 for record */
409 hal2_set_adc_rate(hal2);
410 /* Set endianess */
411 hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR);
412 /* Set DMA bus */
413 hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
414 /* We are using 2nd Bresenham clock generator for record */
415 hal2_i_write16(hal2, H2I_ADC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
416 | (2 << H2I_C1_CLKID_SHIFT)
417 | (hal2->adc.voices << H2I_C1_DATAT_SHIFT));
418}
419
420static void hal2_start_dac(struct snd_hal2 *hal2)
421{
422 struct hal2_pbus *pbus = &hal2->dac.pbus;
423
424 pbus->pbus->pbdma_dptr = hal2->dac.desc_dma;
425 pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
426 /* enable DAC */
427 hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
428}
429
430static void hal2_start_adc(struct snd_hal2 *hal2)
431{
432 struct hal2_pbus *pbus = &hal2->adc.pbus;
433
434 pbus->pbus->pbdma_dptr = hal2->adc.desc_dma;
435 pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
436 /* enable ADC */
437 hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
438}
439
440static inline void hal2_stop_dac(struct snd_hal2 *hal2)
441{
442 hal2->dac.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
443 /* The HAL2 itself may remain enabled safely */
444}
445
446static inline void hal2_stop_adc(struct snd_hal2 *hal2)
447{
448 hal2->adc.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
449}
450
451static int hal2_alloc_dmabuf(struct hal2_codec *codec)
452{
453 struct hal2_desc *desc;
454 dma_addr_t desc_dma, buffer_dma;
455 int count = H2_BUF_SIZE / H2_BLOCK_SIZE;
456 int i;
457
458 codec->buffer = dma_alloc_noncoherent(NULL, H2_BUF_SIZE,
459 &buffer_dma, GFP_KERNEL);
460 if (!codec->buffer)
461 return -ENOMEM;
462 desc = dma_alloc_noncoherent(NULL, count * sizeof(struct hal2_desc),
463 &desc_dma, GFP_KERNEL);
464 if (!desc) {
465 dma_free_noncoherent(NULL, H2_BUF_SIZE,
466 codec->buffer, buffer_dma);
467 return -ENOMEM;
468 }
469 codec->buffer_dma = buffer_dma;
470 codec->desc_dma = desc_dma;
471 codec->desc = desc;
472 for (i = 0; i < count; i++) {
473 desc->desc.pbuf = buffer_dma + i * H2_BLOCK_SIZE;
474 desc->desc.cntinfo = HPCDMA_XIE | H2_BLOCK_SIZE;
475 desc->desc.pnext = (i == count - 1) ?
476 desc_dma : desc_dma + (i + 1) * sizeof(struct hal2_desc);
477 desc++;
478 }
479 dma_cache_sync(NULL, codec->desc, count * sizeof(struct hal2_desc),
480 DMA_TO_DEVICE);
481 codec->desc_count = count;
482 return 0;
483}
484
485static void hal2_free_dmabuf(struct hal2_codec *codec)
486{
487 dma_free_noncoherent(NULL, codec->desc_count * sizeof(struct hal2_desc),
488 codec->desc, codec->desc_dma);
489 dma_free_noncoherent(NULL, H2_BUF_SIZE, codec->buffer,
490 codec->buffer_dma);
491}
492
493static struct snd_pcm_hardware hal2_pcm_hw = {
494 .info = (SNDRV_PCM_INFO_MMAP |
495 SNDRV_PCM_INFO_MMAP_VALID |
496 SNDRV_PCM_INFO_INTERLEAVED |
497 SNDRV_PCM_INFO_BLOCK_TRANSFER),
498 .formats = SNDRV_PCM_FMTBIT_S16_BE,
499 .rates = SNDRV_PCM_RATE_8000_48000,
500 .rate_min = 8000,
501 .rate_max = 48000,
502 .channels_min = 2,
503 .channels_max = 2,
504 .buffer_bytes_max = 65536,
505 .period_bytes_min = 1024,
506 .period_bytes_max = 65536,
507 .periods_min = 2,
508 .periods_max = 1024,
509};
510
511static int hal2_pcm_hw_params(struct snd_pcm_substream *substream,
512 struct snd_pcm_hw_params *params)
513{
514 int err;
515
516 err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params));
517 if (err < 0)
518 return err;
519
520 return 0;
521}
522
523static int hal2_pcm_hw_free(struct snd_pcm_substream *substream)
524{
525 return snd_pcm_lib_free_pages(substream);
526}
527
528static int hal2_playback_open(struct snd_pcm_substream *substream)
529{
530 struct snd_pcm_runtime *runtime = substream->runtime;
531 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
532 int err;
533
534 runtime->hw = hal2_pcm_hw;
535
536 err = hal2_alloc_dmabuf(&hal2->dac);
537 if (err)
538 return err;
539 return 0;
540}
541
542static int hal2_playback_close(struct snd_pcm_substream *substream)
543{
544 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
545
546 hal2_free_dmabuf(&hal2->dac);
547 return 0;
548}
549
550static int hal2_playback_prepare(struct snd_pcm_substream *substream)
551{
552 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
553 struct snd_pcm_runtime *runtime = substream->runtime;
554 struct hal2_codec *dac = &hal2->dac;
555
556 dac->voices = runtime->channels;
557 dac->sample_rate = hal2_compute_rate(dac, runtime->rate);
558 memset(&dac->pcm_indirect, 0, sizeof(dac->pcm_indirect));
559 dac->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
560 dac->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
561 dac->substream = substream;
562 hal2_setup_dac(hal2);
563 return 0;
564}
565
566static int hal2_playback_trigger(struct snd_pcm_substream *substream, int cmd)
567{
568 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
569
570 switch (cmd) {
571 case SNDRV_PCM_TRIGGER_START:
572 hal2->dac.pcm_indirect.hw_io = hal2->dac.buffer_dma;
573 hal2->dac.pcm_indirect.hw_data = 0;
574 substream->ops->ack(substream);
575 hal2_start_dac(hal2);
576 break;
577 case SNDRV_PCM_TRIGGER_STOP:
578 hal2_stop_dac(hal2);
579 break;
580 default:
581 return -EINVAL;
582 }
583 return 0;
584}
585
586static snd_pcm_uframes_t
587hal2_playback_pointer(struct snd_pcm_substream *substream)
588{
589 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
590 struct hal2_codec *dac = &hal2->dac;
591
592 return snd_pcm_indirect_playback_pointer(substream, &dac->pcm_indirect,
593 dac->pbus.pbus->pbdma_bptr);
594}
595
596static void hal2_playback_transfer(struct snd_pcm_substream *substream,
597 struct snd_pcm_indirect *rec, size_t bytes)
598{
599 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
600 unsigned char *buf = hal2->dac.buffer + rec->hw_data;
601
602 memcpy(buf, substream->runtime->dma_area + rec->sw_data, bytes);
603 dma_cache_sync(NULL, buf, bytes, DMA_TO_DEVICE);
604
605}
606
607static int hal2_playback_ack(struct snd_pcm_substream *substream)
608{
609 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
610 struct hal2_codec *dac = &hal2->dac;
611
612 dac->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
613 snd_pcm_indirect_playback_transfer(substream,
614 &dac->pcm_indirect,
615 hal2_playback_transfer);
616 return 0;
617}
618
619static int hal2_capture_open(struct snd_pcm_substream *substream)
620{
621 struct snd_pcm_runtime *runtime = substream->runtime;
622 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
623 struct hal2_codec *adc = &hal2->adc;
624 int err;
625
626 runtime->hw = hal2_pcm_hw;
627
628 err = hal2_alloc_dmabuf(adc);
629 if (err)
630 return err;
631 return 0;
632}
633
634static int hal2_capture_close(struct snd_pcm_substream *substream)
635{
636 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
637
638 hal2_free_dmabuf(&hal2->adc);
639 return 0;
640}
641
642static int hal2_capture_prepare(struct snd_pcm_substream *substream)
643{
644 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
645 struct snd_pcm_runtime *runtime = substream->runtime;
646 struct hal2_codec *adc = &hal2->adc;
647
648 adc->voices = runtime->channels;
649 adc->sample_rate = hal2_compute_rate(adc, runtime->rate);
650 memset(&adc->pcm_indirect, 0, sizeof(adc->pcm_indirect));
651 adc->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
652 adc->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
653 adc->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
654 adc->substream = substream;
655 hal2_setup_adc(hal2);
656 return 0;
657}
658
659static int hal2_capture_trigger(struct snd_pcm_substream *substream, int cmd)
660{
661 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
662
663 switch (cmd) {
664 case SNDRV_PCM_TRIGGER_START:
665 hal2->adc.pcm_indirect.hw_io = hal2->adc.buffer_dma;
666 hal2->adc.pcm_indirect.hw_data = 0;
667 printk(KERN_DEBUG "buffer_dma %x\n", hal2->adc.buffer_dma);
668 hal2_start_adc(hal2);
669 break;
670 case SNDRV_PCM_TRIGGER_STOP:
671 hal2_stop_adc(hal2);
672 break;
673 default:
674 return -EINVAL;
675 }
676 return 0;
677}
678
679static snd_pcm_uframes_t
680hal2_capture_pointer(struct snd_pcm_substream *substream)
681{
682 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
683 struct hal2_codec *adc = &hal2->adc;
684
685 return snd_pcm_indirect_capture_pointer(substream, &adc->pcm_indirect,
686 adc->pbus.pbus->pbdma_bptr);
687}
688
689static void hal2_capture_transfer(struct snd_pcm_substream *substream,
690 struct snd_pcm_indirect *rec, size_t bytes)
691{
692 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
693 unsigned char *buf = hal2->adc.buffer + rec->hw_data;
694
695 dma_cache_sync(NULL, buf, bytes, DMA_FROM_DEVICE);
696 memcpy(substream->runtime->dma_area + rec->sw_data, buf, bytes);
697}
698
699static int hal2_capture_ack(struct snd_pcm_substream *substream)
700{
701 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
702 struct hal2_codec *adc = &hal2->adc;
703
704 snd_pcm_indirect_capture_transfer(substream,
705 &adc->pcm_indirect,
706 hal2_capture_transfer);
707 return 0;
708}
709
710static struct snd_pcm_ops hal2_playback_ops = {
711 .open = hal2_playback_open,
712 .close = hal2_playback_close,
713 .ioctl = snd_pcm_lib_ioctl,
714 .hw_params = hal2_pcm_hw_params,
715 .hw_free = hal2_pcm_hw_free,
716 .prepare = hal2_playback_prepare,
717 .trigger = hal2_playback_trigger,
718 .pointer = hal2_playback_pointer,
719 .ack = hal2_playback_ack,
720};
721
722static struct snd_pcm_ops hal2_capture_ops = {
723 .open = hal2_capture_open,
724 .close = hal2_capture_close,
725 .ioctl = snd_pcm_lib_ioctl,
726 .hw_params = hal2_pcm_hw_params,
727 .hw_free = hal2_pcm_hw_free,
728 .prepare = hal2_capture_prepare,
729 .trigger = hal2_capture_trigger,
730 .pointer = hal2_capture_pointer,
731 .ack = hal2_capture_ack,
732};
733
734static int __devinit hal2_pcm_create(struct snd_hal2 *hal2)
735{
736 struct snd_pcm *pcm;
737 int err;
738
739 /* create first pcm device with one outputs and one input */
740 err = snd_pcm_new(hal2->card, "SGI HAL2 Audio", 0, 1, 1, &pcm);
741 if (err < 0)
742 return err;
743
744 pcm->private_data = hal2;
745 strcpy(pcm->name, "SGI HAL2");
746
747 /* set operators */
748 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
749 &hal2_playback_ops);
750 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
751 &hal2_capture_ops);
752 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
753 snd_dma_continuous_data(GFP_KERNEL),
754 0, 1024 * 1024);
755
756 return 0;
757}
758
759static int hal2_dev_free(struct snd_device *device)
760{
761 struct snd_hal2 *hal2 = device->device_data;
762
763 free_irq(SGI_HPCDMA_IRQ, hal2);
764 kfree(hal2);
765 return 0;
766}
767
768static struct snd_device_ops hal2_ops = {
769 .dev_free = hal2_dev_free,
770};
771
772static void hal2_init_codec(struct hal2_codec *codec, struct hpc3_regs *hpc3,
773 int index)
774{
775 codec->pbus.pbusnr = index;
776 codec->pbus.pbus = &hpc3->pbdma[index];
777}
778
779static int hal2_detect(struct snd_hal2 *hal2)
780{
781 unsigned short board, major, minor;
782 unsigned short rev;
783
784 /* reset HAL2 */
785 hal2_write(0, &hal2->ctl_regs->isr);
786
787 /* release reset */
788 hal2_write(H2_ISR_GLOBAL_RESET_N | H2_ISR_CODEC_RESET_N,
789 &hal2->ctl_regs->isr);
790
791
792 hal2_i_write16(hal2, H2I_RELAY_C, H2I_RELAY_C_STATE);
793 rev = hal2_read(&hal2->ctl_regs->rev);
794 if (rev & H2_REV_AUDIO_PRESENT)
795 return -ENODEV;
796
797 board = (rev & H2_REV_BOARD_M) >> 12;
798 major = (rev & H2_REV_MAJOR_CHIP_M) >> 4;
799 minor = (rev & H2_REV_MINOR_CHIP_M);
800
801 printk(KERN_INFO "SGI HAL2 revision %i.%i.%i\n",
802 board, major, minor);
803
804 return 0;
805}
806
807static int hal2_create(struct snd_card *card, struct snd_hal2 **rchip)
808{
809 struct snd_hal2 *hal2;
810 struct hpc3_regs *hpc3 = hpc3c0;
811 int err;
812
813 hal2 = kzalloc(sizeof(struct snd_hal2), GFP_KERNEL);
814 if (!hal2)
815 return -ENOMEM;
816
817 hal2->card = card;
818
819 if (request_irq(SGI_HPCDMA_IRQ, hal2_interrupt, IRQF_SHARED,
820 "SGI HAL2", hal2)) {
821 printk(KERN_ERR "HAL2: Can't get irq %d\n", SGI_HPCDMA_IRQ);
822 kfree(hal2);
823 return -EAGAIN;
824 }
825
826 hal2->ctl_regs = (struct hal2_ctl_regs *)hpc3->pbus_extregs[0];
827 hal2->aes_regs = (struct hal2_aes_regs *)hpc3->pbus_extregs[1];
828 hal2->vol_regs = (struct hal2_vol_regs *)hpc3->pbus_extregs[2];
829 hal2->syn_regs = (struct hal2_syn_regs *)hpc3->pbus_extregs[3];
830
831 if (hal2_detect(hal2) < 0) {
832 kfree(hal2);
833 return -ENODEV;
834 }
835
836 hal2_init_codec(&hal2->dac, hpc3, 0);
837 hal2_init_codec(&hal2->adc, hpc3, 1);
838
839 /*
840 * All DMA channel interfaces in HAL2 are designed to operate with
841 * PBUS programmed for 2 cycles in D3, 2 cycles in D4 and 2 cycles
842 * in D5. HAL2 is a 16-bit device which can accept both big and little
843 * endian format. It assumes that even address bytes are on high
844 * portion of PBUS (15:8) and assumes that HPC3 is programmed to
845 * accept a live (unsynchronized) version of P_DREQ_N from HAL2.
846 */
847#define HAL2_PBUS_DMACFG ((0 << HPC3_DMACFG_D3R_SHIFT) | \
848 (2 << HPC3_DMACFG_D4R_SHIFT) | \
849 (2 << HPC3_DMACFG_D5R_SHIFT) | \
850 (0 << HPC3_DMACFG_D3W_SHIFT) | \
851 (2 << HPC3_DMACFG_D4W_SHIFT) | \
852 (2 << HPC3_DMACFG_D5W_SHIFT) | \
853 HPC3_DMACFG_DS16 | \
854 HPC3_DMACFG_EVENHI | \
855 HPC3_DMACFG_RTIME | \
856 (8 << HPC3_DMACFG_BURST_SHIFT) | \
857 HPC3_DMACFG_DRQLIVE)
858 /*
859 * Ignore what's mentioned in the specification and write value which
860 * works in The Real World (TM)
861 */
862 hpc3->pbus_dmacfg[hal2->dac.pbus.pbusnr][0] = 0x8208844;
863 hpc3->pbus_dmacfg[hal2->adc.pbus.pbusnr][0] = 0x8208844;
864
865 err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, hal2, &hal2_ops);
866 if (err < 0) {
867 free_irq(SGI_HPCDMA_IRQ, hal2);
868 kfree(hal2);
869 return err;
870 }
871 *rchip = hal2;
872 return 0;
873}
874
875static int __devinit hal2_probe(struct platform_device *pdev)
876{
877 struct snd_card *card;
878 struct snd_hal2 *chip;
879 int err;
880
881 card = snd_card_new(index, id, THIS_MODULE, 0);
882 if (card == NULL)
883 return -ENOMEM;
884
885 err = hal2_create(card, &chip);
886 if (err < 0) {
887 snd_card_free(card);
888 return err;
889 }
890 snd_card_set_dev(card, &pdev->dev);
891
892 err = hal2_pcm_create(chip);
893 if (err < 0) {
894 snd_card_free(card);
895 return err;
896 }
897 err = hal2_mixer_create(chip);
898 if (err < 0) {
899 snd_card_free(card);
900 return err;
901 }
902
903 strcpy(card->driver, "SGI HAL2 Audio");
904 strcpy(card->shortname, "SGI HAL2 Audio");
905 sprintf(card->longname, "%s irq %i",
906 card->shortname,
907 SGI_HPCDMA_IRQ);
908
909 err = snd_card_register(card);
910 if (err < 0) {
911 snd_card_free(card);
912 return err;
913 }
914 platform_set_drvdata(pdev, card);
915 return 0;
916}
917
918static int __exit hal2_remove(struct platform_device *pdev)
919{
920 struct snd_card *card = platform_get_drvdata(pdev);
921
922 snd_card_free(card);
923 platform_set_drvdata(pdev, NULL);
924 return 0;
925}
926
927static struct platform_driver hal2_driver = {
928 .probe = hal2_probe,
929 .remove = __devexit_p(hal2_remove),
930 .driver = {
931 .name = "sgihal2",
932 .owner = THIS_MODULE,
933 }
934};
935
936static int __init alsa_card_hal2_init(void)
937{
938 return platform_driver_register(&hal2_driver);
939}
940
941static void __exit alsa_card_hal2_exit(void)
942{
943 platform_driver_unregister(&hal2_driver);
944}
945
946module_init(alsa_card_hal2_init);
947module_exit(alsa_card_hal2_exit);
diff --git a/sound/mips/hal2.h b/sound/mips/hal2.h
new file mode 100644
index 000000000000..f19828bc64e0
--- /dev/null
+++ b/sound/mips/hal2.h
@@ -0,0 +1,245 @@
1#ifndef __HAL2_H
2#define __HAL2_H
3
4/*
5 * Driver for HAL2 sound processors
6 * Copyright (c) 1999 Ulf Carlsson <ulfc@bun.falkenberg.se>
7 * Copyright (c) 2001, 2002, 2003 Ladislav Michl <ladis@linux-mips.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 *
22 */
23
24#include <linux/types.h>
25
26/* Indirect status register */
27
28#define H2_ISR_TSTATUS 0x01 /* RO: transaction status 1=busy */
29#define H2_ISR_USTATUS 0x02 /* RO: utime status bit 1=armed */
30#define H2_ISR_QUAD_MODE 0x04 /* codec mode 0=indigo 1=quad */
31#define H2_ISR_GLOBAL_RESET_N 0x08 /* chip global reset 0=reset */
32#define H2_ISR_CODEC_RESET_N 0x10 /* codec/synth reset 0=reset */
33
34/* Revision register */
35
36#define H2_REV_AUDIO_PRESENT 0x8000 /* RO: audio present 0=present */
37#define H2_REV_BOARD_M 0x7000 /* RO: bits 14:12, board revision */
38#define H2_REV_MAJOR_CHIP_M 0x00F0 /* RO: bits 7:4, major chip revision */
39#define H2_REV_MINOR_CHIP_M 0x000F /* RO: bits 3:0, minor chip revision */
40
41/* Indirect address register */
42
43/*
44 * Address of indirect internal register to be accessed. A write to this
45 * register initiates read or write access to the indirect registers in the
46 * HAL2. Note that there af four indirect data registers for write access to
47 * registers larger than 16 byte.
48 */
49
50#define H2_IAR_TYPE_M 0xF000 /* bits 15:12, type of functional */
51 /* block the register resides in */
52 /* 1=DMA Port */
53 /* 9=Global DMA Control */
54 /* 2=Bresenham */
55 /* 3=Unix Timer */
56#define H2_IAR_NUM_M 0x0F00 /* bits 11:8 instance of the */
57 /* blockin which the indirect */
58 /* register resides */
59 /* If IAR_TYPE_M=DMA Port: */
60 /* 1=Synth In */
61 /* 2=AES In */
62 /* 3=AES Out */
63 /* 4=DAC Out */
64 /* 5=ADC Out */
65 /* 6=Synth Control */
66 /* If IAR_TYPE_M=Global DMA Control: */
67 /* 1=Control */
68 /* If IAR_TYPE_M=Bresenham: */
69 /* 1=Bresenham Clock Gen 1 */
70 /* 2=Bresenham Clock Gen 2 */
71 /* 3=Bresenham Clock Gen 3 */
72 /* If IAR_TYPE_M=Unix Timer: */
73 /* 1=Unix Timer */
74#define H2_IAR_ACCESS_SELECT 0x0080 /* 1=read 0=write */
75#define H2_IAR_PARAM 0x000C /* Parameter Select */
76#define H2_IAR_RB_INDEX_M 0x0003 /* Read Back Index */
77 /* 00:word0 */
78 /* 01:word1 */
79 /* 10:word2 */
80 /* 11:word3 */
81/*
82 * HAL2 internal addressing
83 *
84 * The HAL2 has "indirect registers" (idr) which are accessed by writing to the
85 * Indirect Data registers. Write the address to the Indirect Address register
86 * to transfer the data.
87 *
88 * We define the H2IR_* to the read address and H2IW_* to the write address and
89 * H2I_* to be fields in whatever register is referred to.
90 *
91 * When we write to indirect registers which are larger than one word (16 bit)
92 * we have to fill more than one indirect register before writing. When we read
93 * back however we have to read several times, each time with different Read
94 * Back Indexes (there are defs for doing this easily).
95 */
96
97/*
98 * Relay Control
99 */
100#define H2I_RELAY_C 0x9100
101#define H2I_RELAY_C_STATE 0x01 /* state of RELAY pin signal */
102
103/* DMA port enable */
104
105#define H2I_DMA_PORT_EN 0x9104
106#define H2I_DMA_PORT_EN_SY_IN 0x01 /* Synth_in DMA port */
107#define H2I_DMA_PORT_EN_AESRX 0x02 /* AES receiver DMA port */
108#define H2I_DMA_PORT_EN_AESTX 0x04 /* AES transmitter DMA port */
109#define H2I_DMA_PORT_EN_CODECTX 0x08 /* CODEC transmit DMA port */
110#define H2I_DMA_PORT_EN_CODECR 0x10 /* CODEC receive DMA port */
111
112#define H2I_DMA_END 0x9108 /* global dma endian select */
113#define H2I_DMA_END_SY_IN 0x01 /* Synth_in DMA port */
114#define H2I_DMA_END_AESRX 0x02 /* AES receiver DMA port */
115#define H2I_DMA_END_AESTX 0x04 /* AES transmitter DMA port */
116#define H2I_DMA_END_CODECTX 0x08 /* CODEC transmit DMA port */
117#define H2I_DMA_END_CODECR 0x10 /* CODEC receive DMA port */
118 /* 0=b_end 1=l_end */
119
120#define H2I_DMA_DRV 0x910C /* global PBUS DMA enable */
121
122#define H2I_SYNTH_C 0x1104 /* Synth DMA control */
123
124#define H2I_AESRX_C 0x1204 /* AES RX dma control */
125
126#define H2I_C_TS_EN 0x20 /* Timestamp enable */
127#define H2I_C_TS_FRMT 0x40 /* Timestamp format */
128#define H2I_C_NAUDIO 0x80 /* Sign extend */
129
130/* AESRX CTL, 16 bit */
131
132#define H2I_AESTX_C 0x1304 /* AES TX DMA control */
133#define H2I_AESTX_C_CLKID_SHIFT 3 /* Bresenham Clock Gen 1-3 */
134#define H2I_AESTX_C_CLKID_M 0x18
135#define H2I_AESTX_C_DATAT_SHIFT 8 /* 1=mono 2=stereo (3=quad) */
136#define H2I_AESTX_C_DATAT_M 0x300
137
138/* CODEC registers */
139
140#define H2I_DAC_C1 0x1404 /* DAC DMA control, 16 bit */
141#define H2I_DAC_C2 0x1408 /* DAC DMA control, 32 bit */
142#define H2I_ADC_C1 0x1504 /* ADC DMA control, 16 bit */
143#define H2I_ADC_C2 0x1508 /* ADC DMA control, 32 bit */
144
145/* Bits in CTL1 register */
146
147#define H2I_C1_DMA_SHIFT 0 /* DMA channel */
148#define H2I_C1_DMA_M 0x7
149#define H2I_C1_CLKID_SHIFT 3 /* Bresenham Clock Gen 1-3 */
150#define H2I_C1_CLKID_M 0x18
151#define H2I_C1_DATAT_SHIFT 8 /* 1=mono 2=stereo (3=quad) */
152#define H2I_C1_DATAT_M 0x300
153
154/* Bits in CTL2 register */
155
156#define H2I_C2_R_GAIN_SHIFT 0 /* right a/d input gain */
157#define H2I_C2_R_GAIN_M 0xf
158#define H2I_C2_L_GAIN_SHIFT 4 /* left a/d input gain */
159#define H2I_C2_L_GAIN_M 0xf0
160#define H2I_C2_R_SEL 0x100 /* right input select */
161#define H2I_C2_L_SEL 0x200 /* left input select */
162#define H2I_C2_MUTE 0x400 /* mute */
163#define H2I_C2_DO1 0x00010000 /* digital output port bit 0 */
164#define H2I_C2_DO2 0x00020000 /* digital output port bit 1 */
165#define H2I_C2_R_ATT_SHIFT 18 /* right d/a output - */
166#define H2I_C2_R_ATT_M 0x007c0000 /* attenuation */
167#define H2I_C2_L_ATT_SHIFT 23 /* left d/a output - */
168#define H2I_C2_L_ATT_M 0x0f800000 /* attenuation */
169
170#define H2I_SYNTH_MAP_C 0x1104 /* synth dma handshake ctrl */
171
172/* Clock generator CTL 1, 16 bit */
173
174#define H2I_BRES1_C1 0x2104
175#define H2I_BRES2_C1 0x2204
176#define H2I_BRES3_C1 0x2304
177
178#define H2I_BRES_C1_SHIFT 0 /* 0=48.0 1=44.1 2=aes_rx */
179#define H2I_BRES_C1_M 0x03
180
181/* Clock generator CTL 2, 32 bit */
182
183#define H2I_BRES1_C2 0x2108
184#define H2I_BRES2_C2 0x2208
185#define H2I_BRES3_C2 0x2308
186
187#define H2I_BRES_C2_INC_SHIFT 0 /* increment value */
188#define H2I_BRES_C2_INC_M 0xffff
189#define H2I_BRES_C2_MOD_SHIFT 16 /* modcontrol value */
190#define H2I_BRES_C2_MOD_M 0xffff0000 /* modctrl=0xffff&(modinc-1) */
191
192/* Unix timer, 64 bit */
193
194#define H2I_UTIME 0x3104
195#define H2I_UTIME_0_LD 0xffff /* microseconds, LSB's */
196#define H2I_UTIME_1_LD0 0x0f /* microseconds, MSB's */
197#define H2I_UTIME_1_LD1 0xf0 /* tenths of microseconds */
198#define H2I_UTIME_2_LD 0xffff /* seconds, LSB's */
199#define H2I_UTIME_3_LD 0xffff /* seconds, MSB's */
200
201struct hal2_ctl_regs {
202 u32 _unused0[4];
203 u32 isr; /* 0x10 Status Register */
204 u32 _unused1[3];
205 u32 rev; /* 0x20 Revision Register */
206 u32 _unused2[3];
207 u32 iar; /* 0x30 Indirect Address Register */
208 u32 _unused3[3];
209 u32 idr0; /* 0x40 Indirect Data Register 0 */
210 u32 _unused4[3];
211 u32 idr1; /* 0x50 Indirect Data Register 1 */
212 u32 _unused5[3];
213 u32 idr2; /* 0x60 Indirect Data Register 2 */
214 u32 _unused6[3];
215 u32 idr3; /* 0x70 Indirect Data Register 3 */
216};
217
218struct hal2_aes_regs {
219 u32 rx_stat[2]; /* Status registers */
220 u32 rx_cr[2]; /* Control registers */
221 u32 rx_ud[4]; /* User data window */
222 u32 rx_st[24]; /* Channel status data */
223
224 u32 tx_stat[1]; /* Status register */
225 u32 tx_cr[3]; /* Control registers */
226 u32 tx_ud[4]; /* User data window */
227 u32 tx_st[24]; /* Channel status data */
228};
229
230struct hal2_vol_regs {
231 u32 right; /* Right volume */
232 u32 left; /* Left volume */
233};
234
235struct hal2_syn_regs {
236 u32 _unused0[2];
237 u32 page; /* DOC Page register */
238 u32 regsel; /* DOC Register selection */
239 u32 dlow; /* DOC Data low */
240 u32 dhigh; /* DOC Data high */
241 u32 irq; /* IRQ Status */
242 u32 dram; /* DRAM Access */
243};
244
245#endif /* __HAL2_H */